

Does REST need middleware?

Bill Burke
Fellow, Red Hat

Speaker’s Qualifications

RESTEasy project lead
Fully certified JAX-RS implementation

JAX-RS JSR member
Also served on EE 5 and EJB 3.0 committees

JBoss contributor since 2001
Clustering, EJB, AOP

Published author
Books, articles

Agenda

What does Enterprise SOA need from REST?
What’s missing?
Some ideas on RESTful interfaces for

middleware services
Just as many questions as answers…

What are the goals of SOA?

SOA Goals
Reusable
Interoperable
Evolvable

Versioning

Governable
Standards
Architectural Guidelines and Constraints
Predictable

Scalable

What system has these
properties?

The Web!

Can REST be applied to
Enterprise SOA?

REST and Enterprise SOA

SOAP tried to bring the Web to IT
It turned into just tunneling over HTTP with XML
Never really leveraged HTTP or the principles of the

Web

REST and Enterprise SOA

Enterprise SOA requires read-write applications
Integration and coordination between many

services
Sometimes complex interactions

REST and Enterprise SOA

REST really shines in read-only applications and
has scaled easily and simply

Mostly browser-based applications take
advantage of REST

RESTful Read-Write applications usually one-off
simple client-server interactions
Most break the stateless property of REST

REST and Enterprise SOA

What does this mean?
We are only at the initial stages of applying REST to

Enterprise SOA
Machine-based clients will have different

requirements than browsers
There’s still a lot of kinks to work out

Can middleware fill in the blanks?

Messaging
Transactions
Workflow/BPM
Security

What’s Missing?

Security?
The Web runs pretty well on HTTPS
Between basic, digest, and client cert, authentication

protocols pretty solid
OAuth provides mechanism to authorize third-parties
OpenID provides decentralized authentication
multipart/encrypt and multipart/signed for payload

protection

What’s Missing?

Messaging?
Atom provides Publish/Subscribe patterns and format
Is it just another SOAP?
There is no real solution for p2p. (queues, work

management)

What’s Missing?

Transactions?
RESTafarians say that ACID transactions don’t belong in a

distributed system
They just don’t scale
Transactions aren’t RESTful (break stateless requirement)
Can’t avoid them sometimes
What about compensations (do/undo)?
Its is THE most common question asked in REST talks

What’s Missing?

Workflow/BPM?
Nothing really for coordination/orchestration
Is hypermedia enough to provide the “flow” apps

need?

Red Hat driven REST Standardization Effort
From the perspective of our open source projects and communities

Attempts to answer some of these questions
RESTful interface for common middleware patterns
Open Process (anybody can interact)
Open Source IP

Specifications
Transactions (2pc and compensation)
Messaging (p2p and pub/sub)
Workflow
Caching

Goals
80/20 - keep things simple to implement and use
Use conneg to support vendor extensions and edge cases
Publish additional links for vendor extensions
Avoid payload formats like SOAP
Leverage full HTTP

Let’s show some details…

REST-* Messaging

REST-* Messaging

Atom is text based (XML)
Not great for binary media types
Designed really for pub/sub (blogging), not

queues.
Design really to be consumable by humans

(through rendering)
No real guaranteed message delivery or

message acknowledgement protocols

REST-* Messaging

Doesn’t require a payload format for single messages
Leverage Atom for Link relationship/metadata

Published via Link headers instead
Easily allow binary formats

Leverage Atom format for batch text transfers
multipart/* + Link headers for binary batch transfers
Defines guaranteed messaging and acknowledgement

protocols over HTTP
Supports Queueing

Reliance on Link headers
Define/publish links through an HTTP Header
Easy way to link contextual information and metadata
Allows us to avoid payload formats
Easier for “intermediaries” and generic services and frameworks

to process
They don’t have to look into message body for links

Link: <http//example.com/messages/111>; rel=“next”;
 type=application/xml

Message Posting

Message Posting

Destination has two posting links
post-message - simple factory pattern
post-message-once - reliable posting pattern

Message Posting
Request:

POST /destinations/test HTTP/1.1
Host: example.com
Content-Type: application/whatever

<body>

Message Posting
Request:

POST /destinations/test HTTP/1.1
Host: example.com
Content-Type: application/whatever

<body>

Response:

HTTP/1.1 201 Created
Location: /destinations/test/messages/111

Post Once Exactly: Avoiding
Duplicates

Empty POST to the post-message-once link
Returns a “create-next” link that is a one-off URL
If you POST more than once you get a 405 Not

