
1

© JBoss Inc. 2005

Implementing JAIN-SLEE on the JBoss AS
The Mobicents Open SLEE Project

M. Ranganathan and Francesco Moggia

NIST Advanced Networking Technologies Division
Gaithersburg MD

http://www.antd.nist.gov

University Of Genoa
http://www.dist.unige.it

2M. Ranganathan and F. Moggia (NIST/ANTD)

Speaker Intro

• M. Ranganathan
Computer Scientist Advanced Networking
Technologies Division, N.I.S.T.
Co-Spec Lead for JSR 32 JAIN-SIP
Development lead for Mobicents
Member of JSR 240 E.G.

• Francesco Moggia
PhD Student at University of Genoa
Guest Researcher at NIST
Core developer on Mobicents.

3M. Ranganathan and F. Moggia (NIST/ANTD)

Talk Overview

• IP Telephony: more than telephony over IP
Services – the key differentiator.
Concrete Example: SIP services.
Converged Services

• The requirements of IP telephony services
motivate a new container architecture:

What are the requirements of such services?
Why does EJB + Signaling Stack not adequately
address these requirements?
What motivates the need for a new service
architecture?

4M. Ranganathan and F. Moggia (NIST/ANTD)

Talk Overview

• Implementing the JAIN-SLEE spec on
JBoss:

Quick SLEE Demonstration : A SIP Proxy Server
Key JBoss AS components used in the
implementation.

• Future Work
SLEE Enhancements for Security and Resource
Control.
SLEE Enhancements for emergency signaling:
The Emergency Call Control Scenario.

5M. Ranganathan and F. Moggia (NIST/ANTD)

IP Telephony In the Large

• There’s two parts to IP Telephony:
Call setup (signaling) and media.
Signaling is where the Network
Intelligence (services) reside.

• This talk will focus on Signaling and
Services

6M. Ranganathan and F. Moggia (NIST/ANTD)

IP Telephony In the Large

• VOIP is everywhere!
Free or cheap voice is a commodity.
Services is the differentiator – the way to
make revenue.

• VOIP affords flexibility
New classes of services become possible.
Converged services which combine VOIP
and web services.

2

7M. Ranganathan and F. Moggia (NIST/ANTD)

Signaling and Services

• In order to set up a call the two end-points
(IP Phones) exchange messages.

• SIGNALING refers to the messages that are
required to set up the call.

• SIGNALING is interesting because Services
reside in the Signaling Plane.

• SIP is the dominant standard for call setup.
• We will motivate the requirements using

SIP as an example.
SLEE is SIGNALING PROTOCOL AGNOSTIC.

8M. Ranganathan and F. Moggia (NIST/ANTD)

Motivating the Requirements
Example Simple SIP Call Flow

INVITE

100 Trying

180 Ringing
200 OK
ACK

RTP Media Stream

BYE

OK

UAC UAS

UAS – User Agent
Server

UAC – User Agent
Client

There can be intermediate
Signaling nodes (Proxy Servers
that keep call state and network
services).

9M. Ranganathan and F. Moggia (NIST/ANTD)

Motivating the Requirements
A Typical SIP Enabled Network

SIP Proxy +
Registrar for domain A

Redirect Server Redirect Server

SIP Proxy +
Registrar for domain B

SIP Proxy +
Registrar for Domain C

User Agent

A B
10M. Ranganathan and F. Moggia (NIST/ANTD)

Invite F1

486 Busy Here F4
(100 Trying) F3

Invite F2

Ack F5

Two Way RTP Established (AB2)

200 OK F10

ACK F11

Bye F13
Bye F14

200 OK F15
200 OK F16

Invite F6

180 Ringing F8
180 Ringing F7

200 OK F9

ACK F12

Send B1
mail “A
called”

myBusyRefer

Service

User A
User B2
BB2

User B1
BB2

Proxy

Custom SIP Service Custom SIP Service

Custom services can combine voice and email/web

11M. Ranganathan and F. Moggia (NIST/ANTD)

Some Typical Services

• Call Hold.
• Consultation Hold
• Music On Hold.
• Unattended Transfer.
• Attended Transfer.
• Call Forwarding Unconditional.
• Call Forwarding - Busy.
• Call Forwarding - No Answer.
• 3-way Conference….
• See IETF Draft “SIP Service Examples”

12M. Ranganathan and F. Moggia (NIST/ANTD)

Motivating the Requirements
Service Structure

• Each signaling message triggers a
fragment of code to run on the
server.

• Each triggered fragment of code runs
for a finite amount of time.

Services are event oriented,
asynchronous and distributed.
Low latency event delivery requirements
for scalability.

