JBoss
WORLD

CHICAGO 2009

FOLLOW US.
TWITTER.COM/REDHATSUMMIT

TWEET ABOUT Us —
ADD #SUMMIT AND/OR #JBOSSWOREDS ﬁ, HE g.
OF YOUR EVENT-RELATEDSIAE
By fﬁ, ‘ p g,

JBoss
WORLD

CHICAGO 2009

Putting Java to REST

Bill Burke

Agenda

What is REST?

Why REST?

Writing RESTFul Web Services in Java
JAX-RS

JBoss
WORLD

JBoss World 2009 | PRESENTER NAME CHICAGO 2009

Speaker’s Qualifications

RESTEasy project lead

Fully certified JAX-RS implementation
JAX-RS JSR member

Also served on EE 5 and EJB 3.0 committees
JBoss contributor since 2001

Clustering, EJB, AOP
Published author

Books, articles

JBoss World 2009 | PRESENTER NAME

JBoss
WORLD

CHICAGO 2009

What are the goals of SOA?

JBoss
WORLD

JBoss World 2009 | PRESENTER NAME CHICAGO 2009

SOA Goals

Reusable
Interoperable

Evolvable
Versioning
Governable

Standards
Architectural Guidelines and Constraints
Predictable

Scalable

Manageable

JBoss
WORLD

6 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

What system has these properties?

JBoss
WORLD

JBoss World 2009 | PRESENTER NAME CHICAGO 2009

The Web!

JBoss
WORLD

JBoss World 2009 | PRESENTER NAME CHICAGO 2009

What is REST?

REpresentational State Transfer
PhD by Roy Fielding

REST answers the guestions of
Why Is the Web so prevalent and ubiquitous?
What makes the Web scale?

How can | apply the architecture of the web to
my applications?

JBoss
WORLD

JBoss World 2009 | PRESENTER NAME CHICAGO 2009

What is REST?

REST Is a set of architectural principles

REST isn’t protocol specific
But, usually REST == REST + HTTP

A different way to look at writing Web Services
Many say it's the anti-WS-*

In my experience, hard for CORBA or WS-* to
accept/digest

JBoss
WORLD

10 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

What is REST?

Addressable Resources

Every “thing” should have a URI
Constrained interface

Use the standard methods of the protocol
HTTP: GET, POST, PUT, DELETE, etc.
Representation Oriented

Different applications need different formats
(AJAX + JSON

Communicate statelessly

Stateless application scale

JBoss
WORLD

11 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

Addressability

Use URIs
Every endpoint/thing has a URI
Linkability

Resource representations have a standardized way of
referencing other resource representations

Representations have a standardized way to compose
themselves:

<order 1id=“111">
<customer>http://sales.com/customers/32133</customer>
<order-entries>
<order-entry>
<quantity>5</quantity>
<product>http://sales.com/products/111</product>

JBoss
WORLD

12 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

Constrained, Uniform Interface

Hardest thing for those with CORBA and/or WS-* baggage to digest
The idea is to have a well-defined, fixed, finite set of operations

Resources can only use these operations
Each operation has well-defined, explicit behavior
In HTTP land, these methods are GET, POST, PUT, DELETE
How can we build applications with only 4+ methods?
SQL only has 4 operations: INSERT, UPDATE, SELECT, DELETE
JMS has a well-defined, fixed set of operations
Both are pretty powerful and useful APIs with constrained interfaces

JBoss
WORLD

13 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

Identity Operations

N/

Complexity

|

Data format

OOOOOOOOOOO

Implications of Uniform Interface
Intuitive

You know what operations the resource will support
Predictable behavior

GET - readonly and idempotent. Never changes the state
of the resource

PUT - an idempotent insert or update of a resource.
ldempotent because it is repeatable without side effects.

DELETE - resource removal and idempotent.

POST - non-idempotent, “anything goes” operation
Clients, developers, admins, operations know what to expect

Much easier for admins to assign security roles

For idempotent messages, clients don’t have to worry
about duplicate messages.

