
1

© JBoss Inc. 2005

Introduction to JBoss Seam

Gavin King

gavin.king@jboss.com

gavin@hibernate.org

© JBoss, Inc. 2005 2

Java EE 5 programming model

• JSF 1.2
Template language
• extensible component model for widgets

“Managed bean” component model
• JavaBeans with dependency injection
• XML-based declaration
• session/request/application contexts

Defines interactions between the page and managed
beans
• Fine-grained event model (true MVC)
• Phased request lifecycle
• EL for binding controls to managed beans

XML-based “Navigation rules”
• Ad hoc mapping from logical outcomes to URL

© JBoss, Inc. 2005 3

Java EE 5 programming model

• EJB 3.0
Component model for transactional components
• dependency injection
• declarative transaction and persistence context

demarcation
• sophisticated state management

ORM for persistence
Annotation-based programming model

© JBoss, Inc. 2005 4

Let’s suppose we have some data

create table Document (
id bigint not null primary key,
title varchar(100) not null unique,
summary varchar(1000) not null,
content clob not null

)

© JBoss, Inc. 2005 5

We’ll use an entity bean

@Entity
public Document {

@Id @GeneratedValue private Long id;
private String title;
private String summary
private String content;

//getters and setters...
}

Surrogate key
identifier attribute

© JBoss, Inc. 2005 6

Search page
<h:form>

<table>
<tr>

<td>Document Id</td>
<td><h:inputText value="#{documentEditor.id}"/></td>

</tr>
</table>

<h:commandButton type="submit" value=“Find“
action="#{documentEditor.get}"/>

</h:form>

A JSF-EL value binding

A JSF control A JSF-EL method binding

2

© JBoss, Inc. 2005 7

Edit page
<f:form>

<table>
<tr>

<td>Title</td>
<td>

<h:inputText value=“#{documentEditor.title}”>
<f:validateLength maximum=“100"/>

</h:inputText>
</td>

</tr>
<tr>

<td>Real Name</td>
<td>

<h:inputText value=“#{documentEditor.summary}”>
<f:validateLength maximum=“1000"/>

</h:inputText>
</td>

</tr>
<tr>

<td>Password</td>
<td><h:inputText value=“#{documentEditor.content}”/></td>

</tr>
</table>

<h:messages/>

<h:commandButton type="submit" value=“Save" action="#{documentEditor.save}"/>
</f:form>

A JSF validator

© JBoss, Inc. 2005 8

Should we use a SLSB?
@Stateless
public EditDocumentBean implements EditDocument {

@PersistenceContext
private EntityManager em;

public Document get(Long id) {
return em.find(Document.class, id);

}

public Document save(Document doc) {
return em.merge(doc);

}
}

© JBoss, Inc. 2005 9

And a “backing bean”?
public class DocumentEditor {

private Long id;
private Document document;

public String getId() { return id; }
public void setId(Long id) { this.id = id; }

public String getTitle() { return document.getTitle(); }
public void setTitle(String title) { document.setTitle(title); }

//etc...

@EJB private EditDocument editDocument;

public String get() {
document = editDocument.get(id);
return document==null ? “notFound” : “success”;

}

public String save() {
document = editDocument.save(document);
return “success”;

}

}

Properties bound to
controls via the value

bindings

Action listener methods
bound to controls via the

method bindings

JSF outcome

© JBoss, Inc. 2005 10

Declare the managed bean
<managed-bean>

<managed-bean-name>documentEditor</managed-bean-name>
<managed-bean-class>

com.jboss.docs.DocumentEditor
</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

This is a session-scoped
component!

