
jBPM User Guide
Version 5.4.0.Final

by The jBPM team [http://www.jboss.org/jbpm]

http://www.jboss.org/jbpm
http://www.jboss.org/jbpm

iii

.. ix

1. Overview .. 1

1.1. What is jBPM? ... 1

1.2. Overview .. 2

1.3. Core Engine ... 3

1.4. Eclipse Editor ... 4

1.5. Web-based Designer .. 6

1.6. Form Builder .. 6

1.7. Guvnor Repository .. 6

1.8. Web-based Management Consoles .. 7

1.9. Documentation .. 7

2. Getting Started .. 9

2.1. Downloads ... 9

2.2. Getting started .. 9

2.3. Community ... 9

2.4. Sources .. 10

2.4.1. License .. 10

2.4.2. Source code .. 10

2.4.3. Building from source .. 11

3. Installer .. 13

3.1. Prerequisites ... 13

3.2. Download the installer ... 13

3.3. Demo setup .. 13

3.4. 10-Minute Tutorial: Using the Eclipse tooling .. 15

3.5. 10-Minute Tutorial: Using the jBPM Console ... 16

3.6. 10-Minute Tutorial: Using Guvnor repository and Designer 18

3.7. 10-Minute Tutorial: Using your own database with jBPM 19

3.7.1. Introduction .. 19

3.7.2. Database setup .. 20

3.7.3. Quickstart .. 20

3.7.4. Using a different database .. 25

3.8. What to do if I encounter problems or have questions? .. 27

3.9. Frequently asked questions ... 27

4. Quickstarts .. 29

4.1. Invoking a Java service ... 29

4.1.1. Using a script task ... 29

4.1.2. Using a Java handler ... 31

4.1.3. Writing your own domain-specific task ... 31

5. Core Engine: API ... 33

5.1. The jBPM API .. 34

5.1.1. Knowledge Base .. 34

5.1.2. Session ... 35

5.1.3. Events ... 37

5.2. Knowledge-based API ... 39

jBPM User Guide

iv

6. Core Engine: Basics .. 41

6.1. Creating a process .. 41

6.1.1. Using the graphical BPMN2 Editor .. 41

6.1.2. Defining processes using XML .. 42

6.1.3. Defining Processes Using the Process API .. 44

6.2. Details of different process constructs: Overview .. 45

6.3. Details: Process properties .. 46

6.4. Details: Events .. 47

6.4.1. Start event ... 47

6.4.2. End events .. 48

6.4.3. Intermediate events .. 50

6.5. Details: Activities ... 52

6.5.1. Script task ... 52

6.5.2. Service task ... 54

6.5.3. User task ... 55

6.5.4. Reusable sub-process .. 56

6.5.5. Business rule task .. 57

6.5.6. Embedded sub-process .. 58

6.5.7. Multi-instance sub-process .. 59

6.6. Details: Gateways ... 61

6.6.1. Diverging gateway .. 61

6.6.2. Converging gateway ... 63

6.7. Using a process in your application .. 64

6.8. Other features .. 65

6.8.1. Data .. 65

6.8.2. Constraints .. 67

6.8.3. Action scripts ... 68

6.8.4. Events ... 69

6.8.5. Timers ... 70

6.8.6. Updating processes .. 71

6.8.7. Multi-threading ... 73

7. Core Engine: BPMN 2.0 ... 77

7.1. Business Process Model and Notation (BPMN) 2.0 specification 77

7.2. Examples ... 81

7.3. Supported elements / attributes ... 82

8. Core Engine: Persistence and transactions ... 87

8.1. Runtime State ... 87

8.1.1. Binary Persistence ... 88

8.1.2. Safe Points .. 90

8.1.3. Configuring Persistence .. 90

8.1.4. Transactions .. 95

8.1.5. Persistence and concurrency .. 98

8.2. Process Definitions ... 98

8.3. History Log ... 98

v

8.3.1. The Business Activity Monitoring data model .. 99

8.3.2. Storing Process Events in a Database ... 101

9. Core Engine: Examples ... 103

9.1. jBPM Examples .. 103

9.2. Examples .. 103

9.3. Unit tests .. 104

10. Eclipse BPMN 2.0 Plugin ... 105

10.1. Installation .. 105

10.2. Creating your BPMN 2.0 processes .. 105

10.3. Filtering elements and attributes ... 109

10.4. Changing editor behavior ... 110

10.5. Changing editor appearance .. 111

11. Designer ... 113

11.1. Installation .. 113

11.2. Source code ... 114

11.3. Designer UI Explained ... 114

11.4. Support for Domain-specific service nodes .. 119

11.5. Configuring Designer ... 121

11.5.1. Changing the default configuration in Designer 121

11.5.2. Changing the default configuration in Guvnor 122

11.6. Generation of process and task forms .. 123

11.7. View processes as PDF and PNG .. 125

11.8. Viewing process BPMN2 source .. 125

11.9. Embedding designer in your own application ... 126

11.10. Migrating existing jBPM 3.2 based processes to BPMN2 127

11.11. Visual Process Validation ... 128

11.12. Integration with the jBPM Service Repository .. 128

11.13. Generating code to share the process image, PDF, and embedded process

editor ... 129

11.14. Importing existing BPMN2 processes .. 130

11.15. Viewing Process Information .. 130

11.16. Requirements .. 131

12. Console .. 133

12.1. Installation .. 133

12.1.1. Authorization .. 133

12.1.2. User and group management .. 133

12.1.3. Registering your own service handlers ... 134

12.1.4. Configure management console .. 135

12.2. Running the process management console ... 139

12.2.1. Managing process instances ... 140

12.2.2. Human task lists ... 143

12.2.3. Reporting ... 144

12.3. Adding new process / task forms ... 145

12.4. REST interface .. 147

jBPM User Guide

vi

13. Human Tasks ... 149

13.1. Human tasks inside processes ... 149

13.1.1. User and group assignment .. 154

13.1.2. Task escalation and notification ... 154

13.1.3. Data mapping ... 159

13.1.4. Swimlanes .. 161

13.1.5. Examples ... 162

13.2. Human task service ... 162

13.2.1. Task life cycle .. 162

13.2.2. Linking the human task service to the jBPM engine 164

13.2.3. Interacting with the human task service .. 165

13.2.4. User and group assignment .. 166

13.2.5. Starting the human task service .. 171

13.2.6. Starting the human task service as web application 176

13.3. Human task clients .. 178

13.3.1. Eclipse demo task client ... 178

13.3.2. Web-based task client in jBPM Console ... 178

13.4. Human task persistence .. 178

13.4.1. Task related entities ... 180

13.4.2. Deadline, Escalation and Notification related entities 185

14. Domain-specific processes .. 191

14.1. Introduction ... 191

14.2. Example: Notifications ... 192

14.2.1. Creating the work definition ... 192

14.2.2. Registering the work definition ... 193

14.2.3. Using your new work item in your processes .. 194

14.2.4. Executing service nodes ... 198

14.3. Service repository ... 199

14.3.1. Public jBPM service repository .. 201

14.3.2. Setting up your own service repository ... 201

15. Testing and debugging .. 205

15.1. Unit testing ... 205

15.1.1. Helper methods to create your session .. 206

15.1.2. Assertions .. 206

15.1.3. Testing integration with external services ... 207

15.1.4. Configuring persistence ... 208

15.2. Debugging .. 209

15.2.1. The Process Instances View ... 209

15.2.2. The Human Task View ... 210

15.2.3. The Audit View ... 211

16. Process Repository .. 213

17. Business Activity Monitoring ... 217

17.1. Reporting .. 217

17.2. Direct Intervention ... 219

vii

18. Flexible Processes ... 221

19. Integration with Maven, OSGi, Spring, etc. .. 225

19.1. Maven .. 225

19.2. OSGi .. 226

19.3. Spring ... 228

19.3.1. Spring using the JTA transaction manager ... 229

19.3.2. Spring using local transactions .. 231

19.3.3. Spring using a shared entity manager .. 233

19.3.4. Using a local task service ... 233

19.4. Apache Camel Integration .. 235

viii

ix

x

Chapter 1.

1

Chapter 1. Overview
1.1. What is jBPM?

jBPM is a flexible Business Process Management (BPM) Suite. It's light-weight, fully open-source

(distributed under Apache license) and written in Java. It allows you to model, execute and monitor

business processes, throughout their life cycle.

A business process allows you to model your business goals by describing the steps that need

to be executed to achieve that goal and the order, using a flow chart. This greatly improves the

visibility and agility of your business logic. jBPM focuses on executable business process, which

are business processes that contain enough detail so they can actually be executed on a BPM

engine. Executable business processes bridge the gap between business users and developers

as they are higher-level and use domain-specific concepts that are understood by business users

but can also be executed directly.

The core of jBPM is a light-weight, extensible workflow engine written in pure Java that allows you

to execute business processes using the latest BPMN 2.0 specification. It can run in any Java

environment, embedded in your application or as a service.

On top of the core engine, a lot of features and tools are offered to support business processes

throughout their entire life cycle:

• Eclipse-based and web-based editor to support the graphical creation of your business

processes (drag and drop)

• Pluggable persistence and transactions based on JPA / JTA

• Pluggable human task service based on WS-HumanTask for including tasks that need to be

performed by human actors

• Management console supporting process instance management, task lists and task form

management, and reporting

• Task for builder to create, generate and/or edit task forms

• Optional process repository to deploy your process (and other related knowledge)

• History logging (for querying / monitoring / analysis)

• Integration with Maven, Spring, OSGi, etc.

Chapter 1. Overview

2

BPM makes the bridge between business analysts, developers and end users, by offering process

management features and tools in a way that both business users and developers like it. Domain-

specific nodes can be plugged into the palette, making the processes more easily understood by

business users.

jBPM supports adaptive and dynamic processes that require flexibility to model complex, real-life

situations that cannot easily be described using a rigid process. We bring control back to the end

users by allowing them to control which parts of the process should be executed, to dynamically

deviate from the process, etc.

jBPM is also not just an isolated process engine. Complex business logic can be modeled as

a combination of business processes with business rules and complex event processing. jBPM

can be combined with the Drools project to support one unified environment that integrates these

paradigms where you model your business logic as a combination of processes, rules and events.

Apart from the core engine itself, there are quite a few additional (optional) components that you

can use, like an Eclipse-based or web-based designer and a management console.

1.2. Overview

Figure 1.1.

Core Engine

3

This figure gives an overview of the different components of the jBPM project. jBPM can integrate

with a lot of other services as (and we've shown a few using grey boxes on the figure) but here

we focus on the components that are part of the jBPM project itself.

• The process engine is the core of the project and is required if you want to execute business

processes (all other components are optional, as indicated by the dashed border). Your

application services typically invoke the core engine (to start processes or to signal events)

whenever necessary.

• An optional core service is the history log, that will log all information about the current and

previous state of all your process instances.

• Another optional core service is the human task service, that will take care of the human task

life cycle if human actors participate in the process.

• Two types of graphical editors are supported for defining your business processes:

• The Eclipse plugin is an extension to the Eclipse IDE, targeted towards developers, and

allows you to create business processes using drag and drop, advanced debugging, etc.

• The web-based designer allows business users to manage business processes in a web-

based environment. A web-based form builder also allows you to create, generate or edit

forms related to those processes (to start the process or to complete one of the user tasks).

• The Guvnor repository is an optional component that can be used to store all your business

processes. It supports collaboration, versioning, etc. There is integration with both the Eclipse

plugin and web-based designer, supporting round-tripping between the different tools.

• The web-based management console allows business users to manage their runtime (manage

business processes like start new processes, inspect running instances, etc.), to manage their

task list and to perform Business Activity Monitoring (BAM) and see reports.

Each of the components are described in more detail below.

1.3. Core Engine

The core jBPM engine is the heart of the project. It's a light-weight workflow engine that executes

your business processes. It can be embedded as part of your application or deployed as a service

(possibly on the cloud). It's most important features are:

• Solid, stable core engine for executing your process instances

• Native support for the latest BPMN 2.0 specification for modeling and executing business

processes

• Strong focus on performance and scalability

Chapter 1. Overview

4

• Light-weight (can be deployed on almost any device that supports a simple Java Runtime

Environment, does not require any web container at all)

• (Optional) pluggable persistence with a default JPA implementation

• Pluggable transaction support with a default JTA implementation

• Implemented as a generic process engine, so it can be extended to support new node types

or other process languages

• Listeners to be notified of various events

• Ability to migrate running process instances to a new version of their process definition

The core engine can also be integrated with a few other (independent) core services:

• The human task service can be used to manage human tasks when human actors need to

participate in the process. It is fully pluggable and the default implementation is based on the

WS-HumanTask specification and manages the life cycle of the tasks, task lists, task forms and

some more advanced features like escalation, delegation, rule-based assignments, etc.

• The history log can store all information about the execution of all the processes on the engine.

This is necessary if you need access to historic information as runtime persistence only stores

the current state of all active process instances. The history log can be used to store all current

and historic state of active and completed process instances. It can be used to query for any

information related to the execution of process instances, for monitoring, analysis, etc.

1.4. Eclipse Editor

The Eclipse editor is a plugin to the Eclipse IDE and allows you to integrate your business

processes in your development environment. It is targeted towards developers and has some

wizards to get started, a graphical editor for creating your business processes (using drag and

drop) and a lot of advanced testing and debugging capabilities.

Eclipse Editor

5

Figure 1.2. Eclipse editor for creating BPMN2 processes

It includes features like:

• Wizard for creating a new jBPM project

• A graphical editor for BPMN 2.0 processes

• Plugging in your own domain-specific nodes

• Validation

• Runtime support (so you can select which version of jBPM you would like to use)

• Graphical debugging, to see all running process instances of a selected session, to visualize

the current state of one specific process instance, etc.

• Audit view to get an overview of what happened at runtime

• Unit testing your processes

• Integration with the knowledge repository

Chapter 1. Overview

6

1.5. Web-based Designer

The web-based designer allows you to model your business processes in a web-based

environment. It is targeted towards more business users and offers a graphical editor for viewing

and editing your business processes (using drag and drop), similar to the Eclipse plugin. It supports

round-tripping between the Eclipse editor and the web-based designer.

Figure 1.3. Web-based designer for creating BPMN2 processes

1.6. Form Builder

A web-based form builder allows you to create, generate and/or edit your form (both for starting a

process or completing a user task) using a WYSIWYG editor. By dragging and dropping various

form elements into a panel and filling in the necessary details, task forms can be created by non-

technical experts.

1.7. Guvnor Repository

Optionally, you can use one or more knowledge repositories to store your business processes (and

other related artefacts). The web-based designer is integrated in the Guvnor repository, which is

targeted towards business users and allows you to manage your processes separately from your

application. It supports:

• A repository service to store your business processes and related artefacts, using a JCR

repository, which supports versioning, remotely accessing it as a file system or using REST

services, etc.

• A web-based user interface to manage your business processes, targeted towards business

users, supporting the visualization (and editing) of your processes (the web-based designer is

integrated here), but also categorisation, scenario testing, deployment, etc.

• Collaboration features to have multiple actors (for example business users and developers)

work together on the same process definition.

Web-based Management Consoles

7

• A knowledge agent to easily create new sessions based on the process definitions in the

repository. This also supports (optionally) dynamically updating all sessions if a new process

has been deployed.

1.8. Web-based Management Consoles

Business processes can be managed through a web-based management console. It is targeted

towards business users and its main features are:

• Process instance management: the ability to start new process instances, get a list of running

process instances, visually inspect the state of a specific process instances, etc.

• Human task management: being able to get a list of all your current tasks (either assigned to

you or that you might be able to claim), completing tasks on your task list (using customizable

task forms), etc.

• Business Activity Monitorong (BAM) and Reporting: get an overview of the state of your

application and/or system using dynamically generated (customizable) reports, that give you an

overview of your key performance indicators (KPIs).

Figure 1.4. Managing your process instances

1.9. Documentation

The documentation is structured as follows:

Chapter 1. Overview

8

• Overview: the overview chapter gives an overview of the different components

• Getting Started: the getting started chapter teaches you where to download the binaries and

sources and contains a lot of useful links

• Installer: the installer helps you getting a running demo setup including most of the jBPM

components and runs you through them using a simple example and some 10-minute tutorials

including screencasts

• Quickstarts: some tutorials for common tasks you might want to try out after successfully running

the installer

• Core engine: the next 4 chapters describe the core engine: the process engine API, the process

definition language (BPMN 2.0), persistence and transactions, and examples

• Eclipse editor: the next chapter describe the Eclipse plugin for developers

• Designer: describes the web-based designer that allows business users to edit business

processes in a web-based context

• Console: the jBPM console can be used for managing process instances, human task lists and

reports

• Important features

• Human tasks: When using human actors, you need a human task service to manage the life

cycle of the tasks, the task lists, etc.

• Domain-specific processes: plug in your own higher-level, domain-specific nodes in your

processes

• Testing and debugging: how to test and debug your processes

• Process repository: a process repository could be used to manage your business processes

• Advanced concepts

• Business activity monitoring: event processing to monitor the state of your systems

• Flexible processes: model much more adaptive, flexible processes using advanced process

constructs and integration with business rules and event processing

• Integration: how to integrate with other technologies like maven, OSGi, Spring, etc.

Chapter 2.

9

Chapter 2. Getting Started

2.1. Downloads

All releases can be downloaded from SourceForge [https://sourceforge.net/projects/jbpm/files/].

Select the version you want to download and then select which artefact you want:

• bin: all the jBPM binaries (jars) and their dependencies

• src: the sources of the core components

• gwt-console: the jbpm console, a zip file containing both the server and client war

• docs: the documentation

• examples: some jBPM examples, can be imported into Eclipse

• installer: the jbpm-installer, downloads and installs a demo setup of jBPM

• installer-full: the jbpm-installer, downloads and installs a demo setup of jBPM, already contains

a number of dependencies prepackages (so they don't need to be downloaded separately)

2.2. Getting started

If you like to take a quick tutorial that will guide you through most of the components using a simple

example, take a look at the Installer chapter. This will teach you how to download and use the

installer to create a demo setup, including most of the components. It uses a simple example to

guide you through the most important features. Screencasts are available to help you out as well.

If you like to read more information first, the following chapters first focus on the core engine

(API, BPMN 2.0, etc.). Further chapters will then describe the other components and other more

complex topics like domain-specific processes, flexible processes, etc. After reading the core

chapters, you should be able to jump to other chapters that you might find interesting.

You can also start playing around with some examples that are offered in a separate download.

Check out the examples chapter to see how to start playing with these.

After that, you should be ready to start creating your own processes and integrate the engine

with your application, for example by starting from the installer or another example, or by starting

from scratch.

2.3. Community

Here are a lot of useful links if we want to become part of the jBPM community:

• A feed of blog entries [http://planet.jboss.org/view/feed.seam?name=jbossjbpm] related to

jBPM

https://sourceforge.net/projects/jbpm/files/
https://sourceforge.net/projects/jbpm/files/
http://planet.jboss.org/view/feed.seam?name=jbossjbpm
http://planet.jboss.org/view/feed.seam?name=jbossjbpm

Chapter 2. Getting Started

10

• The #jbossjbpm twitter account [http://twitter.com/jbossjbpm].

• A user forum [http://www.jboss.com/index.html?module=bb&op=viewforum&f=217] for asking

questions and giving answers

• A JIRA bug tracking system [https://jira.jboss.org/jira/browse/JBPM] for bugs, feature requests

and roadmap

• A continuous build server [https://hudson.jboss.org/hudson/job/jBPM/] for getting the

latest snapshots [https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-

distribution/target/]

Please feel free to join us in our IRC channel at irc.codehaus.org #jbpm. This is where most of the

real-time discussion about the project takes place and where you can find most of the developers

most of their time as well. Don't have an IRC client installed? Simply go to http://irc.codehaus.org,

input your desired nickname, and specify #jbpm. Then click login to join the fun.

2.4. Sources

2.4.1. License

The jBPM code itself is using the Apache License v2.0.

Some other components we integrate with have their own license:

• The new Eclipse BPMN2 plugin is Eclipse Public License (EPL) v1.0.

• The web-based designer is based on Oryx/Wapama and is MIT License

• The BPM console is GNU Lesser General Public License (LGPL) v2.1

• The Drools project is Apache License v2.0.

2.4.2. Source code

jBPM now uses git for its source code version control system. The sources of the jBPM project

can be found here (including all releases starting from jBPM 5.0-CR1):

https://github.com/droolsjbpm/jbpm

The source of some of the other components we integrate with can be found here:

• Other components related to the jBPM and Drools project can be found here [https://github.com/

droolsjbpm].

• The jBPM Eclipse plugin can be found here [http://anonsvn.jboss.org/repos/jbosstools/trunk/

bpmn/plugins/org.jboss.tools.jbpm/].

http://twitter.com/jbossjbpm
http://twitter.com/jbossjbpm
http://www.jboss.com/index.html?module=bb&op=viewforum&f=217
http://www.jboss.com/index.html?module=bb&op=viewforum&f=217
https://jira.jboss.org/jira/browse/JBPM
https://jira.jboss.org/jira/browse/JBPM
https://hudson.jboss.org/hudson/job/jBPM/
https://hudson.jboss.org/hudson/job/jBPM/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
http://irc.codehaus.org
https://github.com/droolsjbpm/jbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm
http://anonsvn.jboss.org/repos/jbosstools/trunk/bpmn/plugins/org.jboss.tools.jbpm/
http://anonsvn.jboss.org/repos/jbosstools/trunk/bpmn/plugins/org.jboss.tools.jbpm/
http://anonsvn.jboss.org/repos/jbosstools/trunk/bpmn/plugins/org.jboss.tools.jbpm/

Building from source

11

• The new Eclipse BPMN2 plugin can be found here [https://github.com/droolsjbpm/bpmn2-

eclipse-editor].

• The web-based designer can be found here [https://github.com/tsurdilo/process-designer]

• The BPM console can be found here [https://github.com/bpmc/bpm-console]

2.4.3. Building from source

If you're interested in building the source code, contributing, releasing, etc. make sure to read this

README [https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md].

https://github.com/droolsjbpm/bpmn2-eclipse-editor
https://github.com/droolsjbpm/bpmn2-eclipse-editor
https://github.com/droolsjbpm/bpmn2-eclipse-editor
https://github.com/tsurdilo/process-designer
https://github.com/tsurdilo/process-designer
https://github.com/bpmc/bpm-console
https://github.com/bpmc/bpm-console
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md

12

Chapter 3.

13

Chapter 3. Installer
This guide will assist you in installing and running a demo setup of the various components of the

jBPM project. If you have any feedback on how to improve this guide, if you encounter problems,

or if you want to help out, do not hesitate to contact the jBPM community as described in the "What

to do if I encounter problems or have questions?" section.

3.1. Prerequisites

This script assumes you have Java JDK 1.5+ (set as JAVA_HOME), and Ant 1.7+ installed. If you

don't, use the following links to download and install them:

Java: http://java.sun.com/javase/downloads/index.jsp

Ant: http://ant.apache.org/bindownload.cgi

3.2. Download the installer

First of all, you need to download [https://sourceforge.net/projects/jbpm/files/jBPM%205/] the

installer. There are two versions, a full installer (which already contains a lot of the dependencies

that are necessary during the installation) and a minimal installer (which only contains the installer

and will download all dependencies). In general, it is probably best to download the full installer:

jBPM-{version}-installer-full.zip

You can also find the latest snapshot release here (only minimal installer) here:

https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/

[https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/]

3.3. Demo setup

The easiest way to get started is to simply run the installation script to install the demo setup.

Simply go into the install folder and run:

ant install.demo

This will:

• Download JBoss AS

• Download Eclipse

• Install Drools Guvnor into JBoss AS

http://java.sun.com/javase/downloads/index.jsp
http://ant.apache.org/bindownload.cgi
https://sourceforge.net/projects/jbpm/files/jBPM%205/
https://sourceforge.net/projects/jbpm/files/jBPM%205/
https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/

Chapter 3. Installer

14

• Install jBPM Designer into JBoss AS

• Install the jBPM console into JBoss AS

• Install the jBPM Eclipse plugin

• Install the Drools Eclipse plugin

Note

Guvnor (from version 5.4) requires JBoss EAP 5 to run properly, this only applies

if installation is ran in AS5 configuration mode.

This could take a while (REALLY, not kidding, we are downloading an application server and

Eclipse installation, even if you downloaded the full installer). The script however always shows

which file it is downloading (you could for example check whether it is still downloading by checking

the whether the size of the file in question in the jbpm-installer/lib folder is still increasing). If

you want to avoid downloading specific components (because you will not be using them or you

already have them installed somewhere else), check below for running only specific parts of the

demo or directing the installer to an already installed component.

To limit the amount of data that needs to be downloaded, we have disabled the download of the

Eclipse BIRT plugin for reporting by default. If you want to try out reporting as well in the jBPM

console, make sure to put the jBPM.birt.download property in the build.properties file to true before

running the installer.

Once the demo setup has finished, you can start playing with the various components by starting

the demo setup:

ant start.demo

This will:

• Start the H2 database

• Start the JBoss AS

• Start Eclipse

• Start the Human Task Service

Once everything is started, you can start playing with the Eclipse tooling, Guvnor repository and

jBPM console, as explained in the next three sections.

If you do not wish to use Eclipse in the demo setup, you can use the alternative commands:

10-Minute Tutorial: Using the Eclipse tooling

15

 ant install.demo.noeclipse

 ant start.demo.noeclipse

3.4. 10-Minute Tutorial: Using the Eclipse tooling

The following screencast [http://people.redhat.com/kverlaen/jbpm-installer-eclipse-5.2.swf] gives

an overview of how to run a simple demo process in Eclipse. It shows you:

• How to import an existing example project into your workspace, containing

• a sample BPMN2 process for requesting a performance evaluation

• a sample Java class to start the process

• How to start the process

Figure 3.1.
[http://people.redhat.com/kverlaen/jbpm-installer-eclipse-5.2.swf]

Do the following:

http://people.redhat.com/kverlaen/jbpm-installer-eclipse-5.2.swf
http://people.redhat.com/kverlaen/jbpm-installer-eclipse-5.2.swf
http://people.redhat.com/kverlaen/jbpm-installer-eclipse-5.2.swf

Chapter 3. Installer

16

• Once Eclipse has opened, simply import (using "File -> Import ..." and then under the General

category, select "Existing Projects into Workspace") the existing sample project (in the jbpm-

installer/sample/evaluation directory). This should add the sample project, including a simple

BPMN2 process and a Java file to start the process.

• You can open the BPMN2 process and the Java class by double-clicking it.

• We will now debug the process, so we can visualize its runtime state using the debug tooling.

First put a breakpoint on line "logger.close()" of the ProcessTest class. To start debugging,

right-click on ProcessTest.java in the com.sample package (under "src/main/java") and select

"Debug As - Java Application", and switch to the debug perspective.

• Open up the various debug views: Under "Window - Show View -> Other ...", select the Process

Instances View and Process Instance View (under Drools category) and the Human Task View

(under jBPM Task) and click OK.

• The program will hit the breakpoint right after starting the process. In this case, it will simply start

the process, which will result in the creation of a new user task for the user "krisv" in the human

task service, after which the process will wait for its execution. Go to the Human Task View, fill

in "krisv" under UserId and click Refresh. A new Performance Evaluation task should show up.

• To show the state of the process instance you just started graphically, click on the Process

Instances View and then select the ksession variable in the Variables View. This will show all

active process instances in the selected session. In this case, there is only one process instance.

Double-click it to see the state of that process instance annotated on the process flow chart.

• Now go back to the Task View, select the Performance Evaluation task and first start and then

complete the selected task. Now go back to the Process Instances view and double click the

process instance again to see its new state.

You could also create a new project using the jBPM project wizard. This sample project contains

a simple HelloWorld BPMN2 process and an associated Java file to start the process. Simply

select "File - New - jBPM Project" (if you cannot see that (because you're not in the jBPM

perspective) you can do "File - New ... - Project ..." and under the "jBPM" category, select "jBPM

project" and click "Next"). Give the project a name and click "Finish". You should see a new

project containing a "sample.bpmn" process and a "com.sample.ProcessMain" Java class and a

"com.sample.ProcessTest" JUnit test class. You can open the BPMN2 process by double-clicking

it. To execute the process, right-click on ProcessMain.java and select "Run As - Java Application".

You should see a "Hello World" statement in the output console. To execute the test, right-click on

ProcessTest.java and select "Run As - JUnit Test". You should also see a "Hello World" statement

in the output console, and the JUnit test completion in the JUnit view.

3.5. 10-Minute Tutorial: Using the jBPM Console

Open up the process management console:

http://localhost:8080/jbpm-console

http://localhost:8080/jbpm-console

10-Minute Tutorial: Using the jBPM Console

17

Log in, using krisv / krisv as username / password. The following screencast [http://

people.redhat.com/kverlaen/jbpm-installer-console.5.2.swf] gives an overview of how to manage

your process instances. It shows you:

• How to start a new process

• How to look up the current status of a running process instance

• How to look up your tasks

• How to complete a task

• How to generate reports to monitor your process execution

Figure 3.2.
[http://people.redhat.com/kverlaen/jbpm-installer-console.5.2.swf]

• To manage your process instances, click on the "Processes" tab at the left an select "Process

Overview". After a slight delay (if you are using the application for the first time, due to session

initalization etc.), the "Process" list should show all the known processes. The jbpm-console

in the demo setup currently loads all the processes in the "src/main/resources" folder of the

evaluation sample in "jbpm-installer/sample/evaluation". If you click the process, it will show you

all current running instances. Since there are no running instances at this point, the "Instance"

table will remain empty.

http://people.redhat.com/kverlaen/jbpm-installer-console.5.2.swf
http://people.redhat.com/kverlaen/jbpm-installer-console.5.2.swf
http://people.redhat.com/kverlaen/jbpm-installer-console.5.2.swf
http://people.redhat.com/kverlaen/jbpm-installer-console.5.2.swf

Chapter 3. Installer

18

• You can start a new process instance by clicking on the "Start" button. After confirming that

you want to start a new execution of this process, you will see a process form where you need

to fill in the necessary information to start the process. In this case, you need to fill in your

username "krisv" and a reason for the request, after which you can complete the form and close

the window. A new instance should show up in the "Instance" table. If you click the process

instance, you can check its details below and the diagram and instance data by clicking on the

"Diagram" and "Instance Data" buttons respectively. The process instance that you just started

is first requiring a self-evaluation of the user and is waiting until the user has completed this task.

• To see the tasks that have been assigned to you, choose the "Tasks" tab on the left and

select "Personal Tasks" (you may need to click refresh to update your task view). The personal

tasks table should show a "Performance Evaluation" task for you. You can complete this task

by selecting it and clicking the "View" button. This will open the task form for performance

evaluations. You can fill in the necessary data and then complete the form and close the window.

After completing the task, you could check the "Process Overview" once more to check the

progress of your process instance. You should be able to see that the process is now waiting

for your HR manager and project manager to also perform an evaluation. You could log in as

"john" / "john" and "mary" / "mary" to complete these tasks.

• After starting and/or completing a few process instances and human tasks, you can generate a

report of what has happened so far. Under "Reporting", select "Report Templates". By default,

the console has one report template, for generating a generic overview for all processes. Click

the "Create Report" button to generate a realtime report of the current status. Notice that the

initialization of the reports might take a moment, especially the first time you use the application.

3.6. 10-Minute Tutorial: Using Guvnor repository and

Designer

The Guvnor repository can be used as a process repository to store business processes. It also

offers a web-based interface to manage your processes. This includes a web-based editor for

viewing and editing processes.

Open up Drools Guvnor:

http://localhost:8080/drools-guvnor

Log in (if necessary), using any non-empty username / password (we disabled authentication

for demo purposes). The following screencast [http://people.redhat.com/kverlaen/jbpm-installer-

guvnor.5.2.swf] gives an overview of how to manage your repository. It shows you:

• How to import an existing process (in this case the evaluation process) from eclipse into guvnor

• How to open up the evaluation process in the web editor

• How to build a package so it can be used for creating a session

http://localhost:8080/drools-guvnor
http://people.redhat.com/kverlaen/jbpm-installer-guvnor.5.2.swf
http://people.redhat.com/kverlaen/jbpm-installer-guvnor.5.2.swf
http://people.redhat.com/kverlaen/jbpm-installer-guvnor.5.2.swf

10-Minute Tutorial: Using your own database with jBPM

19

Figure 3.3.
[http://people.redhat.com/kverlaen/jbpm-installer-guvnor.5.2.swf]

If you want to know more, we recommend you take a look at the rest of the Drools Guvnor

documentation.

Once you're done playing:

ant stop.demo

and simply close all the rest.

3.7. 10-Minute Tutorial: Using your own database with

jBPM

At the moment, this quickstart does not work with JBoss AS 5. However, an update to the quickstart

(and installer) is forthcoming which will fix that (and make it work with JBoss AS 5). [01/2012]

3.7.1. Introduction

In this quickstart, we are going to:

1. modify the persistence settings for the process engine

2. modify the persistence settings for the task server

http://people.redhat.com/kverlaen/jbpm-installer-guvnor.5.2.swf

Chapter 3. Installer

20

3. test the startup with our new settings!

You will need a local instance of a database, in this case MySQL in order to complete this quickstart

First though, let's look at the persistence setup that jBPM uses. In the demo, and in general, there

are three types of persistent entities used by jBPM:

• entities used for saving the the actual session, process and work item information.

• entities used for logging and generating Business Activity Monitoring (BAM) information.

• entities used by the task service.

“persistent entities” in this context, are java classes that represent information in the database.

For reasons that I'll explain later on in this quickstart, the demo uses two different persistent units:

• one for jBPM and the logging/BAM information,

• and one for the task service.

With other jBPM installations, there's no reason not to use only one persistent unit if you want to.

The first persistence unit needs to use JTA, which is why we also need to define a seperate

datasource for that persistence unit as well.

3.7.2. Database setup

In the MySQL database that I use in this quickstart, I've created two users:

• user/schema "jbpm5" with password "jbpm5" (for jBPM and the logging/BAM information)

• user/schema "task" with password "task" (for the task service)

If you end up using different names for your user/schemas, please make a note of where we insert

"jbpm5" and "task" in the configuation files.

If you want to try this quickstart with another database, I've included a section at the end of this

quickstart that describes what you may need to modify.

3.7.3. Quickstart

The following 4 files define the persistence settings for the jbpm-installer demo:

• db/persistence.xml

• task-service/resources/META-INF/persistence.xml

• db/jBPM-ds.xml

• If you're using the JBoss AS 5 server

• standalone.xml

• If you're using the JBoss AS 7 server

Quickstart

21

Do the following:

• db/persistence.xml:

This is the JPA persistence file that defines the persistence settings used by jBPM for both the

process engine information and the logging/BAM information. The installer ant script moves this

file to the expanded gwt console server war before the server is started.

In this file, you will have to change the name of the hibernate dialect used for your database.

The original line is:

<property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>

In the case of a MySql database, you need to change it to:

<property name="hibernate.dialect"

 value="org.hibernate.dialect.MySQLDialect"/>

For those of you who decided to use another database, a list of the available hibernate

dialect classes can be found here [http://docs.jboss.org/hibernate/core/3.3/reference/en-US/

html/session-configuration.html#configuration-optional-dialects].

• task-service/resources/META-INF/persistence.xml:

The task service (that the installer starts) uses the JPA Persistence settings described in this file.

The original file contains the following lines:

 <properties>

 <property name="hibernate.dialect"

 value="org.hibernate.dialect.H2Dialect"/>

 <property name="hibernate.connection.driver_class" value="org.h2.Driver"/

>

 <property name="hibernate.connection.url" value="jdbc:h2:tcp://localhost/

runtime/task" />

 <property name="hibernate.connection.username" value="sa"/>

 <property name="hibernate.connection.password" value="sasa"/>

Please change these lines so that they look like this:

 <properties>

 <property name="hibernate.dialect"

 value="org.hibernate.dialect.MySQLDialect"/>

http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects
http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects
http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects

Chapter 3. Installer

22

 <property name="hibernate.connection.driver_class"

 value="com.mysql.jdbc.Driver"/>

 <property name="hibernate.connection.url" value="jdbc:mysql://

localhost:3306/task" />

 <property name="hibernate.connection.username" value="task"/>

 <property name="hibernate.connection.password" value="task"/>

• db/jBPM-ds.xml:

This step is only neccessary if you're using JBoss AS 5.

This file is the configuration for the (JTA) datasource used by the jBoss AS 5 instance for the

process engine persistence. The installer ant script moves this file to the jboss server deploy

directory.

The original file contains the following lines:

<datasources>

 <local-tx-datasource>

 <jndi-name>jboss/datasources/jbpmDS</jndi-name>

 <connection-url>jdbc:h2:tcp://localhost/runtime/jbpm-demo</connection-url>

 <driver-class>org.h2.jdbcx.JdbcDataSource</driver-class>

 <user-name>sa</user-name>

 <password></password>

 </local-tx-datasource>

</datasources>

Please change these to the following:

<datasources>

 <local-tx-datasource>

 <jndi-name>jboss/datasources/jbpmDS</jndi-name>

 <connection-url>jdbc:mysql://localhost:3306/jbpm5</connection-url>

 <driver-class>com.mysql.jdbc.jdbc2.optional.MysqlXADataSource</driver-

class>

 <user-name>jbpm5</user-name>

 <password>jbpm5</password>

 </local-tx-datasource>

</datasources>

• standalone.xml:

This step is only neccessary if you're using AS 7.