JBoss

15 JBoss World 2009 | PRESENTER NAME HQGE!EB

16

Implications of Uniform Interface

Simplified
Nothing to install, maintain, upgrade
No stubs you have to generate distribute
No vendor you have to pay big bucks to

Platform portability
HTTP is ubiquitous. Most popular languages have an HTTP client library
CORBA, WS-*, not as ubiquitous

(We'll talk later about multiple representations and HTTP content
negotiation which also really helps with portability)

Interoperability

HTTP a stable protocol
WS-*, again, is a moving target
Ask Xfire, Axis, and Metro how difficult Microsoft interoperability has been

Focus on interoperability between applications rather focusing on the
iInteroperability between vendors. JBoss

WORLD

JBoss World 2009 | PRESENTER NAME CHICAGO 2009

Implications of Uniform Interface

Familiarity

Operations and admins know how to secure, partition,
route, and cache HTTP traffic

Leverage existing tools and infrastructure instead of
creating new ones

Easily debugged

How cool is it to be able to use your browser as a
debugging tool!

JBoss
WORLD

17 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

18

Designing with Uniform Interface

public interface BankAccountService {
Account getAccount(int id);
void deleteAccount(int id);
void updateAddress(int acct, Address address);
void debit(double amount);
void credit(double amount);

JBoss World 2009 | PRESENTER NAME

JBoss
WORLD

CHICAGO 2009

Designing with Uniform Interface

/accounts/{acct-id}

GET - retrieve representation of account
DELETE - remove an account

Actions become things
Update Address

/accounts/{acct-id}/address

PUT new XML representation of address
Debit/Credit

Define a “Account Transaction” XML document
/accounts/{acct-id}/transactions
POST new XML representation of a credit or debit

19 JBoss World 2009 | PRESENTER NAME

JBoss
WORLD

CHICAGO 2009

Representation Oriented

URIs point to resources on the network

Clients and servers exchange representations of a resource through the
uniform interface

XML documents

JSON messages

This is a familiar data exchange pattern for Java developers
Swing->RMI->Hibernate
Hibernate objects exchanged to and from client and server

Client modifies state, uses entities as DTOs, server merges changes
No different than how REST operates

No reason a RESTFul webservice and client can’t exchange Java
objects!

JBoss

20 JBoss World 2009 | PRESENTER NAME HQGE!EB

HTTP Negotiation

HTTP allows the client to specify the type of data it is
sending and the type of data it would like to receive

Depending on the environment, the client negotiates
on the data exchanged

An AJAX application may want JSON

A Ruby application my want the XML representation of
a resource

JBoss
WORLD

21 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

22

HTTP Negotiation

HTTP Headers manage this negotiation

CONTENT-TYPE: specifies MIME type of message body

ACCEPT: comma delimited list of one or more MIME types the client
would like to receive as a response

In the following example, the client is requesting a customer
representation in either xml or json format

GET /customers/33323
Accept: application/xml, application/json

Preferences are supported and defined by HTTP specification

GET /customers/33323
Accept: text/html;q=1.0,
application/json;g=0.7;application/xml;q=0.5

JBoss

JBoss World 2009 | PRESENTER NAME HQGE!EB

HTTP Negotiation

Internationalization can be negotiated to

CONTENT-LANGUAGE: what language Is the request
body

ACCEPT-LANGUAGE: what language Is desired by
client

GET /customers/33323
ACCEPT: application/xml
ACCEPT-LANGUAGE: en_US

JBoss
WORLD

23 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

Implications of Representations

Evolvable integration-friendly services

Common consistent location (URI)
Common consistent set of operations (uniform interface)
Slap on an exchange formats as needed
Built-in service versioning
Add newer exchange format as an additional MIME type supported
application/vnd.myformat+xml
application/vnd.myformat-2+xmi

Internationalization becomes easy for clients
Most browsers can configure default ACCEPT-LANGUAGE

JBoss
WORLD

24 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

Statelessnhess

A RESTFul web service does not maintain sessions/conversations
on the server

Doesn’'t mean a web service can’t have state
REST mandates

That state be converted to resource state

Conversational state be held on client and transferred with
each request

JBoss

25 JBoss World 2009 | PRESENTER NAME HQGE!EB

Statelessnhess

Sessions are not linkable

You can’t link a reference to a service that requires a
session

A stateless application scales
Sessions require replication
A simplified architecture is easier to debug
|solates client from changes on the server
Server topology could change during client interaction
DNS tables could be updated
Request could be rerouted to different machines

JBoss
WORLD

26 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

27

REST in Conclusion

REST answers questions of

Why does the Web scale?
Why is the Web so ubiquitous?

