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About the presenter:

● Marius Bogoevici - mariusb@redhat.com

● Senior Software Engineer at Red Hat

● Lead for Snowdrop, the JBoss/Spring utilities library

● Early Spring adopter - since 2004
● Also commiter to Spring Integration (Spring-based EAI 

patterns implementation)
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Outline

● What brings JBoss and Spring together?

● Project Snowdrop

● Using Spring on JBoss: a Java EE-based perspective

● Tooling

● Red Hat Open Choice Strategy and WFK
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Spring is an integration framework

● Spring is, above all, an integration framework

● Easily integrate application components (POJOs) and 
runtime services

● Defines abstractions that interact with Java EE 
standard APIs

● Provides its own implementations for common 
middleware functionality (e.g. transaction 
management)

● Or, uses application server services
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What brings Spring and JBoss together?

● Spring provides the application development model
● dependency injection/configuration

● templates

● transaction demarcation

● JBoss provides the runtime services
● web container, transaction coordinator, messaging middleware

● connection pools, JMX management

● classloading, deployment

● So, JBoss is a great place for running Spring applications!

● … and opportunities exist to provide a better experience with 
richer integration!
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What is Snowdrop?
● A collection of utilities for Spring on JBoss:

● the Spring Deployer (since 2006)
● VFS integration
● Load-time weaving support
● JBoss-oriented samples

● Historically, a spring-int module inside JBoss AS 

● Dedicated forum topic: “JBoss/Spring Integration”
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What is Snowdrop? (2)

● Currently, the Spring Deployer and the spring-int jars 
can be downloaded from Sourceforge

● This will stand as a separate project (Snowdrop)

● Its future home at http://jboss.org/snowdrop

● Distinct JIRA project (JBSPRING->SNOWDROP)

● Maven via repository.jboss.org

● Release in September

http://jboss.org/snowdrop
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Spring's support for Java EE integration

● Bootstrapping

● Transaction management

● Messaging support

● Asynchronous tasks

● JPA

● Web Services

● EJB3

● JMX management
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Bootstrapping ApplicationContexts in Java EE

● Best practice: 
● create the ApplicationContext only once during the 

lifetime of the application (most common source of 
trouble!)

● Web applications do it through the 
ContextLoaderListener

● For EJB (and not only), Spring provides the 
BeanFactoryLocator abstraction

● For JBoss you have the Spring Deployer
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Using BeanFactoryLocator

● Most typical: ContextSingletonBeanFactoryLocator

● By default, loads a group of ApplicationContexts from 
“classpath*:beanRefContext.xml”, defined like:
<beans>

 <bean id="businessBeanFactory" class="o.s.c.s.CPXAC">

   <constructor­arg value="someApplicationContext.xml"/>

 </bean>

</beans>

● Classloader-bound singleton (e.g. one per EAR)
● useBeanFactory(String factoryKey) retrieves the 

ApplicationContext identified by the key

● Used internally by Spring for EJB integration



JBoss World 2009 | Marius Bogoevici12

 

Using Spring Deployer

● JBoss deployer for Spring applications

● Recognizes META-INF/*-spring.xml files (each such 
file instantiates an ApplicationContext)

● Bootstraps a Spring application context and registers it 
in the local JNDI (non-serializable)

● Single shared context instance available for all the 
deployed components

● Advantages: 
● lifecycle is independent of the client application
● application context is treated as a deployment unit
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Common design strategies for bootstrapping

● Most common structure: one ApplicationContext per 
WAR

● ContextLoaderListener bootstraps business context
● DispatcherServlet if using Spring MVC

● If having multiple ApplicationContexts in the same EAR
● define individual contexts for each web application
● parent context at the EJB JAR level

● expensive beans are instantiated only once
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A particular problem: VFS support
● JBoss-provided utilities filling a functional gap

● Due to some internal assumptions, Spring's 2.5.x 
resource/classpath scanning doesn't work properly 
with JBoss AS's Virtual File System (VFS) 

● Affects resource scanning and annotation-driven 
configuration

● Telltale sign: 

<import resource=”classpath*:META­INF/*.xml”/>, or 
scanning for @Component-annotated beans 
<context:component­scan base­package=”....”/> 

will yield: 
● java.util.zip.ZipException: error in opening zip file

  at java.util.zip.ZipFile.open(Native Method)
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VFS Support – The Solution

● The cause of the problem is the behavior of Spring's 
PathMatchingResourcePatternResolver and the 
DefaultResourceLoader

● Fortunately, Spring is extensible enough ...

