Implementing JAIN-SLEE on the JBoss AS
The Mobicents Open SLEE Project

M. Ranganathan and Francesco Moggia
NIST Advanced Networking Technologies Division
Gaithersburg MD
http://www.antd.nist.gov

University Of Genoa
http://www.dist.unige.it

© JBoss Inc. 2005

Talk Overview

= |IP Telephony: more than telephony over IP
v Services — the key differentiator.
v Concrete Example: SIP services.
v Converged Services
= The requirements of IP telephony services
motivate a new container architecture:
v What are the requirements of such services?
v Why does EJB + Signaling Stack not adequately
address these requirements?
v What motivates the need for a new service
architecture?

R :
.Bga;_,) World

rathan and F. Maggia (NIST/ANTD) —

IP Telephony In the Large

* There’s two parts to IP Telephony:
v Call setup (signaling) and media.

v Signaling is where the Network
Intelligence (services) reside.

e This talk will focus on Signaling and
Services

anathan and F. Msggia (NIS

Speaker Intro

< M. Ranganathan

v' Computer Scientist Advanced Networking
Technologies Division, N.I.S.T.

v Co-Spec Lead for JSR 32 JAIN-SIP
v Development lead for Mobicents
v' Member of JSR 240 E.G.

* Francesco Moggia
v' PhD Student at University of Genoa
v Guest Researcher at NIST
v Core developer on Mobicents.

. '
|B\f‘::3_,) World

anganathan anc 2qgia N -

Talk Overview

= Implementing the JAIN-SLEE spec on
JBoss:
v Quick SLEE Demonstration : A SIP Proxy Server
v Key JBoss AS components used in the
implementation.
= Future Work
v SLEE Enhancements for Security and Resource
Control.
v" SLEE Enhancements for emergency signaling:
The Emergency Call Control Scenario.

R :
.Bga;_,) World

Ranganathan and F. Maggia NTD -

IP Telephony In the Large

= VOIP is everywhere!
v Free or cheap voice is a commodity.

v Services is the differentiator — the way to
make revenue.

« VOIP affords flexibility
v New classes of services become possible.

v Converged services which combine VOIP
and web services.

anganathan and F. Meggia (NIST/ANTD

Signaling and Services

= In order to set up a call the two end-points
(IP Phones) exchange messages.

= SIGNALING refers to the messages that are
required to set up the call.

= SIGNALING is interesting because Services
reside in the Signaling Plane.

= SIP is the dominant standard for call setup.

= We will motivate the requirements using
SIP as an example.
v SLEE is SIGNALING PROTOCOL AGNOSTIC.

/.
‘Bc,sa_\,) World

janathan and F. Maggia (NIST/ANTD) —

Motivating the Requirements
Example Simple SIP Call Flow

Motivating the Requirements
A Typical SIP Enabled Network

RedifectseIver Redirect Server

SIP Proxy +

Registrar for domain A SIP Proxy +

Registrar for Domain C

SIP Proxy +
Registrar for domain B

User Agent

= v/
BBGSJ_,) World

nathan and F. Meggia (NIST/ANTD)

UAC UAS
INVITE
UAS — User Agent
100 Trying Server
180 Ringing
200 OK UAC — User Agent
ACK Client

RTP Media Stream

There can be intermediate

BYE Signaling nodes (Proxy Servers
OK that keep call state and network
services). id
r 2005
anganathan anc gggia (NIST/ANT .

Custom SIP Service

Some Typical Services

= Call Hold.

= Consultation Hold

= Music On Hold.

= Unattended Transfer.

= Attended Transfer.

= Call Forwarding Unconditional.

= Call Forwarding - Busy.

= Call Forwarding - No Answer.

= 3-way Conference....

= See IETF Draft “SIP Service Examples”

vl
JBoss. World

Ranganathan and F. Moggia (NIST/ANTD)

= N
oS ,s_,) World
Custom services can combine voice and email/web L 2005
Ranganatr ANd F. MEgia (NS N T ———

Motivating the Requirements
Service Structure

« Each signaling message triggers a

fragment of code to run on the
server.

e Each triggered fragment of code runs

for a finite amount of time.

v Services are event oriented,
asynchronous and distributed.

v Low latency event delivery requirements
for scalability.

vl
JBoss. World

Ranganathan and F. Mrggia (NIST/ANTD

An Architecture for Building Services

= Components are good.
v But | am preaching to the choir!
v We need a component oriented event driven service

platform

= Need high reliability and failure resilience

= Transactions are good
v Simplifies the task of building resilient applications.
v

= So we need a component oriented transaction
supporting, event driven platform.

