Deploying JBoss
in a Large Scale
Production Environment

Rick MacConnell
Sameer Nanda

AutoTrader.com

* We run our web applications out of two co-locations.

« We're a very unix-centric environment and, as a result, use unix
tools like rsync and scp for doing deployments.

» We don’t run our web-servers in clusters. If a web server dies,
we take it out of service until it can be repaired or replaced.

» Development has no access to the ga or production
environments.

» We do production deployments every two weeks. These
deployments consist of building a tarball, deploying it to qa for
testing and ultimately copying it to the target server, unpacking
and restarting JBoss.

[— 1 - =
Y.

g [[

+ We need a fool-proof way of configuring web servers and their
associated applications.

« We wanted a method that had a minimum number of
dependencies on the target hardware. Our current method
requires only the presence of java and apache binaries to run.

+ We needed the configuration to be explicit. We use a three tier
architecture and need to be able to adjust the load across the
tiers with a fairly fine degree of control.

+ Once the distribution has left development, it needs to be able to
accommodate the ga and production environments with little to
no human intervention.

» We wanted a mechanism that fitted our unix-centric
environment.

-

« Our customization process begins when we want to perform a JBoss
upgrade.

« After we download the latest appropriate stable JBoss release, we
determine what customization is required to fit our needs.

« One of the first steps in building our customized solution is to unpack
the JBoss distribution and remove configuration modes, services, and
documents we do not need to distribute to our servers.

+ We also have some common java libraries that are used across all our
applications, so we place these in the JBoss server lib directory.

« Next we patch many of the JBoss files for various reasons, for example,
we may patch run.sh to pass certain flags to the JVM or patch the web-
console web.xml to turn on authentication.

« All of this is done via Ant which makes it relatively painless however;
upgrading from one JBoss release to the next can be challenging.

« We remove services we aren't currently using

<echo message="removing unused configuration files" />

<delete file="${final.dir}/jboss/server/atc/deploy/user-service.xml"/>

<delete file="${final.dir}/jl ice.xml"/>
<delete file="${final.dir}/j g ice.xml"/>
<delete file="${final.dir}/jposs/server/atc/deploy/hsqldb-ds .xml"/>

<delete file="${final.dir}/j er/atc/ il-service.xml"/>

<delete file="${final.dir}/jl xml"/>
<delete dir="${final.dir}/jbo: -adaptor.sar'/>

<delete dir="${final.dir}/jboss/server/atc/deploy/jms"/>

+ We also patch some of the existing configuration files (note the
.base file name extension below)

<echo message="patching jboss-minimal.xml" />

<copy tofile="${final.dir i |.xml.base"
file="${final.dir}/jboss/server/atc/conf/jboss-minimal.xml"/>
<patch patchfile=" j er/atc/ i I.xml.patch"

"${final.dir] i j inimal.xml.base"

1>

« Finally, we introduce configurations that are specific to our
needs (again, note the .base file name extension)

<echo ge="copying oracle i jion" />
<copy tofile="${final.dir} i -ds.xml.base"
file= i -ds.xml.base"/>

* When we patch the config files, we add a .base extension to
them. As part of the startup phase, we personalize these config
files via sed using the portconfig files that we’ll be discussing
next.

« The .base extension helps us by explicitly identifying the
configurations that we’ve modified. We can then see exactly
how things are set up in the event of a configuration issue.

+ The next step in customizing the JBoss distribution is to build and
include our specific additional features.

« We use the interceptor features of Tomcat to include valves that we
find useful.

— AccessLog4JValve — This allows us to send the tomcat access logs
through log4j to control log granularity and rolling intervals. This is not
explicitly necessary if you're also using Apache to log requests as we do
but it can be useful.

— AllStopValve — In cases where we've got an internal failure, we use this
valve to turn on a stop sign page that intercepts all requests and
redirects them.

— CountingValve — This is useful for keeping track of metrics such as the
number of sessions that are in use or have been created by Tomcat
over a specific period of time.