The name of a contextual
variable we can refer to

in the EL

© JBoss, Inc. 2005 11

JSF Navigation rules
<navigation-rule>

<from-view-id>/getDocument.jsp</from-view-id>
<navigation-case>

<from-outcome>success</from-outcome>
<to-view-id>editDocument.jsp</to-view-id>

</navigation-case>
</navigation-rule>

<navigation-rule>
<from-view-id>/editDocument.jsp</from-view-id>
<navigation-case>

<from-outcome>success</from-outcome>
<to-view-id>findDocument.jsp</to-view-id>

</navigation-case>
</navigation-rule>

<navigation-rule>
<from-view-id>/editDocument.jsp</from-view-id>
<navigation-case>

<from-outcome>notFound</from-outcome>
<to-view-id>notFound.jsp</to-view-id>

</navigation-case>
</navigation-rule>

Navigation rules map logical,
named “outcomes” to URL of

the resulting view

The outcome returned by
the action listener method

© JBoss, Inc. 2005 12

Compared to J2EE

• Much simpler code
Fewer artifacts (no DTO, for example)
Less noise (EJB boilerplate, Struts boilerplate)
More transparent (no direct calls to HttpSession, HttpRequest)
Much simpler ORM (even compared to Hibernate)
Finer grained components

3

© JBoss, Inc. 2005 13

Compared to J2EE

• Much simpler code
Fewer artifacts (no DTO, for example)
Less noise (EJB boilerplate, Struts boilerplate)
More transparent (no direct calls to HttpSession, HttpRequest)
Much simpler ORM (even compared to Hibernate)
Finer grained components

• Also more powerful for complex problems
JSF is amazingly flexible and extensible
EJB interceptors support a kind of “AOP lite”
Powerful ORM engine

© JBoss, Inc. 2005 14

Compared to J2EE

• Much simpler code
Fewer artifacts (no DTO, for example)
Less noise (EJB boilerplate, Struts boilerplate)
More transparent (no direct calls to HttpSession, HttpRequest)
Much simpler ORM (even compared to Hibernate)
Finer grained components

• Also more powerful for complex problems
JSF is amazingly flexible and extensible
EJB interceptors support a kind of “AOP lite”
Powerful ORM engine

• Unit testable
All these components (except the JSP pages) may be unit
tested using JUnit or TestNG

© JBoss, Inc. 2005 15

Room for improvement

• The managed bean is just noise – its concern is pure “glue”
and it accounts for more LOC than any other component!
it doesn’t really decouple layers, in fact the code is more
coupled than it would otherwise be

© JBoss, Inc. 2005 16

Room for improvement

• The managed bean is just noise – its concern is pure “glue”
and it accounts for more LOC than any other component!
it doesn’t really decouple layers, in fact the code is more
coupled than it would otherwise be

• This code does not work in a multi-window application
and to make it work is a major architecture change!

© JBoss, Inc. 2005 17

Room for improvement

• The managed bean is just noise – its concern is pure “glue”
and it accounts for more LOC than any other component!
it doesn’t really decouple layers, in fact the code is more
coupled than it would otherwise be

• This code does not work in a multi-window application
and to make it work is a major architecture change!

• The application leaks memory
the backing bean sits in the session until the user logs out
in more complex apps, this is often a source of bugs!

© JBoss, Inc. 2005 18

Room for improvement

• The managed bean is just noise – its concern is pure “glue”
and it accounts for more LOC than any other component!
it doesn’t really decouple layers, in fact the code is more
coupled than it would otherwise be

• This code does not work in a multi-window application
and to make it work is a major architecture change!

• The application leaks memory
the backing bean sits in the session until the user logs out
in more complex apps, this is often a source of bugs!

• “Flow” is weakly defined
navigation rules are totally ad hoc and difficult to visualize
How can this code be aware of the long-running business
process?

4

© JBoss, Inc. 2005 19

Room for improvement

• The managed bean is just noise – its concern is pure “glue”
and it accounts for more LOC than any other component!
it doesn’t really decouple layers, in fact the code is more
coupled than it would otherwise be

• This code does not work in a multi-window application
and to make it work is a major architecture change!

• The application leaks memory
the backing bean sits in the session until the user logs out
in more complex apps, this is often a source of bugs!

• “Flow” is weakly defined
navigation rules are totally ad hoc and difficult to visualize
How can this code be aware of the long-running business
process?

