
A memcached
implementation in Java

Bela Ban

JBoss

2340

 2

AGENDA

> Introduction

> memcached

> memcached in Java

> Improving memcached

> Infinispan

> Demo

 3

Introduction

> We want to store all of our data in memory

– “Memory is the new disk, disk is the new tape” (Tim Bray)
– Reducing DB access speeds up the application

 A network round trip is at least an order of magnitude
faster than accessing the disk

 The DB becomes the bottleneck
> However, we'll likely exceed the memory of a single host
> Therefore, we spread our data across multiple hosts
> The aggregated memories of all hosts serves as our (large virtual) disk

– Given enough data redundancy, we can temporarily afford to lose
hosts due to crashes, updates etc

 4

What is memcached ?

> Server (daemon) process written in C, providing an in-memory hashmap

> Clients can be written in any language

– They talk to memcached servers via the memcached protocol
> Simple API: put(key,val), get(key), remove(key)

> A key always maps to the same memcached server (consistent hashing)

> Clients pick the right memcached server based on consistentHash(K)

> Given a good consistent hash function, keys are evenly distributed
across memcached servers

> Typical use cases

– PUT(K, V): write K,V to DB and put K,V into the cache
– GET(K): get from cache, return V if found. Else fetch from DB, insert

into cache and then return V

 5

memcached

HTTP

Apache

mod_jk

memcached A

memcached protocol

DB

JBoss

Servlet

JBoss

Servlet

JBoss

Servlet memcached C

memcached B

 6

Issues with memcached

> Client have to use the memcached protocol to talk to a server

– Protocol is ASCII over HTTP, inefficient, parsing of headers
> No L1 cache (some memcached clients cache locally though)
> memcached servers don't know about each other
> When a memcached server leaves, or a new server is started, some

keys may now map to a different server ... which doesn't have them →
DB lookup

> Keys are not redundantly stored on multiple servers
– Server crash (or graceful shutdown) causes keys not to be found →

DB lookup
– On shutdown of a server, keys are not relocated to a different server

 7

memcached in Java

> L1 caches

– Clients run in the same address space as ReplCache
– Access to data is fast when in L1 cache, no marshalling overhead

> All ReplCaches know about each other (in the same cluster)
– Data can be migrated when shutting down
– On rehashing, data is rebalanced automatically

 Avoids a DB access
> Fast binary protocol (JGroups)

– Can be adapted (compression, encryption, batching) via XML config
> Fewer network round trips

 8

ReplCache: memcached improved
> memcached has no redundancy

– When a server crashes, the keys on that server need to be re-read
from the DB

> With ReplCache, every key has a replication count

– Defines how many times the key should be stored in the cluster
– -1: store key on every server
– N: store key on N servers

 Example: put(key,val, 3) stores {key,val} on 3 servers
 When one of the 3 servers crashes, {key,val} will be

copied to another server
> Advantage:

– We can define redundancy per data element !

– This allows us to use more of the available aggregated memory

 9

ReplCache

HTTP

Apache

mod_jk

DB

JBoss

Servlet

ReplCache

JBoss

Servlet

ReplCache

JBoss

Servlet

ReplCache
Cluster

 10

ReplCache: memcached improved
> Data that can be easily re-read from the DB might use repl-count=1

> Data that isn't available in the DB needs to have a repl-count of -1

> Data where we can tolerate 3 concurrent crashes has repl-count=3

> Think of ReplCache as Dynamic RAID

 11

Demo

 12

Infinispan
> Open Source Data Grid Platform

> Simple JSR-107 interface

– Cache extends Map
> Content distribution based on Consistent Hashing

– Ability to address massive heap
– 100 nodes with 2GB each, DIST configured with 1 copy => 100GB

addressable space from anywhere!
> JTA compliant, support for persistence to cache stores, eviction to

prevent OOMs
> JMX reporting, (upcoming) mgmt console, migration tools

> Extremely high performance core container to support high concurrency
– State of the art algorithms with minimal use of mutual exclusion

 13

Infinispan
> memcached server module

– Coming soon in Infinispan
> Speaks both memcached text protocol + custom binary protocol
> Able to use any memcached client

– Not just Java! C#, C++, Python, PHP

> Custom Java client with ability to load-balance/fail-over
– Makes use of binary protocol
– We expect more clients like this for other systems (C++, etc) to be

contributed
> Drop-in replacement for memcached farms

– With all the added benefits of Infinispan

 14

Infinispan
> Cool new AsyncAPI

– Future<V> putAsync(K key, V value)
– Allows you to fire off a number of such operations which operate in

parallel
 Operations can be synchronous

– And wait for responses using Future.get()
> Other upcoming features include

– Querying API
– JPA-style interface for “POJO Caching”
– Distributed executors

 Runnables moved to the data, not the other way around
 Map/reduce on your data!

 15

Outlook
> Implementation of file system (java.io) interfaces to use the grid as a

large in-memory file system

> JDBC: use the grid as data store rather than the disk ?

> Hibernate on a grid

 16

Links
> memcached: http://www.danga.com/memcached
> ReplCache: http://www.jgroups.org/memcached.html and

http://www.jgroups.org/replcache.html
> ReplCache WebStart demo: http://www.jgroups.org/jnlp/replcache.jnlp
> ReplCache Flash demo: http://www.jgroups.org/movies/ReplCache.swf
> Infinispan: http://www.infinispan.org

http://www.danga.com/memcached
http://www.jgroups.org/memcached.html
http://www.jgroups.org/replcache.html
http://www.jgroups.org/jnlp/replcache.jnlp
http://www.jgroups.org/movies/ReplCache.swf
http://www.infinispan.org/

Bela Ban http://www.jboss.com

JBoss / Red Hat bela@jboss.com

	<SUBJECT/THEME>
	AGENDA
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

