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Agenda

● Typical Problems with Enterprise Development

● Your Role as an Application Programmer

● Splitting Up Responsibility

● The Development Lifecycle

● Exciting New Tools to Help You Develop with Confidence



The Speakah
● Andrew Lee Rubinger

● alr@jboss.org
● Tweet, Dude: @ALRubinger
● http://exitcondition.alrubinger.com
● http://community.jboss.org/people/ALRubinger

● Core Developer at JBoss by Red Hat on EJB3 and 
Application Server; Project Lead of ShrinkWrap and 
Contributor to Arquillian

● Author of Upcoming “Enterprise JavaBeans 3.1 6th Edition” 
from O'Reilly Media – Due September

● Most importantly, longtime user of J2EE and JEE

mailto:alr@jboss.org
http://exitcondition.alrubinger.com/
http://community.jboss.org/people/ALRubinger


Goals for Today

● Break down

● Examine the real problem domain we face as developers of 
Enterprise software

● Build up

● Introduce new Development Solutions

● ShrinkWrap and Arquillian



Characteristics of Good Software

● Secure 

● Sound / Maintains integrity

● Scalable

● Interoperable

● Robust / Resilient

● Correct / Functions as specified

Charles Babbage Analytical Engine



What's Important to Your Employer?

● Bottom Line

● Features

● Time-to-delivery

● Implicit assumption that everything is of high quality

● Not much tolerance for refactoring, stress-test scenarios, 
reducing “technical debt”[1], other routine maintenance 

[1] Martin Fowler http://martinfowler.com/bliki/TechnicalDebt.html



Core Concerns

● Business Logic!

● This is what we're paid to do

● Domain-specific

● No one else can do this for us

● Time spent here is a Good Investment



Core Concerns as Modules

● Modules may have dependencies

● Encourage separation of concerns

FileTransfer ImageEncryption

User



Cross-Cutting Concerns

● Generic

● Independent of business logic
● No compile-time dependencies on other components

● Targeted

● Do one thing
● Composable

● May be combined (or not) with others
● Invisible to the core

● “Aspects” / “Advice”

● “Orthogonal” == Perpendicular



Cross-Cutting Concerns Modeled

● Aspects don't have dependencies upon each other or core 
modules

● May be applied consistently

Image

Encryption

FileTransfer

SecTx



Cross-Cutting Concerns Examples

● Servlet Filters 

● Page Compression
● Custom Aspects

● EJB Interceptors

● Security
● Transactions
● Other Services



Plumbing

● Gets data from Point A to Point B

● Often handles transformation

● Does not affect state

● Enables loose coupling of disparate components

● Is generic

● Typically not the best use of an application developer's 
time



Plumbing Examples

● Servlets

● HTTP Request > Object Model
● JAX-RS / RESTEasy

● Swing Event Dispatch

● Hibernate / JPA

● Object Model > SQL
● Usually implemented by frameworks



So What Should You Code?

● Business Logic

● Core Concerns

● Leave the rest to Servers and Frameworks

● The less you write, the less you test and maintain

● Reduce “conceptual weight” - Joshua Bloch



Component Models as a Solution

● Run in a “Container”

● The Container manages the environment

● Wires up the runtime
● User code executes as deployable components

● Components follow a standard form, or model



And What is Java EE?

● A unified collection of specifications which allow us to 
write business logic as components.

● A recipe to write less
● Increase your signal to noise ratio

● A platform defining how containers must handle wiring 
and services for us

● Get powerful mechanisms for free



What's Been Missing?

● A cohesive way to develop and test our applications

● Applying the same component model paradigm to our 
tests

● Let's not waste time on a custom test harness



The Importance of Testing – The Obvious

● Ensures your code works

● Future-proofs against maintenance breakages



The Importance of Testing – The Often Ignored

● Forces developers to be users

● Key in proving the API design makes sense

● Self-documenting

● Gives you a sustainable path forward

● Slims the release process

● Testing along the way takes away the “big bang” rush at 
the end of a development cycle or iteration



“Testing” is not Necessarily “TDD”

● Test-Driven Development means “write the tests first”

● Absolute ideals

● Blocks iterative development



Excuses, Excuses

● Testing is not enjoyable

● It should be!
● We're under pressure to deliver

● Test code does not provide bottom-line benefit to the 
featureset

● Some folks even delude themselves into thinking that 
testing has no measurable benefit.



Unit Testing

● Finely-grained

● Tests an individual piece of work
● Guideline: Single API call

● Speed is important
● Run before commits
● IDE integration is very helpful

● POJO Programming Model of Java EE 
● Already promotes Unit Testing!



