
1

© JBoss Inc. 2005

JBoss Messaging

Ovidiu Feodorov
Project Lead

March 1st 2005

2

Agenda

• Why rewriting JBossMQ?
• The current project status

Goals
The Messaging Core
The JMS Facade

• What is next?

3

Why rewriting JBossMQ?

• JBossMQ evolved from SpyderMQ
A separate project which was integrated
into JBoss
Originally designed as a standalone JMS
provider
No HA support available

• The current JBossMQ has
Integration with the AS (the MDB
Container)
A certain degree of HA support
(HASingleton)

4

HA support in JBossMQ

• The JBossMQ HA support relies on the
HASingleton mechanism

Only one running JBossMQ instance is available
on a cluster
If the JBossMQ master node fails, the JBossMQ
instance fails-over to the first available node
Features
• Lossless recovery after fail-over for persistent

messages targeted to queues and topic durable
subscribers

• Client notification via connection’s
ExceptionListener on fail-over

… and what this actually means:
• No in-memory replication, the HA failover will

work only for PERSISTENT messages!
• No transparent client fail-over

5

High Availability with HASingleton

Node 3Node 3 Node 2Node 2

Node 1Node 1

JBossMQJBossMQ

Shared Database

Node 3Node 3

Node 1Node 1

JBossMQJBossMQ

Node 2Node 2

JBossMQJBossMQ

Singleton Fail-Over

Shared Database

6

The current status of JBossMQ

• JBossMQ entered maintenance mode
since JBoss version 3.2.6

Only bug fixes will be applied on the
JBossMQ's 3.2 and 4 branches
The new feature development effort is
directed towards JBoss Messaging
JBoss Messaging scheduled to be
released for Q2 2005

2

7

JBoss Messaging project goals

• Provide a fully compatible JMS 1.1
implementation

JBoss AS integration
Standalone

• Improve the performance
Benchmarking infrastructure

• Provide complete load balancing and HA
features

In-memory replication
Distributed destinations
Transparent client fail-over

• Provide a standard JMS API to JGroups

8

JBoss Messaging project goals

• We intend to achieve the project
goals by:

Creating from ground up an architecture
based on reliable hardware multicast
(JBoss Messaging Core)
Using existing JBoss subsystems:
• Unified interceptors/AOP
• JBoss/Remoting
• JBoss/Persistence

9

High-level architectural overview

• JBoss Messaging is based on a
generic Messaging Core

• The Core allows various facades to be
installed in top of it

JMS
SMTP
etc.

10

JBoss Messaging Core

• Framework built in top of JGroups
• Used to create reliable and distributed

messaging transport systems
Reliable – supports guaranteed (once-
and-only-once) delivery
Distributed (Serverless) – does not
require a central server (single point of
failure) – relies on distributed peers

• Uses a general messaging idiom,
independent of the JMS API

11

A Point-to-Point messaging domain

Queue
Peer

Queue
Peer

Queue
Peer

Queue
Peer

VM VM

VM

WAN

Receiver

Sender

Sender

Sender

Receiver

Receiver

Sender

LAN

12

A Publish/Subscribe messaging domain

Topic
Peer

Topic
Peer

Topic
Peer

Topic
Peer

VM VM

VM

Subscriber

Publisher

Re
pl

ic
at

or

Publisher

Publisher

Publisher

Subscriber

Subscriber

LAN

WAN

3

13

JBoss Messaging Core (contd.)

• The essence of the JBoss Messaging
Core could be reduced to:

Acknowledgment (or handling of …) – the
interface responsible with this aspect is
org.jboss.messaging.core.Receiver
Synchronicity/Asynchronicity – the
interface that handle this is
org.jboss.messaging.core.Channel
Persistence – The
org.jboss.messaging.core.MessageStrore
and AcknowledgmentStore interfaces

14

Messaging Core Design Elements

• Messaging Core Interfaces:
Routable/Message/MessageReference
Receiver
Channel
Router
MessageStore/AcknowledgmentStore

• In-VM Primitives
LocalPipe
LocalDestination/LocalQueue/LocalTopic

• Distributed Primitives
Pipe
Replicator
Distributed Destinations (Queues and Topics)

15

Routable

• Routable – defines an atomic, self
contained unit of data that flows
though the messaging system

• The Core routes Routables (and hence
the name)

• Must be serializable
• Defined by the

org.jboss.messaging.core.Routable
interface

• Can be declared reliable or unreliable

16

Routable (contd.)

public interface Routable extends Serializable
{

public Serializable getMessageID();

public boolean isReliable();

public long getExpirationTime();

public void putHeader(String name, Serializable value);

public Serializable getHeader(String name);

public Serializable removeHeader(String name);

public Set getHeaderNames();

