JBoss Messaging

Ovidiu Feodorov
Project Lead

March 1st 2005

© JBoss Inc. 2005

Agenda

Why rewriting JBossMQ?

* JBossMQ evolved from SpyderMQ

v A separate project which was integrated
into JBoss

v Originally designed as a standalone JMS
provider

v No HA support available
= The current JBossMQ has

v Integration with the AS (the MDB
Container)

v A certain degree of HA support

e Why rewriting JBossMQ?
= The current project status
v Goals
v' The Messaging Core
v' The JMS Facade

< What is next?

. '
|B\f‘::3_,) World

HA support in JBossMQ

(HASingleton) JBoss ,_\’)/Ns,«
High Availability with HASingleton
Node 2

Node 3 Node 2 Node 3

JBossMQ)

Singleton Fail-Overa

—
Shared Database

W

Shared Database
R)
5 ———

= The JBossMQ HA support relies on the

HASingleton mechanism

v' Only one running JBossMQ instance is available
on a cluster

v If the JBossMQ master node fails, the JBossMQ
instance fails-over to the first available node

v Features
- Lossless recovery after fail-over for persistent

messages targeted to queues and topic durable
subscribers

- Client notification via connection’s
ExceptionListener on fail-over

v ... and what this actually means:
- No in-memory replication, the HA failover will
work only for PERSISTENT messages!
- No transparent client fail-over —
‘B\,r:”_,) World

4 —

The current status of JBossMQ

+ JBossMQ entered maintenance mode
since JBoss version 3.2.6

v Only bug fixes will be applied on the
JBossMQ's 3.2 and 4 branches

v' The new feature development effort is
directed towards JBoss Messaging

v JBoss Messaging scheduled to be
released for Q2 2005

/. .
.Bm;_,) Worid

6 -

JBoss Messaging project goals

= Provide a fully compatible JMS 1.1
implementation
v JBoss AS integration
v Standalone
= Improve the performance
v' Benchmarking infrastructure
= Provide complete load balancing and HA
features
v In-memory replication
v Distributed destinations
v Transparent client fail-over
= Provide a standard JMS API to JGroups

.
‘B\’}SS_,) World

. —

High-level architectural overview

= JBoss Messaging is based on a
generic Messaging Core

= The Core allows various facades to be
installed in top of it
v JMS
v SMTP
v etc.

N/
‘B{}s:s_,) World

JBoss Messaging project goals

= We intend to achieve the project
goals by:

v Creating from ground up an architecture
based on reliable hardware multicast
(JBoss Messaging Core)

v Using existing JBoss subsystems:

- Unified interceptors/AOP
- JBoss/Remoting
- JBoss/Persistence

.
‘B\’}SS_,) World

B —

JBoss Messaging Core

A Point-to-Point messaging domain

Sender >
Receiver <=

Sender

WAN

Receiver

e Framework built in top of JGroups
= Used to create reliable and distributed
messaging transport systems

v Reliable — supports guaranteed (once-
and-only-once) delivery

v Distributed (Serverless) — does not
require a central server (single point of
failure) — relies on distributed peers
« Uses a general messaging idiom,
independent of the JMS API
‘Boss_\,)/w:a,ch_x

10

A Publish/Subscribe messaging domain

Publisher Subscriber

VM

Publisher >

WAN

JBoss Messaging Core (contd.)

= The essence of the JBoss Messaging

Core could be reduced to:

v Acknowledgment (or handling of ...) — the
interface responsible with this aspect is
org.jboss.messaging.core.Receiver

v Synchronicity/Asynchronicity — the
interface that handle this is
org.jboss.messaging.core.Channel

v Persistence — The
org.jboss.messaging.core.MessageStrore
and AcknowledgmentStore interfaces

JBoss) World

13 —

Routable

< Routable — defines an atomic, self
contained unit of data that flows
though the messaging system

< The Core routes Routables (and hence
the name)

= Must be serializable

= Defined by the
org.jboss.messaging.core.Routable
interface

e Can be declared reliable or unreliable

/-
JBoss) World

Message/MessageReference

= Message — a Routable that has a payload

public interface Message extends Routable

public Serializable getPayload();

= MessageReference — a “lightweight
representative” of a message

public interface MessageReference extends Routable

public Serializable getStoragelD();

