
JBoss World 2009 | PRESENTER NAME1

JBoss World 2009 | PRESENTER NAME2

Putting Java to REST

Bill Burke
Fellow, Red Hat
9/2/2009

JBoss World 2009 | PRESENTER NAME3

Agenda

 What is REST?
 Why REST?
 Writing RESTFul Web Services in Java

 JAX-RS

JBoss World 2009 | PRESENTER NAME4

Speaker’s Qualifications

 RESTEasy project lead

 Fully certified JAX-RS implementation

 JAX-RS JSR member

 Also served on EE 5 and EJB 3.0 committees

 JBoss contributor since 2001

 Clustering, EJB, AOP

 Published author

 Books, articles

JBoss World 2009 | PRESENTER NAME5

What are the goals of SOA?

JBoss World 2009 | PRESENTER NAME6

SOA Goals

 Reusable

 Interoperable

 Evolvable
 Versioning

 Governable
 Standards
 Architectural Guidelines and Constraints
 Predictable

 Scalable

 Manageable

JBoss World 2009 | PRESENTER NAME7

What system has these properties?

JBoss World 2009 | PRESENTER NAME8

The Web!

JBoss World 2009 | PRESENTER NAME9

What is REST?

 REpresentational State Transfer

 PhD by Roy Fielding
 REST answers the questions of

 Why is the Web so prevalent and ubiquitous?
 What makes the Web scale?
 How can I apply the architecture of the web to

my applications?

JBoss World 2009 | PRESENTER NAME10

What is REST?

 REST is a set of architectural principles
 REST isn’t protocol specific

 But, usually REST == REST + HTTP
 A different way to look at writing Web Services

 Many say it’s the anti-WS-*
 In my experience, hard for CORBA or WS-* to

accept/digest

JBoss World 2009 | PRESENTER NAME11

What is REST?

 Addressable Resources

 Every “thing” should have a URI
 Constrained interface

 Use the standard methods of the protocol
 HTTP: GET, POST, PUT, DELETE, etc.

 Representation Oriented

 Different applications need different formats
(AJAX + JSON

 Communicate statelessly

 Stateless application scale

JBoss World 2009 | PRESENTER NAME12

Addressability

 Use URIs

 Every endpoint/thing has a URI
 Linkability

 Resource representations have a standardized way of
referencing other resource representations

 Representations have a standardized way to compose
themselves:

<order id=“111”>
 <customer>http://sales.com/customers/32133</customer>
 <order-entries>
 <order-entry>
 <quantity>5</quantity>
 <product>http://sales.com/products/111</product>
…

JBoss World 2009 | PRESENTER NAME13

Constrained, Uniform Interface

 Hardest thing for those with CORBA and/or WS-* baggage to digest

 The idea is to have a well-defined, fixed, finite set of operations

 Resources can only use these operations
 Each operation has well-defined, explicit behavior
 In HTTP land, these methods are GET, POST, PUT, DELETE

 How can we build applications with only 4+ methods?

 SQL only has 4 operations: INSERT, UPDATE, SELECT, DELETE
 JMS has a well-defined, fixed set of operations
 Both are pretty powerful and useful APIs with constrained interfaces

JBoss World 2009 | PRESENTER NAME14

Identity Operations

Complexity

Data format

JBoss World 2009 | PRESENTER NAME15

Implications of Uniform Interface
 Intuitive

 You know what operations the resource will support
 Predictable behavior

 GET - readonly and idempotent. Never changes the state
of the resource

 PUT - an idempotent insert or update of a resource.
Idempotent because it is repeatable without side effects.

 DELETE - resource removal and idempotent.
 POST - non-idempotent, “anything goes” operation

 Clients, developers, admins, operations know what to expect
 Much easier for admins to assign security roles
 For idempotent messages, clients don’t have to worry

about duplicate messages.

JBoss World 2009 | PRESENTER NAME16

Implications of Uniform Interface
 Simplified

 Nothing to install, maintain, upgrade
 No stubs you have to generate distribute
 No vendor you have to pay big bucks to

 Platform portability

 HTTP is ubiquitous. Most popular languages have an HTTP client library
 CORBA, WS-*, not as ubiquitous
 (We’ll talk later about multiple representations and HTTP content

negotiation which also really helps with portability)
 Interoperability

 HTTP a stable protocol
 WS-*, again, is a moving target
 Ask Xfire, Axis, and Metro how difficult Microsoft interoperability has been
 Focus on interoperability between applications rather focusing on the

interoperability between vendors.