Quickstart

23

This file is the configuration for the standalone JBoss AS 7 server. When the installer starts the

demo (using jBoss AS 7), it moves this file to the standalone/configuration directory in the

jboss server directory

We need to change the datasource configuration in standalone.xml so that the (JTA)

datasource for the jBPM process engine and logging/BAM points to our MySQL database

The original file contains the following lines:

 <subsystem xmlns="urn:jboss:domain:datasources:1.0">

 <datasources>

 <datasource jndi-name="java:jboss/datasources/jbpmDS"

 enabled="true" use-java-context="true" pool-name="H2DS">

 <connection-url>jdbc:h2:tcp://localhost/runtime/jbpm-

demo</connection-url>

 <driver>h2</driver>

 <pool></pool>

 <security>

 <user-name>sa</user-name>

 <password></password>

 </security>

 </datasource>

 <drivers>

 <driver name="h2" module="com.h2database.h2">

 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</

xa-datasource-class>

 </driver>

 </drivers>

 </datasources>

 </subsystem>

Change the lines to the following:

 <subsystem xmlns="urn:jboss:domain:datasources:1.0">

 <datasources>

 <datasource jndi-name="java:jboss/datasources/jbpmDS" pool-

name="H2DS" enabled="true" use-java-context="true">

 <connection-url>jdbc:mysql://localhost:3306/jbpm5</

connection-url>

 <driver>mysql</driver>

 <pool></pool>

 <security>

 <user-name>jbpm5</user-name>

 <password>jbpm5</password>

 </security>

 </datasource>

Chapter 3. Installer

24

 <drivers>

 <driver name="mysql" module="com.mysql">

 <xa-datasource-

class>com.mysql.jdbc.jdbc2.optional.MysqlXADataSource</xa-datasource-class>

 </driver>

 </drivers>

 </datasources>

 </subsystem>

• Start the demo

We've modified all the neccessary files at this point, all that's left to do is run the demo.

Of course, this would be a good time to start your database up as well!

If you haven't installed the demo yet, do that first:

ant install.demo.db

If you have already installed and run the demo, it can't hurt to reinstall the demo:

ant clean.demo; ant install.demo.db

After you've done that, you can finally start the demo using the following command:

ant start.demo.db

If you're done with the demo, you can stop it using this command:

ant stop.demo.db

The stop.demo ant task will also work, although it might throw some exceptions.

• Problems?

If you this isn't working for you, please try the following:

• Please double check the files you've modified: I wrote this, but still made mistakes when

changing files!

• Please make sure that you don't secretly have another instance of jboss AS running.

• If neither of those work (and you're using MySQL), please do then let us know.

Using a different database

25

3.7.4. Using a different database

If you decide to use a different database with this demo, you need to remember the following when

going through the steps above:

• Change the JDBC URLs, usernames and passwords, and Hibernate dialect lines to match your

database information in the configuration files mentioned above.

• You will need to download the correct driver jar for your database and add it to the db/drivers

directory. If you're using JBoss AS 5, the installer ant script will make sure that your downloaded

driver is installed in the server. If you're using JBoss AS 7, see the next step.

• In order make sure your driver will be correctly installed in the JBoss AS 7 server, you

can do one of two things. Both ways are explained here [https://community.jboss.org/wiki/

DataSourceConfigurationinAS7].

• Modify and install [https://community.jboss.org/wiki/

DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment] the

downloaded jar as a deployment. In this case you will have to copy the jar yourself to the

standalone/deployments directory.

• Otherwise, you can install [https://community.jboss.org/wiki/

DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module] the driver jar as a

module, which is what the install script does.

While the former (deployment) is possibly easier, the latter (module) is slightly more

straightforward -- and the installer can help you. If you choose to do the latter, please do the

following:

• Change the db.driver.jar.name property in build.xml to the name of the downloaded

jdbc driver jar you placed in db/drivers. For example:

 <property name="db.driver.jar.name" value="postgresql-8.4-701.jdbc3.jar" /

>

• Change the <driver> information in the <datasource> section of standalone.xml so that

it refers to the name of your driver module (see next step). For example:

<driver>postgresql</driver>

• Further on in standalone.xml is the <drivers> section of the <datasources> (note the

plural: drivers, datasources). We need to do the following with this file:

• Change the name of the driver to match the name in the last step,

• Give an appropriate name to the module,

https://community.jboss.org/wiki/DataSourceConfigurationinAS7
https://community.jboss.org/wiki/DataSourceConfigurationinAS7
https://community.jboss.org/wiki/DataSourceConfigurationinAS7
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module

Chapter 3. Installer

26

• And fill in the correct name of the XA datasource class to use.

For example:

 <drivers>

 <driver name="postgresql" module="org.postgresql">

 <xa-datasource-class>org.postgresql.xa.PGXADataSource</xa-

datasource-class>

 </driver>

 </drivers>

• Change the db.driver.module.prefix property in build.xml to the same “value” you used

for the module name in standalone.xml. In the example above, I used “org.postgresql”

which means that I should then use org/postgresql for the db.driver.module.prefix

property. For example:

 <property name="db.driver.module.prefix" value="org/postgresql" />

• Lastly, you'll have to modify the db/driver_jar_module.xml file. We need to

• Change the name of the module to match the db.driver.module.prefix property above

• Change the name of the module resource to the name of the JDBC driver jar that you

downloaded.

The top of the original file looks like this:

<module xmlns="urn:jboss:module:1.0" name="com.mysql">

 <resources>

 <resource-root path="mysql-connector-java.jar"/>

 </resources>

Change those lines to look like this, for example:

<module xmlns="urn:jboss:module:1.0" name="org.postgresql">

 <resources>

 <resource-root path="postgresql-8.4-701.jdbc3.jar"/>

 </resources>

What to do if I encounter problems or have questions?

27

3.8. What to do if I encounter problems or have

questions?

You can always contact the jBPM community for assistance.

Email: jbpm-dev@lists.jboss.org

IRC: #jbpm at irc.codehaus.org

jBPM User Forum [http://community.jboss.org/en/jbpm?view=discussions]

3.9. Frequently asked questions

Some common issues are explained below.

Q: What if the installer complains it cannot download component X?

A: Are you connected to the internet? Do you have a firewall turned on? Do you require a proxy? It

might be possible that one of the locations we're downloading the components from is temporarly

offline. Try downloading the components manually (possibly from alternate locations) and put

them in the jbpm-installer/lib folder.

Q: What if the installer complains it cannot extract / unzip a certain jar/war/zip?

A: If your download failed while downloading a component, it is possible that the installer is trying

to use an incomplete file. Try deleting the component in question from the jbpm-installer/lib folder

and reinstall, so it will be downloaded again.

Q: What if I have been changing my installation (and it no longer works) and I want to start over

again with a clean installation?

A: You can use ant clean.demo to remove all the installed components, so you end up with a

fresh installation again.

Q: I sometimes see exceptions when trying to stop or restart certain services, what should I do?

A: If you see errors during shutdown, are you sure the services were still running? If you see

exceptions during restart, are you sure the service you started earlier was successfully shutdown?

Maybe try killing the services manually if necessary.

Q: Something seems to be going wrong when running Eclipse but I have no idea what. What

can I do?

A: Always check the consoles for output like error messages or stack traces. You can also check

the Eclipse Error Log for exceptions. Try adding an audit logger to your session to figure out what's

happening at runtime, or try debugging your application.

Q: Something seems to be going wrong when running the a web-based application like the jbpm-

console, Guvnor and the Designer. What can I do?

http://community.jboss.org/en/jbpm?view=discussions
http://community.jboss.org/en/jbpm?view=discussions

Chapter 3. Installer

28

A: You can check the server log for possible exceptions: jbpm-installer/jboss-as-{version}/

standalone/log/server.log (for JBoss AS7) or jbpm-installer/jboss-as-{version}/server/default/log/

server.log (for earlier versions).

For all other questions, try contacting the jBPM community as described in the Getting Started

chapter.

Chapter 4.

29

Chapter 4. Quickstarts
This chapter contains a number of simple, common task that you can follow to get started.

4.1. Invoking a Java service

It is common that you already have existing Java code that you would like to invoke from your

process. How do you do that? There are different ways of doing this, and this quickstart will show

you some of these alternatives.

4.1.1. Using a script task

One of the easiest ways to include some Java code into your process is to use a Script Task.

This task will execute some script code whenever that node is reached during the execution of the

process. This allows you to include some Java code as part of the process. For example, imagine

this simple process that contains one Script Task to invoke some existing Java code:

Figure 4.1.

The script task defines a script that needs to be executed when the task is reached. In this case,

the script invokes an existing class org.jbpm.examples.quickstarts.HelloService:

HelloService.getInstance().sayHello(person.getName());

where the HelloService class looks like this:

package org.jbpm.examples.quickstarts;

public class HelloService {

 private static final HelloService INSTANCE = new HelloService();

 public static HelloService getInstance() {

 return INSTANCE;

 }

 public void sayHello(String name) {

 System.out.println("Hello " + name);

 }

}

Chapter 4. Quickstarts

30

The script retrieves an instance of the HelloService and passes it the name of the person that

started this process. This is possible because person is defined as a variable of the process, of

type org.jbpm.examples.quickstarts.Person, and script tasks can directly reference process

variables as if they were local variables (at least for reading, for setting the value of a variable, you

should use kcontext.setVariable(name, value)). This process also references HelloService

without fully qualifying the package as HelloService is defined using an import statement.

The underlying XML might look something like this:

<?xml version="1.0" encoding="UTF-8"?>

<definitions id="Definition"

 targetNamespace="http://www.jboss.org/drools"

 typeLanguage="http://www.java.com/javaTypes"

 expressionLanguage="http://www.mvel.org/2.0"

 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL

 BPMN20.xsd"

 xmlns:g="http://www.jboss.org/drools/flow/gpd"

 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"

 xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"

 xmlns:di="http://www.omg.org/spec/DD/20100524/DI"

 xmlns:tns="http://www.jboss.org/drools">

 <itemDefinition id="_personItem" structureRef="org.jbpm.examples.quickstarts.Person" /

>

 <process processType="Private" isExecutable="true" id="org.jbpm.examples.quickstarts.script"

 name="Sample Process" tns:packageName="defaultPackage" >

 <extensionElements>

 <tns:import name="org.jbpm.examples.quickstarts.HelloService" />

 </extensionElements>

 <!-- process variables -->

 <property id="person" itemSubjectRef="_personItem"/>

 <!-- nodes -->

 <startEvent id="_1" name="StartProcess" />

 <scriptTask id="_2" name="Script" >

 <script>HelloService.getInstance().sayHello(person.getName());</script>

 </scriptTask>

 <endEvent id="_3" name="End" >

 <terminateEventDefinition/>

 </endEvent>

 <!-- connections -->

 <sequenceFlow id="_1-_2" sourceRef="_1" targetRef="_2" />

 <sequenceFlow id="_2-_3" sourceRef="_2" targetRef="_3" />

 </process>

 <bpmndi:BPMNDiagram>

 <bpmndi:BPMNPlane bpmnElement="org.jbpm.examples.quickstarts.script" >

 <bpmndi:BPMNShape bpmnElement="_1" >

 <dc:Bounds x="45" y="45" width="48" height="48" />

Using a Java handler

31

 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="_2" >

 <dc:Bounds x="131" y="46" width="80" height="48" />

 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="_3" >

 <dc:Bounds x="252" y="47" width="48" height="48" />

 </bpmndi:BPMNShape>

 <bpmndi:BPMNEdge bpmnElement="_1-_2" >

 <di:waypoint x="69" y="69" />

 <di:waypoint x="171" y="70" />

 </bpmndi:BPMNEdge>

 <bpmndi:BPMNEdge bpmnElement="_2-_3" >

 <di:waypoint x="171" y="70" />

 <di:waypoint x="276" y="71" />

 </bpmndi:BPMNEdge>

 </bpmndi:BPMNPlane>

 </bpmndi:BPMNDiagram>

</definitions>

A simple test that executes this process could look something like this: simply create a ksession

and start the process by id, passing in a Person object that will then be set as the person process

variable:

public class JavaServiceQuickstartTest extends JbpmJUnitTestCase {

 @Test

 public void testProcess() {

 StatefulKnowledgeSession ksession = createKnowledgeSession("test.bpmn");

 Map<String, Object> params = new HashMap<String, Object>();

 params.put("person", new Person("krisv"));

 ksession.startProcess("org.jbpm.examples.quickstarts.script", params);

 }

}

This example shows how easy it is to include custom Java code in your process using Script Tasks,

to invoke existing code and to pass it process variable values. Note that some node types allow

you to specify on-entry and on-exit actions (which will be executed when the node is triggered or

left respectively). This allows you to include scripts, just like you would do when using a Script

Task, but hiding these more or less from the diagram (as for example business users might not

be interested in these details).

4.1.2. Using a Java handler

4.1.3. Writing your own domain-specific task

32

Chapter 5.

33

Chapter 5. Core Engine: API
This chapter introduces the API you need to load processes and execute them. For more detail

on how to define the processes themselves, check out the chapter on BPMN 2.0.

To interact with the process engine (for example, to start a process), you need to set up a session.

This session will be used to communicate with the process engine. A session needs to have a

reference to a knowledge base, which contains a reference to all the relevant process definitions.

This knowledge base is used to look up the process definitions whenever necessary. To create

a session, you first need to create a knowledge base, load all the necessary process definitions

(this can be from various sources, like from classpath, file system or process repository) and then

instantiate a session.

Once you have set up a session, you can use it to start executing processes. Whenever a process

is started, a new process instance is created (for that process definition) that maintains the state

of that specific instance of the process.

For example, imagine you are writing an application to process sales orders. You could then define

one or more process definitions that define how the order should be processed. When starting up

your application, you first need to create a knowledge base that contains those process definitions.

You can then create a session based on this knowledge base so that, whenever a new sales order

comes in, a new process instance is started for that sales order. That process instance contains

the state of the process for that specific sales request.

Chapter 5. Core Engine: API

34

A knowledge base can be shared across sessions and usually is only created once, at the start of

the application (as creating a knowledge base can be rather heavy-weight as it involves parsing

and compiling the process definitions). Knowledge bases can be dynamically changed (so you

can add or remove processes at runtime).

Sessions can be created based on a knowledge base and are used to execute processes and

interact with the engine. You can create as many independent session as you need and creating

a session is considered relatively lightweight. How many sessions you create is up to you. In

general, most simple cases start out with creating one session that is then called from various

places in your application. You could decide to create multiple sessions if for example you want

to have multiple independent processing units (for example, if you want all processes from one

customer to be completely independent from processes for another customer, you could create an

independent session for each customer) or if you need multiple sessions for scalability reasons.

If you don't know what to do, simply start by having one knowledge base that contains all your

process definitions and create one session that you then use to execute all your processes.

5.1. The jBPM API

The jBPM project has a clear separation between the API the users should be interacting with

and the actual implementation classes. The public API exposes most of the features we believe

"normal" users can safely use and should remain rather stable across releases. Expert users can

still access internal classes but should be aware that they should know what they are doing and

that the internal API might still change in the future.

As explained above, the jBPM API should thus be used to (1) create a knowledge base that

contains your process definitions, and to (2) create a session to start new process instances,

signal existing ones, register listeners, etc.

5.1.1. Knowledge Base

The jBPM API allows you to first create a knowledge base. This knowledge base should include

all your process definitions that might need to be executed by that session. To create a knowledge

base, use a knowledge builder to load processes from various resources (for example from the

classpath or from the file system), and then create a new knowledge base from that builder. The

following code snippet shows how to create a knowledge base consisting of only one process

definition (using in this case a resource from the classpath).

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

kbuilder.add(ResourceFactory.newClassPathResource("MyProcess.bpmn"), ResourceType.BPMN2);

KnowledgeBase kbase = kbuilder.newKnowledgeBase();

The ResourceFactory has similar methods to load files from file system, from URL, InputStream,

Reader, etc.

Session

35

5.1.2. Session

Once you've loaded your knowledge base, you should create a session to interact with the engine.

This session can then be used to start new processes, signal events, etc. The following code

snippet shows how easy it is to create a session based on the previously created knowledge base,

and to start a process (by id).

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

ProcessInstance processInstance = ksession.startProcess("com.sample.MyProcess");

The ProcessRuntime interface defines all the session methods for interacting with processes, as

shown below.

 /**

 * Start a new process instance. The process (definition) that should

 * be used is referenced by the given process id.

 *

 * @param processId The id of the process that should be started

 * @return the ProcessInstance that represents the instance of the process that was started

 */

 ProcessInstance startProcess(String processId);

 /**

 * Start a new process instance. The process (definition) that should

 * be used is referenced by the given process id. Parameters can be passed

 * to the process instance (as name-value pairs), and these will be set

 * as variables of the process instance.

 *

 * @param processId the id of the process that should be started

 * @param parameters the process variables that should be set when starting the process instance

 * @return the ProcessInstance that represents the instance of the process that was started

 */

 ProcessInstance startProcess(String processId,

 Map<String, Object> parameters);

 /**

 * Signals the engine that an event has occurred. The type parameter defines

 * which type of event and the event parameter can contain additional information

 * related to the event. All process instances that are listening to this type

 * of (external) event will be notified. For performance reasons, this type of event

 * signaling should only be used if one process instance should be able to notify

 * other process instances. For internal event within one process instance, use the

 * signalEvent method that also include the processInstanceId of the process instance

 * in question.

Chapter 5. Core Engine: API

36

 *

 * @param type the type of event

 * @param event the data associated with this event

 */

 void signalEvent(String type,

 Object event);

 /**

 * Signals the process instance that an event has occurred. The type parameter defines

 * which type of event and the event parameter can contain additional information

 * related to the event. All node instances inside the given process instance that

 * are listening to this type of (internal) event will be notified. Note that the event

 * will only be processed inside the given process instance. All other process instances

 * waiting for this type of event will not be notified.

 *

 * @param type the type of event

 * @param event the data associated with this event

 * @param processInstanceId the id of the process instance that should be signaled

 */

 void signalEvent(String type,

 Object event,

 long processInstanceId);

 /**

 * Returns a collection of currently active process instances. Note that only process

 * instances that are currently loaded and active inside the engine will be returned.

 * When using persistence, it is likely not all running process instances will be loaded

 * as their state will be stored persistently. It is recommended not to use this

 * method to collect information about the state of your process instances but to use

 * a history log for that purpose.

 *

 * @return a collection of process instances currently active in the session

 */

 Collection<ProcessInstance> getProcessInstances();

 /**

 * Returns the process instance with the given id. Note that only active process instances

 * will be returned. If a process instance has been completed already, this method will return

 * null.

 *

 * @param id the id of the process instance

 * @return the process instance with the given id or null if it cannot be found

 */

 ProcessInstance getProcessInstance(long processInstanceId);

 /**

 * Aborts the process instance with the given id. If the process instance has been completed

 * (or aborted), or the process instance cannot be found, this method will throw an

 * IllegalArgumentException.

Events

37

 *

 * @param id the id of the process instance

 */

 void abortProcessInstance(long processInstanceId);

 /**

 * Returns the WorkItemManager related to this session. This can be used to

 * register new WorkItemHandlers or to complete (or abort) WorkItems.

 *

 * @return the WorkItemManager related to this session

 */

 WorkItemManager getWorkItemManager();

5.1.3. Events

The session provides methods for registering and removing listeners. A ProcessEventListener

can be used to listen to process-related events, like starting or completing a process, entering

and leaving a node, etc. Below, the different methods of the ProcessEventListener class are

shown. An event object provides access to related information, like the process instance and node

instance linked to the event. You can use this API to register your own event listeners.

public interface ProcessEventListener {

 void beforeProcessStarted(ProcessStartedEvent event);

 void afterProcessStarted(ProcessStartedEvent event);

 void beforeProcessCompleted(ProcessCompletedEvent event);

 void afterProcessCompleted(ProcessCompletedEvent event);

 void beforeNodeTriggered(ProcessNodeTriggeredEvent event);

 void afterNodeTriggered(ProcessNodeTriggeredEvent event);

 void beforeNodeLeft(ProcessNodeLeftEvent event);

 void afterNodeLeft(ProcessNodeLeftEvent event);

 void beforeVariableChanged(ProcessVariableChangedEvent event);

 void afterVariableChanged(ProcessVariableChangedEvent event);

}

A note about before and after events: these events typically act like a stack, which means that any

events that occur as a direct result of the previous event, will occur between the before and the

after of that event. For example, if a subsequent node is triggered as result of leaving a node, the

node triggered events will occur inbetween the beforeNodeLeftEvent and the afterNodeLeftEvent

of the node that is left (as the triggering of the second node is a direct result of leaving the first

node). Doing that allows us to derive cause relationships between events more easily. Similarly,

all node triggered and node left events that are the direct result of starting a process will occur

between the beforeProcessStarted and afterProcessStarted events. In general, if you just want

Chapter 5. Core Engine: API

38

to be notified when a particular event occurs, you should be looking at the before events only (as

they occur immediately before the event actually occurs). When only looking at the after events,

one might get the impression that the events are fired in the wrong order, but because the after

events are triggered as a stack (after events will only fire when all events that were triggered as

a result of this event have already fired). After events should only be used if you want to make

sure that all processing related to this has ended (for example, when you want to be notified when

starting of a particular process instance has ended.

Also note that not all nodes always generate node triggered and/or node left events. Depending

on the type of node, some nodes might only generate node left events, others might only generate

node triggered events. Catching intermediate events for example are not generating triggered

events (they are only generating left events, as they are not really triggered by another node, rather

activated from outside). Similarly, throwing intermediate events are not generating left events

(they are only generating triggered events, as they are not really left, as they have no outgoing

connection).

jBPM out-of-the-box provides a listener that can be used to create an audit log (either to the

console or the a file on the file system). This audit log contains all the different events that occurred

at runtime so it's easy to figure out what happened. Note that these loggers should only be used

for debugging purposes. The following logger implementations are supported by default:

1. Console logger: This logger writes out all the events to the console.

2. File logger: This logger writes out all the events to a file using an XML representation. This

log file might then be used in the IDE to generate a tree-based visualization of the events that

occurred during execution.

3. Threaded file logger: Because a file logger writes the events to disk only when closing the

logger or when the number of events in the logger reaches a predefined level, it cannot be

used when debugging processes at runtime. A threaded file logger writes the events to a file

after a specified time interval, making it possible to use the logger to visualize the progress in

realtime, while debugging processes.

The KnowledgeRuntimeLoggerFactory lets you add a logger to your session, as shown below.

When creating a console logger, the knowledge session for which the logger needs to be created

must be passed as an argument. The file logger also requires the name of the log file to be created,

and the threaded file logger requires the interval (in milliseconds) after which the events should

be saved. You should always close the logger at the end of your application.

KnowledgeRuntimeLogger logger =

 KnowledgeRuntimeLoggerFactory.newFileLogger(ksession, "test");

// add invocations to the process engine here,

// e.g. ksession.startProcess(processId);

...

logger.close();

Knowledge-based API

39

The log file that is created by the file-based loggers contains an XML-based overview of all the

events that occurred at runtime. It can be opened in Eclipse, using the Audit View in the Drools

Eclipse plugin, where the events are visualized as a tree. Events that occur between the before

and after event are shown as children of that event. The following screenshot shows a simple

example, where a process is started, resulting in the activation of the Start node, an Action node

and an End node, after which the process was completed.

5.2. Knowledge-based API

As you might have noticed, the API as exposed by the jBPM project is a knowledge API. That

means that it doesn't just focus on processes, but potentially also allows other types of knowledge

to be loaded. The impact for users that are only interested in processes however is very small.

It just means that, instead of having a ProcessBase or a ProcessSession, you are using a

KnowledgeBase and a KnowledgeSession.

However, if you ever plan to use business rules or complex event processing as part of your

application, the knowledge-based API allows users to add different types of resources, such as

processes and rules, in almost identical ways into the same knowledge base. This enables a

user who knows how to use jBPM to start using Drools Expert (for business rules) or Drools

Fusion (for event processing) almost instantaneously (and even to integrate these different types

of Knowledge) as the API and tooling for these different types of knowledge is unified.

40

Chapter 6.

41

Chapter 6. Core Engine: Basics

Figure 6.1.

A business process is a graph that describes the order in which a series of steps need to be

executed, using a flow chart. A process consists of a collection of nodes that are linked to each

other using connections. Each of the nodes represents one step in the overall process while the

connections specify how to transition from one node to the other. A large selection of predefined

node types have been defined. This chapter describes how to define such processes and use

them in your application.

6.1. Creating a process

Processes can be created by using one of the following three methods:

1. Using the graphical process editor in the Eclipse plugin

2. As an XML file, according to the XML process format as defined in the XML Schema Definition

in the BPMN 2.0 specification.

3. By directly creating a process using the Process API.

6.1.1. Using the graphical BPMN2 Editor

The graphical BPMN2 editor is an editor that allows you to create a process by dragging and

dropping different nodes on a canvas and editing the properties of these nodes. The graphical

BPMN2 editor is part of the jBPM / Drools Eclipse plugin. Once you have set up a jBPM project (see

the installer for creating a working Eclipse environment where you can start), you can start adding

processes. When in a project, launch the "New" wizard (use Ctrl+N) or right-click the directory

you would like to put your process in and select "New", then "File". Give the file a name and

the extension bpmn (e.g. MyProcess.bpmn). This will open up the process editor (you can safely

ignore the warning that the file could not be read, this is just because the file is still empty).

First, ensure that you can see the Properties View down the bottom of the Eclipse window, as it

will be necessary to fill in the different properties of the elements in your process. If you cannot

see the properties view, open it using the menu "Window", then "Show View" and "Other...", and

under the "General" folder select the Properties View.

Chapter 6. Core Engine: Basics

42

Figure 6.2. New process

The process editor consists of a palette, a canvas and an outline view. To add new elements to

the canvas, select the element you would like to create in the palette and then add them to the

canvas by clicking on the preferred location. For example, click on the "End Event" icon in the

"Components" palette of the GUI. Clicking on an element in your process allows you to set the

properties of that element. You can connect the nodes (as long as it is permitted by the different

types of nodes) by using "Sequence Flow" from the "Components" palette.

You can keep adding nodes and connections to your process until it represents the business logic

that you want to specify.

6.1.2. Defining processes using XML

It is also possible to specify processes using the underlying BPMN 2.0 XML directly. The syntax

of these XML processes is defined using the BPMN 2.0 XML Schema Definition. For example,

the following XML fragment shows a simple process that contains a sequence of a Start Event, a

Script Task that prints "Hello World" to the console, and an End Event.

<?xml version="1.0" encoding="UTF-8"?>

<definitions id="Definition"

 targetNamespace="http://www.jboss.org/drools"

 typeLanguage="http://www.java.com/javaTypes"

 expressionLanguage="http://www.mvel.org/2.0"

 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"Rule Task

Defining processes using XML

43

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL

 BPMN20.xsd"

 xmlns:g="http://www.jboss.org/drools/flow/gpd"

 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"

 xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"

 xmlns:di="http://www.omg.org/spec/DD/20100524/DI"

 xmlns:tns="http://www.jboss.org/drools">

 <process processType="Private" isExecutable="true" id="com.sample.hello" name="Hello

 Process" >

 <!-- nodes -->

 <startEvent id="_1" name="Start" />

 <scriptTask id="_2" name="Hello" >

 <script>System.out.println("Hello World");</script>

 </scriptTask>

 <endEvent id="_3" name="End" >

 <terminateEventDefinition/>

 </endEvent>

 <!-- connections -->

 <sequenceFlow id="_1-_2" sourceRef="_1" targetRef="_2" />

 <sequenceFlow id="_2-_3" sourceRef="_2" targetRef="_3" />

 </process>

 <bpmndi:BPMNDiagram>

 <bpmndi:BPMNPlane bpmnElement="com.sample.hello" >

 <bpmndi:BPMNShape bpmnElement="_1" >

 <dc:Bounds x="16" y="16" width="48" height="48" />

 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="_2" >

 <dc:Bounds x="96" y="16" width="80" height="48" />

 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="_3" >

 <dc:Bounds x="208" y="16" width="48" height="48" />

 </bpmndi:BPMNShape>

 <bpmndi:BPMNEdge bpmnElement="_1-_2" >

 <di:waypoint x="40" y="40" />

 <di:waypoint x="136" y="40" />

 </bpmndi:BPMNEdge>

 <bpmndi:BPMNEdge bpmnElement="_2-_3" >

 <di:waypoint x="136" y="40" />

 <di:waypoint x="232" y="40" />

 </bpmndi:BPMNEdge>

 </bpmndi:BPMNPlane>

 </bpmndi:BPMNDiagram>

Chapter 6. Core Engine: Basics

44

</definitions>

The process XML file consists of two parts, the top part (the "process" element) contains the

definition of the different nodes and their properties, the lower part (the "BPMNDiagram" element)

contains all graphical information, like the location of the nodes. The process XML consist of

exactly one <process> element. This element contains parameters related to the process (its type,

name, id and package name), and consists of three subsections: a header section (where process-

level information like variables, globals, imports and lanes can be defined), a nodes section that

defines each of the nodes in the process, and a connections section that contains the connections

between all the nodes in the process. In the nodes section, there is a specific element for each

node, defining the various parameters and, possibly, sub-elements for that node type.

6.1.3. Defining Processes Using the Process API

While it is recommended to define processes using the graphical editor or the underlying

XML (to shield yourself from internal APIs), it is also possible to define a process using the

Process API directly. The most important process model elements are defined in the packages

org.jbpm.workflow.core and org.jbpm.workflow.core.node. A "fluent API" is provided that

allows you to easily construct processes in a readable manner using factories. At the end, you

can validate the process that you were constructing manually.

6.1.3.1. Example

This is a simple example of a basic process with a script task only:

RuleFlowProcessFactory factory =

 RuleFlowProcessFactory.createProcess("org.jbpm.HelloWorld");

factory

 // Header

 .name("HelloWorldProcess")

 .version("1.0")

 .packageName("org.jbpm")

 // Nodes

 .startNode(1).name("Start").done()

 .actionNode(2).name("Action")

 .action("java", "System.out.println(\"Hello World\");").done()

 .endNode(3).name("End").done()

 // Connections

 .connection(1, 2)

 .connection(2, 3);

RuleFlowProcess process = factory.validate().getProcess();

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

kbuilder.add(ResourceFactory.newByteArrayResource(

 XmlBPMNProcessDumper.INSTANCE.dump(process).getBytes()), ResourceType.BPMN2);

KnowledgeBase kbase = kbuilder.newKnowledgeBase();

Details of different process constructs: Overview

45

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

ksession.startProcess("org.jbpm.HelloWorld");

You can see that we start by calling the static createProcess() method from the

RuleFlowProcessFactory class. This method creates a new process with the given id and returns

the RuleFlowProcessFactory that can be used to create the process. A typical process consists

of three parts. The header part comprises global elements like the name of the process, imports,

variables, etc. The nodes section contains all the different nodes that are part of the process. The

connections section finally links these nodes to each other to create a flow chart.

In this example, the header contains the name and the version of the process and the package

name. After that, you can start adding nodes to the current process. If you have auto-completion

you can see that you have different methods to create each of the supported node types at your

disposal.

When you start adding nodes to the process, in this example by calling the startNode(),

actionNode() and endNode() methods, you can see that these methods return a specific

NodeFactory, that allows you to set the properties of that node. Once you have

finished configuring that specific node, the done() method returns you to the current

RuleFlowProcessFactory so you can add more nodes, if necessary.

When you are finished adding nodes, you must connect them by creating connections between

them. This can be done by calling the method connection, which will link previously created

nodes.

Finally, you can validate the generated process by calling the validate() method and retrieve

the created RuleFlowProcess object.

6.2. Details of different process constructs: Overview

The following chapters will describe the different constructs that you can use to model your

processes (and their properties) in detail. Executable processes in BPMN consist of different

types of nodes being connected to each other using sequence flows. The BPMN 2.0 specification

defines three main types of nodes:

• Events: They are used to model the occurrence of a particular event. This could be a start event

(that is used to indicate the start of the process), end events (that define the end of the process,

or of that subflow) and intermediate events (that indicate events that might occur during the

execution of the process).

• Activities: These define the different actions that need to be performed during the execution of

the process. Different types of tasks exist, depending on the type of activity you are trying to

model (e.g. human task, service task, etc.) and activities could also be nested (using different

types of sub-processes).

• Gateways: Can be used to define multiple paths in the process. Depending on the type of

gateway, these might indicate parallel execution, choice, etc.

Chapter 6. Core Engine: Basics

46

The following sections will describe the properties of the process itself and of each of these

different node types in detail, as supported by the Eclipse plugin and shown in the following figure

of the palette. Note that the Eclipse property editor might show more properties for some of the

supported node types, but only the properties as defined in this section are supported when using

the BPMN 2.0 XML format.

Figure 6.3. The different types of BPMN2 nodes

6.3. Details: Process properties

A BPMN2 process is a flow chart where different types of nodes are linked using connections.

The process itself exposes the following properties:

• Id: The unique id of the process.

Details: Events

47

• Name: The display name of the process.

• Version: The version number of the process.

• Package: The package (namespace) the process is defined in.

• Variables: Variables can be defined to store data during the execution of your process. See

section “Data” for details.

• Swimlanes: Specify the swimlanes used in this process for assigning human tasks. See chapter

“Human Tasks” for details.

6.4. Details: Events

6.4.1. Start event

Figure 6.4. Start event

The start of the process. A process should have exactly one start node, which cannot have

incoming connections and should have one outgoing connection. Whenever a process is started,

execution will start at this node and automatically continue to the first node linked to this start

event, and so on. It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

Chapter 6. Core Engine: Basics

48

6.4.2. End events

6.4.2.1. End event

Figure 6.5. End event

The end of the process. A process should have one or more end events. The End Event

should have one incoming connection and cannot have any outgoing connections. It contains the

following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Terminate: An End Event can terminate the entire process or just the path. When a process

instance is terminated, it means its state is set to completed and all other nodes that might still

be active (on parallel paths) in this process instance are cancelled. Non-terminating end events

are simply ends for this path (execution of this branch will end here), but other parallel paths can

still continue. A process instance will automatically complete if there are no more active paths

inside that process instance (for example, if a process instance reaches a non-terminating end

node but there are no more active branches inside the process instance, the process instance

will be completed anyway). Terminating end events are visualized using a full circle inside the

event node, non-terminating event nodes are empty. Note that, if you use a terminating event

node inside a sub-process, you are terminating the top-level process instance, not just that sub-

process.

End events

49

6.4.2.2. Throwing error event

Figure 6.6. Throwing error event

An Error Event can be used to signal an exceptional condition in the process. It should have

one incoming connection and no outgoing connections. When an Error Event is reached in the

process, it will throw an error with the given name. The process will search for an appropriate

error handler that is capable of handling this kind of fault. If no error handler is found, the process

instance will be aborted. An Error Event contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• FaultName: The name of the fault. This name is used to search for appropriate exception

handlers that are capable of handling this kind of fault.

• FaultVariable: The name of the variable that contains the data associated with this fault. This

data is also passed on to the exception handler (if one is found).

Error handlers can be specified using boundary events. This is however currently only possible

when working with XML directly. We will be adding support for graphically specifying this in the

new BPMN2 editor.

Chapter 6. Core Engine: Basics

50

6.4.3. Intermediate events

6.4.3.1. Catching timer event

Figure 6.7. Catching timer event

Represents a timer that can trigger one or multiple times after a given period of time. A Timer Event

should have one incoming connection and one outgoing connection. The timer delay specifies

how long the timer should wait before triggering the first time. When a Timer Event is reached in

the process, it will start the associated timer. The timer is cancelled if the timer node is cancelled

(e.g., by completing or aborting the enclosing process instance). Consult the section “Timers” for

more information. The Timer Event contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Timer delay: The delay that the node should wait before triggering the first time. The expression

should be of the form [#d][#h][#m][#s][#[ms]]. This allows you to specify the number

of days, hours, minutes, seconds and milliseconds (which is the default if you don't specify

anything). For example, the expression "1h" will wait one hour before triggering the timer. The

expression could also use #{expr} to dynamically derive the delay based on some process

variable. Expr in this case could be a process variable, or a more complex expression based

on a process variable (e.g. myVariable.getValue()).

• Timer period: The period between two subsequent triggers. If the period is 0, the timer should

only be triggered once. The expression should be of the form [#d][#h][#m][#s][#[ms]]. You

Intermediate events

51

can specify the number of days, hours, minutes, seconds and milliseconds (which is the default if

you don't specify anything). For example, the expression "1h" will wait one hour before triggering

the timer again. The expression could also use #{expr} to dynamically derive the period based

on some process variable. Expr in this case could be a process variable, or a more complex

expression based on a process variable (e.g. myVariable.getValue()).

Timer events could also be specified as boundary events on sub-processes. This is however

currently only possible when working with XML directly. We will be adding support for graphically

specifying this in the new BPMN2 editor.

6.4.3.2. Catching signal event

Figure 6.8. Catching signal event

A Signal Event can be used to respond to internal or external events during the execution of the

process. A Signal Event should have no incoming connections and one outgoing connection. It

specifies the type of event that is expected. Whenever that type of event is detected, the node

connected to this event node will be triggered. It contains the following properties:

• Id: The id of the node (which is unique within one node container).

Chapter 6. Core Engine: Basics

52

• Name: The display name of the node.

• EventType: The type of event that is expected.

• VariableName: The name of the variable that will contain the data associated with this event

(if any) when this event occurs.

