
JBoss World 2009 | Marius Bogoevici1

JBoss World 2009 | Marius Bogoevici2

Spring on JBoss

Marius Bogoevici

Senior Software Engineer, Red Hat
September 2nd, 2009

JBoss World 2009 | Marius Bogoevici3

About the presenter:

● Marius Bogoevici - mariusb@redhat.com

● Senior Software Engineer at Red Hat

● Lead for Snowdrop, the JBoss/Spring utilities library

● Early Spring adopter - since 2004
● Also commiter to Spring Integration (Spring-based EAI

patterns implementation)

JBoss World 2009 | Marius Bogoevici4

Outline

● What brings JBoss and Spring together?

● Project Snowdrop

● Using Spring on JBoss: a Java EE-based perspective

● Tooling

● Red Hat Open Choice Strategy and WFK

JBoss World 2009 | Marius Bogoevici5

Spring is an integration framework

● Spring is, above all, an integration framework

● Easily integrate application components (POJOs) and
runtime services

● Defines abstractions that interact with Java EE
standard APIs

● Provides its own implementations for common
middleware functionality (e.g. transaction
management)

● Or, uses application server services

JBoss World 2009 | Marius Bogoevici6

What brings Spring and JBoss together?

● Spring provides the application development model
● dependency injection/configuration

● templates

● transaction demarcation

● JBoss provides the runtime services
● web container, transaction coordinator, messaging middleware

● connection pools, JMX management

● classloading, deployment

● So, JBoss is a great place for running Spring applications!

● … and opportunities exist to provide a better experience with
richer integration!

JBoss World 2009 | Marius Bogoevici7

What is Snowdrop?
● A collection of utilities for Spring on JBoss:

● the Spring Deployer (since 2006)
● VFS integration
● Load-time weaving support
● JBoss-oriented samples

● Historically, a spring-int module inside JBoss AS

● Dedicated forum topic: “JBoss/Spring Integration”

JBoss World 2009 | Marius Bogoevici8

What is Snowdrop? (2)

● Currently, the Spring Deployer and the spring-int jars
can be downloaded from Sourceforge

● This will stand as a separate project (Snowdrop)

● Its future home at http://jboss.org/snowdrop

● Distinct JIRA project (JBSPRING->SNOWDROP)

● Maven via repository.jboss.org

● Release in September

http://jboss.org/snowdrop

JBoss World 2009 | Marius Bogoevici9

Spring's support for Java EE integration

● Bootstrapping

● Transaction management

● Messaging support

● Asynchronous tasks

● JPA

● Web Services

● EJB3

● JMX management

JBoss World 2009 | Marius Bogoevici10

Bootstrapping ApplicationContexts in Java EE

● Best practice:
● create the ApplicationContext only once during the

lifetime of the application (most common source of
trouble!)

● Web applications do it through the
ContextLoaderListener

● For EJB (and not only), Spring provides the
BeanFactoryLocator abstraction

● For JBoss you have the Spring Deployer

JBoss World 2009 | Marius Bogoevici11

Using BeanFactoryLocator

● Most typical: ContextSingletonBeanFactoryLocator

● By default, loads a group of ApplicationContexts from
“classpath*:beanRefContext.xml”, defined like:
<beans>

 <bean id="businessBeanFactory" class="o.s.c.s.CPXAC">

 <constructor­arg value="someApplicationContext.xml"/>

 </bean>

</beans>

● Classloader-bound singleton (e.g. one per EAR)
● useBeanFactory(String factoryKey) retrieves the

ApplicationContext identified by the key

● Used internally by Spring for EJB integration

JBoss World 2009 | Marius Bogoevici12

Using Spring Deployer

● JBoss deployer for Spring applications

● Recognizes META-INF/*-spring.xml files (each such
file instantiates an ApplicationContext)

● Bootstraps a Spring application context and registers it
in the local JNDI (non-serializable)

● Single shared context instance available for all the
deployed components

● Advantages:
● lifecycle is independent of the client application
● application context is treated as a deployment unit

