
1

© JBoss Inc. 2006

JBoss Messaging

Ovidiu Feodorov, Project Lead
Tim Fox, Core Developer

June 13, 2006

2

Agenda

• Why do we replace JBossMQ?
• Project Goals
• JBoss Messaging 1.0 – Current Situation

Features
Architecture
Installation and configuration

• Roadmap

3

Reasons to replace JBossMQ

• JEMS (JBoss Enterprise Middleware
System) already contains a production-
quality JMS provider, JBossMQ

• JBossMQ
Evolved from SpyderMQ
Mature implementation
Used in production in numerous environments
However, it has several fundamental
limitations ...

4

JBossMQ limitations

• Performance problems in certain high-load
configurations

we will see later performance comparison charts

• Originally designed without HA support
• HA features added later in the form of a HA

Singleton
single JMS provider instance in a cluster
recoverability for PERSISTENT messages
in-flight NON-PERSISTENT messages are lost in
case of failure.
non-transparent client fail-over

5

JBossMQ High Availability

Shared
Database

Node1

Node3

Node2

JBossMQ

JMS
Client

?

6

JBoss Messaging Project Goals

• Fully compliant JMS 1.1 implementation
Compatibility tested with Sun’s TCK
Implementation available standalone as well as
AS-integrated

• Goal achieved in 1.0

2

7

JBoss Messaging Project Goals (2)

• Improved performance over JBossMQ
Completely new architecture based on Channels
(more about this later)
New threading model
Optimized persistence
Better transaction handling
Less serialization
Support for large queues or subscriptions

• Goal achieved in 1.0

8

JBoss Messaging Project Goals (3)

• A completely new clustering model
• Greatly improved HA and load balancing

features
Not a simple HA Singleton anymore
Distributed and replicated destinations available
Transparent client fail-over

• Goal planned to be fully achieved in 1.2

9

JBoss Messaging Project Goals (4)

• Backbone of JBoss ESB
Messaging Core planned to be used as asynchronous
messaging foundation for JBoss ESB
Integration with JBoss ESB sometime in Q3 2006

• In progress

10

JBoss Messaging Project Goals (5)

• JMS interface to JGroups
• In progress

11

Features

• JBoss Messaging 1.0 is a fully compliant
JMS 1.1 provider

• JMS 1.1 compliance is tested with Sun’s
J2EE CTS (Compatibility Test Suite)

• Current pass rate is 100%
• No clustering for 1.0

JMS clustering will be available in the 1.2
release

12

Architecture

• A Messaging sever instance consists of two
major (and independent) layers

The Messaging Core
The JMS Façade

3

13

The Messaging Core

• Messaging Core is a generic, reliable and
distributed messaging transport system

• Does just two things and does them well
Guarantees the reliability of a message
submission, for those messages that have been
configured to be reliable
It is distributed by nature, so it can reliably send
messages between different address spaces

• Supports generic messages (not necessarily
JMS)

• Has a proprietary API

14

The JMS Facade

• Gives JMS “personality” to the Messaging Core
• Implements the JMS API
• Its inner workings are built in top of JBoss AOP
• Stack of aspects plus a set of services

15

JBoss
Remoting

JMS Server
Facade

JMS Facade Messaging Core

JMS
Client

JMS

JMS Client
Facade

JMS
Client

The JMS Facade

JMS
Client

JMS

JGroups

16

Messaging Core Internals

• The Messaging Core is an aggregation of
Receivers
Channels
Routers

17

Receiver

• A Receiver is a the basic message handling
component, that

1) Receives messages for consumption or forwarding
2) Returns a Delivery object instance for each message it

receives

• The receiver then uses the Delivery instance to
acknowledge the message, immediately or
later

• The sender (implementing DeliveryObserver)
hangs on Delivery, and implicitly on message
until acknowledgment arrives

18

Receiver

Receiver

Sender
(DeliveryObserver)

Message

DeliveryACK

4

19

Channels and reliability

• In Core, messages flow from senders to
receivers and acknowledgments flow back

• As long as a Delivery’s corresponding message
is reliably stored, the message IS NOT LOST
even if both the sender and the receiver crash

• NOT losing messages is the Channel’s job

20

A Reliable Channel, part one

ChannelReceiver

Message

Delivery

Reliable
Storage

Sender

21

A Reliable Channel, part two

Channel

Message

Reliable
Storage

Receiver

Delivery

Message

22

All together now …

• Receivers, Channels and Routers are just the
basic building blocks

• They are used to assemble more complex
structures, as queues and topics …

23

A core Queue

Queue

Receiver(s)PointToPointRouter

24

A core Topic

Queue(s) Receiver(s)

