
© Copyright Khronos Group 2016 - Page 1

Moving to Vulkan:
How to make your 3D graphics more explicit

Introduction & Welcome
Alon Or-bach, Samsung Electronics

@alonorbach (disclaimers apply!)

© Copyright Khronos Group 2016 - Page 2

Welcome!
• Housekeeping announcement from our hosts at ARM

• Etiquette for questions & engaging our online participants

• Outline for the day

• Quick intro to Khronos and the Khronos UK Chapter

• Interact with us on Twitter

- @KhronosUK

- #MovingToVulkan

• Tell us what you think about the day

- and most importantly, what you’d like us to do that we didn’t

© Copyright Khronos Group 2016 - Page 3

Moving to Vulkan: Today’s agenda
Approximate timings for the day Event Speaker

9:00 – 10:00 am Registration, demos, Q&A clinics, networking and coffee on arrival

10:00 – 10:15 am Welcome and Khronos UK Chapter Intro Alon Or-bach, Samsung Electronics

10:15 – 11:00 am Vulkan 1-0-1 Tom Olson, ARM

11:00 – 11:30 am Command buffers Michael Worcester, Imagination

11:30 – 12:15 pm SPIR-V and GLSL, SPIR-V Cross Tool
Neil Hickey, ARM
Hans-Kristian Arntzen, ARM

12:15 – 1:15 pm Lunch break and demos, Q&A clinics & networking

1:15 – 1:45 pm Vertex Fetch and resource descriptors Jesse Barker, ARM

1:45 – 2:15 pm Render passes Andrew Garrard, Samsung Electronics

2:15 – 2:45 pm Synchronisation Tobias Hector, Imagination

2:45 – 3:00 pm Coffee break, demos, Q&A clinics and networking

3:00 – 3:30 pm Swapchains Alon Or-bach, Samsung

3:30 – 4:00 pm Simultaneous Graphics & Compute Chris Hebert, NVIDIA

4:00 – 4:30 pm Porting apps to Vulkan Hans-Kristian Arntzen, ARM

4:30 – 5:30 pm Panel discussion – Moving to Vulkan: Lessons to note when going explicit

5:30 pm Leaving by coach to the Cambridge Beer Festival to network further

© Copyright Khronos Group 2016 - Page 4

Over 100 members worldwide
any company is welcome to join

BOARD OF PROMOTERS

http://www.toshiba.com/
http://www.marvell.com/index.jsp

© Copyright Khronos Group 2016 - Page 5

Khronos Connects Software to Silicon

Low-level silicon APIs

needed on almost every platform:

graphics, parallel compute,

rich media, vision, sensor

and camera processing

Software

Silicon

Conformance Tests and Adopters

Programs for specification integrity

and cross-vendor portability

Industry Consortium creating OPEN STANDARD APIs for hardware acceleration

Any company is welcome – one company one vote

ROYALTY-FREE specifications

State-of-the art IP framework protects

members AND the standards

International, non-profit organization

Membership and Adopters fees cover

operating and engineering expenses

Strong industry momentum

100s of man years invested by industry experts

Well over a BILLION people use Khronos APIs Every Day…

© Copyright Khronos Group 2016 - Page 6

© Copyright Khronos Group 2016 - Page 7

What is a Khronos Chapter?
• Geographical group of people

keen to talk technology

• Encourage adoption of

Khronos standards

- Get the word out on the

latest developments in APIs

- Share experience of using

Khronos APIs and related tech

• Get feedback on how features

are being used, offer advice

• Gather developer community

requirements back into Khronos

© Copyright Khronos Group 2016 - Page 8

Vulkan 101

Tom Olson
Directory, Graphics Research, ARM

Chair, Vulkan Working Group

© Copyright Khronos Group 2016 - Page 9

What is Vulkan?

• A 3D graphics API for the next 20 years

- Logical successor to OpenGL / OpenGL ES

- Modern, efficient design

- An open, industry-controlled standard

• Here, now

- Released in February 2016

- Available today for Windows / Linux

- Shipping in Samsung Galaxy S7

- Support announced in Android ‘N’

• Different!

- Fundamental change in philosophy

- Requires corresponding changes in applications

© Copyright Khronos Group 2016 - Page 10

Why did we do this?

• Traditional APIs had issues…

• Developers weren’t happy

http://www.joshbarczak.com/blog/?p=154

http://richg42.blogspot.com/2014/05/things-that-drive-me-nuts-about-opengl.html

© Copyright Khronos Group 2016 - Page 11

Problems with OpenGL / OpenGL ES

• Programming model doesn’t match GPU HW

- Especially in mobile

- Driver magic hides the mismatch

• CPU intensive

- Lots of state validation, dependency tracking

• Complex, buggy, unpredictable drivers

- Different bugs and fast-paths on every GPU

• Fundamentally single-threaded

- Can’t use multi-core CPUs effectively

• …not to mention twenty years of legacy cruft

© Copyright Khronos Group 2016 - Page 12

Enter Vulkan…

• Design discussions start in October 2012

• Moves into high gear in July/August 2014

- Commitment from key ISVs

- AMD donation of Mantle

• A lot of very hard work follows…

• Release to public in February 2016

- Conformant drivers from four IHVs

- GLSL to SPIR-V compiler

- Debug and validation tools

© Copyright Khronos Group 2016 - Page 13

Instance Device

Resources (textures, buffers)

Memory

Queues

Command Buffers

Vulkan in one slide

© Copyright Khronos Group 2016 - Page 14

Vulkan in one slide two slides

C
o
m

m
a
n
d

B
u
ffe

r

R
e
n
d
e
r P

a
ss

D
ra

w
 C

a
ll

P
ip

e
lin

e

D
e
sc

rip
to

r

S
e
ts

S
h
a
d
e
rs

D
ra

w
 C

a
ll

P
ip

e
lin

e

D
e
sc

rip
to

r

S
e
ts

S
h
a
d
e
rs

S
y
n
c

S
y
n
c

C
o
p
y

Michael

Neil / Hans-Kristian

Jesse

Andrew
Tobias

© Copyright Khronos Group 2016 - Page 15

The principle of Explicit Control

• You promise to tell the driver

- What you are going to do

- In sufficient detail that it doesn’t have to guess

- When the driver needs to know it

• In return, driver promises to do

- What you asked for

- When you asked for it

- Very quickly

• No driver magic!

OpenGL lets you specify important

information very late, and change it

at any time. It’s convenient, but has

huge performance costs.

OpenGL drivers often defer work

until later, move it to another

thread, or even ignore your

commands, based on guesses about

your intent. Vulkan drivers won’t.

© Copyright Khronos Group 2016 - Page 16

Loader, layers, and extensions

• Vulkan has no dependencies on external APIs

- ICD loader is built-in

- Window system binding is (semi) built-in

• A side benefit: Layers

- Loader can install intercept libraries (“layers”)

- E.g. trace, debug

• Extensions

- Must be enabled at initialization time

© Copyright Khronos Group 2016 - Page 17

Multithreading

• All objects visible / accessible to all threads

• Most operations are externally synchronized

- Application must prevent unsafe concurrent access
- E.g., recording to the same command buffer

- E.g., submitting to the same queue

- Application must manage object lifetimes

- Note, many objects are immutable

- Concurrent read access is OK

• Allocation / creation are internally synchronized and may block

- Per-thread pool allocators keep this reasonably cheap

© Copyright Khronos Group 2016 - Page 18

Error handling

• Vulkan is optimized for correct applications

- Does not (generally) check for invalid usage

- Does not track dependencies

- Does not (generally) provide thread safety

- Breaking the rules results in undefined behavior

• Vulkan does check for errors you can’t predict

- Out of memory

- Device lost

- Other system errors…

• Layers to the rescue!

- Can enable validation layers during development

© Copyright Khronos Group 2016 - Page 19

Community

• A new attitude

- ISV member input drove key decisions

- Consulted with hundreds of developers

• Strong commitment to open source

- Loader

- Validation and other layers

- SPIR-V tools: compiler, validator, …

- Conformance tests

- Specification

• All at https://github.com/KhronosGroup

© Copyright Khronos Group 2016 - Page 20

Should you be using Vulkan?
• Challenges

- Verbose and complex

- Lots of exposed sharp edges

- Lots to learn

• Opportunities

- Much lower driver overhead

- …which you can spread across multiple threads

- More predictable performance

- Mobile friendly

• Realities

- Ecosystem is still immature

- Will need to ship GL/DX versions for years to come

www.imgtec.com

Michael Worcester – Driver Engineer

(michael.worcester@imgtec.com)

26 May 2016

Command Buffers and Pipelines

© Imagination Technologies

Command Buffers – Deferring the work

 OpenGL is immediate (ignoring display lists)

 Driver does not know how much work is incoming

 Has to guess

 Bad!

 Vulkan splits recording of work from submission of work

 Removes guesswork from driver

 Reducing hitching

 Helps eliminate unexplained resource usage

© Imagination Technologies

Command Buffers – Pooling Resource
 Command Buffers always belong to a Command Pool

 Buffers are allocated from pools

 Pools provide lightweight synchronisation

 Pools can be reset, reclaiming all resources

 Two flavours of pool:

 Individual reset of command buffers

 Group reset only

© Imagination Technologies

Command Buffers – Going wide

OpenGL Context

VkCommandBuffer

VkCommandBuffer

VkCommandBuffer

Single Thread

Thread 1

Thread 2

Thread N

…

© Imagination Technologies

Command Buffers – Command Types

 Deferred recording of commands

 Transfer

 Graphics

 Compute

 Synchronisation

© Imagination Technologies

Command Buffers – Transfers

 Transfer commands are raw copies

 However, they can change the tiling of an image (this is the only way!)

 CPU -> GPU

 Texture upload

 Static buffer data

 GPU -> CPU

 Read back of data

 GPU -> GPU

 Pipelined updates of data

 Mipgen

© Imagination Technologies

Command Buffers – “Inside” or “Out”

Transfer Compute RenderPass Compute

Graphics Graphics Graphics

Dispatch BindPipeline BindDescriptors BeginRenderPass DrawPushConstants

© Imagination Technologies

Command Buffers – Secondaries

Transfer Compute RenderPass Compute

BindPipeline BindDescriptors BindPipeline BindDescriptors Draw DrawDraw

ExecuteCommands ExecuteCommands

Primary

Secondaries

© Imagination Technologies

Command Buffers – Reuse

Camera

© Imagination Technologies

Command Buffers – Reuse

Camera

© Imagination Technologies

Command Buffers – Lifetime

Allocated

Record Pending ActiveWaitSubmitEnd Begin

B
e
g
in

CPU GPU

Ownership

© Imagination Technologies

Pipelines - An anatomy

VI IA VS ESCS TS GS VP RS MS FSDS CB

 Fixed Function States

 Programmable Shaders

 Descriptor Layout

 Renderpass (more later)

 Dynamic State

© Imagination Technologies

Pipelines – Fixed Function States

VI IA VS ESCS TS GS VP RS MS FSDS CB

 Everything that isn’t a shader

 Buffer formats/layouts

 VertexInput

 InputAssembly

 Tessellation

 Viewport

 Raster

 Multisample

 DepthStencil

 ColorBlend

© Imagination Technologies

Pipelines – Shader Stages

VI IA VS ESCS TS GS VP RS MS FSDS CB

 Currently same as OpenGL

 Vertex

 Control

 Evaluation

 Geometry

 Fragment

 Note: Tessellation and Geometry are optional features

© Imagination Technologies

Pipelines – Descriptor Layout

Describes the set of resources that a shader can access

 Uniforms

 Storage Buffers

 Images

 Samplers

 Push Constants

© Imagination Technologies

Pipelines – Dynamic State

 Per-draw state

 Tedious to compile each one

 Combinatorial explosion

 Dynamic state!