JBoss World 2009 | PRESENTER NAME17

Implications of Uniform Interface

 Familiarity
 Operations and admins know how to secure, partition,

route, and cache HTTP traffic
 Leverage existing tools and infrastructure instead of

creating new ones
 Easily debugged

 How cool is it to be able to use your browser as a
debugging tool!

JBoss World 2009 | PRESENTER NAME18

Designing with Uniform Interface

public interface BankAccountService {
 Account getAccount(int id);
 void deleteAccount(int id);
 void updateAddress(int acct, Address address);
 void debit(double amount);
 void credit(double amount);

}

JBoss World 2009 | PRESENTER NAME19

 /accounts/{acct-id}

 GET - retrieve representation of account
 DELETE - remove an account

 Actions become things

 Update Address

 /accounts/{acct-id}/address
 PUT new XML representation of address

 Debit/Credit

 Define a “Account Transaction” XML document
 /accounts/{acct-id}/transactions
 POST new XML representation of a credit or debit

Designing with Uniform Interface

JBoss World 2009 | PRESENTER NAME20

 URIs point to resources on the network

 Clients and servers exchange representations of a resource through the
uniform interface

 XML documents

 JSON messages
 This is a familiar data exchange pattern for Java developers

 Swing->RMI->Hibernate
 Hibernate objects exchanged to and from client and server
 Client modifies state, uses entities as DTOs, server merges changes

 No different than how REST operates
 No reason a RESTFul webservice and client can’t exchange Java

objects!

Representation Oriented

JBoss World 2009 | PRESENTER NAME21

HTTP Negotiation

 HTTP allows the client to specify the type of data it is
sending and the type of data it would like to receive

 Depending on the environment, the client negotiates
on the data exchanged

 An AJAX application may want JSON

 A Ruby application my want the XML representation of
a resource

JBoss World 2009 | PRESENTER NAME22

 HTTP Headers manage this negotiation
 CONTENT-TYPE: specifies MIME type of message body
 ACCEPT: comma delimited list of one or more MIME types the client

would like to receive as a response
 In the following example, the client is requesting a customer

representation in either xml or json format

 Preferences are supported and defined by HTTP specification

GET /customers/33323
Accept: application/xml,application/json

GET /customers/33323
Accept: text/html;q=1.0,
 application/json;q=0.7;application/xml;q=0.5

HTTP Negotiation

JBoss World 2009 | PRESENTER NAME23

 Internationalization can be negotiated to
 CONTENT-LANGUAGE: what language is the request

body
 ACCEPT-LANGUAGE: what language is desired by

client

GET /customers/33323
ACCEPT: application/xml
ACCEPT-LANGUAGE: en_US

HTTP Negotiation

JBoss World 2009 | PRESENTER NAME24

Implications of Representations

 Evolvable integration-friendly services

 Common consistent location (URI)
 Common consistent set of operations (uniform interface)
 Slap on an exchange formats as needed

 Built-in service versioning

 Add newer exchange format as an additional MIME type supported
 application/vnd.myformat+xml
 application/vnd.myformat-2+xml

 Internationalization becomes easy for clients

 Most browsers can configure default ACCEPT-LANGUAGE

JBoss World 2009 | PRESENTER NAME25

Statelessness

 A RESTFul web service does not maintain sessions/conversations
on the server

 Doesn’t mean a web service can’t have state

 REST mandates

 That state be converted to resource state
 Conversational state be held on client and transferred with

each request

JBoss World 2009 | PRESENTER NAME26

Statelessness

 Sessions are not linkable

 You can’t link a reference to a service that requires a
session

 A stateless application scales

 Sessions require replication
 A simplified architecture is easier to debug

 Isolates client from changes on the server

 Server topology could change during client interaction
 DNS tables could be updated
 Request could be rerouted to different machines

JBoss World 2009 | PRESENTER NAME27

REST in Conclusion

 REST answers questions of

 Why does the Web scale?