A process instance can be signaled that a specific event occurred using

ksession.signalEvent(eventType, data, processInstanceId)

This will trigger all (active) signal event nodes in the given process instance that are waiting for

that event type. Data related to the event can be passed using the data parameter. If the event

node specifies a variable name, this data will be copied to that variable when the event occurs.

It is also possible to use event nodes inside sub-processes. These event nodes will however only

be active when the sub-process is active.

You can also generate a signal from inside a process instance. A script (in a script task or using

on entry or on exit actions) can use

kcontext.getKnowledgeRuntime().signalEvent(

 eventType, data, kcontext.getProcessInstance().getId());

A throwing signal event could also be used to model the signaling of an event. This is however

currently only possible when working with XML directly. We will be adding support for graphically

specifying this in the new BPMN2 editor.

6.5. Details: Activities

6.5.1. Script task

Figure 6.9. Script task

Script task

53

Represents a script that should be executed in this process. A Script Task should have one

incoming connection and one outgoing connection. The associated action specifies what should

be executed, the dialect used for coding the action (i.e., Java or MVEL), and the actual action code.

This code can access any variables and globals. There is also a predefined variable kcontext that

references the ProcessContext object (which can, for example, be used to access the current

ProcessInstance or NodeInstance, and to get and set variables, or get access to the ksession

using kcontext.getKnowledgeRuntime()). When a Script Task is reached in the process, it will

execute the action and then continue with the next node. It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Action: The action script associated with this action node.

Note that you can write any valid Java code inside a script node. This basically allows you to do

anything inside such a script node. There are some caveats however:

• When trying to create a higher-level business process, that should also be understood by

business users, it is probably wise to avoid low-level implementation details inside the process,

including inside these script tasks. A Script Task could still be used to quickly manipulate

variables etc. but other concepts like a Service Task could be used to model more complex

behaviour in a higher-level manner.

• Scripts should be immediate. They are using the engine thread to execute the script. Scripts

that could take some time to execute should probably be modeled as an asynchronous Service

Task.

• You should try to avoid contacting external services through a script node. Not only does this

usually violate the first two caveats, it is also interacting with external services without the

knowledge of the engine, which can be problematic, especially when using persistence and

transactions. In general, it is probably wiser to model communication with an external service

using a service task.

• Scripts should not throw exceptions. Runtime exceptions should be caught and for example

managed inside the script or transformed into signals or errors that can then be handled inside

the process.

Chapter 6. Core Engine: Basics

54

6.5.2. Service task

Figure 6.10. Service task

Represents an (abstract) unit of work that should be executed in this process. All work that is

executed outside the process engine should be represented (in a declarative way) using a Service

Task. Different types of services are predefined, e.g., sending an email, logging a message, etc.

Users can define domain-specific services or work items, using a unique name and by defining

the parameters (input) and results (output) that are associated with this type of work. Check the

chapter on domain-specific processes for a detailed explanation and illustrative examples of how

to define and use work items in your processes. When a Service Task is reached in the process,

the associated work is executed. A Service Task should have one incoming connection and one

outgoing connection.

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Parameter mapping: Allows copying the value of process variables to parameters of the work

item. Upon creation of the work item, the values will be copied.

• Result mapping: Allows copying the value of result parameters of the work item to a process

variable. Each type of work can define result parameters that will (potentially) be returned after

the work item has been completed. A result mapping can be used to copy the value of the given

result parameter to the given variable in this process. For example, the "FileFinder" work item

returns a list of files that match the given search criteria within the result parameter Files. This

list of files can then be bound to a process variable for use within the process. Upon completion

of the work item, the values will be copied.

• On-entry and on-exit actions: Actions that are executed upon entry or exit of this node,

respectively.

• Additional parameters: Each type of work item can define additional parameters that are relevant

for that type of work. For example, the "Email" work item defines additional parameters such as

User task

55

From, To, Subject and Body. The user can either provide values for these parameters directly,

or define a parameter mapping that will copy the value of the given variable in this process to

the given parameter; if both are specified, the mapping will have precedence. Parameters of

type String can use #{expression} to embed a value in the string. The value will be retrieved

when creating the work item, and the substitution expression will be replaced by the result of

calling toString() on the variable. The expression could simply be the name of a variable (in

which case it resolves to the value of the variable), but more advanced MVEL expressions are

possible as well, e.g., #{person.name.firstname}.

6.5.3. User task

Figure 6.11. User task

Processes can also involve tasks that need to be executed by human actors. A User Task

represents an atomic task to be executed by a human actor. It should have one incoming

connection and one outgoing connection. User Tasks can be used in combination with Swimlanes

to assign multiple human tasks to similar actors. Refer to the chapter on human tasks for more

details. A User Task is actually nothing more than a specific type of service node (of type "Human

Task"). A User Task contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• TaskName: The name of the human task.

• Priority: An integer indicating the priority of the human task.

• Comment: A comment associated with the human task.

• ActorId: The actor id that is responsible for executing the human task. A list of actor id's can be

specified using a comma (',') as separator.

Chapter 6. Core Engine: Basics

56

• GroupId: The group id that is responsible for executing the human task. A list of group id's can

be specified using a comma (',') as separator.

• Skippable: Specifies whether the human task can be skipped, i.e., whether the actor may decide

not to execute the task.

• Content: The data associated with this task.

• Swimlane: The swimlane this human task node is part of. Swimlanes make it easy to assign

multiple human tasks to the same actor. See the human tasks chapter for more detail on how

to use swimlanes.

• On entry and on exit actions: Action scripts that are executed upon entry and exit of this node,

respectively.

• Parameter mapping: Allows copying the value of process variables to parameters of the human

task. Upon creation of the human tasks, the values will be copied.

• Result mapping: Allows copying the value of result parameters of the human task to a process

variable. Upon completion of the human task, the values will be copied. A human task has

a result variable "Result" that contains the data returned by the human actor. The variable

"ActorId" contains the id of the actor that actually executed the task.

A user task should define the type of task that needs to be executed (using properties like

TaskName, Comment, etc.) and who needs to perform it (using either actorId or groupId). Note that

if there is data related to this specific process instance that the end user needs when performing

the task, this data should be passed as the content of the task. The task for example does not

have access to process variables. Check out the chapter on human tasks to get more detail on

how to pass data between human tasks and the process instance.

6.5.4. Reusable sub-process

Figure 6.12. Reusable sub-process

Represents the invocation of another process from within this process. A sub-process node should

have one incoming connection and one outgoing connection. When a Reusable Sub-Process

Business rule task

57

node is reached in the process, the engine will start the process with the given id. It contains the

following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• ProcessId: The id of the process that should be executed.

• Wait for completion (by default true): If this property is true, this sub-process node will only

continue if the child process that was started has terminated its execution (completed or

aborted); otherwise it will continue immediately after starting the subprocess (so it will not wait

for its completion).

• Independent (by default true): If this property is true, the child process is started as an

independent process, which means that the child process will not be terminated if this parent

process is completed (or this sub-process node is cancelled for some other reason); otherwise

the active sub-process will be cancelled on termination of the parent process (or cancellation

of the sub-process node). Note that you can only set independent to "false" only when "Wait

for completion" is set to true.

• On-entry and on-exit actions: Actions that are executed upon entry or exit of this node,

respectively.

• Parameter in/out mapping: A sub-process node can also define in- and out-mappings for

variables. The variables given in the "in" mapping will be used as parameters (with the

associated parameter name) when starting the process. The variables of the child process that

are defined for the "out" mappings will be copied to the variables of this process when the

child process has been completed. Note that you can use "out" mappings only when "Wait for

completion" is set to true.

6.5.5. Business rule task

Figure 6.13. Business rule task

A Business Rule Task Represents a set of rules that need to be evaluated. The rules are evaluated

when the node is reached. A Rule Task should have one incoming connection and one outgoing

connection. Rules are defined in separate files using the Drools rule format. Rules can become

part of a specific ruleflow group using the ruleflow-group attribute in the header of the rule.

Chapter 6. Core Engine: Basics

58

When a Rule Task is reached in the process, the engine will start executing rules that are part of

the corresponding ruleflow-group (if any). Execution will automatically continue to the next node

if there are no more active rules in this ruleflow group. As a result, during the execution of a

ruleflow group, new activations belonging to the currently active ruleflow group can be added

to the Agenda due to changes made to the facts by the other rules. Note that the process will

immediately continue with the next node if it encounters a ruleflow group where there are no active

rules at that time.

If the ruleflow group was already active, the ruleflow group will remain active and execution will

only continue if all active rules of the ruleflow group has been completed. It contains the following

properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• RuleFlowGroup: The name of the ruleflow group that represents the set of rules of this

RuleFlowGroup node.

6.5.6. Embedded sub-process

Figure 6.14. Embedded sub-process

Multi-instance sub-process

59

A Sub-Process is a node that can contain other nodes so that it acts as a node container. This

allows not only the embedding of a part of the process within such a sub-process node, but

also the definition of additional variables that are accessible for all nodes inside this container. A

sub-process should have one incoming connection and one outgoing connection. It should also

contain one start node that defines where to start (inside the Sub-Process) when you reach the

sub-process. It should also contain one or more end events. Note that, if you use a terminating

event node inside a sub-process, you are terminating the top-level process instance, not just that

sub-process, so in general you should use non-terminating end nodes inside a sub-process. A

sub-process ends when there are no more active nodes inside the sub-process. It contains the

following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Variables: Additional variables can be defined to store data during the execution of this node.

See section “Data” for details.

6.5.7. Multi-instance sub-process

Figure 6.15. Multi-instance sub-process

A Multiple Instance sub-process is a special kind of sub-process that allows you to execute the

contained process segment multiple times, once for each element in a collection. A multiple

instance sub-process should have one incoming connection and one outgoing connection. It waits

until the embedded process fragment is completed for each of the elements in the given collection

before continuing. It contains the following properties:

• Id: The id of the node (which is unique within one node container).

Chapter 6. Core Engine: Basics

60

• Name: The display name of the node.

• CollectionExpression: The name of a variable that represents the collection of elements

that should be iterated over. The collection variable should be an array or of type

java.util.Collection. If the collection expression evaluates to null or an empty collection,

the multiple instances sub-process will be completed immediately and follow its outgoing

connection.

• VariableName: The name of the variable to contain the current element from the collection. This

gives nodes within the composite node access to the selected element.

Details: Gateways

61

6.6. Details: Gateways
6.6.1. Diverging gateway

Figure 6.16. Diverging gateway

Chapter 6. Core Engine: Basics

62

Allows you to create branches in your process. A Diverging Gateway should have one incoming

connection and two or more outgoing connections. There are three types of gateway nodes

currently supported:

• AND or parallel means that the control flow will continue in all outgoing connections

simultaneously.

• XOR or exclusive means that exactly one of the outgoing connections will be chosen. The

decision is made by evaluating the constraints that are linked to each of the outgoing

connections. The constraint with the lowest priority number that evaluates to true is selected.

Constraints can be specified using different dialects. Note that you should always make sure

that at least one of the outgoing connections will evaluate to true at runtime (the ruleflow will

throw an exception at runtime if it cannot find at least one outgoing connection).

• OR or inclusive means that all outgoing connections whose condition evaluates to true are

selected. Conditions are similar to the exclusive gateway, except that no priorities are taken

into account. Note that you should make sure that at least one of the outgoing connections will

evaluate to true at runtime because the process will throw an exception at runtime if it cannot

determine an outgoing connection.

It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Type: The type of the split node, i.e., AND, XOR or OR (see above).

• Constraints: The constraints linked to each of the outgoing connections (in case of an exclusive

or inclusive gateway).

Converging gateway

63

6.6.2. Converging gateway

Figure 6.17. Converging gateway

Chapter 6. Core Engine: Basics

64

Allows you to synchronize multiple branches. A Converging Gateway should have two or more

incoming connections and one outgoing connection. There are two types of splits currently

supported:

• AND or parallel means that is will wait until all incoming branches are completed before

continuing.

• XOR or exclusive means that it continues as soon as one of its incoming branches has been

completed. If it is triggered from more than one incoming connection, it will trigger the next node

for each of those triggers.

It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Type: The type of the Join node, i.e. AND or XOR.

6.7. Using a process in your application

As explained in more detail in the API chapter, there are two things you need to do to be able to

execute processes from within your application: (1) you need to create a Knowledge Base that

contains the definition of the process, and (2) you need to start the process by creating a session

to communicate with the process engine and start the process.

1. Creating a Knowledge Base: Once you have a valid process, you can add the process to the

Knowledge Base:

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

kbuilder.add(ResourceFactory.newClassPathResource("MyProcess.bpmn2"),

 ResourceType.BPMN2);

After adding all your process to the builder (you can add more than one process), you can

create a new knowledge base like this:

KnowledgeBase kbase = kbuilder.newKnowledgeBase();

Note that this will throw an exception if the knowledge base contains errors (because it could

not parse your processes correctly).

2. Starting a process: To start a particular process, you will need to call the startProcess method

on your session and pass the id of the process you want to start. For example:

Other features

65

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

ksession.startProcess("com.sample.hello");

The parameter of the startProcess method is the id of the process that needs to be started.

When defining a process, this process id needs to be specified as a property of the process (as

for example shown in the Properties View in Eclipse when you click the background canvas

of your process).

When you start the process, you may specify additional parameters that are used to pass

additional input data to the process, using the startProcess(String processId, Map

parameters) method. The additional set of parameters is a set of name-value pairs. These

parameters are copied to the newly created process instance as top-level variables of the

process, so they can be accessed in the remainder of your process directly.

6.8. Other features

6.8.1. Data

While the flow chart focuses on specifying the control flow of the process, it is usually also

necessary to look at the process from a data perspective. Throughout the execution of a process,

data can retrieved, stored, passed on and used.

For storing runtime data, during the execution of the process, process variables can be used. A

variable is defined by a name and a data type. This could be a basic data type, such as boolean,

int, or String, or any kind of Object subclass. Variables can be defined inside a variable scope. The

top-level scope is the variable scope of the process itself. Subscopes can be defined using a Sub-

Process. Variables that are defined in a subscope are only accessible for nodes within that scope.

Whenever a variable is accessed, the process will search for the appropriate variable scope that

defines the variable. Nesting of variable scopes is allowed. A node will always search for a variable

in its parent container. If the variable cannot be found, it will look in that one's parent container,

and so on, until the process instance itself is reached. If the variable cannot be found, a read

access yields null, and a write access produces an error message, with the process continuing

its execution.

Variables can be used in various ways:

• Process-level variables can be set when starting a process by providing a map of parameters

to the invocation of the startProcess method. These parameters will be set as variables on

the process scope.

• Script actions can access variables directly, simply by using the name of the variable as

a local parameter in their script. For example, if the process defines a variable of type

"org.jbpm.Person" in the process, a script in the process could access this directly:

Chapter 6. Core Engine: Basics

66

// call method on the process variable "person"

person.setAge(10);

Changing the value of a variable in a script can be done through the knowledge context:

kcontext.setVariable(variableName, value);

• Service tasks (and reusable sub-processes) can pass the value of process variables to the

outside world (or another process instance) by mapping the variable to an outgoing parameter.

For example, the parameter mapping of a service task could define that the value of the process

variable x should be mapped to a task parameter y right before the service is being invoked.

You can also inject the value of process variable into a hard-coded parameter String using

#{expression}. For example, the description of a human task could be defined as You need

to contact person #{person.getName()} (where person is a process variable), which will

replace this expression by the actual name of the person when the service needs to be invoked.

Similarly results of a service (or reusable sub-process) can also be copied back to a variable

using a result mapping.

• Various other nodes can also access data. Event nodes for example can store the data

associated to the event in a variable, etc. Check the properties of the different node types for

more information.

• Process variables can be accessed also from the Java code of your application. It is done by

casting of ProcessInstance to WorkflowProcessInstance. See the following example:

variable = ((WorkflowProcessInstance) processInstance).getVariable("variableName");

To list all the process variables see the following code snippet:

org.jbpm.process.instance.ProcessInstance processInstance = ...;

VariableScopeInstance variableScope = (VariableScopeInstance) processInstance.getContextInstance(VariableScope.VARIABLE_SCOPE);

Map<String, Object> variables = variableScope.getVariables();

Note that when you use persistence then you have to use a command based approach to get

all process variables:

Map<String, Object> variables = ksession.execute(new GenericCommand<Map<String, Object>>() {

 public Map<String, Object> execute(Context context) {

 StatefulKnowledgeSession ksession = ((KnowledgeCommandContext) context).getStatefulKnowledgesession();

 org.jbpm.process.instance.ProcessInstance processInstance = (org.jbpm.process.instance.ProcessInstance) ksession.getProcessInstance(piId);

Constraints

67

 VariableScopeInstance variableScope = (VariableScopeInstance) processInstance.getContextInstance(VariableScope.VARIABLE_SCOPE);

 Map<String, Object> variables = variableScope.getVariables();

 return variables;

 }

});

Finally, processes (and rules) all have access to globals, i.e. globally defined variables

and data in the Knowledge Session. Globals are directly accessible in actions just like

variables. Globals need to be defined as part of the process before they can be used. You

can for example define globals by clicking the globals button when specifying an action

script in the Eclipse action property editor. You can also set the value of a global from

the outside using ksession.setGlobal(name, value) or from inside process scripts using

kcontext.getKnowledgeRuntime().setGlobal(name,value);.

6.8.2. Constraints

Constraints can be used in various locations in your processes, for example in a diverging

gateway. jBPM supports two types of constraints:

• Code constraints are boolean expressions, evaluated directly whenever they are reached. We

currently support two dialects for expressing these code constraints: Java and MVEL. Both

Java and MVEL code constraints have direct access to the globals and variables defined in

the process. Here is an example of a valid Java code constraint, person being a variable in

the process:

return person.getAge() > 20;

A similar example of a valid MVEL code constraint is:

return person.age > 20;

• Rule constraints are equals to normal Drools rule conditions. They use the Drools Rule

Language syntax to express possibly complex constraints. These rules can, like any other rule,

refer to data in the Working Memory. They can also refer to globals directly. Here is an example

of a valid rule constraint:

Person(age > 20)

This tests for a person older than 20 being in the Working Memory.

Chapter 6. Core Engine: Basics

68

Rule constraints do not have direct access to variables defined inside the process. It is

however possible to refer to the current process instance inside a rule constraint, by adding

the process instance to the Working Memory and matching for the process instance in your

rule constraint. We have added special logic to make sure that a variable processInstance of

type WorkflowProcessInstance will only match to the current process instance and not to other

process instances in the Working Memory. Note that you are however responsible yourself to

insert the process instance into the session and, possibly, to update it, for example, using Java

code or an on-entry or on-exit or explicit action in your process. The following example of a rule

constraint will search for a person with the same name as the value stored in the variable "name"

of the process:

processInstance : WorkflowProcessInstance()

Person(name == (processInstance.getVariable("name")))

add more constraints here ...

6.8.3. Action scripts

Action scripts can be used in different ways:

• Within a Script Task,

• As entry or exit actions, with a number of nodes.

Actions have access to globals and the variables that are defined for

the process and the predefined variable kcontext. This variable is of type

org.drools.runtime.process.ProcessContext and can be used for several tasks:

• Getting the current node instance (if applicable). The node instance could be queried for data,

such as its name and type. You can also cancel the current node instance.

NodeInstance node = kcontext.getNodeInstance();

String name = node.getNodeName();

• Getting the current process instance. A process instance can be queried for data (name, id,

processId, etc.), aborted or signaled an internal event.

ProcessInstance proc = kcontext.getProcessInstance();

proc.signalEvent(type, eventObject);

• Getting or setting the value of variables.

• Accessing the Knowledge Runtime allows you do things like starting a process, signaling

(external) events, inserting data, etc.

Events

69

jBPM currently supports two dialects, Java and MVEL. Java actions should be valid Java code.

MVEL actions can use the business scripting language MVEL to express the action. MVEL accepts

any valid Java code but additionally provides support for nested accesses of parameters (e.g.,

person.name instead of person.getName()), and many other scripting improvements. Thus,

MVEL expressions are more convenient for the business user. For example, an action that prints

out the name of the person in the "requester" variable of the process would look like this:

// Java dialect

System.out.println(person.getName());

// MVEL dialect

System.out.println(person.name);

6.8.4. Events

Figure 6.18. A sample process using events

During the execution of a process, the process engine makes sure that all the relevant tasks are

executed according to the process plan, by requesting the execution of work items and waiting for

the results. However, it is also possible that the process should respond to events that were not

directly requested by the process engine. Explicitly representing these events in a process allows

the process author to specify how the process should react to such events.

Events have a type and possibly data associated with them. Users are free to define their own

event types and their associated data.

A process can specify how to respond to events by using a Message Event. An Event node needs

to specify the type of event the node is interested in. It can also define the name of a variable,

which will receive the data that is associated with the event. This allows subsequent nodes in the

process to access the event data and take appropriate action based on this data.

An event can be signaled to a running instance of a process in a number of ways:

Chapter 6. Core Engine: Basics

70

• Internal event: Any action inside a process (e.g., the action of an action node, or an on-entry or

on-exit action of some node) can signal the occurrence of an internal event to the surrounding

process instance, using code like the following:

kcontext.getProcessInstance().signalEvent(type, eventData);

• External event: A process instance can be notified of an event from outside using code such as:

processInstance.signalEvent(type, eventData);

• External event using event correlation: Instead of notifying a process instance directly, it is

also possible to have the engine automatically determine which process instances might be

interested in an event using event correlation, which is based on the event type. A process

instance that contains an event node listening to external events of some type is notified

whenever such an event occurs. To signal such an event to the process engine, write code

such as:

ksession.signalEvent(type, eventData);

Events could also be used to start a process. Whenever a Message Start Event defines an event

trigger of a specific type, a new process instance will be started every time that type of event is

signalled to the process engine.

6.8.5. Timers

Timers wait for a predefined amount of time, before triggering, once or repeatedly. They can be

used to trigger certain logic after a certain period, or to repeat some action at regular intervals.

A Timer node is set up with a delay and a period. The delay specifies the amount of time to wait

after node activation before triggering the timer the first time. The period defines the time between

subsequent trigger activations. A period of 0 results in a one-shot timer.

The (period and delay) expression should be of the form [#d][#h][#m][#s][#[ms]]. You can specify

the amount of days, hours, minutes, seconds and milliseconds (which is the default if you don't

specify anything). For example, the expression "1h" will wait one hour before triggering the timer

(again).

The timer service is responsible for making sure that timers get triggered at the appropriate times.

Timers can also be cancelled, meaning that the timer will no longer be triggered.

Timers can be used in two ways inside a process:

• A Timer Event may be added to the process flow. Its activation starts the timer, and when it

triggers, once or repeatedly, it activates the Timer node's successor. Subsequently, the outgoing

Updating processes

71

connection of a timer with a positive period is triggered multiple times. Cancelling a Timer node

also cancels the associated timer, after which no more triggers will occur.

• Timers can be associated with a Sub-Process as a boundary event. This is however currently

only possible when working with XML directly. We will be adding support for graphically

specifying this in the new BPMN2 editor.

6.8.6. Updating processes

Over time, processes may evolve, for example because the process itself needs to be improved, or

due to changing requirements. Actually, you cannot really update a process, you can only deploy

a new version of the process, the old process will still exist. That is because existing process

instances might still need that process definition. So the new process should have a different id,

though the name could be the same, and you can use the version parameter to show when a

process is updated (the version parameter is just a String and is not validated by the process

framework itself, so you can select your own format for specifying minor/major updates, etc.).

Whenever a process is updated, it is important to determine what should happen to the already

running process instances. There are various strategies one could consider for each running

instance:

• Proceed: The running process instance proceeds as normal, following the process (definition) as

it was defined when the process instance was started. As a result, the already running instance

will proceed as if the process was never updated. New instances can be started using the

updated process.

• Abort (and restart): The already running instance is aborted. If necessary, the process instance

can be restarted using the new process definition.

• Transfer: The process instance is migrated to the new process definition, meaning that - once it

has been migrated successfully - it will continue executing based on the updated process logic.

By default, jBPM uses the proceed approach, meaning that multiple versions of the same process

can be deployed, but existing process instances will simply continue executing based on the

process definition that was used when starting the process instance. Running process instances

could always be aborted as well of course, using the process management API. Process instance

migration is more difficult and is explained in the following paragraphs.

6.8.6.1. Process instance migration

A process instance contains all the runtime information needed to continue execution at some

later point in time. This includes all the data linked to this process instance (as variables), but also

the current state in the process diagram. For each node that is currently active, a node instance is

used to represent this. This node instance can also contain additional state linked to the execution

of that specific node only. There are different types of node instances, one for each type of node.

A process instance only contains the runtime state and is linked to a particular process (indirectly,

using id references) that represents the process logic that needs to be followed when executing

Chapter 6. Core Engine: Basics

72

this process instance (this clear separation of definition and runtime state allows reuse of the

definition across all process instances based on this process and minimizes runtime state). As a

result, updating a running process instance to a newer version so it uses the new process logic

instead of the old one is simply a matter of changing the referenced process id from the old to

the new id.

However, this does not take into account that the state of the process instance (the variable

instances and the node instances) might need to be migrated as well. In cases where the process

is only extended and all existing wait states are kept, this is pretty straightforward, the runtime

state of the process instance does not need to change at all. However, it is also possible that a

more sophisticated mapping is necessary. For example, when an existing wait state is removed,

or split into multiple wait states, an existing process instance that is waiting in that state cannot

simply be updated. Or when a new process variable is introduced, that variable might need to be

initiated correctly so it can be used in the remainder of the (updated) process.

The WorkflowProcessInstanceUpgrader can be used to upgrade a workflow process instance to

a newer process instance. Of course, you need to provide the process instance and the new

process id. By default, jBPM will automatically map old node instances to new node instances with

the same id. But you can provide a mapping of the old (unique) node id to the new node id. The

unique node id is the node id, preceded by the node ids of its parents (with a colon inbetween),

to uniquely identify a node when composite nodes are used (as a node id is only unique within its

node container. The new node id is simply the new node id in the node container (so no unique

node id here, simply the new node id). The following code snippet shows a simple example.

// create the session and start the process "com.sample.process"

KnowledgeBuilder kbuilder = ...

StatefulKnowledgeSession ksession = ...

ProcessInstance processInstance = ksession.startProcess("com.sample.process");

// add a new version of the process "com.sample.process2"

kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

kbuilder.add(..., ResourceType.BPMN2);

kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());

// migrate process instance to new version

Map<String, Long> mapping = new HashMap<String, Long>();

// top level node 2 is mapped to a new node with id 3

mapping.put("2", 3L);

// node 2, which is part of composite node 5, is mapped to a new node with id 4

mapping.put("5.2", 4L);

WorkflowProcessInstanceUpgrader.upgradeProcessInstance(

 ksession, processInstance.getId(),

 "com.sample.process2", mapping);

If this kind of mapping is still insufficient, you can still describe your own custom mappers for

specific situations. Be sure to first disconnect the process instance, change the state accordingly

Multi-threading

73

and then reconnect the process instance, similar to how the WorkflowProcessinstanceUpgrader

does it.

6.8.7. Multi-threading

In the following text, we will refer to two types of "multi-threading": logical and technical. Technical

multi-threading is what happens when multiple threads or processes are started on a computer,

for example by a Java or C program. Logical multi-threading is what we see in a BPM process after

the process reaches a parallel gateway, for example. From a functional standpoint, the original

process will then split into two processes that are executed in a parallel fashion.

Of course, the jBPM engine supports logical multi-threading: for example, processes that include

a parallel gateway. We've chosen to implement logical multi-threading using one thread: a jBPM

process that includes logical multi-threading will only be executed in one technical thread. The

main reason for doing this is that multiple (technical) threads need to be be able to communicate

state information with each other if they are working on the same process. This requirement

brings with it a number of complications. While it might seem that multi-threading would bring

performance benefits with it, the extra logic needed to make sure the different threads work

together well means that this is not guaranteed. There is also the extra overhead incurred because

we need to avoid race conditions and deadlocks.

6.8.7.1. Engine execution

In general, the jBPM engine executes actions in serial. For example, when the engine encounters

a script task in a process, it will synchronously execute that script and wait for it to complete before

continuing execution. Similarly, if a process encounters a parallel gateway, it will sequentially

trigger each of the outgoing branches, one after the other. This is possible since execution is

almost always instantaneous, meaning that it is extremely fast and produces almost no overhead.

As a result, the user will usually not even notice this. Similarly, action scripts in a process are also

synchronously executed, and the engine will wait for them to finish before continuing the process.

For example, doing a Thread.sleep(...) as part of a script will not make the engine continue

execution elsewhere but will block the engine thread during that period.

The same principle applies to service tasks. When a service task is reached in a process, the

engine will also invoke the handler of this service synchronously. The engine will wait for the

completeWorkItem(...) method to return before continuing execution. It is important that your

service handler executes your service asynchronously if its execution is not instantaneous.

An example of this would be a service task that invokes an external service. Since the delay in

invoking this service remotely and waiting for the results might be too long, it might be a good idea

to invoke this service asynchronously. This means that the handler will only invoke the service and

will notify the engine later when the results are available. In the mean time, the process engine

then continues execution of the process.

Human tasks are a typical example of a service that needs to be invoked asynchronously, as we

don't want the engine to wait until a human actor has responded to the request. The human task

Chapter 6. Core Engine: Basics

74

handler will only create a new task (on the task list of the assigned actor) when the human task

node is triggered. The engine will then be able to continue execution on the rest of the process (if

necessary) and the handler will notify the engine asynchronously when the user has completed

the task.

6.8.7.2. Asynchronous handlers

How can we implement an asynchronous service handler? To start with, this depends on the

technology you're using. If you're only using Java, you could execute the actual service in a new

thread:

public class MyServiceTaskHandler implements WorkItemHandler {

 public void executeWorkItem(WorkItem workItem, WorkItemManager manager) {

 new Thread(new Runnable() {

 public void run() {

 // Do the heavy lifting here ...

 }

 }).start();

 }

 public void abortWorkItem(WorkItem workItem, WorkItemManager manager) {

 }

}

It's advisable to have your handler contact a service that executes the business operation, instead

of having it perform the actual work. If anything goes wrong with a business operation, it doesn't

affect your process. The loose coupling that this provides also gives you greater flexibility in

reusing services and developing them.

For example, you can have your human task handler simply invoke the human task service to

add a task there. To implement an asynchronous handler, you usually have to simply do an

asynchronous invocation of this service. This usually depends on the technology you use to do

the communication, but this might be as simple as asynchronously invoking a web service, or

sending a JMS message to the external service.

6.8.7.3. Multiple knowledge sessions and persistence

The simplest way to run multiple processes is to run them all using one knowledge session.

However, there are cases in which it's necessary to run multiple processes in different knowledge

sessions, even in different (technical) threads. Both are supported by jBPM.

When we add persistence (using a database, for example) to a situation in which we have multiple

knowledge sessions (and processes), there is a guideline that users should be aware of. The

following paragraphs explain why this guideline is important to follow.

Multi-threading

75

• Please make sure to use a database that allows row-level locks as well as table-level locks.

For example, a user could have a situation in which there are 2 (or more) threads running, each

with its own knowledge session instance. On each thread, jBPM processes are being started using

the local knowledge session instance.

In this use case, a race condition exists in which both thread A and thread B will have coincidentally

simultaneously finished a process. At this point, because persistence is being used, both thread

A and B will be commiting changes to the databse. If row-level locks are not possible, then the

following situation can occur:

• Thread A has a lock on the ProcessInstanceInfo table, having just committed a change to

that table.

• Thread A wants a lock on the SessionInfo table in order to commit a change there.

• Thread B has the opposite situation: it has a lock on the SessionInfo table, having just

committed a change there.

• Thread B wants a lock on the ProcessInstanceInfo table, even though Thread A already has

a lock on it

This is a deadlock situation which the database and application will not be able to solve.

However, if row-level locks are posible (and enabled!!) in the database (and tables used), then

this situation will not occur.

76

Chapter 7.

77

Chapter 7. Core Engine: BPMN 2.0

7.1. Business Process Model and Notation (BPMN) 2.0

specification

The primary goal of BPMN is to provide a notation that is readily understandable

 by all business users,

from the business analysts that create the initial drafts of the processes, to

 the technical developers

responsible for implementing the technology that will perform those processes,

 and finally, to the

business people who will manage and monitor those processes."

The Business Process Model and Notation (BPMN) 2.0 specification is an OMG specification that

not only defines a standard on how to graphically represent a business process (like BPMN 1.x),

but now also includes execution semantics for the elements defined, and an XML format on how

to store (and share) process definitions.

jBPM5 allows you to execute processes defined using the BPMN 2.0 XML format. That means

that you can use all the different jBPM5 tooling to model, execute, manage and monitor

your business processes using the BPMN 2.0 format for specifying your executable business

processes. Actually, the full BPMN 2.0 specification also includes details on how to represent

things like choreographies and collaboration. The jBPM project however focuses on that part of

the specification that can be used to specify executable processes.

Executable processes in BPMN consist of a different types of nodes being connected to each

other using sequence flows. The BPMN 2.0 specification defines three main types of nodes:

• Events: They are used to model the occurrence of a particular event. This could be a start event

(that is used to indicate the start of the process), end events (that define the end of the process,

or of that subflow) and intermediate events (that indicate events that might occur during the

execution of the process).

• Activities: These define the different actions that need to be performed during the execution of

the process. Different types of tasks exist, depending on the type of activity you are trying to

model (e.g. human task, service task, etc.) and activities could also be nested (using different

types of sub-processes).

• Gateways: Can be used to define multiple paths in the process. Depending on the type of

gateway, these might indicate parallel execution, choice, etc.

jBPM5 does not implement all elements and attributes as defined in the BPMN 2.0 specification.

We do however support a significant subset, including the most common node types that can be

Chapter 7. Core Engine: BPMN 2.0

78

used inside executable processes. This includes (almost) all elements and attributes as defined in

the "Common Executable" subclass of the BPMN 2.0 specification, extended with some additional

elements and attributes we believe are valuable in that context as well. The full set of elements

and attributes that are supported can be found below, but it includes elements like:

• Flow objects

• Events

• Start Event (None, Conditional, Signal, Message, Timer)

• End Event (None, Terminate, Error, Escalation, Signal, Message, Compensation)

• Intermediate Catch Event (Signal, Timer, Conditional, Message)

• Intermediate Throw Event (None, Signal, Escalation, Message, Compensation)

• Non-interrupting Boundary Event (Escalation, Timer)

• Interrupting Boundary Event (Escalation, Error, Timer, Compensation)

• Activities

• Script Task

• Task

• Service Task

• User Task

• Business Rule Task

• Manual Task

• Send Task

• Receive Task

• Reusable Sub-Process (Call Activity)

• Embedded Sub-Process

• Ad-Hoc Sub-Process

• Data-Object

• Gateways

• Diverging

• Exclusive

Business Process Model and Notation (BPMN) 2.0 specification

79

• Inclusive

• Parallel

• Event-Based

• Converging

• Exclusive

• Parallel

• Lanes

• Data

• Java type language

• Process properties

• Embedded Sub-Process properties

• Activity properties

• Connecting objects

• Sequence flow

For example, consider the following "Hello World" BPMN 2.0 process, which does nothing more

that writing out a "Hello World" statement when the process is started.

An executable version of this process expressed using BPMN 2.0 XML would look something

like this:

<?xml version="1.0" encoding="UTF-8"?>

<definitions id="Definition"

 targetNamespace="http://www.example.org/MinimalExample"

 typeLanguage="http://www.java.com/javaTypes"

 expressionLanguage="http://www.mvel.org/2.0"

 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"

 xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"

 xs:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL

 BPMN20.xsd"

 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"

 xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"

Chapter 7. Core Engine: BPMN 2.0

80

 xmlns:di="http://www.omg.org/spec/DD/20100524/DI"

 xmlns:tns="http://www.jboss.org/drools">

 <process processType="Private" isExecutable="true" id="com.sample.HelloWorld" name="Hello

 World" >

 <!-- nodes -->

 <startEvent id="_1" name="StartProcess" />

 <scriptTask id="_2" name="Hello" >

 <script>System.out.println("Hello World");</script>

 </scriptTask>

 <endEvent id="_3" name="EndProcess" >

 <terminateEventDefinition/>

 </endEvent>

 <!-- connections -->

 <sequenceFlow id="_1-_2" sourceRef="_1" targetRef="_2" />

 <sequenceFlow id="_2-_3" sourceRef="_2" targetRef="_3" />

 </process>

 <bpmndi:BPMNDiagram>

 <bpmndi:BPMNPlane bpmnElement="Minimal" >

 <bpmndi:BPMNShape bpmnElement="_1" >

 <dc:Bounds x="15" y="91" width="48" height="48" />

 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="_2" >

 <dc:Bounds x="95" y="88" width="83" height="48" />

 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="_3" >

 <dc:Bounds x="258" y="86" width="48" height="48" />

 </bpmndi:BPMNShape>

 <bpmndi:BPMNEdge bpmnElement="_1-_2" >

 <di:waypoint x="39" y="115" />

 <di:waypoint x="75" y="46" />

 <di:waypoint x="136" y="112" />

 </bpmndi:BPMNEdge>

 <bpmndi:BPMNEdge bpmnElement="_2-_3" >

 <di:waypoint x="136" y="112" />

 <di:waypoint x="240" y="240" />

 <di:waypoint x="282" y="110" />

 </bpmndi:BPMNEdge>

 </bpmndi:BPMNPlane>

 </bpmndi:BPMNDiagram>

</definitions>

To create your own process using BPMN 2.0 format, you can

Examples

81

• Create a new Flow file using the Drools Eclipse plugin wizard and in the last page of the wizard,

make sure you select Drools 5.1 code compatibility. This will create a new process using the

BPMN 2.0 XML format. Note however that this is not exactly a BPMN 2.0 editor, as it still

uses different attributes names etc. It does however save the process using valid BPMN 2.0

syntax. Also note that the editor does not support all node types and attributes that are already

supported in the execution engine.