 Opt-in

 Only use when required

 Viewport

 Scissor

 Line Width

 Depth Bias

 Blend Constant Colour

 Depth Bounds

 Stencil

 Compare

 Write

 Reference

© Imagination Technologies

Pipelines – The Cache

 Share common state

 Load/Store

© Copyright Khronos Group 2016 - Page 38

Introduction to SPIR-V Shaders

Neil Hickey
Compiler Engineer, ARM

© Copyright Khronos Group 2016 - Page 39

SPIR History

© Copyright Khronos Group 2016 - Page 40

SPIR-V Purpose

Parse HLSL Parse Static C++Parse ISPCParse OpenCL CParse GLSL

SPIR-V CFGOptimizeSPIR-V CFG

Binary IHV Compiler SPIR-V Print SPIR-V

© Copyright Khronos Group 2016 - Page 41

Developer Ecosystem

• Multiple Developer Advantages:
• Same front-end compiler for multiple

platforms

• Reduces runtime kernel compilation time

• Don’t have to ship shader/kernel source

code

• Drivers are simpler and more reliable

© Copyright Khronos Group 2016 - Page 42

Vulkan and OpenCL

SPIR 1.2 SPIR 2.0 SPIR-V 1.0

LLVM Interaction Uses LLVM 3.2 Uses LLVM 3.4

100% Khronos defined

Round-trip lossless

conversion

Compute Constructs Metadata/Intrinsics Metadata/Intrinsics Native

Graphics Constructs No No Native

Supported Language

Feature Sets
OpenCL C 1.2

OpenCL C 1.2

OpenCL C 2.0

OpenCL C 1.2 – 2.0

OpenCL C++ and GLSL

OpenCL Ingestion
OpenCL C 1.2

Extension

OpenCL C 2.0

Extension

OpenCL 2.1 Core

OpenCL 1.2 / 2.0

Extensions

Vulkan Ingestion - - Vulkan 1.0 Core

© Copyright Khronos Group 2016 - Page 43

Compiler flow

SPIR-V

• 32-bit word stream

• Extensible and easily parsed

• Retains data object and

control flow information for

effective code generation and

translation

Khronos has open sourced

these tools and translators

Khronos plans to open source

these tools soon

OpenCL C

SPIR-V (Dis)Assembler

LLVM to SPIR-V

Bi-directional

Translator

OpenCL C++

SPIR-V Validator

GLSL Third party kernel and

shader languages

Other

intermediate

forms

LLVM

SPIR-V Tools

© Copyright Khronos Group 2016 - Page 44

SPIR-V Capabilities

• OpenCL and Vulkan

• Capabilities define feature sets

• Separate capabilities for Vulkan shaders and

OpenCL kernels

• Validation layer checks correct capabilities

requested

OpCapability Addresses
OpCapability Linkage
OpCapability Kernel
OpCapability Vector16
OpCapability Int16

© Copyright Khronos Group 2016 - Page 45

SPIR-V Extensions

• OpExtension

• New functionality

• New instructions

• New semantics

OpExtInstImport
“OpenCL.std”

© Copyright Khronos Group 2016 - Page 46

Vulkan shaders vs. GL shaders

• Program GLSL/ESSL shaders in high level language

• Ship high level source with application

• Graphics drivers compile at runtime

• Each driver needs a full compilation tool chain

• Shaders in binary format

• Compile offline

• Ship intermediate language with application

• Graphics drivers “just” lower from IL

• Higher level compilation can be shared among vendors (provided by Khronos)

© Copyright Khronos Group 2016 - Page 47

Vulkan shaders vs. GL shaders

#version 310 es

precision mediump float;

uniform sampler2D s;

in vec2 texcoord;

out vec4 color;

void main()

{

color = texture(s, texcoord);

}

; SPIR-V

; Version: 1.0

; Generator: Khronos Glslang Reference Front End; 1

; Bound: 20

; Schema: 0

OpCapability Shader

%1 = OpExtInstImport "GLSL.std.450"

OpMemoryModel Logical GLSL450

OpEntryPoint Fragment %4 "main" %9 %17

OpExecutionMode %4 OriginUpperLeft

OpSource ESSL 310

OpName %4 "main"

OpName %9 "color"

OpName %13 "s"

OpName %17 "texcoord"

OpDecorate %9 RelaxedPrecision

OpDecorate %13 RelaxedPrecision

OpDecorate %13 DescriptorSet 0

OpDecorate %14 RelaxedPrecision

OpDecorate %17 RelaxedPrecision

OpDecorate %18 RelaxedPrecision

OpDecorate %19 RelaxedPrecision

%2 = OpTypeVoid

%3 = OpTypeFunction %2

%6 = OpTypeFloat 32

%7 = OpTypeVector %6 4

%8 = OpTypePointer Output %7

%9 = OpVariable %8 Output

%10 = OpTypeImage %6 2D 0 0 0 1 Unknown

%11 = OpTypeSampledImage %10

%12 = OpTypePointer UniformConstant %11

%13 = OpVariable %12 UniformConstant

%15 = OpTypeVector %6 2

%16 = OpTypePointer Input %15

%17 = OpVariable %16 Input

%4 = OpFunction %2 None %3

%5 = OpLabel

%14 = OpLoad %11 %13

%18 = OpLoad %15 %17

%19 = OpImageSampleImplicitLod %7 %14 %18

OpStore %9 %19

OpReturn

OpFunctionEnd

© Copyright Khronos Group 2016 - Page 48

Khronos SPIR-V Tools

glslangValidator –V –o shader.spv shader.frag

spirv-dis -o shader.spvasm shader.spv

spirv-as –o shader.spv shader.spvasm

spirv-cross shader.spv

• Reference frontend (glslang)

• SPIR-V disassembler (spirv-dis)

• SPIR-V assembler (spirv-as)

• SPIR-V reflection (spirv-cross)

© Copyright Khronos Group 2016 - Page 49

Vulkan shaders in a high level language

• GL_KHR_vulkan_glsl

• Exposes SPIR-V features

• Similar to GLSL with some changes

• Extends #version 140 and higher on desktop and #version 310 es for mobile

content

© Copyright Khronos Group 2016 - Page 50

Vulkan_glsl removed features

• Default uniforms

• Atomic-counter bindings

• Subroutines

• Packed block layouts

© Copyright Khronos Group 2016 - Page 51

Vulkan_glsl new features

• Push constants

• Separate textures and samplers

• Descriptor sets

• Specialization constants

• Subpass inputs

© Copyright Khronos Group 2016 - Page 52

Push Constants

• Push constants replace non-opaque uniforms

- Think of them as small, fast-access uniform buffer memory

• Update in Vulkan with vkCmdPushConstants

// New
layout(push_constant, std430) uniform PushConstants {

mat4 MVP;
vec4 MaterialData;

} RegisterMapped;

// Old, no longer supported in Vulkan GLSL
uniform mat4 MVP;
uniform vec4 MaterialData;

// Opaque uniform, still supported
uniform sampler2D sTexture;1

© Copyright Khronos Group 2016 - Page 53

Separate textures and samplers

• sampler contains just filtering information

• texture contains just image information

• combined in code at the point of texture lookup

uniform sampler s;
uniform texture2D t;
in vec2 texcoord;
...
void main()
{

fragColor = texture(sampler2D(t,s), texcoord);
}

© Copyright Khronos Group 2016 - Page 54

Descriptor sets

• Bound objects can optionally define a descriptor set

• Allows bound objects to be updated in one block

• Allows objects in other descriptor sets to remain the same

• Enabled with the set = ... syntax in the layout specifier

layout(set = 0, binding = 0) uniform sampler s;
layout(set = 1, binding = 0) uniform texture2D t;

© Copyright Khronos Group 2016 - Page 55

Specialization constants

• Allows for special constants to be created whose value is overridable at pipeline

creation time.

• Can be used in expressions

• Can be combined with other constants to form new specialization constants

• Declared using layout(constant_id=...)

• Can have a default value if not overridden at runtime

layout(constant_id = 1) const int arraySize = 12;

vec4 data[arraySize];

© Copyright Khronos Group 2016 - Page 56

Specialization constants(2)

• gl_WorkGroupSize can be specialized with values for the x,y and z component.

• These specialization constants can be set at pipeline creation time by using

vkSpecializationMapInfo

layout(local_size_x_id = 2, local_size_z_id = 3) in;

const VkSpecializationMapEntry entries[] =
{
{ 1, // constantID

0*sizeof(uint32_t), // offset
sizeof(uint32_t) // size

},
};

© Copyright Khronos Group 2016 - Page 57

Specialization constants(3)

const uint32_t data[] = { 16};
const VkSpecializationInfo info =
{

1, // mapEntryCount
entries, // pMapEntries
1*sizeof(uint32_t), // dataSize

data, // pData
};

© Copyright Khronos Group 2016 - Page 58

Subpass Inputs

• Vulkan supports subpasses within render passes

• Standardized GL_EXT_shader_pixel_local_storage!

// GLSL
#extension GL_EXT_shader_pixel_local_storage : require
__pixel_local_inEXT GBuffer {

layout(rgba8) vec4 albedo;
layout(rgba8) vec4 normal;
...

} pls;

// Vulkan
layout(input_attachment_index = 0) uniform subpassInput albedo;
layout(input_attachment_index = 1) uniform subpassInput normal;
...

© Copyright Khronos Group 2016 - Page 59

Acknowledgements

• Hans-Kristian Arntzen – ARM

• Benedict Gaster – University of the West of England

• Neil Henning – Codeplay

© Copyright Khronos Group 2016 - Page 60

Using SPIR-V in practice with
SPIRV-Cross

Hans-Kristian Arntzen
Engineer, ARM

© Copyright Khronos Group 2016 - Page 61

Contents
• Moving to offline compilation of SPIR-V

• Creating pipeline layouts with SPIRV-Cross

- Descriptor sets

- Push constants

- Multipass input attachments

• Making SPIR-V portable to other graphics APIs

• Debugging complex shaders with your C++ debugger of choice

© Copyright Khronos Group 2016 - Page 62

Offline Compilation to SPIR-V
• Shader compilation can be part of your build system

• Catching compilation bugs in build time is always a plus

• Strict, mature GLSL frontends available

- glslang: https://github.com/KhronosGroup/glslang

- shaderc: https://github.com/google/shaderc

• Full freedom for other languages in the future

Makefile rules

FRAG_SHADERS := $(wildcard *.frag)
SPIRV_FILES :=
$(FRAG_SHADERS:.frag=.frag.spv)

shaders: $(SPIRV_FILES)

%.frag.spv: %.frag
glslc –o $@ $< $(GLSL_FLAGS) –std=310es

https://github.com/KhronosGroup/glslang
https://github.com/google/shaderc

© Copyright Khronos Group 2016 - Page 63

Vulkan Pipeline Layouts
• Need to know the “function signature” of our shaders

pipelineInfo.layout = <layout goes here>;
vkCreateGraphicsPipelines(..., &pipelineInfo, ..., &pipeline);

© Copyright Khronos Group 2016 - Page 64

The Contents of a Pipeline Layout

• Signature

- 16 bytes of push constant space

- Two descriptor sets

- Set #0 has one UBO at binding #1

- Set #1 has one combined image sampler at binding #2

• Need to figure this out automatically, or write every layout by hand

- Latter is fine for tiny applications

- Vulkan does not provide reflection here, after all, this is vendor neutral information

layout(set = 0, binding = 1) uniform UBO {
mat4 MVP;

};
layout(set = 1, binding = 2) uniform sampler2D uTexture;
layout(push_constant) uniform PushConstants {

vec4 FastConstant;
} constants;

© Copyright Khronos Group 2016 - Page 65

Introducing SPIRV-Cross
• SPIRV-Cross is a new tool hosted by Khronos

- https://github.com/KhronosGroup/SPIRV-Cross

• Extensive reflection

• Decompilation to high level languages

Khronos SPIR-V Toolbox

glslang
SPIRV-
Tools

SPIRV-
LLVM

SPIRV-
Cross

https://github.com/KhronosGroup/SPIRV-Cross

© Copyright Khronos Group 2016 - Page 66

Reflecting Uniforms and Samplers
• SPIRV-Cross has a simple API to retrieve resources

using namespace spirv_cross;

vector<uint32_t> spirv_binary = load_spirv_file();
Compiler comp(move(spirv_binary));

// The SPIR-V is now parsed, and we can perform reflection on it.
ShaderResources resources = comp.get_shader_resources();

for (auto &u : resources.uniform_buffers)
{

uint32_t set = comp.get_decoration(u.id, spv::DecorationDescriptorSet);
uint32_t binding = comp.get_decoration(u.id, spv::DecorationBinding);
printf(“Found UBO %s at set = %u, binding = %u!\n”,

u.name.c_str(), set, binding);
}

© Copyright Khronos Group 2016 - Page 67

Stepping it up with Push Constants
• SPIRV-Cross can figure out which push constant elements are in use

- Push constant blocks are typically shared across the various stages

- Only parts of the push constant block are referenced in a single stage

uint32_t id = resources.push_constant_buffers[0].id;
vector<BufferRange> ranges = comp.get_active_buffer_ranges(id);
for (auto &range : ranges)
{

printf(“Accessing member #%u, offset %u, size %u\n”,
range.index, range.offset, range.range);

}

// Possible to get names for struct members as well 

layout(push_constant) uniform PushConstants {
mat4 MVPInVertex;
vec4 ColorInFragment;

} constants;

FragColor = constants.ColorInFragment; // Fragment only uses element #1.

© Copyright Khronos Group 2016 - Page 68

Subpass Input Attachments
• Subpass attachments are similar to regular images

- Set

- Binding

- Input attachment index

for (auto &attachment : resources.subpass_inputs)
{

// ...
}

layout(set = 0, binding = 0, input_attachment_index = 0) uniform subpassInput uAlbedo;
layout(set = 0, binding = 1, input_attachment_index = 1) uniform subpassInput uNormal;

vec4 lastColor = subpassLoad(uLastPass);

© Copyright Khronos Group 2016 - Page 69

Taking SPIR-V Beyond Vulkan
• SPIR-V is a great format to rally around

- Makes sense to be able to use it in older graphics APIs as well

• Will take some time before exclusive Vulkan support is mainstream

• How to make use of Vulkan features while being compatible?