Integration Testing

● Coarsely-grained

● Tests interaction involving many components

● May tie into the Agile notion of “user stories”



Traditional Integration Testing in Java EE

● Verbose or time-consuming pre/post lifecycle

● Usually involves bringing up a new runtime

● Example: JBossAS TestSuite

● Ant tasks to launch new process
● Deploy a JAR/WAR/EAR
● Run the test over remoteable protocols
● Bring down the house



In-JVM (Embedded) Integration Testing

● Pros

● Rely on shared memory
● Pass-by-reference
● No need to expose/build remotable views
● Manage concurrency

● Cons

● Lack of isolation
● JVM startup params may differ



A Hybrid Approach to Integration Testing

● Container in its own process

● Test is deployed as an archive

● Test runs inside the container

● TestRunner obtains the result remotely



Test Reliance Upon the Build

● Adds an extra step to the development/test cycle

● Packaging

● Defines a unit / component
● Regulates ClassLoading



Faking the Environment for Unit Tests

● Mock Objects

● Stubs out APIs which may not be available
● Gets you running in a POJO environment
● http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch08-statusupdate/src/test/java/org/jboss/ejb3/examples/ch08/statusupdate/mdb/MockObjectMessage.java
● http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch08-statusupdate/src/test/java/org/jboss/ejb3/examples/ch08/statusupdate/mdb/StatusUpdateUnitTestCase.java

http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch08-statusupdate/src/test/java/org/jboss/ejb3/examples/ch08/statusupdate/mdb/MockObjectMessage.java
http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch08-statusupdate/src/test/java/org/jboss/ejb3/examples/ch08/statusupdate/mdb/StatusUpdateUnitTestCase.java


Introducing ShrinkWrap

● ShrinkWrap provides a simple mechanism to assemble 
archives like JARs, WARs, and EARs in Java.

JavaArchive archive  =                              
  ShrinkWrap.create(JavaArchive.class,”archive.jar”) 
  .addClasses(MyClass.class,MyOtherClass.class)     
  .addResource("mystuff.properties");



Micro-Deployments

● Using ShrinkWrap to deploy components in isolation

● Test one thing at a time

● Don't rely on your full application to run an intermediate 
level of integration tests



ShrinkWrap Container Integration

● JBoss EmbeddedAS

● Supports ShrinkWrap deployments natively
● OpenEJB

● http://anonsvn.jboss.org/repos/common/shrinkwrap/trunk/extension-openejb/src/test/java/org/jboss/shrinkwrap/openejb/test/ShrinkWrapArchiveDeploymentTest.java
● Jetty

● http://anonsvn.jboss.org/repos/common/shrinkwrap/trunk/extension-jetty/src/test/java/org/jboss/shrinkwrap/jetty/test/JettyDeploymentIntegrationUnitTestCase.java
● GlassFish v3

● http://anonsvn.jboss.org/repos/common/shrinkwrap/trunk/extension-glassfish/src/test/java/org/jboss/shrinkwrap/glassfish/GlassFishDeploymentUnitTestCase.java

http://anonsvn.jboss.org/repos/common/shrinkwrap/trunk/extension-openejb/src/test/java/org/jboss/shrinkwrap/openejb/test/ShrinkWrapArchiveDeploymentTest.java
http://anonsvn.jboss.org/repos/common/shrinkwrap/trunk/extension-jetty/src/test/java/org/jboss/shrinkwrap/jetty/test/JettyDeploymentIntegrationUnitTestCase.java
http://anonsvn.jboss.org/repos/common/shrinkwrap/trunk/extension-glassfish/src/test/java/org/jboss/shrinkwrap/glassfish/GlassFishDeploymentUnitTestCase.java


ShrinkWrap Project Information

● Project Home: http://jboss.org/shrinkwrap

● Wiki: http://community.jboss.org/en/shrinkwrap

● Issue Tracker: 
https://jira.jboss.org/jira/browse/SHRINKWRAP

● User Forums: 
http://community.jboss.org/en/shrinkwrap?view=discussions

● Development Forums: 
http://community.jboss.org/en/shrinkwrap/dev?view=discussions

● Anonymous SVN: 
http://anonsvn.jboss.org/repos/common/shrinkwrap/trunk

● Committer SVN: 
https://svn.jboss.org/repos/common/shrinkwrap/trunk

http://jboss.org/shrinkwrap
http://community.jboss.org/en/shrinkwrap
https://jira.jboss.org/jira/browse/SHRINKWRAP
http://community.jboss.org/en/shrinkwrap?view=discussions
http://community.jboss.org/en/shrinkwrap/dev?view=discussions
http://anonsvn.jboss.org/repos/common/shrinkwrap/trunk
https://svn.jboss.org/repos/common/shrinkwrap/trunk


Removing Plumbing from the Test Harness

● What would be left?

● http://anonsvn.jboss.org/repos/common/shrinkwrap/trunk/extension-glassfish/src/test/java/org/jboss/shrinkwrap/glassfish/GlassFishDeploymentUnitTestCase.java

http://anonsvn.jboss.org/repos/common/shrinkwrap/trunk/extension-glassfish/src/test/java/org/jboss/shrinkwrap/glassfish/GlassFishDeploymentUnitTestCase.java


Introducing Arquillian

● The mission of the Arquillian project is to provide a simple 
test harness that developers can use to produce a broad 
range of integration tests for their Java applications (most 
likely enterprise applications). 