 Why is the Web so ubiquitous?

 How can I apply the architecture of the Web to my applications?

 REST is the Re-birth of HTTP

 Promises

 Simplicity

 Interoperability

 Platform independence

 Change resistance

JBoss World 2009 | PRESENTER NAME28

JAX-RS

RESTFul Web Services in Java

JBoss World 2009 | PRESENTER NAME29

JAX-RS

 JCP Specification

 Lead by Sun, Marc Hadley

 Finished in September 2008

 Annotation Framework

 Dispatch URI’s to specific classes and methods that can handle requests

 Allows you to map HTTP requests to method invocations

 IMO, a beautiful example of the power of parameter annotations

 Nice URI manipulation functionality

JBoss World 2009 | PRESENTER NAME30

JAX-RS Annotations

 @Path
 Defines URI mappings and templates

 @Produces, @Consumes
 What MIME types does the resource produce and

consume
 @GET, @POST, @DELETE, @PUT, @HEAD

 Identifies which HTTP method the Java method is
interested in

JBoss World 2009 | PRESENTER NAME31

JAX-RS Parameter Annotations
 @PathParam

 Allows you to extract URI parameters/named URI template segments
 @QueryParam

 Access to specific parameter URI query string
 @HeaderParam

 Access to a specific HTTP Header
 @CookieParam

 Access to a specific cookie value
 Above annotations can automatically map HTTP request values to

 String and primitive types
 Class types with String constructor or a static valueOf(String val) method
 List or Arrays of above types when there are multiple values

 @Context

 Access to contextual information like the incoming URI

JBoss World 2009 | PRESENTER NAME32

JAX-RS: GET /orders/3323

@Path(“/orders”)
public class OrderService {

 @Path(“/{order-id}”)
 @GET
 @Produces(“application/xml”)
 String getOrder(@PathParam(“order-id”) int id) {
 …
 }
}

JBoss World 2009 | PRESENTER NAME33

JAX-RS Resource Classes

 JAX-RS annotations are used on POJO classes
 The default component lifecycle is per-request

 Same idea as @Stateless EJBs
 Singletons supported too
 EJB integration defined in EE 6
 Most implementations have Spring integration

 Root resources identified via @Path annotation on class

JBoss World 2009 | PRESENTER NAME34

@Path(“/orders”)
public class OrderService {

 @Path(“/{order-id}”)
 @GET
 @Produces(“application/xml”)
 String getOrder(@PathParam(“order-id”) int id) {
 …
 }
}

Base URI path to resource

JAX-RS: GET /orders/3323

JBoss World 2009 | PRESENTER NAME35

@Path(“/orders”)
public class OrderService {

 @Path(“/{order-id}”)
 @GET
 @ProduceMime(“application/xml”)
 String getOrder(@PathParam(“order-id”) int id) {
 …
 }
}

Additional URI pattern
that getOrder() method maps to

JAX-RS: GET /orders/3323

JBoss World 2009 | PRESENTER NAME36

@Path(“/orders”)
public class OrderService {

 @Path(“/{order-id}”)
 @GET
 @Produces(“application/xml”)
 String getOrder(@PathParam(“order-id”) int id) {
 …
 }
}

Defines a URI path segment
pattern

JAX-RS: GET /orders/3323

JBoss World 2009 | PRESENTER NAME37

@Path(“/orders”)
public class OrderService {

 @Path(“/{order-id}”)
 @GET
 @Produces(“application/xml”)
 String getOrder(@PathParam(“order-id”) int id) {
 …
 }
}

HTTP method Java getOrder()
maps to

JAX-RS: GET /orders/3323

JBoss World 2009 | PRESENTER NAME38

@Path(“/orders”)
public class OrderService {

 @Path(“/{order-id}”)
 @GET
 @Produces(“application/xml”)
 String getOrder(@PathParam(“order-id”) int id) {
 …
 }
}

What’s the CONTENT-TYPE
returned?

