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Agenda

• Why rewriting JBossMQ?
• The current project status

Goals
The Messaging Core
The JMS Facade

• What is next?
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Why rewriting JBossMQ?

• JBossMQ evolved from SpyderMQ
A separate project which was integrated 
into JBoss
Originally designed as a standalone JMS 
provider
No HA support available

• The current JBossMQ has
Integration with the AS (the MDB 
Container)
A certain degree of HA support 
(HASingleton)
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HA support in JBossMQ

• The JBossMQ HA support relies on the 
HASingleton mechanism

Only one running JBossMQ instance is available 
on a cluster
If the JBossMQ master node fails, the JBossMQ 
instance fails-over to the first available node
Features
• Lossless recovery after fail-over for persistent 

messages targeted to queues and topic durable 
subscribers

• Client notification via connection’s 
ExceptionListener on fail-over

… and what this actually means:
• No in-memory replication, the HA failover will 

work only for PERSISTENT messages!
• No transparent client fail-over
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High Availability with HASingleton
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The current status of JBossMQ

• JBossMQ entered maintenance mode 
since JBoss version 3.2.6

Only bug fixes will be applied on the 
JBossMQ's 3.2 and 4 branches 
The new feature development effort is 
directed towards JBoss Messaging 
JBoss Messaging scheduled to be 
released for Q2 2005
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JBoss Messaging project goals

• Provide a fully compatible JMS 1.1 
implementation 

JBoss AS integration
Standalone

• Improve the performance
Benchmarking infrastructure

• Provide complete load balancing and HA 
features

In-memory replication
Distributed destinations
Transparent client fail-over

• Provide a standard JMS API to JGroups
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JBoss Messaging project goals

• We intend to achieve the project 
goals by:

Creating from ground up an architecture 
based on reliable hardware multicast 
(JBoss Messaging Core)
Using existing JBoss subsystems:
• Unified interceptors/AOP
• JBoss/Remoting
• JBoss/Persistence
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High-level architectural overview

• JBoss Messaging is based on a 
generic Messaging Core

• The Core allows various facades to be 
installed in top of it

JMS
SMTP
etc.
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JBoss Messaging Core

• Framework built in top of JGroups
• Used to create reliable and distributed

messaging transport systems
Reliable – supports guaranteed (once-
and-only-once) delivery
Distributed (Serverless) – does not 
require a central server (single point of 
failure) – relies on distributed peers

• Uses a general messaging idiom, 
independent of the JMS API 
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A Point-to-Point messaging domain
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A Publish/Subscribe messaging domain
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JBoss Messaging Core (contd.)

• The essence of the JBoss Messaging 
Core could be reduced to:

Acknowledgment (or handling of …) – the 
interface responsible with this aspect is 
org.jboss.messaging.core.Receiver
Synchronicity/Asynchronicity – the 
interface that handle this is 
org.jboss.messaging.core.Channel
Persistence – The 
org.jboss.messaging.core.MessageStrore
and AcknowledgmentStore interfaces
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Messaging Core Design Elements

• Messaging Core Interfaces:
Routable/Message/MessageReference
Receiver
Channel
Router
MessageStore/AcknowledgmentStore

• In-VM Primitives
LocalPipe
LocalDestination/LocalQueue/LocalTopic

• Distributed Primitives
Pipe
Replicator
Distributed Destinations (Queues and Topics)
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Routable

• Routable – defines an atomic, self 
contained unit of data that flows 
though the messaging system

• The Core routes Routables (and hence 
the name)

• Must be serializable
• Defined by the 

org.jboss.messaging.core.Routable
interface

• Can be declared reliable or unreliable
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Routable (contd.)

public interface Routable extends Serializable 
{

public Serializable getMessageID(); 

public boolean isReliable();  

public long getExpirationTime();  

public void putHeader(String name, Serializable value); 

public Serializable getHeader(String name); 

public Serializable removeHeader(String name); 

public Set getHeaderNames(); 

} 

public interface Routable extends Serializable 
{

public Serializable getMessageID(); 

public boolean isReliable();  

public long getExpirationTime();  

public void putHeader(String name, Serializable value); 

public Serializable getHeader(String name); 

public Serializable removeHeader(String name); 

public Set getHeaderNames(); 