¥
JBoss. World

a7 =

Messaging Core Design Elements

= Messaging Core Interfaces:

v Routable/Message/MessageReference

v Receiver

v' Channel

v Router

v MessageStore/AcknowledgmentStore
= In-VM Primitives

v LocalPipe

v LocalDestination/LocalQueue/LocalTopic
= Distributed Primitives

v Pipe

v Replicator

v Distributed Destinations (Queues and Topics)

Vi
JBoss j World

14 —

Routable (contd.)

gublic interface Routable extends Serializable

public Serializable getMessagelD();

public boolean isReliable();

public long getExpirationTime();

public void putHeader(String name, Serializable value);
public Serializable getHeader(String name);

public Serializable removeHeader(String name);

public Set getHeaderNames();

/-
JBoss) World

16

Message/MessageReference

= The Core prefers to handle MessageReference
instead of Messages, whenever possible

Message

Channel . Channel

Channel Channel
MessageReference

Message

MessageStore MessageStorel MessageStore2

vl
JBoss. World

18 =

Receiver

= Receiver — a component that handles
Routables

= Its only concern is to provide a positive
or negative, implicit or explicit
acknowledgement

= Negative acknowledgments can then
be stored and the delivery retried
(reliable delivery)

= Defined by the
org.jboss.messaging.core.Receiver

Channel

= Channel — abstraction that defines a
message delivery mechanism which
forwards a message from a sender to
one or more Receivers

= The keyword: synchronicity (or the lack
of it thereof)

= A Channel main concern is
synchronously/asynchronously deliver
messages to its Receivers

e A Channel is also a Receiver

Receiver

public interface Receiver
public Serializable getReceiverID();

public boolean handle(Routable routable);

= A Receiver can consume the message or
forward it

= The handle() return value represents the
explicit acknowledgment

= Handle() may throw unchecked exceptions,
as an implicit negative acknowledgment;
these exceptions must must be dealt with

Channel

gublic interface Channel extends Receiver

public boolean isSynchronous();
public boolean setSynchronous(boolean b);

public boolean deliver();
public boolean hasMessages();
public Set getUnacknoweldged();

public void setMessageStore(MessageStore ms);

public MessageStore getMessageStore();

public void setAcknowledgmentStore(AcknowledgmentStore as);
public AcknowledgmentStore getAcknowledgmentStore();

Channel

= The Channel’s responsibilities

v To decide the Receiver(s) to forward the message
to

v To effectively forward the message, synchronously
or asynchronously

= A channel can have zero, one or more output
Receivers

= A Receiver never explicitly pulls a message
from the Channel

< The Receiver doesn’'t even know it is
“associated” with a Channel

= Unidirectional flow of messages

22

Synchronous Channel

= Always attempts synchronous delivery

= Uses the same thread that initiated the
delivery to the Channel

= A delivery either succeeds or fails, the
Channel doesn’t hold messages (in memory
or otherwise)

= Channel.handle() returning true means
positive acknowledgment, false means
explicit negative acknowledgment

= A synchronous Channel always provides
reliable delivery (regardless whether the
Routable was declared reliable or unreliable)

Asynchronous Channel

= First attempts synchronous delivery

= If not possible, acts as a middle man: holds
the message and retries the delivery (the
deliver() method)

= Channel.handle() returning true doesn’t
mean that all Receivers got the message ...

= .. it only means the Channel accepted the
responsibility to deliver the message

= What about reliability? ... next slide

MessageStore

gubl ic interface MessageStore
public Serializable getStorelD();
public MessageReference store(Message m) throws Throwable;

public Message retrieve(MessageReference r);

= A MessageStore stores (potentially
large) Messages and returns
(lightweight) MessageReferences

Asynchronous Channels and Reliability

= Asynchronous Channels must be prepared to deal with
the possibility of failure
= Must deterministically handle the situation when they
hold message that have not been acknowledged, and a
failure occurs
= For unreliable messages
v No special precautions (risky but fast)
v .. or in-memory replication among peers
- asynchronous (slower)
- synchronous (even slower)
= For reliable messages
v The Channel must not acknowledge the message unless
the message is stored in a reliable store (slowest)
= An asynchronous Channel can reliably handle reliable
messages only if has access to a MessageStore and
AcknowledgmentStore
R

JBoss) Wk

oy

AcknowledgmentStore

public interface AcknowledgmentStore
public Serializable getStorelD();

public void storeNACK(Serializable messagelD,

Serializable receiverlID)throws Throwable;
public void forgetNACK(Serializable messagelD,
3 Serializable receiveriID)throws Throwable;

Router

« A local (non-distributed) component that
synchronously sends messages to zero, one or
several of its Receivers

= Introduced to encapsulate the concept of
routing policy

= A Router is also a Receiver, but not a Channel
(does not hold messages)

= Channels use them as routing delegates, to
decide whom to send messages.