- Push constants

- Subpass

- Descriptor sets

• Without tools, Vulkan features will be harder to take advantage of

© Copyright Khronos Group 2016 - Page 70

GL + GLES + Vulkan Pipeline
• Implemented in our internal demo engine

• Write shaders in Vulkan GLSL

• Use Vulkan features directly

• No need for platform #ifdefs

• Can target mobile and desktop GL from same

SPIR-V binary

© Copyright Khronos Group 2016 - Page 71

Subpasses in OpenGL
• The subpass attachment is really just a texture read from gl_FragCoord

- Enables reading directly from tile memory on tiled architectures

- Great for deferred rendering and programmable blending

// Vulkan GLSL
uniform subpassInput uAlbedo;
...
FragColor = accumulateLight(

subpassLoad(uAlbedo),
subpassLoad(uNormal).xyz,
subpassLoad(uDepth).x);

// Translated to GLSL in SPIRV-Cross
uniform sampler2D uAlbedo;
...
FragColor = accumulateLight(

texelFetch(uAlbedo, ivec2(gl_FragCoord.xy), 0),
texelFetch(uNormal, ivec2(gl_FragCoord.xy), 0).xyz,
texelFetch(uDepth, ivec2(gl_FragCoord.xy), 0).x);

© Copyright Khronos Group 2016 - Page 72

Push Constants in OpenGL
• Push constants bundle up old-style uniforms into buffer blocks

- Translates directly to uniform structs

- Use reflection to stamp out a list of glUniform() calls

// Vulkan GLSL
layout(push_constant) uniform PushConstants {

vec4 Material;
} constants;

FragColor = constants.Material;

// Translated to GLSL in SPIRV-Cross
struct PushConstants {

vec4 Material;
};
uniform PushConstants constants;

FragColor = constants.Material;

© Copyright Khronos Group 2016 - Page 73

Descriptor Sets in OpenGL
• OpenGL has a binding space per type

• Find some remapping scheme that fits your application

• SPIRV-Cross can tweak bindings before decompiling to GLSL

// Vulkan GLSL
layout(set = 1, binding = 1) uniform sampler2D uTexture;

// SPIRV-Cross
uint32_t newBinding = 4;
glsl.set_decoration(texture.id, spv::DecorationBinding, newBinding);
glsl.unset_decoration(texture.id, spv::DecorationDescriptorSet);
string glslSource = glsl.compile();

// GLSL
layout(binding = 4) uniform sampler2D uTexture;

© Copyright Khronos Group 2016 - Page 74

gl_InstanceIndex in OpenGL
• Vulkan adds the base instance to the instance ID

- GL does not 

- Workaround is to have GL backend pass in the base index as a uniform

// Vulkan GLSL
layout(set = 0, binding = 0) uniform UBO {

mat4 MVPs[MAX_INSTANCES];
};

gl_Position = MVPs[gl_InstanceIndex] * Position;

// GLSL through SPIRV-Cross
layout(binding = 0) uniform UBO {

mat4 MVPs[MAX_INSTANCES];
};
uniform int SPIRV_Cross_BaseInstance; // Supplied by application

gl_Position = MVPs[(gl_InstanceID + SPIRV_Cross_BaseInstance)] * Position;

© Copyright Khronos Group 2016 - Page 75

Debugging Shaders in C++
• If you have thought …

- “I wish I could assert() in a compute shader”

- “I wish I could instrument a shader with logging”

- “I wish I could use clang address sanitizer to debug out-of-bounds access”

- “I want to reproduce a shader bug outside the driver”

- “I want to run regression tests when optimizing a shader”

- “I want to step through a compute thread in <insert C++ debugger here>”

• … the C++ backend in SPIRV-Cross could be interesting

• Still a very experimental feature

• Hope to expand this further in the future

© Copyright Khronos Group 2016 - Page 76

Basic Idea
• With GLM, C++ can be near GLSL compatible

• Reuse the GLSL backend to emit code which also works in C++

- Minor differences like references vs. in/out, etc

• Add some scaffolding to redirect shader resources

- Easily done with macros, the actual C++ output is kept clean

• The C++ output implements a simple C-compatible interface

• Add instrumentation to the C++ file as desired

• Compile C++ file to a dynamic library with debug symbols

• Instantiate from test program, bind buffers and invoke

- And have fun running shadertoy raymarchers at seconds per frame

© Copyright Khronos Group 2016 - Page 77

On the Command Line

Compile to SPIR-V
glslc –o test.spv test.comp

Create C++ interface
spirv-cross --output test.cpp test.spv --cpp

Add some instrumentation to the shader if you want
$EDITOR test.cpp

Build library
g++ -o test.so –shared test.cpp –O0 –g –Iinclude/spirv_cross

Run your test app
./<my app> --shader test.so

© Copyright Khronos Group 2016 - Page 78

Another tool supporting Vulkan:
Mali Graphics Debugger is an advanced API tracer tool for Vulkan, OpenGL ES, EGL and

OpenCL. It allows developers to trace their graphics and compute applications to debug

issues and analyze the performance.

• Vulkan Support

- Trace all the function calls in the

SPEC.

- Allows you to see exactly what calls

compose your application.

- Contact the Mali forums and we would

love to get you setup.

https://community.arm.com/groups/

arm-mali-graphics

https://community.arm.com/groups/arm-mali-graphics

© Copyright Khronos Group 2016 - Page 79

Frame
Outline

Frame
Capture:
Framebuffers

Frame
Statistics

States
Uniforms
Vertex Attributes
Buffers

Dynamic
Help

API Trace

Textures
Shaders

Assets View

Investigation with the Mali Graphics Debugger

© Copyright Khronos Group 2016 - Page 80

References
• SPIRV-Cross

- https://github.com/KhronosGroup/SPIRV-Cross

• Glslang

- https://github.com/KhronosGroup/glslang

• Shaderc

- https://github.com/google/shaderc

• SPIRV-Tools

- https://github.com/KhronosGroup/SPIRV-Tools

• Mali Graphics Debugger

- http://malideveloper.arm.com/resources/tools/mali-graphics-debugger/

https://github.com/KhronosGroup/SPIRV-Cross
https://github.com/KhronosGroup/glslang
https://github.com/google/shaderc
https://github.com/KhronosGroup/SPIRV-Tools
http://malideveloper.arm.com/resources/tools/mali-graphics-debugger/

© Copyright Khronos Group 2016 - Page 81

Lunch!

Have a look at demos, show us your code
and return at 1:15pm for part II

Title 44pt Title Case

Affiliations 24pt sentence

case

20pt sentence case

© ARM 2016

Feeding Your Shaders

Jesse Barker

Moving to Vulkan: How to make your 3D graphics more explicit

Principal Software Engineer

May 26, 2016

© ARM 2016 83

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence

case

What is a Vulkan Resource?

 Shader Input/Output

 Referenced via Descriptors

 Some are specialized in the

hardware

 Vertex Input Attributes

 Render Targets

 Buffers

 Images

 Samplers

 Input Attachments

© ARM 2016 84

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence

case

What are Vulkan Descriptors?

Device

Memory

Image

Handle Type

myImageView SAMPLED_IMAGE

Image View

© ARM 2016 85

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence

case

What are Descriptor Sets?

// uniform blocks:

layout(set = 0, binding = 0) uniform Type0 { ... } ubo0;

// textures:

layout(set = 0, binding = 1) uniform sampler2D tex0;

// SSBO:

layout(set = 0, binding = 2) buffer Type2 { ... } ssbo0;

void main()

// ...

}

binding type stages

0 Uniform Buffer Graphics

1 Image/Sampler Graphics

2 Storage Buffer Graphics

© ARM 2016 86

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence

case

 Parent object of a

Descriptor Set

 Allows Descriptor Set

management to be

threaded

 Manages memory for

hardware descriptors

What is a Descriptor Pool?

typedef struct VkDescriptorPoolSize {

VkDescriptorType type;

uint32_t descriptorCount;

} VkDescriptorPoolSize;

typedef struct VkDescriptorPoolCreateInfo {

VkStructureType sType;

const void* pNext;

VkDescriptorPoolCreateFlags flags;

uint32_t maxSets;

uint32_t poolSizeCount;

const VkDescriptorPoolSize* pPoolSizes;

} VkDescriptorPoolCreateInfo;

© ARM 2016 87

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence

case

Allocating Descriptor Sets

 Define desired layouts of descriptors

 Ask the Descriptor Pool to allocate a Descriptor Set per layout

© ARM 2016 88

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence

case

What is a Pipeline Layout?

// uniform blocks:

layout(set = 0, binding = 0) uniform Type0
{ ... } ubo0;

layout(set = 0, binding = 0) uniform Type1
{ ... } ubo1;

// textures:

layout(set = 0, binding = 1) uniform
sampler2D tex0;

layout(set = 1, binding = 0) uniform
sampler2D tex1;

// SSBO:

layout(set = 1, binding = 1) buffer Type2 {
... } ssbo0;

void main() {

// ...

}

binding type stages

0 Image/Sampler Graphics

1 Storage Buffer Graphics

binding type stages

0 Uniform Buffer Graphics

0 Uniform Buffer Graphics

1 Image/Sampler Graphics

Descriptor Set 1

Descriptor Set 0

© ARM 2016 89

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence

case

How do Descriptors get into Descriptor Sets?
typedef struct VkWriteDescriptorSet {

VkStructureType sType;

const void* pNext;

VkDescriptorSet dstSet;

uint32_t dstBinding;

uint32_t dstArrayElement;

uint32_t descriptorCount;

VkDescriptorType descriptorType;

const VkDescriptorImageInfo* pImageInfo;

const VkDescriptorBufferInfo* pBufferInfo;

const VkBufferView* pTexelBufferView;

} VkWriteDescriptorSet;

typedef struct VkCopyDescriptorSet {

VkStructureType sType;

const void* pNext;

VkDescriptorSet srcSet;

uint32_t srcBinding;

uint32_t srcArrayElement;

VkDescriptorSet dstSet;

uint32_t dstBinding;

uint32_t dstArrayElement;

uint32_t descriptorCount;

} VkCopyDescriptorSet;

VKAPI_ATTR void VKAPI_CALL vkUpdateDescriptorSets(

VkDevice device,

uint32_t
descriptorWriteCount,

const VkWriteDescriptorSet* pDescriptorWrites,

uint32_t descriptorCopyCount,

const VkCopyDescriptorSet* pDescriptorCopies);

© ARM 2016 90

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence

case

Finally, I’m ready to use my Descriptor Sets

 Bound sets must

match pipeline layout

 Graphics or compute?

 Simple layout is best

VKAPI_ATTR void VKAPI_CALL vkCmdBindDescriptorSets(

VkCommandBuffer commandBuffer,

VkPipelineBindPoint pipelineBindPoint,

VkPipelineLayout layout,

uint32_t firstSet,

uint32_t descriptorSetCount,

const VkDescriptorSet* pDescriptorSets,

uint32_t dynamicOffsetCount,

const uint32_t* pDynamicOffsets);

© ARM 2016 91

Text 54pt sentence case What about Vertex Input?

© ARM 2016 92

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence

case

If your shader declares:

in vec3 position;

in uvec2 texcoord;

Your C code declares:

struct Position

{

float x, y, z;

};

struct Texcoord

{

uint8_t u, v;

};

Vertex Input Description

const VkVertexInputBindingDescription binding[] =
{

{
0, // binding
sizeof(float) * 3, // stride
VK_VERTEX_INPUT_RATE_VERTEX // inputRate

},
{

1, // binding
sizeof(uint8_t) * 2, // stride
VK_VERTEX_INPUT_RATE_VERTEX // inputRate

},
};

const VkVertexInputAttributeDescription attributes[] =
{

{
0, // location
binding[0].binding, // binding
VK_FORMAT_R32G32B32_SFLOAT, // format
0 // offset

},
{

1, // location
binding[1].binding, // binding
VK_FORMAT_R8G8_UNORM, // format
0 // offset

}
};

© ARM 2016 93

Text 54pt sentence case Questions?

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM

Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured

may be trademarks of their respective owners.

