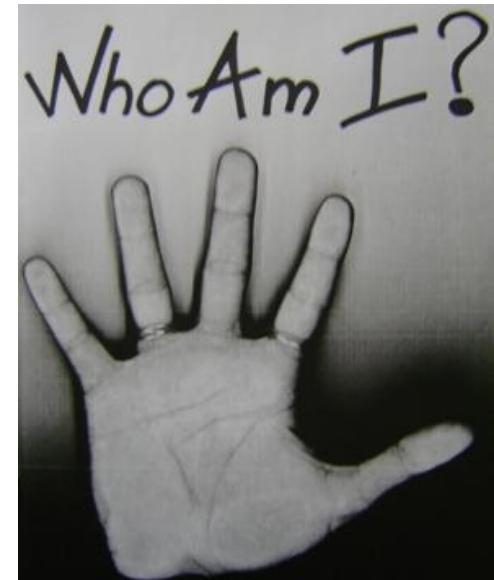


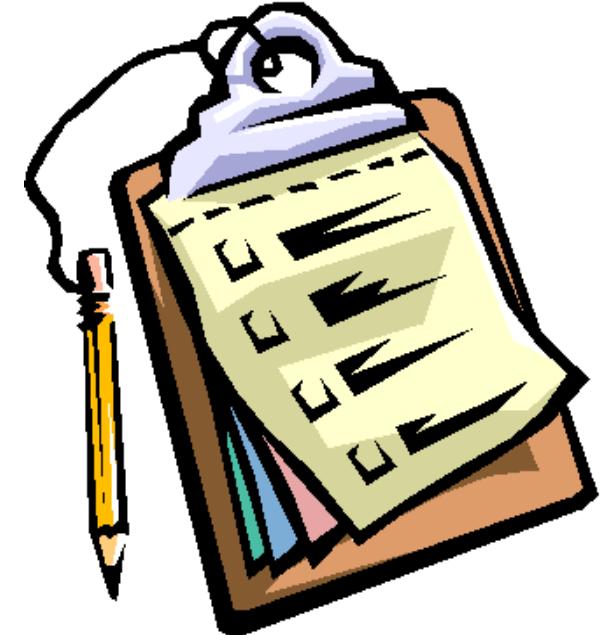
Infinispan

The future of open source data grids

Manik Surtani


manik@jboss.org

Principal Software Engineer
Red Hat


Who is Manik?

- Founder and project lead, Infinispan
- Project lead, JBoss Cache
- Contributor and committer on various OSS projects
 - JBoss AS
 - JGroups
 - Hibernate
 - etc.

Agenda

- Cloud computing and data grids
 - And why YOU should care
- Introducing Infinispan
 - And how this relates to JBoss Cache
- The path ahead for Infinispan
 - Roadmap
 - Featureset

Clouds are today!

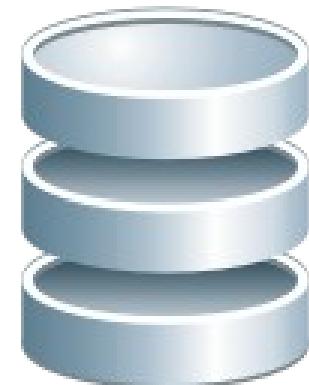
- Clouds are happening
 - *aaS: SaaS, PaaS, IaaS
- You cannot escape them!
 - Public: Amazon, Google, GoGrid, Rackspace
 - Private: Eucalyptus, VMWare, IBM
- Traditional datacenters marginalized to niche deployments
- Clouds become mainstream

Why are clouds popular?

- Piecemeal cost
 - Pay for what you use
- Massive, global data centers means high availability, instant backups
- Everyone benefits from economies of scale
- Ability to scale on demand
- Very fast provisioning
- Proven charging model
 - Remember timesharing on mainframes?

So why now?

