

Virtualizing JBoss Enterprise
Middleware with Azul

Shyam Pillalamarri
VP Engineering, Azul Systems
Stephen Hess
Sr. Director, Product Management, Red Hat

June 25, 2010

Agenda

Java Virtualization

Current Limitations

Azul – The Company

JBoss + Azul Solution

Benefits of the Solution

Q & A

Java Virtualization
State of the Union

Definition – transparently creating a virtual entity as
opposed to a physical entity (Network, Storage,
Server, OS, Application Server, Application etc.)

Goal – ease of manageability through centralized
administrative tasks while providing for scalability and
resiliency

Current State – most of the components mentioned
above are virtualized to some extent or the other

Current Limitations – goal has been met on the lower
layers of the system stack (closer to hardware), NOT
as much at the higher layers

Java Virtualization
Current Limitations

For Java Applications, current state of virtualization
provides

• Scalable virtualized storage

• Scalable virtualized compute BUT

• Most important resource - Memory is not scalable, is
rigid AND

• Dependent on the OS and server hardware

Clearest Sign of this issue –

• Most commonly used heap sizes for Java applications
has remained in the 2-4GB range for the past decade!

Java Application Memory Needs
Common Myths

• 64 bit JVMs solve the problem

• Not an addressing limit but practical issue with GC Pauses

• Light Weight Frameworks are the answer

• Address the code complexity issue and in fact increase the memory
footprint

• My servers don’t have much memory

• Sweet spot for commodity servers is now between 64-128GB; will require
40-50 JVMs to fill it up!

• Who needs more Memory?

• Every application wants to do more customization (session state), more
caching, needs to handle more data (Web2.0, mobile, dynamic XML)

Java Deployment Challenges
Inherent limitations of the Java Platform

….Java platforms are

Rigid

Instance footprint is fixed at the launch time

Non-elastic

Can’t dynamically scale; leads to poor utilization and fragility

Not optimized

Unable to keep pace with commodity server capacities (e.g. cores & mem)

Unstable

Already at their limits and complex & costly to scale out

Azul Systems
Harnessing the power of virtualization

Founded in 2002 and shipping 4rd generation product

Privately held with offices around the globe

Recognized leader with award-winning technology

Numerous industry firsts:

Generational pauseless garbage collection

Elastic memory

OS-agnostic Java virtualization

Proven, mission-critical deployments in global 2000
accounts

Java Virtualization
Liberating Java from its rigidities

DatabaseWeb

Java
Virtualization

App Server
Hosts

Java Virtualization
Bare-metal, proxy architecture

OS Agnostic Solaris, AIX, Windows, Linux, HP-UX

Non-x86 Java workloads
Allows for heterogeneous

consolidation onto commodity HW

Transparent to Security or HA
Configs

Completely Transparent to App

F
e
a
tu

r
e
s

Allows you to… So that you can…

Use and manage application
resources outside the constraints
of guest Operating Systems

Enable application elasticity and
maximize performance, reliability,
visibility and manageability

Breaking Java Scale Barriers
JBoss Portal on the Azul Solution

300 Users

9,000 Users

Breaking Java Scale Barriers
Giving app the resources they need

Existing Deployments

http://en.wikipedia.org/wiki/File:Java_logo.svg
http://en.wikipedia.org/wiki/File:Java_logo.svg
http://en.wikipedia.org/wiki/File:Java_logo.svg
http://en.wikipedia.org/wiki/File:Java_logo.svg
http://en.wikipedia.org/wiki/File:Java_logo.svg
http://en.wikipedia.org/wiki/File:Java_logo.svg