● … so we added two specialized ApplicationContext 
implementations

● VFSClassPathXmlApplicationContext
● VFSXmlWebApplicationContext (for web applications)

● set the appropriate class through the contextClass parameter 
in web.xml

● They do all what their parent classes did, plus handling 
VFS-located resources correctly
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VFS Support – Code Samples

<context­param>

  <param­name>contextClass</param­name>

  <param­value>org.jboss.spring.vfs.context.VFSXmlWebApplicationContext</param­value>

</context­param>

<listener>

  <listener­class>org.springframework.web.context.ContextLoaderListener</listener­class>

</listener>

● Or apply the same on the DispatcherServlet

● Or use it in a BeanFactoryLocator

● For a web-application bootstrapped servlet
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Transaction Management with Spring

● Springs allows for declarative transaction 
management (XML and annotation-driven)

● Spring honors @TransactionAttribute

● Delegates to a PlatformTransactionManager, with 
various implementations

● In Spring 2.5 you can use JTA simply like this:
   <tx:jta-transaction-manager/ >

● The JBoss Transaction Manager will be autodetected

● Synchronize operations with Spring or CMT, using JTA 
1.1 support for TransactionSynchronisationRegistry
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Spring and JPA

● A common scenario: JPA-based Spring DAOs

● Options:
● instantiate one of the Local*EntityManagerFactoryBeans
● retrieve the EntityManagerFactory from JNDI (use 

<jee:jndi-object />)
● Inject the EntityManager directly (rather than the 

EntityManagerFactory) – can be acquired from JNDI
● In local (non-JNDI) scenarios, use SharedEntityManagerBean
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Spring and EJB3

● Some degree of overlapping: both allow implementing 
application components as POJOs, with middleware 
services being invoked around the code

● Wrapping Spring beans in EJBs allows for seamlessly 
integrating with the application-server provided 
services (transactions, security, management) ...

● … while Spring takes care of injecting dependencies 
and locating resources (you avoid ServiceLocator)

● Spring beans can be still tested separately

● For testing, you can still use mocks or locally defined 
EntityManagerFactory/EntityManager
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Injecting Spring Beans in EJBs 

● Method 1: Spring's SpringBeanAutowiringInterceptor

● EJB3 interceptor

● Uses a BeanFactoryLocator to retrieve the 
ApplicationContext

● Recognizes the @Autowired annotation
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Injecting Spring Beans into EJBs (2)

● Method 2: Based on JBoss' Spring Deployer

● Another EJB3 interceptor: SpringInjectionInterceptor

● Recognizes @Spring annotations

● Injects beans by name

● Requires a JNDI-bound ApplicationContext (normally 
created by the Spring Deployer)
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Spring and Container-Managed Transactions

● Container-managed transactions are one of the 
benefits of using EJB

● Spring applications can enroll in container-managed 
transactions

● Use <tx:jta-transaction-manager/> or 
JtaTransactionManager

● Use managed data sources
● So that they are enrolled in the corresponding 

transactions
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JPA, CMT and Spring

● JTA challenge: use the same persistence context in 
EJB and Spring

● Inject the EntityManager acquired from JNDI
● We said that already, right?

● Do not rely on Spring's 
PersistenceAnnotationBeanPostProcessor

● It works directly with the EntityManagerFactory
● Creates a new persistence context
● It is enrolled in the same transaction, but entities may 

be loaded twice (conflicts, superfluous operations)
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Using PersistenceAnnotationBeanPostProcessor
public class JpaUserRepository implements UserRepository {
   @PersistenceContext
   private EntityManager entityManager; 
   User findUserByLocation(String place); 
}

@Stateless
@Interceptors(SpringInjectionInterceptor.class)
public class UserServiceBean implements UserService
{

   @PersistenceContext(..)
   private EntityManager entityManager;
   .... 

   @Spring(jndiName=”springContext”, bean=”userRepository”)
   private UserRepository userRepository;
}

<jee:jndi-lookup proxy-interface="javax.persistence.EntityManagerFactory"
id="entityManagerFactory" jndi-name="java:/persistence/orders-emf"/>

PersistenceContexts are different !
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Injecting the EntityManager
public class JpaUserRepository implements UserRepository {
   @Autowired
   private EntityManager entityManager;  
   User findUserByLocation(String place); 
}

@Stateless
@Interceptors(SpringInjectionInterceptor.class)
public class UserServiceBean implements UserService
{

   @PersistenceContext(..)
   private EntityManager entityManager;
   .... 

   @Spring(jndiName=”springContext”, bean=”userRepository”)
   private UserRepository userRepository;
}

<jee:jndi-lookup proxy-interface="javax.persistence.EntityManager"
id="entityManager" jndi-name="java:/persistence/orders"/>

PersistenceContexts are the same !
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Asynchronous Task Execution

● Java EE prohibits the creation of new 
Threads/ThreadPools by managed components

● Spring allows to delegate the execution of 
asynchronous tasks to a TaskExecutor instance 
(Spring provided abstraction)

● For JBoss – use JBossWorkManagerTaskExecutor

(uses the WorkManager defined for JCA 1.5)

● For example, including a periodically running task as 
part of your application
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Spring in JSF-based web applications

● Spring beans can be used in JSF applications
● referring to Spring beans in JSF expressions