Allowed response
Reponse contains a new “create-next” link

Post Once Exactly: Avoiding
Duplicates

Request:

POST /destination/test/messages
Host: example.com

Post Once Exactly: Avoiding
Duplicates

Request:

POST /destination/test/messages
Host: example.com

Response:

HTTP/1.1 200 Ok
Link:
 <http://example.com/destination/test/messages/111>;
 rel=create-next

Post Once Exactly: Avoiding
Duplicates

Request:

POST /destination/test/messages/111
Host: example.com
Content-Type: application/json

[SomeJsonMessage]

Post Once Exactly: Avoiding
Duplicates

Request:

POST /destination/test/messages/111
Host: example.com
Content-Type: application/json

[SomeJsonMessage]

Response:

HTTP/1.1 200 Ok
Link: <http://example.com/destination/test/messages/112>
 rel=create-next

Message Posting

Specification also describes similar batch
submission of messages

Different posting protocols encapsulated as links
published by the destination

Messaging Consuming: Topics

Pull Model

Messaging Consume: Pull model

Client pulls published messages from the
destination

Atom first, last, and next links reused through
published link headers

Clients are responsible for “bookmarking” their
place in the topic/subscription

Message Consuming: Find Links
Request:
HEAD /destination/myTopic

Response:
HTTP/1.1 200 Ok
Link: <…/last>; rel=“last”,
 <…/next>; rel=“next”,
 <…/first>; rel=“first”

Message Consuming: Pull Message
Request:
GET /destination/myTopic/next

Response:
HTTP/1.1 503 Service Not Available
Retry-After: 5

Message Consuming: Pull Message
Request:
GET /destination/myTopic/next
Accept-Wait: 100

Response:
HTTP/1.1 200 OK
Link: <…/messages/222>; rel=“next”,
 <…/messages/111>; rel=“self”
Content-Type: application/json

[some posted JSON message]

Accept-Wait
 tells server it will block

if needed

Message Consuming: Pull

A bookmarked next link allows client to have a
placeholder into the topic

In many MOMs, like JMS, this information is
stored in a session on the server

The next link pattern allows any number of clients
to receive a sequenced ordering of messages
in a lightweight manner

Messaging Consuming: Topics

Push Model

Message Consuming: Push Model

Client registers a atom:link with provider when
creating a push subscription

Link defines forwarding semantics
Simple post?
Post once exactly?

When message is published into topic or queue,
server forwards request based on registered
link semantics

Push model
Request:
POST /mytopic/subscribers
Content-Type: application/atom+xml

<atom:link rel=“post-message-once”
 href=“http://foo.com/somewhere” />

Response:
HTTP/1.1 201 Created
Location: http://…/mytopic/subscribers/111

Messaging Consuming: Queues

Pull Model

Queues

Delegation of work
One and only one client can consume a message
Once consumed the message can be garbage

collected or archived
Pull model has acknowledgement protocol

Message Consuming: Find Links
Request:
HEAD /destination/myQueue

Response:
HTTP/1.1 200 Ok
Link: <…/poller>; rel=“poller”

Message Consuming: Consume
Message

Request:
POST /destination/myQueue/poller

Response:
HTTP/1.1 200 Ok
Link: <…/messages/333/ack;token=3211>; rel=“acknowledge”
Content-Type: application/json

[Some json document]

Message Consuming:
Acknowledgement

Server wants to guarantee that client received
and processed message

Client POSTs to acknowledgement link
Server will re-enqueue the message if client

doesn’t acknowledge

Message Consuming:
Acknowledgement

Request:
POST /destination/myQueue/messages/333/ack;token=3211
Content-Type: application/x-www-form-urlencoded

acknowledge=true

Message Consuming:
Acknowledgement

Request:
POST /destination/myQueue/messages/333/ack;token=3211
Content-Type: application/x-www-form-urlencoded

acknowledge=true

Successful Response:
HTTP/1.1 204 No Content

Message Consuming:
Acknowledgement

Request:
POST /destination/myQueue/messages/333/ack;token=3211
Content-Type: application/x-www-form-urlencoded

acknowledge=true

Unsuccessful Response (Message got re-enqueued):
HTTP/1.1 412 Preconditions Failed

Messaging Wrap-up

Send/Receive content without a envelope format
Use link headers
No footprint required on client or server
Simple? I hope…

REST-* Transactions

Does REST need transactions?