• JSF is still stuck using XML for things that are better done in
annotations!

© JBoss, Inc. 2005 20

The case for SFSB

• “stateful session beans are unscalable” … why?
replicating conversational state in a clustered environment
(needed for transparent failover) is somewhat expensive

© JBoss, Inc. 2005 21

The case for SFSB

• “stateful session beans are unscalable” … why?
replicating conversational state in a clustered environment
(needed for transparent failover) is somewhat expensive

• solution 1: keep all state in the database

© JBoss, Inc. 2005 22

The case for SFSB

• “stateful session beans are unscalable” … why?
replicating conversational state in a clustered environment
(needed for transparent failover) is somewhat expensive

• solution 1: keep all state in the database
traffic to/from database is even more expensive (database
is the least scalable tier)
So, inevitably, end up needing a second-level cache
second-level cache must be kept transactionally consistent
between the database and every node on the cluster –
even more expensive!

© JBoss, Inc. 2005 23

The case for SFSB

• “stateful session beans are unscalable” … why?
replicating conversational state in a clustered environment
(needed for transparent failover) is somewhat expensive

• solution 1: keep all state in the database
traffic to/from database is even more expensive (database
is the least scalable tier)
So, inevitably, end up needing a second-level cache
second-level cache must be kept transactionally consistent
between the database and every node on the cluster –
even more expensive!

• solution 2: keep state in the HttpSession

© JBoss, Inc. 2005 24

The case for SFSB

• “stateful session beans are unscalable” … why?
replicating conversational state in a clustered environment
(needed for transparent failover) is somewhat expensive

• solution 1: keep all state in the database
traffic to/from database is even more expensive (database
is the least scalable tier)
So, inevitably, end up needing a second-level cache
second-level cache must be kept transactionally consistent
between the database and every node on the cluster –
even more expensive!

• solution 2: keep state in the HttpSession
totally nuts, since HttpSession is exactly the same as a
SFSB
but it does not have dirty-checking,
and methods of a JavaBean in the session can’t be
transactional

5

© JBoss, Inc. 2005 25

JBoss Seam

• Unify the two component models
Simplify Java EE 5, filling a gap
Improve usability of JSF

© JBoss, Inc. 2005 26

JBoss Seam

• Unify the two component models
Simplify Java EE 5, filling a gap
Improve usability of JSF

• Integrate jBPM
BPM technology for the masses

© JBoss, Inc. 2005 27

JBoss Seam

• Unify the two component models
Simplify Java EE 5, filling a gap
Improve usability of JSF

• Integrate jBPM
BPM technology for the masses

• Deprecate so-called stateless architecture
Managed application state -> more robust, more
performant, richer user experience
Take advantage of recent advances in clustering
technology

© JBoss, Inc. 2005 28

JBoss Seam

• Unify the two component models
Simplify Java EE 5, filling a gap
Improve usability of JSF

• Integrate jBPM
BPM technology for the masses

• Deprecate so-called stateless architecture
Managed application state -> more robust, more
performant, richer user experience
Take advantage of recent advances in clustering
technology

• Decouple the technology from the execution
environment

Run EJB3 apps in Tomcat
Or in TestNG
Use Seam with JavaBeans and Hibernate

© JBoss, Inc. 2005 29

JBoss Seam

• Unify the two component models
Simplify Java EE 5, filling a gap
Improve usability of JSF

• Integrate jBPM
BPM technology for the masses

• Deprecate so-called stateless architecture
Managed application state -> more robust, more
performant, richer user experience
Take advantage of recent advances in clustering
technology

• Decouple the technology from the execution
environment

Run EJB3 apps in Tomcat
Or in TestNG
Use Seam with JavaBeans and Hibernate

• Enable richer user experience

© JBoss, Inc. 2005 30

Contextual components

• Most of the problems relate directly or indirectly to state
management

The contexts defined by the servlet spec are not meaningful in
terms of the application
EJB itself has no strong model of state management
We need a richer context model that includes “logical” contexts
that are meaningful to the application