Refinement 1
Lets Add an Event Mapping Layer

‘ JAIN-SIP Listener }-—-

JAIN-SIP Stack

g
@
-
o
=
=
o
53
=
1=
(7}
>
w

Signaling message

Gets rid of tight coupling between stack and EJB
Still high latency and does not do much for structuring services.
EJB is tuned to the needs of Enterprise-oriented applications.
Heavy weight transactions (O(1) second latency)
Data objects with long persistent lifetimes.
IP Telephony services are asynchronous (triggered by one way
messages).
EJBs are typically used with synchronous invocations (Round trip)

15 —

Services and SBBs

= Services are compositional
= Each compositional block is an SBB.
v' SBB: Event Driven Service Building Block
= SBBs fire in response to events
= SBBs send each other events.
= Order of SBB execution is important

v Otherwise outcome of composition is
non-deterministic.

A Possible architecture for
Building Signaling Services

‘ JAIN-SIP Listener }» ((

JAIN-SIP Stack

EJB Container

T Signaling message

Tightly Coupled Listener
Constrains distribution.
Object management is under application control
Application Complexity
High Latency
Persistent state is stored in an EJB.

Refinement 2 : Lets Replace the EJB

EJB offers a nice component model.
Lets keep the cool stuff about the EJB model
and toss the rest out.

‘ JAIN-SIP Listener F

‘ JAIN-SIP Stack ‘

@ Signaling message

*Replace EJB with a lighter weight component - “SBB”
«Event driven (one way messages)
What about execution order of the SBBs?

Event Mapping Layer

116 = —

Refinement 3:
Lets group and order the SBBs

‘ Lets group SBBs and define a means for specifying execution order ‘

SIP Messages

‘ JAIN-SIP Listener }——A

‘ JAIN-SIP Stack ‘

9]
B
=
=
=
g
=
=
g
>
w

@ Signaling message

A Service is a group of related SBBs.
Deployment descriptor allows us to specify execution order of SBBs.

18 —

Service instantiation

These are the SBBs known to
the SLEE

This picture is known at
Deployment time (through

the deployment descriptors).

(graphic re-used from JAIN-SLEE Tutorial with permission)

SBB Graph

At run time, the service
|Instantiates a traversal of a
Sub-graph of this sbb graph.

B Service Instance

©

N
|B\;‘::3_,) World
janathan and F. Moggia (!) .

Replication and Persistence

= Replicated State:
v Replicated state (instance variables) of SBBs
including Call state, Presence state
v' Compositional state of the service
v' Mapping between SBBs and events
= Persistent state that can survive restarts:
v Account information.

v User service configuration information
persistent.

v Service State

janathan and F. Mzmgia (NIST/ANTD) e

Replication and Persistence

Billing/
accounting
Services

Proxy Server Replica

Call Setup messages

«Server 1 fails after call setup
«Server 2 takes over for Server 1
«Server 2 needs to replicate the same service structure
«Server 2 needs to know about the call (Transaction ID)
that server 1 was handling A
! v T
«TID is transitory (only lasts for the setup of the call) ‘B‘ft”_:) ¥vor

Ranganathan and F. Mzggia NT =~

Summing it up: Why Invent the SLEE?

= Need to support Asynchronous
invocations.
v EJBs are typically synchronous

= SLEE is designed for fine grained
short lived objects that are typically
replicated in memory.
v SLEE objects are replicated in memory.
v SLEE transactions are light weight.
v SLEE manages transaction boundaries.

janathan and F. Meggia (NIS ———

Summing it up: What is the SLEE ?

= JSR 22 (spec leads Open Cloud and Sun).

