
1

Charles Nutter
Thomas Enebo

JRuby: Not Just
Another Ruby Impl

1

2

Introductions: Who am I?

• Charles Oliver Nutter – charles.nutter@sun.com
• Thomas Enebo - thomas.enebo@sun.com
• Engineers at Sun, JRuby core developer
• 10+ years Java experience each

> Also C/C++, Win32, C#, .NET, JavaME/CLDC, Perl,
LiteStep, JINI, JavaEE

• Working to make Ruby a first-class JVM language
• Working to make JVM a better home for dynlangs

3

Agenda

• What Is JRuby
• Ruby Design Issues
• The JRuby Way
• JRBuilder/Cheri
• NetBeans Ruby Support
• Compatibility Metrics
• JRuby Compiler and Performance Metrics
• Conclusion and Q/A

4

What Is JRuby

• Started in 2002
• Java implementation of Ruby language
• Open source, many active contributors
• Aiming for compatibility with current Ruby version
• Easy integration with Java libraries, infrastructure

> Call to Ruby from Java via JSR223, BSF
> Use Java classes from Ruby (e.g. Script Java)

• Growing set of external projects based on JRuby
> JRuby-extras (ActiveRecord-JDBC, rails-integration, ...)

5

Why Ruby on Java?

• Ruby only supports green threads
• Unicode story is rather weak
• Performance often considered “slow”
• Too great a change for many organizations
• Still relatively new, perceived as “untried”
• Existing investments in Java infrastructure
• Vast, proven collection of Java libraries
• Complete platform independence

6

Ruby Design Issues

• Ruby 1.8: Green threading
> Can't scale across processors/cores
> C libraries won't or can't yield to Ruby threads
> One-size-fits-all scheduler doesn't fit all

• Ruby 1.9: Native, non-parallel threading
> Core classes, extensions not ready for parallel exec
> Lots of work to ensure thread-safe internals
> Move to native threads, but not running in parallel

– **May change before 2.0

7

Ruby Design Issues

• Ruby 1.8: Partial Unicode support
> Internet-connected apps must have solid Unicode
> Ruby provides partial support, but not consistent
> App developers must roll their own: Rails MultiByte

• Ruby 1.9: Full Unicode (M17N) but drastic change
> String interface changes to per-char, not per-byte

– Breaks existing consumers of those methods
– Duplicate methods to allow per-byte access

> Each string can have its own encoding
– Mixed encoding app behavior unclear
– Much more complicated than “just support Unicode”

8

Ruby Design Issues

• Ruby 1.8: Slower than most languages
> 1.8 is usually called “fast enough”
> ...but routinely finishes last on benchmarks
> ...and no plans to improve in 1.8

• Ruby 1.9: Improvement, but still more to do
> 3-4x faster on some targeted tests
> ...but no change on others
> AOT compilation
> More to do: no JIT; GC, threading still slow;
> Not likely to be “done” soon (1.9.1 in December)

9

Ruby Design Issues

• Ruby 1.8: Memory management
> Simple design
> Good for many apps, but (probably?) doesn't scale
> Stop-the-world GC, no parallel or generational collection

• Ruby 1.9: No change
> Improved performance means more garbage
> Multiple native threads, potentially more contention
> GC problems could multiply, cutting into profits

10

Ruby Design Issues

• Ruby 1.8: C language extensions
> C is difficult to write well
> Badly-behaved extensions can crash Ruby runtime
> Threading, GC issues
> Portable, but often must be recompiled
> No security restrictions

• Ruby 1.9: No change
> Can't afford to break extensions
> Ruby C API exposure limits changes to Ruby core
> Common performance advice: “Write it in C”

11

Other Ruby Issues

• Politics
> You want me to switch to what?
> ...and it needs new servers/software/training?
> Potentially better accepted by 1.9

• Legacy
> Lots of Java apps and code in the world

– Extensive library of Java frameworks
– Many experienced users, developers, administrators

> Large existing investment in Java infrastructure
– Server software, developer and admin training
– Existing services, frameworks

12

The JRuby Way

• Native threading
> Scale across all processors/cores in system
> Concurrent execution, even in extensions
> Allow system to schedule threads
> Ensure reasonable safety in core classes

13

The JRuby Way

• World-class, native Unicode support
> Provide Ruby's byte[]-based String

– ...but also provide native Rails multibyte “Chars” class
– ...and you can also use Java's UTF-16 String

> Java has complete, reliable Unicode support
– ...and all libraries are Unicode-ready
– ...and all IO channels support many encodings

