<4
)@¢ launch

Foundations

Gary Poster
gary.poster@canonical.com

) cANONICAL




Worst Talk Title Ever

Launchpad Foundations:
Learning to Leverage a Component
Architecture

) cANONICAL




New Attempt

Launchpad Foundations:
If the Abstractions Don’t Kill Us...

) cANONICAL




What is Launchpad?

A code hosting and software collaboration platform

» Code hosting, bug tracking, translations, mailing lists,
Ubuntu package building and hosting, specifications, and
community support

* Free for open-source projects

* Open- sourced this week

. usedby 3 Ubuntu

« Communicate to upstream and downstream projects

* Integrate with external code hosting and bug tracking

) cANONICAL




See the tour!

https://launchpad.net/+tour

) cANONICAL



https://launchpad.net/+tour

Thanks for the interviews!

* Francis Lacoste
« Steve Alexander
e Paul Hummer

e Barry Warsaw

e Michael Nelson

) cANONICAL




“Component Architecture”?

« A component: an object that provides an interface.
* Interfaces are usually first-class objects.

* Software components agree on one or more expected
interfaces, and can interoperate and introduce new
functionality and tools because of the agreed-upon
contract.

* UNIX pipes, CORBA, CASE, XPCOM

) cANONICAL



Our Abstractions

* Interfaces from the zope.interface library
 Adapters and utilities from zope.component

* Docs: http://www.muthukadan.net/docs/zca.html

) cANONICAL



http://www.muthukadan.net/docs/zca.html

| Today’s Plan

» Some of our Abstractions: Concepts and Examples
 Launchpad’s Usage

* How It Worked Out For Us
* How We Might Improve

* How You Might Use the Abstractions

) cANONICAL




Component-Based Abstraction 1:
Dependency Injection via Utilities

* Import a module, or...

o ...look up a utility via an interface.
For example,

 import a library to send email, or...

e ...look up a utility to send email.

UTILITIES

) cANONICAL



Component-Based Abstraction 2:
Adapters, or Wrapping

 Cast an object to a new type, or...

o ...adapt an object to match an interface.

For example,
e cast an integer to a float, or...

» ...adapt an object to an interface for being a message
target.

ADAPTERS

) cANONICAL




Component-Based Abstraction 3:
Multiple Dispatch or Multi-methods for Factories

Instantiate a class with your arguments, or...

...request a new instance providing an interface, given
your arguments.

For example,

instantiate a specific view class with a model object and a
request, or...

...request a new instance providing a view interface, given
a model object and a request.

) cANONICAL



But wait, there’s more! (events, named adapters...)

) cANONICAL




Launchpad’s Usage

Agile formality
e Pervasive interfaces

» Hidden components

» Exposed components

) cANONICAL




Launchpad’s Usage: Agile Formality

» We use interface-based abstractions in a language without
native interfaces: Python

» XML configuration

 Tries to combine the agility of a dynamic language like
Python, and the built-in structured formalism of more
systematic languages like Java.

) cANONICAL




Launchpad’s Usage: Pervasive Interfaces

» zope.interface, with zope.schema for more specific data
descriptions

* Interfaces for library and application code

) cANONICAL




Launchpad’s Usage: Hidden Components

* Infrastructure set up years ago
» Customizes core libraries via utilities and adapters
« zope.security, web publisher and url dispatch

lazr.restful...

) cANONICAL




(lazr.restful)

» Automatically generates a RESTful web service from
annotated interfaces

» Generates WADL, consumed by lazr.restfulclient
* Rocks

e Leonard Richardson, Francis Lacoste

» Open-sourced, but still hard to get started

» Improving: we are using it internally, polishing

e Soon start with annotated interfaces + WSGI + URL
dispatch instructions

 Keep an eye on this!

) cANONICAL




Launchpad’s Usage: Exposed Components

 Great for testing: model external services with utilities
(external bug trackers, for instance)

 Great for pretty code: adapters for interactions across
subsystems (question targets, for instance)

) cANONICAL




Launchpad’s Usage: Summary

* In interviews, the more infrastructure responsibility an
engineer had, the more they were aware of how we use
components

e Interfaces the most obvious result

» Some tension of “agile formality” was often evident

) cANONICAL




How did it work out, living with these abstractions?

) cANONICAL




Expected advantages to component-based
abstractions

 Replaceability and Reuse? (yes, but historical, infrequent,
foundational)

 Refactoring? (somewhat, but less than might be expected
because we consciously limited our use of the tools)

) cANONICAL



If the abstractions don’t kill us...
...they’ll make us stronger.