How can | apply the architecture of the Web to my applications?

REST is the Re-birth of HTTP
Promises
Simplicity
Interoperability
Platform independence

Change resistance

JBoss

JBoss World 2009 | PRESENTER NAME HQGE!EB

28

JAX-RS

RESTFul Web Services Iin Java

JBoss World 2009 | PRESENTER NAME

JBoss
WORLD

CHICAGO 2009

JAX-RS

29

JCP Specification

Lead by Sun, Marc Hadley
Finished in September 2008
Annotation Framework
Dispatch URI’s to specific classes and methods that can handle requests
Allows you to map HTTP requests to method invocations
IMO, a beautiful example of the power of parameter annotations

Nice URI manipulation functionality

JBoss

JBoss World 2009 | PRESENTER NAME HQGE!EB

JAX-RS Annotations

@Path
Defines URI mappings and templates
@Produces, @Consumes

What MIME types does the resource produce and
consume

@GET, @POST, @DELETE, @PUT, @HEAD

ldentifies which HTTP method the Java method Is
Interested In

JBoss
WORLD

30 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

JAX-RS Parameter Annotations
@PathParam

Allows you to extract URI parameters/named URI template segments
@QueryParam
Access to specific parameter URI query string

@HeaderParam

Access to a specific HTTP Header

@CookieParam

Access to a specific cookie value

Above annotations can automatically map HTTP request values to
String and primitive types
Class types with String constructor or a static valueOf(String val) method
List or Arrays of above types when there are multiple values

@Context

Access to contextual information like the incoming URI

JBoss
WORLD

31 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

JAX-RS: GET /orders/3323

@Path(“/orders”)
public class OrderService {

@Path(“/{order-id}")

@GET

@Produces(“application/xml”)

String getOrder (@PathParam(“order-i1d”) int 1id) {

)"

32 JBoss World 2009 | PRESENTER NAME

JBoss
WORLD

CHICAGO 2009

JAX-RS Resource Classes

JAX-RS annotations are used on POJO classes

The default component lifecycle is per-request

Same idea as @ Stateless EJBs

Singletons supported too

EJB integration defined in EE 6

Most implementations have Spring integration

Root resources identified via @Path annotation on class

JBoss

33 JBoss World 2009 | PRESENTER NAME HQGE!EB

JAX-RS: GET /orders/3323

@Path(“/orders”)

public class OrderService {§—

@Path(“/{order-id}")

@GET

@Produces(“application/xml”)

String getOrder (@PathParam(“order-i1d”) int id) {

.

JBoss

34 JBoss World 2009 | PRESENTER NAME ‘CY.QGIS!EQ

JAX-RS: GET /orders/3323

@Path(“/orders”)
@Path(“/{order-id}")
@GET

@ProduceMime(“application/xml”)
String getOrder (@PathParam(“order-1d”) int 1id) {

"

JBoss

35 JBoss World 2009 | PRESENTER NAME ﬂg!g !EB

JAX-RS: GET /orders/3323

@Path(“/orders”)

public class OrderService { “

@Path(“/{order-id}")

@GET

@Produces(“application/xml”)

String getOrder (@PathParam(“order-1d”) int 1id) {

)"

JBoss

36 JBoss World 2009 | PRESENTER NAME ?!.9!3!33

JAX-RS: GET /orders/3323

@Path(“/orders”)
public class OrderService {

oeatn(/(order-10y) o
@GET

@Produces(“application/xml”)
String getOrder (@PathParam(“order-i1d”) int id) {

)"

JBoss
WORLD

37 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

JAX-RS: GET /orders/3323

@Path(“/orders”)
public class OrderService {

@Path(”/{order-id}"”)
@GET
@Produces(“application/xml”)

String getOrder (@PathParam(“order-1d”) int 1id) {

.