6

© JBoss, Inc. 2005 31

Contextual components

• Most of the problems relate directly or indirectly to state
management

The contexts defined by the servlet spec are not meaningful in
terms of the application
EJB itself has no strong model of state management
We need a richer context model that includes “logical” contexts
that are meaningful to the application

• We also need to fix the mismatch between the JSF and EJB 3.0
component models

We should be able to use annotations everywhere
An EJB should be able to be a JSF managed bean (and vice
versa)

© JBoss, Inc. 2005 32

Contextual components

• Most of the problems relate directly or indirectly to state
management

The contexts defined by the servlet spec are not meaningful in
terms of the application
EJB itself has no strong model of state management
We need a richer context model that includes “logical” contexts
that are meaningful to the application

• We also need to fix the mismatch between the JSF and EJB 3.0
component models

We should be able to use annotations everywhere
An EJB should be able to be a JSF managed bean (and vice
versa)

• It makes sense to think of binding EJB components directly to
the JSF view

A session bean acts just like a backing bean, providing event
listener methods, etc
The entity bean provides data to the form, and accepts user
input

© JBoss, Inc. 2005 33

Slight change to the edit page
<f:form>

<table>
<tr>

<td>Title</td>
<td>

<h:inputText value=“#{documentEditor.document.title}”>
<f:validateLength maximum=“100"/>

</h:inputText>
</td>

</tr>
<tr>

<td>Real Name</td>
<td>

<h:inputText value=“#{documentEditor.document.summary}”>
<f:validateLength maximum=“1000"/>

</h:inputText>
</td>

</tr>
<tr>

<td>Password</td>
<td><h:inputText value=“#{documentEditor.document.content}”/></td>

</tr>
</table>

<h:messages/>

<h:commandButton type="submit" value=“Save" action="#{documentEditor.save}"/>
</f:form>

Bind view to the entity
bean directly

© JBoss, Inc. 2005 34

Our first Seam component!
@Stateful
@Name(“documentEditor”)
public EditDocumentBean implements EditDocument {

@PersistenceContext
private EntityManager em;
private Long id;
public void setId(Long id) { this.id = id; }

private Document document;
public Document getDocument() { return document; }

@Begin
public String get() {

document = em.find(Document.class, id);
return document==null ? “notFound” : “success”;

}

@End
public String save() {

document = em.merge(document);
return “success”;

}
}

The @Name annotation
binds the component to a
contextual variable – it’s
just like <managed-bean-
name> in the JSF XML

The @Begin annotation
defines the beginning of
a logical scope – it starts

a conversation

The @End annotation
ends the conversation –
a conversation can also
end by being timed out

© JBoss, Inc. 2005 35

The Seam context model

• Seam defines a rich context model for stateful components,
enabling container-management of application state

• The contexts are:
EVENT
PAGE
CONVERSATION
SESSION
BUSINESS_PROCESS
APPLICATION

• The highlighted “logical” contexts are demarcated by the
application itself

Using annotations: @Begin, @End, @BeginTask, @EndTask

© JBoss, Inc. 2005 36

Seam component model

• Components are associated with context variables using @Name
or @Role

this allows Seam to instantiate when the context variable is null

• Components are assigned a scope using the @Scope annotation

• Seam recognizes four types of component
Stateful session bean – default to CONVERSATION scope

Stateless session bean – STATELESS pseudo-scope

Entity bean – default to CONVERSATION scope

JavaBean – default to EVENT scope

7

© JBoss, Inc. 2005 37

Demo

• Seam Hotel Booking Demo

© JBoss, Inc. 2005 38

Conversations

• How is state stored between requests?
Server-side conversations (HttpSession + conversation timeout)

Client-side conversations (serialize into the page)

Business process state is made persistent by jBPM

• Conversations are not that exciting until you really start
thinking about them:

multi-window operation

“workspace management”