14

The JRuby Way

• Scalable Performance
> Make interpreter as fast as possible

– No reason we can't interpret as fast as Ruby 1.8

> Support Ruby 1.9/2.0 bytecode engine
– Same resulting performance gains in JRuby as in Ruby 1.9
– Future-proof

> Compile to Java bytecode
– AOT and JIT compilation
– Let HotSpot take over

– JIT compilation
– Code inlining
– Dynamic optimization

15

The JRuby Way

• Let Java manage memory
> Best memory management and GC in the world
> Wide variety of GC options

– Concurrent
– Generational
– Real-time

> Scales up to enormous applications and loads
> Battle-tested: millions of deployments worldwide

16

The JRuby Way

• Java-based extensions
> Easier to write than C
> Nearly impossible to crash runtime or VM
> Truly portable: write once, run anywhere
> No GC, threading, or security issues: it's all Java
> Clean separation between core and extension API
> Easier to expose Java libraries than C libraries
> “Everybody” knows Java

17

The JRuby Way

• Politics don't get in the way
> JRuby is “just another Java library”
> Easier to change web framework than app architecture
> Minimal impact to dev, admin processes
> Ten years of mainstream Java

• Legacy integrates just fine
> Call existing services, libraries directly from Ruby
> Implement services in Ruby
> Deploy to existing servers
> Same proven scalability, reliability...just a new language

18

What Can It Do?

• Most “pure” Ruby code runs just fine now
• Rake runs well, though no official testing effort
• RubyGems, ditto, but it's hit more often
• Projects using JRuby + RSpec now
• Rails looking better and better

> Some small-scale production apps in the wild
> Rails unit tests above 98% passing in JRuby
> More and more of Rails in our regression suites

• Other combinations of JRuby + X popping up daily

19

Yeah, But What Else?

• Ruby + Java = Awesome
> Java provides libraries and VM Ruby needs

– Extensive, flexible libraries
– Often too complicated to use...why?
– Perhaps Java is good for frameworks, but not for calling them?
– Perhaps there's a better option for “gluing” libraries together?

> Ruby provides agile, flexible, fun language Java needs
– Unix metaphor: libraries use C, apps often use dynlangs
– Applied to Java: JVM is our kernel, Java is our C
– Ruby and its ilk finally complete the platform

> More powerful than either alone

20

JRBuilder/Cheri

• JRBuilder/Cheri project by Bill Dortch
> A Ruby “SwingBuilder”
> Groovy-like builder syntax for Swing

– But written entirely in Ruby
– ...and only a couple kloc

> Also inspired by F3
– Declarative syntax for Swing/Java2D UIs

> Data binding support similar to JSR 295 “Beans Binding”
> Additional Java integration enhancements

– Java array and primitive manipulation
– Some merged into JRuby proper, more to come

21

Demo:
JRBuilder/Cheri -
A Ruby SwingBuilder

21

22

NetBeans Ruby Support

• Tor Norbye started work in September
• Uses JRuby's parser
• Available in NetBeans 6 Milestone 7

> Ruby support in “Update Center”
> Still early, but very promising

• Editor features: syntax coloring, completion
(methods, string escapes, regex, variables...),
variable renaming, hyperlinking (go to definition)

• IDE features: running tests and scripts, Ruby
projects, Rails projects, in-IDE WEBrick server

23

Demo:
Netbeans Ruby Support

23

24

Measuring Compatibility

• How do you implement a language with no spec?
• ...and no complete suite of functional tests?
• Make do with what's available

> Partial suites (MRI's tests, BFTS, Rubicon, ruby_test)
> Applications' own suites (RSpec, Rails so far)
> Our own suite of tests, expanded over time
> Other implementations' tests (Rubinius, others soon?)

• Document as we go
> Community spec: www.headius.com/rubyspec
> JRuby mailing list archives, www.headius.com/jrubywiki

25

Compatibility: Ruby Tests

• Ruby's sample test (ruby_src/sample/test.rb)
> 95% or better passing
> Remaining is mostly POSIXy stuff we can't support
> Popular measure of compatibility (XRuby, Ruby.NET)
> ...but very limited in scope

• Ruby's language unit tests (ruby_src/test/ruby)
> 90% or better passing
> “second step” toward compatibility?

