Build it with Nitrogen
The fast-off-the-block Erlang web framework

Lloyd R. Prentice & Jesse Gumm

dedicated to:
Laurie, love of my life— Lloyd
Jackie, my best half— Jesse
and to:

Rusty Klophaus
and other giants of Open Source— LRP & JG

Contents

l. Frying Pan to Fire
1. You want me to build what?

2. Enter the lion’s den
2.1. The big pictureo
2.2. Imstall Nitrogen
2.3. Layoftheland

Il. Projects

3. nitroBoard |
3.1. Planofattack
3.2. Create a new project
3.3. Prototype welcome page
3.4. Anatomy ofapage
3.5. Anatomy of aroute
3.6. Anatomy of a template L.
3.7. Elementso
3.8. Actions.
3.9. Triggers and Targets
3.10. Enough theoryo

10
11
13

19

21
21
23
27
30
33
34
35
38
39
40

ii

3.1, Visitorso
3.12.8tylingo
3.13. Debugging
3.14. What you've learned Lo
3.15. Thinkand do

nitroBoard Il

4.1. Planofattack
4.2. Associates
43. Tamin/Tamout
4.4. Styling
4.5. What you've learned
4.6. Thinkanddo

A Simple Login System
5.1. Getting Started
5.2. Dependencies oL
5.2.1. Rebar Dependency: erlpass.
5.3. The index page
5.4. Creating an account L.
5.4.1. db_loginmoduleo
5.5. The login form
5.5.1. Verifying the password (back to db_login)
5.6. Some finishing touches
5.6.1. Adding Validation to the Login Form
5.6.2. Adding Validation to Account Creation
5.7. Closing thoughts on login systems
5.8, Links

A Tale of Three Backends

nitroProjectLog

69
69
70
78
81
82
82

83
83
84
84
85
87
89
91
92
93
94
95
99
99

101

103

8. NitroMail

l1l. Core Nitrogen Concepts

9. How to choose a webserver

10.How to structure your Nitrogen projects
11.Nitrogen Functions

12.Nitrogen Elements

13.Nitrogen Actions

14.Nitrogen Templates

15.Anatomy of a page and the path of execution
16.Comet and long-running processes

17.Secure your site

IV. Advanced Nitrogen Concepts
18.Custom Elements

19.Nitrogen Plugins

20.Advanced Postbacks

21.Custom Handlers

107

111
113
115
117
119
121
123
125
127

129

143
145
163
169

171

iii

22.Clustering
23.Troubleshooting

24.The challenges of e-mail

V. DevOps
25.Deployment
26.Choose a host
27.Stack the deck
28.Launch day

29. Maintain maintain

VI. Appendices

A. Erlang from the top down
B. Erlang build tools

C. Erlang resources

D. Just enough git

Index

v

173
175

177

179
181
187
189
201
203

205
207
217
219
221

257

Authors’ note

A big question popped to mind when we decided to write this book. How
much can we assume about you, the reader.
Here’s what we came up with:

This

We assume that you're comfortable with the Unix/Linux command
line.

We assume that you have experience building web sites; understand
HTML and CSS.

We don’t assume that you know Erlang, but the more you know the
better. We'll point the way and suggest learning resources. We have
faith that you’ll dig in, study hard, and pick up Erlang as you go.

Note to wizards: No condescension intended if we cover stuff you
already know.

We further assume that you have a recent version of Erlang installed
on your computer. Check out Chapter Two if not.

Our last assumption is that you’re passionate about building reliable,
scalable web applications using high-productivity tools.

is most definitely a learn-by-doing book. You may get the gist by

reading at the beach. But to truly master Nitrogen, plop this book down
beside your keyboard and work your way through command by command.

LRP & JG

Before we begin

Some URLs and directory paths are too long to fit on one line in this book.
In these cases we will break them like this:

http://docs.basho.com/riak/1.3.0/tutorials/installation/
Installing-Erlang/

Be sure to rejoin them when you paste them into your browser or use them
in code.

Grey boxes depict command-line interactions. Computer display is in nor-
mal type; the commands you enter are in bold face.

Part |.

Frying Pan to Fire

1. You want me to build what?

Welcome to the madhouse! Glad to have you aboard.

As you see, we're a lean-and-mean outfit— more work piling up than we
can handle. Clients banging at the door.

Erlingo! they call us. Your friendly webspinners.

Our language? Erlang OTP.

Preferred web framework? Nitrogen.

Don’t know either? No worry. We'll get you squared away.

Why Erlang?

Our clients demand applications that handle high-traffic loads with nine
nines reliability. Erlang excels at both.

Hard to learn?

Excellent resources in Appendix C. Dig in, persevere, and you’ll be pro-
ductive before you know it.

And why Nitrogen?

Nitrogen is one of the most productive ways we’ve found to build full-
functionality web applications. You'll be working hand-in-glove with Rusty
and Jesse, our in-house Nitrogen wizards.

Stick with the dynamic duo, kid, and you’ll be a wizard in no time.

Chomping at the bit are you?

Marketing needs an interactive welcome board for our corporate lobby.
Clamoring for it.

Deadline— day after tomorrow. Bet-the-company client conference com-
ing up. Think you can deliver?

Here’s Jesse, our head developer. He’ll give you heads up on how we do
things around this place.

2. Enter the lion’s den

Whoa! Day after tomorrow? That’s harsh. But that’s Bossman— no moss
under that dude’s feet. So we best get crackin’.

These three boxes power our trusted in-house development network. We
call them Alice, Bob, and Mallory. Yes, indeed, we take security seriously.
Rusty will read you in on our security practices later.

We also have a remote server— hostname Charlie. Plan to lease another—
probably call it Dora.

Why all the hardware?

Erlang is explicitly designed to support distributed computing. We use
the machines on this network to develop and test distributed applications
and databases. Set it up on the cheap.

Alice and Mallory are old Dell Optiplex 745s running Linux Debian
Linux Wheezy. Dual-core, gig of RAM. Company up the road traded up
so Bossman picked these puppies up for fifty bucks apiece. Bossman likes
to say lean-and-mean. Truth— the dude’s a cheapskate.

Yes, we could we use Vagrant, the cloud, or some such, instead of physical
machines. But Bossman is old school. We're trying to talk him around.

Bob is a custom built PC running Ubuntu 14.04. Three-core AMD
processor, six gigs of RAM.

I tap into the network with my personal MacBook Pro.

Fact is, you don’t need all this kit to develop Nitrogen apps. You can
do it on your Windows notebook at Starbucks if you're so inclined. I've
heard of folks running Nitrogen on Raspberry Pi.

But we’re looking toward bigger things here— reliable, industrial strength,
scalable apps.

2.1. The big picture

Before we begin, let me paint the big picture.

The challenge of web application development comes down to managing
a jumble of languages and network protocols.

You, Dude, learned your native language effortlessly in the bosum of
your family. But as a web application developer your task is to convince
hardware on both server and client sides to do your bidding. Problem is,
the stupid machines don’t speak your native tongue.

On the client side, the browser responds to HTTP/HTTPS protocols
carrying HTML, CSS, and JavaScript messages which, in turn, convey and
present information structured as natural language, sound, and images
both still and moving.

The server responds to some babel of computer languages to marshal
the HTTP/HTTPS, HTML, CSS, JavaScript, natural language, sound,
and images both still and moving through the Internet to the client.

It’s almost too much for the feeble human mind to encompass. The nitty
gritty tedium of it all is mind numbing.

So this is where Nitrogen comes in.

Nitrogen harness the power of Erlang to manage all— well, most all—
of the fiddly semantics and syntax of HTTP/HTTPS, HTML, CSS, and
JavaScript. This means that you have that much less to think about when
you craft your cunning web application. In the spell of creative ferment,
you can produce way cool web apps all that much faster.

We're not saying that you don’t have to understand the alphabet soup
of web technologies. The deeper you understand them the better. We are
saying that mastery of Erlang Nitrogen will make you far more fluent and
productive.

What’s the trick?

Nitrogen combines the structural convenience of Erlang records to struc-
ture data, the fluency of Erlang functions to execute logic and embed
JavaScript, and the power of Erlang as a development platform to organize

10

and abstract the semantic and syntactical fussiness of server/web/browser
communication.
Enough already. Let’s install Nitrogen.

2.2. Install Nitrogen

Take a seat, citizen, and we’ll log into Bob— show you how to compile
Nitrogen.

Nitrogen is written in Erlang and JavaScript. No, you don’t need to
know much JavaScript. Nitrogen translates.

Erlang is already installed on Bob, of course, but if you want to install
it at home, take a look here:

http://docs.basho.com/riak/1.3.0/tutorials/installation/
Installing-Erlang/

You could install Nitrogen by downloading a binary package. Here’s the
go-to link:

http://nitrogenproject.com/downloads

But fact is, Nitrogen is easy to compile from source. So let’s do that
instead.

Let’s go ahead and clone it from Github and make a test project (here,
conveniently called testproj)

~$ git clone git://github.com/nitrogen/nitrogen
~$ cd nitrogen
~/nitrogen$ make rel_inets PROJECT=testproj

11

All that text scrolling up the terminal? That’s make working hard on our
behalf to compile Nitrogen. You'll experience a few pauses while Erlang
generates your release, so be patient.

Can you imagine entering all those terminal commands whizzing up your
screen by hand? Be at it all week. That’s the beauty of make— automates
the build process.

Indeed, it’s worth getting to know your way around make. Appendix B
will give you a bird’s-eye rundown on Erlang build tools including make.

Looks like we’re done—

Generated a self-contained Nitrogen project in ../
testproj, configured to run on inets.
make[1] : Leaving directory ‘/home/lloyd/Erl/Eval/
nitro/nitrogen’ Jesse@Bob:~/nitrogen$

Note that inets refers to Erlang’s built-in webserver. That’s one of many
things we like about Erlang— batteries included.
OK, one more step:

~/nitrogen$ cd ../testproj
~/testproj$ bin/nitrogen console

And, we see:

Erlang/0TP 17 [erts-6.0] [source] [64-bit] [smp:3:3]
[async-threads:5] [hipe] [kernel-poll:truel

Running Erlang

Eshell V6.0 (abort with ~G)

(testproj@127.0.0.1)1>

12

This tells us that we’re in the Erlang shell. Much to explore here, but we’ll
save it for later.
Now, point your browser:

localhost:8000

Wallah! As me Cockney mates would put it, “Bob’s your uncle!”
“WELCOME TO NITROGEN?” in our very own browser.
Nitrogen lives!
Browse around while I snag us a jolt of Club-Mate.
Haven’t tried it? Official drink of the Chaos Computer Club. Our Berlin
consultant sent it over special.

2.3. Lay of the land

OK, I'mmm back!

Let’s cruise the directories to see what strikes our eye.

Open a new terminal. This will give us two terminals— an Erlang shell
and a Uniz shell. In the Uniz shell, cd down to site, and list it:

~$ cd testproj/site
~/testproj/site$ 1s -1

Here we are:

13

drwxrwxr-x
drwxrwxr-x
drwxrwxr-x
drwxrwxr-x
drwxrwxr-x

2 jess
2 jess
4 jess
6 jess
2 jess

jess
jess
jess
jess
jess

4096 May 9
4096 May 9
4096 May 9
4096 May 9
4096 May 9

13:21
13:20
13:20
13:21
13:20

ebin
include
src
static
templates

The code in this directory built the web page displayed in our browser.
First, let’s look into templates—

~/testproj/site$ cd templates

~/testproj/site/templates$ 1ls -1

-rw-rw-r-- 1 jess jess 1442 May 9 13:20 bare.html
-rw-rw-r-— 1 jess jess 1265 May 9 13:20 mobile.html

And peek in on bare.html.
We're partial to vim around here, but you can develop Nitrogen appli-
cations in whatever code editor you prefer.

~/testproj/site/templates$ vim bare.html

As you see, bare.html is a standard *.html file. In the head section it’s
loading a bunch of *js files and style sheets.
You’ve built websites, so there’s nothing here that you haven’t seen

before.

But, in the body, we see:

14

<body>
[[[page:body()]1]1]

<script> [[[script]]] </script>

</body>

And here, my friend, is Nitrogen’s secret sauce. We’ll unveil the tantalizing
mysteries over the next few hours.
But first, let’s look into other directories in site. Open up ebin and list

it:

~/testproj/site/templates$ cd

~/testproj/site/ebin$ 1ls -1

-rw-rw-r-- 1 jess
-rw-rw-r-—- 1 jess
-rw-rw-r-—- 1 jess
-rw-rw-r-— 1 jess
-rw-rw-r-—- 1 jess
-rw-rw-r-- 1 jess

Note nitrogen.app.

jess 47168
jess 47920
jess 351
jess 992
jess 992
jess 1200

Jun
Jun
Jun
Jun
Jun
Jun

oo o 0o O On

14:
14:
14:
14:
14:
14:

18
18
18
18
18
18

../ebin

index.beam

mobile.beam

nitrogen.app
nitrogen_app.beam
nitrogen_main_handler.beam
nitrogen_sup.beam

App files are a VERY BIG DEAL in Erlang. The instance in ebin was
automatically generated by nitrogen.app.src in the src directory. We'll get

to that in a moment.

Note next all the *.beam files.
The grey-beards tell us that beam stands for Bodan’s Erlang Abstact

Machine.

Like Forth and Java, Erlang runs on a virtual machine. Erlang source
compiles down to *beam files and the *.beam files execute on an Erlang

virtual machine.

15

If it doesn’t already exist, the ebin directory and all in it is created auto-
matically when you compile Erlang source. In principle, you’ll never have
to look into ebin again— unless you want to confirm that your program
has compiled.

With that in mind, look now into src:

~/testproj/site/ebin$ cd ../src
~/testproj/site/src$ 1ls -1

drwxrwxr-x 2 ... actions

drwxrwxr-x 2 ... elements

-rw-rw-r-— 1 . index.erl

-rw-rw-r-— 1 ... mobile.erl

-rw-rw-r-— 1 ... nitrogen_app.erl
-rw-rw-r-—- 1 ... nitrogen.app.src
-rw-rw-r-—- 1 ... nitrogen_main_handler.erl
-rw-rw-r-—- 1 ... nitrogen_sup.erl

Note nitrogen.app.src. Compare content with nitrogen.app in ebin.

App files provide meta data that tell the Erlang compiler where to find
start and stop functions and other resources the application needs.

Check out Appendix A. It’ll put you way down the road toward under-
standing how Erlang applications are structured and the secrets behind
the widely touted reliability of Erlang applications.

Notice also how all the *.er{ files in src have doppelgingers in beam.

Makes sense— *.erl source files compile to *.beam files, remember?

Explore the *.erl files if you wish.

Squint while you eyeball the nitrogen*.erl files. The names and structure
of these files follow patterns that you’ll see across nearly every Erlang OTP

16

program you’ll ever develop. Your understanding of OTP will be wide and
deep when you get a handle on why this is so.
Dig in here for details:

http://www.erlang.org/doc/design_principles/
applications.html#id74089

So what’s the point of the actions and elements directories?
We’ll dive into them when we start developing your web app for real.
But for now, look into indez.erl:

~/testproj/site/src$ vim index.erl

And, yeah man, there’s the code that produced the Nitrogen home page
displayed our browser!

Feel free to bop around the directories and subdirectories in site.

But look— time for lunch. We'll tackle that assignment Bossman gave
you for real after we’ve fueled up.

17

Part II.

Projects

19

3. nitroBoard |

Detailed specs? From Bossman? You've got to be kidding.

Typical client— expects developers to be mind-readers. But no worry.
We'll brainstorm.

Users— visitors drop into front office. What do they need to know?

Company logo. Check.

VIP welcome line? Hey, that’s bodacious. Reads “Welcome!” on days
when we don’t expect VIP visitors— “Welcome <vip visitor> when a client
or VIP is expected to drop in.

More than one VIP?

Good point. Matter of layout, I think.

A visitors’ database?

Yeah, agreed, but simple simple.

OK, what else?

Hmmm-— so, we’ll need an admin page to keep the board up-to-date.

Authentication? Nah— It’ll be on a trusted network.

Say again? Boring project? Might surprise you. Certainly more instruc-
tive than “Hello World!” wouldn’t you say?

Work plan?

Hey— boss is going to love you.

3.1. Plan of attack

1. Create new project

2. Define routes

21

3. Prototype pages

a) corporate logo
b) welcome

c¢) visitors admin
4. Develop welcome page
5. Data persistence
a) visitor db
6. Develop admin page
a) visitor form
7. Display visitors

8. Test/debug/revise

Kill, Baby, Kill!

Before we dive in, let’s kill the Nitrogen instance displayed in your browser.
Why? It’s hogging port 8000. We're going to need that puppy.
As you'll recall, the command bin/nitrogen console launched an Erlang
shell. Turns out, it also started the inets webserver.
So what thinkest thou? Kill the shell, will we also kill Nitrogen?
Let’s try. Type “q()” at the Erlang shell prompt:

Running Erlang
Eshell V6.0 (abort with ~G)
(nitrogen@127.0.0.1)1> q().

22

Promising— we see:

ok
jesse@Bob:~/testproj/site/src$

Now refresh your browser:
Unable to connect

Good on ya. The foul deed is done.

The “q()” command is one of several ways to exit from the Erlang shell.
Dig into the Erlang docs to discover others. Don’t forget that every Erlang
shell command must be terminated with a period before the command will
execute.

Sooner rather than later you’ll need to know your way around the Erlang
shell. Why not start now? Make it your best friend.

http://www.erlang.org/doc/man/shell .html

3.2. Create a new project

So now, back to business. Our first step is to create a new project. But
first, we face two decisions:

1. Compile a “full” or “slim” release?
2. On which webserver?

As you’ll recall, when we first installed the nitrogen demo, we entered the
following command:

~/nitrogen$ make rel_inets

23

Result: Erlang compiled a “full release” on inets, Erlang’s built-in web-
server. The release included ERTS, the Erlang Run Time System, and all
else required to run the demo.

http://erlang.org/doc/man/inets.html
www.erlang.org/documentation/doc-5.0.1/pdf/erts-5.0.1.pdf

Tar up a full release, ship it to another ’ix system, and it will run without
the bother of installing Erlang separately.

Turns out, if Erlang is installed on the target system, you won’t need
ERTS. In this case you can compile a “slim release.”

We'll go for slim here.

Added bonus: Nitrogen offers a selection of webservers. See Chapter 13:
How to Choose a Webserver.

Since we expect nb to experience very light loads, we’ll stick with inets.
Also, let’s call this project nb for nitroBoard. Thus, we enter:

~/testproj/site/src$ cd ~/nitrogen
~/nitrogen$ make slim_inets PROJECT=nb

From here on we’ll morph the nitrogen demo source into nb. Anything
can happen, so let’s put nb under version control. (Gt is our version control
system.

http://git-scm.com/

Appendix D will bring you up to speed on our git workflow. When you’ve
finished your app, we’ll post it up on GitHub.

24

~/nb$ git init

Initialized empty Git repository in

/home/jess/nb/.git

Let’s peek at what we've got:

~/nb$

drwxrwxr-x
“TW-TW-r——
“TWXTWXY—X
drwxrwxr-x
“TWXTWXr—X
drwxrwxr-x
drwxrwxr-x
drwxrwxr-x
“TW-TW-Ir——
“TW-IW-r——
“TWXTWXr—X
“TW-TW-Ir——
drwxrwxr-x
drwxrwxr-x

1ls -al

WKL, PP, P, WoOoONFE, NP =N

8

jess
jess
jess
jess
jess
jess
jess
jess
jess
jess
jess
jess
jess
jess

jesse@Bob:~/nb$

Way cool!

jess
jess
jess
jess
jess
jess
jess
jess
jess
jess
jess
jess
jess
jess

4096
89
17922
4096
1323
4096
4096
4096
1927
1027
135939
1216
4096
4096

May
May
May
May
May
May
May
May
May
May
May
May
May

16
16
16
16
16
16
16
16
16
16
16
16
16
16

12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:

14
14
14
14
14
15
14
14
14
14
14
14
14
14

bin
BuildInfo.txt
do-plugins.escript
etc
fix-slim-release
.git

1ib

log

Makefile
plugins.config
rebar
rebar.config
releases

site

25

Lots to be learned in this directory— in particular, bin and site will play
big in our life. The bin directory contains useful tools; site is where we’ll
find all the files we need to run our site.

For present purposes we can ignore the other directories so don’t feel
overwhelmed. Do note, however, the .git directory. This is where git
stores version records.

For now, we want to bring up the demo source and start morphing it to
our needs.

Double-check that you've closed the Nitrogen instance you were working
with earlier and that no other programs are using port 8000.

Now enter:

~/nb$ bin/nitrogen console

We're back in the Erlang shell— covering old ground now:

Erlang/0TP 17 [erts-6.0] [source] [64-bit] [smp:3:3]
[async-threads:5] [hipe] [kernel-poll:truel

Running Erlang Eshell V6.0 (abort with ~G)
(nb@127.0.0.1)1>

There’s ye olde Erlang shell. Keep an eye on it. It will come in handy.
Now, open our new instance of Nitrogen in your browser:

localhost:8000

26

And there, in the browser, is our patient, all prepped out for cosmetic
surgery.