Copyright © 2016 ARM Limited

© ARM 2016

UK Khronos Chapter meet, May 2016

Vulkan Subpasses
or

The Frame Buffer is Lava

Andrew Garrard
Samsung R&D Institute UK

Vulkan subpasses — Page 96UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Vulkan aims to reduce the overheads of

keeping the GPU busy

Vulkan: Making use of the GPU more efficient

Vulkan subpasses — Page 97UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Vulkan aims to reduce the overheads of

keeping the GPU busy
-Efficient generation of work on multiple CPU cores

Vulkan: Making use of the GPU more efficient

Core 1

Core 2

Core 3

Core 4

CmdBuf

CmdBuf

CmdBuf

CmdBuf

CmdBuf

CmdBuf

CmdBuf

CmdBuf

CmdBuf

Submit Submit Submit

Command buffer

recording

Vulkan subpasses — Page 98UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Vulkan aims to reduce the overheads of

keeping the GPU busy
-Efficient generation of work on multiple CPU cores

-Reuse of command buffers to avoid CPU build time

Vulkan: Making use of the GPU more efficient

Record 2ry command buffer Record primary command buffer

2ry 2ry 2ry 2ry

In
v
o
k
e

In
v
o
k
e

In
v
o
k
e

In
v
o
k
e

Vulkan subpasses — Page 99UK Khronos Chapter meet, May 2016

Click to edit Master title style

CmdBuf

CmdBufCmdBuf

CmdBuf

•Vulkan aims to reduce the overheads of

keeping the GPU busy
-Efficient generation of work on multiple CPU cores

-Reuse of command buffers to avoid CPU build time

Vulkan: Making use of the GPU more efficient

Record command buffer

Record command buffer

vkQueueSubmit vkQueueSubmit vkQueueSubmit

Record command buffer

CmdBufCmdBuf

Vulkan subpasses — Page 100UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Vulkan aims to reduce the overheads of

keeping the GPU busy
-Efficient generation of work on multiple CPU cores

-Reuse of command buffers to avoid CPU build time

-Potentially more efficient memory management

Vulkan: Making use of the GPU more efficient

Pool 1 Pool 2

Image 1 Image 2 Image 3

View 1 View 2

User-defined memory reuse

Explicit state transitions

Cost invoked at defined points

Heap 1 Heap 2

Vulkan subpasses — Page 101UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Vulkan aims to reduce the overheads of

keeping the GPU busy
-Efficient generation of work on multiple CPU cores

-Reuse of command buffers to avoid CPU build time

-Potentially more efficient memory management

-Avoiding unpredictable shader compilation

Vulkan: Making use of the GPU more efficient

Compile to SPIR-V (slow)

Record command buffer (slow-ish)

Submit command buffer (fast)

Offline

2ry thread

Submitting thread

Vulkan subpasses — Page 102UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Vulkan aims to reduce the overheads of

keeping the GPU busy
-Efficient generation of work on multiple CPU cores

-Reuse of command buffers to avoid CPU build time

-Potentially more efficient memory management

-Avoiding unpredictable shader compilation

•Mostly, the message has been that if you’re entirely

limited by shader performance or bandwidth, Vulkan

can’t help you (there is no magic wand)

Vulkan: Making use of the GPU more efficient

Vulkan subpasses — Page 103UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Actually, that’s not entirely true...

•APIs like OpenGL were designed when the GPU

looked very different (or was partly software)

•The way to design an efficient mobile GPU is

not a perfect match for OpenGL

-Think a CPU’s command decode unit/microcode

•But the translation isn’t always perfectly

efficient

Vulkan: Making use of the GPU more efficient

Vulkan subpasses — Page 104UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Most (not all) mobile GPUs use tiling
- It’s all about the bandwidth (size and power limits)

•On-chip tile memory is much faster than the

main frame buffer

Tiled GPUs

Scene description Binning pass Shading pass

Vulkan subpasses — Page 105UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Rendering requires lots of per-pixel data
-Z, stencil

-Full multisample resolution

•We usually only care about the final image

-We can throw away Z and stencil

-We only need a downsampled (A)RGB

-Don’t need to load anything from a previous frame

Not everything reaches memory

Z Stencil RGB RGB

Vulkan subpasses — Page 106UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Output from one rendering job can be used by

the next

•Z buffer for shadow maps

•Rendering for environment maps

•HDR bloom

•These can have low resolution and may not

take much bandwidth

Sometimes we want the results of rendering

Vulkan subpasses — Page 107UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Deferred shading

Sometimes you do need framebuffer resolution

Z

Diffuse/ɑ

Specular/
Specularity

Normal

Render
full-screen
quad and
perform

fragment
shading

Light
weight
render
storing

per-
surface
content
at each

fragment

Vulkan subpasses — Page 108UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Deferred shading

•Deferred lighting

Sometimes you do need framebuffer resolution

Z

Specularity

Normal

Diffuse

Specular

Light
weight
render

for
lighting

input

Render
full-screen
quad and
calculate
lighting
output

Re-render
scene with

full
fragment
shading,

using
lighting
inputs

Vulkan subpasses — Page 109UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Deferred shading

•Deferred lighting

•Order-independent transparency

Sometimes you do need framebuffer resolution

Vulkan subpasses — Page 110UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Deferred shading

•Deferred lighting

•Order-independent transparency

•HDR tone mapping

Sometimes you do need framebuffer resolution

Vulkan subpasses — Page 111UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Rendering to each surface separately is bad

•Geometry has a per-bin cost
-Sometimes the cost is low, but it’s there

-Vertices in multiple bins get processed repeatedly

-Rendering the scene repeatedly is painful

•Even immediate-mode renderers hate this!

Rendering outputs separately

Vulkan subpasses — Page 112UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Using MRTs means multiple buffers in one pass

•Reduces the geometry load (only process once)

•Still writing a lot of data off-chip
-Tilers are all about trying not to do this!

- Increases use of shader resources may slow some h/w

Multiple render targets don’t help much

Single scene traversal

This is a typical approach for

immediate-mode renderers (e.g.

desktop/console systems)

Vulkan subpasses — Page 113UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Tiler-friendly (at last)
-Store only the current tile values

-Read them later in the tile processing

•But not portable!
-Not practical on immediate renderers

-Debugging on desktop won’t work!

-Capabilities vary between devices

-Driver doesn’t have visibility

-Data access is restricted

Pixel Local Storage (OpenGL ES extension)

Vulkan subpasses — Page 114UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Vulkan has direct support for this type of

rendering work load

•By telling the driver how you intend to use the

rendered results, the driver can produce a

better mapping to the hardware
-The extra information is a little verbose, but simpler

than handling all possible cases yourself!

Vulkan: Explicit dependencies

Vulkan subpasses — Page 115UK Khronos Chapter meet, May 2016

Click to edit Master title style

•A render pass groups dependent operations
-All images written in a render pass are the same size

Single render pass

Vulkan render passes and subpasses

Geometry
Lighting Fragment

Vulkan subpasses — Page 116UK Khronos Chapter meet, May 2016

Click to edit Master title style

•A render pass groups dependent operations
-All images written in a render pass are the same size

•A render pass contains a number of subpasses
-Subpasses describe access to attachments

-Dependencies can be defined between subpasses

Vulkan render passes and subpasses

Sub

pass

1:

Geo

Sub

pass 2:

Light

Sub

pass 3:

Frag

Vulkan subpasses — Page 117UK Khronos Chapter meet, May 2016

Click to edit Master title style

•A render pass groups dependent operations
-All images written in a render pass are the same size

•A render pass contains a number of subpasses
-Subpasses describe access to attachments

-Dependencies can be defined between subpasses

•Each render pass instance has to be contained

within a single command buffer (unit of work)
-Some tilers schedule by render pass

Vulkan render passes and subpasses

Vulkan subpasses — Page 118UK Khronos Chapter meet, May 2016

Click to edit Master title style

•VkRenderPassCreateInfo
-VkAttachmentDescription *pAttachments

- Just the descriptions, not the actual attachments!

-VkSubpassDescription *pSubpasses

-VkSubpassDependency *pDependencies

•vkCreateRenderPass(device, createInfo,.. pass)
-Gives you a VkRenderPass object

-This is a template that you can use repeatedly
- When we use it, we get a render pass instance

Defining a render pass

Vulkan subpasses — Page 119UK Khronos Chapter meet, May 2016

Click to edit Master title style

•VkAttachmentDescription
- format/samples

- loadOp
- VK_ATTACHMENT_LOAD_OP_LOAD to preserve

- VK_ATTACHMENT_LOAD_OP_DONT_CARE for overwrites

- VK_ATTACHMENT_LOAD_OP_CLEAR uniform clears (e.g. Z)

- storeOp
- VK_ATTACHMENT_STORE_OP_STORE to output it

- VK_ATTACHMENT_STORE_OP_DONT_CARE may discard after

the render pass

Describing attachments for a render pass

Vulkan subpasses — Page 120UK Khronos Chapter meet, May 2016

Click to edit Master title style

•VkSubpassDescription
-pInputAttachments

- Which of the render pass’s attachments this subpass reads

-pColorAttachments
- Which ones this subpass writes (1:1 - optional)

-pResolveAttachments
- Which ones this subpass writes (resolving multisampling)

-pPreserveAttachments
- Which attachments need to persist across this subpass

-Subpasses are numbered and ordered

Defining a subpass

Vulkan subpasses — Page 121UK Khronos Chapter meet, May 2016

Click to edit Master title style

•VkSubpassDependency
- srcSubpass

-dstSubpass
- Where the dependency applies (can be external)

- srcStageMask

-dstStageMask
- Execution dependencies between subpasses

- srcAccessMask

-dstAccessMask
- Memory dependencies between subpasses

Defining subpass dependencies

Vulkan subpasses — Page 122UK Khronos Chapter meet, May 2016

Click to edit Master title style

•A VkFramebuffer defines the set of

attachments used by a render pass instance

•VkFramebufferCreateInfo
- renderPass

-pAttachments
- These are actual VkImageViews this time!

-width

-height

- layers

Vulkan framebuffers

Vulkan subpasses — Page 123UK Khronos Chapter meet, May 2016

Click to edit Master title style

•vkCmdBeginRenderPass/vkCmdEndRenderPass
-Starts a render pass instance in a command buffer

- You start in the first (maybe only) subpass implicitly

-pRenderPassBegin contains configuration

•VkRenderPassBeginInfo
-VkRenderPass renderPass

- The render pass “template”

-VkFrameBuffer framebuffer
- Specifies targets for rendering

Starting to use a render pass

Vulkan subpasses — Page 124UK Khronos Chapter meet, May 2016

Click to edit Master title stylePutting it all together…

VkRenderPassCreateInfo

VkAttachmentDescription

VkAttachmentDescription

VkAttachmentDescription

VkAttachmentDescription

VkSubpassDescription VkSubpassDependency

VkSubpassDependencyVkSubpassDescription

VkSubpassDescription

vkCreateRenderPass

VkRenderPass

VkImageView

VkImageView

VkImageView

VkImageView

VkFramebufferCreateInfo

vkCreateFramebuffer

VkFramebuffer

VkRenderPassBeginInfo VkCommandBuffer

vkCmdBeginRenderPass

Key:

• Objects are dark grey

• Functions are light grey

• Arrows between objects are

references of some sort

• Arrows into functions are arguments

• Arrows out of functions are

constructed objects

Vulkan subpasses — Page 125UK Khronos Chapter meet, May 2016

Click to edit Master title style

•vkAllocateCommandBuffers (VK_COMMAND_BUFFER_LEVEL_PRIMARY)

•vkBeginCommandBuffer

•vkCmdBeginRenderPass

•vkCmdDraw (etc.)

•vkCmdEndRenderPass

•vkEndCommandBuffer

•vkQueueSubmit

Simple rendering

Command buffer

Render pass

Draw Draw Draw Draw

Queue

Vulkan subpasses — Page 126UK Khronos Chapter meet, May 2016

Click to edit Master title style

•You can have more than one render pass in a

command buffer
- Yes, Leeloo multipass,

we know…

-So a command buffer can render to many outputs
- E.g. you could render to the same shadow and environment

maps every frame by reusing the same command buffer

-But it must be the same outputs each time you submit
- A specific render pass instance has fixed vkFrameBuffers!

Multiple render passes

Command buffer

Render pass Render pass

Draw Draw Draw Draw

Vulkan subpasses — Page 127UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Different render passes ֜ independent outputs

-Rendering goes off-chip, there’s no PLS-style on-chip

reuse of pixel contents

•You can’t reuse the same command buffer with

a different render target
-E.g. for double buffering or streamed content

-We’ll come back to this…

•Still sometimes all you need, though!

Two limitations…

Vulkan subpasses — Page 128UK Khronos Chapter meet, May 2016

Click to edit Master title style

•vkCmdNextSubpass moves to the next subpass
- Implicitly start in the first subpass of the render pass

-Dependencies say what you’re accessing from

previous subpasses

-Same render pass so

accesses stay on

chip (if possible)

More than one subpass

Command buffer

Render Pass

Draw Draw

N
e
w

 s
u
b
p
a
ss

Draw Draw Draw

Vulkan subpasses — Page 129UK Khronos Chapter meet, May 2016

Click to edit Master title style

•vkCmdBeginCommandBuffer

•vkCmdBeginRenderPass

•vkCmdDraw (etc.)

•vkCmdNextSubpass

•vkCmdDraw (etc.)

•vkCmdEndRenderPass

•vkCmdEndCommandBuffer

Using multiple subpasses

Command buffer

Render Pass

Draw Draw

N
e
w

 s
u
b
p
a
ss

Draw Draw Draw

Vulkan subpasses — Page 130UK Khronos Chapter meet, May 2016

Click to edit Master title style

•In SPIR-V, previous subpass content is read

with OpImageRead
-Coordinates are sample-relative, and need to be 0

-OpTypeImage Dim = SubpassData

•In GLSL (using GL_KHR_vulkan_glsl):
-Types for subpass access are [ui]subpassInput(MS)

- layout(input_attachment_index = i, …) uniform

subpassInput t; to select a subpass

- subpassLoad() to access the pixel

Accessing subpass output in fragment shaders

C.f. __pixel_localEXT layouts in

EXT_shader_pixel_local_storage

when using OpenGL ES

Vulkan subpasses — Page 131UK Khronos Chapter meet, May 2016

Click to edit Master title style

•If we’re using subpasses, we likely don’t need

the images in memory
-A tiler may be able to process the subpasses entirely

on-chip, without needing an allocation

-Still need to “do the allocation” in case the tiler can’t

handle the request/on an immediate-mode renderer!
- Won’t commit resources unless it actually needs to

•vkCreateImage flags for “lazy committal”
-VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT

Avoiding unnecessary allocations

Vulkan subpasses — Page 132UK Khronos Chapter meet, May 2016

Click to edit Master title style

•The driver knows what you’re doing
- It can reorder subpasses

- It can change the tile size

- It can balance resources between subpasses

- It will fall back to memory for you if it has to

-Under the hood, mechanism likely matches PLS

•Works on immediate mode renderers
-Probably MRTs and normal external writes

-Desktop debugging tools will work!