}

public interface Routable extends Serializable
{

public Serializable getMessageID();

public boolean isReliable();

public long getExpirationTime();

public void putHeader(String name, Serializable value);

public Serializable getHeader(String name);

public Serializable removeHeader(String name);

public Set getHeaderNames();

}

17

Message/MessageReference

• Message – a Routable that has a payload

public interface Message extends Routable
{

public Serializable getPayload();
}

public interface Message extends Routable
{

public Serializable getPayload();
}

public interface MessageReference extends Routable
{

public Serializable getStorageID();
}

public interface MessageReference extends Routable
{

public Serializable getStorageID();
}

• MessageReference – a “lightweight
representative” of a message

18

Message/MessageReference

• The Core prefers to handle MessageReference
instead of Messages, whenever possible

MessageReference

Message

MessageStore

Channel Channel
Message

MessageStore1

Channel Channel

MessageStore2

4

19

Receiver

• Receiver – a component that handles
Routables

• Its only concern is to provide a positive
or negative, implicit or explicit
acknowledgement

• Negative acknowledgments can then
be stored and the delivery retried
(reliable delivery)

• Defined by the
org.jboss.messaging.core.Receiver

20

Receiver

• A Receiver can consume the message or
forward it

• The handle() return value represents the
explicit acknowledgment

• Handle() may throw unchecked exceptions,
as an implicit negative acknowledgment;
these exceptions must must be dealt with

public interface Receiver
{

public Serializable getReceiverID();

public boolean handle(Routable routable);
}

public interface Receiver
{

public Serializable getReceiverID();

public boolean handle(Routable routable);
}

21

Channel

• Channel – abstraction that defines a
message delivery mechanism which
forwards a message from a sender to
one or more Receivers

• The keyword: synchronicity (or the lack
of it thereof)

• A Channel main concern is
synchronously/asynchronously deliver
messages to its Receivers

• A Channel is also a Receiver

22

Channel

public interface Channel extends Receiver
{

public boolean isSynchronous();
public boolean setSynchronous(boolean b);

public boolean deliver();
public boolean hasMessages();
public Set getUnacknoweldged();

public void setMessageStore(MessageStore ms);
public MessageStore getMessageStore();
public void setAcknowledgmentStore(AcknowledgmentStore as);
public AcknowledgmentStore getAcknowledgmentStore();

}

public interface Channel extends Receiver
{

public boolean isSynchronous();
public boolean setSynchronous(boolean b);

public boolean deliver();
public boolean hasMessages();
public Set getUnacknoweldged();

public void setMessageStore(MessageStore ms);
public MessageStore getMessageStore();
public void setAcknowledgmentStore(AcknowledgmentStore as);
public AcknowledgmentStore getAcknowledgmentStore();

}

23

Channel

• The Channel’s responsibilities
To decide the Receiver(s) to forward the message
to
To effectively forward the message, synchronously
or asynchronously

• A channel can have zero, one or more output
Receivers

• A Receiver never explicitly pulls a message
from the Channel

• The Receiver doesn’t even know it is
“associated” with a Channel

• Unidirectional flow of messages

24

Synchronous Channel

• Always attempts synchronous delivery
• Uses the same thread that initiated the

delivery to the Channel
• A delivery either succeeds or fails, the

Channel doesn’t hold messages (in memory
or otherwise)

• Channel.handle() returning true means
positive acknowledgment, false means
explicit negative acknowledgment

• A synchronous Channel always provides
reliable delivery (regardless whether the
Routable was declared reliable or unreliable)

5

25

Asynchronous Channel

• First attempts synchronous delivery
• If not possible, acts as a middle man: holds

the message and retries the delivery (the
deliver() method)

• Channel.handle() returning true doesn’t
mean that all Receivers got the message …

• … it only means the Channel accepted the
responsibility to deliver the message

• What about reliability? … next slide

26

Asynchronous Channels and Reliability

• Asynchronous Channels must be prepared to deal with
the possibility of failure

• Must deterministically handle the situation when they
hold message that have not been acknowledged, and a
failure occurs

• For unreliable messages
No special precautions (risky but fast)
… or in-memory replication among peers
• asynchronous (slower)
• synchronous (even slower)

• For reliable messages
The Channel must not acknowledge the message unless
the message is stored in a reliable store (slowest)

• An asynchronous Channel can reliably handle reliable
messages only if has access to a MessageStore and
AcknowledgmentStore

27

MessageStore

• A MessageStore stores (potentially
large) Messages and returns
(lightweight) MessageReferences

public interface MessageStore
{

public Serializable getStoreID();

public MessageReference store(Message m) throws Throwable;

public Message retrieve(MessageReference r);