So now, IN A NEW TERMINAL, e.g. Unix shell, open up the site
directory. You now have two terminals open. We’ll work in the Unix shell:

~/nb$ cd site
~/nb/site$ 1s -1

Looks familiar:

drwxrwxr-x 2 jess jess 4096 May 12 15:02 ebin
drwxrwxr-x 2 jess jess 4096 May 12 15:02 include
drwxrwxr-x 4 jess jess 4096 May 12 15:02 src
drwxrwxr-x 6 jess jess 4096 May 12 15:02 static
drwxrwxr-x 2 jess jess 4096 May 12 15:02 templates

And so, Nurse Rached, it’s time. Scalpel!

3.3. Prototype welcome page

First cut, let’s say nb needs two user-facing pages:
e inder — lobby display
e visitors _admin — maintain visitor appointments

The Nitrogen demo conveniently provides an index page that we can morph
into our welcome board. Indeed, you're looking at it in your browser. From
your work terminal, e.g. Unix shell, bop into the src directory and open
up index.erl:

27

~/nb/site$ cd src
~/nb/site/src$ vim index.erl

The indezx.erl file is a plain vanilla Erlang module. In a moment, we’ll make
minor changes to the function inner_body/0. But first, shift attention back
to the Erlang shell:

Running Erlang
Eshell V6.0 (abort with ~G)
(nitrogen@127.0.0.1)1>

At the Erlang shell prompt enter the following:

(nitrogen@127.0.0.1)1> sync:go().

And you should see:

Starting Sync (Automatic Code Compiler / Reloader)
Scanning source files...

Growl notifications disabled

ok

What happened here?

28

The Erlang function sync:go/0" tracks and automatically compiles changes
that you make in Erlang source files. It’s pretty neat.

Let’s change the function inner body/0 in index.erl. Out of the gate,
the first few lines of inner_body/0 look like this:

inner_body() ->
[
#h1 { text="Welcome to Nitrogen" },
#p{},
n

If you can see this page, then your Nitrogen
server is up and running. Click the button
below to test postbacks.

#p{},
#button { id=button, text="Click me!",
postback=click 1},

#p{},

Make the following changes and save:

1Sync is an application for automatically recompiling and loading changes to Erlang
code. While it was originally a part of Nitrogen, it has since been split off into its
own application which can be used in any Erlang application. You can find it on
Github: https://github.com/rustyio/sync

29

inner_body() ->
[

#h1{ text="Erlingo! WEBSPINNERS" },

#h1{ text="WELCOME!" },

#h2{ text="Joe Armstrong" },

#h2{ text="Rusty Klophaus" },

#p{},

#button { id=button, text="Click me!",
postback=click },
#p{},

Cast your eye at Erlang shell, refresh your browser, and behold:

=INFO REPORT==== 17-May-2014::14:32:48 ===
/home/ jesse/nb/site/src/index.erl:0: Recompiled.
=INFO REPORT==== 17-May-2014::14:32:48 ===

index: Reloaded! (Beam changed.)

Refresh your browser and, by gum!, to delight of our eyes, your changes
have been compiled!

No, that screen ain’t pretty. But it gives us something to work with.
What’s going on here?

3.4. Anatomy of a page
In Nitrogen-speak a page is an Erlang module. It is NOT an HTML page,

but it will help build one.
Let’s examine indez.erl. The first few lines are plain vanilla Erlang:

30

%h —*- mode: nitrogen —*-

-module (index) .

-compile(export_all).
-include_lib("nitrogen_core/include/wf.hrl").

The first line is a comment. The percent symbols at the beginning of the
line gives it away. The next three lines are Erlang attributes. The hyphen
at the beginning of the line give them away.

The first attribute, -module, with appropriate argument, is mandatory
in every Erlang module. It declares the name of the module. Note that
the name of the module is the same as the filename less the suffix “.erl”
This is also mandatory in Erlang. Also note that module attribute ends
with a period, as do all Erlang attributes and functions.

The second attribute declares which functions in the module can be
exported. In this case, every function in index is exported, that is, can
called from other modules.

If we wished to export a subset of functions and keep others private,
we’d use a different attribute, —export ([<export1/n1>, <export2/n2>,
D

The third attribute, -include, imports the wf.hrl file from the include
file. Usually, *.hrl will import one or more record definitions.

Now note that index.erl has five functions, main/0, title/0, body/0,
inner-body/0, and event/1. Each function has the form <function
name>(<function arguments>) -> <function body>.

Again, note the period at the end.

If you glance back and forth between the body of the five functions in
index.erl and the copy displayed in the browser, you should gain a fair
understanding of each function’s purpose in life. The function main/0
might trip you up. If you guessed that it’s calling the template bare.html
you'd be right on the button.

31

What's with this function/X thing we keep writing?

You may have noticed that we're referring to functions in an odd way:
body/0, sync:go/0, etc.. This is using an Erlang convention of refer-
ring to functions by their arity. Arity means “the number of arguments
that can be passed to a function.” So sync:go/0 is simple: it takes zero
arguments, meaning it can be called like sync:go(). By comparison,
the Erlang function 1ists:map/2 takes two arguments, and is called like
lists:map(SomeFunction, SomeList). Further, this convention passes
as a part of Erlang’s syntax and its support of first class functions . You
can pass around function references as arguments by assigning them to
variables using this arity syntax. For example:

MyFunction = fun my_module:some_fun/3,
MyFunction(A, B, C).

Simply put, this will assign the my_module:some_fun/3 function to the
variable MyFunction, and then MyFunction can be invoked exactly the
same as my_module:some_fun/3.

So now you know.

The purpose of event/1 shouldn’t surprise you. It implements an action
triggered by a button click, giving us a clue as to how Nitrogen implements
interactive functionality.

Take away: an HT'ML page in Nitrogen is rendered by an HTML tem-
plate that embeds an Erlang module called a Nitrogen page. Each Nitrogen
page should accomplish just one task such as:

e Allow the user to log in (user__login.erl).
e Change the user’s preferences. (user__preferences.erl)
e Display a list of items. (items_ view.erl)

e Allow the user to edit an item. (items__edit.erl)

32

So how is a Nitrogen page rendered?
Here’s the simple story:

1.
2.

d.
6.

User hits a URL.
URL is mapped to a module.

Nitrogen framework calls module:main()

. module:main() calls a #template{}

#template{} calls back into the Nitrogen page (or other modules)

Nitrogen framework renders the output into HTML/JavaScript.

Hot diggity! We're in the thick of it now.

Brief aside: See if you can find an Erlang list in inner body/0. It will
look like [a,b,c,...]. What do you suppose that’s about?

Lists are big business in Erlang. More here:

http://www.erlang.org/doc/man/lists.html

3.5. Anatomy of a route

Note step two above. A URL that maps to a module is called a route.
Here’s how Nitrogen processes routes:

e Root page maps to index.erl

http://localhost:8000/ -> index.erl

e If there is an extension, assume a static file

http://localhost:8000/routes/to/a/module
http://localhost:8000/routes/to/a/static/file.html

33

Replaces slashes with underscores

http://localhost:8000/routes/to/a/module ->
routes _to_a module.erl

Try the longest matching module

http://localhost:8000/routes/to/a/module/foo/bar ->
routes_to_a_module.erl

Modules that aren’t found go to web_404.erl if it exists

Static files that aren’t found are handled by the underlying platform
(not yet generalized.)

This suggests that nitroboard will have at least three pages: index.erl, vis-
itors_admin.erl, and directory _admin.erl. They will be called as follows:

http://localhost:8000/ -> index.erl
http://localhost:8000/visitors/admin -> visitors_admin.erl
http://localhost:8000/directory/admin -> directory_admin.erl

With routes under our belt, what’s this template business?

3.6. Anatomy of a template

A template is your grandfather’s HTML page with a dash of Nitrogen’s
secret sauce— one or more callouts. The callout below, for instance, slurps
a Nitrogen page into the Template:

[[[module:body()]1]1]

This callout slips JavaScript into the Template:

34

[[[script]]]

The callouts look like Erlang, but don’t be fooled. They have similar form,
module:function(Args), but they’re pure Nitrogen, and they won’t render
full

3.7. Elements
An element is a chunk of HTML or an Erlang record that renders to HTML.
Knew you’d ask. Here’s Jesse’s twenty-second take on Erlang records:
e A tuple is a basic Erlang data structure of the form:
{<datum 1>, <datum 2>, <datum 3>}

e Tuples are fixed length, but can be any length. Problem is, tuple gets
too long, you get confused as to which chunk of data goes into which
slot.

e An Erlang record is, arguably, a hack to solve the problem. In source,
an Frlang record is defined as:

#label {namel=<datum 1>, name2=<datum 2>,
name3=<datum3>}

e When compiled, our record is a plain old tuple. But the record defi-
nition provides the compiler with enough information to enable you
to address fields in the tuple by name.

More here:

http://www.erlang.org/doc/reference_manual/records.html

35

So, if our page contains an element of the form:
#label { text="Hello World!" }.

It will render as:

<label class="wfid_tempNNNNN label">Hello World!</label>

Each Nitrogen element has a number of basic properties. All of the prop-
erties are optional.

e id — Sets the name of an element

actions — Add Actions to an element. Actions are described later

show__if — Set to true or false to show or hide the element

class — Set the CSS class of the element

style — Add CSS styling directly to the element

Look over the Erlang record definitions, er, I mean, Nitrogen elements in
index:inner_body/0.

Extra credit: map each element to:
1. An Erlang tuple
2. HTML.

The index:inner_body/0 bit? That’s more Erlang speak for module, func-
tion, and arity, where arity is number of arguments. But you knew that
already.

More here:

36

https://github.com/nitrogen/nitrogen/wiki/
Nitrogen-Elements

Nitrogen sports more than 70 elements for most anything you want to

display on the screen. Categories include:
e html
e html5
e forms
e layout
e mobile
e tables
e other
Check it out:
http://nitrogenproject.com/doc/elements.html
Find examples, including module source, here:
http://nitrogenproject.com/demos/simplecontrols

And more :

http://nitrogenproject.com/demos

If none of the elements provided by Nitrogen suit, you can create your own.

See Chapter 15.

37

3.8. Actions

A Nitrogen action can either be JavaScript, or some record that renders
into JavaScript.
Examples:

e #button { text="Submit", actions=[
#event{type=click, actions="alert(’hello’);"}

1}

e #button { text="Submit", actions=[
#event{type=click, actions=#alert { text="Hello" }

1}

Sometimes setting the actions property of an element can lead to messy
code. Another, cleaner way to wire an action is the wf :wire/N function:

o wf:wire(mybutton, #effect{effect=pulsate})

The above code might not do what you expect. Indeed, as written, it would
immediately cause the mybutton element to pulsate, rather than pulsating
when you click the button. Instead, you’ll want to use the #event{} action
to require some kind of user interaction to trigger the action.

Example:

wf:wire(mybutton, #event {type=click, actions=[
#effect {effect=pulsate}
15

It’s worth noting here that there are also a few elements that contain helper
attributes called click (most notably #1ink{} and #button{}), so that
you don’t have to use the actions attribute:

o #button{text="Submit" click=#alert{text="Hello"}}

38

3.9. Triggers and Targets

All actions have a target property. The target specifies what element(s)
the action effects.

The event action also has a trigger property. The trigger specifies what
element(s) trigger the action.

For example, assuming the following body:

[#label { id=mylabel, text="Make Me Blink!" },
#button { id=mybutton, text="Submit" }]

The following twocalls are identical in that both will make it so that when
you click the “Submit” button, the label will pulsate (I've bolded the key
differences for clarity):

wf :wire(#event{type=click, trigger=mybutton, target=mylabel,
actions=#effect { effect=pulsate } }).

wf:wire(mybutton, mylabel, #event{type=click,
actions=#effect { effect=pulsate } }).

As you see, you can also specify the Trigger and Target directly in wf :wire/N.
It takes three forms:

e Specify a trigger and target.
e Use the same element for both trigger and target.

e Assume the trigger and/or target is provided in the actions. If
not, then wire the action directly to the page. (Useful for catch-
ing keystrokes.)

Examples:

o wi:wire(Trigger, Target, Actions)

39

o wf:wire(TriggerAndTarget, Actions)
o wf:wire(Actions)
Confused? Here’s the big picture:
1. Elements make HTML.
2. Actions make JavaScript.
3. An action can be wired using the actions property, or wired later
with wf:-wire/N. Both approaches can take a single action or a list of

actions.

4. An action looks for trigger and target properties. These can be spec-
ified in a few different ways.

5. Everything we have seen so far happens on the client.

Hey, Dude, volleyball time— nerds vs. marketing. Let’s wrap this puppy
manana.

3.10. Enough theory

Mornin’, Dude. My my— look at those bloodshot eyes. Up all night
studying Erlang I take it.

Marketing sent us a corporate logo file. It’s called erlingologo.png. I've
taken liberty of storing it in ~/nb/site/static/images.

Note: You can clone it here: XXXXXXX. Or, you can make your own
* png image and fake it.

40

WEBSPINNERS

5/'/'/70/

As you'll recall, we stubbed the logo into our prototype page with the
following element:

#h1 { text="Erlingo! WEBSPINNERS" }

Problem is, we’d like the logo to show up on all user-facing pages. We
COULD insert the logo element in every page. But there’s a more efficient
way— install it in the template.

So let’s do that.

In your Unix shell, open bare.html:

~/nb/site/templates$ vim bare.html

And add the following code:

41

<body>
<div class=container_12>
<div class="grid_8 prefix_2 suffix_2">
<div class="grid">

<img src="/images/erlingologo.png"
style="width:100%" />

[[[page:body()]1]]
</div>
</div>
</div>

<script>
[[[scriptl]l]
</script>
</body>
</html>

So that’s good to go.

No we’re going to make some slight changes to the homepage (index.erl).
If, by chance, you closed your Erlang shell, re-open it:

~/nb$ bin/nitrogen console

Don’t forget to call sync:go() so that we can take advantage of Erlang’s
sweet auto-code reloading.

42

Running Erlang
Eshell V6.0 (abort with ~G)
(nitrogen@127.0.0.1)1> sync:go().

Now, in your Unix shell, open indez.erl:

~/nb/site/templates$ cd ../src
~/nb/site/src$ vim index.erl

Time now to morph index.erl for real. Delete event/1 and inner_ body()
and revise body () to look like this

body () ->
[#h1 { text="WELCOME!" },
#h2 { text="Joe Armstrong" },
#h2 { text="Rusty Klopaus" }
1.

Now, call up your browser:

localhost:8000

43

And— Bingo!

That was easy. With a touch of work in CSS we could reposition the
welcome line to make it more attractive, but we’ll do that later. Let’s focus
on the visitor functionality. This may get tricky.

3.11. Visitors

On some days FErlingo! has no VIP visitors. On a busy day, we may have
three or four. Miss Moneypenny, Bossman’s secretary, books visitors days
in advance. So this suggests that we need a database of visitors. Nothing
fancy. Suppose records in this database have the following fields:

Date
Time
Name
Company

Now, suppose we have a cron task that queries the database on the date
field every morning just after midnight to retrieve visitors of the day. The
system then sorts and formats the names and displays them on the welcome
page. No visitors, it displays nothing.

But for now, let’s keep it simple. Miss Moneypenny can simply refresh
the browser every morning when she waters the plants.

So onward—

First off we need to define the visitor record.

Follow closely. We're going to skim over crucial Erlang concepts.

Review the following for nitty gritty details:

http://www.erlang.org/doc/reference_manual/records.html
http://www.erlang.org/doc/man/dets.html

44

Visitor record

First we need to drop into ~/nb/site/include:
~/nb/site/src$ cd ../include
Now create a new file nb.hrl:
~/nb/site/include$ vim nb.hrl
Insert the following line:
-record(visitor, {date, time, name, companyl).

And save the file.

We've just defined a visitor record.

So what’s going on here? Our visitor record definition may be used in
more than one module. So we've created a file, nb.hrl, that can be included
in those modules. The include directory is an Erlang OTP convention
designed for just this purpose. More here:

http://stackoverflow.com/questions/2312307/
what-is-an-erlang-hrl-file
http://www.erlang.org/documentation/doc-5.2/

doc/extensions/include.html

We have one more crucial step, so be patient. We need to create a set of
functions that enable us to create and retrieve visitor records. Let’s do this
in a module called visitors db.erl:

~/nb/site/src$ vim visitors_db.erl

45

Now insert the following:

Ity === m
%h’% @author Lloyd R. Prentice and Jesse Gumm

%h’% @copyright 2014 Lloyd R. Prentice and Jesse Gum
%%% @doc Visitor database functions

%hl @end

A S e e e e e e e e
%% Store visitor data for nb

-module(visitors_db) .

-compile(export_all).

-include("nb.hrl").

We'll add the create and retrieve functions later. But, for now, let’s open
up a second work terminal so we can play:

~/nb/site/include$ cd ../site
~/nb/site/$ erl -pa ebin

Running Erlang
Eshell V6.0 (abort with ~G)
1>

As you’ve guessed, the erl -pa ebin command opens the Erlang shell and
points to the ebin directory.
To work with records in the shell, we must first read them in:

46

Eshell V6.0 (abort with ~G)
1> rr(visitors_db).
[visitor]

This command reads all the record definitions that have been included in
the visitors db.erl module.
Here’s how we can examine the definition of visitor :

2> rl(visitor).

And we see:
-record(visitor,{date,time,name, company}) .

This raises a question, however. How should we format date and time?
Erlang has a calendar library that can help. The following sequence of
Erlang shell commands suggest how:

3> {Date, Time} = calendar:local_time().
{{2014,5,20},{16,6,57}}

4> Date.

{2014,5,20}

5> Time.

{16,6,57}

6>

As you can see, the command {Date, Time} = calendar:local time()
pattern matches the output of the Erlang function calendar:local time()

47

to capture current date and time in the variables Date and Time. Date is
represented as a tuple: {Year, Month, Day}; Time as: {Hour, Minute,
Second}.

Note: The library module calendar is included in the Erlang OTP
STDLIB application. It includes a number of useful date/time functions.
More here:

http://www.erlang.org/doc/man/calendar.html
http://www.erlang.org/doc/man/STDLIB_app.html

That settled, let’s create a record:

6> V1 = #visitor{date=Date, time=Time, name="Jesse James",
company="Erlingo!"}.

#visitor{date = {2014,5,30}, time = {11,25,54},
name = "Jesse James", company = "Erlingo!"}

We can retrieve data from this record in two ways.

By field:

7> Vi#visitor.name.
"Jesse James"

Or, through pattern matching:

48

8> #visitor{date=Datel, time=Timel, name=Name,
company=Company} = V1.

9> Datel.

{2014,5,30}

10> Timel.

{11,25,54}

11> Name.

"Jesse James"

12> Company.

"Erlingo!"

Yippy! We can now create records, stuff 'em with data, and pop it back
out. Extra points if you can explain why we named the variables above
Datel and Timel rather than Date and Time. Hint:

http://www.theerlangelist.com/2013/05/working-with-immutable-data.html
But where should we store our records?
Erlang delivers just the ticket— dets.
Persistence
Dets stands for Disk Erlang Term Storage.
http://www.erlang.org/doc/man/dets.html

An Erlang term is any data item. So dets helps us store any Erlang data
item to disk.

Let’s explore. First let’s create a visitors database, specify the key posi-
tion, and table type:

49

13> dets:open_file(visitors, [{keypos,#visitor.date},
{type,bag}]).
{ok,visitors}

So what’s this {type,bagl} bit? We could tell you, but then we’d have
to shoot you. Hint: check the dets man page— link noted above.

Now we can play:

14> dets:insert(visitors, V1).

ok

15> dets:lookup(visitors, Date).

[#visitor{date = {2014,5,30}, time = {11,25,54},
name = "Jesse James", company = "Erlingo!"}]

16> V2 = #visitor{date=Date,time={12,20,11},

name="Rusty Scupper",company="Erlingo!"}.

17> dets:insert(visitors,V2).

ok

18> V3 = #visitor{date={2014,6,1}, time={14,0,0},

name="Joe Armstrong"}.

#visitor{date = {2014,6,1},

time = {14,0,0%},

name = "Joe Armstrong",

company = undefined}

FExcelente!

Let’s see who's coming in on May 30, 2014:

50

19> dets:lookup(visitors, Date).
[#visitor{date = {2014,5,30%},
time = {11,25,54},

name = "Jesse James",

company = "Erlingo!"},

#visitor{date = {2014,5,30%},
time = {12,20,11},

name = "Rusty Scupper",
company = "Erlingo!"}]

Ah, a list of two visitors, Jesse and Rusty.

Close out the database for now.

20> dets:close(visitors).

Formatting the visitor data

It’ll pay us to think through one thing before we go further: how to format
our data.

Note— our May 30, 2014 query returned two visitors.