• The Designer is an open-source web-based editor that supports the BPMN 2.0 format. We have

embedded it into Guvnor for BPMN 2.0 process visualization and editing. You could use the

Designer (either standalone or integrated) to create / edit BPMN 2.0 processes and then export

them to BPMN 2.0 format or save them into Guvnor and import them so they can be executed.

• A new BPMN2 Eclipse plugin is being created to support the full BPMN2 specification. It

is currently still under development and only supports a limited number of constructs and

attributes, but can already be used to create simple BPMN2 processes. To create a new BPMN2

file for this editor, use the wizard (under Examples) to create a new BPMN2 file, which will

generate a .bpmn2 file and a .prd file containing the graphical information. Double-click the .prd

file to edit the file using the graphical editor. For more detail, check out the chapter on the new

BPMN2 Eclipse plugin.

• You can always manually create your BPMN 2.0 process files by writing the XML directly. You

can validate the syntax of your processes against the BPMN 2.0 XSD, or use the validator in

the Eclipse plugin to check both syntax and completeness of your model.

The following code fragment shows you how to load a BPMN2 process into your knowledge

base ...

private static KnowledgeBase createKnowledgeBase() throws Exception {

 KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

 kbuilder.add(ResourceFactory.newClassPathResource("sample.bpmn2"), ResourceType.BPMN2);

 return kbuilder.newKnowledgeBase();

}

... and how to execute this process ...

KnowledgeBase kbase = createKnowledgeBase();

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

ksession.startProcess("com.sample.HelloWorld");

For more detail, check out the chapter on the API and the basics.

7.2. Examples

The BPMN 2.0 specification defines the attributes and semantics of each of the node types (and

other elements).

Chapter 7. Core Engine: BPMN 2.0

82

The jbpm-bpmn2 module contains a lot of junit tests for each of the different node types. These

test processes can also serve as simple examples: they don't really represent an entire real life

business processes but can definitely be used to show how specific features can be used. For

example, the following figures shows the flow chart of a few of those examples. The entire list can

be found in the src/main/resources folder for the jbpm-bpmn2 module like here [http://github.com/

krisv/jbpm/tree/master/jbpm-bpmn2/src/test/resources/].

7.3. Supported elements / attributes

Table 7.1. Keywords

Element Supported

attributes

Supported

elements

Extension

attributes

Extension

elements

definitions rootElement

BPMNDiagram

process processType

isExecutable

name id

property laneSet

flowElement

packageName

adHoc version

import global

sequenceFlow sourceRef

targetRef

isImmediate

name id

conditionExpressionpriority

interface name id operation

operation name id inMessageRef

laneSet lane

lane name id flowNodeRef

import* name

global* identifier type

Events

startEvent name id dataOutput

dataOutputAssociation

outputSet

eventDefinition

x y width height

endEvent name id dataInput

dataInputAssociation

inputSet

eventDefinition

x y width height

intermediateCatchEventname id dataOutput

dataOutputAssociation

x y width height

http://github.com/krisv/jbpm/tree/master/jbpm-bpmn2/src/test/resources/
http://github.com/krisv/jbpm/tree/master/jbpm-bpmn2/src/test/resources/
http://github.com/krisv/jbpm/tree/master/jbpm-bpmn2/src/test/resources/

Supported elements / attributes

83

Element Supported

attributes

Supported

elements

Extension

attributes

Extension

elements

outputSet

eventDefinition

intermediateThrowEventname id dataInput

dataInputAssociation

inputSet

eventDefinition

x y width height

boundaryEvent cancelActivity

attachedToRef

name id

eventDefinition x y width height

terminateEventDefinition

compensateEventDefinitionactivityRef documentation

extensionElements

conditionalEventDefinition condition

errorEventDefinitionerrorRef

error errorCode id

escalationEventDefinitionescalationRef

escalation escalationCode

id

messageEventDefinitionmessageRef

message itemRef id

signalEventDefinitionsignalRef

timerEventDefinition timeCycle

timeDuration

Activities

task name id ioSpecification

dataInputAssociation

dataOutputAssociation

taskName x y

width height

scriptTask scriptFormat

name id

script x y width height

script text[mixed

content]

userTask name id ioSpecification

dataInputAssociation

dataOutputAssociation

resourceRole

x y width height onEntry-script

onExit-script

potentialOwner resourceAssignmentExpression

Chapter 7. Core Engine: BPMN 2.0

84

Element Supported

attributes

Supported

elements

Extension

attributes

Extension

elements

resourceAssignmentExpression expression

businessRuleTask name id x y width height

ruleFlowGroup

onEntry-script

onExit-script

manualTask name id x y width height onEntry-script

onExit-script

sendTask messageRef

name id

ioSpecification

dataInputAssociation

x y width height onEntry-script

onExit-script

receiveTask messageRef

name id

ioSpecification

dataOutputAssociation

x y width height onEntry-script

onExit-script

serviceTask operationRef

name id

ioSpecification

dataInputAssociation

dataOutputAssociation

x y width height onEntry-script

onExit-script

subProcess name id flowElement

property

loopCharacteristics

x y width height

adHocSubProcess cancelRemainingInstances

name id

completionCondition

flowElement

property

x y width height

callActivity calledElement

name id

ioSpecification

dataInputAssociation

dataOutputAssociation

x y width height

waitForCompletion

independent

onEntry-script

onExit-script

multiInstanceLoopCharacteristics loopDataInputRef

inputDataItem

loopDataOutputRef

outputDataItem

onEntry-script* scriptFormat script

onExit-script* scriptFormat script

Gateways

parallelGateway gatewayDirection

name id

x y width height

eventBasedGatewaygatewayDirection

name id

x y width height

exclusiveGateway default

gatewayDirection

name id

x y width height

Supported elements / attributes

85

Element Supported

attributes

Supported

elements

Extension

attributes

Extension

elements

inclusiveGateway default

gatewayDirection

name id

x y width height

Data

property itemSubjectRef

id

dataObject itemSubjectRef

id

itemDefinition structureRef id

ioSpecification dataInput

dataOutput

inputSet

outputSet

dataInput name id

dataInputAssociation sourceRef

targetRef

assignment

dataOutput name id

dataOutputAssociation sourceRef

targetRef

assignment

inputSet dataInputRefs

outputSet dataOutputRefs

assignment from to

formalExpression language text[mixed

content]

BPMNDI

BPMNDiagram BPMNPlane

BPMNPlane bpmnElement BPMNEdge

BPMNShape

BPMNShape bpmnElement Bounds

BPMNEdge bpmnElement waypoint

Bounds x y width height

waypoint x y

86

Chapter 8.

87

Chapter 8. Core Engine:

Persistence and transactions
jBPM allows the persistent storage of certain information. This chapter describes these different

types of persistence, and how to configure them. An example of the information stored is the

process runtime state. Storing the process runtime state is necessary in order to be able to

continue execution of a process instance at any point, if something goes wrong. Also, the process

definitions themselves, and the history information (logs of current and previous process states

already) can also be persisted.

8.1. Runtime State

Whenever a process is started, a process instance is created, which represents the execution

of the process in that specific context. For example, when executing a process that specifies

how to process a sales order, one process instance is created for each sales request. The

process instance represents the current execution state in that specific context, and contains all

the information related to that process instance. Note that it only contains the (minimal) runtime

state that is needed to continue the execution of that process instance at some later time, but it

does not include information about the history of that process instance if that information is no

longer needed in the process instance.

The runtime state of an executing process can be made persistent, for example, in a database.

This allows to restore the state of execution of all running processes in case of unexpected failure,

or to temporarily remove running instances from memory and restore them at some later time.

jBPM allows you to plug in different persistence strategies. By default, if you do not configure the

process engine otherwise, process instances are not made persistent.

If you configure the engine to use persistence, it will automatically store the runtime state into the

database. You do not have to trigger persistence yourself, the engine will take care of this when

persistence is enabled. Whenever you invoke the engine, it will make sure that any changes are

stored at the end of that invocation, at so-called safe points. Whenever something goes wrong

and you restore the engine from the database, you also should not reload the process instances

and trigger them manually to resume execution, as process instances will automatically resume

execution if they are triggered, like for example by a timer expiring, the completion of a task that

was requested by that process instance, or a signal being sent to the process instance. The engine

will automatically reload process instances on demand.

The runtime persistence data should in general be considered internal, meaning that you probably

should not try to access these database tables directly and especially not try to modify these

directly (as changing the runtime state of process instances without the engine knowing might

have unexpected side-effects). In most cases where information about the current execution state

of process instances is required, the use of a history log is mostly recommended (see below). In

some cases, it might still be useful to for example query the internal database tables directly, but

you should only do this if you know what you are doing.

Chapter 8. Core Engine: Persi...

88

8.1.1. Binary Persistence

jBPM uses a binary persistence mechanism, otherwise known as marshalling, which converts the

state of the process instance into a binary dataset. When you use persistence with jBPM, this

mechanism is used to save or retrieve the process instance state from the database. The same

mechanism is also applied to the session state and any work item states.

When the process instance state is persisted, two things happen:

• First, the process instance information is transformed into a binary blob. For performance

reasons, a custom serialization mechanism is used and not normal Java serialization.

• This blob is then stored, alongside other metadata about this process instance. This metadata

includes, among other things, the process instance id, process id, and the process start date.

Apart from the process instance state, the session itself can also store some state, such as the

state of timer jobs, or the session data that the any business rules would be evaluated over. This

session state is stored separately as a binary blob, along with the id of the session and some

metadata. You can always restore session state by reloading the session with the given id. The

session id can be retrieved using ksession.getId().

Note that the process instance binary datasets are usually relatively small, as they only contain

the minimal execution state of the process instance. For a simple process instance, this usually

contains one or a few node instances, i.e., any node that is currently executing, and any existing

variable values.

As a result of jBPM using marshalling, the data model is both simple and small:

Figure 8.1. jBPM data model
[images/Chapter-Persistence/jbpm_schema.png]

The sessioninfo entity contains the state of the (knowledge) session in which the jBPM process

instance is running.

Table 8.1. SessionInfo

Field Description Nullable

id The primary key. NOT NULL

lastmodificationdate The last time that the entity

was saved to the database

images/Chapter-Persistence/jbpm_schema.png

Binary Persistence

89

Field Description Nullable

rulesbytearray The binary dataset containing

the state of the session

NOT NULL

startdate The start time of the session

optlock The version field that serves

as its optimistic lock value

The processinstanceinfo entity contains the state of the jBPM process instance.

Table 8.2. ProcessInstanceInfo

Field Description Nullable

instanceid The primary key NOT NULL

lastmodificationdate The last time that the entity

was saved to the database

lastreaddate The last time that the entity

was retrieved (read) from the

database

processid The name (id) of the process

processinstancebytearray This is the binary dataset

containing the state of the

process instance

NOT NULL

startdate The start time of the process

state An integer representing the

state of the process instance

NOT NULL

optlock The version field that serves

as its optimistic lock value

The eventtypes entity contains information about events that a process instance will undergo

or has undergone.

Table 8.3. EventTypes

Field Description Nullable

instanceid This references the

processinstanceinfo

primary key and there is a

foreign key constraint on this

column.

NOT NULL

element A text field related to an

event that the process has

undergone.

Chapter 8. Core Engine: Persi...

90

The workiteminfo entity contains the state of a work item.

Table 8.4. WorkItemInfo

Field Description Nullable

workitemid The primary key NOT NULL

name The name of the work item

processinstanceid The (primary key) id of the

process: there is no foreign

key constraint on this field.

NOT NULL

state An integer representing the

state of the work item

NOT NULL

optlock The version field that serves

as its optimistic lock value

workitembytearay This is the binary dataset

containing the state of the

work item

NOT NULL

8.1.2. Safe Points

The state of a process instance is stored at so-called "safe points" during the execution of

the process engine. Whenever a process instance is executing (for example when it started or

continuing from a previous wait state, the engine executes the process instance until no more

actions can be performed (meaning that the process instance either has completed (or was

aborted), or that it has reached a wait state in all of its parallel paths). At that point, the engine has

reached the next safe state, and the state of the process instance (and all other process instances

that might have been affected) is stored persistently.

8.1.3. Configuring Persistence

By default, the engine does not save runtime data persistently. This means you can use the engine

completely without persistence (so not even requiring an in memory database) if necessary, for

example for performance reasons, or when you would like to manage persistence yourself. It is,

however, possible to configure the engine to do use persistence by configuring it to do so. This

usually requires adding the necessary dependencies, configuring a datasource and creating the

engine with persistence configured.

8.1.3.1. Adding dependencies

You need to make sure the necessary dependencies are available in the classpath of your

application if you want to user persistence. By default, persistence is based on the Java

Persistence API (JPA) and can thus work with several persistence mechanisms. We are using

Hibernate by default.

Configuring Persistence

91

If you're using the Eclipse IDE and the jBPM Eclipse plugin, you should make sure the necessary

jars are added to your jBPM runtime directory. You don't really need to do anything (as the

necessary dependencies should already be there) if you are using the jBPM runtime that is

configured by default when using the jBPM installer, or if you downloaded and unzipped the jBPM

runtime artefact (from the downloads) and pointed the jBPM plugin to that directory.

If you would like to manually add the necessary dependencies to your project, first of all, you

need the jar file jbpm-persistence-jpa.jar, as that contains code for saving the runtime

state whenever necessary. Next, you also need various other dependencies, depending on the

persistence solution and database you are using. For the default combination with Hibernate as

the JPA persistence provider and using an H2 in-memory database and Bitronix for JTA-based

transaction management, the following list of additional dependencies is needed:

• jbpm-test (org.jbpm)

• jbpm-persistence-jpa (org.jbpm)

• drools-persistence-jpa (org.drools)

• persistence-api (javax.persistence)

• hibernate-entitymanager (org.hibernate)

• hibernate-annotations (org.hibernate)

• hibernate-commons-annotations (org.hibernate)

• hibernate-core (org.hibernate)

• commons-collections (commons-collections)

• dom4j (dom4j)

• jta (javax.transaction)

• btm (org.codehaus.btm)

• javassist (javassist)

• slf4j-api (org.slf4j)

• slf4j-jdk14 (org.slf4j)

• h2 (com.h2database)

8.1.3.2. Configuring the engine to use persistence using JBPMHelper

You need to configure the jBPM engine to use persistence, usually simply by using the appropriate

constructor when creating your session. There are various ways to create a session (as we have

tried to make this as easy as possible for you and have several utility classes for you, depending

for example if you are trying to write a process junit test).

Chapter 8. Core Engine: Persi...

92

The easiest way to do this is to use the jbpm-test module that allows you to easily create and test

your processes. The JBPMHelper class has a method to create a session, and uses a configuration

file to configure this session, like whether you want to use persistence, the datasource to use, etc.

The helper class will then do all the setup and configuration for you.

To configure persistence, create a jBPM.properties file and configure the following properties

(note that the example below are the default properties, using an H2 in-memory database with

persistence enables, if you are fine with all of these properties, you don't need to add new

properties file, as it will then use these properties by default):

for creating a datasource

persistence.datasource.name=jdbc/jbpm-ds

persistence.datasource.user=sa

persistence.datasource.password=

persistence.datasource.url=jdbc:h2:tcp://localhost/~/jbpm-db

persistence.datasource.driverClassName=org.h2.Driver

for configuring persistence of the session

persistence.enabled=true

persistence.persistenceunit.name=org.jbpm.persistence.jpa

persistence.persistenceunit.dialect=org.hibernate.dialect.H2Dialect

for configuring the human task service

taskservice.enabled=true

taskservice.datasource.name=org.jbpm.task

taskservice.transport=mina

taskservice.usergroupcallback=org.jbpm.task.service.DefaultUserGroupCallbackImpl

If you want to use persistence, you must make sure that the datasource (that you specified in

the jBPM.properties file) is initialized correctly. This means that the database itself must be up

and running, and the datasource should be registered using the correct name. If you would like

to use an H2 in-memory database (which is usually very easy to do some testing), you can use

the JBPMHelper class to start up this database, using:

JBPMHelper.startH2Server();

To register the datasource (this is something you always need to do, even if you're not using H2

as your database, check below for more options on how to configure your datasource), use:

JBPMHelper.setupDataSource();

Configuring Persistence

93

Next, you can use the JBPMHelper class to create your session (after creating your knowledge

base, which is identical to the case when you are not using persistence):

StatefulKnowledgeSession ksession = JBPMHelper.newStatefulKnowledgeSession(kbase);

Once you have done that, you can just call methods on this ksession (like startProcess) and the

engine will persist all runtime state in the created datasource.

You can also use the JBPMHelper class to recreate your session (by restoring its state from the

database, by passing in the session id (that you can retrieve using ksession.getId())):

StatefulKnowledgeSession ksession =

 JBPMHelper.loadStatefulKnowledgeSession(kbase, sessionId);

8.1.3.3. Manually configuring the engine to use persistence

You can also use the JPAKnowledgeService to create your knowledge session. This is slightly

more complex, but gives you full access to the underlying configurations. You can create a

new knowledge session using JPAKnowledgeService based on a knowledge base, a knowledge

session configuration (if necessary) and an environment. The environment needs to contain a

reference to your Entity Manager Factory. For example:

// create the entity manager factory and register it in the environment

EntityManagerFactory emf =

 Persistence.createEntityManagerFactory("org.jbpm.persistence.jpa");

Environment env = KnowledgeBaseFactory.newEnvironment();

env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);

// create a new knowledge session that uses JPA to store the runtime state

StatefulKnowledgeSession ksession =

 JPAKnowledgeService.newStatefulKnowledgeSession(kbase, null, env);

int sessionId = ksession.getId();

// invoke methods on your method here

ksession.startProcess("MyProcess");

ksession.dispose();

You can also use the JPAKnowledgeService to recreate a session based on a specific session id:

Chapter 8. Core Engine: Persi...

94

// recreate the session from database using the sessionId

ksession = JPAKnowledgeService.loadStatefulKnowledgeSession(

 sessionId, kbase, null, env);

You need to add a persistence configuration to your classpath to configure JPA to use Hibernate

and the H2 database (or your own preference), called persistence.xml in the META-INF

directory, as shown below. For more details on how to change this for your own configuration, we

refer to the JPA and Hibernate documentation for more information.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<persistence

 version="1.0"

 xsi:schemaLocation=

 "http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd

 http://java.sun.com/xml/ns/persistence/orm

 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"

 xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://java.sun.com/xml/ns/persistence">

 <persistence-unit name="org.jbpm.persistence.jpa" transaction-type="JTA">

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <jta-data-source>jdbc/jbpm-ds</jta-data-source>

 <mapping-file>META-INF/JBPMorm.xml</mapping-file>

 <class>org.drools.persistence.info.SessionInfo</class>

 <class>org.jbpm.persistence.processinstance.ProcessInstanceInfo</class>

 <class>org.drools.persistence.info.WorkItemInfo</class>

 <properties>

 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/

>

 <property name="hibernate.max_fetch_depth" value="3"/>

 <property name="hibernate.hbm2ddl.auto" value="update"/>

 <property name="hibernate.show_sql" value="true"/>

 <property name="hibernate.transaction.manager_lookup_class"

 value="org.hibernate.transaction.BTMTransactionManagerLookup"/>

 </properties>

 </persistence-unit>

</persistence>

This configuration file refers to a data source called "jdbc/jbpm-ds". If you run your application in

an application server (like for example JBoss AS), these containers typically allow you to easily set

up data sources using some configuration (like for example dropping a datasource configuration

file in the deploy directory). Please refer to your application server documentation to know how

to do this.

Transactions

95

For example, if you're deploying to JBoss Application Server v5.x, you can create a datasource

by dropping a configuration file in the deploy directory, for example:

<?xml version="1.0" encoding="UTF-8"?>

<datasources>

 <local-tx-datasource>

 <jndi-name>jdbc/jbpm-ds</jndi-name>

 <connection-url>jdbc:h2:tcp://localhost/~/test</connection-url>

 <driver-class>org.h2.jdbcx.JdbcDataSource</driver-class>

 <user-name>sa</user-name>

 <password></password>

 </local-tx-datasource>

</datasources>

If you are however executing in a simple Java environment, you can use the JBPMHelper class to

do this for you (see above) or the following code fragment could be used to set up a data source

(where we are using the H2 in-memory database in combination with Bitronix in this case).

PoolingDataSource ds = new PoolingDataSource();

ds.setUniqueName("jdbc/jbpm-ds");

ds.setClassName("bitronix.tm.resource.jdbc.lrc.LrcXADataSource");

ds.setMaxPoolSize(3);

ds.setAllowLocalTransactions(true);

ds.getDriverProperties().put("user", "sa");

ds.getDriverProperties().put("password", "sasa");

ds.getDriverProperties().put("URL", "jdbc:h2:tcp://localhost/~/jbpm-db");

ds.getDriverProperties().put("driverClassName", "org.h2.Driver");

ds.init();

8.1.4. Transactions

The jBPM engine supports JTA transactions. It also supports local transactions only when using

Spring. It does not support pure local transactions at the moment. For more information about

using Spring to set up persistence, please see the Spring chapter in the Drools integration guide.

Whenever you do not provide transaction boundaries inside your application, the engine will

automatically execute each method invocation on the engine in a separate transaction. If this

behavior is acceptable, you don't need to do anything else. You can, however, also specify the

transaction boundaries yourself. This allows you, for example, to combine multiple commands

into one transaction.

You need to register a transaction manager at the environment before using user-defined

transactions. The following sample code uses the Bitronix transaction manager. Next, we use the

Java Transaction API (JTA) to specify transaction boundaries, as shown below:

Chapter 8. Core Engine: Persi...

96

// create the entity manager factory and register it in the environment

EntityManagerFactory emf =

 Persistence.createEntityManagerFactory("org.jbpm.persistence.jpa");

Environment env = KnowledgeBaseFactory.newEnvironment();

env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);

env.set(EnvironmentName.TRANSACTION_MANAGER,

 TransactionManagerServices.getTransactionManager());

// create a new knowledge session that uses JPA to store the runtime state

StatefulKnowledgeSession ksession =

 JPAKnowledgeService.newStatefulKnowledgeSession(kbase, null, env);

// start the transaction

UserTransaction ut =

 (UserTransaction) new InitialContext().lookup("java:comp/UserTransaction");

ut.begin();

// perform multiple commands inside one transaction

ksession.insert(new Person("John Doe"));

ksession.startProcess("MyProcess");

// commit the transaction

ut.commit();

Note that, if you use Bitronix as the transaction manager, you should also add a simple

jndi.properties file in you root classpath to register the Bitronix transaction manager in JNDI. If

you are using the jbpm-test module, this is already included by default. If not, create a file named

jndi.properties with the following content:

java.naming.factory.initial=bitronix.tm.jndi.BitronixInitialContextFactory

If you would like to use a different JTA transaction manager, you can change the

persistence.xml file to use your own transaction manager. For example, when running inside

JBoss Application Server v5.x, you can use the JBoss transaction manager. You need to change

the transaction manager property in persistence.xml to:

<property name="hibernate.transaction.manager_lookup_class"

 value="org.hibernate.transaction.JBossTransactionManagerLookup" />

Transactions

97

8.1.4.1. Container managed transaction

Special consideration need to be taken when embedding jBPM inside an application that exucutes

in Container Managed Tansaction (CMT) mode, for instance EJB beans. This especially applies

to application servers that does not allow accessing UserTransaction instance from JNDI when

being part of container managed transation, e.g. WebSphere Application Server. Since default

implementation of transaction manager in jBPM is based on UserTransaction to get transaction

status which is used to decide if transaction should be started or not, in environments that prevent

accessing UserTrancation it won't do its job. To secure proper execution in CMT environments a

dedicated transaction manager implementation is provided:

org.jbpm.persistence.jta.ContainerManagedTransactionManager

This transaction manager expects that transaction is active and thus will always return ACTIVE

when invoking getStatus method. Operations like begin, commit, rollback are no-op methods as

transaction manager runs under managed transaction and can't affect it.

Note

To make sure that container is aware of any exceptions that happened during

process instance execution, user needs to ensure that exceptions thrown by the

engine are propagated up to the container to properly rollback transaction.

To configure this transaction manager following must be done:

• Insert transaction manager and peristence context manager into environment prior to creating/

loading session

 Environment env = EnvironmentFactory.newEnvironment();

 env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);

 env.set(EnvironmentName.TRANSACTION_MANAGER, new

 ContainerManagedTransactionManager());

 env.set(EnvironmentName.PERSISTENCE_CONTEXT_MANAGER, new

 JpaProcessPersistenceContextManager(env));

• configure JPA provider (example hibernate and WebSphere)

 <property name="hibernate.transaction.factory_class"

 value="org.hibernate.transaction.CMTTransactionFactory"/>

Chapter 8. Core Engine: Persi...

98

 <property name="hibernate.transaction.manager_lookup_class"

 value="org.hibernate.transaction.WebSphereExtendedJTATransactionLookup"/>

With following configuration jBPM should run properly in CMT environment.

8.1.5. Persistence and concurrency

Please see the Multi-threading section of “Core Engine: Basics” for more information.

8.2. Process Definitions

Process definition files are usually written in an XML format. These files can easily be stored on a

file system during development. However, whenever you want to make your knowledge accessible

to one or more engines in production, we recommend using a knowledge repository that (logically)

centralizes your knowledge in one or more knowledge repositories.

Guvnor is a Drools sub-project that does exactly that. It consists of a repository for storing different

kinds of knowledge, as well a web application that allows users to view and update the information

in the repository. It not only stores process definitions but also can hold rule definitions, object

models, and much more.

Easy programmatic retrieval of knowledge packages is possible either using WebDAV or by

using a knowledge agent. The knowledge agent will automatically download the information from

Guvnor, for example, during the creation of a knowledge base.

Check out the Drools Guvnor documentation for more information on how to do this.

8.3. History Log

In many cases it will be useful (if not necessary) to store information about the execution of process

instances, so that this information can be used afterwards. For example, sometimes we want to

verify which actions have been executed for a particular process instance, or in general, we want

to be able to monitor and analyze the efficiency of a particular process.

However, storing history information in the runtime database can result in the database rapidly

increasing in size, not to mention the fact that monitoring and analysis queries might influence

the performance of your runtime engine. This is why process execution history information can

be stored separately.

This history log of execution information is created based on events that the the process engine

generates during execution. This is possible because the jBPM runtime engine provides a generic

mechanism to listen to events. The necessary information can easily be extracted from these

events and then persisted to a database. Filters can also be used to limit the scope of the logged

information.

The Business Activity Monitoring data model

99

8.3.1. The Business Activity Monitoring data model

The jbpm-bam module contains an event listener that stores process-related information in a

database using JPA or Hibernate directly. The data model itself contains three entities, one for

process instance information, one for node instance information, and one for (process) variable

instance information.

Figure 8.2. Business Activity Monitoring data model

The ProcessInstanceLog table contains the basic log information about a process instance.

Table 8.5. ProcessInstanceLog

Field Description Nullable

id The primary key and id of the

log entity

NOT NULL

end_date When applicable, the end

date of the process instance

processid The name (id) of the process

processinstanceid The process instance id NOT NULL

start_date The start date of the process

instance

status The status of process

instance that maps to process

instance state

parentProcessInstanceId The process instance id of the

parent process instance if any

outcome The outcome of the process

instance, for instance error

code in case of process

instance was finished with

error event

The NodeInstanceLog table contains more information about which nodes were actually executed

inside each process instance. Whenever a node instance is entered from one of its incomming

Chapter 8. Core Engine: Persi...

100

connections or is exited through one of its outgoing connections, that information is stored in this

table.

Table 8.6. NodeInstanceLog

Field Description Nullable

id The primary key and id of the

log entity

NOT NULL

log_date The date of the event

nodeid The node id of the

corresponding node in the

process definition

nodeinstanceid The node instance id

nodename The name of the node

processid The id of the process that the

process instance is executing

processinstanceid The process instance id NOT NULL

type The type of the event (0 =

enter, 1 = exit)

NOT NULL

The VariableInstanceLog table contains information about changes in variable instances. The

defaul is to only generate log entries when (after) a variable changes. It's also possible to log

entries before the variable (value) changes.

Table 8.7. VariableInstanceLog

Field Description Nullable

id The primary key and id of the

log entity

NOT NULL

log_date The date of the event

processid The id of the process that the

process instance is executing

processinstanceid The process instance id NOT NULL

value The value of the variable at

the time that the log is made

variableid The variable id in the process

definition

variableinstanceid The id of the variable instance

Storing Process Events in a Database

101

8.3.2. Storing Process Events in a Database

To log process history information in a database like this, you need to register the logger on your

session (or working memory) like this:

StatefulKnowledgeSession ksession = ...;

JPAWorkingMemoryDbLogger logger = new JPAWorkingMemoryDbLogger(ksession);

// invoke methods one your session here

logger.dispose();

Note that this logger is like any other audit logger, which means that you can add one or more

filters by calling the method addFilter to ensure that only relevant information is stored in the

database. Only information accepted by all your filters will appear in the database. You should

dispose the logger when it is no longer needed.

To specify the database where the information should be stored, modify the file persistence.xml

file to include the audit log classes as well (ProcessInstanceLog, NodeInstanceLog and

VariableInstanceLog), as shown below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<persistence

 version="1.0"

 xsi:schemaLocation=

 "http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd

 http://java.sun.com/xml/ns/persistence/orm

 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"

 xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://java.sun.com/xml/ns/persistence">

 <persistence-unit name="org.jbpm.persistence.jpa">

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <jta-data-source>jdbc/processInstanceDS</jta-data-source>

 <class>org.drools.persistence.info.SessionInfo</class>

 <class>org.jbpm.persistence.processinstance.ProcessInstanceInfo</class>

 <class>org.drools.persistence.info.WorkItemInfo</class>

 <class>org.jbpm.process.audit.ProcessInstanceLog</class>

 <class>org.jbpm.process.audit.NodeInstanceLog</class>

 <class>org.jbpm.process.audit.VariableInstanceLog</class>

 <properties>

Chapter 8. Core Engine: Persi...

102

 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/

>

 <property name="hibernate.max_fetch_depth" value="3"/>

 <property name="hibernate.hbm2ddl.auto" value="update"/>

 <property name="hibernate.show_sql" value="true"/>

 <property name="hibernate.transaction.manager_lookup_class"

 value="org.hibernate.transaction.BTMTransactionManagerLookup"/>

 </properties>

 </persistence-unit>

</persistence>

All this information can easily be queried and used in a lot of different use cases, ranging

from creating a history log for one specific process instance to analyzing the performance of all

instances of a specific process.

This audit log should only be considered a default implementation. We don't know what information

you need to store for analysis afterwards, and for performance reasons it is recommended to only

store the relevant data. Depending on your use cases, you might define your own data model for

storing the information you need, and use the process event listeners to extract that information.

Chapter 9.

103

Chapter 9. Core Engine: Examples

9.1. jBPM Examples

There is a separate jBPM examples module that contains a set of example processes that show

how to use the jBPM engine and the behavior or the different process constructs as defined by

the BPMN 2.0 specification.

To start using these, simply unzip the file somewhere and open up your Eclipse development

environment with all required plugins installed. If you don't know how to do this yet, take a look

at the installer chapter, where you can learn how to create a demo environment, including a fully

configured Eclipse IDE, using the jBPM installer. You can also take a look at the Eclipse plugin

chapter if you want to learn how to manually install and configure this.

To take a look at the examples, simply import the downloaded examples project into Eclipse (File

-> Import ... -> Under General: Existing Projects into Workspace), browse to the folder where you

unzipped the jBPM examples artefact and click finish. This should import the examples project in

your workspace, so you can start looking at the processes and executing the classes.

9.2. Examples

The examples module contains a number of examples, from basic to advanced:

• Looping: An example that shows how you can use exclusive gateways to loop a part your

process until the loop condition is no longer valid. The process takes the 'count' (the number of

times the loop needs to be repeated) as input and simply prints out a statement during every

loop until the process is completed.

• MultiInstance: This example shows how to execute a sub-process for each element in a

collection. The process takes a collection of names as input and creates a review task for a

sales representative for each person in that list. The process completes if the task has been

executed for every person on that list.

• Evaluation: A performance evaluation process that shows how to integrate human actors in the

process. While the basic example simply shows tasks assigned to predefined users, the more

advanced version shows data passing from the process to the task and back, group assignment,

task delegation, etc.

• HumanTask: An advanced example when using human tasks. It shows how to do data passing

between tasks, task forms, swimlanes, etc. This example can also be deployed to the Guvnor

repository (including all the forms etc.) and executed on the jBPM console out-of-the-box.

• Request: An advanced example that shows various ways in which processes and rules can

work together, like a rule task for invoking validation rules, rules as expression language for

Chapter 9. Core Engine: Examples

104

constraints inside the process, rules for exception handling, event processing for monitoring,

ad hoc rules for more flexible processes, etc.

9.3. Unit tests

The examples project contains a large number of simple BPMN2 processes for each of the

different node types that are supported by jBPM5. In the junit folder under src/main/resources

you can for example find process examples for constructs like a conditional start event, exclusive

diverging gateways using default connections, etc. So if you're looking for a simple working

example that shows the behavior of one specific element, you can probably find one here. The

folder already contains well over 50 sample processes. Simply double-click them to open them

in the graphical editor.

Each of those processes is also accompanied by a small junit test that tests the implementation

of that construct. The org.jbpm.examples.junit.BPMN2JUnitTests class contains one test for each

of the processes in the junit resources folder. You can execute these tests yourself by selecting

the method you want to execute (or the entire class) and right-click and then Run as -> JUnit test.

Check out the chapter on testing and debugging if you want to learn more how to debug these

example processes.

Chapter 10.

105

Chapter 10. Eclipse BPMN 2.0

Plugin
We are working on a new BPMN 2.0 Eclipse editor that allows you to specify business processes,

choreographies, etc. using the BPMN 2.0 XML syntax (including BPMNDI for the graphical

information). The editor itself is based on the Eclipse Graphiti framework and the Eclipse BPMN

2.0 EMF meta-model.

Features:

• It supports almost all BPMN 2.0 process constructs and attributes (including lanes and pools,

annotations and all the BPMN2 node types).

• Support for the few custom attributes that jBPM5 introduces.

• Allows you to configure which elements and attributes you want use when modeling processes

(so we can limit the constructs for example to the subset currently supported by jBPM5, which

is a profile we will support by default, or even more if you like).

Many thanks go out to the people at Codehoop that did a great job in creating a first version of

this editor.

10.1. Installation

Requirements

• Eclipse 3.6 (Helios) or newer

To install, startup Eclipse and install the Eclipse BPMN2 Modeler from the following update site

(from menu Help -> Install new software and then add the update site in question by clicking the

Add button, filling in a name and the correct URL as shown below). It will automatically download

all other dependencies as well (e.g. Graphiti etc.)

Eclipse 3.6 (Helios): http://download.eclipse.org/bpmn2-modeler/site-helios/

Eclipse 3.7 (Indigo): http://download.eclipse.org/bpmn2-modeler/site/

The project is hosted at eclipse.org and open for anyone to contribute. The project home page

can he found here [http://eclipse.org/projects/project.php?id=soa.bpmn2-modeler]. Sources are

available here [http://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git]

10.2. Creating your BPMN 2.0 processes

You can use a simple wizard to create a new BPMN 2.0 process (under File -> New - Other ...

select BPMN - BPMN2 Diagram).

http://download.eclipse.org/bpmn2-modeler/site-helios/
http://download.eclipse.org/bpmn2-modeler/site/
http://eclipse.org/projects/project.php?id=soa.bpmn2-modeler
http://eclipse.org/projects/project.php?id=soa.bpmn2-modeler
http://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git
http://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git

Chapter 10. Eclipse BPMN 2.0 ...

106

A video that shows some sample BPMN 2.0 processes from the examples that are part of the

BPMN 2.0 specification:

Figure 10.1.
[http://vimeo.com/22021856]

Here are some screenshots of the editor in action.

http://vimeo.com/22021856

Creating your BPMN 2.0 processes

107

Figure 10.2.

Figure 10.3.

Chapter 10. Eclipse BPMN 2.0 ...

108

Figure 10.4.

Filtering elements and attributes

109

Figure 10.5.

10.3. Filtering elements and attributes

You can define which of the BPMN 2.0 elements and attributes you want to use when describing

your BPMN 2.0 diagrams. Since the BPMN 2.0 specification is rather complex and includes a very

large set of different node types and attributes for each of those nodes, you may not want to use

all of these elements and attributes in your project. Elements and attributes can be enablement /

disabled at the project level using the BPMN2 preferences category (right-click your project folder

and select Properties ... which will open up a new dialog). The BPMN2 preferences contain an

entry for all supported elements and attributes (per node type) and you can enable or disable each

of those by (un)checking the box for each of those elements and attributes.

Chapter 10. Eclipse BPMN 2.0 ...

110

Figure 10.6.

10.4. Changing editor behavior

The "General settings" tab in the User Preferences lets you specify a "Target Runtime" which

customizes the editor's behavior for a specific BPMN execution environment. Currently only jBPM5

and a generic runtime are defined for the editor, but others are in the works.