Vulkan subpasses: advantages

EXT_shader_pixel_local_storage is actually

more explicit than Vulkan here (and may still

be offered as an extension)

Vulkan subpasses — Page 133UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Vulkan has two levels of command buffers
-Determined by vkAllocateCommandBuffers

•VK_COMMAND_BUFFER_LEVEL_PRIMARY
-Main command buffer, as we’ve seen so far

•VK_COMMAND_BUFFER_LEVEL_SECONDARY
-Command buffer that can be invoked from the

primary command buffer

There’s more: Secondary command buffers

Vulkan subpasses — Page 134UK Khronos Chapter meet, May 2016

Click to edit Master title style

•vkBeginCommandBuffer
-Takes a VkCommandBufferBeginInfo

•VkCommandBufferBeginInfo
- flags include:

- VK_COMMANDBUFFER_USAGE_RENDER_PASS_CONTINUE_BIT

-pInheritanceInfo

•VkCommandBufferInheritanceInfo
- renderPass and subpass

- framebuffer (can be null, more efficient if known)

Use of secondary command buffers

Vulkan subpasses — Page 135UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Why do we need the “continue bit”?
-Render passes (and subpasses) can’t start in a

secondary command buffer

-Non-render pass stuff can be in a secondary buffer
- You can run a compute shader outside a render pass

-Otherwise, the render pass is inherited from the

primary command buffer

Secondary command buffers and passes

Vulkan subpasses — Page 136UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Why specify render pass/framebuffer?
-Command buffers needs to know this when recording

- Some operations depends on render pass info (e.g. format)

-Framebuffer is optional (can just inherit)
- If you can specify the actual framebuffer, the command

buffer can be less generic and therefore may be faster

Secondary command buffers and passes

Vulkan subpasses — Page 137UK Khronos Chapter meet, May 2016

Click to edit Master title style

•You can’t submit a secondary command buffer

•You have to invoke it from a primary command

buffer with vkCmdExecuteCommands

Invoking the secondary command buffer

Secondary buffer

Draw Draw

Secondary buffer

Draw Draw

Secondary buffer

Draw Draw

Primary command buffer

Render pass

N
e
w

su
b
p
a
ss Render pass

vkCEC vkCEC vkCEC

Vulkan subpasses — Page 138UK Khronos Chapter meet, May 2016

Click to edit Master title style

•vkCmdBeginCommandBuffer

•vkCmdBeginRenderPass

•vkCmdExecuteCommands

•vkCmdNextSubpass

•vkCmdExecuteCommands

•vkCmdEndRenderPass

•vkCmdEndCommandBuffer

Secondary command buffer code

Primary command buffer

Render pass

N
e
w

su
b
p
a
ss

vkCEC vkCEC

Secondary buffer

Draw Draw

Secondary buffer

Draw Draw

Vulkan subpasses — Page 139UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Creating a command buffer can be slow
-Lots of state to check, may require compilation

- This happens in GLES as well, you just don’t control when!

•So create secondary command buffers on

different threads
-Lots of 4- and 8-core CPUs in cell phones these days

•Invoking the secondary buffer is lightweight
-Primary command buffer generation is quick(er)

Performance and parallelism

Vulkan subpasses — Page 140UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Remember:
-Render passes exist within (primary) command buffers

- The command buffer sets up the GPU for the render pass

-On-chip rendering happens within a render pass
- If you want content to persist between render passes, it’ll

reach memory (or at least cache), not stay in the tile buffer

-You can’t use multiple threads to build work for a

primary command buffer in parallel
- You can build many secondary command buffers at once

What does this have to do with passes?

Vulkan subpasses — Page 141UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Within a subpass you can either (but not both):
-Execute rendering commands directly in the primary

command buffer
- VK_SUBPASS_CONTENTS_INLINE

You can’t mix and match

Command buffer

Render pass

Draw Draw Draw Draw

Vulkan subpasses — Page 142UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Within a subpass you can either (but not both):
-Execute rendering commands directly in the primary

command buffer
- VK_SUBPASS_CONTENTS_INLINE

- Invoke secondary command buffers from the primary

command buffer with vkCmdExecuteCommands
- VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS

You can’t mix and match

Primary command buffer

Render pass

vkCEC vkCEC

Secondary buffer

Draw Draw

Secondary buffer

Draw Draw

Vulkan subpasses — Page 143UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Within a subpass you can either (but not both):
-Execute rendering commands directly in the primary

command buffer
- VK_SUBPASS_CONTENTS_INLINE

- Invoke secondary command buffers from the primary

command buffer with vkCmdExecuteCommands
- VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS

-Chosen by vkCmdBeginRenderPass/vkCmdNextSubpass
- Remember: you can only do these in a primary command

buffer!

You can’t mix and match

Vulkan subpasses — Page 144UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Primary command buffers work with a fixed

render pass and framebuffer
-You can reuse a primary command buffer, but it will

always access the same images – often good enough
- May have to wait for execution to end; can’t be “one-time”

•What if you want to access different targets?
-E.g. a cycle of framebuffers or streamed content?

-You can round-robin several command buffers

-Or you can use secondary command buffers!

Command buffer reuse: even faster

Vulkan subpasses — Page 145UK Khronos Chapter meet, May 2016

Click to edit Master title style

•The render pass a secondary command buffer

uses needn’t be the one it was recorded with
- It can be “compatible”

- Same formats, number of sub-passes, etc.

•You can have primary command buffers with

different outputs, and they can re-use

secondary command buffers
-The primary has to be different to record new targets

-The primary may have to patch secondary addresses

Compatible render passes and frame buffers

Vulkan subpasses — Page 146UK Khronos Chapter meet, May 2016

Click to edit Master title style

•No cost for secondary command buffers

•Primary command buffer is simple and quick

Almost-free use with changing framebuffers

Primary command buffer

Secondary
command

buffer

Secondary
command

buffer

Target
image 1

Target
image 2

Render pass

CEC CEC

Primary command buffer

Render pass

CEC CEC

Vulkan subpasses — Page 147UK Khronos Chapter meet, May 2016

Click to edit Master title style

•No! Remember, you can only access the

current pixel

•Tilers process one tile at a time
- If you could try to access a different pixel, the tile

containing it may not be there

-You have to write out the whole image to do this
- Slow, painful, last resort!

-Yes, we can think of possible solutions too
- Give it time (lots of different hardware out there)

So I can do bloom/DoF/rain/motion blur…!

?

Vulkan subpasses — Page 148UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Render passes are integral to the Vulkan API
-Reflects modern, high-quality rendering approaches

•The driver has more information to work with
- It can do more for you

- Remember this if you complain it’s verbose!

•Hardware resource management is hard
-Expect drivers to get better over time

•Another tool for better mobile gaming

Coming out of the shadow(buffer)s

Vulkan subpasses — Page 149UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Over to you…

Andrew Garrard

a.garrard at samsung.com

Thank you

© Copyright Khronos Group 2016 - Page 150

Keeping your GPU fed
without getting bitten

Tobias Hector
May 2016

© Copyright Khronos Group 2016 - Page 151

Introduction
• You have delicious draw calls

- Yummy!

© Copyright Khronos Group 2016 - Page 152

Introduction
• You have delicious draw calls

- Yummy!

• Your GPU wants to eat them

- It’s really hungry

© Copyright Khronos Group 2016 - Page 153

Introduction
• You have delicious draw calls

- Yummy!

• Your GPU wants to eat them

- It’s really hungry

• Keep it fed at all times

- So it keeps making pixels

© Copyright Khronos Group 2016 - Page 154

Introduction
• You have delicious draw calls

- Yummy!

• Your GPU wants to eat them

- It’s really hungry

• Keep it fed at all times

- So it keeps making pixels

• Don’t want it biting your hand

- Look at those teeth!

© Copyright Khronos Group 2016 - Page 155

Keeping it fed
• GPU needs a constant supply of food

- It doesn’t want to wait

• Certain foods are tough to digest

- Provide multiple operations to hide stalls

• Draw calls provide a variety of nutrition

- Vertex work, raster work, tessellation, vitamins A-K, etc.

© Copyright Khronos Group 2016 - Page 156

Keeping it fed

System

C
P

U
G

P
U

0

0 1

1

© Copyright Khronos Group 2016 - Page 157

Keeping it fed

System

C
P

U
G

P
U

20

0

1

1 2

© Copyright Khronos Group 2016 - Page 158

Keeping it fed

GPU

V
e
rt

e
x

F
ra

g
m

e
n
t

0

0 1

1

© Copyright Khronos Group 2016 - Page 159

Keeping it fed

GPU

V
e

rt
e

x
F

ra
g

m
e

n
t

20

0

1

1 2

© Copyright Khronos Group 2016 - Page 160

Not getting bitten
• GPU eating from lots of different plates

- Don’t touch anything it’s using!

• It doesn’t want a mouthful of beef choc chip ice cream

- Don’t change data whilst it’s accessing a resource

• Hey I’m eating that!

- Don’t delete resources whilst the GPU is still using them

© Copyright Khronos Group 2016 - Page 161

© Copyright Khronos Group 2016 - Page 162

© Copyright Khronos Group 2016 - Page 163

© Copyright Khronos Group 2016 - Page 164

© Copyright Khronos Group 2016 - Page 165

© Copyright Khronos Group 2016 - Page 166

On to the serious bits…

© Copyright Khronos Group 2016 - Page 167

Terminology
• Operation

- Anything that can be executed
- Includes synchronization and memory barriers

• Execution Dependency

- Operations waiting on other operations

- All synchronization expresses these

• Memory Barrier

- Flush/invalidate caches

- Determination of access and visibility

• Memory Dependency

- Execution dependency involving a Memory Barrier

Note: Memory barrier does not

mean quite the same thing as GL’s

memory barrier, though there is

some relation.

© Copyright Khronos Group 2016 - Page 168

Synchronization Types
• 3 types of explicit synchronization in Vulkan

• Pipeline Barriers, Events and Subpass Dependencies

- Within a queue

- Explicit memory dependencies

• Semaphores

- Between Queues

• Fences

- Whole queue operations to CPU OpenGL has just two, very coarse

synchronization primitives: memory

barriers and fences. They are

loosely similar to the equivalently

named concepts in Vulkan

© Copyright Khronos Group 2016 - Page 169

Pipeline Barriers
• Pipeline Barriers

- Precise set of pipeline stages

- Memory Barriers to execute

- Single point in time

void vkCmdPipelineBarrier(

VkCommandBuffer commandBuffer,

VkPipelineStageFlags srcStageMask,

VkPipelineStageFlags dstStageMask,

VkDependencyFlags dependencyFlags,

uint32_t memoryBarrierCount,

const VkMemoryBarrier* pMemoryBarriers,

uint32_t bufferMemoryBarrierCount,

const VkBufferMemoryBarrier* pBufferMemoryBarriers,

uint32_t imageMemoryBarrierCount,

const VkImageMemoryBarrier* pImageMemoryBarriers);

Executing a pipeline barrier is

roughly equivalent to a

glMemoryBarrier call, though with

much more control.

© Copyright Khronos Group 2016 - Page 170

Events
• Events

- Same info as Pipeline Barriers

- …but operate over a range

void vkCmdSetEvent(

VkCommandBuffer commandBuffer,

VkEvent event,

VkPipelineStageFlags stageMask);

void vkCmdResetEvent(

VkCommandBuffer commandBuffer,

VkEvent event,

VkPipelineStageFlags stageMask);

void vkCmdWaitEvents(

VkCommandBuffer commandBuffer,

uint32_t eventCount,

const VkEvent* pEvents,

VkPipelineStageFlags srcStageMask,

VkPipelineStageFlags dstStageMask,

uint32_t memoryBarrierCount,

const VkMemoryBarrier* pMemoryBarriers,

uint32_t bufferMemoryBarrierCount,

const VkBufferMemoryBarrier* pBufferMemoryBarriers,

uint32_t imageMemoryBarrierCount,

const VkImageMemoryBarrier* pImageMemoryBarriers);

© Copyright Khronos Group 2016 - Page 171

Events
• Events

- Same info as Pipeline Barriers

- …but operate over a range

• CPU interaction

- No explicit CPU wait

- No Memory Barriers

VkResult vkSetEvent(

VkDevice device,

VkEvent event);

VkResult vkResetEvent(

VkDevice device,

VkEvent event);

VkResult vkGetEventStatus(

VkDevice device,

VkEvent event);

© Copyright Khronos Group 2016 - Page 172

VkResult vkSetEvent(

VkDevice device,

VkEvent event);

VkResult vkResetEvent(

VkDevice device,

VkEvent event);

VkResult vkGetEventStatus(

VkDevice device,

VkEvent event);

Events
• Events

- Same info as Pipeline Barriers

- …but operate over a range

• CPU interaction

- No explicit CPU wait

- No Memory Barriers

• Warning!

