

SOA BOF

Dr Mark Little

Red Hat

Overview

 SOA in a nutshell

− Degrees of coupling
− The component triad

 Relationship to WS-*
 The JBoss SOA Platform

− Registries and repositories
 BRMS

− Message delivery and transformation
− Service orchestration

Remote Procedure Call

 First used in Unix back in the 1970’s to aid distributed
development

− Try to make distribution opaque
− Leverage a well known pattern: local procedure calls

 Integrated Systems Architecture (ISA), Open Network
Computing (ONC), the Open Software Foundation
Distributed Computing Environment (OSF/DCE), and the
Object Management Group Common Object Request
Broker Architecture (CORBA)

The Stub Generator

 The client and server are designed and implemented as if
the application was to execute in a traditional centralized
environment

 The client and server stubs hide the underlying
distribution

 The production of the stubs can be automated by the use
of a Stub Generator

− This parses a description of the interface between the
client and the server

− Interface Definition Language

Stub example

Node X Node Y

Client

Process

CSO

Server

Process

SSO O

Stub generation problems

 Machine heterogeneity

− Byte ordering, floating point representation
 Parameter passing semantics and types

− Call by reference, call by value
− Restrict the types that can be passed

 Self referential structures

− Linked lists, circular data structures
 Failures

− Independent failure modes of client and service

Distribution opacity or transparency?

 Prior to RPC, distribution was explicit

− UDP/IP was the transport
− TCP/IP was yet to really take off

 Distribution was hidden by RPC

− Distributed object systems are just a logical extension
 Makes it easier for many developers in the short term

− But as scale of systems increase, different failure models
make it harder to achieve

 Distribution transparency is back in vogue

What is SOA?

 An SOA is a specific type of distributed system in which
the agents are "services"
(http://www.w3.org/TR/2003/WD-ws-arch-
20030808/#id2617708

 Adopting SOA is essential to delivering the business
agility and IT flexibility promised by Web Services.

 But SOA is not a technology and does not come in a
shrink-wrapped box

− It takes a different development methodology
− It’s not about exposing individual objects on the

“bus”

Services

 Services represent building blocks for applications

− Allowing developers to organize their capabilities in ways
that are natural to the application and the environment in
which they operate.

 A Service provides information as well as behaviour and it
does not expose implementation (back-end) choices to the
user.

− Furthermore a service presents a relatively simple
interface to other services/users.

Tightly coupled

 Client and server technologies based on RPC
− Hide distribution
− Make remote service invocation look the same as

local component invocation
 Unfortunately this tightly coupled applications

− Changes to the IDL require re-generation of stubs
 And dissemination of new code
 Or errors will occur during interactions

− Such applications can be brittle
 Hard to control the infrastructure as needed
 No quiescent period

Loosely coupled

 SOA is an architectural style to achieve loose coupling
− A service is a unit of work done by a service provider

to achieve desired end results for a consumer.
 SOA is deliberately not prescriptive about what happens

behind service endpoints
− We are only concerned with the transfer of structured

data between parties
 SOA turns business functions into services that can be

reused and accessed through standard interfaces.
− Should be accessible through different applications

over a variety of channels.

But …

 There are degrees of coupling and you should choose the
level that is right for you

 At the one extreme
− Defining specific service interfaces, akin to IDL

 Easier to reason about the service
 Limits the amount of freedom in changing the

implementation
 At the other extreme

− Single operation (e.g., doWork)
 More flexibility is changing the implementation

− Well, almost …
 More difficult to determine service functionality a priori

− Need more service metadata

Uniform interface versus specific

 The same requirements are present throughout the stack
− Split differently between the infrastructure and the

“application”
 Uniform allows for generic infrastructural support

− Caching, extremely loose coupling
 Web

− Can push more requirements on to the “developer”
 Specific allows for more limited generic support

− Targeted caching, application semantics
− Impacts less on the “developer” but may cost in terms of

coupling

Data Loose Coupling

 SOA says nothing directly about data or transport
transformation

− The mismatch between data representations will limit loose
coupling between the Service provider and consumers

 What is needed is an effective solution to decouple the
provider and consumer data and protocol representations

− The consumer and provider must be isolated from
knowledge of each other’s data formats.

 The service should be concerned with the semantic meaning
of data and not how that data is represented or structured

− The SOA approach to providing this loose coupling is by
separating the translation requirement into a separate
service that can act as an intermediary between providers
and consumers, hiding any differences in data structure
and allowing the parties involved in the interactions to
function un-changed

The Service Contract

 Defines what work/operations/methods the service can accept

− May be an amalgamation of back-end implementation details
 Explicitly part of what an IDL offers

− Checked and enforced by the corresponding stubs

Service stack example

Message listener

Network

Routing validator
(e.g., object
present?)

