
JBoss World 2009 | Steve Hawkins1

JBoss World 2009 | Steve Hawkins2

The Tao of Teiid

Steve Hawkins
Principal Software Engineer,
Red Hat
Sept. 4, 2009

JBoss World 2009 | Steve Hawkins3

What is Teiid?

Teiid is an open source solution for scalable information
integration through a relational abstraction.

Teiid focuses on:

Real-time integration performance

Feature-full integration via SQL/Procedures/XQuery

Providing JDBC access

 Teiid enables:

Data Services / SOA

Legacy / JPA integration

JBoss World 2009 | Steve Hawkins4

Overview

Background

Architecture

Internals

Wrap-up

Q & A

JBoss World 2009 | Steve Hawkins5

Where did Teiid come from?

Project lineage is from MetaMatrix stating in ~1999.

Teiid - http://www.jboss.org/teiid

Teiid Designer - http://www.jboss.org/teiiddesigner

DNA - http://www.jboss.org/dna/

MetaMatrix was the leader in Enterprise Information
Integration (EII) – hence Teiid.

Red Hat acquired MetaMatrix in 2007.

Last major MetaMatrix product release, 5.5.3 - 10/2008

http://www.jboss.org/teiid
http://www.jboss.org/teiiddesigner
http://www.jboss.org/dna/

JBoss World 2009 | Steve Hawkins6

Project Status

Open source 2/2009 – heavily refactored from 5.5 line

6.0 Initial release 3/2009

6.1 Teiid / Teiid Designer release 6/2009

6.2 Coming Soon! Embedded/server deployments,
Designer-less usage, AdminShell, and much more.

Anticipate a platform release combining Teiid and other
JBoss technologies next year.

JBoss World 2009 | Steve Hawkins7

Architecture

JBoss World 2009 | Steve Hawkins8

Architecture

SEDA - Connector bindings, socket transport, query engine,
admin methods all have queues/thread pools

Each connector binding operates independently

Other services include JBoss Transactions JTA, BufferManager,
sessioning, etc.

JBoss World 2009 | Steve Hawkins9

Connector API

Simplified object form of JDBC with concepts of JCA.

Pooling, caching, some security handled by the runtime.

Queries are resolved objects not just a string.

Extended metadata (ConnectorCapabilities) directs the
optimizer source query formation.

In addition to out of the box offerings, our JDBC
Connector is easily extended.

Can be though of as a JDBC toolkit.

JBoss World 2009 | Steve Hawkins10

Other Extension Points

Logging (Log4j), specific contexts for audit and
commands

MembershipDomains – handle authentication/group
assignment. Provide File and LDAP by default.

User defined functions – Implementation method in Java,
currently only defined through Designer.

Scripting through AdminShell

JBoss World 2009 | Steve Hawkins11

Internals

JBoss World 2009 | Steve Hawkins12

Teiid Internals

Integration Features

Planning

Processing

Transactions

JBoss World 2009 | Steve Hawkins13

Integration Features

Access Patterns – criteria requirements on pushdown queries

Pushdown – decompose user query into source queries

Remove unused select clause items

Decompose aggregates over joins/unions

Dependent Joins (can use hints) – feed equi-join values from one
side of the join to the other

Optional Join (can use hints) – removes an unused join child

Multi-source connector bindings – allows for multiple
homogeneous schemas to be used through the same model.

Copy Criteria – uses criteria transitivity to minimize join tuples.

JBoss World 2009 | Steve Hawkins14

Planning

Distinct phases: parse, resolve, validation, rewrite,
optimization, process plan creation.

Rewrite canonicalizes and simplifies.

The optimization phase follows with rules/hints/costing

Procedures/XQuery not formally optimized

Non-federated optimization is similar to mature RDBMS

Optimizer plan structure is a flexible tree - distinct from the
command form and processing plans.

