JBoss

SUMMIT “womeo

PRESENTED BY RED HAT

LEARN. NETWORK.
EXPERIENCE OPEN SOURCE.

www.theredhatsummit.com




Does REST need middleware?

Bill Burke
Fellow, Red Hat




Speaker's Qualifications

RESTEasy project lead

Fully certified JAX-RS implementation
JAX-RS JSR member

Also served on EE 5 and EJB 3.0 committees
JBoss contributor since 2001

Clustering, EJB, AOP

Published author
Books, articles




Agenda

What does Enterprise SOA need from REST?
What's missing?

Some ideas on RESTful interfaces for
middleware services

Just as many questions as answers...




What are the goals of SOA?




SOA Goals

Reusable
Interoperable
Evolvable

Versioning
Governable

Standards
Architectural Guidelines and Constraints
Predictable

Scalable




What system has these
properties?




The Web!




Can REST be applied to
Enterprise SOA?




REST and Enterprise SOA

SOAP tried to bring the Web to IT
It turned into just tunneling over HT TP with XML

Never really leveraged HT TP or the principles of the
Web




REST and Enterprise SOA

Enterprise SOA requires read-write applications

Integration and coordination between many
services

Sometimes complex interactions




REST and Enterprise SOA

REST really shines in read-only applications and
has scaled easily and simply

Mostly browser-based applications take
advantage of REST

RESTful Read-Write applications usually one-off
simple client-server interactions

Most break the stateless property of REST




REST and Enterprise SOA

What does this mean?

We are only at the initial stages of applying REST to
Enterprise SOA

Machine-based clients will have different
requirements than browsers

There’s still a lot of kinks to work out




Can middleware fill in the blanks?

Messaging
Transactions
Workflow/BPM

Security




What's Missing?

Security?
The Web runs pretty well on HTTPS

Between basic, digest, and client cert, authentication
protocols pretty solid

OAuth provides mechanism to authorize third-parties
OpenlD provides decentralized authentication

multipart/encrypt and multipart/signed for payload
protection




What's Missing?

Messaging?

Atom provides Publish/Subscribe patterns and forma
Is it just another SOAP?

There is no real solution for p2p. (queues, work
management)




What's Missing?

Transactions?

RESTafarians say that ACID transactions don’t belong in a
distributed system

They just don't scale

Transactions aren’t RESTful (break stateless requirement)
Can’t avoid them sometimes

What about compensations (do/undo)?
Its is THE most common question asked in REST talks




What's Missing?

Workflow/BPM?

Nothing really for coordination/orchestration

Is hypermedia enough to provide the “flow” apps
need?




€® ReEST-*

Red Hat driven REST Standardization Effort

From the perspective of our open source projects and communities
Attempts to answer some of these questions
RESTful interface for common middleware patterns

Open Process (anybody can interact)
Open Source IP

Specifications

Transactions (2pc and compensation)
Messaging (p2p and pub/sub)
Workflow

Caching




€® REST-*

Goals

80/20 - keep things simple to implement and use

Use conneg to support vendor extensions and edge cases
Publish additional links for vendor extensions

Avoid payload formats like SOAP

Leverage full HTTP




Let's show some details...

€ REST-*¢




REST-* Messaging




REST-* Messaging

Atom is text based (XML)
Not great for binary media types

Designed really for pub/sub (blogging), not
queues.

Design really to be consumable by humans
(through rendering)

No real guaranteed message delivery or
message acknowledgement protocols




REST-* Messaging

Doesn’t require a payload format for single messages

Leverage Atom for Link relationship/metadata

Published via Link headers instead
Easily allow binary formats

Leverage Atom format for batch text transfers
multipart/* + Link headers for binary batch transfers

Defines guaranteed messaging and acknowledgement
protocols over HTTP

Supports Queueing




Reliance on Link headers

Define/publish links through an HTTP Header
Easy way to link contextual information and metadata
Allows us to avoid payload formats

Easier for “intermediaries” and generic services and frameworks
to process

They don’t have to look into message body for links

Link: <http//example.com/messages/111>; rel=“next”;
type=application/xml




Message Posting




Message Posting

Destination has two posting links

post-message - simple factory pattern

post-message-once - reliable posting pattern




Message Posting

Request:

POST /destinations/test HTTP/1.1
Host: example.com
Content-Type: application/whatever

<body>




Message Posting

Request:

POST /destinations/test HTTP/1.1
Host: example.com
Content-Type: application/whatever

<body>

Response:

HTTP/1.1 201 Created
Location: /destinations/test/messages/111




Post Once Exactly: Avoiding
Duplicates

Empty POST to the post-message-once link
Returns a “create-next” link that is a one-off URL

If you POST more than once you get a 405 Not
Allowed response

Reponse contains a new “create-next” link




Post Once Exactly: Avoiding
Duplicates

Request:

POST /destination/test/messages
Host: example.com




Post Once Exactly: Avoiding
Duplicates

Request:

POST /destination/test/messages
Host: example.com

Response:

HTTP/1.1 200 Ok
Link:
<http://example.com/destination/test/messages/111>;
rel=create-next




Post Once Exactly: Avoiding
Duplicates

Request:

POST /destination/test/messages/111
Host: example.com
Content-Type: application/json

[SomeJdsonMessage]




Post Once Exactly: Avoiding
Duplicates

Request:

POST /destination/test/messages/111
Host: example.com

Content-Type: application/json

[SomeJdsonMessage]

Response:

HTTP/1.1 200 Ok
Link: <http://example.com/destination/test/messages/112>
rel=create-next




Message Posting

Specification also describes similar batch
submission of messages

Different posting protocols encapsulated as links
published by the destination




Messaging Consuming: Topics

Pull Model




Messaging Consume: Pull model

Client pulls published messages from the
destination

Atom first, last, and next links reused through
published link headers

Clients are responsible for “bookmarking” their
place in the topic/subscription




Message Consuming

Request:
HEAD /destination/myTopic

Response:

HTTP/1.1 200 Ok

Link: <../last>; rel=“last”,
<../next>; rel=“next”,
L./first>; rel=“first”

: Find Links




Message Consuming: Pull Message

Request:
GET /destination/myTopic/next

Response:
HTTP/1.1 503 Service Not Available
Retry-After: 5




Message Consuming: Pull Message

Request:
GET /destination/myTopic/next
Accept-Wait: 100

Response:
HTTP/1.1 200 OK
Link: <../messages/222>; rel=“next”,
<../messages/111>; rel=“self”
Content-Type: application/json

[some posted JSON message]




Message Consuming: Pull

A bookmarked next link allows client to have a
placeholder into the topic

In many MOMSs, like JMS, this information is
stored in a session on the server

The next link pattern allows any number of client
to receive a sequenced ordering of messages
In a lightweight manner




Messaging Consuming: Topics

Push Model




Message Consuming: Push Model

Client registers a atom:link with provider when
creating a push subscription

Link defines forwarding semantics
Simple post?
Post once exactly?

When message is published into topic or queue,
server forwards request based on registered
link semantics




Push model

Request:
POST /mytopic/subscribers
Content-Type: application/atom+xml

<atom:1link rel=“post-message-once”
href=“http://foo.com/somewhere” />

Response:
HTTP/1.1 201 Created
Location: http://../mytopic/subscribers/111




Messaging Consuming: Queues

Pull Model




Queues

Delegation of work
One and only one client can consume a messag:

Once consumed the message can be garbage
collected or archived

Pull model has acknowledgement protocol




Message Consuming: Find Links

Request:
HEAD /destination/myQueue

Response:
HTTP/1.1 200 Ok
Link: <../poller>; rel=“poller”




Message Consuming: Consume
Message

Request:
POST /destination/myQueue/poller

Response:

HTTP/1.1 200 Ok

Link: <../messages/333/ack;token=3211>; rel=“acknowledge”
Content-Type: application/json

[Some json document]




Message Consuming:
Acknowledgement

Server wants to guarantee that client received
and processed message

Client POSTs to acknowledgement link

Server will re-enqueue the message if client
doesn’t acknowledge




Message Consuming:
Acknowledgement

Request:

POST /destination/myQueue/messages/333/ack;token=3211
Content-Type: application/x-www-form-urlencoded

acknowledge=true




Message Consuming:
Acknowledgement

Request:

POST /destination/myQueue/messages/333/ack;token=3211
Content-Type: application/x-www-form-urlencoded

acknowledge=true

Successful Response:
HTTP/1.1 204 No Content




Message Consuming:
Acknowledgement

Request:
POST /destination/myQueue/messages/333/ack;token=3211
Content-Type: application/x-www-form-urlencoded

acknowledge=true

Unsuccessful Response (Message got re-enqueued):
HTTP/1.1 412 Preconditions Failed




Messaging Wrap-up

Send/Receive content without a envelope format
Use link headers

No footprint required on client or server
Simple? | hope...




REST-* Transactions

Does REST need transactions?