}

public interface MessageStore
{

public Serializable getStoreID();

public MessageReference store(Message m) throws Throwable;

public Message retrieve(MessageReference r);

}

28

AcknowledgmentStore

• The AcknowledgmentStore is a reliable
repository for negative acknowledgments

• Negative acknowledgment: <messageID –
receiverID>

public interface AcknowledgmentStore
{
public Serializable getStoreID();

public void storeNACK(Serializable messageID,
Serializable receiverID)throws Throwable;

public void forgetNACK(Serializable messageID,
Serializable receiverID)throws Throwable;

}

public interface AcknowledgmentStore
{
public Serializable getStoreID();

public void storeNACK(Serializable messageID,
Serializable receiverID)throws Throwable;

public void forgetNACK(Serializable messageID,
Serializable receiverID)throws Throwable;

}

29

Router

• A local (non-distributed) component that
synchronously sends messages to zero, one or
several of its Receivers

• Introduced to encapsulate the concept of
routing policy

• A Router is also a Receiver, but not a Channel
(does not hold messages)

• Channels use them as routing delegates, to
decide whom to send messages.

• All Router’s Receivers live in the same address
space

30

In-VM Primitives

• LocalPipe
A Channel with only one output
Can be configured to be synchronous/asynchronous

• Local Destinations
LocalQueue
• In-VM Point-to-Point Channel
• Delivers the message to one and only one Receiver
• Holds the messages if there are no Receivers
LocalTopic
• In-VM Publish/Subscribe Channel
• Delivers the message to all connected Receivers
• Does not hold messages (synchronous behaviour)

6

31

Abstract Destination

AbstractDestination

Receiver

Receiver

Receiver

LocalPipe

AbstractRouter

C
ha

nn
el

R
ec

ei
ve

r

C
ha

nn
el

32

LocalQueue

LocalQueue

Receiver

Receiver

Receiver

LocalPipe

PointToPointRouter

C
ha

nn
el

R
ec

ei
ve

r

C
ha

nn
el

(asynch)

33

LocalTopic

LocalTopic

Receiver

Receiver

Receiver

LocalPipe

PointToMultipointRouter

C
ha

nn
el

R
ec

ei
ve

r

C
ha

nn
el

(synch)

34

Distributed Primitives

• Pipe
Distributed Channel with only one output
Spans two (or more) address spaces
Can be configured to be synchronous/asynchronous

• Replicator
Distributed Channel that replicates a message to
multiple receivers in different address spaces
Can be configured to be synchronous/asynchronous
Mostly used synchronously (otherwise it need access
to MessageStore/AckStore)

35

Pipe

VM
RpcDispatcher RpcDispatcher

RpcServer

PipeOutputPipe

C
ha

nn
el

Receiver
distributed pipe

JGroups
group

36

Replicator

VM

VMVM

VM
Replicator

C
ha

nn
el

Replicator

C
ha

nn
el

Receiver

ReplicatorOutput

ReplicatorOutput

Receiver

JGroups
group

replicator

7

37

Distributed Destinations

• Distributed Queue
LocalQueue extension
Multiple Queue peers coordinate into
creating a distributed queue

• Distributed Topic
LocalTopic extension
Multiple Topic peers coordinate into creating
a distributed topic

38

Distributed Queue

queue peer

Pipe

PipeOutput

Receiver

queue peer

39

Replicated Queue

• Use case (for a LocalQueue):
unreliable messages are sent to a queue with no
receivers
messages keep accumulated in the peer’s buffer
the peer crashes
Result: messages are lost

• Even for a distributed queue, the situation is
similar, because messages are buffered only on
the peer that received them

• A distributed queue offers load balancing but
not HA for unreliable message

• Solution: a replicated queue

40

Replicated Queue (contd.)

queue peer

Pipe

PipeOutput

Receiver

queue peer

Replicator

41

Distributed Topic

topic peer

Replicator

topic peer

topic peer

Replicator
Output

Replicator
Output

42

The JMS Facade

• Uses the the JBoss Unified Interceptors
• Uses a delegate pattern

The JMS API is sometimes unnecessarily complicated …
… so we use it as a façade to another façade – the
delegates

• Also uses an interceptor pattern
FactoryInterceptor
ConnectionInterceptor
SessionInterceptor
TransactionInterceptor
PersistenceInterceptor
SecurityInterceptor
ClientInterceptor
JMSExceptionInterceptor
CloseInterceptor

• Work in progres

8

43

Conclusion

• A new JMS implementation is necessary to
address the current HA and performance
issues

• Implementation under way
JBoss Messaging Core – almost done
JMS Façade – work in progress

• The project page:
http://www.jboss.org/wiki/Wiki.jsp?page=JBossMessaging

• Help wanted!