} 
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Message/MessageReference

• Message – a Routable that has a payload

public interface Message extends Routable 
{ 

public Serializable getPayload(); 
} 

public interface Message extends Routable 
{ 

public Serializable getPayload(); 
} 

public interface MessageReference extends Routable 
{ 

public Serializable getStorageID(); 
}

public interface MessageReference extends Routable 
{ 

public Serializable getStorageID(); 
}

• MessageReference – a “lightweight 
representative” of a message
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Message/MessageReference

• The Core prefers to handle MessageReference
instead of Messages, whenever possible

MessageReference

Message

MessageStore

Channel Channel
Message

MessageStore1

Channel Channel

MessageStore2



4

19

Receiver

• Receiver – a component that handles 
Routables

• Its only concern is to provide a positive 
or negative, implicit or explicit 
acknowledgement

• Negative acknowledgments can then 
be stored and the delivery retried 
(reliable delivery)

• Defined by the 
org.jboss.messaging.core.Receiver
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Receiver

• A Receiver can consume the message or 
forward it

• The handle() return value represents the 
explicit acknowledgment

• Handle() may throw unchecked exceptions, 
as an implicit negative acknowledgment; 
these exceptions must must be dealt with

public interface Receiver 
{

public Serializable getReceiverID(); 

public boolean handle(Routable routable);
}

public interface Receiver 
{

public Serializable getReceiverID(); 

public boolean handle(Routable routable);
}
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Channel

• Channel – abstraction that defines a 
message delivery mechanism which 
forwards a message from a sender to 
one or more Receivers

• The keyword: synchronicity (or the lack 
of it thereof)

• A Channel main concern is 
synchronously/asynchronously deliver 
messages to its Receivers

• A Channel is also a Receiver
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Channel

public interface Channel extends Receiver 
{ 

public boolean isSynchronous();
public boolean setSynchronous(boolean b);

public boolean deliver();
public boolean hasMessages(); 
public Set getUnacknoweldged();

public void setMessageStore(MessageStore ms);
public MessageStore getMessageStore();
public void setAcknowledgmentStore(AcknowledgmentStore as);
public AcknowledgmentStore getAcknowledgmentStore(); 

}

public interface Channel extends Receiver 
{ 

public boolean isSynchronous();
public boolean setSynchronous(boolean b);

public boolean deliver();
public boolean hasMessages(); 
public Set getUnacknoweldged();

public void setMessageStore(MessageStore ms);
public MessageStore getMessageStore();
public void setAcknowledgmentStore(AcknowledgmentStore as);
public AcknowledgmentStore getAcknowledgmentStore(); 

}
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Channel

• The Channel’s responsibilities
To decide the Receiver(s) to forward the message 
to
To effectively forward the message, synchronously 
or asynchronously

• A channel can have zero, one or more output
Receivers

• A Receiver never explicitly pulls a message 
from the Channel

• The Receiver doesn’t even know it is 
“associated” with a Channel

• Unidirectional flow of messages
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Synchronous Channel

• Always attempts synchronous delivery
• Uses the same thread that initiated the 

delivery to the Channel
• A delivery either succeeds or fails, the 

Channel doesn’t hold messages (in memory 
or otherwise)

• Channel.handle() returning true means 
positive acknowledgment, false means 
explicit negative acknowledgment

• A synchronous Channel always provides 
reliable delivery (regardless whether the 
Routable was declared reliable or unreliable)
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Asynchronous Channel

• First attempts synchronous delivery
• If not possible, acts as a middle man: holds 

the message and retries the delivery (the 
deliver() method)

• Channel.handle() returning true doesn’t 
mean that all Receivers got the message …

• … it only means the Channel accepted the 
responsibility to deliver the message

• What about reliability? … next slide
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Asynchronous Channels and Reliability

• Asynchronous Channels must be prepared to deal with 
the possibility of failure

• Must deterministically handle the situation when they 
hold message that have not been acknowledged, and a 
failure occurs

