
  



  

Throwing Complexity Over the Wall - 

Rapid Development for Enterprise 

Java

Andrew Lee Rubinger
Senior Software Engineer, JBoss by Red Hat
23 June 2010  



Agenda

● Typical Problems with Enterprise Development

● Your Role as an Application Programmer

● Splitting Up Responsibility

● The Development Lifecycle

● Exciting New Tools to Help You Develop with Confidence



The Speakah
● Andrew Lee Rubinger

● alr@jboss.org
● Tweet, Dude: @ALRubinger
● http://exitcondition.alrubinger.com
● http://community.jboss.org/people/ALRubinger

● Core Developer at JBoss by Red Hat on EJB3 and 
Application Server; Project Lead of ShrinkWrap and 
Contributor to Arquillian

● Author of Upcoming “Enterprise JavaBeans 3.1 6th Edition” 
from O'Reilly Media – Due September

● Most importantly, longtime user of J2EE and JEE

mailto:alr@jboss.org
http://exitcondition.alrubinger.com/
http://community.jboss.org/people/ALRubinger


Goals for Today

● Break down

● Examine the real problem domain we face as developers of 
Enterprise software

● Build up

● Introduce new Development Solutions

● ShrinkWrap and Arquillian



Characteristics of Good Software

● Secure 

● Sound / Maintains integrity

● Scalable

● Interoperable

● Robust / Resilient

● Correct / Functions as specified

Charles Babbage Analytical Engine



What's Important to Your Employer?

● Bottom Line

● Features

● Time-to-delivery

● Implicit assumption that everything is of high quality

● Not much tolerance for refactoring, stress-test scenarios, 
reducing “technical debt”[1], other routine maintenance 

[1] Martin Fowler http://martinfowler.com/bliki/TechnicalDebt.html



Core Concerns

● Business Logic!

● This is what we're paid to do

● Domain-specific

● No one else can do this for us

● Time spent here is a Good Investment



Core Concerns as Modules

● Modules may have dependencies

● Encourage separation of concerns

FileTransfer ImageEncryption

User



Cross-Cutting Concerns

● Generic

● Independent of business logic
● No compile-time dependencies on other components

● Targeted

● Do one thing
● Composable

● May be combined (or not) with others
● Invisible to the core

● “Aspects” / “Advice”

● “Orthogonal” == Perpendicular



Cross-Cutting Concerns Modeled

● Aspects don't have dependencies upon each other or core 
modules

● May be applied consistently

Image

Encryption

FileTransfer

SecTx



Cross-Cutting Concerns Examples

● Servlet Filters 

● Page Compression
● Custom Aspects

● EJB Interceptors

● Security
● Transactions
● Other Services



Plumbing

● Gets data from Point A to Point B

● Often handles transformation

● Does not affect state

● Enables loose coupling of disparate components

● Is generic

● Typically not the best use of an application developer's 
time



Plumbing Examples

● Servlets

● HTTP Request > Object Model
● JAX-RS / RESTEasy

● Swing Event Dispatch

● Hibernate / JPA

● Object Model > SQL
● Usually implemented by frameworks



So What Should You Code?

● Business Logic

● Core Concerns

● Leave the rest to Servers and Frameworks

● The less you write, the less you test and maintain

● Reduce “conceptual weight” - Joshua Bloch



Component Models as a Solution

● Run in a “Container”

● The Container manages the environment

● Wires up the runtime
● User code executes as deployable components

● Components follow a standard form, or model



And What is Java EE?

● A unified collection of specifications which allow us to 
write business logic as components.

● A recipe to write less
● Increase your signal to noise ratio

● A platform defining how containers must handle wiring 
and services for us

● Get powerful mechanisms for free



What's Been Missing?

● A cohesive way to develop and test our applications

● Applying the same component model paradigm to our 
tests

● Let's not waste time on a custom test harness



The Importance of Testing – The Obvious

● Ensures your code works

● Future-proofs against maintenance breakages



The Importance of Testing – The Often Ignored

● Forces developers to be users

● Key in proving the API design makes sense

● Self-documenting

● Gives you a sustainable path forward

● Slims the release process

● Testing along the way takes away the “big bang” rush at 
the end of a development cycle or iteration



“Testing” is not Necessarily “TDD”

● Test-Driven Development means “write the tests first”

● Absolute ideals

● Blocks iterative development



Excuses, Excuses

● Testing is not enjoyable

● It should be!
● We're under pressure to deliver

● Test code does not provide bottom-line benefit to the 
featureset

● Some folks even delude themselves into thinking that 
testing has no measurable benefit.



Unit Testing

● Finely-grained

● Tests an individual piece of work
● Guideline: Single API call

● Speed is important
● Run before commits
● IDE integration is very helpful

● POJO Programming Model of Java EE 
● Already promotes Unit Testing!