JBoss

38 JBoss World 2009 | PRESENTER NAME ﬂg!g !EB

JAX-RS: GET /orders/3323

@Path(“/orders”)
public class OrderService {

@Path(“/{order-id}")

@GET

@Produces(“application/xml”)

String getOrder(@PathParam(“order-id”) int id) {

)"

39 JBoss World 2009 | PRESENTER NAME

JBoss
WORLD

CHICAGO 2009

JAX-RS: GET /orders/3323

@Path(“/orders”)
public class OrderService {

@Path(”“/{order-id : \d+}")

@GET

@Produces(“application/xml”)

String getOrder (@PathParam(“order-1d”) int id) {

.

40 JBoss World 2009 | PRESENTER NAME

JBoss
WORLD

CHICAGO 2009

JAX-RS: POST /orders

@Path(“/orders”)
public class OrderService {

@POST

@Consumes(“application/xml”)
void submitOrder(String orderXml) {

.

41 JBoss World 2009 | PRESENTER NAME

JBoss
WORLD

CHICAGO 2009

JAX-RS: POST /orders

@Path(“/orders”)
public class OrderService {

@POST

@Consumes(“application/xml”)
void submitOrder(Order orderXml) {

.

42 JBoss World 2009 | PRESENTER NAME

JBoss
WORLD

CHICAGO 2009

MessageBodyReader/Writers

JAX-RS can automatically (un)-marshall between HTTP message bodies and Java
types

Method return value marshalled into HTTP response body

Un-annotated method parameter unmarshalled from HTTP message
content

JAX-RS has built-in MessageBodyReader/Writers
JAXB
String
StreamingOutput
byte[], java.io.InputStream, File, Reader
Form data

Application can plug in custom MessageBodyReader/Writers

JBoss

43 JBoss World 2009 | PRESENTER NAME HQGE!EB

MessageBodyReader

public interface MessageBodyReader<T>

{

boolean isReadable(Class<?> type,
Type genericType,
Annotation annotations|[]);

T readFrom(Class<T> type, Type genericType,
Annotation annotations|],
MediaType mediaType,
MultivaluedMap<String, String> httpHeaders,
InputStream entityStream)
throws IOException,
WebApplicationException;

JBoss
WORLD

44 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

MessageBodyWriter

public interface MessageBodyWriter<T>

{
boolean isWriteable(Class<?> type,
Type genericType,
Annotation annotations|[]);

long getSize(T t);

void writeTo(T t, Class<?> type, Type genericType,
Annotation annotations|],
MediaType mediaType,
MultivaluedMap<String, Object> httpHeaders,
OutputStream entityStream)
throws IOException, WebApplicationException;

JBoss

45 JBoss World 2009 | PRESENTER NAME HQGE!EB

Writing MessageBodyReader/Writer

Must be annotated with @Provider

MessageBodyReader must be annotated with
@Consumes

To specify which MIME types it can convert to Java
objects

MessageBodyWriter must be annotated with @Produces

To specify which MIME types it can marshal Java objects
to

JBoss
WORLD

46 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

Example MessageBodyReader

@Provider
@Consumes(“application/xml”)
public class JAXBProviderReader implements

MessageBodyReader
{

boolean isReadable(Class<?> type,
Type genericType,
Annotation annotations|[])

return type.isAnnotationPresent(
XmlRootElement.class);

JBoss

47 JBoss World 2009 | PRESENTER NAME HQGE!EB

Example MessageBodyReader

Object readFrom(Class<Object> type, Type genericType,
Annotation annotations[], MediaType mediaType,
MultivaluedMap<String, String> httpHeaders,
InputStream entityStream)

throws IOException, WebApplicationException {
try {
JAXBContext jaxb = JAXBContext.newInstance(type);
Object obj =
jaxb.createUnmarshaller().unmarshal(inputStream);

if (obj instanceof JAXBElement)
obj = ((JAXBElement) obj).getValue();

return obj;
} catch (JAXBException e){
throw new RuntimeException(e);