This preference page (shown below) also lets you configure default values for BPMN Diagram

Interchange (or "DI") attributes.

Changing editor appearance

111

Figure 10.7.

10.5. Changing editor appearance

The preference page shown below lets you customize the appearance (colors and fonts) for all of

the different elements that can be placed on the diagram canvas.

Chapter 10. Eclipse BPMN 2.0 ...

112

Figure 10.8.

Chapter 11.

113

Chapter 11. Designer
Web-based process editing is possible using the jBPM Designer. The designer is fully integrated

into Drools Guvnor, the knowledge repository where you can store all your BPM assets such as

of course your BPMN2 processes as well as rules, process images, workitem configurations, and

process forms. The Designer can be used to create, view or update BPMN2 based processes

which are executable in the jBPM runtime environment.

Figure 11.1.

Designer targets the following scenarios:

• View and/or edit existing BPMN2 processes: The designer allows you to open existing BPMN2

processes (for example created using the BPMN2 Eclipse editor or any other tooling that exports

BPMN2 XML) in a web context.

• Create fully executable BPMN2 processes: A user can create a new BPMN2 process in the

Designer and use the editing capabilities (drag and drop and filling in properties in the properties

panel) to fill in the details. This for example allows business users to create complete business

processes all inside a a browser. The integration with Drools Guvnor allows for your business

processes as wells as other business assets such as business rules, process forms/images,

etc. to be stored and versioned inside a content repository.

Designer supports all BPMN2 elements that are also supported by jBPM as well as all jBPM-

specific BPMN2 extension elements and attributes.

11.1. Installation

If you are using the jBPM installer, this should automatically download and install the latest

version of the designer for you. To manually install the designer, simply drop the designer war

Chapter 11. Designer

114

into your application server deploy folder. Currently out-of-the-box designer deployments exist for

JBoss 5.1.0 and JBoss AS7. Note: If you want to deploy on other (versions of an) application

server, you might have to adjust the dependencies inside the war based on the default libraries

provided by your application server. The latest version of the designer can be found here [http://

sourceforge.net/projects/jbpm/files/designer/].

To start working with the designer, open Guvnor (e.g. http://localhost:8080/drools-guvnor [http://

localhost:8080/drools-guvnor]) and either open an existing BPMN2 process or create a new one

(under the "Knowledge Bases category on the left, select create new BPMN2 process"). This will

open up the designer for the selected process in the center panel. You can use the palette on the

left to drag and drop node types and the properties tab on the right to fill in the details (if either of

these panels is not visible, click the arrow on the side of the editor to make them move forward).

The designer may also be opened stand-alone by using the following link: http://localhost:8080/

designer/editor?profile=jbpm&uuid=123456 (where 123456 should be replaced by the uuid of a

process stored in Guvnor). Note that running designer in this way allows you to only view existing

processes, and not save any edits nor create new ones. Information on how to integrate designer

into your own applications can be found here [http://blog.athico.com/2011/04/using-oryx-designer-

and-guvnor-in-your.html].

11.2. Source code

The designer source code is available for each release. You can find it here [http://sourceforge.net/

projects/jbpm/files/designer/].

You can also browse and clone the project on github [https://github.com/tsurdilo/process-

designer].

11.3. Designer UI Explained

The Designer UI is composed of a number of sections as shown in the screenshot below:

http://sourceforge.net/projects/jbpm/files/designer/
http://sourceforge.net/projects/jbpm/files/designer/
http://sourceforge.net/projects/jbpm/files/designer/
http://localhost:8080/drools-guvnor
http://localhost:8080/drools-guvnor
http://localhost:8080/drools-guvnor
http://localhost:8080/designer/editor?profile=jbpm&uuid=123456
http://localhost:8080/designer/editor?profile=jbpm&uuid=123456
http://blog.athico.com/2011/04/using-oryx-designer-and-guvnor-in-your.html
http://blog.athico.com/2011/04/using-oryx-designer-and-guvnor-in-your.html
http://blog.athico.com/2011/04/using-oryx-designer-and-guvnor-in-your.html
http://sourceforge.net/projects/jbpm/files/designer/
http://sourceforge.net/projects/jbpm/files/designer/
http://sourceforge.net/projects/jbpm/files/designer/
https://github.com/tsurdilo/process-designer
https://github.com/tsurdilo/process-designer
https://github.com/tsurdilo/process-designer

Designer UI Explained

115

Figure 11.2.

• (1) Shape Repository Panel - the expandable section on the left shows the jBPM BPMN2

(default) shape repository. It includes all shapes of the jBPM BPMN2 stencil set which can

be used to assemble your processes. If you expand each section sub-group you can see the

BPMN2 elements that can be placed onto the Designer Canvas (2) by dragging and dropping

the shape onto it.

• (2) Canvas - this is your process drawing board. After dropping different shapes onto the canvas,

you can move them around, connect them, etc. Clicking on a shape on the canvas allows you

to set its properties in the expandable Properties Window (3)

• (3) Properties Panel - this expandable section on the right allows you to set both process and

shape properties. It is divided in two sections, namely "Often used", and "More Properties"

section which is expandable. When clicking on a shape in the Canvas, this panel is reloaded

to show properties specific to the shape type. If you click on the canvas itself (not on a shape)

the section shows your general process properties.

• (4) Toolbar - the toolbar contains operations which can be performed on shapes present on

the Canvas. Individual operations are disabled or enabled depending on what is selected. For

example, if no shapes are selected, the Cut/Paste/Delete operations are disabled, and become

enabled once you select a shape. Hovering over the icons in the Toolbar displays the description

text of the operation.

• (5) Footer - the footer contains operations that allow users to view the source of the process

being editor in the Canvas section in various formats such as BPMN2, PNG, JSON, etc.

• (6) Process Information - this section contains information about your process, such as its name,

creation date, version, etc

Chapter 11. Designer

116

Connecting shapes together in the canvas is realized with the Shape-Menu. The Shape-Menu is

displayed by clicking on a shape:

Figure 11.3.

The Shape-Menu is composed of two sections:

• (1) Connection section: allows you to easily connect your shape with a new one. The shapes

displayed in this section are based on connection rules of the BPMN2 specification.

• (2) Morphing section: allows you to easily morphe a base shape into any other that extend this

base shape.

Designer UI Explained

117

Following sequence of picture shows how easy it is to quickly create and connect multiple shapes

in the canvas:

Chapter 11. Designer

118

Figure 11.4.

Support for Domain-specific service nodes

119

You can also name your shapes by double-clicking on the shape in the canvas. This sets the

name attribute of the particular shape:

Figure 11.5.

11.4. Support for Domain-specific service nodes

Designer has full support for jBPM domain-specific service nodes. To include your service nodes in

the Designer jBPM BPMN2 stencil set, you can either upload your existing service node definitions

into Guvnor, or use the the new service node configuration editor which we added to Guvnor to

create new configurations.

Figure 11.6.

Once you have some service node configurations present, you can see them being included in

Designer stencil set by re-opening an existing or creating a new process. Your service nodes will

be now available under the "Service Task" section of the jBPM BPMN2 stencil set.

Chapter 11. Designer

120

Figure 11.7.

Service nodes are fully usable within your processes. Please note that the service node

configurations are package-specific in Guvnor. If you want to re-use your service nodes across

multiple Guvnor packages, you have to copy their configurations to each indidual package you

would like to use them in.

Configuring Designer

121

Figure 11.8.

For more information on this feature please view this [http://vimeo.com/26126678], and this [http://

vimeo.com/24288229] video.

11.5. Configuring Designer

Designer is tightly integrated with Guvnor. By default Designer expects to find a Guvnor instance

on http://localhost:8080/drools-guvnor/. Guvnor, by default, expects to find the Designer on http://

localhost:8080/designer. Here we show how to configure both Designer and Guvnor to be able to

change these default settings when needed.

11.5.1. Changing the default configuration in Designer

In cases where Guvnor is configured to use https, or is running on a different host/port/domain/

subdomain you have to configure Designer to reflect these settings. in order to change Designer

configurations you have to deploy it as an exploded war. In $designer.war/profiles/jbpm.xml notice

the section on the bottom:

 <externalloadurl protocol="http" host="localhost:8080" subdomain="drools-

guvnor/org.drools.guvnor.Guvnor/oryxeditor" usr="admin" pwd="admin"/>

http://vimeo.com/26126678
http://vimeo.com/26126678
http://vimeo.com/24288229
http://vimeo.com/24288229
http://vimeo.com/24288229

Chapter 11. Designer

122

The configuration attributes include:

• protocol: the protocol to use (http/https)

• host: includes both the host and the port that Guvnor is running on

• subdomain: in some situations Guvnor subdomain is not drools-guvnor. You should leave the

path to the servlet as-is.

• usr: if you have set up JAAS authentication in Guvnor, provide a Guvnor user name here. Note

that this user should have admin privileges in Guvnor

• pwd: password for the Guvnor user

Alernative you can specify these configrations via system properties:

• oryx.external.protocol

• oryx.external.host

• oryx.external.usr

• oryx.external.pwd

If you choose to use system properties you do not have to deploy the designer war as exploded.

11.5.2. Changing the default configuration in Guvnor

To configure Guvnor to reflect the host/port/domain/subdomain and the default profile settings of

the Designer, we need to edit $drools-guvnor.war/WEB-INF/preferences.properties:

#Designer configuration

designer.url=http://localhost:8080

#Do not change this unless you know what are you doing

designer.context=designer

designer.profile=jbpm

The configuration attributes include:

• designer.url: set the protocol, host, and port where Designer is located at

• designer.context: this sets the configured subdomain of Designer. Should not change unless

you deploy it under some other subdomain

• designer.profile: Designer can have multiple profiles defined. Profiles determine the used stencil

set, the saving/loading strategy of processes, etc. The default profile name used is "jbpm" and

this should not be changed unless you create a custom profile to be used

Generation of process and task forms

123

Note that in order to be able to edit $drools-guvnor.war/WEB-INF/preferences.properties, you

have to deploy Guvnor as an exploded archive.

11.6. Generation of process and task forms

Designer allows users to generate process and task ftl forms. These forms are fully usable in the

jBPM console. To start using this feature, locate the "Generate Task Form Templates" button in

the designer toolbar:

Figure 11.9.

Designer will iterate through your process BPMN2 and create forms for your process, and each

of the human tasks in your process. It uses the defined process variables and human task data

input/output parameters and associations to create form fields. The generated forms are stored

in Guvnor, and the user is presented with a page which shows each of the forms created as well

as a link to their sources in Guvnor:

Figure 11.10.

As mentioned, all forms are fully usable inside jBPM console. In addition each form includes basic

JavaScript form validation which is determined based on the type of the process variables, and/

Chapter 11. Designer

124

or human task data input/output association definitions. Here is an example generated human

task form.

Figure 11.11.

In order for process and task forms to be generated you have to make sure that your process has

it's id parameter set, as well that each of your human tasks have the TaskName parameter set.

Task forms contain pure HTML, CSS, and JavaScript, so they are easily editable in any HTML

View processes as PDF and PNG

125

editor. Please note that there is no edit feature available currently in Designer, so each time you

generate forms, existing ones will be overwritten.

For more information on this feature please view this [http://vimeo.com/26126678] video.

11.7. View processes as PDF and PNG

Any process created in Designer can be easily viewed in PDF and PNG formats. In the Designer

footer section locate the "Convert to PDF" and "Convert to PNG" buttons. Both PDF and PNG

formats are also stored in Guvnor, making it easily accessible.

Figure 11.12.

The footer section also includes buttons to view the process sources in ERDF, JSON, SVG, and

BPMN2 formats.

Figure 11.13.

11.8. Viewing process BPMN2 source

At any time you can view your process's BPMN2 source by selecting the Source->View Source

link in the Guvnor toolbar above the designer frame. The source generated by designer is fully

BPMN2 compliant and can be used in any BPMN2 compliant editor.

http://vimeo.com/26126678
http://vimeo.com/26126678

Chapter 11. Designer

126

Figure 11.14.

Same can be done by clicking on the BPMN2 button in the footer section of the designer:

Figure 11.15.

11.9. Embedding designer in your own application

It is possible to embed the designer in your own application and still be able to utilize Guvnor as

the asset repository for all of your process assets. For more information on this feature please

view this video [http://vimeo.com/22033817].

http://vimeo.com/22033817
http://vimeo.com/22033817

Migrating existing jBPM 3.2 based processes to BPMN2

127

11.10. Migrating existing jBPM 3.2 based processes to

BPMN2

To migrate your existing jBPM 3.2 based processes to BPMN2 locate the migration button in the

toolbar section of the designer:

Figure 11.16.

The feature allows users to select the location of their processdefinition file, and the location

of it's gpd.xml file. Designer then uses the jbpmmigration tool [https://github.com/droolsjbpm/

jbpmmigration] to convert the jBPM 3.2 based processes to BPMN2 and displays it onto the

designer canvas:

Figure 11.17.

https://github.com/droolsjbpm/jbpmmigration
https://github.com/droolsjbpm/jbpmmigration
https://github.com/droolsjbpm/jbpmmigration

Chapter 11. Designer

128

For more information on this feature please view this [http://vimeo.com/30857949] video.

11.11. Visual Process Validation

To run process validation against the process you are developing in the designer, locate the

validation button in the designer toolbar section:

Figure 11.18.

In case of validation errors, designer presents a red "X" mark next to process nodes that contain

them. Mouse-over this red "X" presents a tooltip with the descriptions of validation errors. Note

that since the process node is not visually displayed, designer will merge all process-node-specific

validation errors with those of the very first node of the BPMN2 process. Following is a screenshot

of the visual process validation feature in use:

Figure 11.19.

For more information on this feature please view this [http://vimeo.com/30857949] video.

11.12. Integration with the jBPM Service Repository

Designer integrates with the jBPM Service Repository and allows users to install and use assets

from the repository. [http://kverlaen.blogspot.com/2011/10/introducing-service-repository.html].

To connect to the Service Repository from designer, click on the service repository button in the

designer toolbar:

http://vimeo.com/30857949
http://vimeo.com/30857949
http://vimeo.com/30857949
http://vimeo.com/30857949
http://kverlaen.blogspot.com/2011/10/introducing-service-repository.html
http://kverlaen.blogspot.com/2011/10/introducing-service-repository.html
http://kverlaen.blogspot.com/2011/10/introducing-service-repository.html

Generating code to share the process image, PDF, and embedded process editor

129

Figure 11.20.

Designer will present you with all assets located in the jBPM service repository in table format.

Colums of this table show information about the specific asset in the repo. To install the item to

your local Guvnor package, simply double-click on the item row. You will have to save and re-

open your process in order to be able to start using the installed items.

Figure 11.21.

For more information on this feature please view this [http://vimeo.com/30857949] video.

11.13. Generating code to share the process image,

PDF, and embedded process editor

It is important to be able to share your process with users who do not have access to your running

designer instance. For these cases designer allows code generation of "sharable" image, PDF

and embedded editor code of your processes. To use this feature locate the following dropdown

in the designer toolbar section:

http://vimeo.com/30857949
http://vimeo.com/30857949

Chapter 11. Designer

130

Figure 11.22.

11.14. Importing existing BPMN2 processes

You can easily import your existing BPMN2 processes into the designer by locating and clicking

on the following dropdown selection list in the toolbar section:

Figure 11.23.

You will be able to either select an existing file on your filesystem or paste existing BPMN2 XML.

The designer canvas will automatically import and display your process without a page refresh.

11.15. Viewing Process Information

Figure 11.24.

The Process Information section displays important information about your process. These include

the process:

• name

Requirements

131

• format

• Guvnor package name the process belongs to

• creation date

• name of user that created the process

• last modification date

• last check-in comment

• version number

11.16. Requirements

Java:

• Java 6

Browsers:

• Mozilla Firefox (including 6)

• Google Chrome

JBoss AS:

• Designer war is currently compatible with JBoss AS 4.x, 5.1, and 7

132

Chapter 12.

133

Chapter 12. Console
Business processes can be managed through a web console. This includes features like managing

your process instances (starting/stopping/inspecting), inspecting your (human) task list and

executing those tasks, and generating reports.

The jBPM console consists of two wars that must be deployed in your application server

and contains the necessary libraries, the actual application, etc. One jar contains the server

application, the other one the client.

12.1. Installation

The easiest way to get started with the console is probably to use the installer. This will download,

install and configure all the necessary components to get the console running, including an in-

memory database, a human task service, etc. Check out the chapter on the installer for more

information.

The console is a separate sub-project that is shared across different projects, like for example

jBPM and RiftSaw. The source code of the version that jBPM5 is currently using can be found on

SVN here [http://anonsvn.jboss.org/repos/soag/bpm-console/tags/bpm-console-2.1/]. The latest

version of the console has been moved to Git and can be found here [https://github.com/bpmc].

12.1.1. Authorization

The console requires users to log in before being to use the application. The console uses normal

username / password authentication. When using JBossAS for example, this can be specified in

the users.properties file in the server/{profile}/conf folder. There you can specify the combination

of users that can log into the console and their password.

When using the jBPM installer, a predefined users.properties file (located in the auth folder) is

copied to the jbossas/server/default/conf folder automatically. This file can be edited and contains

a few predefined users: admin, krisv, john, mary, and sales-rep (as these are commonly used in

examples). The password associated with these users is the same as their username.

12.1.2. User and group management

The human task service requires you to define which groups a user is part of, so that he can

then claim the tasks that are assigned to one of the groups he is part of. The console uses

username / group association for that. When using JBossAS for example, this can be specified in

the roles.properties file in the server/{profile}/conf folder. There you can specify the combination

of users and the groups they are part of.

When using the jBPM installer, a predefined roles.properties file (located in the auth folder) is

copied to the jbossas/server/default/conf folder automatically. This file can be edited and contains

the groups the predefined users are part of (as these are commonly used in examples): all

http://anonsvn.jboss.org/repos/soag/bpm-console/tags/bpm-console-2.1/
http://anonsvn.jboss.org/repos/soag/bpm-console/tags/bpm-console-2.1/
https://github.com/bpmc
https://github.com/bpmc

Chapter 12. Console

134

users are part of the admin, manager and user group but john is also part of the PM (project

management) group, mary is part of HR (human resources) and sales-rep is part of sales.

12.1.3. Registering your own service handlers

As explained in the chapter on domain-specific services, jBPM allows you to register your

own domain-specific services as custom service tasks. The process only contains a high-level

description of the service that needs to be executed, and a handler is responsible for the actual

implementation, i.e. invoking the service.

You must register your handlers to be able to execute domain-specific services. You can register

your handlers by dropping a configuration file in the classpath that specifies the implementation

class for each of the handlers. You can specify which configuration files must be loaded in the

drools.session.conf file, using the drools.workItemHandlers property (as a list of space-separated

file names). These file names should contain a Map of entries, the name and the corresponding

WorkItemHandler instance that should be used to execute the service. The configuration file is

using the MVEL script language to specify a map of type Map<String,WorkItemHandler>.

You should also make sure that the implementation classes (and dependencies) are also available

on the classpath of the server war, for example by dropping the necessary wars in the server/

{profile}/lib directory of your JBossAS installation.

For example, suggest you want to use the "Email" service task (that is provided out-of-the-box as

an example in the jbpm-workitems module). You should put the jbpm-workitems, javax.mail and

javax.activation jars in the lib folder of the AS and the include the following two configuration files

in the META-INF folder in the WEB-INF/classes folder of the server war. The drools.session.conf

simply refers to the CustomWorkItemHandlers.conf file that contains the actual handlers:

drools.workItemHandlers = CustomWorkItemHandlers.conf

This configuration file then specifies which handler to register for each of the domain-specific

services that are being used, using MVEL to specify a Map<String,WorkItemHandler> (with host,

port, username and password replaced by a meaningful value of course):

[

 "Email": new org.jbpm.process.workitem.email.EmailWorkItemHandler(

 "host", "port", "username", "password"),

]

The installer simplifies registering your own work item handlers significantly by offering these

configuration files in the jbpm-installer/conf folder already and automatically copying them to the

right location when installing the demo. Simply update these files with your own entries before

running ant install.demo.

Configure management console

135

12.1.4. Configure management console

Management console can be configured to suit deployment needs of the environment. Its

main configuration is done via property file - default.jbpm.console.properties, which can be

found in jbpm-gwt-console-server.war/WEB-INF/classes. This configuration is sample setup for

default installation if there is a need to configure it differently a custom file should be provided:

jbpm.console.properties that can be placed on any directory of the file system where console will

have access to. Console by default will look for it inside JBoss AS configuration directory that

is given as jboss.server.config.dir system property. If jBPM console is deployed to other servers

or default location is not acceptable custom location can be provided as jbpm.conf.dir system

property. It allows administrators to configure following aspects of management console:

• task server connectivity

• Guvnor connectivity

• console host and port numer

• console resource directory (for local process, rules, etc repository)

Each of mentioned aspects can have one or more attributes that drive their behavior, following is

a complete list of supported properties for every aspect.

Management console configuration

• jbpm.console.server.host : host/ip address used to bind management console (default

localhost)

• jbpm.console.server.port : port used to bind management console (default 8080)

• jbpm.console.server.context : context root that is used to bind console server web application

(default gwt-console-server)

• jbpm.console.directory : local directory used as process/rules repository

Task server connectivity

• jbpm.console.task.service.strategy : transport used to connect to task server (default HornetQ

and accepts Mina|HornetQ|JMS)

• jbpm.console.task.service.host : host where Task Server is deployed (default localhost) applies

to all transports

• jbpm.console.task.service.port : port where Task Server is deployed (default 5153) applies to

all transports

Chapter 12. Console

136

• JMSTaskClient.connectionFactory : JNDI name of connection factory only for JMS (no default)

• JMSTaskClient.acknowledgeMode : acknowledgment mode only for JMS (no default)

• JMSTaskClient.transactedQueue : transacted queue name only for JMS (no default)

• JMSTaskClient.queueName : queue name only for JMS (no default)

• JMSTaskClient.responseQueueName : response queue name only for JMS (no default)

Guvnor connectivity

• guvnor.protocol : protocol to access Guvnor (default http)

• guvnor.host : host and port number where Guvnor is deployed (default localhost:8080)

• guvnor.subdomain : subdomain/context root of Guvnor (default drools-guvnor)

• guvnor.usr : user id to authenticate in Guvnor (default admin)

• guvnor.pwd : password to authenticate in Guvnor (default admin)

• guvnor.packages : comma separated list of packages to load from Guvnor

• guvnor.connect.timeout : connect timeout (default 10000)

• guvnor.read.timeout : read timeout (default 10000)

• guvnor.snapshot.name : configure package snapshot name (default LATEST)

Once the overall configuration is done, next step is to be able to control runtime behavior of

management console that consists of:

• knowledge base setup

• stateful session setup

These runtime components are configured via dedicated managers that are extensible and can

be configured with system properties, note that configuration of managers is optional and required

only if default managers are not suitable for particular environment

• knowledge base manager: -

Djbpm.knowledgebase.manager=com.company.CustomKnowledgeBaseManager

• stateful session manager: -Djbpm.session.manager=com.company.CustomSessionManager

Be default knowledge base manager will build knowledge base according to configuration given in

jbpm.console.properties (or default.jbpm.console.properties) file and stateful session will be build

based on session template, that is MVEL file named session.template (default.session.template

Configure management console

137

that is bundled in jBPM console). session.teplate file, same as jbpm.console.properties is an

extension point to configure jBPM console without changing its internal files and can be placed on

any directory on the file system. Session template is intended to provide following configuration

for stateful session:

• businessKey - a unique key that will be used to get session from JNDI

• persistenceUnit - name of the persistence unit to be used

• properties - list of key value pairs of session configuration

• workItemHandlers - list of key value pairs (work item name: class name of work item handler)

• eventListeners - list of event listener classes to be registered on the session

• environmentEntries - list of key value pairs of environment entires to be put before session is

created

• imported - true|false if set to true session will be looked up from JNDI using business key instead

of creating new one - it means that session should be build by another application and console

will use it as well

session template is dedicated to default session manager implementation and can be substituted

with anyother mechanism together with custom implementation of SessionManager interface. See

next section about custom managers.

new SessionTemplate().{

 businessKey = "jbpmConsole",

 imported = false,

 persistenceUnit = "org.jbpm.persistence.jpa",

 properties = ["drools.processInstanceManagerFactory":"org.jbpm.persistence.processinstance.JPAProcessInstanceManagerFactory",

 "drools.processSignalManagerFactory" : "org.jbpm.persistence.processinstance.JPASignalManagerFactory"

],

 workItemHandlers = ["Human Task" : "new

 org.jbpm.process.workitem.wsht.AsyncHornetQHTWorkItemHandler(\"jbpmConsoleHTHandler

\", taskClient, ksession, org.jbpm.task.utils.OnErrorAction.LOG)",

 "Service Task" : "new

 org.jbpm.process.workitem.bpmn2.ServiceTaskHandler(ksession)"],

 eventListeners = ["new

 org.jbpm.process.audit.JPAWorkingMemoryDbLogger(ksession)",

 "new

 org.jbpm.integration.console.listeners.TriggerRulesEventListener(ksession)"]

};

Chapter 12. Console

138

Default session template is present above and configures most important elements of the

environment. As you can see there are option to refer to some already existing object when

registering work item handlers and event listeners:

• ksession - session instance that is being built

• taskClient - talk client that is configured based on settings given in jbpm.console.properties

(default.jbpm.console.properties)

Note

Important to note is that if someone provides custom implementation of work item

handler for Human Task, keep in mind that it is important to connect handler as

soon as session is created to be able to receive task events and move process

forward. Default manager invokes three methods on human task handler:

• setIpAddress with single String argument

• setPort with single int argument

• connect no arguments

so ensure you have them to be properly initialized

To sum up, jbpm console comes with two files inside its server component (gwt-console-

server.war), these are default.jbpm.console.properties and default.session.template. These two

files should not be modified but in case a change to configuration is required they should be

copied and renamed to jbpm.console.properties and session.template respectively. Location of

these custom files can be decided by administrator but recommended for JBoss AS is to put

them into jboss configuration directory (jboss_home/standalone/configuration for AS 7). If custom

location is used it must be provided as system property -Djbpm.conf.dir. Any changes applied to

custom configuration will be preserved between jbpm upgrades as they do not reside inside jbpm

applications.

12.1.4.1. Implementing custom managers
To implement custom managers that are responsible for building knowledge base and session

certain requirements must be met: Knolwedge Base Manager

• Custom class must implement org.jbpm.integration.console.kbase.KnowledgeBaseManager

• it must be configured with -Djbpm.knowledgebase.manager=[classname]

Session Manager

• Custom class must implement org.jbpm.integration.console.session.SessionManager

Running the process management console

139

• Custom class must provide constructor that accepts KnowledgeBase argument

• it must be configured with -Djbpm.session.manager=[classname]

12.2. Running the process management console

Now navigate to the following URL (replace the host and/or port depending on how the application

server is configured): http://localhost:8080/jbpm-console

A login screen should pop up, asking for your user name and password. By default, the following

username/password configurations are supported: krisv/krisv, admin/admin, john/john and mary/

mary.

After filling these in, the process management workbench should be opened, as shown in the

screenshot below. On the right you will see several tabs, related to process instance management,

human task lists and reporting, as explained in the following sections.

http://localhost:8080/jbpm-console

Chapter 12. Console

140

12.2.1. Managing process instances

The "Processes" section allows you to inspect the process definitions that are currently part of the

installed knowledge base, start new process instances and manage running process instances

(which includes inspecting their state and data).

12.2.1.1. Inspecting process definitions

When you open the process definition list, all known process definitions are shown. You can then

either inspect process instances for one specific process or start a new process instance.

12.2.1.2. Starting new process instances

To start a new process instance for one specific process definition, select the process definition in

the process definition list. Click on the "Start" button in the instances table to start a new instance of

that specific process. When a form is associated with this particular process (to ask for additional

information before starting the process), this form will be shown. After completing this form, the

process will be started with the provided information.

Managing process instances

141

12.2.1.3. Managing process instances

The process instances table shows all running instances of that specific process definition. Select

a process instance to show the details of that specific process instance.

Chapter 12. Console

142

12.2.1.4. Inspecting process instance state

You can inspect the state of a specific process instance by clicking on the "Diagram" button. This

will show you the process flow chart, where a red triangle is shown at each node that is currently

active (like for example a human task node waiting for the task to be completed or a join node

waiting for more incoming connections before continuing). [Note that multiple instances of one

node could be executing simultaneously. They will still be shown using only one red triangle.]

12.2.1.5. Inspecting process instance variables

You can inspect the (top-level) variables of a specific process instance by clicking on the

"Instance Data" button. This will show you how each variable defined in the process maps to it's

corresponding value for that specific process instance.

Human task lists

143

12.2.2. Human task lists

The task management section allows a user to see his/her current task list. The group task list

shows all the tasks that are not yet assigned to one specific user but that the currently logged in

user could claim. The personal task list shows all tasks that are assigned to the currently logged in

user. To execute a task, select it in your personal task list and select "View". If a form is associated

with the selected task (for example to ask for additional information), this form will be shown. After

completing the form, the task will also be completed.

Chapter 12. Console

144

12.2.3. Reporting

The reporting section allows you to view reports about the execution of processes. This includes

an overall report showing an overview of all processes, as shown below.

A report regarding one specific process instance can also be generated.

Adding new process / task forms

145

jBPM provides some sample reports that could be used to visualize some generic execution

characteristics like the number of active process instances per process etc. But custom reports

could be generated to show the information your company thinks is important, by replacing the

report templates in the report directory.

The jBPM installer by default does not install the reporting engine (to limit the size of the

download). If you want to try out reporting, make sure to put the jBPM.birt.download property in

the build.properties file to true before running the installer. If you get an exception that the report

engine was not initialized correctly, please run the installer again after making sure that reporting

is enabled.

12.3. Adding new process / task forms

Forms can be used to (1) start a new process or (2) complete a human task. We use freemarker

templates to dynamically create forms. To create a form for a specific process definition, create

a freemarker template with the name {processId}.ftl. The template itself should use HTML code

to model the form. For example, the form to start the evaluation process shown above is defined

in the com.sample.evaluation.ftl file:

<html>

<body>

<h2>Start Performance Evaluation</h2>

<hr>

<form action="complete" method="POST" enctype="multipart/form-data">

Please fill in your username: <input type="text" name="employee" /></BR>

<input type="submit" value="Complete">

</form>

</body>

</html>

Similarly, task forms for a specific type of human task (uniquely identified by its task name) can

be linked to that human task by creating a freemarker template with the name {taskName}.ftl. The

form has access to a "task" parameter that represents the current human task, so it allows you

to dynamically adjust the task form based on the task input. The task parameter is a Task model

object as defined in the jbpm-human-task module. This for example allows you to customize the

task form based on the description or input data related to that task. For example, the evaluation

form shown earlier uses the task parameter to access the description of the task and show that

in the task form:

<html>

<body>

<h2>Employee evaluation</h2>

<hr>

${task.descriptions[0].text}

Chapter 12. Console

146

Please fill in the following evaluation form:

<form action="complete" method="POST" enctype="multipart/form-data">

Rate the overall performance: <select name="performance">

<option value="outstanding">Outstanding</option>

<option value="exceeding">Exceeding expectations</option>

<option value="acceptable">Acceptable</option>

<option value="below">Below average</option>

</select>

Check any that apply:

<input type="checkbox" name="initiative" value="initiative">Displaying

 initiative

<input type="checkbox" name="change" value="change">Thriving on change

<input type="checkbox" name="communication" value="communication">Good

 communication skills

<input type="submit" value="Complete">

</form>

</body>

</html>

Task forms also have access to the additional task parameters that might be mapped in the user

task node from process variable using parameter mapping. Check out the chapter on human tasks

for more details. These task parameters are also directly accessible inside the task form. For

example, imagine that you want to make a task form for review customer requests. The user task

node copies the userId (of the customer that performed the request), the comment (the description

of the request) and the date (the actual date and time of the request) from the process into the

task as task parameters. In that case, these parameters will then be accessible directly in the task

form, as shown below:

<html>

<body>

<h2>Request Review</h2>

<hr>

UserId: ${userId}

Description: ${description}

Date: ${date?date} ${date?time}

<form action="complete" method="POST" enctype="multipart/form-data">

Comment:

<textarea cols="50" rows="5" name="comment"></textarea></BR>

<input type="submit" name="outcome" value="Accept">

<input type="submit" name="outcome" value="Reject">

</form>

</body>

</html>

REST interface

147

Data that is provided by the user when filling in the task form will be added as result parameters

when completing the task. The name of the data element will be used as the name of the result

parameter. For example, when completing the first task above, the Map of outcome parameters

will include result variables called "performance", "initiative", "change" and "communication". The

result parameters can be accessed in the related process by mapping these result parameters to

process variables using result mapping.

Forms should either be available on the classpath (for example inside a jar in the jbossas/server/

default/lib folder or added to the set of sample forms in the jbpm-gwt-form.jar in the jbpm console

server war), or you could use the Guvnor process repository to store your forms as well. Check

out the chapter on the process repository to get more information on how to do that.

12.4. REST interface

The console also offers a REST interface for the functionality it exposes. This for example allows

easy integration with the process engine for features like starting process instances, retrieving

task lists, etc.

The list URLS that the REST interface exposes can be inspected if you navigate to the following

URL (after installing and starting the console):

http://localhost:8080/gwt-console-server/rs/server/resources/jbpm

For example, this allows you to close a task using

/gwt-console-server/rs/task/{taskId}/close

or starting a new process instance using

/gwt-console-server/rs/process/definition/{id}/new_instance

http://localhost:8080/gwt-console-server/rs/server/resources/jbpm

148

Chapter 13.

149

Chapter 13. Human Tasks
An important aspect of business processes is human task management. While some of the work

performed in a process can be executed automatically, some tasks need to be executed by human

actors.

jBPM supports a special human task node inside processes for modeling this interaction with

human users. This human task node allows process designers to define the properties related to

the task that the human actor needs to execute, like for example the type of task, the actor(s),

or the data associated with the task.

jBPM also includes a so-called human task service, a back-end service that manages the life cycle

of these tasks at runtime. The jBPM implementation is based on the WS-HumanTask specification.

Note however that this implementation is fully pluggable, meaning that users can integrate their

own human task solution if necessary.

In order to have human actors participate in your processes, you first need to (1) include human

task nodes inside your process to model the interaction with human actors, (2) integrate a task

management component (like for example the WS-HumanTask based implementation provided

by jBPM) and (3) have end users interact with a human task client to request their task list and

claim and complete the tasks assigned to them. Each of these three elements will be discussed

in more detail in the next sections.

13.1. Human tasks inside processes

jBPM supports the use of human tasks inside processes using a special user task node (as shown

in the figure above). A user task node represents an atomic task that needs to be executed by

a human actor.

[Although jBPM has a special user task node for including human tasks inside a process, human

tasks are considered the same as any other kind of external service that needs to be invoked

and are therefore simply implemented as a domain-specific service. See the chapter on domain-

specific processes to learn more about this.]

A user task node contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

Chapter 13. Human Tasks

150

• TaskName: The name of the human task.

• Priority: An integer indicating the priority of the human task.

• Comment: A comment associated with the human task.

• ActorId: The actor id that is responsible for executing the human task. A list of actor id's can be

specified using a comma (',') as separator.

• GroupId: The group id that is responsible for executing the human task. A list of group id's can

be specified using a comma (',') as separator.

• Skippable: Specifies whether the human task can be skipped, i.e., whether the actor may decide

not to execute the task.

• Content: The data associated with this task.

• Swimlane: The swimlane this human task node is part of. Swimlanes make it easy to assign

multiple human tasks to the same actor. See the human tasks chapter for more detail on how

to use swimlanes.

• On entry and on exit actions: Action scripts that are executed upon entry and exit of this node,

respectively.

• Parameter mapping: Allows copying the value of process variables to parameters of the human

task. Upon creation of the human tasks, the values will be copied.

• Result mapping: Allows copying the value of result parameters of the human task to a process

variable. Upon completion of the human task, the values will be copied. A human task has

a result variable "Result" that contains the data returned by the human actor. The variable

"ActorId" contains the id of the actor that actually executed the task.

You can edit these variables in the properties view (see below) when selecting the user task node,

or the most important properties can also be edited by double-clicking the user task node, after

which a custom user task node editor is opened, as shown below as well.

Human tasks inside processes

151

Chapter 13. Human Tasks

152

Human tasks inside processes

153

In many cases, the parameters of a user task (like for example the task name, actorId, or priority)

can be defined when creating the process. You simply fill in the value of these properties in the

property editor. It is however likely that some of the properties of the human task are dependent

on some data related to the process instance this task is being requested in. For example, if a

business process is used to model how to handle incoming sales requests, tasks that are assigned

to a sales representative could include information related to that specific sales request, like

its unique id, the name of the customer that requested it, etc. You can make your human task

properties dynamic in two ways:

• #{expression}: Task parameters of type String can use #{expression} to embed the value of the

given expression in the String. For example, the comment related to a task might be "Please

review this request from user #{user}", where user is a variable in the process. At runtime,

#{user} will be replaced by the actual user name for that specific process instance. The value

of #{expression} will be resolved when creating human task and the #{...} will be replaced by

the toString() value of the value it resolves to. The expression could simply be the name of

a variable (in which case it will be resolved to the value of the variable), but more advanced

MVEL expressions are possible as well, like for example #{person.name.firstname}. Note that

this approach can only be used for String parameters. Other parameters should use parameter

mapping to map a value to that parameter.