- OS may apply a timeout

- Set events soon after submission

- Could you just defer submission?

© Copyright Khronos Group 2016 - Page 173

Pipeline Barriers vs Events
• Use pipeline barriers for point synchronization

- Dependant operation immediately precedes operation that depends on it

- May be more optimal than set/wait event pair

• Use events if other work possible between two operations

- Set immediately after the dependant operation

- Wait immediately before the operation that depends on it

• Use events for CPU/GPU synchronization

- Memory accesses between processors

- Late latching of data to reduce latency

© Copyright Khronos Group 2016 - Page 174

Memory Barrier Types
• Global Memory Barrier

- All memory-backed resources

• Buffer Barrier

- For a single buffer range

• Image Barrier

- For a single image subresource range

OpenGL’s memory barriers imply

execution dependencies, which

Vulkan memory barriers do not –

execution barriers are provided by

a pipeline barrier, event or subpass

dependency.

© Copyright Khronos Group 2016 - Page 175

Global Memory Barriers
• Global Memory Barriers

- All memory used by accessed stages

- Effectively flushes entire caches

• Use when many resources transition

- Cheaper than one-by-one

- Don’t transition unnecessarily!

• User must define prior access

- Driver not tracking for you

typedef struct VkMemoryBarrier {

VkStructureType sType;

const void* pNext;

VkAccessFlags srcAccessMask;

VkAccessFlags dstAccessMask;

} VkMemoryBarrier;

© Copyright Khronos Group 2016 - Page 176

Buffer Barriers
• Buffer Barriers

- A single buffer range

- Defines access stages

- Defines queue ownership

• User must define prior access

- Driver not tracking for you

typedef struct VkBufferMemoryBarrier {

VkStructureType sType;

const void* pNext;

VkAccessFlags srcAccessMask;

VkAccessFlags dstAccessMask;

uint32_t srcQueueFamilyIndex;

uint32_t dstQueueFamilyIndex;

VkBuffer buffer;

VkDeviceSize offset;

VkDeviceSize size;

} VkBufferMemoryBarrier;

© Copyright Khronos Group 2016 - Page 177

Image Barriers
• Image Barriers

- A single image subresource range

- Defines access stages

- Defines queue ownership

- Defines image layout

• User must define prior access

- Driver not tracking for you

- For images, this includes prior layout

• Appropriate layouts allow compression

- GPU may use image compression

- Saves bandwidth

- Use GENERAL instead of switching

frequently

typedef struct VkImageMemoryBarrier {

VkStructureType sType;

const void* pNext;

VkAccessFlags srcAccessMask;

VkAccessFlags dstAccessMask;

VkImageLayout oldLayout;

VkImageLayout newLayout;

uint32_t srcQueueFamilyIndex;

uint32_t dstQueueFamilyIndex;

VkImage image;

VkImageSubresourceRange subresourceRange;

} VkImageMemoryBarrier;

© Copyright Khronos Group 2016 - Page 178

Subpass Dependencies
• Subpass dependencies

- Similar info to Pipeline Barriers

- Explicitly between two subpasses

• Memory barriers

- Implicit for attachments

- Explicit for other resources

• Pixel local dependencies

- Same fragment/sample location

- Cheap for most implementations

- Use region dependency flag:
- VK_DEPENDENCY_BY_REGION_BIT

typedef struct VkSubpassDependency {

uint32_t srcSubpass;

uint32_t dstSubpass;

VkPipelineStageFlags srcStageMask;

VkPipelineStageFlags dstStageMask;

VkAccessFlags srcAccessMask;

VkAccessFlags dstAccessMask;

VkDependencyFlags dependencyFlags;

} VkSubpassDependency;

© Copyright Khronos Group 2016 - Page 179

Subpass Dependencies
• Subpass self-dependencies

- Subpasses can wait on themselves

- A pipeline barrier in the subpass

• Forward progress only

- Can’t wait on later stages

- Must wait on earlier or same stage

• Pixel local only between fragments

- Must use flag:
- VK_DEPENDENCY_BY_REGION_BIT

typedef struct VkSubpassDependency {

uint32_t srcSubpass;

uint32_t dstSubpass;

VkPipelineStageFlags srcStageMask;

VkPipelineStageFlags dstStageMask;

VkAccessFlags srcAccessMask;

VkAccessFlags dstAccessMask;

VkDependencyFlags dependencyFlags;

} VkSubpassDependency;

void vkCmdPipelineBarrier(

VkCommandBuffer commandBuffer,

VkPipelineStageFlags srcStageMask,

VkPipelineStageFlags dstStageMask,

VkDependencyFlags dependencyFlags,

uint32_t memoryBarrierCount,

const VkMemoryBarrier* pMemoryBarriers,

uint32_t bufferMemoryBarrierCount,

const VkBufferMemoryBarrier* pBufferMemoryBarriers,

uint32_t imageMemoryBarrierCount,

const VkImageMemoryBarrier* pImageMemoryBarriers);

© Copyright Khronos Group 2016 - Page 180

Subpass Dependencies
• Subpass external dependencies

- Wait on ‘external’ operations

- vkCmdWaitEvent in the subpass

- Events set outside the render pass

typedef struct VkSubpassDependency {

uint32_t srcSubpass;

uint32_t dstSubpass;

VkPipelineStageFlags srcStageMask;

VkPipelineStageFlags dstStageMask;

VkAccessFlags srcAccessMask;

VkAccessFlags dstAccessMask;

VkDependencyFlags dependencyFlags;

} VkSubpassDependency;

void vkCmdWaitEvents(

VkCommandBuffer commandBuffer,

uint32_t eventCount,

const VkEvent* pEvents,

VkPipelineStageFlags srcStageMask,

VkPipelineStageFlags dstStageMask,

uint32_t memoryBarrierCount,

const VkMemoryBarrier* pMemoryBarriers,

uint32_t bufferMemoryBarrierCount,

const VkBufferMemoryBarrier* pBufferMemoryBarriers,

uint32_t imageMemoryBarrierCount,

const VkImageMemoryBarrier* pImageMemoryBarriers);

© Copyright Khronos Group 2016 - Page 181

Example – Texture Upload
// Transition the buffer from host write to transfer read

bufferBarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;

bufferBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;

// Transition the image to transfer destination

imageBarrier.srcAccessMask = 0;

imageBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;

imageBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;

imageBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;

vkCmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, &bufferBarrier,

&imageBarrier);

vkCmdCopyBufferToImage(commandBuffer, srcBuffer, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©);

// Transition the image from transfer destination to shader read

imageBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;

imageBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;

imageBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;

imageBarrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;

vkCmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,

&imageBarrier);

© Copyright Khronos Group 2016 - Page 182

Example – Compute to Draw Indirect
// Add a subpass dependency to express the wait on an external event

externalDependency.srcSubpass = VK_SUBPASS_EXTERNAL;

externalDependency.srcStageMask = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT;

externalDependency.dstStageMask = VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT;

externalDependency.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;

externalDependency.dstAccessMask = VK_ACCESS_INDIRECT_COMMAND_READ_BIT;

// Dispatch a compute shader that generates indirect command structures

vkCmdDispatch(...);

// Set an event that can be later waited on (same source stage).

vkCmdSetEvent(commandBuffer, event, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT);

vkCmdBeginRenderPass(...);

//Transition the buffer from shader write to indirect command

bufferBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;

bufferBarrier.dstAccessMask = VK_ACCESS_INDIRECT_COMMAND_READ_BIT;

bufferBarrier.buffer = indirectBuffer;

vkCmdWaitEvent(commandBuffer, event, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT,

&bufferBarrier);

vkCmdDrawIndirect(commandBuffer, indirectBuffer, ...);

© Copyright Khronos Group 2016 - Page 183

Semaphores
• Semaphores

- Used to synchronize queues

- Not necessary for single-queue

• Fairly coarse grain

- Per submission batch
- E.g. a set of command buffers

- Multiple per submit command

• Implicit memory guarantees

- Effects visible to future operations on

the same device
- Not guaranteed visible to host

typedef struct VkSubmitInfo {

VkStructureType sType;

const void* pNext;

uint32_t waitSemaphoreCount;

const VkSemaphore* pWaitSemaphores;

const VkPipelineStageFlags* pWaitDstStageMask;

uint32_t commandBufferCount;

const VkCommandBuffer* pCommandBuffers;

uint32_t signalSemaphoreCount;

const VkSemaphore* pSignalSemaphores;

} VkSubmitInfo;

© Copyright Khronos Group 2016 - Page 184

Example – Acquire and Present
// Acquire an image. Pass in a semaphore to be signalled

vkAcquireNextImageKHR(device, swapchain, UINT64_MAX, acquireSemaphore, VK_NULL_HANDLE, &imageIndex);

// Submit command buffers

submitInfo.waitSemaphoreCount = 1;

submitInfo.pWaitSemaphores = &acquireSemaphore;

submitInfo.commandBufferCount = 1;

submitInfo.pCommandBuffers = &commandBuffer;

submitInfo.signalSemaphoreCount = 1;

submitInfo.pWaitSemaphores = &graphicsSemaphore;

vkQueueSubmit(graphicsQueue, 1, &submitInfo, fence);

// Present images to the display

presentInfo.waitSemaphoreCount = 1;

presentInfo.pWaitSemaphores = &graphicsSemaphore;

presentInfo.swapchainCount = 1;

presentInfo.pSwapchains = &swapchain;

presentInfo.pImageIndices = &imageIndex;

vkQueuePresent(presentQueue, &presentInfo);

© Copyright Khronos Group 2016 - Page 185

Example – Acquire and Present (same queue)
// Acquire an image. Pass in a semaphore to be signalled

vkAcquireNextImageKHR(device, swapchain, UINT64_MAX, acquireSemaphore, VK_NULL_HANDLE, &imageIndex);

// Submit command buffers

submitInfo.waitSemaphoreCount = 1;

submitInfo.pWaitSemaphores = &acquireSemaphore;

submitInfo.commandBufferCount = 1;

submitInfo.pCommandBuffers = &commandBuffer;

submitInfo.signalSemaphoreCount = 0;

vkQueueSubmit(universalQueue, 1, &submitInfo, fence);

// Present images to the display

presentInfo.waitSemaphoreCount = 0;

presentInfo.swapchainCount = 1;

presentInfo.pSwapchains = &swapchain;

presentInfo.pImageIndices = &imageIndex;

vkQueuePresent(universalQueue, &presentInfo);

© Copyright Khronos Group 2016 - Page 186

Fences
• Fences

- Used to synchronize queue to CPU

• Very coarse grain

- Per queue submit command

• Implicit memory guarantees

- Effects visible to future operations on

the same device
- Not guaranteed visible to host

VkResult vkQueueSubmit(

VkQueue queue,

uint32_t submitCount,

const VkSubmitInfo* pSubmits,

VkFence fence);

VkResult vkResetFences(

VkDevice device,

uint32_t fenceCount,

const VkFence* pFences);

VkResult vkGetFenceStatus(

VkDevice device,

VkFence fence);

VkResult vkWaitForFences(

VkDevice device,

uint32_t fenceCount,

const VkFence* pFences,

VkBool32 waitAll,

uint64_t timeout);

GL’s fences are like a combination

of a semaphore and a fence in

Vulkan – they can synchronize GPU

and CPU in multiple ways at a

coarse granularity.

© Copyright Khronos Group 2016 - Page 187

Example – Multi-buffering
// Have enough resources and fences to have one per in-flight-frame, usually the swapchain image count

VkBuffer buffers[swapchainImageCount];

VkFence fence[swapchainImageCount];

// Can use the index from the presentation engine - 1:1 mapping between swapchain images and resources

vkAcquireNextImageKHR(device, swapchain, UINT64_MAX, semaphore, VK_NULL_HANDLE, &nextIndex);

// Make absolutely sure that the work has completed

vkWaitForFences(device, 1, &fence[nextIndex], true, UINT64_MAX);

// Reset the fences we waited on, so they can be re-used

vkResetFences(device, 1, &fence[nextIndex]);

// Change the data in your per-frame resources (with appropriate events/barriers!)

...

// Submit any work to the queue, with those fences being re-used for the next time around

vkQueueSubmit(graphicsQueue, 1, &sSubmitInfo, fence[nextIndex]);

© Copyright Khronos Group 2016 - Page 188

Wait Idle
• Ensures execution completes

- VERY heavy-weight

• vkQueueWaitIdle

- Wait for queue operations to finish

- Equivalent to waiting on a fence

• vkDeviceWaitIdle

- Waits for device operations to finish

- Includes vkQueueWaitIdle for queues

These are a lot like glFinish, and

should be treated similarly – use

them VERY SPARINGLY.