- We're in a perfect storm
- Bandwidth is cheap and plentiful
- OS virtualization is mature
- ... and we're in a financial crisis!
 - Everyone wants to cut costs, be more efficient!
 - Making changes is easier now

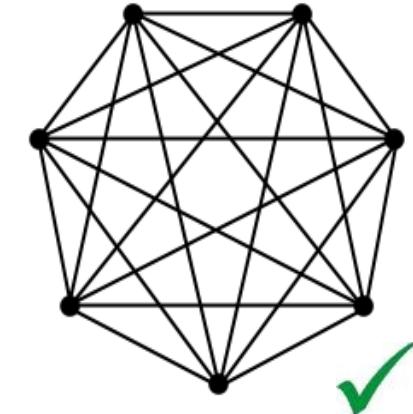

Why should I care?

- The platforms I use will still be relevant:
 - Java, Java EE
 - Python, Ruby, .NET
 - ... whatever!!
- The OS I use will still be relevant
 - Linux
 - Solaris
 - etc.

Data Storage

- Clouds are inherently stateless and ephemeral
- Databases on clouds don't make sense
 - Traditional modes of data storage won't work
- Scalability is crucial
 - Databases still are a bottleneck
 - ... and single point of failure!

Trying to make databases work in the cloud


- E.g., with AWS, store data files on:
 - a mounted EBS volume
 - EBS is not guaranteed to be durable
 - Still needs to be backed up
 - Snapshots expose data loss windows
 - Locks the volume from being written to
 - Can only be mounted by one EC2 node at a time
 - Single point of failure
 - Bottleneck

Trying to make databases work in the cloud

- E.g., with AWS, store data files on:
 - a mounted S3 bucket
 - High latency
 - Web service or REST based comms to S3!
- Native database clustering
 - Notoriously slow and non-scalable
 - Unreliable
 - Expensive!
 - Need special hardware, e.g., SAN

The solution: Data Grids!

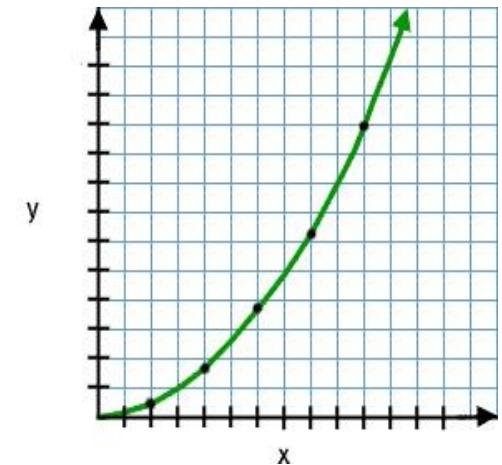
- Data grids are perfect for clouds
 - Highly scalable
 - No single point of failure
 - Works with ephemeral nodes
 - Very low latency
- Data grids
 - Amazon SimpleDB uses Dynamo
 - Infinispan, etc.
 - Many other commercial and open source offerings

Data Grids - Speed!

- Data grids give you speed!
- Very low latency due to minimal disk lookup
 - Memory 2 orders of magnitude faster than disk
 - Especially for frequently used data
- Far greater concurrency
 - Disk IO is always a concurrency bottleneck
 - Memory offers far greater concurrency

Introducing Infinispan

Introducing Infinispan


- Highly scalable data grid platform
 - 100% open source licensed (LGPL)
 - Based on some JBoss Cache code
 - But mostly all-new!
- JBoss Cache is a clustered caching library
 - Infinispan is a data grid platform
- JBoss Cache uses a tree-structured API
 - Infinispan is a Map. Like JSR-107's JCACHE

Infinispan != JBoss Cache 4

- Internal data container design completely different
- APIs completely different
- Not backward-compatible
 - Although a code-level compatibility layer is available

More scalable than JBoss Cache

- Internal structures more memory efficient
 - Data organised in Map-like structures
 - Making use of CAS
 - minimising synchronized blocks, mutexes
 - Containers are naturally ordered
 - Makes eviction much more efficient
- Uses JBoss Marshalling
 - Smaller payloads + poolable streams = faster remote calls

“Borrowed” from JBoss Cache

- JTA transactions
- Replicated data structure
- Eviction, cache persistence
- Notifications and eventing API
- JMX reporting
- Fine-grained replication
- MVCC locking
- Non-blocking state transfer techniques
- Query API
- Custom (non-JDK) marshalling

... and new features!

