
1

© JBoss Inc. 2006

JBoss Rules
•Mark Proctor

Project Lead

•The SkyNet funding bill is passed.
•The system goes online on August 4th, 1997.
•Human decisions are removed from strategic defense.
•SkyNet begins to learn at a geometric rate.
•It becomes self-aware at 2:14am Eastern time, August 29th
•In a panic, they try to pull the plug.
•And, Skynet fights back

2

Agenda

• Quick look at a Rule
• A bit more on Rules
• Golfing Configuration Example
• Rule Engine Background
• Deeper look into Rule Engines

3

What is a Rule

4

What is a Rule

• rule “<name>”
<attribute> <value>
when

<LHS>
then

<RHS>
end

Quotes on Rule names
are optional if the rule
name has no spaces.

salience <int>
agenda-group <string>
no-loop <boolean>
auto-focus <boolean>
duration <long>

RHS can be any valid
java. Future versions will
support other languages,
i.e Groovy

5

What is a Rule

• public void helloMark(Person person) {
if (person.getName().equals(“mark”) {

System.out.println(“Hello Mark”);
}

}

• rule “Hello Mark”
when

Person(name == “mark”)
then

System.out.println(“Hello Mark”);
end

LHS

RHS

specific passing of
instances

Methods that must
be called directly

Rules can never
be called directly

Specific instances
cannot be passed.

6

What is a Rule

• Column with no field constraints
Person()

• Column with a literal field constraint
Person(name == “bob”)

• Column with field binding
Person($bob : name == “bob”)
Variable names can be any valid java variable, $ is
optional but helps differentiate between fields and
variables

• Column with Fact binding
$bob : Person(name == “bob”)

• Column with bound variable constraint
Person(name == $name)

• Column and field bindings are referred to as declarations.

2

7

What is a Rule

• More Field Constraints
Return value constraint
• Person($age age)

Person(age == ($age + 2)
Predicate value constraint
• Person($age1 age)

Person($age2 : age ->
($age1.toValue() ==
$age2.toValue() + 2)

• Conditional Elements
‘and’
‘or’
‘not’
‘exists’
‘eval’

8

Package

• package com.sample

• import java.util.Map

• import com.sample.Cheese

• global Cheese cheese

• function void exampleFunction(Cheese cheese) {

• System.out.println(cheese);

• }

• rule “A Cheesy Rule”

• when

• ….

• then

• ….

• end

Namespace for all
package members

Imports can be used in
functions and rules. Uses
valid java import syntax

9

A bit more on Rules

10

Business Rules Approach Methodology

• STEP
Separation of the business rules from components
that are not relevant to the business knowledge
(mainly in IT systems).
Traceability of the business rules, i.e. documenting
the sources as well as the usages of every of
business rule.
Externalization of the business rules, i.e. making the
business rules explicit.
Positioning of the business rules so that it becomes
easily changeable and adaptable.

11

Functional Roles of Rules (RuleSpeak)

• Rejectors
Reject events that cause a violation

• Projectors
“if this then that”
Executes actions
Introduces new Facts

• Producers
Automate computation
Calculates or derives something for the
end user

12

Rejector Rule

3

13

Projector Rules

14

Golfing Configuration

15

Golfing Configuration

• The golfer to the Fred’s immediate
right is wearing blue pants

• Joe is second in line
• Bob is wearing plaid pants
• Tom isn’t in position one or four, and

he isn’t wearing the orange pants

There are four Golfers standing at a tea, in a
line from left to right.

16

Create all possible combinations

String[] names = new String[] {"Fred", "Joe", "Bob", "Tom"};
String[] colors = new String[] {"red", "blue", "plaid",

"orange" };

int[] positions = new int[] { 1, 2, 3, 4 };

for (int n = 0; n < names.length; n++) {
for (int c = 0; c < colors.length; c++) {

for (int p = 0; p < positions.length; p++) {
new Golfer(names[n], colors[c], positions[p]));

}
}

}

17

Fred

// There is a golfer named Fred,
// Whose positions is $p1
Golfer($fredsName : name == "Fred",

$fredsPosition : position,
$fredsColor : color)

• The golfer to the Fred’s immediate
right is wearing blue pants

// The golfer to Fred's immediate right
// is wearing blue pants
Golfer($unknownsName : name != "Fred",

$unknownsPosition : position ==
(new Integer($fredsPosition.intValue() + 1)),
$unknownsColor : color == "blue",
color != $fredsColor)

18

Joe

• Joe is second in line
// Joe is in position 2
Golfer($joesName : name == "Joe",

$joesPosition : position == 2,
position != $fredsPosition,
$joesColor : color != $fredsColor)

4

19

Bob

• Bob is wearing plaid pants

// Bob is wearing plaid pants
Golfer($bobsName : name == "Bob",

name != $unknownsName,
$bobsPosition : position != $fredsPosition,
position != $unknownsPosition,
position != $joesPosition,
$bobsColor : color == "plaid",
color != $fredsColor,
color != $joesColor,
color != $unknownsColor)

20

Tom

• Tom isn’t in position one or four, and
he isn’t wearing the orange pants

// Tom isn't in position 1 or 4
// and isn't wearing orange
Golfer($tomsName : name == "Tom",

$tomsPosition : position != 1,
position != 4,
position != $fredsPosition,
position != $joesPosition,
position != $bobsPosition,
$tomsColor : color != "orange",
color != $fredsColor,
color != $joesColor,
color != $bobsColor)

21

Results

System.out.println("Fred " + $fredsPosition + " " +
$fredsColor);

System.out.println("Joe " + $joesPosition + " " +
$joesColor);