For each record in the list, we need to extract the data and format it
for suitable display. Let’s focus first on how to extract data from a single
record. Pattern matching serves us well here. Say we have the following
record :

o1

21> V4 = #visitor{date={2014,5,21}, time={14,58,03},
name="Francesco Cesarini",
company="Erlang Solutions"}.

We don’t care about date and time since we’re not going to display it,
so we can format the name like this:

22> NN = V4#visitor.name.

"Francesco Cesarini"

23> CC. = V4#visitor.company.

"Erlang Solutions"

24> [NN," - ",CC].

"Francesco Cesarini, Erlang Solutions"

Wait a sec! What kind of cockamammy thing is going on in step 247

Well, we can see that it’s a list— a variable, a string, and another vari-
able. But what good does that do us?

A bunch!

It’s what’s known in Erlang circles as an i/o list (see page 211 for more
information). Erlang will conveniently instantiate the variables and con-
catenate all the terms for us when it sends it through standard output or a
network socket. Saves programming hassle and considerable CPU cycles.

So, now, our database query returns a list of names. What next?

Erlang has a powerful tool for processing elements of a list— the list
comprehension:

http://www.erlang.org/doc/programming examples/
list_comprehensions.html

Think about what we need to do:

52

e Extract every item in a list

e Format each item as it comes off the list

e Push the formatted value onto a new list

So lets look at how to do this with our list of visitors using an Erlang list
comprehension:

25> Formatted_Visitors = [format_visitor(Visitor) ||
Visitor <- Visitors]
[["Jesse James"," - ","Erlingo!"],
["Rusty Scupper"," - ","Erlingo!"]]
26>

Read the list comprehension right-to-left and it should be transparent.
Note the result— two i/o lists.

So now, we need to wrap up what we’ve learned.

Visitors database

So now we turn our attention back to the visitors database. Open a file
called visitors db.erl

~/nb/site/src$ vim visitors_db:erl

And enter the following:

23

54

R ettt
%h’% @author Lloyd R. Prentice and Jesse Gumm
%h’% @copyright 2014 Lloyd R. Prentice and Jesse Gum
%%h% @oc Visitor database functions
%%t @end
Y A
-module (visitors_db).
-compile(export_all).
-include("nb.hrl").
B
%% Visitors: Exported functions
Ity ————mmmmm e mmm
%% @doc Open the visitors database
open_visitors_db() ->

File = visitors,

{ok, visitors} = dets:open_file(File,

[{keypos,#visitor.date}, {type,bag}l).

%% @doc Close the visitors database
close_visitors_db() ->
ok = dets:close(visitors).
%% @doc Enter VIP visiting the very day
put_visitor(Record) ->
open_visitors_db(),
ok = dets:insert(visitors, Record),
close_visitors_db().
%% @doc Enter VIP visiting this very day
put_vip(Name, Company) ->
{Date, Time} = calendar:local_time(),
Record = #visitor{date=Date, time=Time,
name=Name, company=Companyl,
put_visitor(Record).
%% @doc Get visitors coming by today
get_visitors(Date) ->
open_visitors_db(),
List = dets:lookup(visitors, Date),
close_visitors_db(),
Listl = lists:sort(List),
Listl.
%% @doc Dump the db; handy for debugging
dump_visitors() ->
open_visitors_db(),
List = dets:match_object(visitors, ’_’),
close_visitors_db(),
List.

25

%% @doc Pretty print visitor by name, company, or both
format_name (#visitor{name=Name, company=""}) -> Name;
format_name (#visitor{name="", company=Companyl}) ->

Company ;
format_name (#visitor{name=Name, company=Company}) ->
[Name," - ",Company] .

Not much new here. Note the @doc comments. The Erlang documenta-
tion utility edoc reads these to create beautiful documentation. Also note
the function format_name/1. It employs pattern matching to deal with
three possible user inputs:

e name only

e company only

e name and comany

Visitors admin

We need now a form to enter visitors into our visitors’ database. Let’s
create that in a file called visitors admin.erl:

~/nb/site/src$ vim visitors_admin:erl

Here’s the code:

96

I e
%h#% @author Lloyd R. Prentice and Jesse Gumm

%ht @copyright 2014 Lloyd R. Prentice and Jesse Gum
%h% @doc Visitors admin page

%%t @end

I e S

-module (visitors_admin).
-compile(export_all).

-include_lib("nitrogen_core/include/wf.hrl").
-include("nb.hrl").
main() -> #template { file="./site/templates/bare.html" }.

title() -> "Visitor Admin".

body () ->
#panel{id=inner_body, body=inner_body()}.

inner_body() ->

%% We use defer here because this could

%% potentially be during a redraw. We want to

%% ensure the validators are attached *afterx

%% the form is drawn

wf:defer(save, name, #validate{validators=[

#is_required{text="Name or Company is

required", unless_has_value=company}

1B,

57

o8

wf:defer(save, datel, #validate{validators=[
#is_required{text="Date is required"}
10,
[
#h1{ text="Visitors" },
#h3{text="Enter appointment"},
#label {text="Date"},
#datepicker_textbox{
id=datel,
options=[
{dateFormat, "mm/dd/yy"},
{showButtonPanel, truel}]
},
#br{},
#label {text="Time"},
time_dropdown(),
#bor{},
#label {text="Name"},
#textbox{ id=name, next=company},
#br{},
#label {text="Company"},
#textbox{ id=company},
#br{},
#button{postback=done, text="Done"},
#button{id=save, postback=save, text="Save"}

time_dropdown() ->
Hours = lists:seq(8,17),

#dropdown {id=time, options=
[time_option({H,0,0}) || H <- Hours]l}.
time_option(T={12,0,0}) ->
#option{text="12:00 noon", value=wf:pickle(T)};
time_option(T={H,0,0}) when H =< 11 ->
#option{text=wf:to_list(H) ++ ":00 am",
value=wf :pickle(T)};
time_option(T={H,0,0}) when H > 12 ->
#option{text=wf:to_list(H-12) ++ ":00 pm",
value=wf:pickle(T)}.
parse_date(Date) ->
[M,D,Y] = string:tokens(Date, "/"),
{wf:to_integer(Y), wf:to_integer(M),
wf:to_integer(D)}.

29

event (done) ->

wf:wire(#confirm{text="Done?", postback=done_ok});
event (done_ok) —->

wf:redirect("/");
event (save) ->

wf:wire(#confirm{text="Save?", postback=confirm_ok});
event (confirm_ok) ->

save_visitor(),

wf:wire(#clear_validation{}),

wf :update (inner_body, inner_body()).

save_visitor() ->
Time = wf:depickle(wf:q(time)),
Name = wf:q(name),
Company = wf:q(company),
Date = parse_date(wf:q(datel)),
Record = #visitor{date=Date, time=Time, name=Name,
company=Company},
visitors_db:put_visitor (Record).

The functions main/0, title/0, body/0, and inner_body/0 should look
comfortably familar. If not, look back at index.erl. The lesson here is that
Nitrogen forms are as easy to create as straight HTML— just different
elements.

The two wf:defer/3 functions at the top inner_body/0 set up form-
field validation. More here:

http://nitrogenproject.com/doc/api.html#sec-4

60

wf:defer?

It’s worth mentioning wf:defer/N is what’s considered a sibling to
wf :wire/N (ther other sibling being wf :eager/N). Both functions wire ac-
tions to the browser. The difference here is that any actions wired with
defer will execute after any other actions wired with wire. Because our code
is destroying and redrawing form after every save (with the wf:update call),
we need to re-wire the validators. And because the validators are wired
inside the inner_body() function, when all is said and done, if the val-
idators were wired with wf :wire, the validators would be wired before the
update would be wired.

It’s all a little advanced for this early, so just go with us here. We're revisit
wf:eager, wf:wire, and wf:defer later.

Also note the Erlang function— time_dropdown/0. Look closely at the
list comprehension in time_dropdown/0. What’s that about? We leave
that to your brilliance. Hint:

http://www.erlang.org/doc/programming examples/list_comprehensions.html
The function time_option/1 demonstrates again pattern matching on
function parameters. It also introduces a new FErlang concept— guard
sequences. Guard sequences are quite handy. For details drop down to
section 8.24 in the Erlang Reference Manual User’s Guide:

http://erlang.org/doc/reference_manual/expressions.html

While you’re checking out guard sequences, study the rest of the Erlang
Reference Manual User’s Guide with great care. It will teach you much.

Note: We'll show you how to create a custom element for picking time in
Chapter 15 to replace time_dropdown/0. Stick with us. Should be fun.

61

There’s one more thing to observe with profit in wvisitors admin.erl—
event/1. Here’s our very first Nitrogen action in the wild. Here’s where
we validate data entry and post data back to the server. Note first that
event/1 is pattern matching on two Erlang atoms— save and confirm__ok.
First, glance back up to the two button elements at the end of in-
ner_body/0. These define the Done and Save buttons at the bottom of
our form. Done simply redirects the page to index.erl. Save initiates a
postback to event(save) which, in turn, brings up a confirmation dialog:

http://nitrogenproject.com/doc/actions/confirm.html

Note the postback in the #confirm element. Now, who in the world is it
talking to?

Give yourself a big gold star if you say event(confirm__ok).

Homework: What is event(confirm__ok) doing for us? If you're stumped,
check out these links:

http://nitrogenproject.com/doc/api.html#sec-3
http://nitrogenproject.com/doc/actions/clear_validation.html

We have one more crucial task. Know what?

Way to go, Dude , you're way ahead of me— we need to display visitors-
of-the-day on our welcome page.

Open index.erl and we’ll make some major changes.

~/nb/site/src$ vim index.erl

When done, it should look like this:

62

ol —

%kt @author Lloyd R. Prentice and Jesse Gumm

%kt @copyright 2014 Lloyd R. Prentice and Jesse Gum

%%% @doc nb home page

%okt Q@end

Tty —————m e m

-module (index).
-compile(export_all).

-include_lib("nitrogen core/include/wf.hrl").
-include("nb.hrl").

main() -> #template { file="./site/templates/bare.html" }.
title() -> "Welcome Board".

body () —->
Visitors = visitors_db:get_visitors(date()),
[
#h1{ text="WELCOME!" },

=N "

=N "

#list{numbered=false, body=
format_visitors(Visitors)},
#br{}
1.

format_visitors(List) ->
[format_visitor(X) || X <- List].

format_visitor(Visitor) ->

Name = visitors_db:format_name(Visitor),
#listitem{text=Name, class="visitors"}.

63

This might not be a bad time to check our progress. Open the browser
to:

localhost:8000/visitors/admin

If all looks well, fill in the appointment form and repoint your browser to:

localhost:8000

3.12. Styling

Don’t know about you, my friend, looks good but the composition of the
welcome screen offends me. We can fix that with a few judicious CSS
statements:

~/nb/site/src$ cd ../static/css
~/nb/site/static/css$ vim style.css

Now, in the h1 declaration, change:

font-size: 1.875em;
line-height: 1.066667em,;
margin-top: 1.6em;
margin-bottom: 1.6em;

64

To:

font-size: 3em;
line-height: 1.066667em;
margin-top: 0.2em;
margin-bottom: 0.6em;

And add the following declarations:

li.visitors {
font-size: 2em;
line-height: 0.2em;
margin-top: lem;
margin-bottom: lem; }

li.associates {
font-size: lem;
line-height: 0.2em;
margin-top: lem;
margin-bottom: lem; }

Refresh your browser.

localhost:8000

65

Not too shabby, eh?

3.13. Debugging

If the form had not shown up in the admin page, the problem would most
likely be in wvisitors _admin.erl. If the entry to the appointment form had
not show up, we’d have been in for stint of debugging— mainly check over
our our code in wisitors_db.erl, and wisitors__admin.erl meticulously. We
could also test exported functions in those modules by running them in
the Erlang shell. Here’s how:

(nitrogen@127.0.0.1)14> 1(visitors_db).

This loads the module visitors db.erl into the Erlang shell.

(nitrogen@127.0.0.1)14> visitors_db:dump_visitors().

You should see a record depicting the appointment you entered. If not,
check the functions in wvisitors db.erl with great care.

3.14. What you’ve learned

So, good chum, you've employed and seen in action 18 Nitrogen elements:

e F#Htemplate

66

e F#container

o Horid 8

e #hl

e #h3

e Hlist

o #br

o Hlistitem

e F#panel

e F#validate

e #is required

e Flabel

e #datepicker textbox
e #button

e ##dropdown

e F#option

e F#confirm

e F#clear validation

You've created Nitrogen forms and used Nitrogen events. You've created
an Erlang dets database and learned a smattering of Erlang along the way.
Good day’s work!

67

3.15. Think and do

Deploy and bring up nitroBoard on a local network so Miss Moneypenny
can enter VIP visitor’s from her desk.

68

4. nitroBoard ||

Miss Moneypenny wants an associates directory under the VIP list.

Easy enough, but here’s the tricky thing— she want’s the listing to show
whether the associate is in or out.

So, we need an associates database. Check. The associate record needs
a field to denote in or out. Check. But who toggles it? When and how?

OK, say we create a module called iam.erl. When associate enters local-
host:8000/iam into the browser address bar, they will:

e choose from a list which associate they are
e toggle their in or out status.
e redirects back to the welcome page.

Makes sense. Let’s get to it.

4.1. Plan of attack
1. Data persistence
a) associates db

2. Develop admin pages

a) associates form

3. Update welcome page

69

a) display associates
4. Style

5. Test/debug/revise

4.2. Associates

Let’s dive into the associates database first. Pretty much same-ol’ same-ol’.

Associate record

Drop into ~/nb/site/include and create a new file nb.hrl:

~/nb/site/src$ cd ../include
~/nb/site/include$ vim nb.hrl

Insert the following line:

-record(associate, {lname, fname, ext="", in=true}).

Save the file.

Associates database

Now, on to the associates database. Open a file:
~/nb/site/src$ vim associates_db:erl

And enter this code:

70

Ty e e e e
%h#% @author Lloyd R. Prentice and Jesse Gumm

%ht @copyright 2014 Lloyd R. Prentice and Jesse Gum
%%% @oc Associates data store

%%t @end

VAAA S

-module (associates_db).
-export ([
put_associate/1,
get_associate/1,
get_associates/0,
format_name/1,
format_in_status/1]).

-include("nb.hrl").
e

%% Associates: Exported functions

B

71

72

open_associates_db() ->
File = associates,
{ok, associates} = dets:open_file(File,
[{keypos,#associate.lname}, {type,set}]).

close_associates_db() ->
ok = dets:close(associates).

put_associate(Record) ->
open_associates_db(),
ok = dets:insert(associates, Record),
close_associates_db().

get_associate(LName) ->
open_associates_db(),
[Record] = dets:lookup(associates, LName),
close_associates_db(),
Record.

get_associates() ->
open_associates_db(),
List = lists:sort(dets:match_object(associates,
)-)))’
close_associates_db(),
List.

format_name (#associate{lname=LName, fname=FName,
ext=Ext}) ->
format_name (LName, FName, Ext).

format_name (LName, FName, []) ->
[LName, ", ", FNamel;

format_name (LName, FName, Ext) ->
Last_First = [LName, ", ", FName],
[Last_First, " - ext: ", Ext].

Note that differences between associates db.erl and wvisitors db.erl are
trivial.

But we do have an issue. We need an icon or other indicator to depict
when associate is in or out.

So let’s modify format_name/1 and format_name/3 and we’ll also add
a format_in_ status/1.

format name (#associate{lname=LName, fname=FName,
ext=Ext, in=In}) —>
Status = format_in_status(In),
format name(LName, FName, Ext, Status).

format_in_status(true) -> "IN: ";
format_in_status(false) -> "OUT: ".
format name(LName, FName, [], Status) ->

[Status, LName, ", ", FName]l;

format _name(LName, FName, Ext, Status) ->
Last First = [LName, ", ", FName],
[Status, Last First, " - ext: ", Ext].

Associates admin

Now, following the example of visitors, we need an associates admin page:

~/nb/site/src$ vim associates_admin:erl

The code is similar to visitors admin.erl:

73

74

Y R R S
%h’% @author Lloyd R. Prentice and Jesse Gumm
%h’% @copyright 2014 Lloyd R. Prentice and Jesse Gum
%h’% @doc Associates directory admin page
%h’%h Qend
Y A
-module (associates_admin).
-compile(export_all).
-include_lib("nitrogen_core/include/wf.hrl").
-include("nb.hrl").
main() -> #template { file="./site/templates/

bare.html" }.
title() -> "Associates Admin".
body () ->

wf:wire(save, lname, #validate{validators=
#is_required{text="Last Name Required"}}),

#h1{ text="Associates Directory" },
#h3{text="Enter directory listing"},
#flash{},

#label {text="LName"},

#textbox{ id=lname, next=fnamel},
#br{},

#label {text="FName"},
#textbox{ id=fname, next=emaill,
#br{},
#label {text="Extension"},
#textbox{ id=ext},
#br{},
#button{id=save, postback=save, text="Save"l},
#link{url="/", text="Cancel"}

1.

clear_form() ->

wf:set(lname, ""),

wf:set (fname, ""),

wf:set(ext, "").

event (save) ->
wf:wire (#confirm{text="Save?", postback=
confirm_ok}) ;
event (confirm_ok) ->
[LName, FName, Extension] = wf:mq([lname,
fname, ext]),
Record = #associate{lname=LName, fname=FName,
ext=Extension},
associates_db:put_associate(Record),
clear_form(),
wf:flash("Saved").

We do see one new element and three new Nitrogen API functions in
this module however:

e #flash{}

5

e wf:set/2
e wf:mq/3
e wf:flash/1

The #flash{} element defines a placeholder for flash messages created by
the wf:flash/1 command.

http://nitrogenproject.com/doc/elements/flash.html

The API function wf:set/2 should be obvious.

Getting up close and friendly with wf:mq/$ and its kissing cousins wf:q/1,
wf:qs/1, wf:mqs/1, wf:q_pl/1, and wf:qs_pl/1 is well worth your time since
these functions enable you to retrieve on the server side data posted back
from client-side forms.

http://nitrogenproject.com/demos/postback?2

Display associates

So what’s missing?

Right on!

We still need to display associates on the welcome board. We bring up
index.erl....

~/nb/site/src$ vim index.erl

And a few additions to indez.erl should do the trick:

76

body () ->
Visitors = visitors_db:get_visitors(date()),
Associates = associates_db:get_associates(),

L
#h1{ text="WELCOME!" },
#list{numbered=false,
body=format_visitors(Visitors)},

#br{>
#hr{} ’

#h4{ text="Associates Directory"},
#hr{})

#list{numbered=false,
body=format_associates(Associates)}

1.
format_associates(List) ->
[format_associate(X) || X <- List].
format_associate(Associate) ->

Name = associates_db:format_name(Associate),
#listitem{text=Name, class="associates"}.

Let’s take a look at what we’ve achieved:

localhost:8000/associates/admin

Enter a few associate names, then cancel. If all is well, you should see
the associates listed on the welcome board.

7

4.3. 1 am in/l am out

Our associates need to toggle their in/out status. We COULD do this by
adding a function to associates _admin.erl. But putting the in/out status
update function in a separate module gives us a more elegant, easier to
remember, url.

So, let’s create the module:

hloth —————m—mm e m e m o
%h’% @author Lloyd R. Prentice and Jesse Gumm
%kt @copyright 2014 Lloyd R. Prentice and Jesse Gum
%%% @doc Toggle in field
%k’ Qend
hhoth —————m——mmmm e m o
-module (iam).
-compile(export_all).
-include_lib("nitrogen_core/include/wf.hrl").
-include("nb.hrl").
main() ->
#template { file="./site/templates/bare.html" }.

title() -> "I am...".
body () ->

#panel{id=inner_body, body=inner_body()}.

78

inner_body() ->
L
#h1{ text="I am..." },
associate_dropdown(),
#button{id=toggle, postback=toggle,
text="Toggle"}

1.
format_iam(List) ->
[format_name(X) || X <- List].

format_name (Associate) ->
#associate{lname=LName, fname=FName, in=In} =
Associate,
Status = db_associate:format_in_status(In),
Name = [Status, LName, ",", FName],
#option { text=Name, value=LName }.
associate_dropdown() ->
Associates = associates_db:get_associates(),

#dropdown{
id=associate,
value="",

options=format_iam(Associates)
}.
event (toggle) ->
Associate = wf:q(associate),
Record = associates_db:get_associate(Associate),
wf:info("~w~n", [Record]),

79

Recordl = toggle_status(Record),
wf:info("~w~n", [Recordi]),
associates_db:put_associate(Recordl),
wf:redirect("/").

toggle_status(Rec = #associate{in=Status}) ->
Rec#associate{in = not(Status)}.

All the mysteries here are in format_name/1, but easy enough to tease
out. First we pattern match on the associate record to extract name and
status variables. Next we toggle the status flag and, finally concatenate
the variables to form a dropdown option string.

Note to Erlang newbies: Traditionally Erlang represented strings as
memory-hogging lists. This meant that the full fire-power of the list li-
brary could be brought to bear.

http://schemecookbook.org/Erlang/StringBasics

Since we're not concerned about memory, we use the list representation for
option strings in format_name/1.