JAX-RS: GET /orders/3323

JBoss World 2009 | PRESENTER NAME39

@Path(“/orders”)
public class OrderService {

 @Path(“/{order-id}”)
 @GET
 @Produces(“application/xml”)
 String getOrder(@PathParam(“order-id”) int id) {
 …
 }
}

Inject value of URI segment
into the id Java parameter

JAX-RS: GET /orders/3323

JBoss World 2009 | PRESENTER NAME40

@Path(“/orders”)
public class OrderService {

 @Path(“/{order-id : \d+}”)
 @GET
 @Produces(“application/xml”)
 String getOrder(@PathParam(“order-id”) int id) {
 …
 }
}

Automatically convert URI
string segment into an integer

JAX-RS: GET /orders/3323

JBoss World 2009 | PRESENTER NAME41

JAX-RS: POST /orders

@Path(“/orders”)
public class OrderService {

 @POST
 @Consumes(“application/xml”)
 void submitOrder(String orderXml) {
 …
 }
}

What CONTENT-TYPE is this
method expecting from client?

JBoss World 2009 | PRESENTER NAME42

@Path(“/orders”)
public class OrderService {

 @POST
 @Consumes(“application/xml”)
 void submitOrder(Order orderXml) {
 …
 }
}

Un-annotated parameters assumed
to be incoming message body.

There can be only one!

JAX-RS: POST /orders

JBoss World 2009 | PRESENTER NAME43

MessageBodyReader/Writers

 JAX-RS can automatically (un)-marshall between HTTP message bodies and Java
types

 Method return value marshalled into HTTP response body

 Un-annotated method parameter unmarshalled from HTTP message
content

 JAX-RS has built-in MessageBodyReader/Writers

 JAXB

 String

 StreamingOutput

 byte[], java.io.InputStream, File, Reader

 Form data

 Application can plug in custom MessageBodyReader/Writers

JBoss World 2009 | PRESENTER NAME44

MessageBodyReader

public interface MessageBodyReader<T>
{
 boolean isReadable(Class<?> type,
 Type genericType,
 Annotation annotations[]);

 T readFrom(Class<T> type, Type genericType,
 Annotation annotations[],
 MediaType mediaType,
 MultivaluedMap<String, String> httpHeaders,
 InputStream entityStream)
 throws IOException,
 WebApplicationException;

}

JBoss World 2009 | PRESENTER NAME45

MessageBodyWriter

public interface MessageBodyWriter<T>
{
 boolean isWriteable(Class<?> type,
 Type genericType,
 Annotation annotations[]);

 long getSize(T t);

 void writeTo(T t, Class<?> type, Type genericType,
 Annotation annotations[],
 MediaType mediaType,
 MultivaluedMap<String, Object> httpHeaders,
 OutputStream entityStream)
 throws IOException, WebApplicationException;
}

JBoss World 2009 | PRESENTER NAME46

Writing MessageBodyReader/Writer

 Must be annotated with @Provider
 MessageBodyReader must be annotated with

@Consumes
 To specify which MIME types it can convert to Java

objects
 MessageBodyWriter must be annotated with @Produces

 To specify which MIME types it can marshal Java objects
to

JBoss World 2009 | PRESENTER NAME47

Example MessageBodyReader

@Provider
@Consumes(“application/xml”)
public class JAXBProviderReader implements
 MessageBodyReader
{
 boolean isReadable(Class<?> type,
 Type genericType,
 Annotation annotations[])
 {
 return type.isAnnotationPresent(
 XmlRootElement.class);
 }

 …
}

JBoss World 2009 | PRESENTER NAME48

Example MessageBodyReader

 Object readFrom(Class<Object> type, Type genericType,
 Annotation annotations[], MediaType mediaType,
 MultivaluedMap<String, String> httpHeaders,
 InputStream entityStream)
 throws IOException, WebApplicationException {
 try {
 JAXBContext jaxb = JAXBContext.newInstance(type);
 Object obj =
 jaxb.createUnmarshaller().unmarshal(inputStream);

 if (obj instanceof JAXBElement)
 obj = ((JAXBElement) obj).getValue();

 return obj;
 } catch (JAXBException e){
 throw new RuntimeException(e);
 }
 }
}

JBoss World 2009 | PRESENTER NAME49

Default Response Codes

 HTTP 1.1 specification defines response codes
 GET, DELETE and POST

 200 (OK) if content sent back with response
 204 (NO CONTENT) if no content sent back