JBoss World 2009 | Marius Bogoevici13

Common design strategies for bootstrapping

● Most common structure: one ApplicationContext per
WAR

● ContextLoaderListener bootstraps business context
● DispatcherServlet if using Spring MVC

● If having multiple ApplicationContexts in the same EAR
● define individual contexts for each web application
● parent context at the EJB JAR level

● expensive beans are instantiated only once

JBoss World 2009 | Marius Bogoevici14

A particular problem: VFS support
● JBoss-provided utilities filling a functional gap

● Due to some internal assumptions, Spring's 2.5.x
resource/classpath scanning doesn't work properly
with JBoss AS's Virtual File System (VFS)

● Affects resource scanning and annotation-driven
configuration

● Telltale sign:

<import resource=”classpath*:META­INF/*.xml”/>, or
scanning for @Component-annotated beans
<context:component­scan base­package=”....”/>

will yield:
● java.util.zip.ZipException: error in opening zip file

 at java.util.zip.ZipFile.open(Native Method)

JBoss World 2009 | Marius Bogoevici15

VFS Support – The Solution

● The cause of the problem is the behavior of Spring's
PathMatchingResourcePatternResolver and the
DefaultResourceLoader

● Fortunately, Spring is extensible enough ...

● … so we added two specialized ApplicationContext
implementations

● VFSClassPathXmlApplicationContext
● VFSXmlWebApplicationContext (for web applications)

● set the appropriate class through the contextClass parameter
in web.xml

● They do all what their parent classes did, plus handling
VFS-located resources correctly

JBoss World 2009 | Marius Bogoevici16

VFS Support – Code Samples

<context­param>

 <param­name>contextClass</param­name>

 <param­value>org.jboss.spring.vfs.context.VFSXmlWebApplicationContext</param­value>

</context­param>

<listener>

 <listener­class>org.springframework.web.context.ContextLoaderListener</listener­class>

</listener>

● Or apply the same on the DispatcherServlet

● Or use it in a BeanFactoryLocator

● For a web-application bootstrapped servlet

JBoss World 2009 | Marius Bogoevici17

Transaction Management with Spring

● Springs allows for declarative transaction
management (XML and annotation-driven)

● Spring honors @TransactionAttribute

● Delegates to a PlatformTransactionManager, with
various implementations

● In Spring 2.5 you can use JTA simply like this:
 <tx:jta-transaction-manager/ >

● The JBoss Transaction Manager will be autodetected

● Synchronize operations with Spring or CMT, using JTA
1.1 support for TransactionSynchronisationRegistry

JBoss World 2009 | Marius Bogoevici18

Spring and JPA

● A common scenario: JPA-based Spring DAOs

● Options:
● instantiate one of the Local*EntityManagerFactoryBeans
● retrieve the EntityManagerFactory from JNDI (use

<jee:jndi-object />)
● Inject the EntityManager directly (rather than the

EntityManagerFactory) – can be acquired from JNDI
● In local (non-JNDI) scenarios, use SharedEntityManagerBean

JBoss World 2009 | Marius Bogoevici19

Spring and EJB3

● Some degree of overlapping: both allow implementing
application components as POJOs, with middleware
services being invoked around the code

● Wrapping Spring beans in EJBs allows for seamlessly
integrating with the application-server provided
services (transactions, security, management) ...

● … while Spring takes care of injecting dependencies
and locating resources (you avoid ServiceLocator)

● Spring beans can be still tested separately

● For testing, you can still use mocks or locally defined
EntityManagerFactory/EntityManager

JBoss World 2009 | Marius Bogoevici20

Injecting Spring Beans in EJBs

● Method 1: Spring's SpringBeanAutowiringInterceptor

● EJB3 interceptor

● Uses a BeanFactoryLocator to retrieve the
ApplicationContext

● Recognizes the @Autowired annotation

JBoss World 2009 | Marius Bogoevici21

Injecting Spring Beans into EJBs (2)

● Method 2: Based on JBoss' Spring Deployer

● Another EJB3 interceptor: SpringInjectionInterceptor

● Recognizes @Spring annotations

● Injects beans by name

● Requires a JNDI-bound ApplicationContext (normally
created by the Spring Deployer)

JBoss World 2009 | Marius Bogoevici22

Spring and Container-Managed Transactions

● Container-managed transactions are one of the
benefits of using EJB

● Spring applications can enroll in container-managed
transactions

● Use <tx:jta-transaction-manager/> or
JtaTransactionManager

● Use managed data sources
● So that they are enrolled in the corresponding

transactions

JBoss World 2009 | Marius Bogoevici23

JPA, CMT and Spring

● JTA challenge: use the same persistence context in
EJB and Spring

● Inject the EntityManager acquired from JNDI
● We said that already, right?