Erlang also offers binaries which are more compact internally, and any-
where we use strings, we could use binaries.

http://www.erlang.org/doc/efficiency_guide/binaryhandling.html
But, fact is, it’s easy to convert between the two representations using the

BIFs 1ist_to_binary/1 and binary_to_list/1.

http://www.erlang.org/doc/man/erlang.html#binary_to_list-1
http://www.erlang.org/doc/man/erlang.html#list_to_binary-1

80

Nitrogen also offers some convenience methods wf :to_list/1 and wf:to_binary/1,
which are a bit more flexible than Erlang’s BIFs 1ist_to_binary/1 and
binary_to_list/l.

4.4. Styling

Let’s tweak the styling:

~/nb/site/src$ cd ../static/css
~/nb/site/static/css$ vim style.css

Add the following declarations:

li.visitors {
font-size: 2em;
line-height: 0.2em;
margin-top: lem;
margin-bottom: lem; }

1li.associates {
font-size: lem;
line-height: 0.2em;
margin-top: lem;
margin-bottom: lem; }

Refresh your browser.

localhost:8000

81

Not too shabby, eh?

4.5. What you’ve learned

So what think you, Dude? May have been a “boring” project, but nb had
much to teach, wouldn’t you say:

e Introduction to Nitrogen elements and actions
e How to build Nitrogen pages

How to build forms

Form-field validation

Postbacks

Simple data storage and retieval:

A taste of Erlang

4.6. Think and do

Suppose a VIP Visitor wants to leave a message for an associate who is
out. How would you modify nitroBoard to cover that case?

82

5. A Simple Login System

Before moving onto the next project, we're going to go on a tangent to
help you with a quick login system.

Most web applications will require the ability to log in. In this tangent,
we’ll give you a quick overview of how to implement a simple login sys-
tem. For this example, we're going to build a straight login system, some-
thing self-contained that doesn’t rely on other web services (like Facebook,
Twitter, or Google). To keep it simple, we’re going to create a brand new
application just for this.

Also, as we’ve only covered DETS for storage, we’re going to continue
to use DETS for this chapter. In the coming chapters, we’ll focus more on
other databases.

5.1. Getting Started

You still have the original Nitrogen project directory in ~/nitrogen, right?
Let’s head back there and make a new project.

83

$ cd ~/nitrogen
$ make slim_inets PROJECT=nitro_login

3k 2k 3k 3k 2k 3k 3k 3k 3k 3k 3k >k 3k 3k 3k 3k 3k 3k 3k >k ok 3k 3k >k 5k 3k 3k %k 5k 3k %k 3k 3k 5k %k %k 3k %k %k %k 3k %k %k %k %k %k

Generated a slim-release Nitrogen project
in ../nitro_login, configured to run on inets.
ok sk ok K ok ok ok ok e ok K ok ok ok K o ok ok k sk ok K ok ok ok k sk ok Kk ok ok k ok ok ok ok sk ok ok ok ok ok k 3k ok

$ cd ../nitro_login

We went with the “Slim” release here just to make it faster.

5.2. Dependencies

Before we can continue, we will want to include a decent hashing mecha-
nism!, and also ensure that the underlying hashing application is started.

5.2.1. Rebar Dependency: erlpass

The first step here will be adding the erlpass application as a rebar de-
pendency. Let’s open up your application’s rebar.config and add the
following line to the deps section:

More about proper password hashing and security on page 138

84

$ vim rebar.config

{deps, [
{erlpass, "", {git, "git://github.com/ferd/erlpass",
{branch, master}}},

1}.

Then we want to make sure we start the bcrypt app, which is actually
a dependency of erlpass. The simplest method would be to launch those
two apps from the command line. Edit the etc/vm.args file and add the
following line:

-eval "application:start(bcrypt)"

(Yes, there are better ways to start an app like this, but this is the quick
way to get it done).

Finally, let’s run “make” again, to bring in the erlpass and its dependen-
cies

$ make

5.3. The index page

We’re going to make a very simple index page that informs us of our logged-
in status. If we are logged in, it will present a logout link. Otherwise, it
will give us a link to a login form or an account creation form.

For example, we could do something like:

85

$ vim site/src/index.erl

-module (index) .

-compile(export_all).
-include_lib("nitrogen_core/include/wf.hrl").

main() -> #template{file="site/templates/bare.html"}.
body () ->

case wf:user() of
undefined ->

[
"Not Logged in.",
#or{},
#link{text="Log In", url="/login"},
"or ",
#link{text="Create an Account", url="/create_account"}
1;
Username ->
[
#span{text=["Logged in as ", Username,". "]},
#br{},
#link{text="Log out", postback=logout}
]

end.
event (logout) ->

wf:logout (),
wf:redirect ("/").

This simple module does one primary thing: Checks if we're logged in
or out, and if we’re logged out, links us to the login screen, othewise, it

86

gives us a link to log out.

Alright, our index page is created, let’s build it and fire up Nitrogen
right away to make sure everything is good to go. If you still have Nitrogen
from the previous chapter, you should probably kill it right now with q().
Otherwise, you'll get port-conflict errors (You could also change the port
in etc/simple_bridge.config).

Also, since we’re going to be doing live-coding from here on out, let’s
run sync:go () once Nitrogen is started.

$ make

$ bin/nitrogen console

1> sync:go().

Starting Sync (Automatic Code Compiler / Reloader)
Scanning source files...

Growl notifications disabled

ok

Go ahead and fire up your browser and navigate to http://localhost:8000

You should be greeted with a simple menu.

5.4. Creating an account

Now that we have our index page, we want to add a page to create our
account. Let’s get the boilerplate out of the way:

87

$ vim site/src/create_account.erl

-module (create_account) .
-compile(export_all).
-include_lib("nitrogen_core/include/wf.hrl").

main() -> #template{file="site/templates/bare.html"}.

title() -> "Create an account!".

Now let’s add the registration form:

body () ->
[

#label{text="Username"},
#textbox{id=username}l,
#label{text="Password"},
#password{id=password},
#label{text="Confirm Password"},
#password{id=password2},
#br{},
#button{text="Save Account", postback=save}

Finally, let’s handle the postback generated by the “Save Account” but-
ton.

88

event (save) ->
[Username, Password] = wf:mq([username, password]),
ok = db_login:create_account(Username, Password),
wf :user (Username) ,
wf:redirect("/").

So far, this should be pretty straightforward: We have a basic form that
presents a username and a password, and we have a postback that retrieves
the username and password, then calls a create_account/2 function in a
db_login module (which we haven’t made yet, but we will in a moment).
This function gives us a Userid, and we store the Userid in the session
with wf:user/1 and finally redirect back to the homepage.

5.4.1. db_login module

We need to create a module called db_login that interfaces with our login
database, and which also interfaces with our erlpass application.
Let’s get the boilerplate out of the way.:

$ vim site/src/db_login.erl
-module(db_login).
-export ([
create_account/2
D.
open_db() ->
Options = [{type,set}],
{ok, logins} = dets:open_file(logins, Options).
close_db() ->
ok = dets:close(logins).

89

So far, all we've done is create the module, export the create_account/2
function, set up a login record to normalize the storage in DETS, and set
up some basic, whi open and close operations for DETS.

Now it’s time to write our create_account/2 function. I'll take it slowly
for you so it’s clear what we're doing and why:

create_account (Username, Password) —->
open_db(),
PWHash = erlpass:hash(Password),

Alrighty, so far, all we’ve done is open the database, and then hashed the
password. We will end up storing this hashed password as our database.
For more explanation, see page 138.

dets:insert(logins, {Username, PWHash}),
close_db(),
ok.

The rest of this should be straightforward: we store the username and
hash in DETS (with the table key being Username), close DETS, and
return ok. In a real application, you would want to check to make sure
that username doesn’t already exist, and return an error if it does, but for
the sake of our demo, we won’t worry about that.

For the sake of clarity, here’s the full create_account/2 function:

create_account (Username, Password) ->
open_db(),
PWHash = erlpass:hash(Password),
dets:insert(logins, {Username, PWHash}),
close db(),
ok.

90

At this point, account creation works. Navigate to http://localhost:8000
and click the “Create an Account” link. You should be presented with a
new account form, and will be able to fill it out to attempt to log in.

5.5. The login form

Now it’s time to create the actual login form everyone knows and loves.
All we need is a username, password, and “Login” button:

$ vim site/src/login.erl

-module(login) .

-compile(export_all).
-include_lib("nitrogen_core/include/wf.hrl").

main() -> #template{file="site/templates/bare.html"}.
title() -> "Log In".

body () ->
[

#label{text="Username"},
#textbox{id=username},
#label{text="Password",
#password{id=password},
#br{},
#button{text="Log In", postback=login}

So far, it’s been pretty straightforward: we made a module that has a
simple login form. Now we just need to handle the postback login.

91

event (login) ->
[Username, Password] = wf:mq([username, password]),
case db_login:attempt_login(Username, Password) of
true ->
wf :user (Username) ,
wf:redirect("/");
false >
wf:wire(#alert{text="Invalid Username or Password"})
end.

Here we can see that we expect the db_login:attempt_login/2 func-
tion to return a boolean true or false, depending on the validity of the
login information provided. If it succeeds, we store the Username in the
session, and redirect back to the home page, otherwise, let’s give an error
and let the user correct their input.

5.5.1. Verifying the password (back to db_login)

And so we need to head back to db_login to add the newly referenced
attempt_login function (don’t forget to export it as well).

92

$ vim site/src/db_login.erl
—export ([
create_account/2,
attempt_login/2
.

attempt_login(Username, Password) ->
open_db(),
Result = case dets:lookup(logins, Username) of
[1 -> false;
[{_, PWHash}] ->
erlpass:match(Password, PWHash)
end,
close_db(),
Result.

So once again, we start by opening the table. Then we use the provided
username as the key to lookup if there are any records with that username.
If it returns an empty list, then we don’t have any matching usernames in
the database, and we can just return false. If it returns a single-element
list, we use pattern matching to pull out the PWHash. Then compare the
provided password’s hash against the password hash that was stored with
the username when it was created with erlpass:match/2

5.6. Some finishing touches
At this point, you should be able to create an account, log in, and log out.
But there are a few critical things missing, particularly validation on our

forms: verifying the provided passwords are the same, as well as verifying
that a username isn’t already taken.

93

So let’s add that necessary validation.

5.6.1. Adding Validation to the Login Form

The easy one is on the login form, so we’ll do that first. We just want to
make sure we require both fields.

$ vim site/src/login.erl
body () ->
wf:defer(login, username, #validate{validators=[
#is_required{text="Username Required"}]}),

wf:defer(login, password, #validate{validators=[
#is_required{text="Password Required"}]}),

L
#label{text="Username"},
#br{?},
#button{id=login, text="Log In", postback=login}

1.

Notice the wf:defer? commands inserted before the form itself. These
will add validators to the fields with the id set to username and password,
and the trigger being the button with the ID set to login. Notice then we
added id=login, to the #button{}.

Go ahead and check it out on the browser. The login form will now only

2We use wf:defer instead of wf:wire as a convention. wf:defer ensures that the
validators are sent to the browser last. In the situation above, it wouldn’t make a
difference, but if reworked the form to dynamically add or remove fields, we would
want to make sure the validators are sent last (to make sure that the newly generated
fields exist on the page before we try to attach validators to them).

94

work if you provide a username and a password, otherwise it’ll give you
some validation messages next to the input fields.

5.6.2. Adding Validation to Account Creation

Now it’s time to add validation to the account creation page.

We want to validate a few things:

1. The username, password, and password confirmation are all provided

2. The password and password confirmations match.

3. The username does not already exist in our system

Conveniently, items 1 and 2 are simple. Item 3 will require a little extra
work. We’ll do 1 and 2 first.

95

$ vim site/src/create_account.erl
body () ->
wf:defer(save, username, #validate{validators=[
#is_required{text="Username Required"}]}),
wf:defer(save, password, #validate{validators=[
#is_required{text="Password Required"}]}),
wf:defer(save, password2, #validate{validators=[

#confirm_same{text="Passwords do not match",
confirm_id=password}]}),

[
#label{text="Username"},
#br{?},
#button{id=save, text="Save Account", postback=save}

1.

So this pretty closely models what we did with the login form, but with
the addition of comparing the password and confirmation password. We
attach a #confirm_same{} validator to the password?2 field, and tell it to
compare against the field called password.

You might notice that we didn’t even attach an #is_required{} val-
idator to the password confirmation form. This is not an error. Since the
password field is already required, if the password confirmation field is left
blank, the validator will fail with “Passwords do not match.”

Now let’s add the validator to make sure the provided username isn’t
taken. We need to check the database for the username first, so let’s open
up db_login right away and make a username_exists/1 function. We'll
end up using that in our create_account module.

96

$ vim site/src/db_login.erl
-module(db_login) .
-export ([
create_account/2,
attempt_login/2,
username_exists/1

1.

username_exists(Username) ->

open_db(),

Exists = case dets:lookup(logins, Username) of
[1] -> false;
_ => true

end,

close_db(),

Exists.

This should look strikingly familiar to the existing attempt_login/2
function. Indeed, it has many similarities structurally. In this case, all
we're doing is getting a list of records with the key set to Username. If it
returns an empty list, and we return false. Any other return value then
the username does exist in the database, so we return true.

You might even recognize that the whole case expression could be re-
placed with a one-liner like this:

Exists = dets:lookup(logins, Username) =/= [],

Which means “if the lookup returns anything other than an empty list, then
the username exists.” Feel free to use either, but I use the case statement
for the sake of obviousness.

Finally, let’s add the actual validation to our create account page. For

97

this, we need to use a custom validator, conveniently named #custom{}.
Here, we’ll be providing a function for the validator to call.

$ vim site/src/create_account.erl

is_username_available(available, Username) ->
not(db_login:username_exists(Username)) .
body () ->
wf:defer(save, username, #validate{validators=[
#is_required{text="Username Required"},
#custom{text="Username is taken",
function=fun is_username_available/2,
tag=available}]}),
wf:defer(save, password, #validate{validators=[
#is_required{text="Password Required"}]}),
wf :defer(save, password2, #validate{validators=[
#confirm_same{text="Passwords do not match",
confirm_id=password}]}),

We've only added a few lines here. The #custom{} validator needs a
function (with arity 2), which returns true if the validator succeeds and
false if the validator fails. In our case, we assign the function to fun
is_username_available/2, which we've defined right in our module. The
tag is a common convention within Nitrogen for identifying things. In our
case, we assigned it to the atom available, and matched again on it in
the first argument to is_username available/2.

Go ahead, load up the page and try everything out. You will no longer
be able to create an account with the same name as an existing account,
and all fields will be validated accordingly.

98

5.7. Closing thoughts on login systems

No doubt, there are still things missing from this: most notably password
changing and password recovery. Password changing is relatively easy,
especially with erlpass:change/3 and erlpass:change/4 functions. I
leave that exercise up to the reader.

Password recovery is a harder problem because you have to deal with
email, and is beyond the scope of this tiny chapter. We will deal with email
later in the book.

You can also tie your system to third-party login systems like Google,
Facebook, Twitter and the like, but for most business applications, you're
likely to want to keep your password and user management system internal.

5.8. Links

e The complete code for nitro_login:
https://github.com/choptastic/nitro_login

99

6. A Tale of Three Backends

101

7. nitroProjectLog

Rush job!

Ain’t they all.

Client needs a project log so team can post key points of progress and
store project documents in Dropbox-like storage.

Specs?

You kidding?

Brainstorming time!

OK, project team is scattered around the world. How about a blog-like
interface to maintain key points of progress?

Great idea. Post date, time, and name of team member at top of each
post.

These project documents? How big?

Blobs, hey— Big. Gotcha. How many?

Yikes!

How critical?

Bet-the-company critical, you say? Sounds like a job for a distributed
db like leoF'S.

We’ll need a good index.

Yeah, and authenticated access.

My suggestion? Let’s whip up a prototype for client approval before we
make it pretty.

Plan of attack

1. Create new project

103

2. Page templates

3. User access

4. Review log

5. Log entry

6. Review document index
7. Enter document

8. Retrieve document

We’'re on it

e Design and specs

e Uploading files

e Postbacks

e Comet/Websockets

e Simple Comet

e Comet Pools

e Working with the processes
e Sessions and State Tracking
e Sessions

e Authentication

e Page State

104

e Binding

e Basic Binding

e Advanced Binding

e Postbacks with Binding
e When not to use Binding
e Working with Databases
e REST interface

e REST handler

e leoFS

Notes

SKILLS

- log-in/user validation - user role enforcement - file upload - image
validation - storing image data - tag-based lookup - db facade

USE CASES

1) Software developers need to coordinate and track progress with off-site
developers.

Developers can enter and edit reports and upload text, *.jpg, and*.pdf
documents Clients can access and read reports and documents

2) International consulting firm needs to coordinate and track progress
of collaborative projects

Consultants can enter and edit reports and upload text, *.jpg, and*.pdf
documents Clients can access and read reports and documents

ROLES

105

— project manager - can grant access privileges — consultant - read /write /upload
privileges — client - read-only privilege

LOG-IN

— verify credentials — assign access privileges

Fk T will need help with roles and log-in

READ

— select timeframe; e.g. date 1 through date 2 — see titles/abstracts of
entries over timeframe — select item to read

— select tag — see tagged titles/abstracts by sorted by date — select item
to read

WRITE

— date time — title — abstract — tags — item/report — upload document -
text, *.jpg, *.pdf

K T'm presuming that we’ll use tinyMCE to edit items/reports. Looks
straight forward from your docs, but I may need help

**#% Need to validate uploads: how do we assure images are valid?

K It would be meat to factor this app into reusable components. I
don’t know the best way to do this. What do you think? My thoughts re
factoring below:

- log-in and user validation - db facade to test alternative dbs — open —
close — put — get — get-some — get-all - db - add-edit (tinyMCE) /file upload
— need to validate input - select by date range - select by tag - display
document — html, *.jpg, *.pdf

% How do we display *.pdfs?

106

8. NitroMail

Let me see those specs—

Users: mail clients, marketing department
Data: up to 500,000 records;

- e-mail address

- include-in-list tags,

- record source,

- status flags, e.g. opt-in|opt-out, active|bounced
Mail client interface: “Add me to your mailing list”
Marketing interface:

- List maintenance; add, edit, delete

- Bounce management

- Edit mail text

- Prepare and launch mailing

- Mailing status dashboard

SMTP vendor interface: Mailgun

Looks like straight-forward CRUD with a few flourishes. So, Dude, can
you cobble up a work plan?

Plan of attack
1. Pick a database

2. Create new project

107

3. Define records

4. Template user interfaces

5. Route

6. Integrate user interfaces with databases
7. Style

8. Test

9. Document

Off to the races

e Design and specs

e DB backends

- MySQL (sigma_sql?)

- PostgreSQL - Riak
- CouchDB

- MongoDB

Drag and Drop

Google Charts

Tweaking the web server

Making your own custom elements

Making your own custom actions

108

Custom Routing handler

Working with Plugins

- vagabond /gen-smtp

e Programming to an API

Launching your own addons during Startup

Using Nginx for running multiple instances

Hacking on Nitrogen (your own fork)

Notes

SKILLS

- log-in/user validation - user role enforcement - file upload - image
validation - storing image data - tag-based lookup - db facade

USE CASES

1) Software developers need to coordinate and track progress with off-site
developers.

Developers can enter and edit reports and upload text, *.jpg, and*.pdf
documents Clients can access and read reports and documents

2) International consulting firm needs to coordinate and track progress
of collaborative projects

Consultants can enter and edit reports and upload text, *.jpg, and*.pdf
documents Clients can access and read reports and documents

ROLES

— project manager - can grant access privileges — consultant - read /write/upload
privileges — client - read-only privilege

LOG-IN

— verify credentials — assign access privileges

109

F##% T will need help with roles and log-in

READ

— select timeframe; e.g. date 1 through date 2 — see titles/abstracts of
entries over timeframe — select item to read

— select tag — see tagged titles/abstracts by sorted by date — select item
to read

WRITE

— date time — title — abstract — tags — item/report — upload document -
text, *.jpg, *.pdf

K T'm presuming that we’ll use tinyMCE to edit items/reports. Looks
straight forward from your docs, but I may need help

K Need to validate uploads: how do we assure images are valid?

Rk It would be meat to factor this app into reusable components. I
don’t know the best way to do this. What do you think? My thoughts re
factoring below:

- log-in and user validation - db facade to test alternative dbs — open —
close — put — get — get-some — get-all - db - add-edit (tinyMCE)/file upload
— need to validate input - select by date range - select by tag - display
document — html, *.jpg, *.pdf

*##% How do we display *.pdfs?

110

Part Ill.

