
1

© JBoss Inc. 2006

WSRP Support in JBoss Portal

Christophe Laprun
Julien Viet

JBoss, a division of Red Hat

2

• Christophe Laprun
JBoss Portal developer
WSRP lead

• Julien Viet
JBoss Portal founder and project lead
JBoss Inc. representative on the JSR 286 
Portlet 2.0 Expert Group

3

Agenda

• Introduction to WSRP
• Architectural overview
• Roadmap

4

Motivation

• Portals offer aggregation of content 
from diverse sources in the form of 
portlets

• Content can be:
Local to the portal server
Remote via web services or content 
scrapping

• Local content is addressed by JSR 168
• Remote content is addressed by WSRP

5

Producer

Producer

Consumer

Problems with remote content

network

Web
Service

WS
stack

PortalPortlet

Portlet Portlet
Web
Page

• No defined contract between producers and 
consumers

• Producer-specific development on 
consumers

• Difficult for producers to evolve/deploy 
content

Scraper

6

Enters WSRP

• Content scraping is not a viable 
solution

• Web services are data-oriented but 
portals are presentation-oriented

WSRP was defined to offer a standard 
solution to present remote content in 
portals



2

7

What is WSRP?

• Web Services for Remote Portlets
• Provides a standard for interactive, 

presentation-oriented web services
• Approved as an OASIS standard in 

August 2003
• WSRP 2.0 is being worked on

Public review just started

8

WSRP overview

• Two actors: Consumer and Producer
Producer publishes content via WSRP 
interface
Consumer interacts with WSRP services 
on behalf of users

Portal

interact
remote 
invocation

Portal

PortletWSRP
Producer

dispatch
WSRP

Consumer

9

Benefits

• WSRP clearly defines the contract between 
producers and consumers

• Provides interoperability between 
middleware stacks

• Easier development on the consumer side:
All WSRP content is presentation-oriented
Access is done in a standard way

• Easier management on the producer side:
Retention of content control
Subscription management

• Built on existing standards: SOAP, WSDL…

10

WSRP specification

• Provides a WSDL web service 
definition for invocation of WSRP 
services

• Defines semantics for WSRP 
interactions between Consumers and 
Producers

• Defines rules for markup generation 
(producer side) and aggregation 
(consumer side)

• Implementation language agnostic

11

WSRP interfaces overview

• Service Description interface (required):
acquiring the Producer’s and portlets metadata

• Markup interface (required):
retrieving portlets markup and processing user 
interaction
Consumer assistance to producer operations

• Registration interface (optional):
establishing, updating and destroying a 
registration

• Portlet Management interface (optional):
getting Portlet metadata
cloning Portlets for further customization
interacting with portlet properties

12

Service description interface (required)

• Provides producer metadata
Requires registration?
Requires cookie support?
Custom modes and window states
Supported locales
…

• Provides offered portlets description:
Handle
Supported markup types
Title, description
…

WSRP
ProducerService Description

Portlet

WSRP
Consumer

getServiceDescription

Metadata + offered portlets



3

13

Markup interface (required)

• Retrieve markup content for a given 
portlet

• Notify a portlet of user interaction
• Support producer initialization of 

cookies
• Release session-related resources

14

WSRP
ProducerMarkup

Portlet

WSRP
Consumer

2. initial markup

1. getMarkup4. display

3. get markup 

Markup interface (cont.)

• Markup is aggregated by the consumer:
Portlets generate markup fragments
URLs should refer to the Consumer, not the 
Producer:
• Consumer URL rewriting
• Producer URL writing

• Producer/portlets can return state that the 
Consumer is required to provide back

15

WSRP
ProducerMarkup

Portlet

WSRP
Consumer

8. updated state

9. getMarkup5. interact

7. process

6. performBlockingInteraction

10. updated markup

Markup interface (cont.)