● Do not rely on Spring's
PersistenceAnnotationBeanPostProcessor

● It works directly with the EntityManagerFactory
● Creates a new persistence context
● It is enrolled in the same transaction, but entities may

be loaded twice (conflicts, superfluous operations)

JBoss World 2009 | Marius Bogoevici24

Using PersistenceAnnotationBeanPostProcessor
public class JpaUserRepository implements UserRepository {
 @PersistenceContext
 private EntityManager entityManager;
 User findUserByLocation(String place);
}

@Stateless
@Interceptors(SpringInjectionInterceptor.class)
public class UserServiceBean implements UserService
{

 @PersistenceContext(..)
 private EntityManager entityManager;

 @Spring(jndiName=”springContext”, bean=”userRepository”)
 private UserRepository userRepository;
}

<jee:jndi-lookup proxy-interface="javax.persistence.EntityManagerFactory"
id="entityManagerFactory" jndi-name="java:/persistence/orders-emf"/>

PersistenceContexts are different !

JBoss World 2009 | Marius Bogoevici25

Injecting the EntityManager
public class JpaUserRepository implements UserRepository {
 @Autowired
 private EntityManager entityManager;
 User findUserByLocation(String place);
}

@Stateless
@Interceptors(SpringInjectionInterceptor.class)
public class UserServiceBean implements UserService
{

 @PersistenceContext(..)
 private EntityManager entityManager;

 @Spring(jndiName=”springContext”, bean=”userRepository”)
 private UserRepository userRepository;
}

<jee:jndi-lookup proxy-interface="javax.persistence.EntityManager"
id="entityManager" jndi-name="java:/persistence/orders"/>

PersistenceContexts are the same !

JBoss World 2009 | Marius Bogoevici26

Asynchronous Task Execution

● Java EE prohibits the creation of new
Threads/ThreadPools by managed components

● Spring allows to delegate the execution of
asynchronous tasks to a TaskExecutor instance
(Spring provided abstraction)

● For JBoss – use JBossWorkManagerTaskExecutor

(uses the WorkManager defined for JCA 1.5)

● For example, including a periodically running task as
part of your application

JBoss World 2009 | Marius Bogoevici27

Spring in JSF-based web applications

● Spring beans can be used in JSF applications
● referring to Spring beans in JSF expressions

● DelegatingVariableResolver
● SpringBeanVariableResolver
● SpringBeanFacesELResolver

● Conversational applications may take advantage of
Seam-Spring integration

● Allows injecting Spring beans in Seam beans and vice-versa
● Allows propagating the Seam-managed persistence context

for conversational scenarios

JBoss World 2009 | Marius Bogoevici28

JAX-WS Support

● Spring beans can be exported as Web Services, using
JAX-WS support provided by JBoss AS

● Annotate with @WebService

● Define as servlet in web.xml

● Extend from SpringBeanAutowiringSupport
● supports @Autowired and @Qualifier

● Or export the beans SimpleJaxWsServiceExporter will
use JBossWS (on JBoss AS)

JBoss World 2009 | Marius Bogoevici29

Spring-configured JAX-WS Servlets

@WebService(serviceName = "UserService", targetNamespace = "")
public class UserWebService extends SpringBeanAutowiringSupport {

@Autowired UserService userService;

 @WebMethod public boolean exists(String userName) { … }

}

<listener>
 <listener-class>o.s.w.c.ContextLoaderListener</listener-class>
</listener>
<servlet>
 <servlet-name>UserWebService</servlet-name>
 <servlet-class>springdemo.ws.UserWebService</servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>TestService</servlet-name>
 <url-pattern>/*</url-pattern>
</servlet-mapping>