Core Nitrogen Concepts

111

9. How to choose a webserver

Cowboy is the newest popular webserver on the Erlang scene. Created by
Loic Hoguin, and under heavy development, it currently supports SPDY,
WebSockets (which Nitrogen will soon support), and follows a model that
differentiates itself from the other Erlang webservers: It doesn’t maintain a
process dictionary. Instead, it follows a more 'pure’ flow, by passing around
the a request object to each of Cowboy’s functions. It’s a lightweight and
high performance webserver, and very capable.

Inets is the built-in Erlang Webserver. It’s lightweight, and gets the job
done. Its biggest benefit is that it does not require any external dependen-
cies, since it’s a part of the standard Erlang release. If you have a simple
app that doesn’t require much by way of high performance, Inets will work.

Mochiweb is a simple webserver that sticks mostly to maintenance re-
leases these days, new features are no longer being added, so it seems
Mochiweb will forever not support Websockets. But it is a perfectly per-
formant server for most web application uses.

Webmachine is a webserver with an emphasis on creating great RESTful
APIs. The perfect use-case for using Webmachine with Nitrogen would be
to provide a powerful RESTful API for external apps (like mobile device
APIs), while also providing an interactive interface utilizing Nitrogen for
web users.

Yaws is the granddaddy of Erlang webservers. It’s tried and true, has
been around for many years, and continues to improve, including adding
Websocket support. It has solid performance metrics, and has a configu-
ration system modelled after Apache’s.

IN GENERAL if you are completely unsure which webserver to use, we

113

recommend choosing either Cowboy or Yaws for production environments,
as both provide quality performance, support websockets (which Nitrogen
is slated to support as of version 2.3), and both handle large files smoothly.

114

10. How to structure your
Nitrogen projects

115

11. Nitrogen Functions

117

12. Nitrogen Elements

119

13. Nitrogen Actions

e Wiring
e ...to the page
e ...to an element

e ...to a bunch of elements

...to another element triggered by another element

121

14. Nitrogen Templates

123

15. Anatomy of a page and the
path of execution

125

16. Comet and long-running
processes

127

17. Secure your site

Jesse munching on a pastrami sandwich:

Securing web applications in any framework requires employing a number
of standard practices.

Trust No One!

As displayed before most X-Files episodes: “Trust No One!”

Any data sent from the client cannot in any way be trusted: form inputs
(POST Variables), URL paths and Query Strings (any characters found
after a question mark in the URL), even headers - all can be spoofed quite
trivially.

Conveniently, Nitrogen cryptopgraphically signs and validates postback
requests, preventing CSRF (Cross-Site Request Forgery) attacks. If a post-
back request is made, but Nitrogen fails to decode the page state token,
the event/1 function on your page or element will never be executed.

But while the signed postbacks close that particular attack vector, that
still leaves plenty for us to do:

Prevent HTML injection

One of the most common methods for attacking a web application (popular
with spammers) is by attempting to inject HTML into fields in hopes that
it’s not sanitized and entered directly into the database.

129

But Jesse, who cares if someone enters HI'ML into the database? HTML
is just text!

In many cases, it might be innocuous, like adding or <i> tags for
formatting, or making a friendly link to their resume, rather than pasting in
a long and ugly URL. But someone malicious might inject an image known
to exploit a weakness in the browser, providing the ability to run anything
an attacker might want. As an example, see http://j.mp/remotecode.

Another, more obvious attack would be the injection of a <script> tag.

Consider a forum. If a user can successfully get...

<script>location.href="http://evil-forum-clone.com/
fakethread"</scipt>

...to other clients, then every user who opened the post by the malicious
user would be redirected to the attacker’s fake site, which, incidentally is
a visual clone of the forum, in which the user is perpetually logged out.
Perhaps the user wishes to reply to the fake post, not noticing that the
domain name has changed — it looks the same after all! So the user clicks
the “Sign In” link, which takes you to a perfectly legitimate-looking login
screen and attempts to log in by entering their email address and password.

BOOM! YOU’VE JUST BEEN COMPROMISED.

Since you were on the malicious page, you've just sent your email address
to the malicious site. To be extra sneaky about it, the fake page could,
upon log-in form submission, immediately redirect back to the legitimate
site’s log-in form (since the log-in itself will fail). At that point, the user
would be completely unaware that anything malicious happened, and that
their account information has already been harvested.

This is the kind of danger present to your users if you fail to sanitize
your data from HTML or JavaScript injection.

Now that you know why you should sanitize your data, we will show you
how to sanitize your data.

130

The easiest option: An element’s text attribute

Most Nitrogen elements have both a body and a text attribute. The body
attribute will display data as presented, but the text attribute will apply
HTML encoding before rendering. Here’s a simple example:

MaliciousText = "<script>alert(’HAHA! Gotcha’)</script>",
#panel{body=MaliciousText}.

In the code snippet above, the injected javascript would be sent to the
client and executed in the browser because MaliciousText is not properly
encoded. The simplest way to ensure MaliciousText is not executed in
the browser is to use the text attribute:

MaliciousText = "<script>alert(’HAHA! Gotcha’)</script>",
#panel{text=MaliciousText}.

Simple, eh? I thought so.

Another easy option: HTML encoding.

The easiest option is to simply employ Nitrogen’s built-in HTML encoding
function: wf:html encode/1. Calling wf:html_ encode("<i>my awesome
words</i>"), will return "&1t;i>my awesome words</>", com-
pletely eliminating the possibility of injecting HTML.

Other options

There are other alternatives for HIML encoding to prevent injection:

e HTML sanitizing: Strip out potentially damaging tags or attributes.
This will allow your users to enter HTML into their form fields

131

to format their text, without the threat of injecting maliciousness.
The Erlang CMS Zotonic offers an HTML sanitizer you can use the
z_html:sanitize function from https://github.com/zotonic/z_stdlib

Markdown: Markdown is the new popular formatting kid on the
block. Markdown is a simple and ubiquitous, being used heavily from
Github to presentation slidedecks (like Reveal.js) to even authoring
books. You can find a solid Erlang Markdown encoder currently
maintained by Erlware:

https://github.com/erlware/erlmarkdown

BBCode: BBCode is a formatting markup language popularized
by the phpBB forum software. It looks like HTML, and when run
through a BBCode parser, gets converted to HTML while all actual
HTML gets encoded. BBCode encoding is very simple, without a
standard, and mostly okay. You can find a simple BBCode parser
and converter here (which converts between BBCode, Textile, RTF,
and HTML):

https://github.com/evanmiller/jerome

But even with the Markdown or BBCode solutions, you still need to make
sure that malicious attributes are stripped, as such, it’s usually a good
idea to do some HTML sanitizing after converting Markdown/BBCode to
HTML. Otherwise, a malicious user could do BBCode that looks like:

[url=javascript:alert(’I’m hacking your gibson!’)]
See my homepage[/url]

which would unfortunately render as

132

See my homepage

...which allows an attacker to (once again) execute arbitrary JavaScript on
the client.

Under most circumstances, simply encoding HTML is the appropri-
ate solution. The other methods should only be used when you absolutely
need to allow users to arbitrarily format text, such as forum posts or pages
of a Content Management System (CMS).

Prevent JavaScript Injection

While in the previous section, we witnessed JavaScript injection by means
of simply dumping in some <script> tags containing JavaScript, there
are other ways to get arbitrary JavaScript to execute on your site. If you
happen to have some script on your page using JavaScript strings, you're
going to make sure you escape any quotes, so as to prevent the script
from ending early. Consider something simple that you might have seen
on a homepage circa 1996, complete with <blink> tags, animated dripping
blood dividers and background MIDI music. Something like:

Click to welcome.

That little script might be complete innocuous on its own, but obviously
you can’t hardcode someone’s name — no one wants to be called by someone
else’s name, that’s just rude! Instead, you might build something on the
server and send it to the client, like this:

Name = wf:user(),
wf:f("
Click me", [Name]).

No doubt, this would work like above, except what if your user’s name was
something like “D’angelo”, surely you see what would happen:

133

Click to welcome

The apostrophe in D’angelo will undoubtedly cause our script to crash, a

bad thing for user experience, but an even worse thing for security. Imagine

our user was malicious set their username to "’); do_something malicious(".
Now you’ve got a real problem on your hands, as it would render like (bold-

ing added to point out our so-called “username”):

<a href="javascript:alert(’Welcome to my site, ’);
do_something_malicious();">Click to welcome

Suddenly, you're executing whatever you want on the client. Now, in this
example, it’s rather simple, and there’s nothing happening that we couldn’t
already do on our client with a simple JavaScript console (CTRL+SHIFT+I
in Chrome, for example). But if this is rendering on another user’s browser,
then you can now execute arbitrary JavaScript on another client.

The solution to this problem can be handled in a couple of different
ways:

e You could be a terrible person and face the wrath of geeks and user-
experience folks everywhere by preventing users from adding non-
alphanumeric characters to their name. But that’s dumb, and you
don’t want to be dumb, do you? I thought not. Let’s abandon that
idea.

e You could escape your javascript using wf:js_escape(Name). This
is a good solution when you have no choice to embed some kind of
javascript. It would look something like this:

wf:f("<a href=\\"javascript:alert(’Welcome to my
site, ~s’)">Click me", [wf:js_escape(Name)]).

134

e The best option is to use as many Nitrogen elements again with their
text attribute.

#link{text="Click to welcome", click=[
#alert{text=wf:f("Welcome to my
site, ~s", [Name])}

1},

This approach is superior because you neither have to call any escape
functions (escaping is automatic with the text attributes), nor do you
have to waste time dealing with escaping anything in the HTML (like
\\"). Further, your code will be syntactically consistent, since you're
likely using Nitrogen elements everywhere already. Why muttle your
codebase with hand-rolled HTML?

Prevent SQL Injection

SQL Injection is done much like JavaScript injection, but with even greater
potential for damage. The most concise demonstration of this is probably
the famous XKCD Cartoon about “Little Bobby Tables”: http://xked.com/327.
Go check that out, I'll wait, I got nothin’ better to do right now.

Simply put, it’s one thing to execute arbitrary JavaScript on a client’s
browser. It’s another thing altogether to let random strangers execute full
SQL queries on your production database. They could be destructive and
delete data, or they could be spammers or identity thieves trying to harvest
as much information from your database as possible. Either way, it’s bad.

The most common means by personal information is leaked in unsecured
websites is through SQL injection. And most of the time, it goes unnoticed,
since SQL injection used for harvesting rarely breaks the system - it just
ends up being another line-item in the log files.

If you employ proper practices from the get-go, you don’t need to worry
about retrofitting your site with proper SQL escaping. Consider old-style
PHP taught from books that recommended doing silly things like:

135

mysql_query("Select * from login where loginid=$loginid").

While this method is (thankfully) no longer the recommended method
of dealing with SQL in PHP?, it’s still no less of a concern when you are
writing your SQL statements in code - regardless of language. As such, you
want to ensure that whatever database library you use will properly escape
your inputs (and most of them do), but you can certainly still execute full
arbitrary SQL statements.

In practice, this is simple to do. For this example, I'll use sigma_ sql?,
a simple wrapper I use on top of the Emysql driver?, and demonstrate the
right and wrong way to do it

%/ WRONG!

db:q("Select firstname, lastname
from login where loginid="
++ Loginid) .

%% Right

db:q("Select firstname, lastname
from login where loginid=7",
[Loginid]).

Most SQL drivers will do variable and escaping with the use of a ? token
like that. Then you don’t have to worry. Indeed, had the first query been
employed, then if a user were to specify a Loginid in a query as simple as
"loginid", the final SQL string would be:

!'Unfortunately, while this method is no longer recommended, this poor programming
practice persists even today. Indeed, less than a year ago, I had a client need their
PHP website overhauled, and one of the first things I saw was the rampant use of
unescaped SQL. With a cleverly constructed Login name, a malicious user could
literally log into this site as any user they wanted.

2https://github.com /choptastic/sigma_ sql

3https://github.com/Eonblast/Emysql

136

db:q("Select firstname, lastname
from login where loginid=loginid").

Sweet, we just got all the users in the whole system, how convenient. But

let’s take it a step further. What if the Login variable was bound to "0

union select credit_card_number, expiration from client_credit_cards".
Uh oh, we got a serious problem here, buddy. That query will be called

as:

db:q("Select firstname, lastname
from login where loginid=0
union
select credit_card_number, expiration
from client credit_cards").

Suddenly, the probably innocuous list of users’ first and last names we
originally intended on getting are now actually returning the full list of
credit card numbers and their expiration dates from our database. So to
avoid this problem altogether, make sure you use your library’s provided
methods for escaping variables:

db:q("Select firstname, lastname login
where loginid=?", [Loginid]).

Be careful with file paths

When presenting files directly from the file system, you want to be careful
once again to sanitize inputs. This means not allowing users to specify
arbitrary paths for certain files. Basically, if you allow a user to request a
file with something like 7file=/etc/passwd, youre gonna have a bad time.
Basically, it means stripping offensive things from user-specified data, most
specifically, by removing slashes or periods. It’s not enough to remove only
leading slashes, or leading double-dots (..), because a user can get to files

137

by adding a string like “?file=random/../../../etc/passwd” to the URL. For
an attacker (like other injection attacks) is largly trial and error, but once
a user has figured out that they can navigate the file system by throwing
around requests like that, it’s already too late.

Hash those passwords properly

Let’s talk about how to properly use passwords in Nitrogen and Erlang.

First, you never, ever, want to store passwords in plaintext - that is, in
the same form as was sent over the wire. If the database gets compromised
(as seems to be happening quite frequently these days, even at internet
giants like eBay and Linked In), and if your attackers are able to just see the
passwords, you will have caused an unknown but not insiginificant amount
of discomfort to your users. Users tend to use the same passwords on most
services, or slight variations, like appending a “1” or a “!” depending on
the different password strength rules each site chooses to enforce.

If passwords must be reversible, which is still a bad idea, you could use
some kind of encryption, like AES. But I'm not going to tell you how to
do that, because, as I said, it’s still a bad idea.

What you want to do is use what’s called a hashing function.

A hashing function takes an input of some sort, and returns a unique
term based on your input. That unique term? That’s called a hash. Using
a hash theoretically makes it impossible to get the original input from
the hash (called reversing a hash), but clever cryptographers have found
some hashing functions to be weaker than others, and that it is possible to
reverse some hashing functions.

Beyond that, some hashing functions have not yet been broken, but due
to their nature (fast processing), will probably be broken some day.

Indeed, hashing is one of those oddities in computers where doing some-
thing slowly is desired.

Enter bcrypt.

138

Berypt is a hashing function designed to be slow, and designed to be
scalable in slowness for the conceivable future, even with the advancement
of the speed of computing hardware. Every berypt hash contains a work
factor, which tells berypt how hard it has to work to produce a hash. It
also contains a salt, which is an additional random term added to the input
to produce a unique hash even if the input value is the same.

There is an Erlang library called erlang-berypt? which does the heavy
lifting for us here, but even more useful is a library called Erlpass®. A
simple example for working with berypt using Erlpass is as follows:

%% Hash the password
Hash = erlpass:hash("this is my password"),

%% Check if the provided password hashes
Password = wf:q(password),
Worked = erlpass:match(Password, Hash).

For more examples of working with erlang-berypt and Erlpass, check out
one of Jesse’s blog posts®.

Verify logged-in status in user-specific
postbacks

While Nitrogen does in fact verify that requests are valid postbacks from
our server, it does not automatically validate if a user’s session has expired
or a user has logged out or logged in as a different user. This is something
we will need to do on postbacks containing user-specific data, or requiring
user-specific permissions.

Here’s a simple example:

4https://github.com/smarkets/erlang-berypt
Shttps://github.com /ferd/erlpass
Shttp:/ /sigma-star.com/blog/post /proper-password-hashing-in-erlang-with

139

main() ->
case wf:role(admin) of
true -> #template{file="./templates/admin.html"};
false -> wf:redirect_to_login("/login")
end.
body () ->
Userid = wf:to_integer(wf:q(userid)),
#button{
text="Delete User",
postback={delete, Userid}

event ({delete, UseridToDelete}) ->
MyUserid = wf:user(),
my_database:delete_something(MyUserid, UseridToDelete),
wf:wire(#alert{text="User Deleted"}).

This very likely contains a bug. The main() function is indeed checking
that we're logged in and redirecting to login if we're not. All this is well
and good. However, what happens if the user opens leaves the computer
idle for an hour and the system automatically logs us out, before finally
clicking that “Delete User” button?

I'll tell you what happens: the user still gets deleted, and what gets
recorded as the user who deleted that record? ’undefined’.

This is where you need to make sure you're checking your role status
again in user-sensitive or role-sensitive postbacks. Consider the following
change that

140

event (E) —->
case wf:role(admin) of
true -> admin_event(E);
false -> wf:redirect_to_login("/login")
end.
admin_event ({delete, UseridToDeletel}) ->
MyUserid = wf:user(),
my_database:delete_something(MyUserid, UseridToDelete),
wf:wire(#alert{text="User Deleted"}).

Note the changes: We've added an additional check during the event/1
function for checking our role, and if the role passes, executing admin_event/1,
passing the arguments.

This fix is relatively simple, and will ensure that any postbacks issued
will have the role checked again prior to processing the postbacks. If the
user had gone idle, or logged out in another tab, this will check to make
sure that the user is still logged in as an administrator before deleting our
user.

But even this might not be sufficient. Conceivably, we may want to
guarantee that we haven’t logged out from one admin and logged in as
another. Indeed, this could be done by putting the initial role into the
page state (with wf:state/2), and comparing it against the return value
of wf:user/0. Consider the following final version:

141

main() ->
wf:state(original_user, wf:user()),
case wf:role(admin) of
true -> #template{file="./templates/admin.html"};
false -> wf:redirect_to_login("/login")
end.
body () ->
UserToDeleteid = wf:to_integer(wf:q(userid)),
#button{
text="Delete User",
postback={delete, UserToDeleteid}

event (E) ->
IsSameUser = wf:state(original_user)==wf:user(),
IsAdmin = wf:role(admin),
case IsSameUser andalso IsAdmin of
true -> admin_event(E);
false -> wf:redirect_to_login("/login")
end.
admin_event ({delete, UseridToDelete}) ->
MyUserid = wf:user(),

my_database:delete_something(MyUserid, UseridToDelete),

w:wire(#alert{text="User Deleted"}).

This version will finally be safe enough for us. We know that if the user
logs in as a different user, or logs out, that our system will ensure that we
still have the necessary role and also that the user is the same, rejecting
the postback otherwise.

142

Part IV.

Advanced Nitrogen Concepts

143

18. Custom Elements

Part of the power of Nitrogen is how easily you can take advantage of
Nitrogen’s “Erlang-Record-As-Element” abstraction. Following the DRY!
principle, if you're doing a common pattern a little too frequently, it’s time
to abstract it. While you could certainly just do function calls that return
HTML or other Nitrogen elements, to keep your programs more consistent,
sometimes it’s time to create your own elements.

For learning purposes, we're going to start from scratch, rather than
using the built-in commands for generating custom elements.

A Simple Element: Bolding with #b{}

Let’s start with something ultra-simple. A “Hello World” of custom ele-
ments, if you will: We'll create a #b{} element to correspond to the HTML
 tag, which bolds the content. For this demo, we’ll only use a text at-
tribute which automatically encodes the content.

In your application, let’s edit site/include/records.hrl and add the
following line

-record(b, {7ELEMENT BASE(element b), text="", html_encode=true).

Okay, what does this mean?

e -record(b - The name of our element. This is a pretty standard
looking record definition so far.

IDRY = “Don’t Repeat Yourself”

145

e {?ELEMENT_BASE(element_b) - This invokes an 7ELEMENT_BASE macro
which creates the base element fields (the base element contains such
things as the the id, class, style, and title attributes, among
others. The macro takes, as its only argument the name of the mod-
ule that will actually render our element. In our case, we're going to
call our module element_b.

e text="", html_encode=true - This establishes which custom at-
tributes we’d like to use when creating our element. We want the
user to be able to specify a text value, and also specify how it will
encode text, with the default values for text being the empty string,
and the default value for html_encode being true.

So that’s the first step.

Now we need to create our module. By convention, custom elements
typically go into site/src/elements. So let’s create a new file in our edi-
tor called site/src/elements/element_b.erl (remember how we called
it element_b in the 7ELEMENT_BASE macro?)

Custom elements expect two functions to be exported:

e reflect/0 - returns a list of the fields used in the element and is
mostly used internally by Nitrogen.

e render_element/1 - this converts our record into something usable.

So let’s make our module.

-module(element b).

-include_lib("nitrogen_ core/include/wf.hrl").
-include("records.hrl").

-export ([reflect/0, render_element/1]).

146

Alright, here’s the beginning of the file. Note that just like in Nitrogen
pages, we must include nitrogen_core/include/wf.hrl, and we must
also include records.hrl, which actually defines our element record. This
gives us the ability to invoke other Nitrogen elements in our render_element/1.
In fact, you can define Nitrogen elements in terms of other Ni-
trogen elements. But it can’t be “turtles all the way down” - eventually,
you have to return HTML.

With the header out of the way, let’s define reflect/0.

reflect() -> record_info(fields, b).