VkResult vkQueueSubmit(

VkQueue queue,

uint32_t submitCount,

const VkSubmitInfo* pSubmits,

VkFence fence);

VkResult vkResetFences(

VkDevice device,

uint32_t fenceCount,

const VkFence* pFences);

VkResult vkGetFenceStatus(

VkDevice device,

VkFence fence);

VkResult vkWaitForFences(

VkDevice device,

uint32_t fenceCount,

const VkFence* pFences,

VkBool32 waitAll,

uint64_t timeout);

© Copyright Khronos Group 2016 - Page 189

Wait Idle
• Useful primarily at teardown

- Use it to quickly ensure all work is done

• Favour other synchronization at all other times

- Extremely heavyweight, will cause serialization!

© Copyright Khronos Group 2016 - Page 190

Programmer Guidelines
• Specify EXACTLY the right amount of synchronization

- Too much and you risk starving your GPU

- Miss any and your GPU will bite you

• Use the validation layers to help!

- Won’t catch everything yet, but improving over time

• Pay particular attention to the pipeline stages

- Fiddly but become intuitive as you use them

• Consider Image Layouts

- If your GPU can save bandwidth it will

• Different behaviour depending on implementation

- Test/Tune on every platform you can find!

© Copyright Khronos Group 2016 - Page 191

Keep your GPU fed without getting bitten!

Questions?

© Copyright Khronos Group 2016 - Page 192

Break

© Copyright Khronos Group 2016 - Page 193

Swapchains Unchained!
(What you need to know about Vulkan WSI)

Alon Or-bach, Chair, Vulkan System
Integration Sub-Group – May 2016

@alonorbach (disclaimers apply!)

© Copyright Khronos Group 2016 - Page 194

Intro to Vulkan Window System Integration
• Explicit control for acquisition and

presentation of images

- Designed to fit the Vulkan API and today’s

compositing window systems

• Not all extensions are supported by every

platform

- You MUST check and enable the extensions

your app/engine uses!!!

• Today’s presentation should help you get

presentation working

- Learn how to present through a swapchain

- Overview of Vulkan objects used by the WSI

extensions

WSI Jargon Buster
• Platform

Our terminology for an OS

/ window system e.g.

Android, Windows,

Wayland, X11 via XCB

• Presentation Engine

The platform’s compositor

or display engine

• Application

Your app or game engine

© Copyright Khronos Group 2016 - Page 195

How many WSI extensions are there?
• Two cross-platform instance extensions

- VK_KHR_surface

- VK_KHR_display

• Six (platform) instance extensions

- VK_KHR_android_surface

- VK_KHR_mir_surface

- VK_KHR_wayland_surface

- VK_KHR_win32_surface

- VK_KHR_xcb_surface

- VK_KHR_xlib_surface

• Two cross-platform device extensions

- VK_KHR_swapchain

- VK_KHR_display_swapchain

© Copyright Khronos Group 2016 - Page 196

Vulkan Surfaces
• VkSurfaceKHR

- Vulkan’s way to encapsulate a native

window / surface

• Platform-independent surface queries

- Find out crucial information about your

surface’s properties
- Such as format, transform, image usage

- Some platforms provide additional queries

• Presentation support is per queue family

- An implementation may support multiple

platforms e.g. both xlib and xcb

- Or may not support presentation at all

Physical Device A

Platform X

Queue

Family 2

Queue

Family 1 Queue

Family 0

Platform Y

Physical Device B

Queue

Family 1Queue

Family 0

Physical Device C

Queue

Family 1Queue

Family 0

Unlike an EGLSurface, creating a

Vulkan Surface doesn’t mean you’ve

got your render targets created …yet

© Copyright Khronos Group 2016 - Page 197

Vulkan Swapchains: VK_KHR_swapchain
• Array of presentable images associated with

a surface

- Application requests a minimum number

of presentable images

- Implementation creates at least that

number

- Implementation may have a limit

• Upfront allocation of presentable images

- No allocation hitching at crucial moment

- Pre-record fixed content command buffers

• Present mode determines behavior

- FIFO support mandatory

- Platforms can offer mailbox,

immediate, FIFO relaxed

const VkSwapchainCreateInfoKHR createInfo =

{

VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR, // sType

NULL, // pNext

0, // flags

mySurface, // surface

desiredNumberOfPresentableImages, // minImageCount

surfaceFormat, // imageFormat

surfaceColorSpace, // imageColorSpace

myExtent, // imageExtent

1, // imageArrayLayers

VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, // imageUsage

VK_SHARING_MODE_EXCLUSIVE, // imageSharingMode

0, // queueFamilyIndexCount

NULL, // pQueueFamilyIndices

surfaceProperties.currentTransform, // preTransform

VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR, // compositeAlpha

swapchainPresentMode, // presentMode

VK_TRUE, // clipped

VK_NULL_HANDLE // oldSwapchain

};

FIFO is like eglSwapInterval = 1

Mailbox/Immediate is like eglSwapInterval 0

FIFO relaxed is like EXT_swap_control_tear

© Copyright Khronos Group 2016 - Page 198

Similar but neater than how

EGL_KHR_partial_update /

EGL_EXT_buffer_age and preserved

behavior achieves this

Vulkan Swapchains: They’re good!
• Application knows which image within a

swapchain it is presenting

- Content of image preserved between

presents

• Application is responsible for explicitly

recreating swapchains - no surprises

- Platform informs app if current swapchain
- Suboptimal: e.g. after window resize,

swapchain still usable for present via image

scaling

- Surface Lost: swapchain no longer usable for

present

- Application is responsible to create a new

swapchain
In EGL, the EGLSurface may be resized by the

platform after an eglSwapBuffers call.

Vulkan requires the application to intervene

© Copyright Khronos Group 2016 - Page 199

Vulkan Swapchains: They’re jolly good!
• Presenting and acquiring are separate

operations

- No need to submit a new image to acquire

another one, unless presentation engine

cannot release it

• Application must only modify presentable

images it has acquired

• Presentation engine must only display

presentable images that have been

presented!
Stalls in frame loop

are very bad!

In EGL, calling eglSwapBuffers both presents the

current back buffer and acquires a new one

Vulkan splits this up into separate operations

© Copyright Khronos Group 2016 - Page 200

VK_KHR_<platform>_surface

VK_KHR_surface

VK_KHR_swapchain

Platform-specific APIs

Steps to setup your presentable images

1 – Create a native

window/surface

2 – Create a Vulkan

surface

3 – Query information

about your surface

4 – Create a Vulkan

swapchain

5 – Get your

presentable images

© Copyright Khronos Group 2016 - Page 201

VK_KHR_swapchain

Vulkan Frame Loop – as easy as 1-2-3!

2 – Submit command

buffer(s) for that image

1 – Acquire the next

presentable image
3 – Present the image

0 – Create your

swapchain

Legend

Setup

Steady-state

Response to suboptimal

/ surface_lost

© Copyright Khronos Group 2016 - Page 202

Vulkan Displays: VK_KHR_display
• Vulkan’s way to discover display devices

(screens, panels) outside a window system

- Reminder: Not supported on all platforms

• Defines VkDisplayKHR and

VkDisplayModeKHR objects

- Represent the display devices and the

modes they support connected to a

VkPhysicalDevice

- Determine if a display supports multiple

planes that are blended together

• Enables creation of a VkSurfaceKHR to

represent a display plane

Physical

Device

Surface

Display 0

Plane 2
Plane 1

Plane 0

Display

Mode 1Display

Mode 0

Display 1

Display

Mode 1Display

Mode 0

A Vulkan display represents an actual display!

(Whereas an EGLDisplay is actually just a

connection to a driver – like a Vulkan Device)

© Copyright Khronos Group 2016 - Page 203

VK_KHR_display_swapchain
• Extends the information provided at vkQueuePresentKHR

- What region to present from the swapchain image

- What region to present to on the display

- Whether the display should persist the image

• Adds ability to create a shared swapchain

- Swapchain that takes multiple VkSwapchainCreateInfoKHR structs

- Allows multiple displays to be presented to simultaneously

- No guarantee that presents are atomic ...presently!

© Copyright Khronos Group 2016 - Page 204

Any question?

alon.orbach@samsung.com
@alonorbach

mailto:alon.orbach@samsung.com

Chris Hebert, Dev Tech Software Engineer, Professional Visualization

Moving To Vulkan
Asynchronous Compute

206

Who am I?

Dev Tech Software Engineer- Pro Vis

20 years in the industry

Joined NVIDIA in March 2015.

Real time graphics makes me happy

I also like helicopters

Chris Hebert
@chrisjhebert

Chris Hebert - Circa 1974

207

NVIDIA/KHRONOS CONFIDENTIAL

Agenda

• Some Context

• Sharing The Load

• Pipeline Barriers

208

NVIDIA/KHRONOS CONFIDENTIAL

Some Context

209

GPU Architecture
In a nutshell

NVIDIA Maxwell 2
Register File

Core

Load Store Unit

210

Execution Model
Thread Hierarchies

32 threads

32 threads

32 threads

32 threads

Logical View HW View

Work Group Warps

SMM

211

Resource Partitioning
Resources Are Limited

Key resources impacting local execution:

• Program Counters

• Registers

• Shared Memory

212

Resource Partitioning
Resources Are Limited

Key resources impacting local execution:

• Program Counters

• Registers

• Shared Memory

Partitioned amongst threads

Partitioned amongst work groups

213

Resource Partitioning
Resources Are Limited

Key resources impacting local execution:

• Program Counters

• Registers

• Shared Memory

Partitioned amongst threads

Partitioned amongst work groups

e.g. GTX 980 ti
64k 32bit registers per SM
96kb shared memory per SM

214

Resource Partitioning
Registers

The more registers used by a kernel means few resident warps on the SM

Fewer Registers More Registers

More Threads Fewer Threads

215

Resource Partitioning
Shared Memory

The more shared memory used by a work group means fewer work groups on the SM

Less SMEM More SMEM

More Groups Fewer Groups

216

Keeping It Moving
Occupancy

• Some small kernels may have low occupancy

• Depending on the algorithm

• Compute resources are limited

• Shared across threads or work groups on a per SM basis

• Warps stall when they have to wait for resources

• This latency can be hidden

• If there are other warps ready to execute.

217

Keeping It Moving
Occupancy – Simple Theoretical Example

• Simple kernel that updates positions of 20480 particles

• 1 FMAD - ~20 cycles (instruction latency)

• 20480 particles = 640 warps

• To hide this latency, according to Littles Law

• Required Warps = Latency x Throughput

• Throughput should be 32 threads * 16 sms = 512 to keep GPU busy

• Required warps is 20*512 = 10240

• ….oh….

218

Keeping It Moving
Occupancy – Simple Theoretical Example

• Simple kernel that updates positions of 20480 particles

• 1 FMAD - ~20 cycles (instruction latency)

• 20480 particles = 640 warps

• To hide this latency, according to Littles Law – But only on 1 SM..

• Required Warps = Latency x Throughput

• Throughput should be 32 threads * 1 sm = 32 to keep GPU busy

• Required warps is 20*32 = 640

• And we theoretically have 15 SMs to use for other stuff.

219

Queuing It Up
Working with 1 Queue

KernelKernelKernel

Transfers

Command Queue

Command Buffer

Command Buffer

Command Buffer

Command Buffer

Command Buffer

• Scheduler will distribute work across all SMs

• kernels execute in sequence

(there may be some overlap)

• Low occupancy kernels will waste GPU time

220

NVIDIA/KHRONOS CONFIDENTIAL

Sharing The Load

221

Queuing It Up
Working with N Queues

KernelKernelKernelCommand Queue #1

Command Buffer

Command Buffer

Command Buffer

Command Buffer

• NVIDIA hardware gives you 16 all powerful queues

• 1 Queue family that supports all operations

• 16 queues available for use

KernelKernelKernelCommand Queue #2

KernelKernelKernelCommand Queue #3

222

Queuing It Up
Working with N Queues

KernelKernelKernelCommand Queue #1

Command Buffer

Command Buffer

Command Buffer

Command Buffer

• Application decides which queues for which kernels

• Load balance for best performance

• Profile (Nsight) to gain insights

KernelKernelKernelCommand Queue #2

KernelKernelKernelCommand Queue #3

223

Queuing It Up
Compute and Graphics In Harmony

• Some hardware can even run compute and graphics work concurrently

• Needs fast context switching and at high granularity (not just at draw commands)

• Simple Graphics work tends to have high occupancy

• Complex graphics work can reduce occupancy

• Profile for performance insights

224

Queuing It Up
Compute and Graphics In Harmony

KernelKernelKernelCommand Queue #1

Compute Cmd Buffer

Compute Cmd Buffer

Graphics Cmd Buffer

Compute Cmd Buffer

• Profile to understand occupancy of both graphics and compute workloads

• Queues can support both compute and graphics

KernelKernelKernelCommand Queue #2

KernelKernelKernelCommand Queue #3

225

An Example
Compute and Graphics In Harmony

Free Surface Navier Stokes Solver

• 11 Compute Kernels

• 4 Shaders

• The output of each kernel is the input to the next

• Some kernels have very low occupancy

• Still opportunities for concurrency with compute

Click here to view this video

https://www.khronos.org/assets/uploads/developers/library/2016-uk-chapter-moving-to-vulkan/NVIDIA-Simultaneous-Graphics-and-Compute-example_KhronosUK-May2016.mp4

226

An Example
Many discretized operations are separable

SM SM SM SM

SM SM SM SM

SM SM SM SM

SM SM SM SM

Command Queue Command Queue

Process X Axis

(and half the Z)

Process Y Axis

(and other half of Z)

Examples
• Fluid Sims
• Gaussian Blurs
• Convolution Kernels

Semaphore Semaphore
Use semaphores to synchronize

Driver handles dispatching groups

227

An Example
Compute and graphics run concurrently

SM SM

SM SM

SM SM

SM SM

SM SM

SM SM

Command Queue Command Queue

Graphics Work

Semaphore

SM SM

SM SM

Frame N

Frame

N+1

Frame

N+2

Frame

N+3

Frame

N+4

Frame N

Frame

N+1

Frame

N+2

Frame

N+3

Compute Work

Compute Graphics

228

An Example
Putting it all together

SM SM

SM SM

SM

SM

SM SM

SM SM

Command Queue Command Queue

Graphics Work

Semaphore

SM

SM

SM SM

SM SM

Frame N

Frame

N+1

Frame

N+2

Frame

N+3

Frame

N+4

Frame N

Frame

N+1

Frame

N+2

Frame

N+3

Process X Axis

(and half the Z)

Compute Graphics

Semaphore

Command Queue

Process Y Axis

(and other half of Z)

229

Memory Transfers
More opportunity for concurrency

KernelTransferKernelTransferKernelCommand Queue #1

MMU may be idle

ALUs may be idle

• Memory transfers are handle by MMU

• Can run concurrently with Kernels

• As long as the current kernel isnt using the memory

Why do this?