= Crafted for the needs of Communications service
platforms

v Highly Available
v Scalable
v Distributed
= Supports standard JMX Management Interfaces

= Supports standard facilities (timer, trace, usage,
alarm)

= Point of integration for multiple protocols and
components:

v Events and components are strongly typed using
java interfaces.

v A single container can support multiple protocols

N

.Bﬁ_,) World
Ranganat and F. Mz@gia NT! ——)
Simplified JAIN-SLEE Architecture
Sve A B Timer
OBNG)
g Ospy obs
2
€ Ac. Context Naming
[
g i
§ ‘ Event Routing "T‘
= il
sip 3 Custom Protocol| | Resource Adaptors,
| ‘
JBoss) World

SLEE Building Blocks

= Event Type

v Typed event model.

v Resource adaptors generate events
- SBB

v Fundamental building block (like an EJB).

v SBBs can communicate by firing events ACls
- Service

v Management Artifact

v Contains information for initial event processing
« Profile Specification

v Provisioned data for management of services.
= Usage parameters interfaces
« JMX management clients

Some Details

Some Details

= SBBS are auto attached to ACls
v Declarative Event Subscription Model.

v Does not allow SBBs to directly register
themselves as Listeners for a resource.
Indirection allows for distributed
architecture.

v The deployment descriptor indicates
what events are of interest to root SBB
of a service.

v SLEE takes care of instantiation,
attachment and routing events to the
SBB.

= The SLEE abstracts the notion of an Event bus and
event triggered pieces of code (Called SBBs).

= The event bus is called an Activity Context (AC).
v An Activity is a stream of related events.

v One-to-one mapping between Activities (Resource
Adaptor domain) and Activity Contexts (SLEE
domain).

v Activity Context is an Event Channel.

Sbb Ent Sbb Ent

SLEE Programming Model

JMS vs. SLEE

= SLEE uses publish-subscribe model
like JMS so why not just use it?
v Impedance mismatch.

v SLEE messages are supposed to be
processed in 10-100 ms. JMS messages
could take anywhere from seconds to
days. Results in different implementation
strategies.

v The “Topics” are not known a-priori here.

JMS drags in baggage that we don’t
want.

<

= Component model shares many common
concepts with EJB.
v But it is different from the EJB model.
= Specialized component model for event
driven applications.
v Event names are mapped to method
invocations.
v Primary key is not directly visible to the
application.
v “Bean” creation and deletion is automatic and
event triggered.

28

JMS vs. SLEE

= JMS does not have some of the features
that we do want:

v Endpoints talk SIP not JMS messages. We would
need to encapsulate SIP in JMS.

v JMS does not have event triggered object
creation. SLEE will create SBBs in response to
message arrivals.

v JMS does not have built in event triggered
garbage collection. SLEE will pool the resources
for a service after the event processing is
complete.

3

The Mobicents Project

= Purpose — to build an open source experimental
SLEE implementation.

= Project is housed at http://www.mobicents.org
= Development Lead: M. Ranganathan (NIST)

= Core Contributors : Francesco Moggia, Tim Fox,
Jean Deruelle.

= Significant contributions to date: Vodafone R&D (
Ralf Siedow), Lucent Technologies (team lead
Buddy Bright), Emil Ivov, Jean-Noel Gadreau.

= Interest (with potential contributions) from : PT
Innovaco, TI Labs.

= JBoss Technical Advisor: lvelin Ivanov.

= An active project with a growing list of contributors!

.
‘B\’}SS_,) World

janathan and F. Maggia (NIST/ANTD) —

Demo 1

Jain SLEE
1) Priay Servien
) Registrar SErvice

[T IMX Interface |

HTHL Adapior, show
deployed servce inls

PingTel IP Phone PingTel IP Phone
s wier oot bl g s i o e

.
‘B\’}SS_,) World

anganathan and F. Magigia (NIST/ANT e

Demo 2

RegistrarSbb Enfity

5. RE[JISTER

[Activity Context (Event Bus)

Ewent Router J

nathan and F. Maggia (NIST/ANTD)

SLEE as a JBoss Service

e JAIN SLEE is not a J2EE Spec.
However utilizes many J2EE
components like JMX, Transactions.

e JBoss AS is an application building
platform that provides many facilities
that we use.

= Some useful JBoss services and tools:

v JBoss Cache, JMX, JNDI, JavaAssist,
JBoss Clustering.

N/
‘B{}s:s_,) World

M. Ranganathan and F. Mggia (NIST/ANTD

SLEE as a JBoss Service

Proflie Deployment - == .
MBean MBean anagemen
JBoss MBean
Trans. TreeCache Resource -
Mgr Adaptor | | 112C€ || Alarm | | Senice
MBean MBean MBean g e
JMX ‘

N
.B{}s:s_,) World
—— T

ganathan and F. Maggia (NIS

Deployment

 The SLEE specification defines the
SBB Interface.
v Some methods of the SBB must be
abstract.
e The SLEE deployment tool generates
the SBB concrete class by
implementing the SBB abstract class.