That was easy! This little function is needed because, if you remem-
ber, Erlang records get converted to plain tuples at compile time, mean-
ing we otherwise do not have access to our element’s fields at runtime.
The record_info(fields, RecordName) function gives us access to those
fields.

Finally, let’s get to the meat of our new element, the render_element/1
function:

147

render_element(Rec = #b{}) ->
Text = Rec#b.text,
Encode = Rec#b.html encode,
Body = wf:html encode(Text, Encode),
wf_tags:emit_tag(b, Body, [
{class, Rec#b.class},
{title, Rec#b.titlel,
{style, Rec#b.style},
{data_fields, Rec#b.data_fields}
.

Okay, so we did a fair amount here. Let’s go over it.

Notice in the render element definition we did Rec = #b{}. This is
a simple Erlang way to ensure that our render_element function is only
called with a #b{} record.

Then we capture the desired encoding and our element’s text and run
it through wf:html_encode.

Finally, in the biggest chunk, we invoke a new function, wf_tags:emit_tag/3.
This function produces HTML tags from the provided information. The
arguments for wf_tags:emit_tag are as follows:

wf_tags:emit_tag(TagName, Content, Attributes)

e TagName in our case was b, as we're making a tag. Had we put
blink, it would produce the long-deprecated <blink> tag (and also
simultaneously transport us back to 1995).

e Content is what goes between the opening and closing tags. In our
case, it ends up being the HTML-encoded version of our text field.

e Attributes is a proplist, which gets converted into the attribute="value"
pairs found inside an HTML tag.

148

We can experiment with this in our shell:

> wf_tags:emit_tag(blink, "Welcome to 1995", [{class, my_blink}]).
["<","b1ink",
[[n " Neclass" n=\||u "IIly blink" u\nu]]
">","Welcome to 1995||’n</||, "blink", ||>u]

Well, that sure doesn’t look clear at all! For optimization purposes, Nitro-
gen’s emit_tag function actually returns what’s referred to in Erlang as
an [OList. IOLists are a part of Erlang that lends itself to extremely fast
string building, but that goes beyond this chapter?.

To get a more readable version, just wrap that previous call with iolist_to_binary/1.

> iolist_to_binary(v(-1)).
<<"<blink class=\"my_blink\">Welcome to 1995</blink>">>

Well, that certainly looks more like what we are expecting.

2See page 211 for more about strings and IO Lists.

149

WHOA! WAIT A SECOND? What is that v(-1) thing there?
That’s a shell function to retrieve the last return value from the shell. It’s a
convenience function only available in the Erlang shell, meaning it cannot
be used inside a module. Basically, whatever number you put in there, it
will go back that many return values.® So v(-1) retrieves the last return
value, v(-2) retrieves the 2nd last return value, and so on.

My apologies for being a Sneaky Pete!

*See http://www.erlang.org/doc/man/shell.html for more sneaky Erlang shell-only
commands.

Using your new #b{} element

Now all we need to do is compile our module and use it in our application.

For the sake of demonstration, let’s create a sample page called “sweet-
tag” to sample our sweet new tag.

150

$ vim site/src/sweettag.erl

-module (sweettag) .

-include_lib("nitrogen core/include/wf.hrl").
-include("records.hrl"). %), bring in our custom element
—-compile(export_all).

main() ->
#template{file="site/templates/bare.html"}.

body () ->

#panel{body=[
#h2{text="Are you ready for the awesome?!"},
#hi{text="1 said: ARE YOU READY FOR THE AWESOME?!'"},
#br{},
#br{},
#b{text="B0OOM BABY, THIS IS THE AWESOME!"}

1}.

And there it is! Our custom #b{} element from start to finish!

151

Function Readability, Pattern Matching, and Convention

For the sake of ease of readability for newcomers, we referenced the fields
of the record as Record#b.fieldname. While this certainly works, it’s
actually far more common to use pattern matching to eliminate those extra
lines.

For example, one would probably be more likely to redefine the
render_element/1 function above as:

render_element (Rec = #b{text=Text, html_ encode=Enc})

Body = wf:html encode(Text, Enc),
wf_tags:emit_tag(b, Body, [

{class, Rec#b.class},

{title, Rec#b.titlel,

{style, Rec#b.style},

{data_fields, Rec#b.data_fields}
D).

Text and Enc get bound right in the function definition, cutting down on
the lines of code.

This is a pretty common convention, more than a rule, but it shortens your
code and tends to increase the readability of your program.

Advanced Custom Element: Time Selector with
#time_selector{}

Alrighty, we’ve already cut our teeth on something simple, let’s go a little
more advanced. I'm going to move a little faster here, rather than spelling
everything out.

152

Let’s make a very simple #time selector{} element: we can specify a
start time, and end time, an increment (in minutes), and a current selected
value. The value submitted will be the number of minutes from midnight.

Let’s get started.

First, we create the record in site/include/records.hrl.

$ vim site/include/records.hrl

-record(time_selector, {?ELEMENT_BASE(element_time_selector),
start=0, finish=1440, increment=60, valuel}).

Now we create and start editing site/src/elements/element_time_selector.erl

$ vim site/src/element/element_time_selector.erl
-module(element_time_selector).
-include_lib("nitrogen_core/include/wf.hrl").
-include("records.hrl").

-export ([reflect/0, render_element/1]).

reflect() -> record_info(fields, time_selector).

So far, so good. We’ve done everything with the boilerplate we need to do.
Now to the meat:

153

render_element (Rec = #time_selector{start=Start,
finish=Finish, increment=Inc, value=Value}) ->
Times = lists:seq(Start, Finish, Inc),
Options = [format_time(T) || T <- Times],
#dropdown{
options=0ptions,
value=Value,
class=Rec#time_selector.class,
style=Rec#time_selector.style,
title=Rec#time_selector.title,
data_fields=Rec#time_selector.data_fields

Okay, what did we do here? First, we bound Start, Finish, Inc, and
Value in our function definition. Then we used lists:seq/3 to create a
list of times from our Start, Finish, and Inc. Then we iterated through
the Times with a as-of-yet undefined function format_time/1 function to
give us what we want to be a final list of #option{} elements. Finally, we
return a #dropdown{} element.

Notice something interesting here?

Yeah, we return a Nitrogen element instead of HTML! This is part of
the beauty of Nitrogen. If you think about the beauty of Lisp being that
everything is an s-expression, the beauty of Nitrogen is that everything can
be done in terms of Nitrogen Elements. The Nitrogen rendering engine will
recognize that a Nitrogen element has been returned, and in turn, will call
the appropriate render_element function for the returned element (or list
of elements).

Let’s finish off our element by creating the format_time/1 function ref-
erenced in render_element/1. Since our problem is simple enough, we

154

can write it directly. But if we were doing something more complicated
with the time (like having to account for timezones or multiple formats),

you might use a date and timezone library like qdate?.

format_time(Time) ->
Hour = Time div 60,
Minute = Time rem 60,
TimeStr = [wf:to_list(Hour), ":", wf:to_list(Minute)],
#option{text=TimeStr, value=wf:to_list(Time)}.

Here we do a pretty naive time formatting. 24-hour formatted time (“13:45”
instead of “1:45pm”). A simple integer division with div and a simple in-
teger modulo (remainder) with rem.

This will finish off our element implementation.

Using your #time_selector element

Let’s invoke our brand-spankin’-new #time_selector{} element. We'll
just use our previous “sweettag.erl” module (unless you feel some emotional
attachment to it, in which case, feel free to make a new page module for
this).

We can leave the header the way we started with, and let’s redefine the
body () function.

3https://github.com/choptastic/qdate

155

-module (sweettag) .

-include_lib("nitrogen_ core/include/wf.hrl").
-include("records.hrl").
-compile(export_all).

main() ->
#template{file="site/templates/bare.html"}.

body () ->
[
#hi{text="Pick a time, any time (during the business «
#time_selector{start=480, finish=1020, increment=30}

Pretty simple! This will render a dropdown that shows the times 8:00
through 17:00 (5:00pm) in half-hour increments.

But we probably want to do something with the dropdown, like initiate
a postback and see the new value.

Let’s do that that. Let’s add a button and an event/1 function.

156

body () ->

L
#hi{text="Pick a time, any time (during the business day)"},
#time selector{id=time, start=480, finish=1020, increment=3(
#button{text="I’ve made my decision", postback=select_time]
1.

event (select_time) ->
Time = wf:to_integer(wf:q(time)),
FormattedTime = element_time_selector:format_time(Time),
wf:wire(#alert{text=["You picked: ", FormattedTimel}).

Now, clicking the button “I’ve made my decision” will pop up a JavaScript

alert with the text “You picked: 9:30” (or whatever time you selected).

Note that we're just using the element time selector:format time/1
function to present a readable time to the user. The observant reader would

have noticed that we didn’t export format_time/1 from element time_selector,
so let’s go back and do that. Just add format_time/1 to the list of exports

in site/src/elements/element time selector.erl:

-export([reflect/0, render element/1, format_time/1]).

Now, our function will work! Feel free to compile our custom element, and
try it out by loading http://localhost /sweettag in your browser.

157

Be mindful of the infinite loop, Luke!

When creating custom elements, you want to make sure you don’t ac-
cidentally create an infinite rendering loop by having two or more ele-
ments cyclically rendering each other. Like if you create a #x{} and a
#y{}, where element_x:render_element/1 returns a #y{} element, and
element_y:render_element/1 returns an #x{} element.

If that happens, the Nitrogen rendering engine will go into an infinite loop
rendering #x{} then rendering #y{}, then rendering #x{}, and so on.

More Advanced Elements: Adding Custom Postbacks

You may have noticed that some Nitrogen elements generate their own
postbacks in the page, rather than using the usual event/1 function (like
the #inplace_textbox{} generates a call to inplace_textbox _event/2).

Adding this kind of functionality is actually rather simple. In short, you
want to generate a postback and use the delegate attribute to redirect
the postback to our element’s render module. Then handle the postback,
and make a call back to our page module.

So let’s say we want to have our #time selector{} element automati-
cally generate a postback called time_selector_event(Tag, FormattedTime),
where FormattedTime is a string representation of the time ("8:00"),
rather than the integer (480). So first, let’s modify our record definition
to include the a tag attribute which will be used to identify our element
on the page (to disambiguate it from potentially other #time_selector{}
elements we might have on the page).

$ vim site/include/records.hrl
-record(time_selector, {?ELEMENT BASE(element time_selector),
start=0, finish=1440, increment=60, value, tag}).

Now we edit the the time selector element code:

158

$ vim site/src/elements/element_time_selector.erl
-module(element time_selector).

-include_lib("nitrogen core/include/wf.hrl").
-include("records.hrl").

-export([reflect/0, render_element/1, format time/1, event/1]).

reflect() -> record_info(fields, time_selector).
render _element(Rec = #time selector{start=Start,
finish=Finish, increment=Inc, value=Value, tag=Tag}) ->
Times = lists:seq(Start, Finish, Inc),
Options = [format time(T) || T <- Times],
ID = wf:temp_id(),
#dropdown{
options=0ptions,
value=Value,
id=ID,
postback={Tag, ID},
delegate=7MODULE,
class=Rec#time_selector.class,
style=Rec#time_selector.style,
data fields=Rec#time selector.data fields

event ({Tag, ID}) —>
Time = wf:to_integer(wf:q(ID)),
FormattedTime = format_time(Time),
Page = wf:page_module(),
Page:time_selector_event(Tag, FormattedTime).

Okay, we did kind of a lot here:

159

1. First, we ensured that we’re binding the Tag attribute.

2. We generated a temporary ID, which is necessary for these kind of
“internal postbacks.”

3. Then we assign the ID, postback, and change the postback delegate
to the element_time_selector module (?MODULE) to the generated
#dropdown{} element. Note that the postback contains both the Tag
and the temporary ID.

4. We create an event/1 handler function, which:

a) retrieves the Tag and the ID.

b) Uses that ID to get the value of the #dropdown{} and converts
that value to an integer.

¢) Formats the time into a usable string
d) Gets the current page module (wf:page_module/0)

e) Calls the time_selector_event/2 function on our page.

Next, let’s make the changes to our page to handle the newly updated
#time_selector element. Our new function is called time_selector_event(Tag,
FormattedTime), so let’s add it. Open up site/src/sweettag.erl in our
editor and modify it to look something like this (as always, changes are in
bold):

160

body () ->

[
#hi{text="Pick a time, any time (during the business day)"},
#time_selector{tag=time, start=480, finish=1020, increment=30}.
=1 p) . 2 n —_ o
1.
event(select time)——>

time_selector_event(Tag, FormattedTime) ->
Msg = io_lib:format("You picked: ~s with tag ~p", [FormattedTime,
wf:wire(#alert{text=Msg}).

Save your changes and your updated page will be ready to go. As soon
as you select a time, it will trigger the time_selector_event/2 event and
produce a JavaScript alert.

What’s the deal with Tag

-Tag is a common convention for tracking postbacks for elements that gen-
erate their own custom postbacks. Because those elements, for internal
purposes, will likely be using their own internal IDs for tracking the move-
ment of a value throughout postbacks, we need some way to track it so that
the user can eventually refer to it. In many cases, there may only be one
such field on a page, in which case Tag remains mostly unused (matched
against _). However, in plenty of other cases, you may have more than one
of the same type of event-generating element on a page, in which case, the
Tag is invaluable. You can think of Tag as an alternate field for postback
when an element uses its own custom event.

161

19. Nitrogen Plugins

With the previous chapter on creating custom elements fresh in your mind,
let’s move quickly into the next logical step for many custom elements:
plugins. In most situations, custom elements are largely reusable, and
when you’re running multiple different applications, you want to avoid
copy and paste as much as possible.

The natural progression to avoid code duplication is to package up your
custom element into a plugin. Simply put, a plugin is an Erlang application
which contains the record definition and code of your custom element.

Reformatting your elements into a distributable plugin is a rather simple
task.

Using the previous chapter’s #time element, we’ve modifed the following
files:

e site/include/records.hrl
e site/src/elements/element_ time.erl

The first step is to create your dependency application. For this demon-
stration, let’s name our plugin the same as our time element’s module:
element_time. From your application’s directory, type the following

163

$ mkdir lib/element_time_selector

$ cd 1lib/element_time_selector

$../../rebar create-lib libid=element_time_selector
==> element_time (create-1lib)

Writing src/element_time_selector.app.src

Writing src/element_time_selector.erl

This has gotten us started with a new library application (an application
that does not need to be “started”, but merely contains functions and the
like). While the rebar create-lib command creates an element_ time_ selector.erl
file, we won’t be using it at all, we just need to overwrite it with our ele-
ment’s code.

So let’s move our element code here:

$cd ../..
$ mv site/src/elements/element_time_selector.erl \
lib/element_time_selector/src

And cut the record definition from our relevant include file. So let’s create
an include directory in our new plugin application directory, then copy our
time definition from site/include/records.hrl

164

$ mkdir lib/element time selector/include
$ vim site/include/records.hrl
-include("plugins.hrl").

Then paste those contents into the new file records.hrl:

$ vim lib/element_time_selector/include/records.hrl
-record(time_selector, {?ELEMENT BASE(element time_selector),
start=0, finish=1440, increment=60, value, tag}).

We're almost there and ready to go. The last step to creating our plugin
is to create a blank file called nitrogen.plugin in the root of our plugin’s

directory:

$ touch lib/element_time_selector/nitrogen.plugin

At this point, let’s see the basic structure of our plugin:

165

$ tree
include
records.hrl
nitrogen.plugin
src
element time selector.erl
element_time_selector.app.src

*Almost done, we want to push our new plugin to GitHub! (or whatever
VCS you prefer).

$ cd 1lib/element_time_selector
$ git init
Initialized empty Git repository in)\
/home/user/myapp/lib/element_time_selector/.git/
$ git add .
$ git commit -m "Initial Commit"
[master (root-commit) 585a960] Initial Commit
4 files changed, 159 insertions(+)
create mode 100644 include/records.hrl
create mode 100644 nitrogen.plugin
create mode 100644 src/element time selector.erl
create mode 100644 src/element_time_selector.app.src
$ git remote add origin \
git@github.com/YourUsername/element_time_selector.git
$ git push origin master

'More information about working with git can be found on page on page 221

166

Finally, let’s add our new plugin to our app’s rebar.config file, and rebuild.

$cd ../..
$ vim rebar.config
{deps, [

{element_time_selector, ".*",
{git, "git://github.com/YourUsername/element_time_selector",

{branch, master}}},

1}.

Finally, rebuild your app and try it out:
$ make

Then open up http://localhost:8000/sweettag in your browser. It
should render just as if you weren’t using the plugin system.

From here, you can add your plugin to your rebar.config as just shown,
and then simply refer to your #element time_selector{} element with-
out having to do anything else.

Related links for plugins

e Code for the above element_ time_ selector plugin:
https://github.com/choptastic/element time_selector

e Official plugin documentation:
http://nitrogenproject.com/doc/plugins.html

e Other plugins:
https://github.com/nitrogen/nitrogen/wiki/Nitrogen-Plugins

167

e Code of the plugin handling code, which is also an alternative source
of plugin documenation
http://j.mp/plugincode

e Jesse’s blog post describing the introduction of the plugin system:
http://sigma-star.com/blog/post/why-nitrogen-plugins

168

20. Advanced Postbacks

169

21. Custom Handlers

171

22. Clustering

173

23. Troubleshooting

Basic overview of the frame of mind you have to be in to try and trou-
bleshoot. Looking for common errors.

175

24. The challenges of e-mail

177

Part V.
DevOps

179

25. Deployment

So here’s Bossman running through a cobbled-up slideshow at the weekly
Erlingo! bag-lunch seminar:

As me dear departed Granny Fran put it, “Many a slip 'twixt the cup
and the lip.”

It’s one thing, in other words, to develop a crafty web application and
another thing entirely to deliver it reliably to the user.

History is rife with software deployment disasters. Need we say Afford-
able Care Act aka Obamacare to make the point?

Here are a few best practices offered in hindsight by an organization with
a less than stellar record— our very own U.S. government:!

e Understand what people need

Address the whole experience, from start to finish

Make it simple and intuitive

Use data to drive decisions

e Manage security and privacy through reuable processes

Automate testing and deployments

e Deploy in a flexible hosting environment

Thttps://playbook.cio.gov/

181

The first four points have everything to do with design and implementation
of our Nitrogen applications. But they go far beyond what we can cover
here.

But here’s the cool thing about Nitrogen— it enables us to bring up
interactive prototypes “fast off the block.”

An interative cycle of feedback and revise can go a long way toward
knocking down deployment gotchas.

We do our best here at Erlingo! to track with our clients. But I've been
wondering if we can’t do better without investing in a fancy testing lab or
professional focus groups.

With this in mind I ran across a promising tool— ngrok.>

ngrok

ngrok is a dead-easy-to-install-and-run jewel of open source software that
enables us to create “introspected tunnels to localhost.”
Usecase: “I want to securely expose a local web server to the internet
and capture all traffic for detailed inspection and replay.”
How does it work?
[]
Download it.
$ unzip /path/to/ngrok.zip
$./ngrok -help

Say you have a web prototype running on port 8000, enter:

./ngrok 8000

2https://ngrok.com/download

182

And you’ll see something like:

ngrok (Ctrl+C to quit)

Tunnel Status online
Version 1.7/1.6
Forwarding http://<assigned hexidecimal>.ngrok.com ->

127.0.0.8000

Forwarding https://<assigned hexidecimal>.ngrok.com ->
127.0.0.8000

Web Interface 127.0.0.1:4040

Conn O
Avg Conn Time 0.00ms

Now anyone on the web can can “grok” your prototype simply by entering
http://<assigned hexidecimal>.ngrok.com in their browser .

Great for getting feedback from clients early and often to assure that we
stay on track with their vision and expectations. Our off-site consultants
can use ngrok to advantage as well.

But even our most loyal and satisfied client won’t be happy for long
if the applications we deliver break for whatever reason— security holes,
deployment glitch, failure to scale. Countless things can go wrong.

Enter laaS

Over the past few years our clients have been moving ever more applications
out to the “cloud.” A few clients have set out to build “private clouds” on
their own hardware.

“Cloud” is one of those fuzzy buzz words. But the promise of “cloud com-
puting” is dynamic and reliable deployment of scalable processing, memory;,

183

network and, storage resources, indeed, entire clusters, in minutes rather
than days, weeks, and months.

Consultants and bloggers call this new tech-trend laaS— Infrastructure
as a Service.?

The magic behind TaaS is a fast-evolving complement of software tools
and technologies including virtual memory providers, configuration and
provisioning tools, software containers, stripped-down operating systems,
and software repositories.

With these tools we can:

e Provision workstations and servers faster and more securely

e Assure consistency between development, testing, and production
environments

e Sandbox risky software
e Harvest more bang for a buck out of our hardware resources
e Respond to demand spikes more effectively

e Quickly bring up and tear down complex stacks and clusters for train-
ing and self-learning

e Indeed, meet head-on the challenges of the last three items on the
U.S. Government’s best-practices list.