<bean id=”userService” class=”springdemo.business.UserServiceImpl”>
<property name=”userDao” ref=”userDao”/>

</bean>

JBoss World 2009 | Marius Bogoevici30

Spring-exported JAX-WS services

@WebService(serviceName = "UserService", targetNamespace = "")
public class UserWebService extends SpringBeanAutowiringSupport {

@Autowired UserService userService;

 @WebMethod public boolean exists(String userName) { … }

}

<bean id=”userService” class=”springdemo.business.UserServiceImpl”>
<property name=”userDao” ref=”userDao”/>

</bean>

<bean id=”userWebService” class=”springdemo.ws.UserWebService”/>

<bean class="o.s.remoting.jaxws.SimpleJaxWsServiceExporter">
<property name="baseAddress" value="http://localhost:8080/myapp" />

</bean>

JBoss World 2009 | Marius Bogoevici31

Managing Spring beans with JMX

● Spring beans can be exposed as MBeans
● typically singletons

● Managed using the JBoss management console

● Parameters can be changed at runtime (turning on/off
functionalities, flushing a local cache, etc., collecting
information from a monitoring aspect)

● XML and annotation-driven configuration

JBoss World 2009 | Marius Bogoevici32

Exposing Spring Beans as JMX MBeans

@ManagedResource("userService:name=UserService")
public class CacheManagerImpl implements CacheManager{

 @ManagedAttribute
 public int getElementCount() {...}

 @ManagedOperation
 public void flush() {...}
 ...
}

<context:mbean-export/>

JBoss World 2009 | Marius Bogoevici33

Future developments for JBoss/Spring utilities

● Better integration between Spring and the
Microcontainer

● Improve the Spring Deployer
● Capitalize on the developments of JBoss MC
● Add utilities for using JBoss AOP with Spring
● Add support for standard Spring annotations

● Make suggestions on the forum and report issues in
JIRA!

JBoss World 2009 | Marius Bogoevici34

Tooling

● JBoss Tools 3.0 and JBoss Developer Studion 2.0
● Eclipse-based

● Spring IDE is included

● Configuration validation (bean references, type safety)

● Includes support for annotation-based configuration

● Bean visualization

JBoss World 2009 | Marius Bogoevici35

Red Hat Open Choice Strategy

● Open Choice Strategy: announced on June 1, 2009

● Red Hat's commitment to provide an Open Platform
that support popular programming models and
deployment paradigms.

● JBoss be the platform of choice to run most popular
frameworks

● JBoss users to confidently use their choice of
programming model – Seam, GWT, Struts, Spring,
RichFaces etc

JBoss World 2009 | Marius Bogoevici36

Red Hat Open Choice Strategy (2)

● Benefits to Red Hat Customers / Developers
● Single environment for deploying and managing your

choice of framework
● Peace of mind - supported through a trusted vendor
● Lower overall cost, increased flexibility and ease of

development.

● WFK (Web Framework Kit) is a Red Hat product
offering based on Open Choice Strategy

● WFK 1.0 is included in JBoss EAP5 and JBoss EWP5
and available for subscription with JBoss EWS 1.0

JBoss World 2009 | Marius Bogoevici37

Spring in WFK
● Enabling JBoss as the preferred platform to develop

and deploy Spring applications

● WFK 1.0 includes Spring Framework 2.5.6.SEC01 as a
technology preview (among other web frameworks)

● Built and certified by Red Hat

● More to come in future versions:
● Better integration with JBoss Platforms
● Will include Snowdrop, the JBoss utilities library
● Good set of real world samples that leverages the best

of Spring and JBoss technologies

JBoss World 2009 | Marius Bogoevici38

Conclusions

● Spring has native capabilities of integrating with JBoss
provided services through its Java EE support

● In addition, JBoss-specific utilities for integrating with
Spring provide a richer experience

● The JBoss application server and framework
landscape provide ample opportunities to run Spring
applications efficiently

● JBoss products such as WFK for providing customer
support

JBoss World 2009 | Marius Bogoevici39

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