JBoss World 2009 | PRESENTER NAME50

Response Object

 JAX-RS has a Response and ResponseBuilder class
 Customize response code
 Specify specific response headers
 Specify redirect URLs
 Work with variants

@GET
Response getOrder() {
 ResponseBuilder builder =
 Response.status(200, order);
 builder.type(“text/xml”)
 .header(“custom-header”, “33333”);
 return builder.build();
}

JBoss World 2009 | PRESENTER NAME51

JAX-RS Content Negotiation

 Matched up and chosen based on request ACCEPT header

 Accept: application/json;q=1.0,application/xml;q=0.5

@GET
@Produces(“application/xml”)
String getXmlOrder() {…}

@GET
@Produces(“application/json”)
String getJsonOrder() {…}

JBoss World 2009 | PRESENTER NAME52

ExceptionMappers

 Map application thrown exceptions to a Response object

 Implementations annotated by @Provider

public interface ExceptionMapper<E>
{
 Response toResponse(E exception);
}

JBoss World 2009 | PRESENTER NAME53

RESTFul Java Clients

JBoss World 2009 | PRESENTER NAME54

RESTFul Java Clients
 java.net.URL

 Ugly, buggy, clumsy

 Apache HTTP Client

 Full featured

 Verbose

 Not JAX-RS aware (MessageBodyReaders/Writers)

 Jersey and RESTEasy APIs

 Similar in idea to Apache HTTP Client except JAX-RS aware

 RESTEasy Client Proxy Framework

 Define an interface, re-use JAX-RS annotations for sending requests

JBoss World 2009 | PRESENTER NAME55

RESTEasy Client Proxy Framework

@Path(“/customers”)
public interface CustomerService {

 @GET
 @Path(“{id})
 @Produces(“application/xml”)
 public Customer getCustomer(
 @PathParam(“id”) String id);
}

CustomerService service =
 ProxyFactory(CustomerService.class,
 “http://example.com”);

Customer cust = service.getCustomer(“3322”);

JBoss World 2009 | PRESENTER NAME56

JAX-RS Example

Seeing it in action

JBoss World 2009 | PRESENTER NAME57

RESTful JMS Facade

 Let’s define a simple RESTFul façade over a JMS
queue

 Store and forward asynch HTTP messages
 Work through REST resource design decisions

 Introduce some new RESTful concepts
 Work through JAX-RS class design decisions

 Introduce some other JAX-RS features

JBoss World 2009 | PRESENTER NAME58

RESTFul Interface

 Sending a message to a queue
 Receiving a message from the queue

POST /queues/{queue-name}?persistent=true

GET /queues/{queue-name}

JBoss World 2009 | PRESENTER NAME59

JAX-RS Implementation

@Path(“/queues/{name}”)
public interface QueueService {

 @POST
 public void send(
 @PathParam(“name”) destination,
 @QueryParam(“persistent”)
 @DefaultValue(“true”) boolean persistent
 @Context HttpHeaders headers,
 InputStream body);

 @GET
 public Response receive(
 @PathParam(“name”) destination);

}

JBoss World 2009 | PRESENTER NAME60

JAX-RS Implementation

@Path(“/queues/{name}”)
public interface QueueService {

 @POST
 public void send(
 @PathParam(“name”) destination,
 @QueryParam(“persistent”)
 @DefaultValue(“true”) boolean persistent
 @Context HttpHeaders headers,
 InputStream body);

 @GET
 public Response receive(
 @PathParam(“name”) destination);

}

Default value for an
optional URI query parameter

JBoss World 2009 | PRESENTER NAME61

JAX-RS Implementation

@Path(“/{division}/queues/{name}”)
public interface QueueService {

 @POST
 public void send(
 @PathParam(“division”) String division,
 @PathParam(“name”) destination,
 @QueryParam(“persistent”)
 @DefaultValue(“true”) boolean persistent
 @Context HttpHeaders headers,
 InputStream body);

 @GET
 public Response receive(
 @PathParam(“name”) destination);