}

} JBoss
WORLD

48 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

Default Response Codes

HTTP 1.1 specification defines response codes

GET, DELETE and POST

200 (OK) if content sent back with response
204 (NO CONTENT) if no content sent back

JBoss
WORLD

49 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

Response Object

JAX-RS has a Response and ResponseBuilder class

Customize response code

Specify specific response headers
Specify redirect URLs

Work with variants

@GET
Response getOrder() {
ResponseBuilder builder =
Response.status(200, order);
builder.type(“text/xml")
.header (“custom-header”, “33333");
return builder.build();

}

JBoss
WORLD

50 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

JAX-RS Content Negotiation

51

Matched up and chosen based on request ACCEPT header
Accept: application/json;g=1.0,application/xml;q=0.5

@GET
@Produces(“application/xml”)
String getXmlOrder() {..}

@GET
@Produces(“application/json”)
String getJdsonOrder() {..}

JBoss
WORLD

JBoss World 2009 | PRESENTER NAME CHICAGO 2009

ExceptionMappers

Map application thrown exceptions to a Response object

Implementations annotated by @Provider

public interface ExceptionMapper<E>

{
}

Response toResponse(E exception);

52 JBoss World 2009 | PRESENTER NAME

JBoss
WORLD

CHICAGO 2009

53

RESTFul Java Clients

JBoss World 2009 | PRESENTER NAME

JBoss
WORLD

CHICAGO 2009

RESTFul Java Clients

java.net.URL
Ugly, buggy, clumsy
Apache HTTP Client
Full featured
Verbose
Not JAX-RS aware (MessageBodyReaders/\Writers)

Jersey and RESTEasy APIs

Similar in idea to Apache HTTP Client except JAX-RS aware
RESTEasy Client Proxy Framework

Define an interface, re-use JAX-RS annotations for sending requests

JBoss
WORLD

54 JBoss World 2009 | PRESENTER NAME CHICAGO 2000

RESTEasy Client Proxy Framework

@Path(“/customers”)
public interface CustomerService {

@GET

@Path(”“{id})

@Produces(“application/xml”)

public Customer getCustomer (
@PathParam(“i1d”) String 1id);

CustomerService service =
ProxyFactory(CustomerService.class,
“http://example.com”);

Customer cust = service.getCustomer(“3322");

55 JBoss World 2009 | PRESENTER NAME

JBoss
WORLD

CHICAGO 2009

56

JAX-RS Example

Seeing It In action

JBoss World 2009 | PRESENTER NAME

JBoss
WORLD

CHICAGO 2009

RESTful JMS Facade

Let’s define a simple RESTFul facade over a IMS
gueue

Store and forward asynch HTTP messages
Work through REST resource design decisions
Introduce some new RESTful concepts
Work through JAX-RS class design decisions
Introduce some other JAX-RS features

JBoss
WORLD

57 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

RESTFul Interface

Sending a message to a queue
Recelving a message from the queue

POST /queues/{queue-name}?persistent=true

GET /queues/{queue-name}

58 JBoss World 2009 | PRESENTER NAME

JBoss
WORLD

CHICAGO 2009

JAX-RS Implementation

@Path(”“/queues/{name}”)
public interface QueueService {

@POST
public void send(
@PathParam(“name”) destination,
@QueryParam(“persistent”)
@befaultvValue(“true”) boolean persistent
@Context HttpHeaders headers,
InputStream body);

@GET
public Response receive(
@PathParam(“name”) destination);

} JBoss
WORLD

59 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

JAX-RS Implementation

@Path(“/queues/{name}”)
public interface QueueService {

@POST
public void send(
@PathParam(“name”) destin
@QueryParam(“persistent”)
@DefaultValue(“true”) boolean persistent
@Context HttpHeaders headers,
InputStream body);

@GET
public Response receive(
@PathParam(“name”) destination);

1 JBoss
WORLD

60 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

JAX-RS Implementation

@Path(“/{division}/queues/{name}”)
public interface QueueService {

@POST

public void send(
@PathParam(“division”) String division,
@PathParam(“name”) destination,
@QueryParam(“persistent”)

@befaultValue(“true”) boolean persistent

@Context HttpHeaders headers,
InputStream body);