• For unreliable messages
No special precautions (risky but fast)
… or in-memory replication among peers
• asynchronous (slower) 
• synchronous (even slower)

• For reliable messages 
The Channel must not acknowledge the message unless 
the message is stored in a reliable store (slowest)

• An asynchronous Channel can reliably handle reliable 
messages only if has access to a MessageStore and 
AcknowledgmentStore
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MessageStore

• A MessageStore stores (potentially 
large) Messages and returns 
(lightweight) MessageReferences

public interface MessageStore
{

public Serializable getStoreID();

public MessageReference store(Message m) throws Throwable;

public Message retrieve(MessageReference r); 

}

public interface MessageStore
{

public Serializable getStoreID();

public MessageReference store(Message m) throws Throwable;

public Message retrieve(MessageReference r); 

}
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AcknowledgmentStore

• The AcknowledgmentStore is a reliable 
repository for negative acknowledgments

• Negative acknowledgment: <messageID –
receiverID>

public interface AcknowledgmentStore
{
public Serializable getStoreID();

public void storeNACK(Serializable messageID,
Serializable receiverID)throws Throwable;

public void forgetNACK(Serializable messageID,
Serializable receiverID)throws Throwable;

}

public interface AcknowledgmentStore
{
public Serializable getStoreID();

public void storeNACK(Serializable messageID,
Serializable receiverID)throws Throwable;

public void forgetNACK(Serializable messageID,
Serializable receiverID)throws Throwable;

}
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Router

• A local (non-distributed) component that 
synchronously sends messages to zero, one or 
several of its Receivers

• Introduced to encapsulate the concept of 
routing policy

• A Router is also a Receiver, but not a Channel 
(does not hold messages)

• Channels use them as routing delegates, to 
decide whom to send messages.

• All Router’s Receivers live in the same address 
space
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In-VM Primitives

• LocalPipe
A Channel with only one output
Can be configured to be synchronous/asynchronous

• Local Destinations
LocalQueue
• In-VM Point-to-Point Channel
• Delivers the message to one and only one Receiver
• Holds the messages if there are no Receivers
LocalTopic
• In-VM Publish/Subscribe Channel
• Delivers the message to all connected Receivers
• Does not hold messages (synchronous behaviour)
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Abstract Destination
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LocalQueue
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Distributed Primitives

• Pipe
Distributed Channel with only one output
Spans two (or more) address spaces
Can be configured to be synchronous/asynchronous

• Replicator
Distributed Channel that replicates a message to 
multiple receivers in different address spaces
Can be configured to be synchronous/asynchronous
Mostly used synchronously (otherwise it need access 
to MessageStore/AckStore)
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Pipe
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Replicator
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Distributed Destinations

• Distributed Queue
LocalQueue extension
Multiple Queue peers coordinate into 
creating a distributed queue

• Distributed Topic
LocalTopic extension
Multiple Topic peers coordinate into creating 
a distributed topic
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Distributed Queue
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Replicated Queue

• Use case (for a LocalQueue): 
unreliable messages are sent to a queue with no 
receivers
messages keep accumulated in the peer’s buffer
the peer crashes
Result: messages are lost

• Even for a distributed queue, the situation is 
similar, because messages are buffered only on 
the peer that received them

• A distributed queue offers load balancing but 
not HA for unreliable message

• Solution: a replicated queue
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Replicated Queue (contd.)
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Distributed Topic
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The JMS Facade

• Uses the the JBoss Unified Interceptors 
• Uses a delegate pattern

The JMS API is sometimes unnecessarily complicated …
… so we use it as a façade to another façade – the 
delegates

• Also uses an interceptor pattern
FactoryInterceptor
ConnectionInterceptor
SessionInterceptor
TransactionInterceptor
PersistenceInterceptor
SecurityInterceptor
ClientInterceptor
JMSExceptionInterceptor
CloseInterceptor

• Work in progres
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Conclusion

• A new JMS implementation is necessary to 
address the current HA and performance 
issues

• Implementation under way
JBoss Messaging Core – almost done
JMS Façade – work in progress

• The project page: 
http://www.jboss.org/wiki/Wiki.jsp?page=JBossMessaging

• Help wanted!