Back button operation

• What about a conversation that involves multiple distinct
“steps”

the steps may be completed in parallel

A nested conversation has write access to its own variables, read
access to the outer conversation variables

Seam’s nested conversation model represents a stack of
continuable states

© JBoss, Inc. 2005 39

Demo

• Seam Issue Tracker Demo

© JBoss, Inc. 2005 40

Pageflow

• Two models for conversational pageflow
The stateless model: JSF navigation rules
• ad hoc navigation (the app must handle backbutton)

• actions tied to UI widgets

The stateful model: jBPM pageflow
• no ad hoc navigation (back button usually bypassed)

• actions tied to UI widgets or called directly from pageflow
transitions

• Simple applications only need the stateless model

• Some applications need both models

© JBoss, Inc. 2005 41

jBPM pageflow definition

© JBoss, Inc. 2005 42

jBPM pageflow definition
<pageflow-definition name=“EditDocument”>

<start-page name=“start” view-id=“/findDocument.jsp”>
<transition to=“get”>

<action expression=“#{documentEditor.get}”/>
</transition>

</start-page>

<decision name=“get” expression=“#{documentEditor.found}”>
<transition name=“false” to=“not found”/>
<transition name=“true” to=“edit”/>

</decision>

<page name=“not found" view-id=“/notFound.jsp”>
<end-conversation/>

</page>

<page name=“edit" view-id=“/editDocument.jsp”>
<transition to=“done”>
<action expression=“#{documentEditor.save}”/>

</transition>
</page>

<page name=“done” view-id=“/findDocument.jsp”>
<end-conversation/>

</page>

</pageflow-definition>

A jBPM state transition
action, instead of a JSF

action listener

A jBPM decision node,
instead of a JSF
navigation rule

Each <page> node is a
jBPM wait state – the

pageflow “waits” for user
input

8

© JBoss, Inc. 2005 43

Search page
<h:form>

<table>
<tr>

<td>Document Id</td>
<td><h:inputText value="#{documentEditor.id}"/></td>

</tr>
</table>

<h:commandButton type="submit" value=“Find"/>
</h:form>

The method binding is no
longer needed

© JBoss, Inc. 2005 44

Pure business logic
@Stateful
@Name(“documentEditor”)
public EditDocumentBean implements EditDocument {

@PersistenceContext private EntityManager em;
private Long id;
public void setId(Long id) { this.id = id; }

private Document document;
public Document getDocument() { return document; }

@Create @Begin(pageflow=“EditDocument”)
public void start() {}

public void get() {
document = em.find(Document.class, id);

}

public boolean isFound() {
return document!=null;

}

@End
public void save(Document doc) {

document = em.merge(doc);
}

}

When the component is
first created, the

pageflow execution
begins

Notice that the outcomes
have disappeared from the

component code

© JBoss, Inc. 2005 45

Demo

• Seam DVD Store Demo (1)

© JBoss, Inc. 2005 46

What about business process?

• Different from a conversation

long-running (persistent)

multi-user

(The lifespan of a business process instance is longer than the
process definition!)

• A conversation that is significant in terms of the overarching
business process is called a “task”

driven from the jBPM task list screen

• We demarcate work done in a task using @BeginTask /
@ResumeTask and @EndTask

• Work done in the scope of a task also has access to the
PROCESS scope

In addition to the task’s CONVERSATION scope

© JBoss, Inc. 2005 47

Start a business process
@Name(“documentSubmission”)

@Stateful

public class DocumentSubmissionBean implements DocumentSubmission {

@PersistenceContext EntityManager entityManager;

@Out(scope=PROCESS) Long documentId;

private Document document;

//some conversation ...