« After adding in the Tomcat changes, we build and deploy a set of
MBeans that we use to control various parts of the infrastructure.
— AppStatus — We use this MBean to control whether the application is
currently available or not. In conjunction with the AllStopValve, we can
temporarily redirect requests to a maintenance message if necessary.
— HTMLAdaptor — We use this mbean to control the authentication for
accessing the configuration web apps.
— SessionTracker — We use this mbean to control how we track session
statistics.
— Log4J — This allows us to control the Log4J configuration through the
interface rather than having to adjust the log4j.xml file.

* We use a couple of other MBeans to control which data sources the
application is currently using. This allows us to move applications
across databases during maintenance windows.

+ We use a similar mechanism to externalize configuration elements
specific to our applications.

+ As an example, we want to serve images from the correct
environment based on where the application is currently running
(development, ga or production).

+ We create a properties file that we sed-ify at startup based on the
portconfig file.

« At runtime, we load up a ResourceBundle using the properties file to
get at the correct configuration elements.

This line is in the properties file:

image_file_server_home.external_image_server_context_name=@@image_file_server_home.external_

context_name@@

At startup, we replace the @@ marker token with the appropriate value and then load the properties file
into a ResourceBundle.

+ We build a sed file specific to each web
server.

« The contents of the sed files are
generated via Ant.

« We distribute the sed files for all of the
web servers with each application

distribution.

« The cost for generating these sed files is M
very low because it's been automated
with Ant.

« We end up with a distribution that o
includes the configurations for all of the
web servers and only the specific files
for the desired web server are ever L
used. (Ep——

Ipoontgsed

During the build, we call the portconfig target for each web server in
production, ga and development.

The target includes replacement values (see ${pc.user}) below that
make the generated file specific to the server and application. The
echo task in ant is used to generate the file.

rcony_consumersie”>
ing portcon o for S srier) port 9200" >

i He-rina) otcomS i S S200Sloc lenama) pache">s|@@APACHE PORT_NUMBER@@19200g
¥ 5P Cansumer St Specife Stings I
—

dggriersoNC Foragieivo

3055, UGMT PORT@ @202k
s\@@wwom@@\szu
H@@MOD JSERY AP13 FORT@@I9Z045
S@aNoD Jserv PORTaBIss
S1@@SsL CONN ANDLR@@[92061
SI@@WEBSERVER SERVICEQ@|9207lg

SI@GTOMCAT WEBSERVER_PORT@@(5208lg
¥

SI@@APACHE_HOME@@lusrlocalipackagesiapache-1.3.25lg
SI@@APACHE PORT DIR@@|datalport9200/appserveriapachely
SI@@APACHE LOG_ DIR@@)dataiponta200Mogeio

SIQUSER @@ e usenla

<targes

We currently have approximately 200 servers that we generate sed
files for. With a little abstraction in your ant targets, you can very easily
make a change in one place that applies to a large number of hosts.

For each server, we call the appropriate build_portconfig target (shown on
the previous slide) using replacement values (see pc.server below).

This generates a distinct file for each server which is then packaged up with
the application server distribution.

<2xmi version="10"?>
<IDOCTYPE project [
<IENTITY »_portconfig SYSTEM fi

>

<project name="build-portconfig" defauit="build_portconfig_files" basedir="">
Sconsumersite_portconfig;

<target name="build_portconfig_consumersite_cp">
<antcall target="build_portconfig_consumersite”>

<param nar
<param nar
<param name:
<fantcall>
<antcall target
<param nar
<param nar
<param nar
<fanicall>

="pe.user” value="www"l>

uild_portconf_consumerser>

The generated portconfig.sed file ends up looking like this:

HE_PORT_NUMBER@@[9200lg
HYPERSONIC_PORT@@]9201]g
JBOSS_MGMT_PORT
s|@@JNP_PORT@@[9203g
MOD_JSERV_AJP13_PORT@@I9204g
MOD_JSERV_PORT@@]9205g
s|@@SSL_CONN_HNDLR@@|9206]g