230

Memory Transfers
More opportunity for concurrency

TransferTransferTransferHost to Device Queue

When you can do this
• DtoH and HtoD transfers can run concurrently

KernelKernelKernelCompute Queue

TransferTransferTransferDevice to Host Queue

Examples
• Large image processing
• Video processing

231

Conclusion
Takeaways

NVIDIA/KHRONOS CONFIDENTIAL

There is more than 1 queue available

Keep registers and shared memory to a minimum

Low occupancy leads to an under utilized GPU

Maximize GPU utilization by running kernels concurrently

Profile to understand the occupancy profiles of kernels and shaders

Some hardware can run kernels AND shaders concurrently

Use Semaphores to synchronize between queues

Be sensible at the beer festival

232

NVIDIA/KHRONOS CONFIDENTIAL

Thank You Enjoy Vulkan!!

Questions?
Chris Hebert, Dev Tech Software Engineer, Professional Visualization

© Copyright Khronos Group 2016 - Page 234

Porting to Vulkan

Hans-Kristian Arntzen
Engineer, ARM

(Credit for slides: Marius Bjørge)

© Copyright Khronos Group 2016 - Page 235

Agenda
• API flashback

• Engine design

- Command buffers

- Pipelines

- Render passes

- Memory management

© Copyright Khronos Group 2016 - Page 236

API Flashback

Driver

Application

Application

Driver

Logic shift

© Copyright Khronos Group 2016 - Page 237

API Flashback

vkDevice

vkQueue vkCommandPool

vkCommandBuffer

vkBeginRenderPass vkCmdBindPipeline
vkCmdBindDescrip

torSets
vkCmdDraw vkEndRenderPass

vkDescriptorSet

vkBufferView

vkImageView

vkSampler

vkPipeline

State

Shaders

vkRenderPass

vkDescriptorPool

vkCmdBindXXX

vkBuffer

vkDeviceMemory vkDeviceMemory

Heap

vkFramebuffer

vkImageView

vkRenderPass

© Copyright Khronos Group 2016 - Page 238

Porting from OpenGL to Vulkan?
• Most graphics engines today are designed around the principles of implicit driver

behaviour

- A direct port to Vulkan won’t necessarily give you a lot of benefits

• Approach it differently

- Re-design for Vulkan, and then port that to OpenGL

© Copyright Khronos Group 2016 - Page 239

Allocating Memory
• Memory is first allocated and then bound to Vulkan objects

- Different Vulkan objects may have different memory requirements

- Allows for aliasing memory across different Vulkan objects

• Driver does no ref counting of any objects in Vulkan

- Cannot free memory until you are sure it is never going to be used again

- Also applies to API handles!

• Most of the memory allocated during run-time is transient

- Allocate, write and use in the same frame

- Block based memory allocator

© Copyright Khronos Group 2016 - Page 240

Block Based Memory Allocator
• Relaxes memory reference counting

• Only entire blocks are freed/recycled

• Sub-allocations take refcount on block

© Copyright Khronos Group 2016 - Page 241

Command Buffers
• Request command buffers on the fly

- Allocated using ONE_TIME_SUBMIT_BIT

- Recycled

• Separate command pools per

- Thread

- Frame

- Primary/secondary

© Copyright Khronos Group 2016 - Page 242

Secondary Command Buffers

vkCommandBuffer

vkBeginRenderPass

Secondary command buffer

Secondary command buffer

Secondary command buffer

vkEndRenderPassvkCmdExecuteCommands

vkCommandPool

vkCommandPool

vkCommandPool

vkCommandPool

Thread 0

Thread 1

Thread 2

Main thread

© Copyright Khronos Group 2016 - Page 243

Shaders
• Standardize on SPIR-V binary shaders

• Extensively use the Khronos SPIRV-Cross library

- Cross compiling back to GLSL

- Provides shader reflection for
- Vertex attributes

- Subpass attachments

- Pipeline layouts

- Push constants

© Copyright Khronos Group 2016 - Page 244

Pipelines

Pipeline state

Shaders Render pass

Vertex input

Dynamic state

Blend State

Rasterizer state

Input assembly

Pipeline layout

Depth/stencil state

© Copyright Khronos Group 2016 - Page 245

Pipelines
• Not trivial to create all required pipeline state objects upfront

• Our approach:

- Keep track of all pipeline state per command buffer

- Flush pipeline creation when required
- In our case this is implemented as an async operation

Internal
Command

Buffer

SetRenderState()

SetShaders()

SetVertexBuffer()

SetIndexBuffer()

Draw()

Flush

RequestPipeline

CreateNewPipeline

Public interface

© Copyright Khronos Group 2016 - Page 246

Pipelines
• In an ideal world…

- All pipeline combinations should be created upfront

• …but this requires detailed knowledge of every potential shader/state combination that

you might have in your scene

- As an example, one of our fragment shaders have ~9000 combinations

- Every one of these shaders can use different render state

- We also have to make sure the pipelines are bound to compatible render passes

- An explosion of combinations!

© Copyright Khronos Group 2016 - Page 247

Pipeline cache
• Vulkan has built-in support for pipeline caching

- Store to disk and re-use on next run

• Can also speed up pipeline creation during run-time

- If the pipeline state is already in the cache it can be re-used

Pipeline state

Shaders Render pass

Vertex input

Dynamic state

Blend State

Rasterizer state

Input assembly

Pipeline layout

Depth/stencil state

vkPipelineCache

Disk

© Copyright Khronos Group 2016 - Page 248

Pipeline layout
• Defines what kind of resources are in each binding slot in your shaders

- Textures, samplers, buffers, push constants, etc

• Can be shared among different pipeline objects

© Copyright Khronos Group 2016 - Page 249

Pipeline layout
• Use SPIRV-Cross to automatically get binding information from SPIR-V shaders

SPIR-V shader

SPIRV-cross Pipeline layout

Descriptor set layout

Push constant range

© Copyright Khronos Group 2016 - Page 250

Descriptor Sets
• Textures, uniform buffers, etc. are bound to shaders in descriptor sets

- Hierarchical invalidation

- Order descriptor sets by update frequency

• Ideally all descriptors are pre-baked during level load

- Keep track of low level descriptor sets per material

- But, this is not trivial

© Copyright Khronos Group 2016 - Page 251

Descriptor Sets
• Our solution:

- Keep track of bindings and update descriptor sets when necessary

- Keep cache of descriptor sets used with immutable Vulkan objects

Internal

Command
Buffer

SetShaders()

Request cached
descriptor sets

Allocate descriptor sets

Public interface

BindDescriptorSets

SetConstantData()

SetTexture()

Draw()

Descriptor pool

Descriptor set layoutsWrite descriptor sets

© Copyright Khronos Group 2016 - Page 252

Descriptor Set emulation
• We also need to support this in OpenGL

• Our solution:

- Emulate descriptor sets in our OpenGL backend

- SPIRV-Cross collapses and serializes bindings

© Copyright Khronos Group 2016 - Page 253

Descriptor Set emulation

Shader

Set 0

0 GlobalVSData
1 GlobalFSData

Set 1

0 MeshData

Set 2

0 MaterialData
1 TexAlbedo
2 TexNormal
3 TexEnvmap

SPIR-V library to GLSL

0 GlobalVSData
1 GlobalFSData
2 MeshData

Uniform block bindings

0 TexAlbedo
1 TexNormal
2 TexEnvmap

Texture bindings

© Copyright Khronos Group 2016 - Page 254

Push Constants
• Push constants replace non-opaque uniforms

- Think of them as small, fast-access uniform buffer memory

• Update in Vulkan with vkCmdPushConstants

• Directly mapped to registers on Mali GPUs

// New
layout(push_constant, std430) uniform PushConstants {

mat4 MVP;
vec4 MaterialData;

} RegisterMapped;

// Old, no longer supported in Vulkan GLSL
uniform mat4 MVP;
uniform vec4 MaterialData;

© Copyright Khronos Group 2016 - Page 255

Push Constant Emulation
• But again, we need to support OpenGL as well

• Our solution:

- Use SPIRV-Cross to turn push constants into regular non-opaque uniforms

- Logic in our OpenGL/Vulkan backends redirect the push constant data appropriately

© Copyright Khronos Group 2016 - Page 256

Render pass
• Used to denote beginning and end of rendering to a framebuffer

• Can be re-used but must be compatible

- Attachments: Framebuffer format, image layout, MSAA?

- Subpasses

- Attachment load/store

Internal

Command
Buffer

BeginRenderPass

RequestFramebuffer

RequestRenderPass

CreateFramebuffer

Public interface

CreateCompatibleRend
erPass

BeginRenderPass

DepthStencil

Color targets

© Copyright Khronos Group 2016 - Page 257

Subpass Inputs
• Vulkan supports subpasses within render passes

• Standardized GL_EXT_shader_pixel_local_storage!

• Also useful for desktop GPUs

// GLSL
#extension GL_EXT_shader_pixel_local_storage : require
__pixel_local_inEXT GBuffer {

layout(rgba8) vec4 albedo;
layout(rgba8) vec4 normal;
...

} pls;

// Vulkan
layout(input_attachment_index = 0) uniform subpassInput albedo;
layout(input_attachment_index = 1) uniform subpassInput normal;
...

© Copyright Khronos Group 2016 - Page 258

Subpass Input Emulation
• Supporting subpasses in GL is not trivial, and probably not feasible on a lot of

implementations

• Our solution:

- Use SPIRV-Cross to rewrite subpass inputs to Pixel Local Storage variables or texture

lookups

- This will only support a subset of the Vulkan subpass features, but good enough for our

current use

© Copyright Khronos Group 2016 - Page 259

Synchronization
• Submitted work is completed out of order by the GPU

• Dependencies must be tracked by the application and handled explicitly

- Using output from a previous render pass

- Using output from a compute shader

- Etc

• Synchronization primitives in Vulkan

- Pipeline barriers and events

- Fences

- Semaphores

© Copyright Khronos Group 2016 - Page 260

Render passes and pipeline barriers
• Most of the time the application knows upfront how the output of a renderpass is going to

be used afterwards

• Internally we have a couple of usage flags that we assign to a render pass

- On EndRenderPass we implicitly trigger a pipeline barrier

Internal
Command

Buffer

BeginRenderPass

vkCmdEndRenderPass

Public interface

DrawSomething

EndRenderPass

vkCmdPipelineBarrier

Render pass usage flags
Pipeline stages?
Memory domains?

© Copyright Khronos Group 2016 - Page 261

Image Layout Transitions
• Must match how the image is used at any time

• Pedantic or relaxed

- Some implementations will require careful tracking of previous and new layout to achieve

optimal performance

- For Mali we can be quite relaxed with this – most of the time we can keep the image

layout as VK_IMAGE_LAYOUT_GENERAL

© Copyright Khronos Group 2016 - Page 262

Summary
• Don’t allocate or release during runtime

• Batching still applies

• Multi-thread your code!

• Use push-constants as much as possible

• Multi-pass is fantastic on mobile GPUs

© Copyright Khronos Group 2016 - Page 263

Panel Session - Moving to Vulkan:
Lessons to note when going explicit
Tom Olson, ARM

Michael Worcester, Imagination Technologies

Marco Trivellato, Unity Technologies

Jon Kennedy, Intel

Alon Or-bach, Samsung (Chair)

© Copyright Khronos Group 2016 - Page 264

Beer Festival!

Thank you for coming – keep in touch and
follow @KhronosUK on Twitter

