
Where Is My Memory?



Who am I

• Nikita Salnikov-Tarnovski
• Founder and Master Developer from 
• @iNikem / @JavaPlumbr



Plumbr

• Application performance monitor with root cause detection
• In case of problem reports you exact details
• Memory leaks, class loader leaks, GC related problems, 

contented locks, slow JDBC and HTTP requests, OOMs



Agenda

• Quick overview of Java Memory Management
• A word on Garbage Collector
• Reachability and memory leaks
• Different kinds of OutOfMemoryErrors
• Memory usage monitoring
• Heap dump
• Eclipse Memory Analyser Tool



The most important thing

• Ask questions!



JVM process memory

• JVM is just usual process from OS point of view
• And requires some memory for itself:
• GC
• JIT
• JNI
• threads



JVM application memory

• And then comes your application
• Heap
• Permanent Generation
• Threads
• And native memory
• Off-heap allocations
• Metaspace



Default sizes

• Default sizes of these regions depends on the computer
• java -XX:+UnlockDiagnosticVMOptions -XX:
+PrintFlagsFinal -version 

• MaxHeapSize 

• MaxPermSize/MaxMetaspaceSize 

• ThreadStackSize 
• http://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/toc.html

http://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/toc.html


How to change them

• You almost always want to go with non-default sizes
• -Xmx2g 

• -XX:MaxPermSize=128m 

• -Xss512k (rarely) 

• -XX:MaxMetaspaceSize=128m (rarely)



Home reading

• https://plumbr.eu/blog/memory-leaks/why-does-my-
java-process-consume-more-memory-than-xmx

https://plumbr.eu/blog/memory-leaks/why-does-my-java-process-consume-more-memory-than-xmx


You have to fit

• All that memory HAS to come from RAM
• You do NOT ever let it go to swap



Java memory management

• JVM has automatic memory management
• Developers don’t think about it
• They just create new objects and go on



Garbage Collector

• Subsystem of JVM for reclaiming “unused” memory
• Memory occupied by unused objects
• Not JVM specific, many runtimes have it
• Different algorithms
• 8 in Oracle HotSpot
• Plus C4 from Azul
• Plus Shenandoah from RedHat



GC “wizardry”

• GC is not mind reading magician
• It always works by very specific and strict algorithm
• “No references, thus garbage”



GC roots

• Special objects, always considered to be alive
• Often heap objects referenced from outside the heap



GC roots

• System Classes
• JNI references
• Running Threads
• Local variables or parameters
• Native stack
• Used monitors
• Other :)



References

• From an object to the value of one of its instance fields
• From an array to one of its elements
• From an object to its class
• From a class to its class loader
• From a class to the value of one of its static fields
• From a class to its superclass



Not that hard

• Those are so called “hard references”
• There are also weak, soft and phantom references
• Subclasses of java.lang.ref.Reference

18



Weak Reference

• You can wrap an object into a weak reference
• If object is only weakly reachable, GC can discard it

19



• GC can discard object wrapped into soft reference at 
any time. 

• ANY time.
• But guarantees it happens before OOM

Soft Reference



Phantom Reference

• If you find a legitimate use for them - call me
• I have seen 2 in my 15 years in Java.

21



Reachability

• Mark all GC roots as “reachable”
• Mark all objects referenced from “reachable” objects as 

“reachable” too
• Repeat until all reachable objects found
• Everything else is garbage and can be thrown away



The basis of GC



Home reading

• https://plumbr.eu/java-garbage-collection-handbook

https://plumbr.eu/java-garbage-collection-handbook


Memory leak

• Reachable object(s), that will never be used by application
• Repetitive creation of such objects



Can you find one?



Of course you cannot

The notion of memory leak is 100% 
application specific



Examples

• Caches without look-ups and eviction
• String.substring
• Immortal threads
• Unclosed IO streams
• Storages with longer lifespan than stored values



So what?

• That memory cannot be reclaimed by GC
• Decreases the amount available to the application
• If leak is growing, soon there is nothing left

29



Symptoms

• OutOfMemoryError: XXX
• Application is very slow due to excessive GC



OOM

• Not all of them signals of memory leaks
• Unable to create new native thread
• Out of swap space
• Requested array size exceeds VM limit

31



Home reading

• https://plumbr.eu/outofmemoryerror

https://plumbr.eu/outofmemoryerror


Not a memory leak

• Too high allocation rate
• Cache with wrong size
• Trying to load too much data at once
• Fat data structures



Memory monitoring

• VisualVM/Java Mission Control
• jstat



GC logs

• -XX:+PrintGCDetails 

• -XX:+PrintGCTimeStamps 

• -Xloggc:file.log 

• -XX:+UseGCLogFileRotation 

• -XX:NumberOfGClogFiles=N



GC logs analyzers

• http://www.fasterj.com/tools/gcloganalysers.shtml
• https://github.com/chewiebug/GCViewer

http://www.fasterj.com/tools/gcloganalysers.shtml
https://github.com/chewiebug/GCViewer


Problem confirmed

• Reduce memory usage
• Tune GC
• Increase Xmx/PermGen



Memory dump

• One of the best ways to find out what consumes memory
• Binary representation of objects graph written to a file
• NOT an accurate representation



How to get memory dump

• jmap -dump:format=b,file=heap.hprof 

• -XX:+HeapDumpOnOutOfMemoryError 

• -XX:HeapDumpPath=./java_pid<pid>.hprof



When to get memory dump

• As late as possible!
• You want to let that needle grow and fill the whole hey sack



What to do with it

• Get it to a computer with lot of memory.
• Add memory to that computer
• MAT

https://www.eclipse.org/mat/


Shallow vs Deep

• You can measure shallow size of the object
• Or deep size of the subgraph starting with the object
• Or retained size of the subgraph dominated by the object



Shallow object size

• Size of the object itself
• With object header and all fields
• But without fields’ values



Retained size

• r(O1)=O1+O2+O3+O4
• r(O2)=O2
• r(O3)=O3+O4
• r(O4)=O4

• d(O1)=O1+O2+O3+O4
• d(O2)=O2+O3+O4
• d(O3)=O3+O4
• d(O4)=O4



Classloader leak



It’s not your fault

• Most of the classloader leaks you will ever encounter 
are not your fault 

• Double-edge sword of reuse and modular 
development

• You have no idea what do you use in your application



Home reading

• https://plumbr.eu/blog/what-is-a-permgen-leak

https://plumbr.eu/blog/what-is-a-permgen-leak


Other tools

• Do NOT use profilers
• https://plumbr.eu/blog/solving-outofmemoryerror-memory-

profilers

https://plumbr.eu/blog/solving-outofmemoryerror-memory-profilers


 

Solving performance problems is hard. 
We don’t think it needs to be.