Planning is typically quick and deterministic – prepared
plans are recommended

JBoss World 2009 | Steve Hawkins15

Understanding Planning

Initial canonical plans follow the logical SQL processing
flow:

from/where/group by/having/select/order by/limit/into

Each node corresponds to a logical SQL operation

Canonical relational plans not performant for federated
queries – optimization is necessary

Processing plans and intermediate plans can be shown in
the log/obtained by the client.

select * from … option debug - with DETAIL logging

JBoss World 2009 | Steve Hawkins16

Visualizing a Plan

select e.title, e.lastname from Employees as e JOIN
Departments as d ON e.dept_id = d.dept_id where
year(e.birthday) >= 1970 and d.dept_name = 'Engineering'

 Project(groups=[e] ...)

 Select(groups=[e, d] ...)

 = Join(groups=[e, d] ...)

 Source(groups=[e] ...)

 Source(groups=[d] ...)

JBoss World 2009 | Steve Hawkins17

Plan Rules

Initial sequence driven by query form - some rules trigger others

Move/create/delete/modify nodes toward more optimal form

RemoveVirtual – Removes inline views or nested transformations
RaiseAccess – Ensures access nodes are raised meaning more will be

executed by the connector
PushSelectCriteria – Moves criteria toward tuple origin
CollapseSource – Takes plan nodes below an Access node and creates a

query (not the final query sent to the source, which will get translated by
the connector)

RulePlanSorts – Combines sort processing operations
... many others ...

Many rules correspond directly to federated optimizations –
CopyCriteria, AggregratePushdown, RemoveOptionalJoins, etc.

JBoss World 2009 | Steve Hawkins18

Example Rule Application

SetOperation(groups=[], props={USE_ALL=true, SET_OPERATION=UNION})
 Project(groups=[BQT1.SmallA], props={PROJECT_COLS=[IntKey]})
 Access(groups=[BQT1.SmallA], props={MODEL_ID=Model(BQT1)})
 Source(groups=[BQT1.SmallA], props={NESTED_COMMAND=null})
 Project(groups=[BQT1.SmallA AS SmallA__1], props={PROJECT_COLS=[SmallA__1.IntNum]})
 Access(groups=[BQT1.SmallA AS SmallA__1], props={MODEL_ID=Model(BQT1)})
 Source(groups=[BQT1.SmallA AS SmallA__1], props={NESTED_COMMAND=null})

==
EXECUTING RaiseAccess

AFTER:
Access(groups=[], props={MODEL_ID=Model(BQT1)})
 SetOperation(groups=[], props={USE_ALL=true, SET_OPERATION=UNION})
 Project(groups=[BQT1.SmallA], props={PROJECT_COLS=[IntKey]})
 Source(groups=[BQT1.SmallA], props={NESTED_COMMAND=null})
 Project(groups=[BQT1.SmallA AS SmallA__1], props={PROJECT_COLS=[SmallA__1.IntNum]})
 Source(groups=[BQT1.SmallA AS SmallA__1], props={NESTED_COMMAND=null})

JBoss World 2009 | Steve Hawkins19

Join Planning

The most complicated parts of the optimizer

It is not exhaustive, but does consider ordering (left
linear), satisfying access patterns, and algorithm
([Partitioned] Merge / Nested Loop)

Ordering/algorithm is only important for federated joins.
Once a join is pushed, it's declarative to the source

Merge joins have dependent variants, which can have
large impact on performance – especially an
unnecessary dependent join (see makenotdep)

JBoss World 2009 | Steve Hawkins20

Use of Costing

Specified as attributes at the table and column level - will
have a runtime interface soon

Mostly based on cardinality with a simplistic cost model of
execution

Assign costs to different join ordering and implementations to
pick the best one

Using small, or inappropriate values, could lead to
unexpected performance

See plan info “Estimated Node Cardinality”, “Estimated
Independent/Dependent ...”, etc. for values used in
planning.