}

Access to all headers so we
can forward them to receiver

JBoss World 2009 | PRESENTER NAME62

Improvements to Send:
Return created resource

 When creating with a POST common pattern is to
redirect to the created resource

 Status code 201 (Created)
 Redirect to a resource representing the message

 Location: /queues/myQueue/messages/3334422
 Subresources of this URI could be used to find out

status of message

JBoss World 2009 | PRESENTER NAME63

Improvements to Send:
Return created resource

@POST
public Response send(
 @PathParam(“name”) destination,
 @QueryParam(“persistent”)
 @DefaultValue(“true”) boolean persistent
 @Context HttpHeaders headers,
 @Context UriInfo uriInfo,
 InputStream body) {

 … create and post JMS message …

 URI messageUri = uriInfo.getAbsolutePathBuilder()
 .path(jmsMessage.getMessageID()).build();

 return Response.created(messageUri).build();
}

JBoss World 2009 | PRESENTER NAME64

Improvements to Send:
PUT instead of POST

 What happens if there is a network failure during a client send of
a message?

 Client doesn’t know if message successfully posted or not

 It may up sending a duplicate message

 POST is not idempotent

 Lets use PUT

 Client generates unique message id

 PUT /queues/{name}/messages/{message-id}

 If a failure during PUT, resend

 If message of that ID already there, no worries

JBoss World 2009 | PRESENTER NAME65

GET not Appropriate

 HTTP 1.1 specification says GET is idempotent
 Receiving messages with GET is not idempotent
 It is changing the state of the resource
 It is reading a message, but also consuming the queue

 Use POST for receiving

JBoss World 2009 | PRESENTER NAME66

GET not Appropriate

 Problem, we are already are using POST for this
resource

 Overload it?
 POST /queues/{name}?action=[send|receive]
 Ugly, it’s a mini RPC
 Doesn’t map well to JAX-RS anyways

 When in doubt, create a resource
 POST /queues/{name}/receiver

JBoss World 2009 | PRESENTER NAME67

One JAX-RS class not good design

 Finding JMS ConnectionFactory and Destination not
portable

 Separate finding the Destination from sending/receiving
 JAX-RS allows this through Subresources and

Subresource Locators
 One object processes part of the request
 Another object finishes the request

JBoss World 2009 | PRESENTER NAME68

JAX-RS Implementation
@Path(“/queues”)
public class JBossDestinationLocator {

 @Path(“/{name}”)
 public QueueService findDestination(
 @PathParam(“name”) String name) {
 Destination destination = … find it …;
 return new QueueService(destination);
 }
}
public class QueueService {
 public QueueService(Destination dest) {…}

 @POST
 public void send(…) {}

 @Post
 @Path(“/receiving”)
 public Response receive(…) {…}
}

JBoss World 2009 | PRESENTER NAME69

Why is this cool?

 Platform independence
 Can a Python client post messages?
 Can a Ruby client receive messages?
 Can a Java client post messages to a C++ receiver?

 Lightweight
 Clients only need an HTTP library to use the queue

JBoss World 2009 | PRESENTER NAME70

JAX-RS Implementations

 JBoss RESTEasy
 http://jboss.org/resteasy
 Embeddable
 Spring and EJB integration
 Client Framework
 Asynchronous HTTP abstractions

 Jersey
 Sun reference implementation
 WADL support

 Apache CXF

 RESTLet

http://jboss.org/resteasy

JBoss World 2009 | PRESENTER NAME71

References

 Links

 http://jsr311.dev.java.net/

 http://jboss.org/resteasy

 http://rest.blueoxen.net/

 http://java.dzone.com/articles/intro-rest

 http://architects.dzone.com/articles/putting-java-rest

 Books

 Coming this fall “RESTFul Java” by me

 O’Reilly’s “RESTful Web Services”

 http://oreilly.com/catalog/9780596529260/

http://jsr311.dev.java.net/
http://jboss.org/resteasy
http://jboss.org/resteasy
http://rest.blueoxen.net/
http://java.dzone.com/articles/intro-rest
http://architects.dzone.com/articles/putting-java-rest
http://oreilly.com/catalog/9780596529260/

JBoss World 2009 | PRESENTER NAME72