• Parameter mapping: You can map the value of a process variable (or a value derived from a

variable) to a task parameter. For example, if you need to assign a task to a user whose id is

a variable in your process, you can do so by mapping that variable to the parameter ActorId,

as shown in the following screenshot. [Note that, for parameters of type String, this would be

identical to specifying the ActorId using #{userVariable}, so it would probably be easier to use

#{expression} in this case, but parameter mapping also allow you to assign a value to properties

that are not of type String.]

Chapter 13. Human Tasks

154

13.1.1. User and group assignment

Tasks can be assigned to one specific user. In that case, the task will show up on the task list of

that specific user only. If a task is assigned to more than one user, any of those users can claim

and execute this task.

Tasks can also be assigned to one or more groups. This means that any user that is part of the

group can claim and execute the task. For more information on how user and group management

is handled in the default human task service, check out the user and group assignment.

13.1.2. Task escalation and notification

There are number of situations that can raise a need for escalation of a task, for instance - user

assigned to a task can be on vacation or too busy with other work. In such cases task should be

automatically reassigned to another actor or group. Escalation can be defined for tasks that are

in following statuses:

• not started (READY or RESERVED)

• not completed (IN_PROGRESS)

Whenever an escalation is reached users/groups defined in it will be assigned to the task as

potential owners, replacing those that were previously set. If actual owner was already assigned

it will be reset and task will be put in READY state.

Task escalation and notification

155

Chapter 13. Human Tasks

156

Following is a list of attributes that can be specified:

• Users: comma spearated list of user ids that should be assigned to the task on escalation.

Acceptable are String values and expressions #{user-id}

• Groups: comma spearated list of group ids that should be assigned to the task on escalation.

Acceptable are String values and expressions #{group-id}

• Expires At: time definition about when escalation should take place. It should be defined as

time defintion (2m, 4h, 6d, etc.), in same way as for timers. Acceptable are String values and

expressions #{expiresAt}

• Type: identifies type of task state on which escalation should take place (not-started | not-

completed)

In addition to escalation, email notifications can be sent out as well. It is very similar to escalation

in terms of definition, allows notification to be sent for tasks that are in following statuses:

• not started (READY or RESERVED)

• not completed (IN_PROGRESS)

Task escalation and notification

157

Chapter 13. Human Tasks

158

Email notification has following properties:

• Type: identifies type of task state on which escalation should take place (not-started | not-

completed)

• Expires At: time definition about when escalation should take place. It should be defined as

time defintion (2m, 4h, 6d, etc.), in same way as for timers. Acceptable are String values and

expressions #{expiresAt}

• From: (Optional) user or group id that will be used as From field for email message - accepts

String and expression

• To Users: comman separated list of user ids that will become reciepients of the notification

• To Groups: comman separated list of group ids that will become reciepients of the notification

• Reply To: (Optional) user or group id that should receive replies to the notification

• Subject: Subject of the notification - accepts String and expression

• Body: Body of the notification - accepts String and expression

Notification can reference process variables by #{processVariable} and task variables

${taskVariable}. Main difference between those two is that process variables will be resolved at

task creation time and task variables will be resolved at notification time. There are several task

variables (besides regular ones) that can be used while working with notifications:

• taskId: internal id of a task instance

• processInstanceId: internal id of a process instance that the task belongs to

• workItemId: internal id of a work item that created this task

• processSessionId: session internal id of a runtime engine

• owners: list of users/groups that are potential owners of the task

• doc: map that contains regular task variables

An example that illustrates a simple notification message (its body) that shows how different

variables can be accessed:

<html>

 <body>

 ${owners[0].id} you have been assigned to a task (task-id ${taskId})

Data mapping

159

 You can access it in your task

 <a href="http://localhost:8080/jbpm-console/

app.html#errai_ToolSet_Tasks;Group_Tasks.3">inbox

 Important technical information that can be of use when working on it

 - process instance id - ${processInstanceId}

 - work item id - ${workItemId}

 <hr/>

 Here are some task variables available

 ActorId = ${doc['ActorId']}

 GroupId = ${doc['GroupId']}

 Comment = ${doc['Comment']}

 <hr/>

 Here are all potential owners for this task

 $foreach{orgEntity : owners}

 Potential owner = ${orgEntity.id}

 $end{}

 <i>Regards from jBPM team</i>

 </body>

</html>

13.1.3. Data mapping

Human tasks typically present some data related to the task that needs to be performed to the

actor that is executing the task and usually also request the actor to provide some result data

related to the execution of the task. Task forms are typically used to present this data to the actor

and request results.

13.1.3.1. Task parameters

Data that needs to be displayed in a task form should be passed to the task, using parameter

mapping. Parameter mapping allows you to copy the value of a process variable to a task

parameter (as described above). This could for example be the customer name that needs to

be displayed in the task form, the actual request, etc. To copy data to the task, simply map the

variable to a task parameter. This parameter will then be accessible in the task form (as shown

later, when describing how to create task forms).

For example, the following human task (as part of the humantask example in jbpm-examples) is

assigned to a sales representative that needs to decide whether to accept or reject a request from

a customer. Therefore, it copies the following process variables to the task as task parameters:

Chapter 13. Human Tasks

160

the userId (of the customer doing the request), the description (of the request), and the date (of

the request).

13.1.3.2. Task results

Data that needs to be returned to the process should be mapped from the task back into process

variables, using result mapping. Result mapping allows you to copy the value of a task result to a

process variable (as described above). This could for example be some data that the actor filled

in. To copy a task result to a process variable, simply map the task result parameter to the variable

in the result mapping. The value of the task result will then be copied after completion of the task

so it can be used in the remainder of the process.

For example, the following human task (as part of the humantask example in jbpm-examples) is

assigned to a sales representative that needs to decide whether to accept or reject a request from

a customer. Therefore, it copies the following task results back to the process: the outcome (the

decision that the sales representative has made regarding this request, in this case "Accept" or

"Reject") and the comment (the justification why).

Swimlanes

161

13.1.4. Swimlanes

User tasks can be used in combination with swimlanes to assign multiple human tasks to the same

actor. Whenever the first task in a swimlane is created, and that task has an actorId specified,

that actorId will be assigned to (all other tasks of) that swimlane as well. Note that this would

override the actorId of subsequent tasks in that swimlane (if specified), so only the actorId of the

first human task in a swimlane will be taken into account, all others will then take the actorId as

assigned in the first one.

Whenever a human task that is part of a swimlane is completed, the actorId of that swimlane is

set to the actorId that executed that human task. This allows for example to assign a human task

to a group of users, and to assign future tasks of that swimlame to the user that claimed the first

task. This will also automatically change the assignment of tasks if at some point one of the tasks

is reassigned to another user.

To add a human task to a swimlane, simply specify the name of the swimlane as the value of the

"Swimlane" parameter of the user task node. A process must also define all the swimlanes that

it contains. To do so, open the process properties by clicking on the background of the process

and click on the "Swimlanes" property. You can add new swimlanes there.

The new BPMN2 Eclipse editor will support a visual representation of swimlanes (as horizontal

lanes), so that it will be possible to define a human task as part of a swimlane simply by dropping

the task in that lane on the process model.

Chapter 13. Human Tasks

162

13.1.5. Examples

The jbpm-examples module has some examples that show human tasks in action, like the

evaluation example and the humantask example. These examples show some of the more

advanced features in action, like for example group assignment, data passing in and out of human

tasks, swimlanes, etc. Be sure to take a look at them for more details and a working example.

13.2. Human task service

As far as the jBPM engine is concerned, human tasks are similar to any other external service that

needs to be invoked and are implemented as a domain-specific service. (For more on domain-

specific services, see the chapter on them here.) Because a human task is an example of such

a domain-specific service, the process itself only contains a high-level, abstract description of the

human task to be executed and a work item handler that is responsible for binding this (abstract)

task to a specific implementation.

Users can plug in any human task service implementation, such as the one that's provided by

jBPM, or they may register their own implementation. In the next paragraphs, we will describe the

human task servcie implementation provided by jBPM.

The jBPM project provides a default implementation of a human task service based on the

WS-HumanTask specification. If you do not need to integrate jBPM with another existing

implementation of a human task service, you can use this service. The jBPM implementation

manages the life cycle of the tasks (creation, claiming, completion, etc.) and stores the state

of all the tasks, task lists, and other associated information. It also supports features like

internationalization, calendar integration, different types of assignments, delegation, escalation

and deadlines. The code for the implementation itself can be found in the jbpm-human-task

module.

The jBPM task service implementation is based on the WS-HumanTask (WS-HT) specification.

This specification defines (in detail) the model of the tasks, the life cycle, and many other features.

It is very comprehensive and the first version can be found here [http://download.boulder.ibm.com/

ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf].

13.2.1. Task life cycle

From the perspective of a process, when a user task node is encountered during the execution, a

human task is created. The process will then only leave the user task node when the associated

human task has been completed or aborted.

The human task itself usually has a complete life cycle itself as well. For details beyond what is

described below, please check out the WS-HumanTask specification. The following diagram is

from the WS-HumanTask specification and describes the human task life cycle.

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf

Task life cycle

163

A newly created task starts in the "Created" stage. Usually, it will then automatically become

"Ready", after which the task will show up on the task list of all the actors that are allowed to

execute the task. The task will stay "Ready" until one of these actors claims the task, indicating

that he or she will be executing it.

When a user then eventually claims the task, the status will change to "Reserved". Note that a

task that only has one potential (specific) actor will automatically be assigned to that actor upon

creation of the task. When the user who has claimed the task starts executing it, the task status

will change from "Reserved" to "InProgress".

Lastly, once the user has performed and completed the task, the task status will change to

"Completed". In this step, the user can optionally specify the result data related to the task. If the

task could not be completed, the user could also indicate this by using a fault response, possibly

including fault data, in which case the status would change to "Failed".

While the life cycle explained above is the normal life cycle, the specification also describes a

number of other life cycle methods, including:

• Delegating or forwarding a task, so that the task is assigned to another actor

• Revoking a task, so that it is no longer claimed by one specific actor but is (re)available to all

actors allowed to take it

• Temporarly suspending and resuming a task

Chapter 13. Human Tasks

164

• Stopping a task in progress

• Skipping a task (if the task has been marked as skippable), in which case the task will not be

executed

13.2.2. Linking the human task service to the jBPM engine

Just like any other external service, the human task service can be integrated with the jBPM engine

by registering a work item handler that translates the abstract work item (in this case a human

task) to a specific invocation of a service (in this case, the jBPM implementation of the human task

service). There are several implementations of a work item handler available that can be selected

depending on following factors:

• transport used (HornetQ, Mina, JMS)

• local interaction - same transaction boundary as the engine

• mode of interaction - synchronous or asynchronous

Here is a list of all available work item handlers for human tasks:

Table 13.1. Work item handlers for human task

Class name Module Mode

org.jbpm.process.workitem.wsht.LocalHTWorkItemHandlerjbpm-human-task-

core

Local

org.jbpm.process.workitem.wsht.AsyncHornetQHTWorkItemHandlerjbpm-human-task-

hornetq

Async

org.jbpm.process.workitem.wsht.HornetQHTWorkItemHandlerjbpm-human-task-

hornetq

Sync

org.jbpm.process.workitem.wsht.AsyncMinaHTWorkItemHandlerjbpm-human-task-

mina

Async

org.jbpm.process.workitem.wsht.MinaHTWorkItemHandlerjbpm-human-task-

mina

Sync

Once you select the one that meets your needs you can register this work item handler like this:

StatefulKnowledgeSession ksession = ...;

ksession.getWorkItemManager().registerWorkItemHandler("Human

 Task", new AsyncHornetQHTWorkItemHandler(ksession));

By default, this handler will connect to the human task service on the local machine on port 5153

via hornetq. You can easily change connection details of the human task service by either building

Interacting with the human task service

165

TaskClient yourself and pass it as handler constructor argument or by setting ip address and port

number after handler is created.

Note
Important to note is that when there is requirement to use multiple knowledge

sessions (meaning every session will have a dedicated work item handler for

human tasks) you must configure handler to react only to tasks that were initiated

by that session that is attached to the handler to avoid duplicated activations.

new AsyncHornetQHTWorkItemHandler(ksession, true))

The communication between the human task service and the process engine, or any task

client, is message based. While the client/server transport mechanism is pluggable (allowing

different implementations), the default is HornetQ. An alternative implementation using Mina

(http://mina.apache.org/) is also available.

13.2.3. Interacting with the human task service

The human task service exposes a Java API for managing the life cycle of tasks. This allows clients

to integrate (at a low level) with the human task service. Note that end users should probably

not interact with this low-level API directly, but use one of the more user-friendly task clients

(see below) instead. These clients offer a graphical user interface to request task lists, claim and

complete tasks, and manage tasks in general. The task clients listed below use the Java API to

internally interact with the human task service. Of course, the low-level API is also available so

that developers can use it in their code to interact with the human task service directly.

A task client (class org.jbpm.task.service.TaskClient) offers the following methods (among others)

for managing the life cycle of human tasks:

public void start(long taskId, String userId, TaskOperationResponseHandler responseHandler)

public void stop(long taskId, String userId, TaskOperationResponseHandler responseHandler)

public void release(long taskId, String userId, TaskOperationResponseHandler responseHandler)

public void suspend(long taskId, String userId, TaskOperationResponseHandler responseHandler)

public void resume(long taskId, String userId, TaskOperationResponseHandler responseHandler)

public void skip(long taskId, String userId, TaskOperationResponseHandler responseHandler)

public void delegate(long taskId, String userId, String targetUserId,

 TaskOperationResponseHandler responseHandler)

public void complete(long taskId, String userId, ContentData outputData,

 TaskOperationResponseHandler responseHandler)

If you take a look at the method signatures you will notice that almost all of these methods take

the following arguments:

http://mina.apache.org/

Chapter 13. Human Tasks

166

• taskId: The id of the task that we are working with. This is usually extracted from the currently

selected task in the user task list in the user interface.

• userId: The id of the user that is executing the action. This is usually the id of the user that is

logged in into the application.

• responseHandler: Communication with the task service is asynchronous, so you should use

a response handler that will be notified when the results are available.

When you invoke a message on the TaskClient, a message is created that will be sent to the

server. The server then executes the operation requested in the message.

The following code sample shows how to create a task client and interact with the task service

to create, start and complete a task.

TaskClient client = new TaskClient(new MinaTaskClientConnector("client 1",

 new MinaTaskClientHandler(SystemEventListenerFactory.getSystemEventListener())));

client.connect("127.0.0.1", 9123);

// adding a task

BlockingAddTaskResponseHandler addTaskResponseHandler = new BlockingAddTaskResponseHandler();

Task task = ...;

client.addTask(task, null, addTaskResponseHandler);

long taskId = addTaskResponseHandler.getTaskId();

// getting tasks for user "bobba"

BlockingTaskSummaryResponseHandler taskSummaryResponseHandler =

 new BlockingTaskSummaryResponseHandler();

client.getTasksAssignedAsPotentialOwner("bobba", "en-

UK", taskSummaryResponseHandler);

List<TaskSummary> tasks = taskSummaryResponseHandler.getResults();

// starting a task

BlockingTaskOperationResponseHandler responseHandler =

 new BlockingTaskOperationResponseHandler();

client.start(taskId, "bobba", responseHandler);

responseHandler.waitTillDone(1000);

// completing a task

responseHandler = new BlockingTaskOperationResponseHandler();

client.complete(taskId, "bobba".getId(), null, responseHandler);

responseHandler.waitTillDone(1000);

13.2.4. User and group assignment

Tasks can be assigned to one specific user. In that case, the task will show up on the task list of

that specific user only. If a task is assigned to more than one user, any of those users can claim

User and group assignment

167

and execute this task. Tasks can also be assigned to one or more groups. This means that any

user that is part of the group can claim and execute the task.

The human task service needs to know about valid user and group ids (to make sure tasks are

assigned to existing users and/or groups to avoid errors and tasks that end up assigned to non-

existing users). User and group registration has to be done before tasks can be assigned to them.

One possible registration method is to dynamically adding users and groups to the task service

session:

EntityManagerFactory emf = Persistence.createEntityManagerFactory("org.jbpm.task");

TaskService taskService = new TaskService(emf, SystemEventListenerFactory.getSystemEventListener());

TaskServiceSession taskSession = taskService.createSession();

// now register new users and groups

taskSession.addUser(new User("krisv"));

taskSession.addGroup(new Group("developers"));

The human task service itself does not maintain the relationship between users and groups. This

is considered outside the scope of the human task service: in general, businesses already have

existing services that manage this information (i.e. an LDAP service). The human task service

does allow you to specify the list of groups that a user is part of, so that this information can also

be taken into account when managing tasks.

For example, if a task is assigned to the group "sales" and the user "sales-rep-1", who is a member

of "sales", wants to claim that task, then that user needs to pass the fact that he is a member of

"sales" when requesting the list of tasks that he is assigned to as potential owner:

List<String> groups = new ArrayList<String>();

groups.add("sales");

taskClient.getTasksAssignedAsPotentialOwner("sales-rep", groups, "en-

UK", taskSummaryHandler);

The WS-HumanTask specification also introduces the role of an administrator. An administrator

can manipulate the life cycle of the task, even though he might not be assigned as a potential

owner of that task. By default, jBPM registers a special user with userId "Administrator" as the

administrator of each task. You should therefor make sure that you always define at least a user

"Adminstrator" when registering the list of valid users at the task service.

It is often necessary to hook into existing systems and/or services (such as LDAP) where users

and groups are maintained in order to perform validation without having to manually register all

users and group with the task service. jBPM provides the UserGroupCallback interface which

allows you to create your own implementation for user and group management:

public interface UserGroupCallback {

Chapter 13. Human Tasks

168

 /**

 * Resolves existence of user id.

 * @param userId the user id assigned to the task

 * @return true if userId exists, false otherwise.

 */

 boolean existsUser(String userId);

 /**

 * Resolves existence of group id.

 * @param groupId the group id assigned to the task

 * @return true if groupId exists, false otherwise.

 */

 boolean existsGroup(String groupId);

 /**

 * Returns list of group ids for specified user id.

 * @param userId the user id assigned to the task

 * @param groupIds list of group ids assigned to the task

 * @param allExistingGroupIds list of all currently known group ids

 * @return List of group ids.

 */

 List<String> getGroupsForUser(String userId, List<String> groupIds, List<String> allExistingGroupIds);

}

If you register your own implementation of the UserGroupCallback interface, the human task

service will call it whenever it needs to perform user and group validation. Here is a very simple

example implementation which treats all users and groups as being valid:

public class DefaultUserGroupCallbackImpl implements UserGroupCallback {

 public boolean existsUser(String userId) {

 // accept all by default

 return true;

 }

 public boolean existsGroup(String groupId) {

 // accept all by default

 return true;

 }

 public List<String> getGroupsForUser(String userId, List<String> groupIds,

 List<String> allExistingGroupIds) {

 if(groupIds != null) {

 List<String> retList = new ArrayList<String>(groupIds);

 // merge all groups

 if(allExistingGroupIds != null) {

User and group assignment

169

 for(String grp : allExistingGroupIds) {

 if(!retList.contains(grp)) {

 retList.add(grp);

 }

 }

 }

 return retList;

 } else {

 // return empty list by default

 return new ArrayList<String>();

 }

 }

}

You can register your own implementation of the UserGroupCallback interface in a properties

file called jbpm.usergroup.callback.properties which should be available on the classpath, for

example:

jbpm.usergroup.callback=org.jbpm.task.service.DefaultUserGroupCallbackImpl

or via a system property, for example -

Djbpm.usergroup.callback=org.jbpm.task.service.DefaultUserGroupCallbackImpl. If

you are using the jBPM installer, you can also modify $jbpm-installer-dir$/task-service/

resources/org/jbpm/jbpm.usergroup.callback.properties directly to register your own

callback implementation.

13.2.4.1. Connecting Human Task server to LDAP

jBPM comes with a dedicated UserGroupCallback implementation for LDAP servers that allows

task server to retrieve user and group/role information directly from LDAP. To be able to use this

callback it must be configured according to specifics of LDAP server and its structure to collect

proper information.

LDAP UserGroupCallback properties

• ldap.bind.user : username used to connect to the LDAP server (optional if LDAP server accepts

anonymous access)

• ldap.bind.pwd : password used to connect to the LDAP server(optional if LDAP server accepts

anonymous access)

• ldap.user.ctx : context in LDAP that will be used when searching for user information

(mandatory)

• ldap.role.ctx : context in LDAP that will be used when searching for group/role information

(mandatory)

Chapter 13. Human Tasks

170

• ldap.user.roles.ctx : context in LDAP that will be used when searching for user group/role

membership information (optional, if not given ldap.role.ctx will be used)

• ldap.user.filter : filter that will be used to search for user information, usually will contain

substitution keys {0} to be replaced with parameters (mandatory)

• ldap.role.filter : filter that will be used to search for group/role information, usually will contain

substitution keys {0} to be replaced with parameters (mandatory)

• ldap.user.roles.filter : filter that will be used to search for user group/role membership

information, usually will contain substitution keys {0} to be replaced with parameters (mandatory)

• ldap.user.attr.id : attribute name of the user id in LDAP (optional, if not given 'uid' will be used)

• ldap.roles.attr.id : attribute name of the group/role id in LDAP (optional, if not given 'cn' will be

used)

• ldap.user.id.dn : is user id a DN, instructs the callback to query for user DN before searching

for roles (optional, default false)

• java.naming.factory.initial : initial conntext factory class name (default

com.sun.jndi.ldap.LdapCtxFactory)

• java.naming.security.authentication : authentication type (none, simple, strong where simple is

default one)

• java.naming.security.protocol : specifies security protocol to be used, for instance ssl

• java.naming.provider.url : LDAP url to be used default is ldap://localhost:389, or if protocol is

set to ssl ldap://localhost:636

Depending on how human task server is started LDAP callback can be configured in two ways:

• programatically - build property object with all required attributes and register new callback

Properties properties = new Properties();

properties.setProperty(LDAPUserGroupCallbackImpl.USER_CTX, "ou=People,dc=my-

domain,dc=com");

properties.setProperty(LDAPUserGroupCallbackImpl.ROLE_CTX, "ou=Roles,dc=my-

domain,dc=com");

properties.setProperty(LDAPUserGroupCallbackImpl.USER_ROLES_CTX, "ou=Roles,dc=my-

domain,dc=com");

properties.setProperty(LDAPUserGroupCallbackImpl.USER_FILTER, "(uid={0})");

properties.setProperty(LDAPUserGroupCallbackImpl.ROLE_FILTER, "(cn={0})");

properties.setProperty(LDAPUserGroupCallbackImpl.USER_ROLES_FILTER, "(member={0})");

UserGroupCallback ldapUserGroupCallback = new LDAPUserGroupCallbackImpl(properties);

UserGroupCallbackManager.getInstance().setCallback(ldapUserGroupCallback);

Starting the human task service

171

• declaratively - create property file (jbpm.usergroup.callback.properties) with all required

attributes, place it on the root of the classpath and declare LDAP callback to

be registered (see section Starting the human task server for deatils). Alternatively,

location of jbpm.usergroup.callback.properties can be specified via system property -

Djbpm.usergroup.callback.properties=FILE_LOCATION_ON_CLASSPATH

#ldap.bind.user=

#ldap.bind.pwd=

ldap.user.ctx=ou\=People,dc\=my-domain,dc\=com

ldap.role.ctx=ou\=Roles,dc\=my-domain,dc\=com

ldap.user.roles.ctx=ou\=Roles,dc\=my-domain,dc\=com

ldap.user.filter=(uid\={0})

ldap.role.filter=(cn\={0})

ldap.user.roles.filter=(member\={0})

#ldap.user.attr.id=

#ldap.roles.attr.id=

13.2.5. Starting the human task service

The human task service is a completely independent service that the process engine

communicates with. We therefore recommend that you start it as a separate service as well. The

jBPM installer contains a command to start the task server (in this case using Mina as transport

protocol), or you can use the following code fragment:

EntityManagerFactory emf = Persistence.createEntityManagerFactory("org.jbpm.task");

TaskService taskService = new TaskService(emf, SystemEventListenerFactory.getSystemEventListener());

MinaTaskServer server = new MinaTaskServer(taskService);

Thread thread = new Thread(server);

thread.start();

The task management component uses the Java Persistence API (JPA) to store all task

information in a persistent manner. To configure the persistence, you need to modify the

persistence.xml configuration file accordingly. We refer to the JPA documentation on how to do

that. The following fragment shows for example how to use the task management component with

hibernate and an in-memory H2 database:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<persistence

 version="1.0"

Chapter 13. Human Tasks

172

 xsi:schemaLocation=

 "http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd

 http://java.sun.com/xml/ns/persistence/orm

 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"

 xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://java.sun.com/xml/ns/persistence">

 <persistence-unit name="org.jbpm.task">

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <class>org.jbpm.task.Attachment</class>

 <class>org.jbpm.task.Content</class>

 <class>org.jbpm.task.BooleanExpression</class>

 <class>org.jbpm.task.Comment</class>

 <class>org.jbpm.task.Deadline</class>

 <class>org.jbpm.task.Comment</class>

 <class>org.jbpm.task.Deadline</class>

 <class>org.jbpm.task.Delegation</class>

 <class>org.jbpm.task.Escalation</class>

 <class>org.jbpm.task.Group</class>

 <class>org.jbpm.task.I18NText</class>

 <class>org.jbpm.task.Notification</class>

 <class>org.jbpm.task.EmailNotification</class>

 <class>org.jbpm.task.EmailNotificationHeader</class>

 <class>org.jbpm.task.PeopleAssignments</class>

 <class>org.jbpm.task.Reassignment</class>

 <class>org.jbpm.task.Status</class>

 <class>org.jbpm.task.Task</class>

 <class>org.jbpm.task.TaskData</class>

 <class>org.jbpm.task.SubTasksStrategy</class>

 <class>org.jbpm.task.OnParentAbortAllSubTasksEndStrategy</class>

 <class>org.jbpm.task.OnAllSubTasksEndParentEndStrategy</class>

 <class>org.jbpm.task.User</class>

 <properties>

 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/

>

 <property name="hibernate.connection.driver_class" value="org.h2.Driver"/>

 <property name="hibernate.connection.url" value="jdbc:h2:mem:mydb" />

 <property name="hibernate.connection.username" value="sa"/>

 <property name="hibernate.connection.password" value="sasa"/>

 <property name="hibernate.connection.autocommit" value="false" />

 <property name="hibernate.max_fetch_depth" value="3"/>

 <property name="hibernate.hbm2ddl.auto" value="create" />

 <property name="hibernate.show_sql" value="true" />

 </properties>

 </persistence-unit>

Starting the human task service

173

</persistence>

The first time you start the task management component, you need to make sure that all the

necessary users and groups are added to the database. Our implementation requires all users and

groups to be predefined before trying to assign a task to that user or group. So you need to make

sure you add the necessary users and group to the database using the taskSession.addUser(user)

and taskSession.addGroup(group) methods. Note that you at least need an "Administrator" user

as all tasks are automatically assigned to this user as the administrator role.

The jbpm-human-task module contains a org.jbpm.task.RunTaskService class in the src/test/java

source folder that can be used to start a task server. It automatically adds users and groups as

defined in LoadUsers.mvel and LoadGroups.mvel configuration files.

The jBPM installer automatically starts a human task service (using an in-memory H2 database)

as a separate Java application. This task service is defined in the task-service directory in the

jbpm-installer folder. You can register new users and task by modifying the LoadUsers.mvel and

LoadGroups.mvel scripts in the resources directory.

13.2.5.1. Configure escalation and notifications

To allow Task Server to perform escalations and notification a bit of configuration is required. Most

of the configuration is for notification support as it relies on external system (mail server) but as

they are handled by EscalatedDeadlineHandler implementation so configuration apply to both.

// configure email service

Properties emailProperties = new Properties();

emailProperties.setProperty("from", "jbpm@domain.com");

emailProperties.setProperty("replyTo", "jbpm@domain.com");

emailProperties.setProperty("mail.smtp.host", "localhost");

emailProperties.setProperty("mail.smtp.port", "2345");

// configure default UserInfo

Properties userInfoProperties = new Properties();

// : separated values for each org entity email:locale:display-name

userInfoProperties.setProperty("john", "john@domain.com:en-UK:John");

userInfoProperties.setProperty("mike", "mike@domain.com:en-UK:Mike");

userInfoProperties.setProperty("Administrator", "admin@domain.com:en-

UK:Admin");

// build escalation handler

DefaultEscalatedDeadlineHandler handler = new DefaultEscalatedDeadlineHandler(emailProperties);

// set user info on the escalation handler

handler.setUserInfo(new DefaultUserInfo(userInfoProperties));

EntityManagerFactory emf = Persistence.createEntityManagerFactory("org.jbpm.task");

// when building TaskService provide escalation handler as argument

Chapter 13. Human Tasks

174

TaskService taskService = new TaskService(emf, SystemEventListenerFactory.getSystemEventListener(), handler);

MinaTaskServer server = new MinaTaskServer(taskService);

Thread thread = new Thread(server);

thread.start();

Note that default implementation of UserInfo is just for demo purposes to have a fully operational

task server. Custom user info classes can be provided that implement following interface:

public interface UserInfo {

 String getDisplayName(OrganizationalEntity entity);

 Iterator<OrganizationalEntity> getMembersForGroup(Group group);

 boolean hasEmail(Group group);

 String getEmailForEntity(OrganizationalEntity entity);

 String getLanguageForEntity(OrganizationalEntity entity);

}

If you are using the jBPM installer, just drop your property files into $jbpm-installer-dir$/

task-service/resources/org/jbpm/, make sure that they are named email.properties and

userinfo.properties.

13.2.5.1.1. User information retrieved from LDAP server

More production alike configuration would be to use LDAP server as user information

repository and to achieve that a dedicated UserInfo implementation is shipped with jBPM -

LDAPUserInfoImpl. This is especially useful when configuring task server to use LDAP based

user group callback, with this complete user/group information are externalized to LDAP server.

LDAP UserGroupCallback properties

• ldap.bind.user : username used to connect to the LDAP server (optional if LDAP server accepts

anonymous access)

• ldap.bind.pwd : password used to connect to the LDAP server(optional if LDAP server accepts

anonymous access)

• ldap.user.ctx : context in LDAP that will be used when searching for user information

(mandatory)

• ldap.role.ctx : context in LDAP that will be used when searching for group/role information

(mandatory)

Starting the human task service

175

• ldap.user.filter : filter that will be used to search for user information, usually will contain

substitution keys {0} to be replaced with parameters (mandatory)

• ldap.role.filter : filter that will be used to search for group/role information, usually will contain

substitution keys {0} to be replaced with parameters (mandatory)

• ldap.role.members.filter : filter that will be used to search for user group/role membership

information, usually will contain substitution keys {0} to be replaced with parameters (optional

default same as ldap.role.filter)

• ldap.email.attr.id : attribute id that contains email address in LDAP (default mail)

• ldap.name.attr.id : attribute id that contians display name in LDAP (default displayName)

• ldap.lang.attr.id : attribute id that contians language information (default locale)

• ldap.member.attr.id : attribute id on group/role object in LDAP that contains members (default

member)

• ldap.user.attr.id : attribute id that contains user id in LDAP server (default uid)

• ldap.role.attr.id : attribute id that contains group/role id in LDAP server (default cn)

• ldap.entity.id.dn : instructs if the organizational entity is (or can be) DN, especially important

when members of a group will be returned as DN instead of user ids (default false)

• java.naming.factory.initial : initial conntext factory class name (default

com.sun.jndi.ldap.LdapCtxFactory)

• java.naming.security.authentication : authentication type (none, simple, strong where simple is

default one)

• java.naming.security.protocol : specifies security protocol to be used, for instance ssl

• java.naming.provider.url : LDAP url to be used default is ldap://localhost:389, or if protocol is

set to ssl ldap://localhost:636

Depending on how human task server is started LDAP user info can be configured in two ways:

• programatically - build property object with all required attributes and register new user info on

escalation handler

Properties properties = new Properties();

properties.setProperty(LDAPUserInfoImpl.USER_CTX, "ou=People,dc=jbpm,dc=org");

properties.setProperty(LDAPUserInfoImpl.ROLE_CTX, "ou=Roles,dc=jbpm,dc=org");

properties.setProperty(LDAPUserInfoImpl.USER_FILTER, "(uid={0})");

properties.setProperty(LDAPUserInfoImpl.ROLE_FILTER, "(cn={0})");

properties.setProperty(LDAPUserInfoImpl.IS_ENTITY_ID_DN, "true");

Chapter 13. Human Tasks

176

UserInfo ldapUserInfo = new LDAPUserInfoImpl(properties);

DefaultEscalatedDeadlineHandler handler = new DefaultEscalatedDeadlineHandler(emailProperties);

handler.setUserInfo(ldapUserInfo);

• declaratively - create property file (jbpm.user.info.properties) with all required attributes,

place it on the root of the classpath and declare LDAP user info implementation

to be registered (see section Starting the human task server for deatils).

Alternatively, location of jbpm.user.info.properties can be specified via system property -

Djbpm.user.info.properties=FILE_LOCATION_ON_CLASSPATH

#ldap.bind.user=

#ldap.bind.pwd=

ldap.user.ctx=ou\=People,dc\=my-domain,dc\=com

ldap.role.ctx=ou\=Roles,dc\=my-domain,dc\=com

ldap.user.filter=(uid\={0})

ldap.role.filter=(cn\={0})

#ldap.role.members.filter=

#ldap.email.attr.id

#ldap.name.attr.id

#ldap.lang.attr.id

#ldap.member.attr.id

#ldap.user.attr.id

#ldap.role.attr.id

ldap.entity.id.dn=true

13.2.6. Starting the human task service as web application

Human task service can be started as web application to simplify deployment. As part of

application configuration user can select number of settings to be applied on startup. Configuration

is done via web.xml of jbpm-human-task-war application by setting init parameters of the

HumanTaskServiceServlet.Following is a complete list of supported parameters and their

meaning:

General settings

• task.persistence.unit : name of persistence unit that will be used to build EntityManagerFactory

(default org.jbpm.task)

Starting the human task service as web application

177

• user.group.callback.class : implementation of UserGroupCallback interface to be used to

resolve users and groups (default DefaultUserGroupCallbackImpl)

• escalated.deadline.handler.class : implementation of EscalatedDeadlineHandler interface to be

used to hadnle escalations and notifications (default DefaultEscalatedDeadlineHandler)

• user.info.class : implementation of UserInfo interface to be used to resolve user/group

information such as email address, prefered language

• load.users : allows to specify location of a file that will be used to initially populate task server

db with users. Accepts two types of files: MVEL and properties; must be suffixed with .mvel

or .properties. Location of the file can be either on classpath (with prefix classpath:) or valid

URL. NOTE: that with custom users files Administrator user must always be present

• load.groups : allows to specify location of a file that will be used to initially populate task server

db with groups. Accepts two types of files: MVEL and properties;file must be suffixed with .mvel

or .properties. Location of the file can be either on classpath (with prefix classpath:) or valid URL.

Transport settings

• active.config : main parameter that controls what transport is configured for Task Server, by

default set to HornetQ and accepts Mina, HornetQ, JMS

Apache Mina

• mina.host : host/ip address used to bind Apache Mina server (localhost)

• mina.port : port used to bind Apache Mina server (default 9123)

HornetQ

• hornetq.host : host/ip address used to bind HornetQ server (default localhost)

• hornetq.port : port used to bind HornetQ server (default 5153)

JMS

• JMSTaskServer.connectionFactory : JNDI name of QueueConnectionFactory to look up (no

default)

• JMSTaskServer.transacted : boolean flag that indicates if jms session will be transacted or not

(no default)

• JMSTaskServer.acknowledgeMode : acknowledgment mode (default

DUPS_OK_ACKNOWLEDGE)

• JMSTaskServer.queueName : name of JMS queue (no default)

Chapter 13. Human Tasks

178

• JMSTaskServer.responseQueueName : name of JMS response queue (no default)

13.3. Human task clients

13.3.1. Eclipse demo task client

The Drools IDE contains a org.drools.eclipse.task plugin that allows you to test and/or debug

processes using human tasks. In contains a Human Task View that can connect to a running task

management component, request the relevant tasks for a particular user (i.e. the tasks where the

user is either a potential owner or the tasks that the user already claimed and is executing). The

life cycle of these tasks can then be executed, i.e. claiming or releasing a task, starting or stopping

the execution of a task, completing a task, etc. A screenshot of this Human Task View is shown

below. You can configure which task management component to connect to in the Drools Task

preference page (select Window -> Preferences and select Drools Task). Here you can specify

the url and port (default = 127.0.0.1:9123).

Notice that this task client only supports a (small) sub-set of the features provided the human task

service. But in general this is sufficient to do some initial testing and debugging or demoing inside

the Eclipse IDE.

13.3.2. Web-based task client in jBPM Console

The jBPM console also contains a task view for looking up task lists and managing the life cycle

of tasks, task forms to complete the tasks, etc. See the chapter on the jBPM console for more

information.

13.4. Human task persistence

The folowing entity relationship diagram (ERD) shows the persitent entities used by the Human

Task service. (Clicking on the image below will take you to an enlarged view of the image.)

Human task persistence

179

Figure 13.1. Human Task service data model
[images/Chapter-HumanTasks/human_task_schema.png]

The data model above is organized around 2 groups of entities:

• The task entity which represents the main information for a task. (See the righthand side of

the ERD above.)