Integration Testing

● Coarsely-grained

● Tests interaction involving many components

● May tie into the Agile notion of “user stories”



Traditional Integration Testing in Java EE

● Verbose or time-consuming pre/post lifecycle

● Usually involves bringing up a new runtime

● Example: JBossAS TestSuite

● Ant tasks to launch new process
● Deploy a JAR/WAR/EAR
● Run the test over remoteable protocols
● Bring down the house



In-JVM (Embedded) Integration Testing

● Pros

● Rely on shared memory
● Pass-by-reference
● No need to expose/build remotable views
● Manage concurrency

● Cons

● Lack of isolation
● JVM startup params may differ



A Hybrid Approach to Integration Testing

● Container in its own process

● Test is deployed as an archive

● Test runs inside the container

● TestRunner obtains the result remotely



Test Reliance Upon the Build

● Adds an extra step to the development/test cycle

● Packaging

● Defines a unit / component
● Regulates ClassLoading



Faking the Environment for Unit Tests

● Mock Objects

● Stubs out APIs which may not be available
● Gets you running in a POJO environment
● http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch08-statusupdate/src/test/java/org/jboss/ejb3/examples/ch08/statusupdate/mdb/MockObjectMessage.java
● http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch08-statusupdate/src/test/java/org/jboss/ejb3/examples/ch08/statusupdate/mdb/StatusUpdateUnitTestCase.java

http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch08-statusupdate/src/test/java/org/jboss/ejb3/examples/ch08/statusupdate/mdb/MockObjectMessage.java
http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch08-statusupdate/src/test/java/org/jboss/ejb3/examples/ch08/statusupdate/mdb/StatusUpdateUnitTestCase.java


Introducing ShrinkWrap

● ShrinkWrap provides a simple mechanism to assemble 
archives like JARs, WARs, and EARs in Java.

JavaArchive archive  =                              
  ShrinkWrap.create(JavaArchive.class,”archive.jar”) 
  .addClasses(MyClass.class,MyOtherClass.class)     
  .addResource("mystuff.properties");



Micro-Deployments

● Using ShrinkWrap to deploy components in isolation

● Test one thing at a time

● Don't rely on your full application to run an intermediate 
level of integration tests



ShrinkWrap Container Integration

● JBoss EmbeddedAS

● Supports ShrinkWrap deployments natively
● OpenEJB

● http://anonsvn.jboss.org/repos/common/shrinkwrap/trunk/extension-openejb/src/test/java/org/jboss/shrinkwrap/openejb/test/ShrinkWrapArchiveDeploymentTest.java
● Jetty

● http://anonsvn.jboss.org/repos/common/shrinkwrap/trunk/extension-jetty/src/test/java/org/jboss/shrinkwrap/jetty/test/JettyDeploymentIntegrationUnitTestCase.java
● GlassFish v3

● http://anonsvn.jboss.org/repos/common/shrinkwrap/trunk/extension-glassfish/src/test/java/org/jboss/shrinkwrap/glassfish/GlassFishDeploymentUnitTestCase.java

http://anonsvn.jboss.org/repos/common/shrinkwrap/trunk/extension-openejb/src/test/java/org/jboss/shrinkwrap/openejb/test/ShrinkWrapArchiveDeploymentTest.java
http://anonsvn.jboss.org/repos/common/shrinkwrap/trunk/extension-jetty/src/test/java/org/jboss/shrinkwrap/jetty/test/JettyDeploymentIntegrationUnitTestCase.java
http://anonsvn.jboss.org/repos/common/shrinkwrap/trunk/extension-glassfish/src/test/java/org/jboss/shrinkwrap/glassfish/GlassFishDeploymentUnitTestCase.java


ShrinkWrap Project Information

● Project Home: http://jboss.org/shrinkwrap

● Wiki: http://community.jboss.org/en/shrinkwrap

● Issue Tracker: 
https://jira.jboss.org/jira/browse/SHRINKWRAP

● User Forums: 
http://community.jboss.org/en/shrinkwrap?view=discussions

● Development Forums: 
http://community.jboss.org/en/shrinkwrap/dev?view=discussions

● Anonymous SVN: 
http://anonsvn.jboss.org/repos/common/shrinkwrap/trunk

● Committer SVN: 
https://svn.jboss.org/repos/common/shrinkwrap/trunk

http://jboss.org/shrinkwrap
http://community.jboss.org/en/shrinkwrap
https://jira.jboss.org/jira/browse/SHRINKWRAP
http://community.jboss.org/en/shrinkwrap?view=discussions
http://community.jboss.org/en/shrinkwrap/dev?view=discussions
http://anonsvn.jboss.org/repos/common/shrinkwrap/trunk
https://svn.jboss.org/repos/common/shrinkwrap/trunk


Removing Plumbing from the Test Harness

● What would be left?

● http://anonsvn.jboss.org/repos/common/shrinkwrap/trunk/extension-glassfish/src/test/java/org/jboss/shrinkwrap/glassfish/GlassFishDeploymentUnitTestCase.java

http://anonsvn.jboss.org/repos/common/shrinkwrap/trunk/extension-glassfish/src/test/java/org/jboss/shrinkwrap/glassfish/GlassFishDeploymentUnitTestCase.java


Introducing Arquillian

● The mission of the Arquillian project is to provide a simple 
test harness that developers can use to produce a broad 
range of integration tests for their Java applications (most 
likely enterprise applications). 