@CreateProcess(definition=“DocumentSubmission”)

public String submitDocument() {

documentId = document.getId();

return “submitted”;

}

}

Create a new business process
instance

Outject documentId to the
business process context

© JBoss, Inc. 2005 48

jBPM process definition

9

© JBoss, Inc. 2005 49

jBPM process definition
<process-definition name="DocumentSubmission">

<start-state name=“start”>

<transition to="review"/>

</start-state>

<task-node name="review">

<task name="review">

<assignment actorId=“#{user.manager.id}” />

</task>

<transition name="approve" to=“approved”>

<action expression=“#{email.sendApprovalEmail}”/>

</transition>

<transition name="reject" to=“rejected"/>

</task-node>

<end-state name=“approved"/>

<end-state name=“rejected"/>

</process-definition>

In this case, the wait states are
<task> nodes, where the process

execution waits for the user to
begin work on a task

A jBPM task assignment, via EL
evaluated in the Seam contexts

© JBoss, Inc. 2005 50

Perform the task
@Name(“reviewDocument”)

@Stateful

public class ReviewDocumentBean implements ReviewDocument {

@PersistenceContext EntityManager entityManager;

@In Long documentId;

@Out Document document;

@BeginTask

public String getDocument() {

document = entityManger.find(Document.class, documentId);

return “reviewDocument”;

}

@EndTask(transition=“approve”)

public String approve() { return “documentApproved”; }

@EndTask(transition=“reject”)

public String approve() { return “documentRejected”; }

}

documentId injected from business
process context

document outjected to the
conversation context

End the task, specifying a
transition name

© JBoss, Inc. 2005 51

Demo

• Seam DVD Store Demo (2)

© JBoss, Inc. 2005 52

What about dependency injection?

• Dependency injection is broken for stateful components
A contextual variable can be written to, as well as read!
Its value changes over time
A component in a wider scope must be able to have a
reference to a component in a narrower scope

• Dependency injection was designed with J2EE-style stateless
services in mind – just look at that word “dependency”

it is usually implemented in a static, unidirectional, and non-
contextual way

• For stateful components, we need bijection
dynamic, contextual, bidirectional

• Don’t think of this in terms of “dependency”
Think about this as aliasing a contextual variable into the
namespace of the component

© JBoss, Inc. 2005 53

What does it look like?

@Stateless

@Name(“changePassword”)

public class ChangePasswordBean implements Login {

@PersistenceContext

private EntityManager em;

@In @Out

private User currentUser;

public String changePassword() {

currentUser = em.merge(currentUser);
}

}

The @In annotation injects the value of the
contextual variable named currentUser
into the instance variable each time the
component is invoked

The @Out annotation “outjects” the value
of the instance variable back to the
currentUser contextual variable at the
end of the invocation

© JBoss, Inc. 2005 54

Conversations and persistence
• The notion of persistence context is central to ORM

A canonicalization of pk -> java instance
without it, you lose referential integrity
it is also a natural cache

• A process-scoped persistence context is evil
requires in-memory locking and sophisticated deadlock
detection

• A transaction-scoped persistence context has problems if you
re-use objects across transactions

LazyInitializationException navigating lazy associations
NonUniqueObjectException reassociating detached instances
Less opportunity for caching (workaround: use a second-level
cache, which is quite unscalable)

• EJB3-style component-scoped persistence context is nice but…
not held open for entire request (while rendering view)
problems propagating across components

• Solution: conversation-scoped persistence contexts

10

© JBoss, Inc. 2005 55

Seam-managed persistence context
@Name(“documentEditor”)
@Stateful
public class DocumentEditorBean implements DocumentEditor {

@In(create=true)
EntityManager documentDatabase;

private Document document;

public void retrieveDocument(Long docId) {
document = documentDatabase.find(Document.class, docId);

}

public Comment[] getImages() {
return document.getComments();

}

public void setDocumentSummary(String summary) {
document.setSummary(summary);

}
}

injects a Seam-manged persistence
context that is scoped to the conversation

The entity remains managed throughout
the conversation

© JBoss, Inc. 2005 56

Seam transaction management

• When using Seam-managed persistence contexts, it makes
more sense to demarcate transactions according to the
lifecycle of the web request

• We want as few transactions as possible, but we always want a
transaction active

• We want to avoid displaying success messages to the user
before the transaction has completed

• Solution: one transaction for read/write operations during the
first part of the request, up to and including
INVOKE_APPLICATION, a second transaction for read-only
operations during the RENDER_RESPONSE phase

© JBoss, Inc. 2005 57

Model-based constraints

• Validation belongs in the user interface
or does it?