PointToPointRouter

5

25

The JMS Facade

• The JMS façade gives the JMS
“personality” to the Messaging server

• Other different façades could be
implemented

• The current implementation is built in
top of the JBossAOP framework

• A client-side and server-side AOP aspect
stack plus a set of services (MBeans)

26

The JMS Façade continued

Connection

Session

Producer

Consumer

JBoss
Remoting Core

Client-side Delegates

Client-side interceptors

Server-side
interceptors

Server-side
endpoints

27

JBoss Messaging internals

Focus on a few areas of current and
soon to be available features
• Threading model
• Transactions
• Persistence
• Serialization and copying
• Large numbers of messages and large

messages
• Distributed destinations

28

Threading

• Threads are a precious commodity
• Minimise threads blocking on server for

messages.
• Minimise number of threads used for

delivery.

29

Threading – Message receive

Messaging Client Messaging Server

Thread pool
(Remoting)

QueueConsumer

Thread
pool

Thread pool
(Delivery)

block

Message

Receive

1 2 3

45
6

8

9
1011

7

30

Transactions

• Efficient use of JDBC transactions – batch
updates

• JBoss Messaging provides XAResource
instances

• Coming soon - Destinations can be enlisted as
separate XAResource instances –allowing
different stores, allows system to scale.

• Coming soon - with JBoss Transactions will
give full XA recoverability

• Coming soon - Separate file based transaction
log

6

31

Transactions

MSSQL
DB XASession

XAResource XAResource

Oracle
DB

MySQL
DB

File
Storage

Queue A

Queue B

Queue C

Transaction
Manager

Send to Queue A

Send to Queue B

Send to Queue C

Commit

XAResource

XAResource

XAResource

Transaction
Manager

App
Server

32

Optimized Persistence

• Many persistence optimizations over and
above JBoss MQ

• Currently ships with JDBC Persistence
support for MSSQL, MySQL, Oracle,
Sybase, PostgreSQL, HSQL

• Local file based persistence support on
the way – likely to leverage functionality
in JBoss Transactions.

33

Minimise Serialization and copying

• Serialization is expensive – both in time and
space– keep it to a minimum.

• Don’t serialize the whole message in the db.
• Don’t serialize across the wire if it can be

avoided.
• Minimise copying of messages – in some INVM

cases no copying is necessary – passing by
reference enables high performance

• Pluggable serialization library

34

Serialization – the naïve way

Persistent
Store

Send

Receive

S DS

DS S

S

DS

S = Serialize, DS = De-serialize

3 x Serialization + 3 x De-serialization

JMS Client JMS Server

Producer

Consumer

35

Serialization – a better way

Persistent
Store

Send

Receive

S

DS

S = Serialize, DS = De-serialize

1 x Serialization + 1 x De-serialization

JMS Client JMS Server

Producer

Consumer

Convert to byte[]

36

Very large queues / subscriptions

• Queues/subs may need to hold many
millions of messages.

• Cannot store in memory at once
• Page messages to and from storage

as necessary
• JBoss Messaging can handle very

large queues
• Coming soon - Support for very large

messages – streams, chunks,
compression.

7

37

Page-able Queues/subscriptions

Persistent Storage
10000000 messages

In memory queue, 100000 messages max

Down cache
Persistent message

Non persistent message

Cancel

Load from storage

Evict to storageConsume

38

Distributed destinations

• State of the art distributed destinations
(unlike some competing products)

• Multiple consumers for the same queue
distributed across the cluster

• Multiple consumers for the same durable
subscription distributed across the cluster

• Combine with multiple persistent stores
then we have a highly scaleable distributed
messaging system

• Fully recoverable ACID transactions
guaranteed across the cluster

39

Distributed Queue

Queue A Queue A Queue A

Consumer Consumer

Producers and Consumers can connect to any node
Only one consumer will receive the message sent by the producer

ConsumerProducer

Node A Node B Node C

40

Distributed Topic

Topic A Topic A Topic A

P
C CC

Durable
Sub A

Durable
Sub A

Sub C
Sub B

CC

Node A Node B Node C

Multicast

Subscriptions on the topic can be spread across the cluster
There can be multiple consumers of the durable subscription on different nodes

41

Roadmap

HEAD (Clustering)
1.0 (Stable)

1.0.1

1.0.2

1.0.3

1.0.4

1.0.5

1.0.6

1.2.Alpha

1.2.Beta

HTTP and Multiplex support
MC integration
Large message support

Browsing optimization
Core (Channel) refactoring

Complete XA recovery
Configuration improvements
Enhanced message expiry

1.0.7

© JBoss Inc. 2006

Q&A

Slide 38

T1 Mention
Tim, 6/9/2006