A recent on-line presentation by Basho’s Bryan Hunt called Ansible, Va-
grant and Riak* brought all this together for me.

Bryan’s presentation demonstrates how to use two important IasS tools
to provision and deploy a Riak CS cluster.

To the point, we need to bone up on these technologies for two reasons:

3http:/ /www.interoute.com/what-iaas
4https:/ /www.youtube.com/watch?v=WVaZxaJINOA; http:/ /www.slideshare.net /dataloop/ansible
vagrant-and-riak-bryan-hunt-at-doxlon

184

e To up our own game
e To help our clients up theirs

Bottom line: Developers need to consider more seriously how their code
will be deployed. Operations folks need to better understand code.

The goal: more secure, consistent, and reliable deployment of our appli-
cations.

I propose that we devote several bag-lunch seminars toward bringing us
up to speed with these issues and technologies.

185

26. Choose a host

home server
remote server

cloud

http://cstar.io/2014/07 /02 /nitrogen-on-heroku.html

cluster

Resources

No Single Points of Failure

http://techblog.mdsol.com/2014/06/16/no_single points_failure.html

187

27. Stack the deck

Here’s Lloyd London, knees knocking, setting out to make his first presen-
tation to the bag-lunch group:

As we all know, you can build Erlang from source on nearly any Unix/Linux
system, including OS X.
Get the skinny here:

http://www.erlang.org/doc/installation_guide/
INSTALL . html#id60976

If your system runs Erlang, you can install and run Nitrogen.

More here:

https://github.com/nitrogen/nitrogen/blob/master/rel/
overlay/win/README.md

With due respect and apologies to all in the Microsoft Windows world,
we live on planet Linux so can’t help much with MS ideosyncracies. But
if Microsoft is your game, don’t let that stop you from running Nitrogen.

Grok the know-how here:

189

http://www.erlang.org/doc/installation_guide/
INSTALL-WIN32.html

If you're truly fearless and would like to experiment with the low-power
low-cost ARM boards popping up on the market, here’s a place to start:

http://nerves-project.org/

But why limit yourself to one OS when you can partake of an OS smor-
gasbord?

A fast-evolving world of software techologies, including virtual machines
(VMs), software containers, and a flourishing crop of configuration, provi-
sioning, and VM management tools makes it not only possible, but down-
right easy.

If you haven’t followed the news, VM and rival Linux container tech-
nologies enable you to:

190

Install nearly any OS of choice in an isolated environment on top of
your current development workstation or server OS

Share cpu, memory, and I/O resources with the base system
Build, test, and tear-down application stacks at a whim
Easily recover your application stack in event of disaster

Easily move your application across physical machines and up to the
cloud

Maintain consistent configuration across development, testing, and
production systems

e Build your own private or public cloud in the cloud or on your own
hardware

So let’s take a low fly-over these technologies, looking first at virtual ma-
chines.

VirtualBox

Oracle’s open-source VirtualBox is one of many VM providers. We like
VirtualBox because it’s free and runs on many operating systems. Google
“virtual machine software” for other options.

VirtualBox “Presently... runs on Windows, Linux, Macintosh, and So-
laris hosts and supports a large number of guest operating systems includ-
ing but not limited to Windows (NT 4.0, 2000, XP, Server 2003, Vista,
Windows 7, Windows 8), DOS/Windows 3.x, Linux (2.4, 2.6 and 3.x),
Solaris and OpenSolaris, OS/2, and OpenBSD.”

With VirtualBox installed on your machine, you can up, run, and destroy
virtual machines hosting nearly any OS and software stack your heart
desires.

Dive deeply here:

https://www.virtualbox.org/
https://www.virtualbox.org/manual/UserManual.html

We happen to run Ubuntu 14.04 as our base system. The recipe found
here put us in the VirtualBox game tout de suite.

http://www.nOObsonubuntu.net/content/install-virtualbox-
ubuntu-14-04/

191

OK, OK, pardon my French.
So what’s the big win with a virtual machine provider like VirtualBox
in your toolbox?

e [t enables you to run multiple operating systems simultaneously

It simplifies software installation

It provides a safe testing environment

It facilitates disaster recovery

It allows you to do more with your exisiting computer /network in-
frastructure

Indeed, a VM provider on your development workstation or server is a
gateway to an exciting new world of DevOp opportunities.

Drawback? Setting up a VM is a minor pain in the tush. This is where
Vagrant comes in.

Vagrant
Vagrant docs put it this way: “Instead of building a virtual machine from
scratch, which would be a slow and tedious process, Vagrant uses a base

image to quickly clone a virtual machine.”!
We looked here to learn how to install Vagrant:

https://www.vagrantup.com/downloads.html

Install took less than 10 minutes. Bringing up a new OS was even easier:

Thttps://docs.vagrantup.com/v2/getting-started /boxes.html

192

~$ vagrant version
Installed Version: 1.6.3
Latest Version: 1.6.4

~$ vagrant init hasicorp/precise64

A ‘Vagrantfile‘ has been placed in this directory.

You are now ready to ‘vagrant up‘ your first virtual
environment! Please read the comments in the

Vagrantfile as well as documentation on ‘vagrantup.com®
for more information on using Vagrant.

~$ vagrant up

~$ vagrant ssh
Welcome to Ubuntu 12.04 LTS (GNU/Linux 3.2.0-23-generic
x86_64)
* Documentation: https://help.ubuntu.com/
New release ’14.04.1 LTS’ available. Run ’do-
release—upgrade’ to upgrade to it.
Welcome to your Vagrant-built virtual machine.
Last login: Fri Sep 14 06:23:18 2012 from 10.0.2.2
vagrant@precise64:~$

With three simple terminal commands we’ve installed Ubuntu 14.04.1
LTS in a virtual machine— could have as easily been Debian 7.3.0 or

OpenBSD 5.4.
You can find a list of Vagrant boxes here:

http://www.vagrantbox.es/

193

Steep your mind here to learn the vast extent of Vagrant’s wiles:

https://www.vagrantup.com/
https://leanpub.com/vagrantcookbook

So now, staring at the terminal prompt of our newly minted virtual
machine hosting Ubuntu, we're faced with a chore— provisioning. We
COULD configure and build a software stack manually or we could cobble
up a cunning shell script. But a host of provisioning tools such as Ansible,
Chef, and Puppet can automate the process for us.

This is particularly important if we wish to configure more than one
workstation or server.

We like Ansible for the task because it’s simple to use and has numerous
other charms.? But don’t let that stop you from using Chef or Puppet or
whatever other provisioning tool floats your boat.

Ansible

“Ansible is the simplest way to automate IT,” claims the Ansible website.

A devoted blogger put it this way:

“Ansible is used from a developer- or continuous-integration-machine,
which executes tasks on hosts from an inventory. You only need SSH
servers running and private keys to connect to them to get it working.
With the inventory of hosts to operate on, you can chose to execute ad-

hoc commands using ansible commands or playbooks. Playbooks are files
written in YAML.?

2http://www.ansible.com/home
3"http://www.whitewashing.de/2013/11/19/setting_up_ development_ machines_ ansible_ edition.h

194

YAML, according to the official website, “is a human friendly data seri-
alization standard for all programming languages.’

Here’s an example of an Ansible “inventory,” e.g. list of systems under
Ansible direction:

mail.example.com

[webservers]
foo.example.com
bar.example.com

[dbservers]
one.example.com
two.example.com
three.example.com

Assuming SSH connection, a user can issue direct commands to any or
all of the systems in the inventory:

$ ansible all -m ping
127.0.0.1 | success >> {
"changed": false,
"ping": "pong"

b

But a more reliable method is to create an Ansible “playbook.” Want to
install Erlang? Here are two playbooks that will do it for you:

4http:/ /www.yaml.org/; http://www.yaml.org/spec/1.2/spec.html

195

Ansibles/erlang
https://github.com/Ansibles/erlang

stwind/ansible-erlang
https://github.com/stwind/ansible-erlang

Ansible resources
e Ansible

— http://www.ansible.com/home

e An Ansible Tutorial
— https://serversforhackers.com/editions/2014/08 /26 /getting-started-
with-ansible/
e Ansible, Vagrant and Riak- Bryan Hunt at #DOXLON

— https://www.youtube.com/watch?v=WVaZxaJINOA

— http://www.slideshare.net /dataloop/ansible-vagrant-and-riak-bryan-
hunt-at-doxlon

(NOTES)

I would like to develop an Ansible playbook to install Nitrogen, but need
time to play.

apt-get update

apt-get install git

sudo apt-get install python-software-properties

sudo apt-get update

196

sudo apt-get install -y ansible

vagrant@precise64:~$ ansible —version ansible 1.4.4

Scalable and Understandable Provisioning with Ansible and Vagrant

https://julien.ponge.org/blog/scalable-and-understandable-provisioning-
with-ansible-and-vagrant /

Ansible

http://docs.ansible.com/intro.html

Evaluating Ansible

http://blog.wains.be/category/automation/

Getting started with ansible

http://lowendbox.com /blog/getting-started-with-ansible/

Using Vagrant to provision/setup multiple node Riak cluster for devel-
opment environments.

http://suvashthapaliya.com/blog/2012/11 /riak-multi-node-cluster-setup-
for-development-environment-with-vagrant /

Docker

Virtual machines deliver process isolation, but they carry heavy overhead:
e.g. for each VM, they load an OS on top of the base OS. Docker and
similar “software containers “ provide isolation with considerably less call
on hardware resources. Here’s how Linux Journal puts it:

“Containers now can be used as an alternative to OS-level virtualization
to run multiple isolated systems on a single host. Containers within a single
operating system are much more efficient, and because of this efficiency,
they will underpin the future of the cloud infrastructure industry in place
of VM architecture.

“Compared to a virtual machine, the overhead of a container is dis-
ruptively low. They start so fast that many configurations can launch
on-demand as requests come in, resulting in zero idle memory and CPU
overhead. A container running systemd or Upstart to manage its services

197

has less than 5MB of system memory overhead and nearly zero CPU con-
sumption. With copy-on-write for disk, provisioning new containers can
happen in seconds.”®

Docker employs a “Dockerfile” to provision Docker containers. See
mingfang/docker-erlang, for instance, to see how Erlang might be installed
undder Docker.% But Ansible is up to the job as well.”

Will software containers replace virtual machines? Not everyone thinks
SO.

8

But the momentum for now favors containers.

Here are several projects that build Erlang in Docker:

https://github.com /mingfang/docker-erlang
http://blog.docker.com/2013/09/powering-voxoz-ecosystem-with-docker/
http://castro.io/2014/07 /11 /using-docker-to-manage-erlang-
environments-for-riak.html

CoreQOS

OK, so now you’re spinning up a storm of Docker containers in the cloud
or on your own hardware. Do you really need heavy-duty OS’s to do the
heavy lifting?

“No,” say the gurus.”

Shttp://m.linuxjournal.com/content /containers—not-virtual-machines—are-future-
cloud

Shttps://github.com/mingfang/docker-erlang/blob/master /Dockerfile

Thttp://www.ansible.com/docker

8Containers vs Hypervisors: The Battle Has Just Begun

http://www.linux.com/news/enterprise/cloud-computing/785769-containers-vs-

hypervisors-the-battle-has-just-begun/

9http://blog.hendrikvolkmer.de/2013/10/11/the-missing-piece-operating-systems-for-
web-scale-cloud-apps/

198

So this is where CoreOS comes in. Here’s how CoreOS developers posi-
tion it: “CoreOS enables warehouse-scale computing on top of a minimal,
modern operating system.”

CoreOS is explicitly designed to run multiple Docker instances. The win:
faster boot, less burden on hardware resources.

Learn more about CoreOS here:

https://coreos.com/

Panamax

My, my, managing that big fluffy cloud built with Ansible on CoreOS and
Docker can quickly get out of hand. Enter Panamx .

Panamax is billed by the developers at CenturyLink as “Docker Manage-
ment for Humans”!® The goal: “..deploying complex containerized apps
as easy as Drag-and-Drop.”

The big picture

So here we are.

If you happen to have half-a-dozen or more hardware boxes sitting idle,
or budget for a hefty cloud account, you too can build an elastic Nitro-
gen/Erlang infrastructure and/or Riak data warehouse that can handle
nearly any computing load you can imagine. Think big. The world is your
oyster.

Questions?

Ohttp://panamax.io/

199

PXE

OK, OK, chicken and egg. Yes, I agree. Loading an OS on bare metal is
fun the first time around, but get’s dreary by the nth. Here’s where PXE
comes in— Preboot eXecution Environment.

“PXE booting is one of the many ways you can boot a computer (or
embedded device, or just about anything, possibly a toaster even) entirely
from the network without any form of storage on the destination computer
(RAM aside). It can be used for most anything. You can run a complete
OS off the network using just the RAM, or you can mass-install /update an
OS stored on the local hard disk. This HOWTO will get the core of PXE
booting setup, and from there you can use one of the above links to setup
a specific distro. “!!

More here:

How To : Setup a PXE Boot Server on Debian Part 1
http://sirlagz.net/2011/05/07/how-to-setup-a-pxe-boot-
server-on-debian-part-1/

How To : Setup a PXE Boot Server on Debian Part 2
http://sirlagz.net/2011/05/09/how-to-setup-a-pxe-boot-
server-on-debian-part-2/

How To : Setup a PXE Boot Server Part 3 : Installing
Debian Squeeze

http://sirlagz.net/2011/05/10/how-to-setup-a-pxe-boot-
server-part-3-installing-debian/

Hhttp://pxe.dev.aboveaverageurl.com/index.php/PXE_ Booting

200

28. Launch day

Server Security
Configuration
Virtual hosts

Domain names

DNS

201

29. Maintain maintain

Monitoring

Linux-Dash
http://linuxdash.com/

Backup
Code change

203

Part VI.

Appendices

205

A. Erlang from the top down

In our humble opinion, syntax is not Erlang’s greatest charm. No, we're not
of the “hate Erlang syntax” school. Cast habit and prejudice aside and Er-
lang syntax offers treasures enough— first-class functions, immutable vari-
ables, pattern matching, list comprehensions. Erlang binaries are wicked
cool. Truth be told, Erlang syntax is not that difficult to learn.

No, we vote for OTP.

Indeed, OTP is so boffo we won’t even let you in on what the acronym
stands for— it oh so short-changes the range of application.

OTP is a collection of libraries and underlying philosophy that signifi-
cantly slaps down the pain that accompanies development of highly scal-
able, reliable, distributed software systems.

To convey a taste, here’s a fly-over.

Erlang Release

The whole point of the development enterprise is to produce and ship a
software product that installs and runs with ease and satisfaction on client
hardware.

In Erlang parlance, this is called a release.

Superficially, a release looks like a *.tar.gz file. Ship it, untar it, start it,
and it runs— and runs.

Consider that most Erlang programs coordinate swarms of light-weight
processes, all actively processing messages according to grand design.

Bug? (Tell us your software doesn’t have bugs.)

207

Simply hot-code update the release. That is, install a patch without
taking the program out of service.

Tell us that’s not cool! While you're going about surgery, the processes
just keep doing their thing without pause.

Stop the whole buzzing crew when you wish with a single command.

Think for a moment and you’ll understand why every Erlang release
ideally has a version number. Hint: makes hot-code updates possible.

Erlang releases are an artful construction of Erlang applications plus the
Erlang VM, e.g. virtual machine. Note that the word application is a
technical term in Erlang— it means what it means no more nor less.

http://www.erlang.org/doc/design__principles/release__structure.html

Erlang Application

An Erlang application is a set of *.beam files plus a *.app resource file.

You met up with *.app files back in Chapter 2, recall? App files contain
explicitly structured meta data that tells the outside world what it needs
to know to play nice.

You can think of an FErlang application as a more-or-less stand-alone
high-level component of an Erlang release. The functionality of an Erlang
application is hammered out and lives life as a set of Erlang modules.

As you may have surmised in Chapter 2, Erlang applications start life
as a collection of *.erl source files.

By convention, all elements of an application are organized in the fol-
lowing sub-directories:

® SIC
e chin

e priv

208

e include
src Contains the Erlang source code.

ebin Contains the Erlang object code, the beam files. The .app file is also
placed here.

priv Used for application specific files. For example, C executables are
placed here. The function code:priv_dir/1 should be used to access
this directory.

include Used for include files.

Erlang applications can be active or static. Active applications implement,
monitor, and control active processes such as servers, state machines, or
event handlers. Active applications need to be started and stopped, thus
they include an application callback module that defines start and stop pro-
cedures. The callback module is usually named, simply, <application>.erl.

Active applications also need to be monitored or supevised. You’d hate
to have your whole system die sudden death if an active process fails. So
here’s one of the keys behind Erlang’s touted reliability: active Erlang
applications include monitor and/or supervisory modules that take appro-
priate action should a process choke on a bug or bad data. Supervisors
usually have a name of the form <application>_sup.erl.

Most Erlang systems implement a hierchical tree of supervisors, where a
master supervisor monitors and controls minion supervisors who, in turn,
supervise lessor supervisors and workers. Phew! Now you know the deep
secret of Erlang reliability.

Library applications, solely composed of static functions that do support
and grunt work, do not need to be started or stopped, thus do not need
application callback nor supervisory modules.

http://www.erlang.org/doc/design__principles/applications.html
http://www.erlang.org/doc/design__principles/sup__princ.html

209

Modules

Modules are the building blocks of Erlang. Open up any *.erl source file
and you will see distinctive similarities: comments, a short set of attributes,
and a sequence of functions.

Comments look like this:

%%% This is a comment.
%% As is this.
% And this.

We’ll leave it to you to discover the differences.
Attributes look like this:

-Tag(Value) .
Every Erlang module starts like this...
-module (Module) .

...where Module is the name of the module. The module attribute could
follow any number of comments in the file but, otherwise, must come before
other attributes and functions.

Dig into Erlang docs to discover other important attributes; in particu-
lar, note -export(...), -compile(...), and -behaviour(...).

http://www.erlang.org/doc/reference_manual/modules.html

Functions

Functions execute sequential logic and spawn active processes. They’re the
worker-bee heavy-haulers of Erlang. They take zero or more parameters;
the number of parameters designates the function’s arity.

In code, a function looks like this:

210

<function_name>(<paraml>, <param2>) -> <function body> .

There’s that period at the end again. Pay attention. It’s important. In
documentation, the function above would be written <function_name>/2.

Note that my_ function/0 is totally distinct from my_ function/1 which,
in turn, is totally distinct from my_ function/2.

http://www.erlang.org/doc/reference_manual /functions.html

BIFs

Erlang comes complete with a whole set of built-in functions called BIFs,
saving you considerable effort. Fact is, you couldn’t even write most of
these in Erlang if you tried.

http://www.erlang.org/doc/man/erlang.html

Data Types

Erlang supports a rich set of datatypes including, as you'd expect, integers
and floats. Named constants are called atoms. Maps, tuples, and lists
make it possible to process related data items in powerful ways including
construction of yet more sophisticated data structures.

Useful aside: whenever you see the word term in Erlang documentation,
the author is most likely taking about an item of data.

http://www.erlang.org/doc/reference_manual /data__types.html

String Building and 10Lists

[OLists are Erlang’s unique way of efficiently building strings. Simply
defined, an IOList is a list of any combination of binaries, “word-sized”

211

integers (0-255), and recursively other IOLists. Erlang does some fantastic
things in the name of optimization with large binaries. So in other lan-
guages, when you append elements to a string, you undoubtedly have to
copy stringl and string2 and combine them producing string3. Or you're
resizing stringl to accommodate the additional bytes in string2. In Erlang,
you should rarely do normal string concatenation (with the ++ operator) —
using ++ requires not only copying the data you wish to append, but also
requires first traversing the list on the left side of the ++ operator.

Instead, you’ll want to use use IOLists, which as far as I know, is some-
thing unique to Erlang.

Say you have

A
B

"Hello",
"World"

And you wish to produce “Hello World”, probably to send along the wire,
or save to a file, or print to the shell, or whatever.
Rather than doing

Msg = A ++ " " ++ B
Which seems like the obvious thing to do, instead you would do:
MSg = [A," " , B]

Msg would now have the value ["Hello", " ", "World"]. But the value
comes in when we actually do something with the text, where “do some-
thing”, almost invariably means send somewhere.

Why IOList you might ask? Well, something that’s received is input,
and something that’s sent is output. Input/Output. /O, hence IOList: a
list optimized for 1/0.

When that ["Hello", " ", "World"] list gets sent (to a database, or
the screen, or the network, or our browser), Erlang sequentially and recur-
sively reads through the list and transmits the bytes it finds, essentially

212

dropping whatever recursive structure they were in. It’ll end up being
transmitted as the byte string Hello World.

Which leads us to the power of IOLists. As mentioned, [OLists can be
comprised of any combination of lists containing binaries, or integers from
0-255.