• Rubicon (rubyforge.org/projects/rubytests)
> Many tests 100%; perhaps 80% passing overall
> Not the most reliable suite, but oldest, largest

26

Compatibility: Rails 1.2.1

> ActiveSupport
– 498 tests, 1849 assertions, 4 failures, 0 errors (99.19%)

> ActionPack
– 1157 tests, 4868 assertions, 6 failures, 2 errors (99.30%)

> ActionMailer
– 64 tests, 133 assertions, 4 failures, 2 errors (90.63%)

> ActionWebService
– 96 tests, 531 assertions, 0 failures, 0 errors (100%)

> ActiveRecord
– 1012 tests, 3658 assertions, 41 failures, 6 errors (95.35%)

> 2827 tests, 62 failures or errors (97.70%)

27

Compatibility: Others

• BFTS (rubyforge.org/projects/bfts)
> Maybe 90% passing
> Fairly complete, but for very few core classes

• ruby_test (rubyforge.org/projects/ruby_test)
> Unknown; just started looking at it recently

• RSpec's specs (rspec.rubyforge.org)
> 99% passing

• Our own regression suite: 100%!!!
> Coverage exceeds 80%

28

Measuring Performance

• No standard set of benchmarks for Ruby
• Alioth “Shootout” tests

> Wide range of algorithms tested
> Most are memory-intensive
> Much-maligned among Rubyists

• Ruby 1.9 benchmarks
> Narrow but solid range of tests
> Primarily testing areas YARV was designed to improve
> Subject of recent “Ruby shootout”

• Rails requests-per-second

29

Performance Metrics

• Rails requests-per-second (WEBrick)
• Still 100% interpreted, but some playing with JIT
• Ruby 1.8.4