_SERVICI g
TOMCAT_WEBSERVER_PORT@@/9208g

HE_HO! 1.3.291g
HE_PORT_DI
HE_LOG_D
USER_ID{
S|@@ADMIN_EMAIL@@|webmaster@autotrader.comlg
s|@@HOST_NAME@@|www autotrader.com|g
HE_COOKIE_NAME@@IATC_ID|g
HE_COOKIE_DOMAIN_VAR@@|CookieDomainlg
HE_COOKIE_DOMAIN@@) -autotrader.comig
E_MIN_SPARE_SERVERS@@|102]g
E_MAX_SPARE_SERVERS@@|204g
HE_START
HE_ENABLE_CGI@@#lg
E_zIP_ENCODING@@IIg
#DO NOT DELETE THIS LINE OR SED MAY NOT WORK RIGHT - LAST SED COMMAND NEEDS NEWLINE

In addition to configuration files for JBoss and Tomcat, we generate addon
files for the apache configuration. This allows us to control the specific
behavior of Apache by application.

We distribute a stock httpd.conf file with the application server and then
construct addon files during the build. At startup, we sed the addon files
and append them to the httpd.conf before starting Apache.

httpd.conf.addon

JkMount /*jsp ajp13
JkMount /* jtmpl ajp13
JkMount /ac-serviets/* ajp13
JkMount /adminpages/* ajp13

Redirect autotrader.
Redirect /view! http: OST_| Cview, ip_view_name=
Redirect /idal htip:/@@HOST. view jsp view_name=

ErrorDocument 403 /error404.html
ErrorDocument 404 /error404.html
ErrorDocument 500 /error500.htm!

« Our web applications are all J2EE based.

« As part of the build, we take the modified application server
tarball described in the previous slides and unpack it to a
temporary directory.

« We then copy the application code to the appropriate deploy
directory in the JBoss tree.

« We then construct a tarball of the entire JBoss tree including the
application code.

+ We have created custom scripts for starting and stopping JBoss.

« These scripts are where we do all of the necessary configuration
using the generated sed scripts and apache conf files.

« The script looks at the host and directory path to determine which
configuration files to use.

appserver_start.sh
#!/bin/ksh

WORKING_DIR="pwd"

HOSTNAME="uname -n’

RUNNING_SCRIPT="basename $0'
LOGFILE=appserver_run.log

PORT="echo SWORKING_DIR | sed's|.port]|g' | cut -c1-4°
STARTUP_TIMEOUT=60

VERBOSE=0

SED_FILE=$(PWD}/${portconfig_home}/S{HOSTNAME}/${PORT}/portconfig.sed.apache

sed the jboss configuration files

sed - $(SED_FILE} $jboss_t |.xml.base > $jboss_t I.xml
sed - $(SED_FILE} $jboss_home/server/atc/confljboss-service.xml.base > $jboss_home/server/atclconffjboss-service.xml
sed - ${SED_FILE} $jboss_t ml.base > $jboss_| mi

Call the JBoss startup
nohup run.sh —catc &

« Remember at the beginning we talked about renaming the patched
configuration files with .base extensions.

« The startup scripts sed-ify the patched .base file, copying it back to the
original configuration file name and location so that JBoss will pick it up.

« In most cases, we insert matching tokens in the base file and then replace
them with the specific values included in the sed files for the host and port.

jboss-service.xml
First we patch the file and insert the replacement tokens:

--- jboss-service.xml»--Mon Nov 10 11:31:44 2003
+++ jboss-service.xml.base.new»-Mon Nov 10 11:29:49 2003

@@-119.7 +1197 @@

<mbean code="org.jboss.web.WebService"
name="jboss:service=WWebService">
- <attribute nam ort">8083</attribute>
+ <attribute name="Port">@@WEBSERVER_SERVICE@@</attribute>
<!-- Should resources and non-EJB classes be downloadable -->
<attribute name="D erClasse: i
<attribute name="Host">${jboss.bind.address}</attribute>

« During the appserver build process, we construct a sed file specific
to each host and port.