N
.B{}s:s_,) World
—— T

anganathan and F. Maggia (NIST/ANTD

Using JavaAssist for Deployment

A deployable unit may contain Services, SBB jar files, Event jar

files, Profile Specification jar files.

Each sbb has abstract methods for various operations: onXXX,

CMP fields accessors. Profile CMP accessors, usage parameters.
These are generated at deployment time to access
container facilities for actually performing the operations.

‘ Abstract Sbb Class ‘ ‘ service-jar.xml ‘ ‘ event-jar-xml ‘ ‘ event classes ‘

‘ Deployment Verification ‘

‘ Class Generation using JavaAssist ‘

‘ Deployment (registration in the SLEE) ‘

B

Transactions, Replication and Caching

Cached and Replicated Structures

= For failover handling ACs need to be replicated on Tx
boundaries

v QCS are visible to applications and represent a transitory event
us.

v ACs, their attachment to SBBs and their state need to be
replicated for failover handling.

v JBoss Cache is very handy for this —provides transactional
distributed caching.

= Activities are SLEE Representation of
Events.
v An Activity is associated with an Activity
Context (AC)

v' The SLEE event delivery model is
transactional — each event handler
method runs in its own transaction.

v State propagation can happen at
transactional boundaries.

v Transactions simplify design.

38

JMX and Management

JBoss Cache Parent Shb Entity ID
Activity ID Activity Context ID Sbb Entity ID

SIP Transaction ID

SLEE Extensions: Security

< NIST Research project Survivable IP
Telephony Service Platform

e SLEE currently does not have a
security model.
v Assumes a secure environment.
v SLEE Operator trusts SBB writers.

v SLEE Operator cannot place deployment
time roles and constraints for SBB
providers.

= We are adding a security layer to the
SLEE

= We utilize JBoss AS JMX implementation.

= The SLEE Specification relies on JMX to
standardize the management interface

= A Service is a management artifact in the
SLEE.

= The SLEE exports a SLEE Management
MBean.

= Each Facility exports an MBean.
= Each Service exports a Service MBean

= The Service Management MBean may be
accessed through the SLEE MBean and
used to control the service.

jag)

Use Case Scenario

IP Network

Gateway
sipmGer |Controller
sip (MGC)

Signaling Gateway

PSTN Lines

When an emergency call setup request (ie. GETS SIP
INVITE) arrives at the proxy, we want to be able to:

Identify the call as having been originated by an emergency
response worker.

Allow the invoked Service to access the resources it needs to
setup the requested call.

Access any privileged resources it needs.

a2,

Uploadable SLEE Services

= NIST Research Project.

e Install and monitor un-trusted
components in the SLEE

 Control the resources that these
components use.

 Extend the Usage Parameters model
for CPU and Memory.

Boss:)’wm

nganathan and F. Maggia (NIST/ANTD) —

Uploadable SLEE Services

Resource Constrained Services

Dynamic Priority Adjustment

‘ SLEE Event Router }‘—W

Resource usage
notifications

Resource Adaptor| | SLEE Service with bytecode instrumentation

JBoss | World

Ranganathan and F. Magigia (NIST/ANTD) .

J—
\l
".==';—;‘i, Upload and Start
Service A
1 —

Rewriter Processor

Deploy Service

Boss:)’wm

. Ranganathan and F. Meggia (NISTIANTD) ———

Reference Material

Acknowledgement

= The JAIN-SLEE Specification is lead
by Sun Microsystems and Open
Cloud.

= Material from the JAIN-SLEE tutorial
is reused in this presentation with
permission.

= Mobicents is supported in part by the
NIST Advanced Networking
Technologies Division, JBoss and
others.

.Bc»ss_\,)fmf'qu;g_gT

M. Ranganathan and F. Mgmgia (NIST/ANTD)

e JAIN-SLEE Specification, white papers
and tutorials
v http://jainslee.org/slee/slee.html

= JAIN-SLEE Principles

v http://java.sun.com/products/jain/article_slee_princi
ples.html

= SIP RFC 3261

v http://www.fags.org/rfcs/rfc3261.html

JBoss | World

M. Ranganathan and F. Maggia (NIST/ANTD) ———