Simplifying Deployments

http://en.wikipedia.org/wiki/File:Java_logo.svg
http://en.wikipedia.org/wiki/File:Java_logo.svg

x86 Server

Hypervisor

15

Traditional Virtualized Java Deployment
Example: Java Running under KVM

x86 Server

Hypervisor

Linux 5.3

App

Linux 5.4

App

Win Svr
2003

App

Win Svr
2008

App

Windows

App

Windows

App

Windows

App

Windows

App

RHEV-M

Constrained to a few
cores and few GB of mem

RvM

x86 Server

Hypervisor

16

x86 Server

Azul Enterprise Resource Control Center

Hypervisor

Azul Java Appliance

App

Windows

Azul Java Appliance

App

The Azul Elastic Java Platform
Azul x86 Java Virtual Appliance

Azul
JDK

Azul Java Appliance

App

Dynamically grow to 10s
of cores and 100s of GBs

x86 Server

Hypervisor

17

x86 Server

Hypervisor

Azul Java Appliance

App

Windows

Azul Java Appliance

App

Azul Elastic Java Platform
Supporting x86 and non-x86 Java Workloads

Azul
JDK

Non-x86 Server
(IA64,AIX,SPARC,zLinux)

RvM

Azul
JDK

Azul

App App

Azul Enterprise Resource Control Center

Azul Java Appliance

App

http://images.google.com/imgres?imgurl=http://i.dell.com/resize.aspx/rack-enclosure-poweredge-4220-left-314/295&imgrefurl=http://www.dell.com/us/en/business/servers/server-poweredge-4220/pd.aspx?refid=server-poweredge-4220&cs=04&s=bsd&usg=__ZErwGkn-eo3UnxC15MNSsTCeh5k=&h=295&w=295&sz=7&hl=en&start=34&um=1&tbnid=SCrq8QD7lPo32M:&tbnh=115&tbnw=115&prev=/images?q=pictures+dell+rack&ndsp=21&hl=en&rls=com.microsoft:en-us:IE-SearchBox&rlz=1I7SKPB&sa=N&start=21&um=1

Elastic Memory
Better utilization AND greater resiliency

Reduces “out of memory” Errors Increases App Resiliency

Increases Memory Utilization “soft landing” for memory leaks

Headroom shared across all apps Careful fine tuning eliminated

F
e
a
tu

r
e
s

Allows you to… So that you can…

Elastically right-size memory based
on real-time app behavior; utilize
shared memory headroom

Improve application resiliency and uptime;
faster time to deployment; higher resource
utilization

Committable Memory

Out of memory
error

Traditional
Systems

App. Instance
Committed mem

App. Instance
Committed mem

Committable Memory

App. Instance
Committed mem

App. Instance
Committed mem

Cooperative memory Grant Pool

Azul G4 Platform

Performance Monitoring in Production
Always on and Zero Overhead

App Configuration Info Open Sockets and File data

Thread Visibility & Stack Trace System Call Profiling

Lock Contention Memory Usage and Object Stats

F
e
a
tu

r
e
s

Allows you to… So that you can…

Collect real-time, fine-grain
performance data in production
& development environments
with no application impact

Dramatically improve problem
resolution times; identify and
eliminate performance issues

Most Elastic Java Platform

Business Implications

Achieve consistently fast app
response times

Improve customer experience
and loyalty

Greater app availability, even
during peaks

Room for future growth

Lower maintenance costs

IT Implications

Orders of magnitude
improvements in response time
and throughput

Robust and elastic foundation
for all your Java applications

Simplified deployments with
unmatched production-time
visibility and management

Fast ROI

Reduced TCO (>50%)

Reduced JVM instance count

The Azul Elastic Java Platform

 Virtualized: Server and OS agnostic, transparently separates capacity
from configuration

 Elastic: Smoothly scale up & down within available infrastructure

 Resilient: Tap shared headroom to survive unexpected demand, policy-
based management & enforcement with isolation

 Efficient: Maximize use of available physical resources

 Visibility: Fine-grain instrumentation, always on, from development
through production with zero overhead and without code changes

 Automated: Deliver resources automatically based on real-time demand

Liberate Java from
the OS

Break the Scale
Barriers

Simplify
Deployments

The Azul Elastic Java Platform

• More Elastic
• Java-Optimized
• Highly Scalable
• More Resilient

• Improved Utilization
• Better Response times
• Greater Scalability
• Higher Throughput

• Reduced Complexity
• Better Manageability
• Greater Visibility
• Lower TCO