- Consistent hash based data distribution
- Much simpler Map API (JSR-107 compliant)
- JPA API
- Client/server module with memcached compatibility
- REST API
- Ability to be consumed by non-JVM platforms
- JOPR based GUI management console
- Distributed executors
 - Map/reduce programming model made easy!

Distributed Cache

- Consistent hash based data distribution
 - Will allow us to scale to bigger clusters
 - Goal of efficient scaling to 1000's of nodes
- Lightweight, “L1” cache for efficient reads
 - On writes, “L1” gets invalidated
- Dynamic rebalancing

JPA API and fine-grained replication

- Successor to POJO Cache
- JPA interface: persist, find, remove...
- Will not rely on AOP, javassist, etc.
 - More robust and easier to use/debug
- Familiar JPA interface
- Easy migration from existing, “traditional” datastores!

Management

- Uses JOPR
 - Simple WAR file
 - Rich web-based GUI
 - Open Source (LGPL)
- Infinispan exposes all data, operations in JMX
 - Infinispan-JOPR plugin represents this graphically in JOPR
 - Other plugins can be built for other tools
 - HP OpenView, Hyperic, etc.

Managed by: Jopr

So why is Infinispan sexy?

Why is Infinispan sexy?

- Transparent horizontal scalability
 - In both directions
- Fast, low latency data access
- Ability to address a very large heap
- Cloud-ready
- Free and doesn't suck!

The path ahead

What happens to JBoss Cache?

- JBoss Cache in maintenance mode
 - Currently released as 3.2.0
 - Only critical bug fixes
 - No new development
- And where is Infinispan?
 - Currently in Beta
 - Expecting a final release very soon
 - Very stable already, over 2x as fast as JBC and 4x more memory-efficient

Roadmap

- **Infinispan 4.0.0**
 - New Map API, Async API
 - Distributed cache
 - New marshalling code
 - Management tooling
- **Infinispan 4.1.0**
 - Client/server API, memcached module, language bindings
 - REST API
 - Query API

Roadmap

- **Infinispan 5.0.0**
 - JPA API
 - Fine-grained replication
- **Infinispan 5.1.0**
 - Distributed executors, map/reduce model
 - Dynamic provisioning
- **Infinispan 5.2.0**
 - Distributed querying based on map/reduce

Supported versions

- Productisation roadmap not yet finalised
- Most likely a part of
 - JBoss EAP 6
 - JBoss SOA-P 5.1
 - Possibly even JBoss EAP 5.1

To sum it up

- Clouds are becoming mainstream
 - Developers need to think about challenges involved
- Databases and clouds pose many challenges
- Data grids offer a good alternative
- Infinispan, a new open source data grid
 - Viable cloud data store
 - Also helps remove bottlenecks and single points of failure in non-cloud environments!

How can YOU participate?

- Download and try it out!
- Report bugs. Not just in code, even docs, wikis, etc.
- Suggest new features!
- Test with your own use cases
 - We love to hear how people use our stuff!!
- Lend a hand with development
 - Open and democratic dev process
 - Helps prioritize features you want!
 - Several non-Red Hat core committers already!

QUESTIONS?

TELL US WHAT YOU THINK:
REDHAT.COM/JBOSSWORLD-SURVEY

Project site:
<http://www.infinispan.org>

Blog:
<http://blog.infinispan.org>

Twitter:
[#infinispan](http://twitter.com/infinispan)