Where Is My Memory?

Plumbr

* Nikita Salnikov-Tarnovski
« Founder and Master Developer from Plumbr
* @iNikem / @JavaPlumbr

* Application performance monitor with root cause detection
* In case of problem reports you exact details

* Memory leaks, class loader leaks, GC related problems,
contented locks, slow JDBC and HTTP requests, OOMs

Plumbr

Agenda

Quick overview of Java Memory Management
A word on Garbage Collector

Reachability and memory leaks

Different kinds of OutOfMemoryErrors
Memory usage monitoring

Heap dump

Eclipse Memory Analyser Tool

Plumbr

The most important thing

* Ask questions!

JVM process memory

» JVM is just usual process from OS point of view
* And requires some memory for itself:

« GC

o JIT

* JNI

* threads

JVM application memory

And then comes your application
Heap
Permanent Generation
Threads
And native memory
» Off-heap allocations
* Metaspace

Default sizes

Default sizes of these regions depends on the computer

java —-XX:+UnlockDiagnosticVMOptions -XX:
+PrintFlagsFinal -version

MaxHeapSize
MaxPermSize/MaxMetaspaceSize
ThreadStackSize

http://docs.oracle.com/javase/8/docs/technotes/qguides/vm/gctuning/toc.html

Plumbr

http://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/toc.html

How to change them

You almost always want to go with non-default sizes
- Xmx2g

—XX :MaxPermSize=128m
-Xssbl2k (rarely)
—XX:MaxMetaspaceSize=128m (rarely)

Home reading

* https://plumbr.eu/blog/memory-leaks/why-does-my:-
java-process-consume-more-memory-than-xmx

Plumbr

https://plumbr.eu/blog/memory-leaks/why-does-my-java-process-consume-more-memory-than-xmx

You have to fit

 All that memory HAS to come from RAM
* You do NOT ever let it go to swap

Plumbr

Java memory management

* JVM has automatic memory management
* Developers don’t think about it
* They just create new objects and go on

Garbage Collector

Subsystem of JVM for reclaiming “unused” memory
Memory occupied by unused objects

Not JVM specific, many runtimes have it

Different algorithms

* 8 in Oracle HotSpot

* Plus C4 from Azul

* Plus Shenandoah from RedHat

Plumbr

GC “wizardry”

« GC is not mind reading magician
* It always works by very specific and strict algorithm
* “No references, thus garbage”

Plumbr

GC roots

* Special objects, always considered to be alive
* Often heap objects referenced from outside the heap

Plumbr

GC roots

System Classes

JNI references

Running Threads

Local variables or parameters
Native stack

Used monitors

Other :)

Plumbr

References

From an object to the value of one of its instance fields
From an array to one of its elements

From an object to its class

From a class to its class loader

From a class to the value of one of its static fields
From a class to its superclass

Plumbr

Not that hard

 Those are so called “hard references”
* There are also weak, soft and phantom references
* Subclasses of java.lang.ref.Reference

Weak Reference

* You can wrap an object into a weak reference
* |If object is only weakly reachable, GC can discard it

Soft Reference

* GC can discard object wrapped into soft reference at
any time.

* ANY time.
* But guarantees it happens before OOM

Plumbr

Phantom Reference

* If you find a legitimate use for them - call me
* | have seen 2 in my 15 years in Java.

Reachability

Mark all GC roots as “reachable”

Mark all objects referenced from “reachable” objects as
“reachable” too

Repeat until all reachable objects found
Everything else is garbage and can be thrown away

Plumbr

The basis of GC

REACHABLE OBJECTS

NON-REACHABLE OBJECTS

Home reading

* https://plumbr.eu/java-garbage-collection-handbook

Plumbr

https://plumbr.eu/java-garbage-collection-handbook

Memory leak

* Reachable object(s), that will never be used by application
* Repetitive creation of such objects

Plumbr

Can you find one?

REACHABLE OBJECTS

'
{
-

NON-REACHABLE OBJECTS

Of course you cannot

The notion of memory leak is 100%
application specific

Plumbr

Examples

Caches without look-ups and eviction
String.substring

Immortal threads

Unclosed IO streams

Storages with longer lifespan than stored values

Plumbr

« That memory cannot be reclaimed by GC
* Decreases the amount available to the application
* If leak is growing, soon there is nothing left

Symptoms

* OutOfMemoryError: XXX
* Application is very slow due to excessive GC

* Not all of them signals of memory leaks
* Unable to create new native thread
* Out of swap space
* Requested array size exceeds VM limit

Pléimbr

Home reading

* https://plumbr.eu/outofmemoryerror

Plumbr

https://plumbr.eu/outofmemoryerror

Not a memory leak

Too high allocation rate
Cache with wrong size

Trying to load too much data at once
Fat data structures

Memory monitoring

* VisualVM/Java Mission Control
* Jstat

GC logs

-XX:+PrintGCDetails
—XX:+PrintGCTimeStamps
-Xloggc:file.log
—XX:+UseGCLogFileRotation
— XX :NumberOfGClogFiles=N

GC logs analyzers

* http://www.fasterj.com/tools/gcloganalysers.shtml
* https://github.com/chewiebug/GCViewer

Plumbr

http://www.fasterj.com/tools/gcloganalysers.shtml
https://github.com/chewiebug/GCViewer

Problem confirmed

* Reduce memory usage
* Tune GC
* Increase Xmx/PermGen

Memory dump

* One of the best ways to find out what consumes memory
* Binary representation of objects graph written to a file
* NOT an accurate representation

Plumbr

How to get memory dump

e Jmap -dump:format=b, file=heap.hprotf
e —XX:+HeapDumpOnOutOfMemoryError
¢« —-XX:HeapDumpPath=./java pid<pid>.hprof

When to get memory dump

* As late as possible!
* You want to let that needle grow and fill the whole hey sack

What to do with it

* Get it to a computer with lot of memory.
* Add memory to that computer
- MAT

https://www.eclipse.org/mat/

Shallow vs Deep

* You can measure shallow size of the object
* Or deep size of the subgraph starting with the object
* Or retained size of the subgraph dominated by the object

Plumbr

Shallow object size

 Size of the object itself
* With object header and all fields
* But without fields’ values

Retained size

@

=01+02+03+04
=02+03+04
=03+04

=04

Plumbr

Classloader leak

It’s not your fault

Most of the classloader leaks you will ever encounter
are not your fault

Double-edge sword of reuse and modular
development

You have no idea what do you use in your application

Home reading

 https://plumbr.eu/blog/what-is-a-permgen-leak

Plumbr

https://plumbr.eu/blog/what-is-a-permgen-leak

Other tools

* Do NOT use profilers
* https://plumbr.eu/blog/solving-outofmemoryerror-memory-
profilers

Plumbr

https://plumbr.eu/blog/solving-outofmemoryerror-memory-profilers

Solving performance problems is hard.
We don’t think it needs to be.

Plumbr