) cANONICAL




-~ The Good: Interfaces

* Most engineers liked them inherently
e Documentation

* Separation of contract from implementation

) cANONICAL




The Good: Tools Using the Component
Architecture

Tools are unique and powerful

zope.security, configured via interfaces and utilities, gives
an advantage difficult to duplicate without reusing or
duplicating similar machinery

lazr.restful made the pervasive interfaces more palatable

Form generation was a more mixed win, but still a win

) cANONICAL



The Good: Configuring Infrastructure

 Generally, configuring infrastructure with components,
adapters and utilities was perceived to be a win

 repoze.bfg is a new framework that uses the same
libraries in a similar way

) cANONICAL




The Good: A Nice Plug-in API

 Engineers generally praised the APl we used as a general
tool for making pluggable behavior

« Some criticized the cost in developer comprehension and
in the overhead of writing and maintaining interfaces

) cANONICAL




The Good: Test Stubs

 The abstractions are a very nice way to support test stubs

* Much nicer than monkeypatching!

) cANONICAL




If the abstractions don’t kill us...
...nothing will.

) cANONICAL




The Bad: Interfaces

* In application code, interfaces felt like DRY violations

o If an interface has only a single implementation, felt like
writing C

* Victim of automation success: supposed to be developer
docs (good for lazr.restful) but usage in forms and
security sometimes muddies the water

* Foreign to Python...

) cANONICAL




The Bad: Barriers to Design and Understanding

o ...”Agile formality” brings a foreign philosophy to Python
« Too many new ideas to learn
» Raises the bar for the abstraction tools’” APIs

 Factoring your interfaces is difficult to get right, as seen in
both Launchpad and some of the zope libraries
(publishing and URL dispatch)

) cANONICAL




(Zope APIs good, but...)

» “self” is missing from interface call signature. A good
reason, but a barrier to learn

» zope.schema is fairly heavyweight

» “multiadapter” frequently cited as confusing. (name?
Algorithm?)

 Extensions to the basic ideas break analogies, and
sometimes break initial understanding, making it feel that
you never really know all of the tool (named adapters and
utilities, local registries, adapting to the null interface)

) cANONICAL




The Bad: Barriers to Opportunistic Coding

 Systematic tools fight writing opportunistic, goal-oriented
code

» “copy-paste-modify” coding: is it important to support?

 Cost of an abstraction increases if everyone on your team
needs to understand it entirely

* Increases further if everyone who contributes to your
code needs to understand it

* (Increases further if everyone who uses your code needs
to understand it entirely)

* Many people want systematic coding anyway (TDD, for
Instance)

) cANONICAL




The Bad: Barriers to Starting

Not only hard to understand abstractions, but hard to
understand available components and configure them

Default configurations (repoze.bfg, Grok) help a lot

Sometimes finding the right place to change configuration
is a needle-in-a-haystack search

Some libraries and frameworks help this by using the
abstractions very selectively and putting defaults inline

) cANONICAL



The Bad: Registry Configuration and Debugging

The registry is the central place that adapters and utilities
are registered. It is the mechanism by which the
indirections are resolved.

We use Zope Configuration Markup Language to
configure (ZCML)

ZCML: XML (disliked)

ZCML: external file (disliked, especially for application
code)

Debugging the indirection can be painful

) cANONICAL



How We Might Improve

IN CASE OF
ZOMBIES

lmmlc (,LAs.s-




. Launchpad Change: Educate Developers

* Many still don’t understand our abstractions completely

 For better or worse, they often don’t have to

) cANONICAL




Launchpad Change: Simplify Model Code with
Adapters

 Large model classes: basic API plus API for subsystem
Interactions

 Put basic APl in model, API for subsystem interactions in
adapters?

) cANONICAL




Launchpad Change: Set a High Bar for Creating
Indirection with the Component Architecture

» Make sure developer and code reviewer understand and
agree on new patterns for using the abstractions

 Be especially careful of nested indirection: can become
particularly painful spaghetti code

) cANONICAL




Launchpad Change: Discard XML-based
Configuration Language in Application Code

e Gro
Pyt

e Sim

K project provides tools to put registrations inline with
nhon

nlifying configuration machinery further would be

nice, but there is some inherent complexity

) cANONICAL



Launchpad Change: Reduce or Simplify Usage of
Interfaces in Application Code

» While some engineers would like to reduce our use of
interfaces in the application code, it would be difficult

because we get so much automation from them (security,
forms, webservice)

* Maybe to ease the application usage and reduce the
feeling of DRY violations, we can make a tool to generate
interface objects from introspecting our model classes,
maybe parsing epydoc docstrings?

) cANONICAL




Launchpad Change: Use and Build Tools to Debug
the Registry

* We should use zope.app.apidoc. (See
http://apidoc.zope.org/ for example output.)

» We should investigate building additional debugging tools
for the registry. One idea: a flag that makes the registry

verbosely log its decisions, like the python -v flag outputs
Imports.

) cANONICAL


http://apidoc.zope.org/

Launchpad Change: Build Schema Support on Top
of an Existing Form Library

» zope.formlib now

 z3c.form is next generation for many developers.
Investigate.