REST-* Transactions

Transactions are used for coordination
2PC is a vote to change state

TM is the vote taker and voting machine
Transactions guarantee a state transition will

happen

REST-* Transactions

Simple coordination isn’t the hard part
Fault tolerance
Crash Recovery after failures
This is the non-trivial part of transactions

REST-* Transactions

Transactions need not hold database locks
Transactions don’t even have to be 2PC
Compensation is a viable pattern for long running

interactions
Do/Undo
Consistency and failure recover still an issue

Are Transactions RESTful?

Interactions with a transaction manager can be
Hopefully show it in following slides

Are Transactions RESTful?

Does using transactions make an application
unRESTful?
Break stateless requirement?

If the tx is modeled as a state change?
IMO, app is still restful

Does it hold DB locks?
App becomes session oriented
Stateless constraint gets broken

Are transactions RESTful?

Who cares if they are RESTful or not?
Do you need the guarantees?

shrug
Single most asked question in my JAX-RS talks

TX Spec

Strive to be simple to use and implement
So any simple language or platform can use them

Treat Transactions as a service
2PC and Compensation protocols
Let’s look at 2PC

Create an 2PC Transaction

POST to a TransactionManager resource
Reliable post-message-once could be used too

Create a Transaction
Request:
POST /transaction-manager
Host: tm.org
Content-Type: application/x-www-form-urlencoded

timeout=300s

Create a Transaction
Request:
POST /transaction-manager
Host: tm.org
Content-Type: application/x-www-form-urlencoded

timeout=300s

Successful Response:
HTTP/1.1 201 Created
Location: http://tm.org/transactions/3322

Transaction Resource
Doing a GET returns application/tx+xml

Simple media type specifies status of transaction
Active, Committing, RollingBack, Committed, RolledBack

Links to other resources and actions
participants - resources participating in the transaction

Commit/rollback - action resources to commit or rollback the transaction

commit and rollback links provided only if transaction is Active

Transaction Resource
Request:
GET /transactions/3322
Host: tm.org

Successful Response:
HTTP/1.1 200 Ok
Content-Type: application/tx+xml

<transaction>
 <status>Active</status>
 <atom:link rel=“participants” href=“…” type=“…”/>
 <atom:link rel=“commit” href=“…”/>
 <atom:link rel=“rollback” href=“…”/>
</transaction>

Registering TX-Aware Participants

POST to the participants link of the transaction
post-message-once pattern can be re-used

Content is an atom:link to callback to the
participant

Registered link defines interaction semantics
We provide default media types for interaction
No reason you can’t support more

Register Tx-Aware Participant
Request:
POST /transactions/3322/participants
Host: tm.org
Content-Type: application/participant-reg+xml

<participant>
 <link rel=“participant” href=“…”
 type=“application/participant+xml/>
</participant>

Successful Response:
HTTP/1.1 201 Created
Location: http://tm.org/transactions/3322/participants/001

Registering TX-Unaware
Participants

We’re working on a TX-Unaware protocol
Participants can be created with links for

prepare/commit/rollback (or do/undo)
Representations can be stored for each of these

actions

Completing a Transaction

Client does an empty POST to commit or rollback
link

Transaction Manager calls back to participants

Complete a Transaction
Request:
POST /transactions/3322/commit
Host: tm.org

Successful Response:
HTTP/1.1 200 Ok
Content-Type: application/tx+xml

<transaction>
 <status>Committed</status>
</transaction>

Change Participant State
Request:
PUT /someparticipant
Host: somewhere.org
Content-Type: application/participant+xml

<participant>
 <status>prepare</status>
</participant>

Successful Response:
HTTP/1.1 204 No Content

Unsuccessful Response:
HTTP/1.1 412 Preconditions Unmet

Transaction Propagation?

Forward a transaction link when creating or
updating a coordinated resource
Resource would register itself with TM

Resource could instead return a participant link
and the client could register it with the
transaction

Client handles all interactions with TM
Uses TX-Unaware protocols

Transactions Wrap-Up

Transactions provide state transition guarantees
Failure recovery untrivial to hand-roll yourself

People ask for them
Whether they need it or not, is IMO, not our business

REST-* Transactions attempts to provide a
simple interface

References

Links

http://rest-star.org

O’Reilly Books

“RESTFul Java with JAX-RS” by me

“RESTful Web Services”

“RESTful Web Services Cookbook”