• Most “validations” reflect constraints that also appear in
the database

If we look closer, the same constraints appear in multiple
places: the presentation layer, the persistence layer, the
database schema

• It would be better to declare these constraints in just
one place: the data model

© JBoss, Inc. 2005 58

Hibernate Validator
@Entity

public Document {

@Id @GeneratedValue private Long id;

@Length(max=100) @NotNull private String title;

@Length(max=300) private String summary

@NotNull private String content;

//getters and setters...

}

© JBoss, Inc. 2005 59

Hibernate Validator
<f:form>

<table>
<s:validateAll>

<tr>
<td>Title</td>
<td><h:inputText value=“#{documentEditor.title}”/></td>

</tr>
<tr>

<td>Real Name</td>
<td><h:inputText value=“#{documentEditor.summary}”/></td>

</tr>
<tr>

<td>Password</td>
<td><h:inputText value=“#{documentEditor.content}”/></td>

</tr>
</s:validateAll>

</table>

<h:messages/>

<h:commandButton type="submit" value=“Save"
action="#{documentEditor.save}"/>

</f:form>

Remove the JSF validation
(unless we need JavaScript-

level validation)

Validate the submitted data
using Hibernate Validator

© JBoss, Inc. 2005 60

Seam Remoting

• Call Seam components from JavaScript
JavaScript proxies generated dynamically at runtime, and provided
to the client by a servlet

method call and parameters are transmitted asynchronously via
XMLHttpRequest

Method return value is passed to a callback function

11

© JBoss, Inc. 2005 61

A stateless Seam component

@Stateless

@Name(“documentFinder”)

public class DocumentFinderBean implements DocumentFinder {

@PersistenceContext em;

public List<Document> find(String searchString) {

return em.createQuery(“from Document where title like :search”)

.setParameter(“search”, searchString)

.getResultList();

}

}

© JBoss, Inc. 2005 62

Local interface

@Local

public interface DocumentFinder {

@WebRemote List<Document> find(String searchString);

}

The @WebRemote annotation exposes the
method of the local interface on the client
side, via a JavaScript proxy

© JBoss, Inc. 2005 63

HTML page
<div>

<input type=“text” id=“searchString”/>

<input type=“submit” value=“Search”

onclick=“doSearch(); return false;”/>

</div>

<div>

<table id=“results”>

<!– search results display here -->

</table>

</div>

© JBoss, Inc. 2005 64

JavaScript
function doSearch() {

var searchString = document.getElementById(“searchString”).value;

var documentFinder = Seam.Component.getInstance(“documentFinder”);

documentFinder.find(searchString, displayResults);

}

function displayResults(docs) {

for (doc in docs) {

var tr = createElement(“tr”);

document.getElementById(“results”).appendChild(tr);

var tdTitle = document.createElement(“td”);

tr.appendChild(tdTitle);

tdTitle.appendChild(document.createTextNode(doc.title));

var tdSummary = document.createElement(“td”);

tr.appendChild(tdSummary);

tdSummary.appendChild(document.createTextNode(doc.summary));

}

}

Get an instance of the
JavaScript proxyCall a method

asynchronously

Pass a reference to
the callback function

Return value gets passed as
an argument to the callback

© JBoss, Inc. 2005 65

Demo

• Seam Remoting

© JBoss, Inc. 2005 66

Roadmap

• Seam 1.0 rc 2 out now
JSR-168 Portal integration
Enhanced i18n
Seam Remoting

• Seam 1.0 final for JavaOne
• Seam 1.1 in Q3

Asynchronicity/Calendaring

• Seam 1.5
Seam for SOA / ESB
Drools integration?

• Future
Seam for rich clients?