● DelegatingVariableResolver
● SpringBeanVariableResolver
● SpringBeanFacesELResolver

● Conversational applications may take advantage of 
Seam-Spring integration

● Allows injecting Spring beans in Seam beans and vice-versa
● Allows propagating the Seam-managed persistence context 

for conversational scenarios
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JAX-WS Support

● Spring beans can be exported as Web Services, using 
JAX-WS support provided by JBoss AS

● Annotate with @WebService

● Define as servlet in web.xml

● Extend from SpringBeanAutowiringSupport
● supports @Autowired and @Qualifier

● Or export the beans SimpleJaxWsServiceExporter will 
use JBossWS (on JBoss AS)
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Spring-configured JAX-WS Servlets

@WebService(serviceName = "UserService", targetNamespace = "")
public class UserWebService extends SpringBeanAutowiringSupport {

@Autowired UserService userService;

    @WebMethod public boolean exists(String userName) { … }

}

<listener>
       <listener-class>o.s.w.c.ContextLoaderListener</listener-class>
</listener>
<servlet>
  <servlet-name>UserWebService</servlet-name>
  <servlet-class>springdemo.ws.UserWebService</servlet-class>
</servlet>
<servlet-mapping>
  <servlet-name>TestService</servlet-name>
  <url-pattern>/*</url-pattern>
</servlet-mapping>

<bean id=”userService” class=”springdemo.business.UserServiceImpl”>
<property name=”userDao” ref=”userDao”/>

</bean>
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Spring-exported JAX-WS services

@WebService(serviceName = "UserService", targetNamespace = "")
public class UserWebService extends SpringBeanAutowiringSupport {

@Autowired UserService userService;

    @WebMethod public boolean exists(String userName) { … }

}

<bean id=”userService” class=”springdemo.business.UserServiceImpl”>
<property name=”userDao” ref=”userDao”/>

</bean>

<bean id=”userWebService” class=”springdemo.ws.UserWebService”/>

<bean class="o.s.remoting.jaxws.SimpleJaxWsServiceExporter">
<property name="baseAddress" value="http://localhost:8080/myapp" />

</bean>
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Managing Spring beans with JMX

● Spring beans can be exposed as MBeans
● typically singletons

● Managed using the JBoss management console

● Parameters can be changed at runtime (turning on/off 
functionalities, flushing a local cache, etc., collecting 
information from a monitoring aspect)

● XML and annotation-driven configuration
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Exposing Spring Beans as JMX MBeans

@ManagedResource("userService:name=UserService")
public class CacheManagerImpl implements CacheManager{

  @ManagedAttribute
  public int getElementCount() {...}  

  @ManagedOperation
  public void flush() {...}
  ...
}

<context:mbean-export/>
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Future developments for JBoss/Spring utilities

● Better integration between Spring and the 
Microcontainer

● Improve the Spring Deployer
● Capitalize on the developments of JBoss MC
● Add utilities for using JBoss AOP with Spring
● Add support for standard Spring annotations

● Make suggestions on the forum and report issues in 
JIRA!
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Tooling

● JBoss Tools 3.0 and JBoss Developer Studion 2.0
● Eclipse-based

● Spring IDE is included

● Configuration validation (bean references, type safety)

● Includes support for annotation-based configuration

● Bean visualization
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Red Hat Open Choice Strategy

● Open Choice Strategy: announced on June 1, 2009

● Red Hat's commitment to provide an Open Platform 
that support popular programming models and 
deployment paradigms. 

● JBoss be the platform of choice to run most popular 
frameworks 

● JBoss users to confidently use their choice of 
programming model – Seam, GWT, Struts, Spring, 
RichFaces etc
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Red Hat Open Choice Strategy (2)

● Benefits to Red Hat Customers / Developers
● Single environment for deploying and managing your 

choice of framework
● Peace of mind - supported through a trusted vendor
● Lower overall cost, increased flexibility and ease of 

development.

● WFK (Web Framework Kit) is a Red Hat product 
offering based on Open Choice Strategy

● WFK 1.0 is included in JBoss EAP5 and JBoss EWP5 
and available for subscription with JBoss EWS 1.0
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Spring in WFK
● Enabling JBoss as the preferred platform to develop 

and deploy Spring applications 

● WFK 1.0 includes Spring Framework 2.5.6.SEC01 as a 
technology preview (among other web frameworks)

● Built and certified by Red Hat

● More to come in future versions:
● Better integration with JBoss Platforms 
● Will include Snowdrop, the JBoss utilities library
● Good set of real world samples that leverages the best 

of Spring and JBoss technologies
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Conclusions

● Spring has native capabilities of integrating with JBoss 
provided services through its Java EE support

● In addition, JBoss-specific utilities for integrating with 
Spring provide a richer experience

● The JBoss application server and framework 
landscape provide ample opportunities to run Spring 
applications efficiently

● JBoss products such as WFK for providing customer 
support
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