System.out.println("Bob " + $bobsPosition + " " +
$bobsColor);

System.out.println("Tom " + $tomsPosition + " " +
$tomsColor);

Fred 1 orange
Joe 2 blue
Bob 4 plaid
Tom 3 red

22

The Eclipse Workbench

23

Background

24

Artificial Intelligence

Vision

Artificial Neural
Systems

Natural
Language

Speech

Robotics

Expert
Systems

Understanding

Some Areas of
Artificial Intelligence

Genetic
Algorithms

Making computers think like people

5

25

Biological

Artificial Neural
Networks Evolutionary

Artifical Life Genetic
Algorithm

Wet DNA
Computing

Branches of AI

Symbolic

Logic Frames
& Scripts

Rule Based
Expert Systems

26

• The study of Knowledge is
Epistemology

• Nature, Structure and Origins
of Knowledge

Expert Systems - Knowledge
Representation and Reasoning

• Expert Systems use Knowledge
representation to facilitate the codification
of knowledge into a knowledge base which
can be used for reasoning

we can process data with this knowledge base
to infer conclusions

27

Production Rule System

• JBoss Rules Engine
Rule Based approached to implement an
Expert System
correctly classified as a Production Rule
System

• The term "Production Rule" originates
from formal grammar

"an abstract structure that describes a
formal language precisely”

• JBoss Rules Engine
Rule Based approached to implement an
Expert System
correctly classified as a Production Rule
System.

28

Production Rule System

• Turing Complete
Propositional Logic
First Order Logic
Declarative

• The Brain is the Inference Engine
scale to a large number of rules and facts
matches facts, the data, against Production Rules,
also called Productions or just Rules, to infer
conclusions which result in actions
A Production Rule is a two-part structure using First
Order Logic for knowledge representation.
• when <conditions> then <actions>
The process of matching the new or existing facts
against Production Rules is called Pattern Matching

29

Chaining

Select
Rule to Fire

Determine
possible rules to

fire

exit

Fire Rule

Rule
Base

Working
Memory

Conflict
Resolution
Strategy

Rule
Found

Conflict Set

No Rule
Found

Exit If specified by rule

• Forward Chaining
reactionary
“data-drive”

30

Chaining

• Backward Chaining
“goal-drive”

Examine working memory
and goals to see if goals

are “known” true in
knowledge base

Working
Memory

Rule
Base

Goal

Do goals
match?

Return
True

Return
False

Determine next possible
rules to fire by checking
conclusions and goals

Select Rule to
Fire

Conflict
Resolution
Strategy

Fire Rule

For each rule
condition, recursively

backchain with
condition as goal.

All recursion
returns true?

true

yes

No Rule
Found

Exist

Goals found to be true, exist, returning true

Rule
Found

One or more goals failed, Check next matching rule

No
(return false to recursive procedure)

6

31

What is a Production Rule System

Production
Memory

Working
Memory

Inference
Engine

Pattern
Matcher

Agenda
(rules) (facts)

assert
modify
retract

Repository of
asserted Java
instances

Codification of
the business
knowledge

32

Highlevel Characteristics

• Performance
Rete

• Expressiveness
Declarative rules with proposition and
first order logic

• Tooling
Rule editor
Domain Specific Languages
Decision tables
Web authoring
Natural Language Processing

33

Deeper look into Rule Engines

34

Fact Handles

• Fact Handles
Facts are objects a Rule Engine is aware of
and reasons over.
Asserted Objects return a handle reference.
The handle is used for modifications and
retractions.
Internally the Fact Handle implementation
is a long id.
FactHandle handle =
workingMemory.assertObject(a);

35

Object Assertion and Pattern Matching

• LHS
One or more Patterns
Patterns are the conditions that must be
satisfied for the rule to be legible for
firing

• Object assertion
Patterns within the Rule Base are
matched. Resulting in partial and full
matches for Rules.
Fully matched Rules result in the
creation of an Activation
No rules fire at this stage

36

Object Modification

• How to modify a object in the Working Memory
From Java Code
• workingMemory.modifyObject(factHandle,

modifiedFact)

From a Consequence
• modify(modifiedFact)

• JavaBeans PropertyChangeListeners can provide
automatic notification.

• Modifications result in
Activation Cancellations
Activation Creations
Internally this is similar to a retract and assert

7

37

Two Phase System

• Working Memory Actions
Occurs in Java code and during the execution of
a Consequence
Assertion
Deletion
Modification

• Agenda Evaluation
Triggered by Calling
workingMemory.fireAllRules()
Executes the first Rule’s Consequence and
enters Working Memory Action phase. At the
end of the Consequence it returns to evaluating
the Agenda.
When the Agenda is empty it returns back to
the main Java code.

38

Two Phase System

 Working Memory Action

retract

modifyassert

 Agenda Evaluation

Select
Rule to Fire

exit

No Rule
Found

Fire Rule

Determine
possible rules to

fire

Rule
Found

39

Tomorrows BOF Session

• Will be delivered using example codes
being executed in the Workbench

• Architecture and API
• Workbench views for debugging
• Rule Behaviour

Cross Products
Recursion

• Agenda Groups
• Truth Maintenance
• Temporal Rules

40

Questions?

• Dave Bowman: All right, HAL; I'll go in through the
emergency airlock.

• HAL: Without your space helmet, Dave, you're going to
find that rather difficult.

• Dave Bowman: HAL, I won't argue with you anymore!
Open the doors!

• HAL: Dave, this conversation can serve no purpose
anymore. Goodbye.

• Joshua: Greetings, Professor Falken.
• Stephen Falken: Hello, Joshua.
• Joshua: A strange game. The only winning move is not

to play. How about a nice game of chess?