3

13M. Ranganathan and F. Moggia (NIST/ANTD)

An Architecture for Building Services

• Components are good.
But I am preaching to the choir!
We need a component oriented event driven service
platform

• Need high reliability and failure resilience
• Transactions are good

Simplifies the task of building resilient applications.
But I am preaching again!

• So we need a component oriented transaction
supporting, event driven platform.

14M. Ranganathan and F. Moggia (NIST/ANTD)

A Possible architecture for
Building Signaling Services

JAIN-SIP Stack

JAIN-SIP Listener EJB

Signaling message

EJB Container

EJB
EJB

Tightly Coupled Listener
Constrains distribution.

Object management is under application control
Application Complexity

High Latency
Persistent state is stored in an EJB.

15M. Ranganathan and F. Moggia (NIST/ANTD)

Refinement 1
Lets Add an Event Mapping Layer

JAIN-SIP Stack

JAIN-SIP Listener EJB

Signaling message

E
ve

nt
 M

ap
pi

ng
 L

ay
er

EJB

Gets rid of tight coupling between stack and EJB
Still high latency and does not do much for structuring services.

EJB is tuned to the needs of Enterprise-oriented applications.
Heavy weight transactions (O(1) second latency)
Data objects with long persistent lifetimes.

IP Telephony services are asynchronous (triggered by one way
messages).
EJBs are typically used with synchronous invocations (Round trip)

16M. Ranganathan and F. Moggia (NIST/ANTD)

Refinement 2 : Lets Replace the EJB

JAIN-SIP Stack

JAIN-SIP Listener EJB

Signaling message

E
ve

nt
 M

ap
pi

ng
 L

ay
er

SBB

•Replace EJB with a lighter weight component - “SBB”
•Event driven (one way messages)
What about execution order of the SBBs?

EJB offers a nice component model.
Lets keep the cool stuff about the EJB model
and toss the rest out.

17M. Ranganathan and F. Moggia (NIST/ANTD)

Services and SBBs

• Services are compositional
• Each compositional block is an SBB.

SBB: Event Driven Service Building Block
• SBBs fire in response to events
• SBBs send each other events.
• Order of SBB execution is important

Otherwise outcome of composition is
non-deterministic.

18M. Ranganathan and F. Moggia (NIST/ANTD)

Refinement 3:
Lets group and order the SBBs

JAIN-SIP Stack

JAIN-SIP Listener SBB

Signaling message

E
ve

nt
 M

ap
pi

ng
 L

ay
er

SBB

Lets group SBBs and define a means for specifying execution order

SBB

A Service is a group of related SBBs.
Deployment descriptor allows us to specify execution order of SBBs.

SIP Messages

4

19M. Ranganathan and F. Moggia (NIST/ANTD)

Service instantiation

These are the SBBs known to
the SLEE

This picture is known at
Deployment time (through
the deployment descriptors).

At run time, the service
Instantiates a traversal of a
Sub-graph of this sbb graph.

x

zy

B Service Instance

(graphic re-used from JAIN-SLEE Tutorial with permission)

20M. Ranganathan and F. Moggia (NIST/ANTD)

Replication and Persistence

Phone 1 Phone 2

1

2

•Server 1 fails after call setup
•Server 2 takes over for Server 1
•Server 2 needs to replicate the same service structure
•Server 2 needs to know about the call (Transaction ID)

that server 1 was handling
•TID is transitory (only lasts for the setup of the call)

Proxy Server Replica Billing/
accounting
Services

Billing/
accounting
Services

Call ID

Call Setup messages

INVITE
RINGING

OK

21M. Ranganathan and F. Moggia (NIST/ANTD)

Replication and Persistence
• Replicated State:

Replicated state (instance variables) of SBBs
including Call state, Presence state
Compositional state of the service
Mapping between SBBs and events

• Persistent state that can survive restarts:
Account information.
User service configuration information
persistent.
Service State

22M. Ranganathan and F. Moggia (NIST/ANTD)

• JSR 22 (spec leads Open Cloud and Sun).
• Crafted for the needs of Communications service

platforms
Highly Available
Scalable
Distributed

• Supports standard JMX Management Interfaces
• Supports standard facilities (timer, trace, usage,

alarm)
• Point of integration for multiple protocols and

components:
Events and components are strongly typed using
java interfaces.
A single container can support multiple protocols

Summing it up: What is the SLEE ?

23M. Ranganathan and F. Moggia (NIST/ANTD)

Summing it up: Why Invent the SLEE?

• Need to support Asynchronous
invocations.

EJBs are typically synchronous

• SLEE is designed for fine grained
short lived objects that are typically
replicated in memory.

SLEE objects are replicated in memory.
SLEE transactions are light weight.
SLEE manages transaction boundaries.