REST-* Transactions

Transactions are used for coordination
2PC is a vote to change state

TM is the vote taker and voting machine

Transactions guarantee a state transition will
happen




REST-* Transactions

Simple coordination isn’t the hard part

Fault tolerance
Crash Recovery after failures
This is the non-trivial part of transactions




REST-* Transactions

Transactions need not hold database locks
Transactions don’t even have to be 2PC

Compensation is a viable pattern for long running
interactions

Do/Undo
Consistency and failure recover still an issue




Are Transactions RESTful?

Interactions with a transaction manager can be

Hopefully show it in following slides




Are Transactions RESTful?

Does using transactions make an application
unREST{ul?

Break stateless requirement?

If the tx is modeled as a state change?
IMQO, app is still restful

Does it hold DB locks?

App becomes session oriented

Stateless constraint gets broken




Are transactions RESTful?

Who cares if they are RESTful or not?
Do you need the guarantees?

*shrug®
Single most asked question in my JAX-RS talks




TX Spec

Strive to be simple to use and implement
So any simple language or platform can use them
Treat Transactions as a service

2PC and Compensation protocols
Let’s look at 2PC




Create an 2PC Transaction

POST to a TransactionManager resource

Reliable post-message-once could be used too




Create a Transaction

Request:
POST /transaction-manager
Host: tm.org

Content-Type: application/x-www-form-urlencoded

timeout=300s




Create a Transaction

Request:

POST /transaction-manager

Host: tm.org

Content-Type: application/x-www-form-urlencoded

timeout=300s

Successful Response:
HTTP/1.1 201 Created
Location: http://tm.org/transactions/3322




Transaction Resource

Doing a GET returns application/tx+xml

Simple media type specifies status of transaction
Active, Committing, RollingBack, Committed, RolledBack

Links to other resources and actions

participants - resources participating in the transaction

Commit/rollback - action resources to commit or rollback the transaction

commit and rollback links provided only if transaction is Active




Transaction Resource

Request:
GET /transactions/3322
Host: tm.org

Successful Response:
HTTP/1.1 200 Ok
Content-Type: application/tx+xml

<transaction>
<status>Active</status>
<atom:link rel=“participants” href="“.."” type=“."/>
<atom:link rel=“commit” href=“."/>
<atom:link rel=“rollback” href=“."/>

</transaction>




Registering TX-Aware Participants

POST to the participants link of the transaction
post-message-once pattern can be re-used

Content is an atom:link to callback to the
participant

Registered link defines interaction semantics
We provide default media types for interaction

No reason you can’t support more




Register Tx-Aware Participant

Request:

POST /transactions/3322/participants

Host: tm.org

Content-Type: application/participant-reg+xml

<participant>
<link rel="“participant” href="“."
type=“application/participant+xml/>
</participant>

Successful Response:
HTTP/1.1 201 Created
Location: http://tm.org/transactions/3322/participants/00




Registering TX-Unaware
Participants

We're working on a TX-Unaware protocol

Participants can be created with links for
prepare/commit/rollback (or do/undo)

Representations can be stored for each of these
actions




Completing a Transaction

Client does an empty POST to commit or rollbac
link

Transaction Manager calls back to participants




Complete a Transaction

Request:
POST /transactions/3322/commit

Host: tm.org

Successful Response:
HTTP/1.1 200 Ok
Content-Type: application/tx+xml

<transaction>
<status>Committed</status>

</transaction>




Change Participant State

Request:

PUT /someparticipant

Host: somewhere.org

Content-Type: application/participant+xml

<participant>
<status>prepare</status>
</participant>

Successful Response:
HTTP/1.1 204 No Content

Unsuccessful Response:
HTTP/1.1 412 Preconditions Unmet




Transaction Propagation?

Forward a transaction link when creating or
updating a coordinated resource

Resource would register itself with TM

Resource could instead return a participant link
and the client could register it with the
transaction

Client handles all interactions with TM

Uses TX-Unaware protocols




Transactions Wrap-Up

Transactions provide state transition guarantees
Failure recovery untrivial to hand-roll yourself
People ask for them

Whether they need it or not, is IMO, not our business

REST-* Transactions attempts to provide a
simple interface




References

Links
o s
O’Reilly Books RESTful Java

ety PAN-RS

‘RESTFul Java with JAX-RS” by me
“RESTful Web Services”

CREILLY"

“RESTful Web Services Cookbook”




FOLLOW US ON TWITTER

www.twitter.com/redhatsummit

TWEET ABOUT IT

Hsummitjbw

READ THE BLOG

http://summitblog.redhat.com/

sssss
WWWWW