• The deadline, escalation and notification entities which represent deadlines and

escalations for a task as well as any notifications associated with those deadlines. (See the

lefthand side of the ERD above.)

Two other main entities in the data model are the i18ntext and organizationalentity.

• The i18ntext entity is used to store text which may be language related, such as names or

descriptions entered by users.

• The organizationalentity entity represents a user in some way.

The following paragraphs and tables describe the group of entities including and associated with

the task entity. These entities are shown on the right hand side of the ERD. (See below for

information about the deadline, escalation and notification group of entities).

The column “FK” in the tables below, indicates whether or not a column in a database table has a

foreign key constraint on it. If the “Nullable” column is empty, then the described database table

column is nullable.

While a number of foreign key columns of different tables are specified as non-nullable, many of

these columns will simply contain the value -1 or 0 if there is no associated entity.

images/Chapter-HumanTasks/human_task_schema.png

Chapter 13. Human Tasks

180

13.4.1. Task related entities

The task entity contains much of the essential information for describing a task. Although a

number of columns are not nullable, many of them are simply set to "-1" if the value used in the

column hasn't been set by the task service.

Table 13.2. Task

Field Description Nullable FK

id The primary key of

the task identity

NOT

priority The priority of the

task

NOT

allowedtodelegate The group to whom

this task may be

delegated

status The status of the task

previousstatus The previous status

of the task

actualowner_id The id of the

organizational entity

who owns the task

NOT FK

createdby_id The id of the

organizational entity

who created the task

NOT FK

createdon The timestamp

describing when this

task was created

activationtime The timestamp

describing when this

task was activated

expirationtime The timestamp

describing when this

task will expire

skipable Whether or not this

task may be skipped

NOT

workitemid The id of the work

item associated with

this task (see jBPM

core schema)

NOT

Task related entities

181

Field Description Nullable FK

processinstanceid The id of the process

instance associated

with this task (see

jBPM core schema)

NOT

documentaccesstype How a document

associated with the

task can be accessed

documenttype The type of data in

the document

documentcontentid The id of the content

entity containing the

document data

NOT

outputaccesstype How the output

document associated

with the task can be

accessed

outputtype The type of data in

the output document

outputcontentid The id of the content

entity containing the

output document data

NOT

faultname The name of the fault

generated, if a fault

occurs

faultaccesstype How the document

associated with the

fault can be accessed

faulttype The type of data in

the fault document

faultcontentid The id of the content

entity containing the

fault document data

NOT

parentid This is the id of the

parent task

NOT

processid The name (id) of the

associated process

processsessionid The id of the

associated

(knowledge) session

NOT

Chapter 13. Human Tasks

182

Field Description Nullable FK

taskinitiator_id The id of the

organizational entity

who created the task

NOT FK

The subtasksstrategy entity is used to save the strategy that describes how parent and sub-

tasks should react when either parent or sub-tasks are ended.

Table 13.3. SubTasksStrategy

Field Description Nullable FK

id The primary key NOT

dtype A discriminator

column

NOT

name The name of the

strategy

task_id The primary key of

the associated task

NOT FK

The organizationalentity entity is extended to represent the different people assignments that

are part of the task.

Table 13.4. OrganizationalEntity

Field Description Nullable

id The primary key NOT

dtype The discriminator column NOT

The attachment entity describes attachments that have been added to the task.

Table 13.5. Attachment

Field Description Nullable FK

id The primary key NOT

name The (file) name of the

attachment

accesstype How the attachment

can be accessed

attachedat When the attachment

was attached to the

task

attachment_size The size (in bytes) of

the attachment

Task related entities

183

Field Description Nullable FK

attachmentcontentid The id of the content

entity storing the

raw data of the

attachment

NOT

contenttype The MIME type of the

attachment data

attachedby_id The id of the

organizationalentity

entity that attached

the attachment

NOT FK

taskdata_attachments_idThe id of the task

entity to which this

attachment belongs

NOT FK

The task_comment entity describes comments added to tasks.

Table 13.6. task_comment

Field Description Nullable FK

id The primary key NOT

addedat The timestamp of

when the comment

was added to the task

text The text of the

comment

addedby_id The primary key

of the associated

organizationalentity

entity

NOT FK

taskdata_comments_idThe primary key of

the associated task

entity

NOT FK

The delegation_delegates table is a join table for relationships between the task entity and

the organizationalentity.

Table 13.7. delegation_delegates

Field Description Nullable FK

task_id The primary key of

the associated task

NOT FK

Chapter 13. Human Tasks

184

Field Description Nullable FK

entity_id The primary key

of the associated

organizationalentity

NOT FK

The peopleassignments_stakeholders table is a join table that describes which

organizationalentity entities are task stakeholders of a particular task.

Table 13.8. peopleassignments_stakeholders

Field Description Nullable FK

task_id The primary key of

the associated task

entity

NOT FK

entity_id The primary key

of the associated

organizationalentity

entity

NOT FK

The peopleassignments_potowners table is a join table that describes which

organizationalentity entities are potential owners of a particular task.

Table 13.9. peopleassignments_potowners

Field Description Nullable FK

task_id The primary key of

the associated task

entity

NOT FK

entity_id The primary key

of the associated

organizationalentity

entity

NOT FK

The peopleassignments_exclowners table is a join table that describes which

organizationalentity entities are the excluded owners of a particular task.

Table 13.10. peopleassignments_exclowners

Field Description Nullable FK

task_id The primary key of

the associated task

entity

NOT FK

entity_id The primary key

of the associated

NOT FK

Deadline, Escalation and Notification related entities

185

Field Description Nullable FK

organizationalentity

entity

The peopleassignments_bas table is a join table that describes which organizationalentity

entities are business administrators of a particular task.

Table 13.11. peopleassignments_bas

Field Description Nullable FK

task_id The primary key of

the associated task

entity

NOT FK

entity_id The primary key

of the associated

organizationalentity

entity

NOT FK

The peopleassignments_recipients table is a join table that describes which

organizationalentity entities are notification recipients for a particular task.

Table 13.12. peopleassignments_recipients

Field Description Nullable FK

task_id The primary key of

the associated task

entity

NOT FK

entity_id The primary key

of the associated

organizationalentity

entity

NOT FK

13.4.2. Deadline, Escalation and Notification related entities

The following paragraphs and tables describe the group of entities having to do with deadline,

escalation, and notification information. These entities are shown on the left hand side of the ERD

diagram above.

The deadline entity represents a deadline for a task.

Table 13.13. deadline

Field Description Nullable FK

id The primary key NOT

Chapter 13. Human Tasks

186

Field Description Nullable FK

deadline_date The deadline date

escalated Whether or not the

deadline has been

escalated

NOT

deadlines_startdeadline_idThe id of the

associated task

entity which uses this

deadline as its start

deadline.

NOT FK

deadlines_enddeadline_idThe id of the

associated task

entity which uses this

deadline as its end

deadline.

NOT FK

The escalation entity descibes an escalation action that should be taken for a particular deadline.

Table 13.14. escalation

Field Description Nullable FK

id The primary key NOT

name The name of the

escalation event

deadline_escalation_idThe id of the

associated deadline

entity

NOT FK

The booleanexpression entity represents an expression that evaluates to a boolean. These

expressions are used in order to determine whether or not a constraint should be applied.

Table 13.15. booleanexpression

Field Description Nullable FK

id The primary key NOT

expression The expression text

type The type of

expression

escalation_constraints_idThe id of the

escalation entity

for which this

expression is used as

a constraint

NOT FK

Deadline, Escalation and Notification related entities

187

The notification entity describes a notification generated by an escalation action.

Table 13.16. notification

Field Description Nullable FK

id The primary key NOT

dtype The discriminator

column

NOT

priority The priority of the

notification

NOT

escalation_notifications_idThe id of the

associated

escalation entity

NOT FK

The email_header entity describes an e-mail that will be sent as part of a notification.

Table 13.17. email_header

Field Description Nullable

id The primary key NOT

fromaddress The e-mail address

from which the e-mail

is sent

replytoaddress The reply-to address

used in the e-mail

language The language in

which the e-mail is

written

subject The subject of the e-

mail

body The body of the e-

mail

The notification_email_header table is a join table that describes and qualifies which

email_header entities are part of a notification.

Table 13.18. notification_email_header

Field Description Nullable FK

notification_id Together with the

mapkey, this field is

part of the primary

key. This field refers

NOT FK

Chapter 13. Human Tasks

188

Field Description Nullable FK

to the notification

entity that the

email_header is

associated with.

mapkey Together with

the mapkey, this

field is part of the

primary key. This

field describes

what the type is

of the associated

email_header.

NOT

emailheaders_id The id of the

associated

email_header entity

NOT FK

The reassignment entity describes reassignments associated with escalations.

Table 13.19. reassignment

Field Description Nullable FK

id The primary key NOT

escalation_reassignments_idThe id of the

associated

escalation entity

NOT FK

The reassignments_potentialowners table is a join table that describes which

organizationalentity entities are potential owners if a reassignment happens as part of an

escalation.

Table 13.20. reassignment_potentialowners

Field Description Nullable FK

task_id The primary key

of the associated

reassignment entity

NOT FK

entity_id The primary key

of the associated

organizationalentity

entity

NOT FK

The notification_bas table is a join table that describes which business administrators will be

notified by a notification.

Deadline, Escalation and Notification related entities

189

Table 13.21. notification_bas

Field Description Nullable FK

task_id The primary key

of the associated

notification entity

NOT FK

entity_id The primary key

of the associated

organizationalentity

entity

NOT FK

The notification_recipients table is a join table that describes which recipients entities will

be received a notification.

Table 13.22. notification_recipients

Field Description Nullable FK

task_id The primary key

of the associated

notification entity

NOT FK

entity_id The primary key

of the associated

organizationalentity

entity

NOT FK

The content entity represents the content of a document, output document, fault or other object.

Table 13.23. content

Field Description Nullable

id The primary key NOT

content The content data NOT

The i18ntext entity is used by a number of different other entities to store text fields. The

deadline, notification, reassignment and task entities use this entity to store descriptions,

subjects, names and other documentation.

Although all foreign keys are not nullable, they will be set to 0 if they are not being used.

Table 13.24. i18ntext

Field Description Nullable FK

id The primary key NOT

language The language that the

text is in.

Chapter 13. Human Tasks

190

Field Description Nullable FK

text The text

task_subjects_id The id of the task

entity for which this is

a subject

NOT FK

task_names_id The id of the task

entity for which this is

a name

NOT FK

task_descriptions_idThe id of the task

entity for which this is

a description

NOT FK

reassignment_documentation_idThe id of the

reassignment entity

for which this is

documentation

NOT FK

notification_subjects_idThe id of the

notification entity

for which this is a

subject

NOT FK

notification_names_idThe id of the

notification entity

for which this is a

name

NOT FK

notification_documentation_idThe id of the

notification entity

for which this is

documentation

NOT FK

notification_descriptions_idThe id of the

notification entity

for which this is a

description

NOT FK

deadline_documentation_idThe id of the

deadline entity

for which this is

documentation

NOT FK

Chapter 14.

191

Chapter 14. Domain-specific

processes

14.1. Introduction

One of the goals of jBPM is to allow users to extend the default process constructs with domain-

specific extensions that simplify development in a particular application domain. This tutorial

describes how to take your first steps towards domain-specific processes. Note that you don't

need to be a jBPM expert to define your own domain-specific nodes, this should be considered

integration code that a normal developer with some experience in jBPM can do himself.

Most process languages offer some generic action (node) construct that allows plugging in custom

user actions. However, these actions are usually low-level, where the user is required to write

custom code to implement the work that should be incorporated in the process. The code is also

closely linked to a specific target environment, making it difficult to reuse the process in different

contexts.

Domain-specific languages are targeted to one particular application domain and therefore can

offer constructs that are closely related to the problem the user is trying to solve. This makes

the processes and easier to understand and self-documenting. We will show you how to define

domain-specific work items (also called service nodes), which represent atomic units of work that

need to be executed. These service nodes specify the work that should be executed in the context

of a process in a declarative manner, i.e. specifying what should be executed (and not how) on

a higher level (no code) and hiding implementation details.

So we want service nodes that are:

1. domain-specific

2. declarative (what, not how)

3. high-level (no code)

4. customizable to the context

Users can easily define their own set of domain-specific service nodes and integrate them in our

process language. For example, the next figure shows an example of a process in a healthcare

context. The process includes domain-specific service nodes for ordering nursing tasks (e.g.

measuring blood pressure), prescribing medication and notifying care providers.

Chapter 14. Domain-specific p...

192

14.2. Example: Notifications

Let's start by showing you how to include a simple work item for sending notifications. A work

item represent an atomic unit of work in a declarative way. It is defined by a unique name and

additional parameters that can be used to describe the work in more detail. Work items can also

return information after they have been executed, specified as results. Our notification work item

could thus be defined using a work definition with four parameters and no results:

 Name: "Notification"

 Parameters

 From [String]

 To [String]

 Message [String]

 Priority [String]

14.2.1. Creating the work definition

All work definitions must be specified in one or more configuration files in the project classpath,

where all the properties are specified as name-value pairs. Parameters and results are maps

where each parameter name is also mapped to the expected data type. Note that this configuration

file also includes some additional user interface information, like the icon and the display name

of the work item.

In our example we will use MVEL for reading in the configuration file, which allows us to do more

advanced configuration files. This file must be placed in the project classpath in a directory called

META-INF. Our MyWorkDefinitions.wid file looks like this:

Registering the work definition

193

import org.drools.process.core.datatype.impl.type.StringDataType;

[

 // the Notification work item

 [

 "name" : "Notification",

 "parameters" : [

 "Message" : new StringDataType(),

 "From" : new StringDataType(),

 "To" : new StringDataType(),

 "Priority" : new StringDataType(),

],

 "displayName" : "Notification",

 "icon" : "icons/notification.gif"

]

]

The project directory structure could then look something like this:

project/src/main/resources/META-INF/MyWorkDefinitions.wid

You might now want to create your own icons to go along with your new work definition. To add

these you will need .gif or .png images with a pixel size of 16x16. Place them in a directory outside

of the META-INF directory, for example as follows:

project/src/main/resources/icons/notification.gif

14.2.2. Registering the work definition

The configuration API can be used to register work definition files for your project using

the drools.workDefinitions property, which represents a list of files containing work definitions

(separated usings spaces). For example, include a drools.rulebase.conf file in the META-INF

directory of your project and add the following line:

 drools.workDefinitions = MyWorkDefinitions.wid

Chapter 14. Domain-specific p...

194

This will replace the default domain specific node types EMAIL and LOG with the newly defined

NOTIFICATION node in the process editor. Should you wish to just add a newly created node

definition to the existing palette nodes, adjust the drools.workDefinitions property as follows

including the default set configuration file:

 drools.workDefinitions = MyWorkDefinitions.wid WorkDefinitions.conf

It is recommended to use extension .wid for your own definitions of domain specific nodes. Do not

be confused with extension .conf, it is used only for backward compatibility.

14.2.3. Using your new work item in your processes

Once our work definition has been created and registered, we can start using it in our processes.

The process editor contains a separate section in the palette where the different service nodes

that have been defined for the project appear.

Using your new work item in your processes

195

Using drag and drop, a notification node can be created inside your process. The properties can

be filled in using the properties view.

Apart from the properties defined by this work item, all work items also have these three properties:

1. Parameter Mapping: Allows you to map the value of a variable in the process to a parameter

of the work item. This allows you to customize the work item based on the current state of

the actual process instance (for example, the priority of the notification could be dependent of

some process-specific information).

2. Result Mapping: Allows you to map a result (returned once a work item has been executed) to

a variable of the process. This allows you to use results in the remainder of the process.

Chapter 14. Domain-specific p...

196

3. Wait for completion: By default, the process waits until the requested work item has been

completed before continuing with the process. It is also possible to continue immediately

after the work item has been requested (and not waiting for the results) by setting "wait for

completion" to false.

Here is an example that creates a domain specific node to execute Java, asking for the class

and method parameters. It includes a custom java.gif icon and consists of the following files and

resulting screenshot:

import org.drools.process.core.datatype.impl.type.StringDataType;

[

 // the Java Node work item located in:

 // project/src/main/resources/META-INF/JavaNodeDefinition.conf

 [

 "name" : "JavaNode",

 "parameters" : [

 "class" : new StringDataType(),

 "method" : new StringDataType(),

],

 "displayName" : "Java Node",

 "icon" : "icons/java.gif"

]

]

// located in: project/src/main/resources/META-INF/drools.rulebase.conf

//

 drools.workDefinitions = JavaNodeDefinition.conf WorkDefinitions.conf

// icon for java.gif located in:

// project/src/main/resources/icons/java.gif

Using your new work item in your processes

197

Chapter 14. Domain-specific p...

198

14.2.4. Executing service nodes

The jBPM engine contains a WorkItemManager that is responsible for executing work items

whenever necessary. The WorkItemManager is responsible for delegating the work items to

WorkItemHandlers that execute the work item and notify the WorkItemManager when the work

item has been completed. For executing notification work items, a NotificationWorkItemHandler

should be created (implementing the WorkItemHandler interface):

package com.sample;

import org.drools.runtime.process.WorkItem;

import org.drools.runtime.process.WorkItemHandler;

import org.drools.runtime.process.WorkItemManager;

public class NotificationWorkItemHandler implements WorkItemHandler {

 public void executeWorkItem(WorkItem workItem, WorkItemManager manager) {

 // extract parameters

 String from = (String) workItem.getParameter("From");

 String to = (String) workItem.getParameter("To");

 String message = (String) workItem.getParameter("Message");

 String priority = (String) workItem.getParameter("Priority");

 // send email

 EmailService service = ServiceRegistry.getInstance().getEmailService();

 service.sendEmail(from, to, "Notification", message);

 // notify manager that work item has been completed

 manager.completeWorkItem(workItem.getId(), null);

 }

 public void abortWorkItem(WorkItem workItem, WorkItemManager manager) {

 // Do nothing, notifications cannot be aborted

 }

}

This WorkItemHandler sends a notification as an email and then immediately notifies the

WorkItemManager that the work item has been completed. Note that not all work items can be

completed directly. In cases where executing a work item takes some time, execution can continue

asynchronously and the work item manager can be notified later. In these situations, it might also

be possible that a work item is being aborted before it has been completed. The abort method

can be used to specify how to abort such work items.

WorkItemHandlers should be registered at the WorkItemManager, using the following API:

ksession.getWorkItemManager().registerWorkItemHandler(

Service repository

199

 "Notification", new NotificationWorkItemHandler());

Decoupling the execution of work items from the process itself has the following advantages:

1. The process is more declarative, specifying what should be executed, not how.

2. Changes to the environment can be implemented by adapting the work item handler. The

process itself should not be changed. It is also possible to use the same process in different

environments, where the work item handler is responsible for integrating with the right services.

3. It is easy to share work item handlers across processes and projects (which would be more

difficult if the code would be embedded in the process itself).

4. Different work item handlers could be used depending on the context. For example, during

testing or simulation, it might not be necessary to actually execute the work items. In this case

specialized dummy work item handlers could be used during testing.

14.3. Service repository

A lot of these domain-specific services are generic, and can be reused by a lot of different users.

Think for example about integration with Twitter, doing file system operations or sending email.

Once such a domain-specific service has been created, you might want to make it available to

other users so they can easily import and start using it.

A service repository allows you to import services by browsing the repository looking for services

you might need and importing these services into your workspace. These will then automatically

be added to your palette and you can start using them in your processes. You can also import

additional artefacts like for example an icon, any dependencies you might need, a default handler

that will be used to execute the service (although you're always free to override the default, for

example for testing), etc.

To browse the repository, open the wizard to import services, point it to the right location (this could

be to a directory in your file system but also a public or private URL) and select the services you

would like to import. For example, in Eclipse, right-click your project that contains your processes

and select "Configure ... -> Import jBPM services ...". This will open up a repository browser. In the

URL field, fill in the URL of your repository (see below for the URL of the public jBPM repository

that hosts some common service implementations out-of-the-box), or use the "..." button to browse

to a folder on your file system. Click the Get button to retrieve the contents of that repository.

Chapter 14. Domain-specific p...

200

Select the service you would like to import and then click the Import button. Note that the Eclipse

wizard allows you to define whether you would like to automatically configure the service (so

it shows up in the palette of your processes), whether you would also like to download any

dependencies that might be needed for executing the service and/or whether you would like to

automatically register the default handler, so make sure to mark the right checkboxes before

importing your service (if you are unsure what to do, leaving all check boxes marked is probably

best).

After importing your service, (re)open your process diagram and the new service should show up

in your palette and you can start using it in your process. Note that most services also include

documentation on how to use them (e.g. what the different input and output parameters are) when

you select them browsing the service repository.

Click on the image below to see a screencast where we import the twitter service in a new

jBPM project and create a simple process with it that sends an actual tweet. Note that you need

the necessary twitter keys and secrets to be able to programatically send tweets to your twitter

account. How to create these is explained here [http://people.redhat.com/kverlaen/repository/

Twitter/], but once you have these, you can just drop them in your project using a simple

configuration file.

http://people.redhat.com/kverlaen/repository/Twitter/
http://people.redhat.com/kverlaen/repository/Twitter/
http://people.redhat.com/kverlaen/repository/Twitter/

Public jBPM service repository

201

Figure 14.1.
[http://people.redhat.com/kverlaen/twitter-repository.swf]

14.3.1. Public jBPM service repository

We are building a public service repository that contains predefined services that people can use

out-of-the-box if they want to:

http://people.redhat.com/kverlaen/repository

This repository contains some integrations for common services like Twitter integration or file

system operations that you can import. Simply point the import wizard to this URL to start browsing

the repository.

If you have an implementation of a common service that you would like to contribute to the

community, do not hesitate to contact someone from the development team. We are always

looking for contributions to extend our repository.

14.3.2. Setting up your own service repository

You can set up your own service repository and add your own services by creating a configuration

file that contains the necessary information (this is an extended version of the normal work

http://people.redhat.com/kverlaen/twitter-repository.swf
http://people.redhat.com/kverlaen/repository

Chapter 14. Domain-specific p...

202

definition configuration file as described earlier in this chapter) and putting the necessary files (like

an icon, dependencies, documentation, etc.) in the right folders.

The extended configuration file contains the normal properties (like name, parameters, results and

icon), with some additional ones. For example, the following extended configuration file describes

the Twitter integration service (as shown in the screencast above):

import org.drools.process.core.datatype.impl.type.StringDataType;

[

 [

 "name" : "Twitter",

 "description" : "Send a twitter message",

 "parameters" : [

 "Message" : new StringDataType()

],

 "displayName" : "Twitter",

 "eclipse:customEditor" :

 "org.drools.eclipse.flow.common.editor.editpart.work.SampleCustomEditor",

 "icon" : "twitter.gif",

 "category" : "Communication",

 "defaultHandler" : "org.jbpm.process.workitem.twitter.TwitterHandler",

 "documentation" : "index.html",

 "dependencies" : [

 "file:./lib/jbpm-twitter.jar",

 "file:./lib/twitter4j-core-2.2.2.jar"

]

]

]

• The icon property should refer to a file with the given file name in the same folder as the

extended configuration file (so it can be downloaded by the import wizard and used in the

process diagrams). Icons should be 16x16 GIF files.

• The category property defines the category this service should be placed under when browsing

the repository.

• The defaultHandler property defines the default handler implementation (i.e. the Java class that

implements the WorkItemHandler interface and can be used to execute the service). This can

automatically be registered as the handler for that service when importing the service from the

repository.

• The documentation property defines a documentation file that describes what the service does

and how it works. This property should refer to a HTML file with the given name in the same

folder as the extended configuration file (so it can be shown by the import wizard when browsing

the repository).

Setting up your own service repository

203

• The dependencies property defines additional dependencies that are necessary to execute this

service. This usually includes the handler implementation jar, but could also include additional

external dependencies. These dependencies should also be located on the repository on the

given location (relative to the folder where the extended configuration file is located), so they

can be downloaded by the import wizard when importing the service.

The root of your repository should also contain an index.conf file that references all the folders

that should be processed when searching for services on the repository. Each of those folders

should then contain:

• An extended configuration file with the same name as the folder (e.g. Twitter.conf)

• The icon as references in the configuration file

• The documentation as references in the configuration file

• The dependencies as references in the configuration file (for example in a lib folder)

You can create your own hierarchical structure, because if one of those folders also contains

an index.conf file, that will be used to scan additional sub-folders. Note that the hierarchical

structure of the repository is not shown when browsing the repository using the import wizard, as

the category property in the configuration file is used for that.

204

Chapter 15.

205

Chapter 15. Testing and debugging
Even though business processes aren't code (we even recommend you to make them as high-

level as possible and to avoid adding implementation details), they also have a life cycle like other

development artefacts. And since business processes can be updated dynamically, testing them

(so that you don't break any use cases when doing a modification) is really important as well.

15.1. Unit testing

When unit testing your process, you test whether the process behaves as expected in specific

use cases, for example test the output based on the existing input. To simplify unit testing, jBPM

includes a helper class called JbpmJUnitTestCase (in the jbpm-bpmn2 test module) that you can

use to greatly simplify your junit testing, by offering:

• helper methods to create a new knowledge base and session for a given (set of) process(es)

• you can select whether you want to use persistence or not

• assert statements to check

• the state of a process instance (active, completed, aborted)

• which node instances are currently active

• which nodes have been triggered (to check the path that has been followed)

• get the value of variables

• etc.

For example, conside the following hello world process containing a start event, a script task and

an end event. The following junit test will create a new session, start the process and then verify

whether the process instance completed successfully and whether these three nodes have been

executed.

public class MyProcessTest extends JbpmJUnitTestCase {

 public void testProcess() {

 // create your session and load the given process(es)

 StatefulKnowledgeSession ksession = createKnowledgeSession("sample.bpmn");

Chapter 15. Testing and debugging

206

 // start the process

 ProcessInstance processInstance = ksession.startProcess("com.sample.bpmn.hello");

 // check whether the process instance has completed successfully

 assertProcessInstanceCompleted(processInstance.getId(), ksession);

 // check whether the given nodes were executed during the process execution

 assertNodeTriggered(processInstance.getId(), "StartProcess", "Hello", "EndProcess");

 }

}

15.1.1. Helper methods to create your session

Several methods are provided to simplify the creation of a knowledge base and a session to

interact with the engine.

• createKnowledgeBase(String... process): Returns a new knowledge base containing all the

processes in the given filenames (loaded from classpath)

• createKnowledgeBase(Map<String, ResourceType> resources) :Returns a new knowledge

base containing all the resources (not limited to processes but possibly also including other

resource types like rules, decision tables, etc.) from the given filenames (loaded from classpath)

• createKnowledgeBaseGuvnor(String... packages): Returns a new knowledge base containing

all the processes loaded from Guvnor (the process repository) from the given packages

• createKnowledgeSession(KnowledgeBase kbase): Creates a new statefull knowledge session

from the given knowledge base

• restoreSession(StatefulKnowledgeSession ksession, boolean noCache) : completely restores

this session from database, can be used to recreate a session to simulate a critical failure and

to test recovery, if noCache is true, the existing persistence cache will not be used to restore

the data

15.1.2. Assertions

The following assertions are added to simplify testing the current state of a process instance:

• assertProcessInstanceActive(long processInstanceId, StatefulKnowledgeSession ksession):

check whether the process instance with the given id is still active

• assertProcessInstanceCompleted(long processInstanceId, StatefulKnowledgeSession

ksession): check whether the process instance with the given id has completed successfully

• assertProcessInstanceAborted(long processInstanceId, StatefulKnowledgeSession ksession):

check whether the process instance with the given id was aborted

Testing integration with external services

207

• assertNodeActive(long processInstanceId, StatefulKnowledgeSession ksession, String...

name): check whether the process instance with the given id contains at least one active node

with the given node name (for each of the given names)

• assertNodeTriggered(long processInstanceId, String... nodeNames) : check for each given

node name whether a node instance was triggered (but not necessarily active anymore) during

the execution of the process instance with the given

• getVariableValue(String name, long processInstanceId, StatefulKnowledgeSession ksession):

retrieves the value of the variable with the given name from the given process instance, can

then be used to check the value of process variables

15.1.3. Testing integration with external services

Real-life business processes typically include the invocation of external services (like for example

a human task service, an email server or your own domain-specific services). One of the

advantages of our domain-specific process approach is that you can specify yourself how to

actually execute your own domain-specific nodes, by registering a handler. And this handler can

be different depending on your context, allowing you to use testing handlers for unit testing your

process. When you are unit testing your business process, you can register test handlers that

then verify whether specific services are requested correctly, and provide test responses for those

services. For example, imagine you have an email node or a human task as part of your process.

When unit testing, you don't want to send out an actual email but rather test whether the email

that is requested contains the correct information (for example the right to email, a personalized

body, etc.).

A TestWorkItemHandler is provided by default that can be registered to collect all work items (a

work item represents one unit of work, like for example sending one specific email or invoking one

specific service and contains all the data related to that task) for a given type. This test handler

can then be queried during unit testing to check whether specific work was actually requested

during the execution of the process and that the data associcated with the work was correct.

The following example describes how a process that sends out an email could be tested. This

test case in particular will test whether an exception is raised when the email could not be sent

(which is simulated by notifying the engine that the sending the email could not be completed).

The test case uses a test handler that simply registers when an email was requested (and allows

you to test the data related to the email like from, to, etc.). Once the engine has been notified the

email could not be sent (using abortWorkItem(..)), the unit test verifies that the process handles

this case successfully by logging this and generating an error, which aborts the process instance

in this case.

Chapter 15. Testing and debugging

208

public void testProcess2() {

 // create your session and load the given process(es)

 StatefulKnowledgeSession ksession = createKnowledgeSession("sample2.bpmn");

 // register a test handler for "Email"

 TestWorkItemHandler testHandler = new TestWorkItemHandler();

 ksession.getWorkItemManager().registerWorkItemHandler("Email", testHandler);

 // start the process

 ProcessInstance processInstance = ksession.startProcess("com.sample.bpmn.hello2");

 assertProcessInstanceActive(processInstance.getId(), ksession);

 assertNodeTriggered(processInstance.getId(), "StartProcess", "Email");

 // check whether the email has been requested

 WorkItem workItem = testHandler.getWorkItem();

 assertNotNull(workItem);

 assertEquals("Email", workItem.getName());

 assertEquals("me@mail.com", workItem.getParameter("From"));

 assertEquals("you@mail.com", workItem.getParameter("To"));

 // notify the engine the email has been sent

 ksession.getWorkItemManager().abortWorkItem(workItem.getId());

 assertProcessInstanceAborted(processInstance.getId(), ksession);

 assertNodeTriggered(processInstance.getId(), "Gateway", "Failed", "Error");

}

15.1.4. Configuring persistence

You can configure whether you want to execute the junit tests using persistence or not. By default,

the junit tests will use persistence, meaning that the state of all process instances will be stored

in a (in-memory H2) database (which is started by the junit test during setup) and a history log will

be used to check assertions related to execution history. When persistence is not used, process

instances will only live in memory and an in-memory logger is used for history assertions.

By default, persistence is turned on. To turn off persistence, simply pass a boolean to the super

constructor when creating your test case, as shown below:

Debugging

209

public class MyProcessTest extends JbpmJUnitTestCase {

 public MyProcessTest() {

 // configure this tests to not use persistence in this case

 super(false);

 }

 ...

15.2. Debugging

This section describes how to debug processes using the Eclipse plugin. This means that the

current state of your running processes can be inspected and visualized during the execution.

Note that we currently don't allow you to put breakpoints on the nodes within a process directly.

You can however put breakpoints inside any Java code you might have (i.e. your application code

that is invoking the engine or invoked by the engine, listeners, etc.) or inside rules (that could be

evaluated in the context of a process). At these breakpoints, you can then inspect the internal

state of all your process instances.

When debugging the application, you can use the following debug views to track the execution

of the process:

1. The process instances view, showing all running process instances (and their state). When

double-clicking a process instance, the process instance view visually shows the current state

of that process instance at that point in time.

2. The human task view, showing the task list of the given user (fill in the user id of the actor and

click refresh to view all the tasks for the given actor), where you can then control the life cycle

of the task, for example start and complete it.

3. The audit view, showing the audit log (note that you should probably use a threaded file logger

if you want to session to save the audit event to the file system on regular intervals, so the audit

view can be update to show the latest state).

4. The global data view, showing the globals.

5. Other views related to rule execution like the working memory view (showing the contents (data)

in the working memory related to rule execution), the agenda view (showing all activated rules),

etc.

15.2.1. The Process Instances View

The process instances view shows the currently running process instances. The example shows

that there is currently one running process (instance), currently executing one node instance, i.e.

business rule task. When double-clicking a process instance, the process instance viewer will

Chapter 15. Testing and debugging

210

graphically show the progress of the process instance. An example where the process instance

is waiting for a human actor to perform a self-evaluation task is shown below.

When you double-click a process instance in the process instances view and the process instance

view complains that it cannot find the process, this means that the plugin wasn't able to find the

process definition of the selected process instance in the cache of parsed process definitions. To

solve this, simply change the process definition in question and save again (so it will be parsed)

or rebuild the project that contains the process definition in question.

15.2.2. The Human Task View

The Human Task View can connect to a running human task service and request the relevant

tasks for a particular user (i.e. the tasks where the user is either a potential owner or the tasks that

the user already claimed and is executing). The life cycle of these tasks can then be executed, i.e.

claiming or releasing a task, starting or stopping the execution of a task, completing a task, etc.

A screenshot of this Human Task View is shown below. You can configure which task service to

connect to in the Drools Task preference page (select Window -> Preferences and select Drools

Task). Here you can specify the url and port (default = 127.0.0.1:9123).

The Audit View

211

15.2.3. The Audit View

The audit view, showing the audit log, which is a log of all events that were logged from the session.

To create a logger, use the KnowledgeRuntimeLoggerFactory to create a new logger and attach

it to a session. Note that you should probably use a threaded file logger if you want to session

to save the audit event to the file system on regular intervals, so the audit view can be update to

show the latest state. When creating a threaded file logger, you can specify the name of the file

where the audit log should be created and the interval after which event should be saved to the

file (in milliseconds). Be sure to close the logger after usage.

KnowledgeRuntimeLogger logger = KnowledgeRuntimeLoggerFactory

 .newThreadedFileLogger(ksession, "logdir/mylogfile", 1000);

// do something with the session here

logger.close();

To open up an audit tree in the audit view, open the selected log file in the audit view or simply

drag the file into the audit view. A tree-based view is generated based on the audit log. An event

is shown as a subnode of another event if the child event is caused by (a direct consequence of)

the parent event. An example is shown below.

212

Chapter 16.

213

Chapter 16. Process Repository
A process repository is an important part of your BPM architecture if you start using more and

more business processes in your applications and especially if you want to have the ability to

dynamically update them. The process repository is the location where you store and manage

your business processes. Because they are not deployed as part of your application, they have

their own life cycle, meaning you can update your business processes dynamically, without having

to change the application code.

Note that a process repository is a lot more than simply a database to store your process

definitions. It almost acts as a combination of a source code management system, content

management system, collaboration suite and development and testing environment. These are

the kind of features you can expect from a process repository:

• Persistent storage of your processes so the latest version can always easily be accessed from

anywhere, including versioning

• Build and deploy selected processes

• User-friendly (web-based) interface to manage, update and deploy your processes (targeted to

business users, not just developers)

• Authentication / authorization to make sure only people that have the right role can see and/

or edit your processes

• Categorization and searching

• Scenario testing to make sure you don't break anything when you change your process

• Collaboration and other social features like comments, notifications on change, etc.

• Synchronization with your development environment

Actually, it would be better to talk about a knowledge repository, as the repository will not only store

your process definitions, but possibly also other related artefacts like task forms, your domain

model, associated business rules, etc. Luckily, we don't have to reinvent the wheel for this, as the

Guvnor project acts as a generic knowledge repository to store any type of artefacts and already

supports most of these features.

The following screencast shows how you can upload your process definition to Guvnor, along

with the process form (that is used when you try to start a new instance of that process to collect

the necessary data), task forms (for the human tasks inside the process), and the process image

(that can be annotated to show runtime progress). The jBPM-console is configured to get all this

information from Guvnor whenever necessary and show them in the console.

Chapter 16. Process Repository

214

[http://people.redhat.com/kverlaen/jBPM5-guvnor-integration.swf]

Figure 16.1.

If you use the installer, that should automatically download and install the latest version of Guvnor

as well. So simply deploy your assets (for example using the Guvnor Eclipse integration as shown

in the screencast, also automatically installed) to Guvnor (taking some naming conventions into

account, as explained below), build the package and start up the console.

The current integration of jBPM-console with Guvnor uses the following conventions to find the

artefacts it needs:

• jBPM-console looks up artefacts from all available Guvnor packages (it does not look for

assets in the Global Area). You can alternatively modify the guvnor.packages property in

jBPM.console.properties to limit the lookup to only the packages you need, for example:

guvnor.packages=defaultPackage, myPackageA, myPackageB

• A process should define the correct package name attribute, which needs to match the Guvnor

package name it belongs to (otherwise you won't be able to build your package in Guvnor)

• Don't forget to build all of your packages in Guvnor before trying to view available processes in

the console. Otherwise jBPM-console will not be able to retrieve the pkg from Guvnor.

• Currently, the console will load the process definitions the first time the list of processes is

requested in the console. At this point, automatic updating from Guvnor when the package is

http://people.redhat.com/kverlaen/jBPM5-guvnor-integration.swf

215

rebuilt is turned off by default, so you will have to either configure this or restart the application

server to get the latest versions.