● Abstracts out server lifecycle and deployment

● Write less code

● Tests become container non-specific



Arquillian Simple Example – Stateless EJB

● http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch05-encryption/src/test/java/org/jboss/ejb3/examples/ch05/encryption/EncryptionIntegrationTestCase.java

http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch05-encryption/src/test/java/org/jboss/ejb3/examples/ch05/encryption/EncryptionIntegrationTestCase.java


Arquillian Container Support

● JBoss EmbeddedAS

● JBoss Application Server (Remote) & EAP

● JBoss Embeddable EJB 3.1 (Roadmap)

● GlassFish v3 Embedded

● Jetty

● OpenEJB

● Weld / JSR-299 Contexts and Dependency Injection RI

● Other ideas?



Arquillian Project Information

● Main Space: http://jboss.org/arquillian

● Wiki: http://community.jboss.org/en/arquillian

● Issue Tracker: https://jira.jboss.org/jira/browse/ARQ

● User Forums: 
http://community.jboss.org/en/arquillian?view=discussions

● Development Forums: 
http://community.jboss.org/en/arquillian/dev?view=discussions

● Anonymous SVN: 
http://anonsvn.jboss.org/repos/common/arquillian/trunk

● Committer SVN: 
https://svn.jboss.org/repos/common/arquillian/trunk

http://jboss.org/arquillian
http://community.jboss.org/en/arquillian
https://jira.jboss.org/jira/browse/ARQ
http://community.jboss.org/en/arquillian?view=discussions
http://community.jboss.org/en/arquillian/dev?view=discussions
http://anonsvn.jboss.org/repos/common/arquillian/trunk
https://svn.jboss.org/repos/common/arquillian/trunk


Use Case: Calculator EJB

● Let's see how slim we can get these tests

   /**
    * Adds all arguments

    * 

    * @return The sum of all arguments

    */

   int add(int... arguments);



Use Case Example: Calculator EJB

● Business Interface

● http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch04-firstejb/src/main/java/org/jboss/ejb3/examples/ch04/firstejb/CalculatorCommonBusiness.java
● Bean Implementation Class

● http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch04-firstejb/src/main/java/org/jboss/ejb3/examples/ch04/firstejb/SimpleCalculatorBean.java

http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch04-firstejb/src/main/java/org/jboss/ejb3/examples/ch04/firstejb/CalculatorCommonBusiness.java
http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch04-firstejb/src/main/java/org/jboss/ejb3/examples/ch04/firstejb/SimpleCalculatorBean.java


Use Case Example: CalculatorEJB Unit Tests

● Just a POJO test in JUnit

● Creates a regular instance, invokes its business logic

● http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch04-firstejb/src/test/java/org/jboss/ejb3/examples/ch04/firstejb/CalculatorUnitTestCase.java

http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch04-firstejb/src/test/java/org/jboss/ejb3/examples/ch04/firstejb/CalculatorUnitTestCase.java


Use Case Example: CalculatorEJB Integration 
Test

● Starts up an EJB Container

● Deploys into it

● Looks up the EJB Proxy (typically in JNDI)

● ...but you don't write any of that

● http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch04-firstejb/src/test/java/org/jboss/ejb3/examples/ch04/firstejb/CalculatorIntegrationTestCase.java

http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch04-firstejb/src/test/java/org/jboss/ejb3/examples/ch04/firstejb/CalculatorIntegrationTestCase.java


Problems with Testing MDBs

● Asynchronous; how is the client to know when the server is 
done processing?

● Thread.sleep sets you up for transient failures
● No return value; how do we check postconditions?

● In-container testing helps a bunch

● Server and client run in the same JVM



Use Case: Asynchronous Components

● How is the test to know when processing is 
completed?

● What we shouldn't have to do:
● http://anonsvn.jboss.org/repos/jbossas/projects/ejb3/trunk/testsuite/src/test/java/org/jboss/ejb3/test/mdb/unit/MDBUnitTestCase.java

http://anonsvn.jboss.org/repos/jbossas/projects/ejb3/trunk/testsuite/src/test/java/org/jboss/ejb3/test/mdb/unit/MDBUnitTestCase.java


Use Case Example: Asynchronous Component

● MDB which uses a shared barrier or latch

● http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch08-statusupdate/src/test/java/org/jboss/ejb3/examples/ch08/statusupdate/mdb/TwitterUpdateBlockingTestMdb.java

http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch08-statusupdate/src/test/java/org/jboss/ejb3/examples/ch08/statusupdate/mdb/TwitterUpdateBlockingTestMdb.java


Use Case Example: Asynchronous Component 
Test

● Test uses a barrier, shared by the MDB

● http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch08-statusupdate/src/test/java/org/jboss/ejb3/examples/ch08/statusupdate/mdb/StatusUpdateIntegrationTest.java

http://anonsvn.jboss.org/repos/jbossas/projects/ejb-book/trunk/ch08-statusupdate/src/test/java/org/jboss/ejb3/examples/ch08/statusupdate/mdb/StatusUpdateIntegrationTest.java


Get Involved

● Active Community

● Contribute

● Ideas on Forums or IRC
● Feedback on trunk or Alpha releases
● Bug Fixes
● Enhancements
● Documentation
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