● Abstracts out server lifecycle and deployment

● Write less code

● Tests become container non-specific



Arquillian Simple Example – Stateless EJB

● http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch05-encryption/src/test/java/org/jboss/ejb3/examples/ch05/encryption/EncryptionIntegrationTestCase.java

http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch05-encryption/src/test/java/org/jboss/ejb3/examples/ch05/encryption/EncryptionIntegrationTestCase.java


Arquillian Container Support

● JBoss EmbeddedAS

● JBoss Application Server (Remote) & EAP

● JBoss Embeddable EJB 3.1 (Roadmap)

● GlassFish v3 Embedded

● Jetty

● OpenEJB

● Weld / JSR-299 Contexts and Dependency Injection RI

● Other ideas?



Arquillian Project Information

● Main Space: http://jboss.org/arquillian

● Wiki: http://community.jboss.org/en/arquillian

● Issue Tracker: https://jira.jboss.org/jira/browse/ARQ

● User Forums: 
http://community.jboss.org/en/arquillian?view=discussions

● Development Forums: 
http://community.jboss.org/en/arquillian/dev?view=discussions

● Anonymous SVN: 
http://anonsvn.jboss.org/repos/common/arquillian/trunk

● Committer SVN: 
https://svn.jboss.org/repos/common/arquillian/trunk

http://jboss.org/arquillian
http://community.jboss.org/en/arquillian
https://jira.jboss.org/jira/browse/ARQ
http://community.jboss.org/en/arquillian?view=discussions
http://community.jboss.org/en/arquillian/dev?view=discussions
http://anonsvn.jboss.org/repos/common/arquillian/trunk
https://svn.jboss.org/repos/common/arquillian/trunk


Use Case: Calculator EJB

● Let's see how slim we can get these tests

   /**
    * Adds all arguments

    * 

    * @return The sum of all arguments

    */

   int add(int... arguments);



Use Case Example: Calculator EJB

● Business Interface

● http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch04-firstejb/src/main/java/org/jboss/ejb3/examples/ch04/firstejb/CalculatorCommonBusiness.java
● Bean Implementation Class

● http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch04-firstejb/src/main/java/org/jboss/ejb3/examples/ch04/firstejb/SimpleCalculatorBean.java

http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch04-firstejb/src/main/java/org/jboss/ejb3/examples/ch04/firstejb/CalculatorCommonBusiness.java
http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch04-firstejb/src/main/java/org/jboss/ejb3/examples/ch04/firstejb/SimpleCalculatorBean.java


Use Case Example: CalculatorEJB Unit Tests

● Just a POJO test in JUnit

● Creates a regular instance, invokes its business logic

● http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch04-firstejb/src/test/java/org/jboss/ejb3/examples/ch04/firstejb/CalculatorUnitTestCase.java

http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch04-firstejb/src/test/java/org/jboss/ejb3/examples/ch04/firstejb/CalculatorUnitTestCase.java


Use Case Example: CalculatorEJB Integration 
Test

● Starts up an EJB Container

● Deploys into it

● Looks up the EJB Proxy (typically in JNDI)

● ...but you don't write any of that

● http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch04-firstejb/src/test/java/org/jboss/ejb3/examples/ch04/firstejb/CalculatorIntegrationTestCase.java

http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch04-firstejb/src/test/java/org/jboss/ejb3/examples/ch04/firstejb/CalculatorIntegrationTestCase.java


Problems with Testing MDBs

● Asynchronous; how is the client to know when the server is 
done processing?

● Thread.sleep sets you up for transient failures
● No return value; how do we check postconditions?

● In-container testing helps a bunch

● Server and client run in the same JVM



Use Case: Asynchronous Components

● How is the test to know when processing is 
completed?

● What we shouldn't have to do:
● http://anonsvn.jboss.org/repos/jbossas/projects/ejb3/trunk/testsuite/src/test/java/org/jboss/ejb3/test/mdb/unit/MDBUnitTestCase.java

http://anonsvn.jboss.org/repos/jbossas/projects/ejb3/trunk/testsuite/src/test/java/org/jboss/ejb3/test/mdb/unit/MDBUnitTestCase.java


Use Case Example: Asynchronous Component

● MDB which uses a shared barrier or latch

● http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch08-statusupdate/src/test/java/org/jboss/ejb3/examples/ch08/statusupdate/mdb/TwitterUpdateBlockingTestMdb.java

http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch08-statusupdate/src/test/java/org/jboss/ejb3/examples/ch08/statusupdate/mdb/TwitterUpdateBlockingTestMdb.java


Use Case Example: Asynchronous Component 
Test

● Test uses a barrier, shared by the MDB

● http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch08-statusupdate/src/test/java/org/jboss/ejb3/examples/ch08/statusupdate/mdb/StatusUpdateIntegrationTest.java

http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch08-statusupdate/src/test/java/org/jboss/ejb3/examples/ch08/statusupdate/mdb/StatusUpdateIntegrationTest.java


Get Involved

● Active Community

● Contribute

● Ideas on Forums or IRC
● Feedback on trunk or Alpha releases
● Bug Fixes
● Enhancements
● Documentation



  


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