24M. Ranganathan and F. Moggia (NIST/ANTD)

Simplified JAIN-SLEE Architecture

SIP Custom ProtocolH.323

Event Routing

Svc A Svc B

Sbbs

Resource Adaptors,
RA APIs

M
an

ag
em

en
t (

JM
X

) Sbbs

Timer

Trace

Alarm

Ac. Context Naming

Profile

Usage

5

25M. Ranganathan and F. Moggia (NIST/ANTD)

SLEE Building Blocks

• Event Type
Typed event model.
Resource adaptors generate events

• SBB
Fundamental building block (like an EJB).
SBBs can communicate by firing events ACIs

• Service
Management Artifact
Contains information for initial event processing

• Profile Specification
Provisioned data for management of services.

• Usage parameters interfaces
• JMX management clients

26M. Ranganathan and F. Moggia (NIST/ANTD)

Some Details

• The SLEE abstracts the notion of an Event bus and
event triggered pieces of code (Called SBBs).

• The event bus is called an Activity Context (AC).
An Activity is a stream of related events.
One-to-one mapping between Activities (Resource
Adaptor domain) and Activity Contexts (SLEE
domain).
Activity Context is an Event Channel.

Sbb Ent Sbb Ent

AC AC AC

Activity ActivityActivityR.A. (SIP Stack)

SLEE

27M. Ranganathan and F. Moggia (NIST/ANTD)

Some Details

• SBBS are auto attached to ACIs
Declarative Event Subscription Model.
Does not allow SBBs to directly register
themselves as Listeners for a resource.
Indirection allows for distributed
architecture.
The deployment descriptor indicates
what events are of interest to root SBB
of a service.
SLEE takes care of instantiation,
attachment and routing events to the
SBB.

28M. Ranganathan and F. Moggia (NIST/ANTD)

SLEE Programming Model

• Component model shares many common
concepts with EJB.

But it is different from the EJB model.

• Specialized component model for event
driven applications.

Event names are mapped to method
invocations.
Primary key is not directly visible to the
application.
“Bean” creation and deletion is automatic and
event triggered.

29M. Ranganathan and F. Moggia (NIST/ANTD)

JMS vs. SLEE

• SLEE uses publish-subscribe model
like JMS so why not just use it?

Impedance mismatch.
SLEE messages are supposed to be
processed in 10-100 ms. JMS messages
could take anywhere from seconds to
days. Results in different implementation
strategies.
The “Topics” are not known a-priori here.
JMS drags in baggage that we don’t
want.

30M. Ranganathan and F. Moggia (NIST/ANTD)

JMS vs. SLEE

• JMS does not have some of the features
that we do want:

Endpoints talk SIP not JMS messages. We would
need to encapsulate SIP in JMS.
JMS does not have event triggered object
creation. SLEE will create SBBs in response to
message arrivals.
JMS does not have built in event triggered
garbage collection. SLEE will pool the resources
for a service after the event processing is
complete.

6

31M. Ranganathan and F. Moggia (NIST/ANTD)

The Mobicents Project

• Purpose – to build an open source experimental
SLEE implementation.

• Project is housed at http://www.mobicents.org
• Development Lead: M. Ranganathan (NIST)
• Core Contributors : Francesco Moggia, Tim Fox,

Jean Deruelle.
• Significant contributions to date: Vodafone R&D (

Ralf Siedow), Lucent Technologies (team lead
Buddy Bright), Emil Ivov, Jean-Noel Gadreau.

• Interest (with potential contributions) from : PT
Innovaco, TI Labs.

• JBoss Technical Advisor: Ivelin Ivanov.
• An active project with a growing list of contributors!

32M. Ranganathan and F. Moggia (NIST/ANTD)

Demo 1

33M. Ranganathan and F. Moggia (NIST/ANTD)

Demo 2

34M. Ranganathan and F. Moggia (NIST/ANTD)

SLEE as a JBoss Service

• JAIN SLEE is not a J2EE Spec.
However utilizes many J2EE
components like JMX, Transactions.

• JBoss AS is an application building
platform that provides many facilities
that we use.

• Some useful JBoss services and tools:
JBoss Cache, JMX, JNDI, JavaAssist,
JBoss Clustering.

35M. Ranganathan and F. Moggia (NIST/ANTD)

SLEE as a JBoss Service

JBoss
Trans.
Mgr

TreeCache

Proflie
MBean

Deployment
MBean

SLEE
Management

MBean

Resource
Adaptor
MBean

Trace
MBean

Alarm
MBean

Service
Mgt. MBean

JMX

36M. Ranganathan and F. Moggia (NIST/ANTD)

Deployment

• The SLEE specification defines the
SBB Interface.

