
08­01­31

Enterprise JavaBeans(tm) 3.0

Carlo de Wolf

Red Hat Middleware
EJB3 Lead Developer

February 13th 2008

Why Enterprise JavaBeans(tm)?

 Allow rapid development of reusable business components

 Using an easy infrastructure which does:

− Memory management

− Remote invocation

− Thread management

 Thus having a predictable QoS

 Without any low-level system code

What is an Enterprise JavaBeans(tm)?

 It's not a POJO!

 It consists of a class + interceptor classes + interfaces

 Construction is different

 Invocation is different

 It's an assembly with one or more views

Life-cycle of an Enterprise JavaBeans(tm)

 No argument constructor

 Injection

 @PostConstruct life cycle interceptor(s)

 @Init life cycle interceptor for stateful EJB

 “I'm alive!”

Ready for method invocations

 @PreDestroy life cycle interceptor(s)

Injection

 Applies to all JavaEE container managed objects

 @Resource

 @EJB

 Injection does not always happen!

 @PostConstruct

 @PreDestroy

Interceptors

 Type of interceptor

− Life-cycle : intercept the construction or destruction of a

bean

− Business Method : intercept method invocations on a bean

 Level of interception : default, class, method (next page)

 Are only effective on “public” methods

Interceptor Levels

 System : interceptors defined in ejb3-interceptors-aop.xml

 Default : interceptors bound to all EJBs

 Class : interceptors bound to one bean(!)

 Method : interceptors bound to one method

 Default and class level interceptors can be excluded

 Only default, class and bean interceptors can be sorted

Intermezzo : EJB 3 == IoC?

 Dependency Injection

 Don't call use, we call you

 The Invocation difference : detached instances

Enterprise JavaBeans(tm) Types

 Stateless Session Bean (Shared)

 Stateful Session Bean (Unique)

 Message Driven Bean

 Entity Bean

 Service Bean* / Singleton Bean

 Consumer Bean*

Session Bean

 Never without state

 Stateless : instance pooling

 Stateful : instance caching

Session Bean Client Views

 Business interface views

− Local

− Remote

 EJB 2.1 views (local interface & remote interface)

 WebService view

 Management view (JMX)

 EJB 3.1: no-interface view

Message Driven Bean

 Asynchronous invocation via messages

 No direct invocation

 No client visible view

Service Bean / Singleton Bean

 One instance to serve all

 Service Bean is thread safe (thus a bottle neck)

 Singleton Bean has declarative concurrency

Consumer Bean

 Asynchronous invocation via interface

 Provides an asynchronous view

Bean Context

 Who is calling me?

 What is being called?

 Interact with timers

 Influence the transaction outcome

 The flavors:

− EJBContext

− SessionContext (extends EJBContext)

− MessageDrivenContext (extends EJBContext)

− EntityContext (extends EJBContext)

EJBContext

 Applies to every enterprise bean type with exceptions

 getCallerIdentity: who called me?

 setRollbackOnly: mark the current transaction as not-

committable

 getTimerService : get the timer service (except stateful)

SessionContext

 getInvokedBusinessInterface: what is called?

 Obtain a proxy to the current bean

Transactions

 Mandatory : if no active-tx, throw TxRequired

 Required : if no active-tx, begin new tx

 RequiresNew : suspend active-tx*, begin new tx

 Supports : do nothing (=> unspecified tx context!)

 NotSupported : suspend active-tx*

 Never : if active-tx, throw EJBException

 Transaction timeout requires a new transaction!

Persistence

 Using Java Persistence API

 Per default JTA transaction type

 Allows for Extended Persistence Context

Security

 Authentication is handled through JAAS

 @SecurityDomain to specify the JAAS application policy

 Declarative security through annotations based on roles

 Assume a different role with @RunAs

 Missing: imperative security

Clustering

 Applies only to Stateful Session Beans

 High availability

 High performance

Asynchronous

 Async Session bean invocation

 Consumer Bean

 EJB 3.1: Future<V> methods

Performance & Tuning

 Average pool size

 Average execution time

 Average waiting time

Current State

 JBoss Application Server 4.2 / 4.3

 => JBoss Enterprise Application Platform 4.2 / 4.3

 JBoss Application Server 5.0

 JBoss Embedded (was JBoss EJB 3 Embedded)

 JBoss EJB 3 Plugin

 JBoss EJB 3 Standalone

Future Features

 What might come in future releases?

 @ContainerInterceptors

 Meta data inspection

 Instance pooling per user / reserved slots

Contributing

 Discussion on the forum

 JIRA

 Patches

− Git?

 Becoming a submitter

Questions?