> static - 301.09 req/s
> dynamic - 121.74 req/s

• JRuby 0.9.8 (Java 6 server VM)
> static – 180.03 req/s
> Dynamic – 50.53 req/s

30

Performance: JRuby
ap

p_
an

sw
er

ap
p_

fib
ap

p_
m

an
de

lb
ro

t
ap

p_
pe

nt
om

in
o

ap
p_

ra
is

e
ap

p_
st

rc
on

ca
t

ap
p_

ta
k

ap
p_

ta
ra

i
lo

op
_t

im
es

lo
op

_w
hi

le
lo

op
lo

op
_w

hi
le

lo
op

2
so

_a
rr

ay
so

_c
on

ca
te

na
te

so
_c

ou
nt

_w
or

ds
so

_e
xc

ep
tio

n
so

_l
is

ts
so

_m
at

rix
so

_n
es

te
d_

lo
op

so
_o

bj
ec

t
so

_r
an

do
m

so
_s

ie
ve

vm
1_

bl
oc

k
vm

1_
co

ns
t

vm
1_

en
su

re
vm

1_
le

ng
th

vm
1_

re
sc

ue
vm

1_
si

m
pl

er
et

ur
n

vm
2_

ar
ra

y
vm

2_
m

et
ho

d
vm

2_
po

ly
_m

et
ho

d
vm

2_
po

ly
_m

et
ho

d_
ov

vm
2_

re
ge

xp
vm

2_
se

nd
vm

2_
su

pe
r

vm
2_

un
if1

vm
2_

zs
up

er
vm

3_
th

re
ad

_c
re

at
e_

jo
in

0.000
5.000

10.000
15.000
20.000
25.000
30.000
35.000
40.000
45.000
50.000
55.000
60.000

Run Time

Ruby 1.8.4

JRuby

ap
p_

an
sw

er

ap
p_

pe
nto

mino

ap
p_

tak

loo
p_

tim
es

so
_a

rra
y

so
_e

xc
ep

tio
n

so
_n

es
ted

_lo
op

so
_s

iev
e

vm
1_

co
ns

t

vm
1_

re
sc

ue

vm
2_

meth
od

vm
2_

pr
oc

vm
2_

se
nd

vm
2_

un
if1

0

5

10

15

20

25

30

35

40

Run Time

Ruby 1.8.4

JRuby

31

Performance: JRuby
a
p

p
_
a

n
sw

e
r

a
p
p

_
fib

a
p
p

_
m

a
n
d

e
lb

ro
t

a
p

p
_

p
e
n

to
m

in
o

a
p
p

_
ra

is
e

a
p

p
_

st
rc

o
n

ca
t

a
p
p

_
ta

k

a
p
p

_
ta

ra
i

lo
o
p
_

tim
e

s

lo
o
p

_
w

h
ile

lo
o

p

lo
o
p

_
w

h
ile

lo
o

p
2

so
_

a
rr

a
y

so
_
co

n
ca

te
n
a

te

so
_
co

u
n
t_

w
o
rd

s

so
_
e

xc
e
p

tio
n

so
_
lis

ts

so
_

m
a
tr

ix

so
_
n

e
st

e
d
_
lo

o
p

so
_
o

b
je

ct

so
_

ra
n
d

o
m

so
_
si

e
ve

vm
1

_
b

lo
ck

vm
1
_

co
n

st

vm
1

_
e
n
su

re

vm
1

_
le

n
g
th

vm
1

_
re

sc
u

e

vm
1

_
si

m
p
le

re
tu

rn

vm
2
_

a
rr

a
y

vm
2

_
m

e
th

o
d

vm
2
_

p
o
ly

_
m

e
th

o
d

vm
2

_
p
o

ly
_
m

e
th

o
d
_

o
v

vm
2

_
re

g
e
xp

vm
2

_
se

n
d

vm
2
_
su

p
e
r

vm
2

_
u
n
if1

vm
2

_
zs

u
p
e

r

vm
3
_

th
re

a
d

_
cr

e
a
te

_
jo

in-8.00

-7.00

-6.00

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

Times Faster

X faster

ap
p_

an
sw

er

ap
p_

pe
nt

om
in
o

ap
p_

ta
k

lo
op

_w
hil

el
oo

p

so
_c

ou
nt
_w

or
ds

so
_m

at
rix

so
_r

an
do

m

vm
1_

co
ns

t

vm
1_

re
sc

ue

vm
2_

m
et
ho

d

vm
2_

pr
oc

vm
2_

su
pe

r
-8.00

-7.00

-6.00

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

Times Faster

X faster

32

JRuby Compiler

• Ahead-of-time
> Compile .rb file to .class file
> Directly executable, or require/loadable
> Package compiled Ruby like compiled Java

• Just-in-time
> Heavily hit methods compiled at runtime
> Run existing apps, scripts without modification
> Optimize methods generated at runtime

• Incremental design
> Fall back on interpreter for unimplemented bits

33

Demo:
JRuby Compiler

33

34

Performance: JRuby Compiler

app_fib
app_tak

app_tarai

loop_whileloop

loop_whileloop2

so_nested_loop

vm1_length
vm2_array

vm2_method
0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

Run Time

Ruby 1.8.4

JRuby -C

JRuby -C Svr

ap
p_

fib

ap
p_

ta
k

ap
p_

ta
ra

i

lo
op

_w
hi
lel

oo
p

loo
p_

whi
le
loo

p2

so
_n

es
te
d_

loo
p

vm
1_

len
gt
h

vm
2_

ar
ra

y

vm
2_

m
et
ho

d

vm
2_

un
if1

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

Run Time

Ruby 1.8.4

JRuby -C

JRuby -C no startup

35

Performance: JRuby Compiler

app_fib
app_tak

app_tarai

loop_whileloop

loop_whileloop2

so_nested_loop

vm1_length

vm2_array

vm2_method
-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Times Faster

-C X faster

-C Svr X faster

ap
p_

fib

ap
p_

ta
k

ap
p_

ta
ra

i

lo
op

_w
hi
le
lo
op

lo
op

_w
hi
le
lo
op

2

so
_n

es
te

d_
lo
op

vm
1_

le
ng

th

vm
2_

ar
ra

y

vm
2_

m
et

ho
d

vm
2_

un
if1

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

Times Faster

-C X faster

-C no startup X faster

36

What Next for JRuby?

• Viable for development today
> Not perfect, but what is?

• Rapidly approaching MRI on many fronts
• Many capabilities beyond MRI today
• More and more apps running

> Does yours?
> Shouldn't you ensure that it does?

• Bright future for Ruby on the Java platform

37

JRuby Roadmap

• Early March, 0.9.8 release
> Official “Rails Support”
> First release of experimental compiler
> Hundreds of bug fixes, some complete lib rewrites

• April timeframe, 0.9.9
> JIT compiler enabled, AOT handles “most” scripts
> Continuing app compatibility work
> Expanding Rails with WAR, enterprise API support

• May timeframe, 1.0RC?
> Wrapping up, smoothing the edges

38

More Information

• JRuby: www.jruby.org
• JRuby Wiki: headius.com/jrubywiki
• RubySpec Wiki: headius.com/rubyspec
• JRBuilder: www2.webng.com/bdortch/jrbuilder
• Cheri: www2.webng.com/bdortch/cheri
• NetBeans Ruby: wiki.netbeans.org/wiki/view/Ruby
• Charlie's Blog: headius.blogspot.com
• Tom's Blog: bloglines.com/blog/ThomasEEnebo

39

Become Super Powerful
with JRuby

Q/A

Thank You!
charles.nutter@sun.com

39