@GET
public Response receive(
@PathParam(“name”) destination);
()) JBoss

61} JBoss World 2009 | PRESENTER NAME WORLD

CHICAGO 2009

Improvements to Send:
Return created resource

When creating with a POST common pattern Is to
redirect to the created resource

Status code 201 (Created)

Redirect to a resource representing the message

Location: /queues/myQueue/messages/3334422

Subresources of this URI could be used to find out
status of message

JBoss

62 JBoss World 2009 | PRESENTER NAME HQGE!EB

Improvements to Send:
Return created resource

@POST

public Response send(
@PathParam(“name”) destination,
@QueryParam(“persistent”)

@DefaultValue(“true”) boolean persistent

@Context HttpHeaders headers,
@Context UriInfo uriInfo,
InputStream body) {

.. Create and post JMS message ..

URI messageUri = uriInfo.getAbsolutePathBuilder ()
.path(jmsMessage.getMessageID()).build();

return Response.created(messageUri).build();

JBoss
WORLD

63 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

Improvements to Send:
PUT instead of POST

What happens if there is a network failure during a client send of
a message”?

Client doesn’'t know if message successfully posted or not
It may up sending a duplicate message

POST is not idempotent
Lets use PUT

Client generates unigue message id
PUT /queues/{name}/messages/{message-id}
If a failure during PUT, resend

If message of that ID already there, no worries

JBoss
WORLD

64 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

GET not Appropriate

HTTP 1.1 specification says GET Is idempotent

Recelving messages with GET Is not idempotent
It is changing the state of the resource
It iIs reading a message, but also consuming the queue

Use POST for receliving

JBoss
WORLD

65 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

GET not Appropriate

Problem, we are already are using POST for this
resource

Overload it?
POST /queues/{name}?action=[send|receive]
Ugly, it's a mini RPC
Doesn’t map well to JAX-RS anyways

When in doubt, create a resource

POST /queues/{name}/receiver

JBoss
WORLD

66 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

67

One JAX-RS class not good design

Finding JMS ConnectionFactory and Destination not
portable

Separate finding the Destination from sending/receiving

JAX-RS allows this through Subresources and
Subresource Locators

One object processes part of the request
Another object finishes the request

JBoss
WORLD

JBoss World 2009 | PRESENTER NAME CHICAGO 2009

JAX-RS Implementation

@Path(“/queues”)
public class JBossDestinationLocator {

@Path(”/{name}”)
public QueueService findDestination(
@PathParam(“name”) String name) {
Destination destination = .. find it ..;
return new QueueService(destination);

}
}
public class QueueService {
public QueueService(Destination dest) {..}

@POST
public void send(..) {}

@Post
@Path(“/receiving”)
public Response receive(..) {..}

68 JBoss World 2009 | PRESENTER NAME

JBoss
WORLD

CHICAGO 2009

Why is this cool?

Platform independence

Can a Python client post messages?

Can a Ruby client receive messages?

Can a Java client post messages to a C++ receiver?
Lightweight

Clients only need an HTTP library to use the queue

JBoss
WORLD

69 JBoss World 2009 | PRESENTER NAME CHICAGO 2009

JAX-RS Implementations

JBoss RESTEasy

Embeddable

Spring and EJB integration

Client Framework

Asynchronous HTTP abstractions
Jersey

Sun reference implementation

WADL support
Apache CXF

RESTLet

70 JBoss World 2009 | PRESENTER NAME

JBoss
WORLD

CHICAGO 2009

http://jboss.org/resteasy

References

Links

Books

Coming this fall “RESTFul Java” by me
O’'Rellly’s “RESTful Web Services”

71 JBoss World 2009 | PRESENTER NAME

JBoss
WORLD

CHICAGO 2009

http://jsr311.dev.java.net/
http://jboss.org/resteasy
http://jboss.org/resteasy
http://rest.blueoxen.net/
http://java.dzone.com/articles/intro-rest
http://architects.dzone.com/articles/putting-java-rest
http://oreilly.com/catalog/9780596529260/

QUESTIONS?

TELL US WHAT YOU THINK:
REDHAT.COM/JBOSSWORLD-SURVEY