JBoss World 2009 | Steve Hawkins21

Processing

A relational processing plan is composed of discrete operations
organized as a tree – very similar to the optimizer form:
AccessNode – Source Query/Procedure
GroupingNode – Grouping operations and aggregate calculation
JoinNode – Joins the left and right tuple sources together
LimitNode – Honors limits and offset
ProjectNode – Converts tuples (select clause)
SelectNode – Applies selection (where clause) criteria
SortNode – Sorts incoming tuples
...

Procedure plans are composed of instructions.

Tuples are processed in batches. The BufferManager is set to a
specific memory limit; excess batches are written to disk.

Processing algorithms are sort based, variants chosen during
planning and processing.

JBoss World 2009 | Steve Hawkins22

Example Process Plan

select * from System.DataTypeElements

Shows decomposition into 3 source queries.

Also the optimizer has combined a distinct operation into
JoinNode(2) loading of the right child.

ProjectNode(1) [dt.Name AS DataTypeName, c.NAME, ...]
 JoinNode(2) [PARTITIONED SORT JOIN (SORT/SORT_DISTINCT)] [INNER JOIN]
\ criteria=[c.PARENT_UUID=dt.UID]
 AccessNode(3) SELECT c.PARENT_UUID, ... FROM SystemPhysical.COLUMNS AS c
 ProjectNode(4) [dt.NAME, dt.IS_BUILTIN AS IsStandard, ...]
 JoinNode(5) [MERGE JOIN (SORT/SORT)] [LEFT OUTER JOIN]
\ criteria=[dt.UUID=a.ANNOTATED_UUID]
 AccessNode(6) SELECT dt.UUID, dt.NAME, ... FROM SystemPhysical.DATATYPES AS dt
 AccessNode(7) SELECT a.ANNOTATED_UUID, ... FROM SystemPhysical.ANNOTATIONS AS a

JBoss World 2009 | Steve Hawkins23

Handling Load

Memory Usage – the BufferManager acts as a memory
manager for batches (with passivation) to ensure that
memory will not be exhausted.

Non-blocking source queries – rather than waiting for source
query results processor thread detach from the plan and
pick up a plan that has work.

Time slicing – plans produce batches for a time slice before
re-queuing and allowing their thread to do other work
(preemptive control only between batches)

Caching – ResultSets at the connector and user query level
can be reused on a session or vdb basis

JBoss World 2009 | Steve Hawkins24

Transactions

Three scopes

Global (through XAResource)

Local (autocommit = false)

Command (autocommit = true)

All scopes are handled by JBoss Transactions JTA

Command scope behavior is handled through
txnAutoWrap={ON|OFF|OPTIMISTIC|PESSIMISTIC}

Isolation level is set on a per connector basis.

JBoss World 2009 | Steve Hawkins25

Wrap Up

JBoss World 2009 | Steve Hawkins26

Performance

Raw (cpu-intensive) overhead is typically sub-millisecond
per prepared user query.

Integration performance – check the processing plan.
We'll usually have the best form.

Consider using UDFs (Java) for reusable subroutines
rather than stored procedures.

Client result sets can be scroll insensitive and backed by
the BufferManager.

JBoss World 2009 | Steve Hawkins27

Differences with traditional Java DBs

Flexible planning architecture

Geared to high-performance integration processing – task
specific queues and thread pools, advanced buffer
management, batching, etc.

Lack of DDL support

Loose constraint handling

pk/fk, unique, and type constraints are in metadata, but
are not enforced at runtime.

Temp tables backed by BufferManager rather than a
relational/indexed storage engine.

JBoss World 2009 | Steve Hawkins28

Future Releases

We'll look even more like a database - direct usage of
DDL for metadata.

More features around materialization, data locality, and
caching.

Continued integration with other JBoss projects.

More design-time integration with Eclipse DTP
http://www.eclipse.org/datatools/

http://www.eclipse.org/datatools/

JBoss World 2009 | Steve Hawkins29

