
 1

Guicing Up Selenium With Docker!

 2

What is the concept?

● Tests should be deterministic, repeatable and accurately model
the production environment

● Continuous Integration and Immutable Servers are the goal
● Docker containerization makes repeatable test environments

easy to manage
● JUnit and Selenium provide familiar testing tools
● Giulius uses Guice dependency injection to makethe system

modular and easier to manage

 3

What the heck is Guilius?

● A collection of projects for loading configuration files, binding
them using Guice and writing boilerplate-free JUnit tests of
Guice code

● Created by long-time Java contributor, Tim Boudreau, based
on work by Eelco Hillenius

● Builds up test environments using injected dependencies
● Container initialization can be integrated into test runs

 4

Useful for?

● We built the system primarily for integration testing of web
applications

● Our environment is based on Apache Open for Business and
uses a lot of server side code written in Groovy

● Eases rapid interative testing and development
● Easily reset anything that stores state in the filesystem:

databases, full text search, uploads, etc.

 5

Benefits

● Each test runs in a pristine copy of the application without any
influence from previous runs

● All state is reset: legacy applications or anything with file
system state is intact

● The container can be isolated and complex production network
environments can be simulated

● Mock high level services such as email can be provided

 6

Docker

● Popular and mature infrastructure for managing virtualization
● Overlay file system allows direct editing of source in the test

container
● Allows the production environment to be simulated in the

desktop environment
● Docker does impose its own concepts about how a system

works (ie. no init.d)

 7

Development Process

 8

Docker: File system overlay

Test environment Development
environment

Shared
source files
are preserved
across
restarts

JDK,
libraries,
binaries,
all can be
different than
the dev
environment

 9

Guilius style injection

@RunWith(SeleniumRunner)

@TestWith([VideoModule, TestsModule])

@Fixtures([TestDatabase, ApprovedUser])

@Suites("cool-tests")

public class MakeSureCoolThingWorksTest {

… driver.findElement(By.byClass('cool-button')).click() …

… assert something … etc ...

}

 10

Guilius style injection

bind(TestDatabase.class).to(ECommerceQ12014.class);

bind(ApprovedUser.class).to(GoodCreditUser.class);

bind(CreditProcessor.class).to(MockCreditProcessor.class);
… etc …

These can be rebound for the entire test system and will be
dynamically injected into many tests at run-time.

 11

Performance concerns and strategies

● Constantly rebuilding the container can be network intensive
– Run a local mirror for packages

– Design Dockerfiles and other initialization scripts to look for and use
http_proxy

– Design Dockerfile layers to build actively changing resources later in
the process so that early steps can cache

● SSDs make a huge difference for rebuild performance,
especially if the packages are cached on the local disk or
network.

 12

Demo

 13

Future directions

● Ability to bind combinations of configured fixtures into a Docker
snapshot so that expensive fixture construction can be preserved

● Analysis of fixture combinations to automate acceleration of large
test suites through snapshot creation

● Use of other container technologies for both desktop and large-
scale testing (ie. LXC, OpenStack, AWS, etc.)

● Integration with Continuous Integration (ie. Jenkins, GitLab CI,
etc.)

 14

Thank you!

● More info:
– http://schu.es/guicing-up-selenium-with-docker

– http://github.com/schue/selenium-guice

– http://twitter.com/schue

– ean@brainfood.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