• Task forms that should be associated with a specific process definition should have the name

"{processDefinitionId}.ftl" or "{processDefinitionId}-taskform.ftl"

• Task forms for a specific human task should have the name "{taskName}.ftl" or "{taskName}-

taskform.ftl"

• The process diagram for a specific process should have the name "{processDefinitionId}-

image.png"

• By default jBPM-console looks up your Guvnor instance under http://localhost:8080/drools-

guvnor. To change this, locate jbpm.console.properties and modify the guvnor.protocol,

guvnor.host, and guvnor.subdomain property values as needed

• jBPM-console communicates with Guvnor via its REST api. The default connect and read

timeouts for this communication are set to 10 seconds via the guvnor.connect.timeout,

and guvnor.read.timeout properties in jbpm.console.properties. You can edit values of these

properties to set your specific timeout values (in milliseconds)

• If you are using Guvnor with JAAS authentication enabled, jBPM-console uses by default admin/

admin credentials. To change this information again locate jbpm.console.properties and change

the guvnor.usr, and guvnor.pwd property values.

If you follow these rules, your processes, forms and images should show up without any issues

in the jBPM-console.

216

Chapter 17.

217

Chapter 17. Business Activity

Monitoring
You need to actively monitor your processes to make sure you can detect any anomalies and

react to unexpected events as soon as possible. Business Activity Monitoring (BAM) is concerned

with real-time monitoring of your processes and the option of intervening directly, possibly even

automatically, based on the analysis of these events.

jBPM allows users to define reports based on the events generated by the process engine, and

possibly direct intervention in specific situations using complex event processing rules (Drools

Fusion), as described in the next two sections. Future releases of the jBPM platform will include

support for all requirements of Business Activity Monitoring, including a web-based application

that can be used to more easily interact with a running process engine, inspect its state, generate

reports, etc.

17.1. Reporting

By adding a history logger to the process engine, all relevant events are stored in the database.

This history log can be used to monitor and analyze the execution of your processes. We are

using the Eclipse BIRT (Business Intelligence Reporting Tool) to create reports that show the key

performance indicators. Its easy to define your own reports yourself, using the predefined data

sets containing all process history information, and any other data sources you might want to add

yourself.

The Eclipse BIRT framework allows you to define data sets, create reports, include charts, preview

your reports, and export them on web pages. (Consult the Eclipse BIRT documentation on how to

define your own reports.) The following screen shot shows a sample on how to create such a chart.

Chapter 17. Business Activity...

218

Figure 17.1. Creating a report using Eclipse BIRT

The next figure displays a simple report based on some history data, showing the number of

requests per hour and the average completion time of the request during that hour. These charts

could be used to check for an unexpected drop or rise of requests, an increase in the average

processing time, etc. These charts could signal possible problems before the situation really gets

out of hand.

Direct Intervention

219

Figure 17.2. The eventing report

17.2. Direct Intervention

Reports can be used to visualize an overview of the current state of your processes, but they

rely on a human actor to take action based on the information in these charts. However, we allow

users to define automatic responses to specific circumstances.

Drools Fusion provides numerous features that make it easy to process large sets of events. This

can be used to monitor the process engine itself. This can be achieved by adding a listener to

the engine that forwards all related process events, such as the start and completion of a process

instance, or the triggering of a specific node, to a session responsible for processing these events.

This could be the same session as the one executing the processes, or an independent session

as well. Complex Event Processing (CEP) rules could then be used to specify how to process

these events. For example, these rules could generate higher-level business events based on a

specific occurrence of low-level process events. The rules could also specify how to respond to

specific situations.

The next section shows a sample rule that accumulates all start process events for one specific

order process over the last hour, using the "sliding window" support. This rule prints out an error

Chapter 17. Business Activity...

220

message if more than 1000 process instances were started in the last hour (e.g., to detect a

possible overload of the server). Note that, in a realistic setting, this would probably be replaced

by sending an email or other form of notification to the responsible instead of the simple logging.

declare ProcessStartedEvent

 @role(event)

end

dialect "mvel"

rule "Number of process instances above threshold"

when

 Number(nbProcesses : intValue > 1000)

 from accumulate(

 e: ProcessStartedEvent(processInstance.processId ==

 "com.sample.order.OrderProcess")

 over window:size(1h),

 count(e))

then

 System.err.println("WARNING: Number of order processes in the last hour above

 1000: " +

 nbProcesses);

end

These rules could even be used to alter the behavior of a process automatically at runtime,

based on the events generated by the engine. For example, whenever a specific situation is

detected, additional rules could be added to the Knowledge Base to modify process behavior. For

instance, whenever a large amount of user requests within a specific time frame are detected, an

additional validation could be added to the process, enforcing some sort of flow control to reduce

the frequency of incoming requests. There is also the possibility of deploying additional logging

rules as the consequence of detecting problems. As soon as the situation reverts back to normal,

such rules would be removed again.

Chapter 18.

221

Chapter 18. Flexible Processes
Case management and its relation to BPM is a hot topic nowadays. There definitely seems to be

a growing need amongst end users for more flexible and adaptive business processes, without

ending up with overly complex solutions. Everyone seems to agree that using a process-centric

approach only in many cases leads to complex solutions that are hard to maintain. The "knowledge

workers" no longer want to be locked into rigid processes but wants to have the power and flexibility

to regain more control over the process themselves.

The term case management is often used in that context. Without trying to give a precise definition

of what it might or might not mean, as this has been a hot topic for discussion, it refers to the

basic idea that many applications in the real world cannot really be described completely from

start to finish (including all possible paths, deviations, exceptions, etc.). Case management takes

a different approach: instead of trying to model what should happen from start to finish, let's give

the end user the flexibility to decide what should happen at runtime. In its most extreme form for

example, case management doesn't even require any process definition at all. Whenever a new

case comes in, the end user can decide what to do next based on all the case data.

A typical example can be found in healthcare (clinical decision support to be more precise), where

care plans can be used to describe how patients should be treated in specific circumstances,

but people like general practitioners still need to have the flexibility to add additional steps and

deviate from the proposed plan, as each case is unique. And there are similar examples in claim

management, helpdesk support, etc.

So, should we just throw away our BPM system then? No! Even at its most extreme form (where we

don't model any process up front), you still need a lot of the other features a BPM system (usually)

provides: there still is a clear need for audit logs, monitoring, coordinating various services,

human interaction (e.g. using task forms), analysis, etc. And, more importantly, many cases are

somewhere in between, or might even evolve from case management to more structured business

process over time (when we for example try to extract common approaches from many cases).

If we can offer flexibility as part of our processes, can't we let the users decide how and where

they would like to apply it?

Let me give you two examples that show how you can add more and more flexibility to your

processes. The first example shows a care plan that shows the tasks that should be performed

when a patient has high blood pressure. While a large part of the process is still well-structured,

the general practitioner can decide himself which tasks should be performed as part of the sub-

process. And he also has the ability to add new tasks during that period, tasks that were not

defined as part of the process, or repeat tasks multiple times, etc. The process uses an ad-hoc

sub-process to model this kind of flexibility, possibly augmented with rules or event processing to

help in deciding which fragments to execute.

Chapter 18. Flexible Processes

222

Figure 18.1.

The second example actually goes a lot further than that. In this example, an internet provider

could define how cases about internet connectivity problems will be handled by the internet

provider. There are a number of actions the case worker can select from, but those are simply

small process fragments. The case worker is responsible for selecting what to do next and can

even add new tasks dynamically. As you can see, there is not process from start to finish anymore,

but the user is responsible for selecting which process fragments to execute.

Figure 18.2.

223

And in its most extreme form, we even allow you to create case instances without a process

definition, where what needs to be performed is selected purely at runtime. This however doesn't

mean you can't figure out anymore what 's actually happening. For example, meetings can be

very adhoc and dynamic, but we usually want a log of what was actually discussed. The following

screenshot shows how our regular audit view can still be used in this case, and the end user

could then for example get a lot more info about what actually happened by looking at the data

associated with each of those steps. And maybe, over time, we can even automate part of that

by using a semi-structured process.

Figure 18.3.

224

Chapter 19.

225

Chapter 19. Integration with Maven,

OSGi, Spring, etc.
jBPM can be integrated with a lot of other technologies. This chapter gives an overview of a few

of those that are supported out-of-the-box. Most of these modules are developed as part of the

droolsjbpm-integration module, so they work not only for your business processes but also for

business rules and complex event processing.

19.1. Maven

By using a Maven pom.xml to define your project dependencies, you can let maven get your

dependencies for you. The following pom.xml is an example that could for example be used to

create a new Maven project that is capable of executing a BPMN2 process:

<?xml version="1.0" encoding="utf-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://

maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>org.jbpm</groupId>

 <artifactId>jbpm-maven-example</artifactId>

 <name>jBPM Maven Project</name>

 <version>1.0-SNAPSHOT</version>

 <repositories>

 <!-- use this repository for stable releases -->

 <repository>

 <id>jboss-public-repository-group</id>

 <name>JBoss Public Maven Repository Group</name>

 <url>https://repository.jboss.org/nexus/content/groups/public/</url>

 <layout>default</layout>

 <releases>

 <enabled>true</enabled>

 <updatePolicy>never</updatePolicy>

 </releases>

 <snapshots>

 <enabled>false</enabled>

 </snapshots>

 </repository>

 <!-- use this repository for snapshot releases -->

 <repository>

 <id>jboss-snapshot-repository-group</id>

Chapter 19. Integration with ...

226

 <name>JBoss SNAPSHOT Maven Repository Group</name>

 <url>https://repository.jboss.org/nexus/content/repositories/snapshots/</

url>

 <layout>default</layout>

 <releases>

 <enabled>false</enabled>

 </releases>

 <snapshots>

 <enabled>true</enabled>

 <updatePolicy>never</updatePolicy>

 </snapshots>

 </repository>

 </repositories>

 <dependencies>

 <dependency>

 <groupId>org.jbpm</groupId>

 <artifactId>jbpm-bpmn2</artifactId>

 <version>5.4.0.Final</version>

 </dependency>

 </dependencies>

</project>

To use this as the basis for your project in Eclipse, either use M2Eclipse or use "mvn

eclipse:eclipse" to generate eclipse .project and .classpath files based on this pom.

19.2. OSGi

All core jbpm jars (and core dependencies) are OSGi-enabled. That means that they contain

MANIFEST.MF files (in the META-INF directory) that describe their dependencies etc. These

manifest files are automatically generated by the build. You can plug these jars directly into an

OSGi environment.

OSGi is a dynamic module system for declarative services. So what does that mean? Each jar

in OSGi is called a bundle and has it's own Classloader. Each bundle specifies the packages it

exports (makes publicly available) and which packages it imports (external dependencies). OSGi

will use this information to wire the classloaders of different bundles together; the key distinction is

you don't specify what bundle you depend on, or have a single monolithic classpath, instead you

specify your package import and version and OSGi attempts to satisfy this from available bundles.

It also supports side by side versioning, so you can have multiple versions of a bundle installed

and it'll wire up the correct one. Further to this Bundles can register services for other bundles to

use. These services need initialisation, which can cause ordering problems - how do you make

sure you don't consume a service before its registered? OSGi has a number of features to help

with service composition and ordering. The two main ones are the programmatic ServiceTracker

OSGi

227

and the xml based Declarative Services. There are also other projects that help with this; Spring

DM, iPOJO, Gravity.

The following jBPM jars are OGSi-enabled:

• jbpm-flow

• jbpm-flow-builder

• jbpm-bpmn2

For example, the following code example shows how you can look up the necessary services in

an OSGi environment using the service registry and create a session that can then be used to

start processes, signal events, etc.

ServiceReference serviceRef =

 bundleContext.getServiceReference(ServiceRegistry.class.getName());

ServiceRegistry registry = (ServiceRegistry)

 bundleContext.getService(serviceRef);

KnowledgeBuilderFactoryService knowledgeBuilderFactoryService =

 registry.get(KnowledgeBuilderFactoryService.class);

KnowledgeBaseFactoryService knowledgeBaseFactoryService =

 registry.get(KnowledgeBaseFactoryService.class);

ResourceFactoryService resourceFactoryService =

 registry.get(ResourceFactoryService.class);

KnowledgeBaseConfiguration kbaseConf =

 knowledgeBaseFactoryService.newKnowledgeBaseConfiguration(null,

 getClass().getClassLoader());

KnowledgeBuilderConfiguration kbConf =

 knowledgeBuilderFactoryService.newKnowledgeBuilderConfiguration(null,

 getClass().getClassLoader());

KnowledgeBuilder kbuilder =

 knowledgeBuilderFactoryService.newKnowledgeBuilder(kbConf);

kbuilder.add(resourceFactoryService.newClassPathResource("MyProcess.bpmn",

 Dummy.class), ResourceType.BPMN2);

kbaseConf = knowledgeBaseFactoryService.newKnowledgeBaseConfiguration(null,

 getClass().getClassLoader());

KnowledgeBase kbase = knowledgeBaseFactoryService.newKnowledgeBase(kbaseConf);

kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

Chapter 19. Integration with ...

228

19.3. Spring

A Spring XML configuration file can be used to easily define and configure knowledge bases

and sessions in a Spring environment. This allows you to simply access a session and invoke

processes from within your Spring application.

For example, the following configuration file sets up a new session based on a knowledge base

with one process definition (loaded from the classpath).

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:jbpm="http://drools.org/schema/drools-spring"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://

www.springframework.org/schema/beans/spring-beans-2.0.xsd

 http://drools.org/schema/drools-spring org/drools/

container/spring/drools-spring-1.2.0.xsd">

 <jbpm:kbase id="kbase">

 <jbpm:resources>

 <jbpm:resource type="BPMN2" source="classpath:HelloWorld.bpmn2"/>

 </jbpm:resources>

 </jbpm:kbase>

 <jbpm:ksession id="ksession" type="stateful" kbase="kbase" />

</beans>

The following piece of code can be used to load the above Spring configuration, retrieve the

session and start the process.

ClassPathXmlApplicationContext context =

 new ClassPathXmlApplicationContext("spring-conf.xml");

StatefulKnowledgeSession ksession = (StatefulKnowledgeSession) context.getBean("ksession");

ksession.startProcess("com.sample.HelloWorld");

Note that you can also inject the session in one of your domain objects, for example by adding

the following fragment in the configuration file.

<bean id="myObject" class="org.jbpm.sample.MyObject">

 <property name="session" ref="ksession" />

</bean>

Spring using the JTA transaction manager

229

As a result, the session will be injected in your domain object can then be accessed directly. For

example:

public class MyObject {

 private StatefulKnowledgeSession ksession;

 public void setSession(StatefulKnowledgeSession ksession) {

 this.ksession = ksession;

 }

 public void doSomething() {

 ksession.startProcess("com.sample.HelloWorld");

 }

}

The following example shows a slightly more complex example, where the session is configured to

use persistence (JPA using an in-memory database in this case) and transaction (using the Spring

transaction manager). When using the Spring transaction manager, you have three options:

• using the JTA transaction manager with a shared entity manager factory (emf)

• using local transactions with a shared entity manager factory (emf)

19.3.1. Spring using the JTA transaction manager

The following code sample shows the Spring configuration file, configured for JTA transactions

(using Bitronix in this case) with a shared entity manager factory (emf).

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:jbpm="http://drools.org/schema/drools-spring"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://

www.springframework.org/schema/beans/spring-beans-2.0.xsd

 http://drools.org/schema/drools-spring http://

drools.org/schema/drools-spring-1.3.0.xsd">

 <bean id="jbpmEMF" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">

 <property name="persistenceUnitName" value="org.jbpm.persistence.jta"/>

 </bean>

 <bean id="btmConfig" factory-

method="getConfiguration" class="bitronix.tm.TransactionManagerServices">

 </bean>

 <bean id="BitronixTransactionManager" factory-method="getTransactionManager"

 class="bitronix.tm.TransactionManagerServices" depends-

on="btmConfig" destroy-method="shutdown" />

Chapter 19. Integration with ...

230

 <bean id="jbpmTxManager" class="org.springframework.transaction.jta.JtaTransactionManager">

 <property name="transactionManager" ref="BitronixTransactionManager" />

 <property name="userTransaction" ref="BitronixTransactionManager" />

 </bean>

 <jbpm:kbase id="kbase1">

 <jbpm:resources>

 <jbpm:resource type="BPMN2" source="classpath:MyProcess.bpmn"/>

 </jbpm:resources>

 </jbpm:kbase>

 <jbpm:ksession id="ksession1" type="stateful" kbase="kbase1">

 <jbpm:configuration>

 <jbpm:jpa-persistence>

 <jbpm:transaction-manager ref="txManager"/>

 <jbpm:entity-manager-factory ref="emf"/>

 </jbpm:jpa-persistence>

 </jbpm:configuration>

 </jbpm:ksession>

</beans>

And the matching persistence.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="1.0" xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/

persistence_1_0.xsd">

 <persistence-unit name="org.jbpm.persistence.jta" transaction-type="JTA">

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <jta-data-source>jdbc/jbpm-ds</jta-data-source>

 <!-- Use this if you are using JPA1 / Hibernate3 -->

 <mapping-file>META-INF/JBPMorm.xml</mapping-file>

 <mapping-file>META-INF/ProcessInstanceInfo.hbm.xml</mapping-file>

 <!-- Use this if you are using JPA2 / Hibernate4 -->

 <!--mapping-file>META-INF/JBPMorm-JPA2.xml</mapping-file-->

 <class>org.drools.persistence.info.SessionInfo</class>

 <class>org.jbpm.persistence.processinstance.ProcessInstanceInfo</class>

 <class>org.drools.persistence.info.WorkItemInfo</class>

 <class>org.jbpm.process.audit.ProcessInstanceLog</class>

 <class>org.jbpm.process.audit.NodeInstanceLog</class>

 <class>org.jbpm.process.audit.VariableInstanceLog</class>

Spring using local transactions

231

 <properties>

 <property name="hibernate.max_fetch_depth" value="3"/>

 <property name="hibernate.hbm2ddl.auto" value="update"/>

 <property name="hibernate.show_sql" value="false"/>

 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/

>

 <property name="hibernate.transaction.manager_lookup_class" value="org.hibernate.transaction.BTMTransactionManagerLookup" /

>

 </properties>

 </persistence-unit>

</persistence>

19.3.2. Spring using local transactions

To use local transactions (instead of JTA) with a shared entity manager (emf), use:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:jbpm="http://drools.org/schema/drools-spring"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://

www.springframework.org/schema/beans/spring-beans-2.0.xsd

 http://drools.org/schema/drools-spring http://

drools.org/schema/drools-spring-1.3.0.xsd">

 <bean id="jbpmEMF" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">

 <property name="persistenceUnitName" value="org.jbpm.persistence.local"/>

 </bean>

 <bean id="jbpmTxManager" class="org.springframework.orm.jpa.JpaTransactionManager">

 <property name="entityManagerFactory" ref="jbpmEMF"/>

 <property name="nestedTransactionAllowed" value="false"/>

 </bean>

 <jbpm:kbase id="kbase1">

 <jbpm:resources>

 <jbpm:resource type="BPMN2" source="classpath:MyProcess.bpmn"/>

 </jbpm:resources>

 </jbpm:kbase>

 <jbpm:ksession id="ksession1" type="stateful" kbase="kbase1">

 <jbpm:configuration>

 <jbpm:jpa-persistence>

 <jbpm:transaction-manager ref="txManager"/>

 <jbpm:entity-manager-factory ref="emf"/>

Chapter 19. Integration with ...

232

 </jbpm:jpa-persistence>

 </jbpm:configuration>

 </jbpm:ksession>

</beans>

And the matching persistence.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="1.0" xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/

persistence_1_0.xsd">

 <persistence-unit name="org.jbpm.persistence.local" transaction-

type="RESOURCE_LOCAL">

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <non-jta-data-source>jdbc/jbpm-ds</non-jta-data-source>

 <!-- Use this if you are using JPA1 / Hibernate3 -->

 <mapping-file>META-INF/JBPMorm.xml</mapping-file>

 <mapping-file>META-INF/ProcessInstanceInfo.hbm.xml</mapping-file>

 <!-- Use this if you are using JPA2 / Hibernate4 -->

 <!--mapping-file>META-INF/JBPMorm-JPA2.xml</mapping-file-->

 <class>org.drools.persistence.info.SessionInfo</class>

 <class>org.jbpm.persistence.processinstance.ProcessInstanceInfo</class>

 <class>org.drools.persistence.info.WorkItemInfo</class>

 <class>org.jbpm.process.audit.ProcessInstanceLog</class>

 <class>org.jbpm.process.audit.NodeInstanceLog</class>

 <class>org.jbpm.process.audit.VariableInstanceLog</class>

 <properties>

 <property name="hibernate.max_fetch_depth" value="3"/>

 <property name="hibernate.hbm2ddl.auto" value="update"/>

 <property name="hibernate.show_sql" value="false"/>

 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/

>

 </properties>

 </persistence-unit>

</persistence>

Spring using a shared entity manager

233

19.3.3. Spring using a shared entity manager

Instead of using a shared entity manager factory (emf), you can also use a shared entity manager

instead (both using JTA or local transactions). To do so, create the entity manager in your Spring

configuration file:

<bean id="jbpmEM" class="org.springframework.orm.jpa.support.SharedEntityManagerBean">

 <property name="entityManagerFactory" ref="jbpmEMF"/>

</bean>

You can then create a ksession using the following code:

EntityManager em = (EntityManager) context.getBean("jbpmEM");

Environment env = EnvironmentFactory.newEnvironment();

env.set(EnvironmentName.APP_SCOPED_ENTITY_MANAGER, em);

env.set(EnvironmentName.CMD_SCOPED_ENTITY_MANAGER, em);

env.set("IS_JTA_TRANSACTION", false);

env.set("IS_SHARED_ENTITY_MANAGER", true);

AbstractPlatformTransactionManager aptm = (AbstractPlatformTransactionManager) context.getBean("jbpmTxManager");

TransactionManager transactionManager = new DroolsSpringTransactionManager(aptm);

env.set(EnvironmentName.TRANSACTION_MANAGER, transactionManager);

PersistenceContextManager persistenceContextManager = new DroolsSpringJpaManager(env);

env.set(EnvironmentName.PERSISTENCE_CONTEXT_MANAGER, persistenceContextManager);

StatefulKnowledgeSession ksession = JPAKnowledgeService.newStatefulKnowledgeSession(kbase, null, env);

19.3.4. Using a local task service

If you also want to use a local task server, linked to the engine, first of all add the following lines

to your persistence.xml:

<mapping-file>META-INF/Taskorm.xml</mapping-file>

<class>org.jbpm.task.Attachment</class>

<class>org.jbpm.task.Content</class>

<class>org.jbpm.task.BooleanExpression</class>

<class>org.jbpm.task.Comment</class>

<class>org.jbpm.task.Deadline</class>

<class>org.jbpm.task.Comment</class>

<class>org.jbpm.task.Deadline</class>

<class>org.jbpm.task.Delegation</class>

<class>org.jbpm.task.Escalation</class>

<class>org.jbpm.task.Group</class>

Chapter 19. Integration with ...

234

<class>org.jbpm.task.I18NText</class>

<class>org.jbpm.task.Notification</class>

<class>org.jbpm.task.EmailNotification</class>

<class>org.jbpm.task.EmailNotificationHeader</class>

<class>org.jbpm.task.PeopleAssignments</class>

<class>org.jbpm.task.Reassignment</class>

<class>org.jbpm.task.Status</class>

<class>org.jbpm.task.Task</class>

<class>org.jbpm.task.TaskData</class>

<class>org.jbpm.task.SubTasksStrategy</class>

<class>org.jbpm.task.OnParentAbortAllSubTasksEndStrategy</class>

<class>org.jbpm.task.OnAllSubTasksEndParentEndStrategy</class>

<class>org.jbpm.task.User</class>

Next, add the task service configuration to your Spring configuration file, after which you can get

your local task service from your Spring context.

<bean id="systemEventListener" class="org.drools.SystemEventListenerFactory" factory-

method="getSystemEventListener" />

<bean id="internalTaskService" class="org.jbpm.task.service.TaskService" >

 <property name="systemEventListener" ref="systemEventListener" />

</bean>

<bean id="htTxManager" class="org.drools.container.spring.beans.persistence.HumanTaskSpringTransactionManager">

 <constructor-arg ref="jbpmTxManager" />

</bean>

<bean id="springTaskSessionFactory" class="org.jbpm.task.service.persistence.TaskSessionSpringFactoryImpl"

 init-method="initialize" depends-on="internalTaskService" >

 <property name="entityManagerFactory" ref="jbpmEMF" />

 <property name="transactionManager" ref="htTxManager" />

 <property name="useJTA" value="true" />

 <property name="taskService" ref="internalTaskService" />

</bean>

<bean id="taskService" class="org.jbpm.task.service.local.LocalTaskService" depends-

on="internalTaskService" >

 <constructor-arg ref="internalTaskService" />

</bean>

Note that, if you want your session linked to your local task service, you still need to create a

synchronous human task handler and register it to the session using:

SyncWSHumanTaskHandler humanTaskHandler = new SyncWSHumanTaskHandler(taskService, ksession);

Apache Camel Integration

235

humanTaskHandler.setLocal(true);

humanTaskHandler.connect();

ksession.getWorkItemManager().registerWorkItemHandler("Human

 Task", humanTaskHandler);

19.4. Apache Camel Integration

Camel provides a lightweight bus framework for geting information into and out of jBPM.

Additionally Camel provides a way to expose your KnowledgeBases remotely for any sort of client

application that can use HTTP, through a SOAP or REST interface.

The following example shows how to setup a remote accessible session:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:cxf="http://camel.apache.org/schema/cxf"

 xmlns:jaxrs="http://cxf.apache.org/jaxrs"

 xmlns:kb="http://drools.org/schema/drools-spring"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans http://

www.springframework.org/schema/beans/spring-beans-2.5.xsd

 http://drools.org/schema/drools-spring http://drools.org/schema/drools-

spring.xsd

 http://camel.apache.org/schema/cxf http://camel.apache.org/schema/cxf/

camel-cxf.xsd

 http://cxf.apache.org/jaxrs http://cxf.apache.org/schemas/jaxrs.xsd

 http://camel.apache.org/schema/spring http://camel.apache.org/schema/

spring/camel-spring.xsd">

 <!-- jBPM Knowledge Related Config -->

 <kb:grid-node id="node1"/>

 <kb:kbase id="kbase1" node="node1">

 <kb:resources>

 <kb:resource type="BPMN2" source="classpath:MyProcess.bpmn"/>

 </kb:resources>

 </kb:kbase>

 <kb:ksession id="ksession1" type="stateless" kbase="kbase1" node="node1"/>

 <!-- Camel Config -->

 <import resource="classpath:META-INF/cxf/cxf.xml" />

 <import resource="classpath:META-INF/cxf/cxf-servlet.xml" />

Chapter 19. Integration with ...

236

 <cxf:rsServer id="rsServer"

 address="/rest"

 serviceClass="org.drools.jax.rs.CommandExecutorImpl">

 <cxf:providers>

 <bean class="org.drools.jax.rs.CommandMessageBodyReader"/>

 </cxf:providers>

 </cxf:rsServer>

 <cxf:cxfEndpoint id="soapServer"

 address="/soap"

 serviceName="ns:CommandExecutor"

 endpointName="ns:CommandExecutorPort"

 wsdlURL="soap.wsdl"

 xmlns:ns="http://soap.jax.drools.org/" >

 <cxf:properties>

 <entry key="dataFormat" value="MESSAGE"/>

 <entry key="defaultOperationName" value="execute"/>

 </cxf:properties>

 </cxf:cxfEndpoint>

 <bean id="kbPolicy" class="org.drools.camel.component.DroolsPolicy" />

 <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

 <route>

 <from uri="cxfrs://bean://rsServer"/>

 <policy ref="kbPolicy">

 <unmarshal ref="xstream" />

 <to uri="drools:node1/ksession1" />

 <marshal ref="xstream" />

 </policy>

 </route>

 <route>

 <from uri="cxf://bean://soapServer"/>

 <policy ref="kbPolicy">

 <unmarshal ref="xstream" />

 <to uri="drools:node1/ksession1" />

 <marshal ref="xstream" />

 </policy>

 </route>

 </camelContext>

</beans>

To execute the above example you must be sure that you have the following content in your

web.xml file:

Apache Camel Integration

237

<web-app>

 (...)

 <context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>classpath:beans.xml</param-value>

 </context-param>

 <listener>

 <listener-class>

 org.springframework.web.context.ContextLoaderListener

 </listener-class>

 </listener>

 <servlet>

 <display-name>CXF Servlet</display-name>

 <servlet-name>CXFServlet</servlet-name>

 <servlet-class>

 org.apache.cxf.transport.servlet.CXFServlet

 </servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>CXFServlet</servlet-name>

 <url-pattern>/kservice/*</url-pattern>

 </servlet-mapping>

 <session-config>

 <session-timeout>10</session-timeout>

 </session-config>

</web-app>

After deploying the above example, you can test it using any http compatible tool like curl, directly

from you command line

$ curl -v \

 -H 'Content-Type: text/plain' \

 -d '<batch-execution lookup="ksession1"> \

 <start-process processId="org.jbpm.sample.my-process" out-identifier =

 "processId"/> \

 </batch-execution>' \

 http://localhost:8080/jbpm-camel/kservice/rest/execute

The above execution will result in something similar to the following code snippet:

Chapter 19. Integration with ...

238

HTTP/1.1 200 OK

Content-Length: 131

Server: Apache-Coyote/1.1

Date: Mon, 13 Apr 2012 17:02:42 GMT

Content-Type: text/plain

Connection: close

<?xml version='1.0' encoding='UTF-8'?><execution-results><result

 identifier="processId"><long>1</long></result></execution-results>

	jBPM User Guide
	Table of Contents
	
	Chapter 1. Overview
	1.1. What is jBPM?
	1.2. Overview
	1.3. Core Engine
	1.4. Eclipse Editor
	1.5. Web-based Designer
	1.6. Form Builder
	1.7. Guvnor Repository
	1.8. Web-based Management Consoles
	1.9. Documentation

	Chapter 2. Getting Started
	2.1. Downloads
	2.2. Getting started
	2.3. Community
	2.4. Sources
	2.4.1. License
	2.4.2. Source code
	2.4.3. Building from source

	Chapter 3. Installer
	3.1. Prerequisites
	3.2. Download the installer
	3.3. Demo setup
	3.4. 10-Minute Tutorial: Using the Eclipse tooling
	3.5. 10-Minute Tutorial: Using the jBPM Console
	3.6. 10-Minute Tutorial: Using Guvnor repository and Designer
	3.7. 10-Minute Tutorial: Using your own database with jBPM
	3.7.1. Introduction
	3.7.2. Database setup
	3.7.3. Quickstart
	3.7.4. Using a different database

	3.8. What to do if I encounter problems or have questions?
	3.9. Frequently asked questions

	Chapter 4. Quickstarts
	4.1. Invoking a Java service
	4.1.1. Using a script task
	4.1.2. Using a Java handler
	4.1.3. Writing your own domain-specific task

	Chapter 5. Core Engine: API
	5.1. The jBPM API
	5.1.1. Knowledge Base
	5.1.2. Session
	5.1.3. Events

	5.2. Knowledge-based API

	Chapter 6. Core Engine: Basics
	6.1. Creating a process
	6.1.1. Using the graphical BPMN2 Editor
	6.1.2. Defining processes using XML
	6.1.3. Defining Processes Using the Process API
	6.1.3.1. Example

	6.2. Details of different process constructs: Overview
	6.3. Details: Process properties
	6.4. Details: Events
	6.4.1. Start event
	6.4.2. End events
	6.4.2.1. End event
	6.4.2.2. Throwing error event

	6.4.3. Intermediate events
	6.4.3.1. Catching timer event
	6.4.3.2. Catching signal event

	6.5. Details: Activities
	6.5.1. Script task
	6.5.2. Service task
	6.5.3. User task
	6.5.4. Reusable sub-process
	6.5.5. Business rule task
	6.5.6. Embedded sub-process
	6.5.7. Multi-instance sub-process

	6.6. Details: Gateways
	6.6.1. Diverging gateway
	6.6.2. Converging gateway

	6.7. Using a process in your application
	6.8. Other features
	6.8.1. Data
	6.8.2. Constraints
	6.8.3. Action scripts
	6.8.4. Events
	6.8.5. Timers
	6.8.6. Updating processes
	6.8.6.1. Process instance migration

	6.8.7. Multi-threading
	6.8.7.1. Engine execution
	6.8.7.2. Asynchronous handlers
	6.8.7.3. Multiple knowledge sessions and persistence

	Chapter 7. Core Engine: BPMN 2.0
	7.1. Business Process Model and Notation (BPMN) 2.0 specification
	7.2. Examples
	7.3. Supported elements / attributes

	Chapter 8. Core Engine: Persistence and transactions
	8.1. Runtime State
	8.1.1. Binary Persistence
	8.1.2. Safe Points
	8.1.3. Configuring Persistence
	8.1.3.1. Adding dependencies
	8.1.3.2. Configuring the engine to use persistence using JBPMHelper
	8.1.3.3. Manually configuring the engine to use persistence

	8.1.4. Transactions
	8.1.4.1. Container managed transaction

	8.1.5. Persistence and concurrency

	8.2. Process Definitions
	8.3. History Log
	8.3.1. The Business Activity Monitoring data model
	8.3.2. Storing Process Events in a Database

	Chapter 9. Core Engine: Examples
	9.1. jBPM Examples
	9.2. Examples
	9.3. Unit tests

	Chapter 10. Eclipse BPMN 2.0 Plugin
	10.1. Installation
	10.2. Creating your BPMN 2.0 processes
	10.3. Filtering elements and attributes
	10.4. Changing editor behavior
	10.5. Changing editor appearance

	Chapter 11. Designer
	11.1. Installation
	11.2. Source code
	11.3. Designer UI Explained
	11.4. Support for Domain-specific service nodes
	11.5. Configuring Designer
	11.5.1. Changing the default configuration in Designer
	11.5.2. Changing the default configuration in Guvnor

	11.6. Generation of process and task forms
	11.7. View processes as PDF and PNG
	11.8. Viewing process BPMN2 source
	11.9. Embedding designer in your own application
	11.10. Migrating existing jBPM 3.2 based processes to BPMN2
	11.11. Visual Process Validation
	11.12. Integration with the jBPM Service Repository
	11.13. Generating code to share the process image, PDF, and embedded process editor
	11.14. Importing existing BPMN2 processes
	11.15. Viewing Process Information
	11.16. Requirements

	Chapter 12. Console
	12.1. Installation
	12.1.1. Authorization
	12.1.2. User and group management
	12.1.3. Registering your own service handlers
	12.1.4. Configure management console
	12.1.4.1. Implementing custom managers

	12.2. Running the process management console
	12.2.1. Managing process instances
	12.2.1.1. Inspecting process definitions
	12.2.1.2. Starting new process instances
	12.2.1.3. Managing process instances
	12.2.1.4. Inspecting process instance state
	12.2.1.5. Inspecting process instance variables

	12.2.2. Human task lists
	12.2.3. Reporting

	12.3. Adding new process / task forms
	12.4. REST interface

	Chapter 13. Human Tasks
	13.1. Human tasks inside processes
	13.1.1. User and group assignment
	13.1.2. Task escalation and notification
	13.1.3. Data mapping
	13.1.3.1. Task parameters
	13.1.3.2. Task results

	13.1.4. Swimlanes
	13.1.5. Examples

	13.2. Human task service
	13.2.1. Task life cycle
	13.2.2. Linking the human task service to the jBPM engine
	13.2.3. Interacting with the human task service
	13.2.4. User and group assignment
	13.2.4.1. Connecting Human Task server to LDAP

	13.2.5. Starting the human task service
	13.2.5.1. Configure escalation and notifications
	13.2.5.1.1. User information retrieved from LDAP server

	13.2.6. Starting the human task service as web application

	13.3. Human task clients
	13.3.1. Eclipse demo task client
	13.3.2. Web-based task client in jBPM Console

	13.4. Human task persistence
	13.4.1. Task related entities
	13.4.2. Deadline, Escalation and Notification related entities

	Chapter 14. Domain-specific processes
	14.1. Introduction
	14.2. Example: Notifications
	14.2.1. Creating the work definition
	14.2.2. Registering the work definition
	14.2.3. Using your new work item in your processes
	14.2.4. Executing service nodes

	14.3. Service repository
	14.3.1. Public jBPM service repository
	14.3.2. Setting up your own service repository

	Chapter 15. Testing and debugging
	15.1. Unit testing
	15.1.1. Helper methods to create your session
	15.1.2. Assertions
	15.1.3. Testing integration with external services
	15.1.4. Configuring persistence

	15.2. Debugging
	15.2.1. The Process Instances View
	15.2.2. The Human Task View
	15.2.3. The Audit View

	Chapter 16. Process Repository
	Chapter 17. Business Activity Monitoring
	17.1. Reporting
	17.2. Direct Intervention

	Chapter 18. Flexible Processes
	Chapter 19. Integration with Maven, OSGi, Spring, etc.
	19.1. Maven
	19.2. OSGi
	19.3. Spring
	19.3.1. Spring using the JTA transaction manager
	19.3.2. Spring using local transactions
	19.3.3. Spring using a shared entity manager
	19.3.4. Using a local task service

	19.4. Apache Camel Integration

