Guicing Up Selenium With Docker!




What Is the concept?

Tests should be deterministic, repeatable and accurately model
the production environment

Continuous Integration and Immutable Servers are the goal

Docker containerization makes repeatable test environments
easy to manage

JUnit and Selenium provide familiar testing tools

Giulius uses Guice dependency injection to makethe system
modular and easier to manage



What the heck 1s Guilius?

A collection of projects for loading configuration files, binding

them using Guice and writing bollerplate-free JUnit tests of
Guice code

Created by long-time Java contributor, Tim Boudreau, based
on work by Eelco Hillenius

Builds up test environments using injected dependencies
Container Initialization can be integrated into test runs



Useful for?

We built the system primarily for integration testing of web
applications

Our environment is based on Apache Open for Business and
uses a lot of server side code written in Groovy

Eases rapid interative testing and development

Easily reset anything that stores state Iin the filesystem:
databases, full text search, uploads, etc.



Benefits

Each test runs in a pristine copy of the application without any
Influence from previous runs

All state Is reset: legacy applications or anything with file
system state Is intact

The container can be isolated and complex production network
environments can be simulated

Mock high level services such as email can be provided



Docker

Popular and mature infrastructure for managing virtualization

Overlay file system allows direct editing of source in the test
container

Allows the production environment to be simulated in the
desktop environment

Docker does impose its own concepts about how a system
works (ie. no init.d)



Development Process



Docker: Fil

e system overlay

Test environment

JDK, .

libraries,
binaries,
all can be |
different than |

the dev

environment

Development
environment

Shared

‘ source files
- are preserved
‘ across

restarts




Guilius style injection

@RunWith(SeleniumRunner)

@ TestWith([VideoModule, TestsModule])
@Fixtures([TestDatabase, ApprovedUser])

@ Suites("cool-tests")

public class MakeSureCoolThingWorksTest {
... driver.findElement(By.byClass('cool-button')).click() ...
... assert something ... etc ...

}



Guilius style injection

nind(TestDatabase.class).to(ECommerceQ12014.class);
pind(ApprovedUser.class).to(GoodCreditUser.class);

nind(CreditProcessor.class).to(MockCreditProcessor.class);
L Elc

These can be rebound for the entire test system and will be
dynamically injected into many tests at run-time.

10



Performance concerns and strategies

» Constantly rebuilding the container can be network intensive

- Run a local mirror for packages

- Design Dockerfiles and other initialization scripts to look for and use
http_proxy

- Design Dockerfile layers to build actively changing resources later in
the process so that early steps can cache

 SSDs make a huge difference for rebuild performance,
especially if the packages are cached on the local disk or
network.

11



Demo

12



Future directions

Ability to bind combinations of configured fixtures into a Docker
snapshot so that expensive fixture construction can be preserved

Analysis of fixture combinations to automate acceleration of large
test suites through snapshot creation

Use of other container technologies for both desktop and large-
scale testing (ie. LXC, OpenStack, AWS, etc.)

Integration with Continuous Integration (ie. Jenkins, GitLab ClI,
etc.)

13



Thank you!

 More Info:

nttp://schu.es/guicing-up-selenium-with-docker
nttp://github.com/schue/selenium-guice

nttp://twitter.com/schue
ean@brainfood.com

14



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