• Two-step protocol similar to JSR-168’s:
Blocking processing of user interaction and state 
updating
Markup rendering (which shouldn’t impact the 
portlet state)

16

Registration interface (optional)

• Register with the Producer:
Can associate portlet and customization data 
with consumer
Can track portlet usage
Can restrict/tailor portlets access
…

• Update registration data
• Deregister
• Two kinds of registration:

In-band: registration is completely handled via 
the registration interface
Out-of-band: registration requires additional 
producer/consumer interaction that is not 
covered by WSRP

17

Portlet management interface (optional)

• Retrieve portlet metadata
• Retrieve portlet properties metadata
• Interact with portlet properties
• Manage portlet lifecycle

18

Goals for JBoss’ implementation

• Provide a superior open source WSRP 
implementation

Improved manageability and reusability
Performant, reliable, configurable

• Separation of concerns
WSRP is just another modality to interact with 
portlet content
WSRP operations are transparently handled

• API/component model agnostic to allow for 
easy exposition of legacy content to WSRP



4

19

PortletInvoker concept

• PortletInvoker presents a unified view 
of portlet operations

• All portlet invocations go through a 
PortletInvoker

20

PortletInvoker concept (cont.)

• FederatingPortletInvoker:
Federates heterogeneous invokers
Routes the invocation to the appropriate 
invoker

• WSRP is just another modality

Portal
Federating

PortletInvoker
Portlet
Invoker

WSRP
Producerinteract

dispatch remote 
invocation

WSRP
Consumer

21

JBoss Application Server

networkWSRP
Consumer JBoss WS

Portal
WSRP Service

WSRP
Producer

Service
Handler

Portlet
Invoker

Producer implementation

1. Consumer sends WSRP request (via SOAP)
2. JBoss WS dispatches the SOAP message to the WSRP 

service endpoint: WSRPProducer
3. Producer dispatches the request to the appropriate 

handler
4. Handler examines the WSRP request, extracts the 

information and creates a PortletInvocation object 
that is then processed by a PortletInvoker

5. Invocation result is examined and a WSRP response 
is created by the handler and propagated back up 
the chain to the Consumer.

22

Traditional approach to consumers

• So-called Proxy Portlet solution
• Each remote portlet maps to a local 

portlet acting as a proxy for the 
remote producer

• Need to deploy/clone a portlet per 
remotely offered portlet

Burden on portal administrator
Problematic for user customization

23

JBoss’ approach

• WSRPConsumer is a PortletInvoker!
• Consumer is configured to access a specific producer

Instances can be connected to remote portlets just as easily as 
to regular portlets

• Consumer decides which WSRP request to issue based on 
the called PortletInvoker method

JBoss Application Server

network

Portal

JBoss WS
WSRP

Producer

Federating Portlet Invoker

WSRPConsumer
Management

Portlet

Portlet
Invoker

PortletPortletPortlet

Remote Portlet
Instance

Remote Portlet
Instance

Remote Portlet
Instance

Portlet
Invoker

Service
Factory

Render

Action

24

Benefits

• Easier administration
• True middleware approach
• WSRP is transparent

Local and remote portlets are handled 
the same way

• Reusability:
Portal can present JSR-168 or WSRP 
portlets in the same page
Possible to create a PortletInvoker 
fronting legacy content and expose it via 
WSRP



5

25

WSRP implementation in 2.4

• Producer:
Base level support
• Service Description and Markup interfaces

• Consumer:
Base level support
• Service Description and Markup interfaces

Support for standard window states and 
modes
Support for simple registration (String 
properties)
Basic caching

26

Integration in JBoss Portal

• Runs only in JBoss Portal
• Packaged as portal-wsrp.sar

SOAP endpoints
Producer services and stack
Consumer services and stack

• Consumer configuration via *-
wsrp.xml files

Provide information on remote producers
As easy as dropping a descriptor in 
/deploy

27

Consumer configuration example

<deployments>
<deployment>
<wsrp-producer>

<producer-id>someid</producer-id>
<expiration-cache>120</expiration-cache>
<endpoint-config>

<service-description-url>…</service-description-url>
<markup-url>…</markup-url>
<registration-url>…</registration-url>
<portlet-management-url>…</portlet-management-url>

</endpoint-config>
</wsrp-producer>
</deployment>
</deployments>

• The producer is uniquely referenced as ‘someid’
• The producer metadata are considered valid for 2 

minutes
• End points can also be configured with the WSDL url

28

Producer configuration example

• jboss-portal.sar/portal-wsrp.sar is 
the service that adds WSRP remoteness

• Publishing a portlet via WSRP is done by 
defining the portlet as remotable in jboss-
portlet.xml