Manage non-
functional data

Work dispatcher

Conclusions on contracts

 The Service Contract needs to be defined somewhere
 By tying implementation to the contract, changes are

enforced by the stubs

− Simple for developers
− More complex for deployers

 Or contract can be enforced within the service
implementation

− More complex for developers
− Simpler for deployers

Relationship to WS-*

Fortunately …

 SOA is technology agnostic
 WS-* offers the potential for interoperable SOA
 But it is just as easy to develop closely-coupled applications

in WS-*
 Most vendor WS-* tools are direct mappings of distributed

object tools

− SOA != distributed objects with angle brackets
 A SOA infrastructure should support and encourage SOA

principles

− Sometimes it is easier said than done

SOA components

 The key components of a Service Oriented Architecture
are

− The messages that are exchanged
− The agents that act as service requesters and service

providers
− The shared transport mechanisms that allow the flow

of messages
 A description of a service that exists within an SOA is

essentially just a description of the message exchange
pattern between itself and its users

Component triad

Repository

 Service metadata, which is important for contract definitions
− Functional and non-functional aspects

 Transactional, secure, QoS, …
 Policies

− MEPs
 One-way
 Request-response

− Message structure
 Where data resides

− Governance
 Service binaries
 Business rules
 Workflow tasks or process control information

Service orchestration

 Orchestration (e.g., BPM or workflow) is important in many
distributed environments

− More so as the scale and complexity increases
 Need to have intra service task orchestration

− Control the transition of the state of a service as it
executes tasks

 Need to have inter service orchestration
− Control the invocations of services as messages flow

through the infrastructure
 SOA-P supports both approaches

− jBPM
− WS-BPEL

Governance

 Monitoring and managing distributed systems is complex
− No concept of “now”
− Failures, network partitions etc.

 SOA is more difficult
− No control over infrastructure
− No notion of trust
− Indeterminate delays

 Governance is critically important
− What services are running?
− What are their contracts?
− What are SLAs?

 Are they being violated?

Service Lifecycle

 Services go through four phases:

− Model
− Assemble
− Deploy
− Manage

 Lifecycle management concentrates on the development and
deployment of services

− Is affected by its relationship with other services
 Governance brings access control, policies etc. into the way

in which services are used within a business process

Contracts, policies and SLAs

 “Is this service really offering what I want?”)
 “Is this service really doing what it said it would?”
 Composition of services has an affect
 What is a contract?

− The service interface
− The messages it can accept, their formats
− A legal contract entered into when using the service

 The difference between a policy and a contract is that the
latter is an agreed policy between service and user

Policies

 No policy support
− The need for policies must be defined outside of the ESB and

communicated using ad hoc techniques
 Definition of policies

− Capture and creation of policies at design-time (typically via a graphical
interface) and run-time (usually through an intermediary such as a
registry)

 Management of policies
− The policies of services to be viewed (either directly by contacting the

running service, or indirectly via an intermediary) and updated
 Enforcement

− Policies are verified and enforced by the ESB.
 Storage

− A library of policy types can be built up and shared between services
and developers

Policy Management

P o l i c y S e r v i c e s

P o l i c y

A d m i n i s t r a t i o n

U I

E n f o r c e m e n t

P o i n t s

P r o v i d e r

C o n s u m e r

T r a n s f o r m a t i o n

V a l i d a t i o n

R e s o l u t i o n

P o l i c y S e r v i c e

M a n a g e r

P o l i c y S e r v i c e

A g e n t

*
1

*

*

*
1

1 . . n

*

*

1

*

C a n o n i c a l

P o l i c i e s

C a n o n i c a l

P o l i c i e s

Policy Enforcement

I n t e r n e t

P o l i c y S t o r e

C o n s u m e r

P r o d u c e r

P o l i c y

D o c u m e n t

W S D L

D o c u m e n t

P o l i c y

E n f o r c e m e n t

P o i n t

A p p li c a t i o n P o i n t

Other meta-data

 Policies that describe configuration/description information for
non-functional capabilities of the service, such as those
defined by the WS-Security or WS-TX policies, for
configuring low-level security and transactional aspects of the
service.

 Policies that are markers for compliance or compatibility with
certain standards or specifications, such as support for WS-
Addressing or compliance with the WS-I basic profiles.

 Policies that represent constraints that must be fulfilled, such
as SLAs or contractual obligations.

Design-time service discovery

Service testing

Service deployment

Security

Identity within SOA

 Must have some means by which a user (human or process) can
establish its identity (obtain a credential) and then pass this to a target
service in a format it understands

− Standards based formats are very important
 WS-Security

 It is common to have composite services forming a hierarchy

− The SOA must ensure that every intermediary can authenticate the
requesting client (which could be a service) before passing
credentials to the next service

− As the credential information flows, it may be augmented or
completely changed by each intermediate service: identity
management must be federated hierarchically in order for it to scale
and match the business domain

Identity management

Business Activity Monitoring

 Real-time access to critical business performance metrics

− Helps to improve the efficiency and effectiveness of business
processes

 Real-time process/service monitoring is a common capability supported
in many distributed infrastructures

− BAM differs in that it draws information from multiple sources to
enable a broader and richer view of business activities

− BAM also encompasses business intelligence as well as network
and systems management

− BAM is often weighted toward the business side of the enterprise
 As such, there has recently been a movement for good BAM

implementations to be closely related to the governance
infrastructures