« This sed file includes values to use as replacements for the tokens in
the base files.

jboss-service.xml

Next, we build a sed file for the host and port that includes replacement values
for the tokens :

s|@@APACHE_PORT_NUMBER@@]|2000g
s|@@HYPERSONIC_PORT@@]2001]g
s|@@JBOSS_MGMT_PORT@@[2002]g
s|@@JNP_PORT@@I2003(g
s|@@MOD_JSERV_AJP13_PORT@@|2004g
s|@@MOD_JSERV_PORT@@)2005/g
s|@@SSL_CONN_HNDLR@@|2006]g
s|[@@WEBSERVER_SERVICE@@/2007|g

« At startup, we use sed to replace the tokens in the .base file with the
appropriate values from the portconfig.sed files.
« This results in a configuration file that has been customized on the fly
to suit the host, port and application
jboss-service.xml
Finally, during the startup phase, we sed the file :

sed -f ${SED_FILE} $atcbase_jboss_home/server/atc/conf/jboss-service.xml.base >
$jboss_home/server/atc/conf/jboss-service.xml

And the result is a jboss-service.xml file that has been customized.

<mbean code="org.jboss.web.WebService"
name="jboss:service=WebService">
<attribute name="Port">2007 </attribute>
<I-- Should resources and non-EJB classes be downloadable -->

<attribute name="D rClasses" ibute:
<attribute name="Host">${jboss.bind.address}</attribute>
<attribute name="Bil ">${jboss.bind.) i

</mbean>

Build the Application Server

Create custom SED
files for all target hosts
and applications using

Buid customized
appiication server
using ANT

Get latest JBoss

Build the Application ‘Applcation Server Tarball

Add application code
and create tarball
distribution

Unpack application

Build application using
ANT server distro

Deploy the Application

Execute startup script
which calls sed to
replace marker tokens
in config fles with
appropriate values

Hooray! Application is
tailored to target
environment with no
human intervention.

Deploy appserver and
application tarball to
target host

« After getting this (admittedly complex) build system set up, we have an
appserver distribution that requires no intervention as it moves through from
development to production.

« As we add servers to our infrastructure, we simply add the host specific
fields to the ant build scripts and unpack the applicable tarball on the box.

« The configuration is evident. You can look at the config files and see how
things are set up. This is beneficial in our environment where the operations
team is responsible for all production support. They can easily track down
configuration issues by looking at the portconfig files.

« The developers have explicit control over how the applications are
configured and can be confident that the production servers are set up
correctly.

« In cases where we need to test configuration changes in production
(memory tuning, etc.) we can do that without having to get credentials for the
production servers.

«Start small; when we first went down this road, our only goal was to be able
to control the ports on which the various JBoss services listen at run time.

*Get your ant structure in place so that you can reliably and repeatably
assemble an application server distro.

*Abstract the things that are common to your application environments.

*Wrap the stock startup script so that you can modify the appropriate config
files before JBoss starts.

«If you're using Apache, look at the things that are specific to your config and
move them into a separate file that you can append to the httpd.conf file at
startup.

*Look at JMX and use it where appropriate. We still have progress to make in
this area.

*Keep up with the JBoss upgrades. Waiting too long between them makes
the whole process more painful.

* JMX-We use JMX and custom MBeans to control certain
aspects of the run-time configuration (logging, database pools,
etc.).

+ JMS — We use JMS for asynchronous processes.

* Web-services Integration — We integrate with many
heterogeneous internal and external applications via web-
services.

« Custom Interceptors — We use custom EJB interceptors for
monitoring, caching, and logging.

« Tomcat Integration — We heavily use Tomcat and many of its
features.

« We are evaluating the use of jBPM for business process
management.

* We are evaluating how we can use clustering.

* We are evaluating how we can use JBossCache.

* We plan to evaluate using Hibernate in the near future.

* We plan to evaluate using JBoss AOP in the near future.

Thanks for coming and feel free to tell us that our approach
is nuts!

We'd like to hear how other folks have dealt with these
issues.

You can contact us at:

Rick MacConnell (rick.macconnell@autotrader.com)

Sameer Nanda (sameer.nanda@autotrader.com)