» Using a schema for form generation often causes
pollution between developer documentation and user
interface, despite some tools to help.

* Maybe discard form automation from schema? Maybe try
to build schema support on top of a more generic form
library?

) cANONICAL



Component Architecture Change: Retool API to
Stay Closer to Familiar Patterns

 Adapting looks like mostly like casting in our toolkit. This
is a win for understandability.

 Replace multiadapters with more familiar parallel? Mimic
class instantiation?

* Generally, simplify and reduce the API, try to build on
Python programmers’ existing knowledge be drawing
parallels.

) cANONICAL



Component Architecture Change: Use Abstract
Base Classes

New in Python 2.6/3.0
Part of the language, so reduces new ideas
Spelling is identical to normal class (e.g., includes “selt”)

Semantic problem: “is instance” is a different question
that “provides.” Hiding the difference entirely does not
let a user discover the difference, reading the code. The
difference can be important.

Technical problem: ABC implementation of “register” is
one-way, so you cannot ask a class what ABCs it provides.

Usage problem: only for classes. (Small problem?)

) cANONICAL



How You Might Use the Abstractions

THURSTON
éﬁ?&'&ﬁg MAGlClAH

) cANONICAL




Lessons

 Use the indirections sparingly, ideally only driven by real
need. Be especially wary of nested indirections.

 Consider hiding away the abstractions behind higher-level
APIs.

* When the abstractions are exposed, use the simplest
possible versions that you can.

» Weigh the value of interfaces for different parts of your
code. As a guideline, the closer code gets to “glue code,”
the more likely an interface won’t be valuable.

* If you have a component registry like the one we use from
zope.component, get familiar with its debugging story,

and make sure it will be sufficient for your needs.
) cANONICAL




Example Use Case: Allow Replacing Django’s ORM

* (Forgive the naivety)

e Possible to describe framework’s interactions in a
constrained interface?

* If so, maybe provide one, look up a utility for the ORM,
defaulting the usual one.

» Other ORMs maybe just need to provide a small
wrapper?¢

) cANONICAL



Example Use Case: Django’s Security

e Security in the view works well for many applications

* May not scale for some projects, or provide the right
security profile

* A configurable, model-based, white-list security system
that exposes attributes based on interfaces, and has a
pluggable policy via dependency injection, may be a win
sometimes

* Might not be that hard to integrate, with a view subclass
and some usage patterns.

) cANONICAL




Example Use Case: Customizing Behavior of
Django Applications

* Django applications are functionality libraries, like event
calendar

 Customization points typically strings and view classes?

* What if you want to send email differently, or change the
policy for when a calendar event is included in an RSS
feed, or change some other behavior?

* Model behavior and other underlying behavior is usually
only customizable by monkey-patching or forking.

* Instead, there could be an easy way to specify an object
with a specific behavioral responsibility that could be
plugged in, but that could operate with a default if no
customization has been requested.

) cANONICAL



The abstractions make us stronger.
We think.

Now let’s make them better, and Launchpad too!

) cANONICAL




Thank you!

gary.poster@canonical.com

) cANONICAL




Image Credits

 Attack of the Cyberman http://www. flickr.com/photos/54459164@N00/ /
CC BY-NC-SA 2.0

« Zombie Walk in Edmonton, Mark Marek Photography ©2007 from
http://commons.wikimedia.org/wiki/File:Zombie-walk-kids.JPG

* Rocky Horror Monster Show http://www flickr.com/photos/kevingoebel/ /
CC BY-ND 2.0

« Magic http://www.flickr.com/photos/cayusa/ / CC BY-NC 2.0
» Say Cheeeeeeeese http://www.flickr.com/photos/elsie/ / cC BY 2.0

e “Silence is the virtue of fools.” Sir Francis Bacon
http://www.flickr.com/photos/geekgirly/ / CC BY-NC-ND 2.0

 In case of zombies... http://www.flickr.com/photos/samsmith// CC BY-NC 2.0

» Thurston magician poster Public domain
http://commons.wikimedia.org/wiki/File:Thurston_magician_poster.jpg

) cANONICAL


http://www.flickr.com/photos/54459164@N00/
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://www.markmarek.com/
http://commons.wikimedia.org/wiki/File:Zombie-walk-kids.JPG
http://www.flickr.com/photos/kevingoebel/
http://creativecommons.org/licenses/by-nd/2.0/
http://www.flickr.com/photos/cayusa/
http://creativecommons.org/licenses/by-nc/2.0/
http://www.flickr.com/photos/elsie/
http://creativecommons.org/licenses/by/2.0/
http://www.flickr.com/photos/geekgirly/
http://creativecommons.org/licenses/by-nc-nd/2.0/
http://www.flickr.com/photos/samsmith/
http://creativecommons.org/licenses/by-nc/2.0/
http://commons.wikimedia.org/wiki/File:Thurston_magician_poster.jpg

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