<portlet-app>
<portlet>

<portlet-name>MyPortlet</portlet-name>
<remotable>true</remotable>

</portlet>
</portlet-app>

29

WSRP 2.0

• Public draft review just begun
• Customer mediated coordination

Events: interaction is now a three-step protocol 
(handleEvents)
States

• Better portlet management
State migration: import/export, copy
Lifetime management: automatic cleanup of 
portlet resources

• Parameters passing made more explicit
Provide navigation coordination 

30

WSRP Roadmap

• WSRP for JBoss Portal 2.6 
Portlet management interface
Registration interface
Management GUI
Bonus features
• Bypass SOAP layer and use JBoss http 

invoker + JBoss Serialization
Same semantic : remote portlet invocation
Up to 10 time faster !!!

• Transparent security propagation

• WSRP for JBoss Portal 3.0
WSRP 2.0



6

31

References

• JBoss Portal:
http://www.jboss.com/products/portal

• WSRP TC web site:
http://www.oasis-
open.org/committees/tc_home.php?wg_
abbrev=wsrp

32

Other relevant sessions

• Portlet 2.0 preview : tomorrow 9am

• Don’t miss it!

33

Q & A

34

35

Portal
interact remote 

invocation

Portal

PortletWSRP
Producer

dispatch
WSRP

Consumer

36

WSRP
ProducerService Description

Markup

Registration

Portlet Management



7

37

Service description interface (required)

• Provides producer metadata:
Requires registration?
Requires cookie support?
Custom modes and window states
Supported locales
…

• Description of offered portlets and properties:
Handle
Supported markup types
Title, description
…

38

Markup details

• Two-step protocol similar to JSR-168’s:
Blocking processing of user interaction and state 
updating
Markup rendering (which shouldn’t impact the 
portlet state)

• Portlet markup is aggregated by the 
consumer:

Portlets generate markup fragments
URLs should refer to the Consumer, not the 
Producer:
• Consumer URL rewriting
• Producer URL writing

• Producer/portlets can return state that the 
Consumer is required to provide back

39

Markup Interface (end)

WSRP
ProducerMarkup

Portlet

WSRP
Consumer

11. updated markup

9. getMarkup12. display

10. get markup 

•Retrieve markup content for a given portlet
•Notify a portlet of user interaction
•Support producer initialization of cookies
•Release session-related resources

40

Typical markup interaction

41

Typical registration sequence

42

Typical portlet cloning interaction



8

43

Proposed roadmap for 2.6 (Sept. ‘06)

• Producer:
Simple level support (full Portlet Management 
interface support)
Caching support
Clustering support
URL templating support
Persistent local state
Parallel rendering support

• Consumer:
Medium level support (full Portlet Management 
Interface support)
Explicit property setting mechanism with GUI for 
property management
Parallel rendering support
Localization

44

WSRP Profiles

• Conformance levels defined to help 
organize conformance testing

• Different levels for Producer and 
Consumer

45

Producer conformance levels
• Base

Implements only the MUST interfaces

No state (session or persistent); opaque state sent back to Consumer

No cloning

No initialization required

Does not rewrite URLs in markup

Does not require registration

• Simple
May request initialization; could store state in cookies

Supports cloning

May require registration (out-of-band).

Session state; creates and sends session handles to the Consumer

• Complex:
May rewrite URLs (requires Consumer templates)

May offer both in-band and out-of- band registration

Persistent local state

May support grouping of portlets

46

Consumer conformance levels

• Base

Implements only the MUST 
interfaces

VIEW mode, NORMAL window 
state only

Supplies no user information

Rewrites URLs

Initializes the Producer if required

Handles Producer cookies

Limited markup types (e.g. html)

Does not clone

No in-band registration

• Simple

Support for standard modes and 
window states

Support for in-band registration

Supplies basic user information

Handles implicit clones

• Medium
Complex user management
Multiple markup types
Caching according to Producer-
supplied cache control
May explicitly clone portlets
May supply URL rewrite 
templates to Producers 
supporting URL rewriting

• Complex

May support custom window 
states and/or modes.

Multiple levels of user access

Localization

May use explicit property-
setting mechanism; create 
custom UI for property 
management.