= All Router’s Receivers live in the same address
space

T

Wort

ld

= The AcknowledgmentStore is a reliable
repository for negative acknowledgments

= Negative acknowledgment: <messagelD —
receiveriD>

28

In-VM Primitives

= LocalPipe
v A Channel with only one output
v Can be configured to be synchronous/asynchronous
= Local Destinations
v LocalQueue
- In-VM Point-to-Point Channel
- Delivers the message to one and only one Receiver
- Holds the messages if there are no Receivers
v LocalTopic
- In-VM Publish/Subscribe Channel
- Delivers the message to all connected Receivers
- Does not hold messages (synchronous behaviour)

Wrnrdrd
yvora

T

30

Abstract Destination

AbstractDestination
AbstractRouter

LocalPipe

Channel

L
i
L

Receiver

Vi
.Boss,_\,) World

—

Receiver

Receiver

LocalTopic

LocalQueue

LocalQueue
PointToPointRouter

Receiver

Receiver

L

5]
-az, L Receiver
O
Q|
(4
LT
.Boss_,) World
32 —

LocalTopic
PointToMultipointRouter

(synch)

(]
c
<
]
<
o

Receiver

Receiver

R4
JBoss) World
. J 2o
Pipe
distributed pipe
Pipe PipeOutput Receiver
T
5

RpcServer
RpcDispatcher ,Rp’éDlspatcher
V1Y [R b —
JGroups
group
R4
.Boss_,) Worid
. J__ oo

Distributed Primitives

* Pipe

v Distributed Channel with only one output

v Spans two (or more) address spaces

v Can be configured to be synchronous/asynchronous
= Replicator

v Distributed Channel that replicates a message to

multiple receivers in different address spaces
v Can be configured to be synchronous/asynchronous

v Mostly used synchronously (otherwise it need access
to MessageStore/AckStore)

o/
JBoss) World

34 e

Replicator
VM VM
Replicator ReplicatorOutput
=

Receiver

JGroups
group

Receiver

5 l:}.
Replicator ReplicatorOutput <3
VM

oy

74
VM JBoss)Wo_dq

36 =

Distributed Destinations

e Distributed Queue
v" LocalQueue extension
v" Multiple Queue peers coordinate into
creating a distributed queue
= Distributed Topic
v LocalTopic extension

v" Multiple Topic peers coordinate into creating
a distributed topic

Distributed Queue

Receiver
RS

JBoss | Worid

queue peer
a8 ———

Replicated Queue

= Use case (for a LocalQueue):

v unreliable messages are sent to a queue with no
receivers

v messages keep accumulated in the peer’s buffer
v the peer crashes
v Result: messages are lost

= Even for a distributed queue, the situation is
similar, because messages are buffered only on
the peer that received them

= A distributed queue offers load balancing but
not HA for unreliable message

= Solution: a replicated queue

N

JBoss Mbrid

39 ———

Replicated Queue (contd.)

Replicator

Receiver
R4
JBoss) World

queue peer
40 ———

Distributed Topic

topic peer

topic peer
Replicator
Output

Replicator

Replicator

topic peer N

)
m —

The JMS Facade

= Uses the the JBoss Unified Interceptors
= Uses a delegate pattern
v The JMS API is sometimes unnecessarily complicated ...

v .. s0 we use it as a fagade to another fagade — the
delegates

= Also uses an interceptor pattern
v Factorylnterceptor
Connectionlnterceptor
SessionlInterceptor
Transactioninterceptor
Persistencelnterceptor
SecurityInterceptor
ClientInterceptor
JMSExceptioninterceptor
Closelnterceptor
N

- Work in progres Boss | World
= 2005

AN NN N T NN

Conclusion

= A new JMS implementation is necessary to
address the current HA and performance
issues

= Implementation under way
v' JBoss Messaging Core — almost done
v JMS Facade — work in progress

= The project page:
http://www.jboss.org/wiki/Wiki.jsp?page=JBossMessaging

e Help wanted!