Some methods of the SBB must be
abstract.

• The SLEE deployment tool generates
the SBB concrete class by
implementing the SBB abstract class.

7

37M. Ranganathan and F. Moggia (NIST/ANTD)

Using JavaAssist for Deployment

Abstract Sbb Class service-jar.xml event-jar-xml event classes

Deployment Verification

Deployment (registration in the SLEE)

Class Generation using JavaAssist

A deployable unit may contain Services, SBB jar files, Event jar
files, Profile Specification jar files.
Each sbb has abstract methods for various operations: onXXX,
CMP fields accessors. Profile CMP accessors, usage parameters.

These are generated at deployment time to access
container facilities for actually performing the operations.

38M. Ranganathan and F. Moggia (NIST/ANTD)

Transactions, Replication and Caching

• Activities are SLEE Representation of
Events.

An Activity is associated with an Activity
Context (AC)
The SLEE event delivery model is
transactional – each event handler
method runs in its own transaction.
State propagation can happen at
transactional boundaries.
Transactions simplify design.

39M. Ranganathan and F. Moggia (NIST/ANTD)

Cached and Replicated Structures

Activity ID

SIP Transaction ID

Activity Context ID Sbb Entity ID

CMP Field Sbb Entity ID

Child relCmp fields

Parent Sbb Entity ID

Service ID

JBoss Cache

• For failover handling ACs need to be replicated on Tx
boundaries

ACs are visible to applications and represent a transitory event
bus.
ACs, their attachment to SBBs and their state need to be
replicated for failover handling.
JBoss Cache is very handy for this –provides transactional
distributed caching.

40M. Ranganathan and F. Moggia (NIST/ANTD)

JMX and Management

• We utilize JBoss AS JMX implementation.
• The SLEE Specification relies on JMX to

standardize the management interface
• A Service is a management artifact in the

SLEE.
• The SLEE exports a SLEE Management

MBean.
• Each Facility exports an MBean.
• Each Service exports a Service MBean
• The Service Management MBean may be

accessed through the SLEE MBean and
used to control the service.

41M. Ranganathan and F. Moggia (NIST/ANTD)

SLEE Extensions: Security

• NIST Research project Survivable IP
Telephony Service Platform

• SLEE currently does not have a
security model.

Assumes a secure environment.
SLEE Operator trusts SBB writers.
SLEE Operator cannot place deployment
time roles and constraints for SBB
providers.

• We are adding a security layer to the
SLEE

42M. Ranganathan and F. Moggia (NIST/ANTD)

Use Case Scenario

Secure
SLEE

Media
Gateway
Controller

(MGC)

IP Network IP Network

PSTN Lines

RTP

Signaling Gateway
SIP

SIP/MGCP

SIP

When an emergency call setup request (ie. GETS SIP
INVITE) arrives at the proxy, we want to be able to:

Identify the call as having been originated by an emergency
response worker.

Allow the invoked Service to access the resources it needs to
setup the requested call.

Access any privileged resources it needs.

8

43M. Ranganathan and F. Moggia (NIST/ANTD)

Uploadable SLEE Services

• NIST Research Project.
• Install and monitor un-trusted

components in the SLEE
• Control the resources that these

components use.
• Extend the Usage Parameters model

for CPU and Memory.

44M. Ranganathan and F. Moggia (NIST/ANTD)

Uploadable SLEE Services

UserA@domain1

Upload and Start
Service A

Rewriter Processor

ByteCode
Checking

ByteCode
RewritingIf no

security
violations

Add
Resource
Monitor

Add
Service
Monitor

JAIN SLEE Application
Server

Deploy Service

45M. Ranganathan and F. Moggia (NIST/ANTD)

Resource Constrained Services

SLEE Event Router

SLEE Service with bytecode instrumentation

Monitor + Policy Engine

Resource usage
notifications

Dynamic Priority Adjustment

Resource Adaptor

46M. Ranganathan and F. Moggia (NIST/ANTD)

Reference Material

• JAIN-SLEE Specification, white papers
and tutorials

http://jainslee.org/slee/slee.html

• JAIN-SLEE Principles
http://java.sun.com/products/jain/article_slee_princi
ples.html

• SIP RFC 3261
http://www.faqs.org/rfcs/rfc3261.html

47M. Ranganathan and F. Moggia (NIST/ANTD)

Acknowledgement

• The JAIN-SLEE Specification is lead
by Sun Microsystems and Open
Cloud.

• Material from the JAIN-SLEE tutorial
is reused in this presentation with
permission.

• Mobicents is supported in part by the
NIST Advanced Networking
Technologies Division, JBoss and
others.