So let’s say we wanted to send over a socket connection a copy of the
screenplay to Forrest Gump (which we have stored in binary format on
our hard drive) followed by “..and that’s all I have to say about that”, if
we were using string concatenation, it’d be really slow, since we’d have to
first traverse the whole string-list of the script (some 70,000+ bytes), just
to add 42 characters. It’d look something like this:

{ok, Bin} = file:read file("forrest_gump.txt"),

Str = binary_to_list(Bin),

Followup = "...and that’s all I have to say about that",
Msg = Str ++ Followup,

gen_tcp:send(Socket, Msg).

That method would undoubtedly work (and you could also convert our
followup string to binary and make one big binary then send it). But the
better method, and one you’d see more common, especially when combin-
ing many binaries and strings together is again to just use an IOList. Like
S0:

{ok, Bin} = file:read_file("forrest_gump.txt"),
Followup = "...and that’s all I have to say about that",
Msg = [Str, Followup],

gen_tcp:send(Socket, Msg).

That code is shorter, cleaner, and doesn’t involve converting a binary to
a list only to traverse that whole list to add a few characters at the end,
and even though we’ve combined a binary and a string list in the same list
structure, the end result is exactly the same.

Indeed, you can experiment with this using the BIF iolist_to_binary/1.

213

> iolist_to_binary("a simple string").

<<"a simple string">>

> iolist_to_binary([<<"a">>, 32, ["complicated", [<<" ">>, <<"iolis
<<"a complicated iolist">>

Notice how that 32 gets converted to a space? That’s because 32 is the
ASCII code for the space character.

The Erlang shell

We could write a whole booklet on the Erlang shell. It enables you to
enter and execute Erlang code interactively and it’s a damned useful if not
essential tool of Erlang and Nitrogen development. Here we’ll show you
how to fire it up and let you experiment on your own:

my_directory$ erl
Erlang/0TP 17 [erts-6.0] [source-07b8f44] [64-bit] [smp:3:3] [async

Running Erlang Eshell V6.0 (abort with ~G)
1>

That last line, “1>", is your cue to start typing. The first thing we’d
suggest that you investigate is how to exit. Hint: there’s more than one
way and they each have their advantages.

http://www.erlang.org/doc/man/shell.html

http://erlang.org/doc/man/erl.html-

214

And much much more
http://www.erlang.org/doc/man/ets.html
http://www.erlang.org/doc/man/dets.html
http://www.erlang.org/doc/man/mnesia.html
http://erlang.org/doc/apps/stdlib/

http://www.erlang.org/faq/libraries.html

215

B. Erlang build tools

There is much controversy in the Erlang world about The Right Package
ManagerTM

make
Makefile
Rebar
erlang.mk

relx

fogfish /makefile
https://github.com /fogfish /makefile

217

C. Erlang resources

Most definitely start here: http://www.erlang.org/

Bedside reading:

e The bible: Armstrong, Joe, Programming Erlang: Software for a
Concurrent World 2nd FEd., Pragmatic, 2013

e Gentle introduction: St. Laurent, Simon, Introducing Erlang, O’Rielly,
2013

e Fun and instructive: Hebert, Fred, Learn You Some Erlang for Great
Good!: A Beginner’s Guide, Pragmatic, 2013

e Rigorous: Cesarini, Francesco and Simon Thompson, FErlang Pro-
gramming, O'Reilly Media, 2009

e OTP Emphasis: Logan, Martin; Eric Merritt, and Richard Carlsson,
Erlang and OTP in Action, Manning Publications, 2010’

e Advanced ninja-mode: Herbert, Fred, Stuff Goes Bad: FErlang in
Anger, Heroku eBook (erlang-in-anger.com), 2014

Websites

e From Install to First Working App in 30 minutes: http://introducingerlang.com/

e The big big picture: hitp://erlangotp.com/

219

e Conferences and consulting: https://www.erlang-solutions.com/
e As always, Google is your friend: https://erlangcentral.org/

e Mailing lists: http://www.erlang.org/static/doc/mailinglist. html

220

D. Just enough git

Git is distributed version control system built by Linux Torvalds to handle
the thousands of concurrent Linux kernel hackers. Since then, and largely
with the rise of Github.com, it has become the main choice of open source
projects throughout the world.

While Git is rather simple, it can get complicated, especially to someone
new to version control. We're going to do our best to distill git down to
the “need to knows” and “probably will need to knows” for the sake of
developing a Nitrogen app and a handful of users. Rather than bullet-
pointing and “TL;DR”ing, I'm just going to present a narrative. If you've
been using git on a regular basis for a few months, and have had to resolve
merge conflicts, then you can very likely skip this Appendix.

So let’s get started.

Git itself is just a command-line program. Git the program executes
commands on a repository, which change the state of the repository. A git
repository consists of a tree of commits. A commit is a set of changes to
any number of files in a repository.

Whoa, holy cow, already hitting you with too much abstract termi-
nology and boring stuff— I can see your eyes glazing over. My apologies.

Let’s just do things and learn as we go, shall we? If you wanted to read
the git manual, you could just type man git. So let’s do some practical
things, and I'll try to explain as we go.

So let’s get started... again. I promise to make every effort to make your
eyes not glaze over.

221

Initializing a Repository, Your First Commit, and
Configuring

First things first, let’s create a repository.

$ mkdir my_project

$ cd my_project

$ git init

Initialized empty Git repository in /home/gumm/
my_project/.git/

So there we go. Every git project starts that way. Congratulations, you
have something in common with every git-based ultra-successful project
ever. If they started this way, you can too!

The next step is to create some files and add them to the repository

222

$ touch a

$ touch b

$ 1s

a b

$ git add a b

$ git status

On branch master
Initial commit

Changes to be committed:

(use "git rm --cached <file>..." to unstage)
new file: a
new file: b

So, we created some files (a and b), added them to our git inder, and then
run git status to show us the status of our repository. Git’s index is a
temporary location for changes you plan to commit. In our case, we added
files a and b to the index, but we never commited them. Changes that
have been added to the index are said to be staged. You’ll notice that git
even hints at this by letting us know how we can unstage our files (use
"git rm --cached <file>..." to unstage)

So let’s commit them, what are we waiting for?

223

$ git commit

***x Please tell me who you are.

Run
git config --global user.email "you@example.com"
git config --global user.name "Your Name"

to set your account’s default identity.

Omit --global to set the identity only in this
repository.

fatal: unable to auto-detect email address
(got ’gumm@my-laptop. (none)’)

What the heck is this? If this is the first time using git, git doesn’t know
who you are, and every commit must be attributed to someone. So let’s
tell git who we are:

$ git config --global user.email "gumm@sigma-star.com"
$ git config --global user.name "Jesse Gumm"

Okay, cool. Git knows who we are now. Let’s try that commit again.

224

$ git commit -m "Initial Commit"

[master (root—commit) 9731d0e] Initial Commit

2 files changed, O insertions(+), O deletions(-)
create mode 100644 a

create mode 100644 b

Sweet! Our first commit.

git commit vs git commit -m

You'll notice that through this appendix, we’ll be sticking with git commit
-m "Some message". This is for brevity. More commonly, you’ll probably
be using just git commit without the -m. Typing just git commit will
bring up your text editor and let you type an extended message to attach
to the commit. It might look something like this:

This is the commit messadg

This is the extended message, it contains extra information and allows
you to describe the purpose of this commit in greater detail.

Please enter the commit message for your changes. Lines starting
with '"#' will be ignored, and an empty message aborts the commit.
On branch master

Your branch is up-to-date with 'origin/master'.

#

Changes to be committed:
new file: blah
#

The first line is, of course, our commit, the 2nd line is blank, and the 3rd
and 4th line are the extended message. Anything starting with # is a
comment and is just there as a summary of what you’re about to commit.

225

Our Change History and Understanding Git Commit
Identifiers

Let’s have a look at our commit history, shall we? There should only be
one commit, but because we're so excited, we want to check it out anyway:

$ git log
commit 9731d0edf87d6c6fcabel3aa924ab3bba84dd0805
Author: Jesse Gumm <gumm@sigma-star.com>
Date: Sat Jun 7 18:19:56 2014 -0500
Initial Commit

Alright! Our commit is in there. Fabulous!

Hey, wait! What the heck is that
9731d0edf87d6c6fcabe3aa924ab3bba84dd0805 string doing there?

That’s actually how you identify git commits. If you care, it’s a SHA
hash of the contents of the commit. You’ll also notice that the first 7
characters of that same string are showing when we made the git commit
command above.

You can refer to commits in commit by that string. For example, to see
the details of our last commit, we could do:

226

$ git show 9731d0edf87d6c6fcabe3aa924ab3bba84dd0805
commit 9731d0edf87d6c6fcabe3aa924ab3bba84dd0805
Author: Jesse Gumm <gumm@sigma-star.com> Date:
Sat Jun 7 18:19:56 2014 -0500
Initial Commit
diff --git a/a b/a
new file mode 100644
index 0000000. .e69de29
diff --git a/b b/b
new file mode 100644
index 0000000. .e69de29

We see “new file” a twice there, but for the most part, let’s not worry about
the rest of the contents. I'll show you some better examples later.

It’s also worth noting that you do not need to refer to the commit by
its whole hash string. You can refer to it by the first X unambiguous
characters. Usually the first 5-7 characters are plenty. For example, the
following is exactly the same as the previous command:

$ git show 973140

Also, there is a special commit called HEAD. HEAD is a “moving commit”, if
you will, in the sense that whenever we add a new commit moves along to
the newest commit. For example.

227

$ git show HEAD

As a useful little trick, if our repository had more than one commit, you
could also refer to commits as relative to HEAD (or any other commit):

$ git show HEAD~1 # show commit before HEAD
$ git show 9731d0~1 # show commit before 973140
$ git show 973d0"1 # show commit after 9731d0

Anyway, enough of that nonsense, let’s get back to good stuff.

Committing More Changes

Let’s make our repository useful. Let’s add some actual data to our files.
Let’s fire up vim and edit the file called “a” and add the following text:

$ vim a

This is my file.

It contain some lines.

0f text.

That last line was not a complete sentence.

Then let’s see what git thinks of our current working directory.

228

$ git status
On branch master
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)
modified: a
Untracked files:

(use "git add <file>..." to include in what

will be committed)

So git sees that a has changed, but it also sees this file called a~. A
convention of vim is to save a backup file by appending ~ to the filename.
We'll get back to that, but let’s commit the changes we care about.

$ git add a

$ git commit -m "Add some content to a"

[master ba7c349] Add some content to a

1 file changed, 4 insertions(+)

$ git status

On branch master

Untracked files:

(use "git add <file>..." to include in what will

be committed)

a~

nothing added to commit but untracked files present
(use "git add" to track)

229

So far so good. But again, we have this “Untracked file” a~ which is
annoying.

Ignoring Things We Don’t Care About

In any given project, there will be numerous files of this nature: files
generated by the make system, files left over by our editor, log files, files
created by our application itself (like Erlang’s DETS or Mnesia files).

To deal with this, git employs the use of a file called .gitignore. This
file lists files and file patterns to simply be ignored by your git project
altogether. Let’s create a pretty simple .gitignore file for us here:

$ vim .gitignore
* ~

That should be good enough for now. Now let’s add it to our repo and
save.

$ git add .gitignore
$ git commit -m "Add .gitignore"
[master £7f5b24] Add .gitignore
1 file changed, 1 insertion(+)
create mode 100644 .gitignore
$ git status
On branch master
nothing to commit, working directory clean

230

Perfect! No more pesky a~ file messing with our heads. We can also rest
assured that any file ending with ~ will be dutifully ignored by git from
here on.

This is especially convenient if you decide to add an entire directory to
a repository. For example doing the command git add . will, without a
.gitignore file, add every file git encounters in the whole working directory.
This may seem benign, after all, the ~ files are just backup files, who cares
if they’re in the repo? This however will undoubtedly present issues with
dealing with merging branches.

I know what you're thinking “Whoa! Whoa! You haven’t said anything
about merging yet! What the heck is that all about?”

Merging Branches

Imagine you’re working on a project, and you have your current main
stable branch, but you also have a development branch for new features
and breaking changes. You don’t want to merge those old changes and
new changes until the new stuff is stable. This is the fundamental need for
branches.

So let’s make a new branch:

$ git checkout -b dev
Switched to a new branch ’dev’

If you come from other version control systems, the term “checkout” might
be confusing. In other systems, “checkout” typically means “place a lock
on something, preventing others from making changes”. In git, it merely
means “change the working directory to the structure of that branch.”
There are no locking of files in git. Specifying the -b option with checkout
creates a new branch from the current commit.

231

Awesome, we have a brand new branch. Let’s make some changes while
we're in here. Let’s open up our a file and add a line.

$ vim a

This is my file.

It contain some lines.

0f text.

That last line was not a complete sentence.
This is a new line, it fears no man.

Excellent, now we commit:

$ git add a
$ git commit -m "Add a line that fears no man"
[dev £80773f] Add a line that fears no man

1 file changed, 1 insertion(+)

Fantastic! We’ve added a sweet new features to our project. As you can
see, the commit specifies that we were indeed commiting to the “dev”
branch. Let’s switch back to the “master” branch but before we do this,
let’s check the status of our files.

232

$ cat a

This is my file.

It contain some lines.

0f text.

That last line was not a complete sentence.
This is a new line, it fears no man.

$ git checkout master

Switched to branch ’master’

$ cat a

This is my file.

It contain some lines.

0f text.

That last line was not a complete sentence.

As you can see, the added line was isolated to the “dev” branch. After
switching to “master”, the changes were lost. Now let’s make some “bugfix”
type changes.

$ vim a

This is my file.

It contains some lines of text.

That last line was indeed a complete sentence.

We fixed some grammatical typos in our original text. Let’s commit our
changes.

233

$ git add a
$ git commit -m "Fix some typos"
[master 650b90e] Fix some typos
1 file changed, 2 insertions(+), 3 deletions(-)

Great. In the meantime, we've determined that the changes in our “dev”
branch are actually stable, so it’s time to merge our “dev” branch into
“master”.

$ git merge dev

Auto-merging a

CONFLICT (content): Merge conflict in a

Automatic merge failed; fix conflicts and then commit the resul

Uh oh, our first merge, and already we have merging conflicts! <sar-
casm>Wonderfull < /sarcasm>

Let’s see what happened:

234

$ cat a

This is my file.

<<<<<< HEAD

It contains some lines of text.

That last line was indeed a complete sentence.

It contain some lines.

0Of text.

That last line was not a complete sentence.
This is a new line, it fears no man.
>>>>>>> dev

So git was unable to resolve the differences in the files and auto-merge
(the vast majority of merges will be easy enough to be auto-merged). Git
so helpfully injected these >>>>>> ======and <<<<<< lines to
help us know which branches each change is from. We have to remove these
lines specifically, and manually fix the merges before we can complete the
merge.

Let’s resolve this conflict by removing the following lines (marked with
strikeout):

235

$ vim a

This is my file.

<<<<<<HEAD

It contains some lines of text.

That last line was indeed a complete sentence.

This is a new line, it fears no man.
SO>>>>> dev

The new file will look like this:

This is my file.

It contains some lines of text.

That last line was indeed a complete sentence.
This is a new line, it fears no man.

Let’s commit these changes:

$ git add a
$ git commit
[master af8eeda] Merge branch ’dev’

Awesome, we’ve merged in those changes.
You've just done 95% of what you'll ever do with git.

236

Working With Remote Repositories

So we say that Git is a distributed version control system. What does that
even mean?

Unlike non-distributed version control systems, git does not depend on
a central repository, though it’s actually quite common for projects to
have a central repository (for example, Nitrogen’s central repository is on
Github). But the distributed nature of git means that everyone with a
cloned repository has a complete local copy of the repository.

GitHub
For the sake of simplicity, we’re going to set up a repository on GitHub.com.

Create an account on github.com and click the little 4 icon next to your
username and click “New Repository”

:"’f choptastic +- ¥ I?

Mew repository

3 News Feed Pull
M News Fee I‘l u ﬁ Mew organization

Repositories you contribute to

nitrogen/nitrogen_core 45 W
| [T IR N S ——— e e

Give your repo a name and click “Create Repository”

237

Owner Repository name

“# choptastic = /| | my_project] .{|

Great repository names are short and memorable. Need inspiration? How about laughing-meme.

Description (optional)

® Public
Anyone can see this repository. You choose who can commit.

Private
You choose who can see and commit to this repository.
Initialize this repository with a README
This will allow you to git clone the repository immediately. Skip this step if you have already run git initlocally.

Add .gitignore: None ~ Add a license: None ~

Now that our remote repo is created. Before we push everything to
Github, we need to make sure we have permissions to push to this repos-
itory. We need to tell Github how to validate us, so we need to generate
SSH Keys and copy the private key to Github:

$ ssh-keygen -t rsa
Generating public/private rsa key pair.

o o

Then, on Github, click the little configuration icon on the menu bar, then
click “SSH Keys” on the menu on the left, and finally click “Add SSH Key.”

238

O - @ Explore Gist Blog Help =4 choptastic +. 03

“A choptastic Need help? Check out our guide to generating SSH keys or troubleshoot commen SSH Problems

Account settings
This Is a list of SSH keys associated with your account. Remove any keys that you do not recognize.

Emails
DKPTest

Notification center 4’ ——
@ No recent activity

Billing

Payment history - f 213 Delete

| SSH keys | @ No recent activity
Security

4D triviathing Delete

Give your key a descriptive name (like “My Laptop”), copy the contents
of ~/.ssh/id_rsa.pub into the “Key” field and click “Add Key.”

Add an SSH Key

Title

My Laptop

Key

MOPfOBDJueSDaAYKOAIzylel MwOWhrV 7mBderxh+6bA44uDGGqocICMBBAFs2UdAGCOUZ0J S2e0XVBFBCs 1sgEX
Qa0IOXy TfemqTKh4xIBAUMSRIRYjwmaNgSMLtty 3iQ6AGTqIDF 2/, i0j i 0

Pushing to and Pulling from Our Remote Repository

Great! Our account is all set up to push to our Github repository. Let’s
do that.

239

$ git remote add origin git@github.com:choptastic/
my_project.git

$ git push origin master

Counting objects: 18, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (16/16), done.

Writing objects: 100% (18/18), 1.68 KiB | 0 bytes/s,
done.

Total 18 (delta 3), reused 0 (delta 0)

To git@github.com:choptastic/my_project.git

* [new branch] master -> master

You might be wondering what “origin” is. “origin” is the default name for
a remote repository in git. You can be connected to more than one remote
repository, and indeed, that practice is generally recommended. So what
we did was to push the “master” branch to the remote repository identified
by “origin” (in this case, our Github repo).

And just like push, we can also pull recent changes from the repository
with

$ git pull origin master
From github.com:choptastic/my_project

* branch master -> FETCH_HEAD
Already up-to-date.

This can be thought of like downloading and merging from a remote repos-
itory. And just like normal merging, if there are merge conflicts, it’ll let

240

you know.

Forking and Cloning

Let’s say there’s an open source project you wish to contribute to (like
Nitrogen!). You're going to want to be able to work on it without requiring
push access to the “official” repo. This means forking it.

Let’s fork Nitrogen and work on it. As you may have noticed, the main
Nitrogen repository is actually just a shell that brings together a handful
of Erlang applications that becomes a Nitrogen deployment. The meat of
Nitrogen is actually found in the nitrogen_ core repository. Let’s fork that.
Head your browser to
https://github.com /nitrogen /nitrogen_ core and click the “Fork” button.

nitrogen / nitrogen_core @ Unwatch ~ 9 J Unstar 45

The core Nitrogen library. http://nitrogenproject.com

<3 Code I
594 3 4 24

| ssues :

I8 v oanch: master + | nitracen cara /4 = - }

This will create a fork of the nitrogen_ core repo in your account, which
you’ll have full push access to.

My github username is “choptastic”, so let’s now clone my newly forked
nitrogen_ core repository.

$ git clone git@github.com:choptastic/nitrogen_core.

That was easy.
Now let’s make some kind of simple change and make our first contribu-
tion to improving Nitrogen.

241

git

Pull Requests

Let’s say we’ve found a bug in Nitrogen and we want to fix it. In this case,
we’ve found that the #panel{} element is lacking the type signatures for
help with Dialyzer. Let’s fix that.

But before we do that, we want to employ Good Open Source Practices,
and create what’s typically called a topic branch, which is just a fancy way
to say that we're creating a branch that fixes a specific bug, or adds some
new feature.

$ cd nitrogen_core
$ git checkout -b panel_type_specs
Switched to a new branch ’panel type_specs’

Now that we have our topic branch all set up, let’s fire up our editor and
edit the source code for the #panel{} element. Here’s what it currently
looks like:

242

$ vim src/elements/layout/element_panel.erl
-module (element panel).
-include lib ("wf.hrl").
-compile(export_all).
reflect() -> record_info(fields, panel).
render_ element (Record) ->
Body = [
wf:html encode(Record#panel.text,
Record#panel.html_encode),
Record#panel . body
J 5
wf_tags:emit_tag(’div’, Body, [
{id, Record#panel.html id},
{class, Record#panel.class},
{title, Record#panel.title},
{style, Record#panel.style},
{data_fields, Record#panel.data_fields}
D.

Let’s make the following changes (changes bolded)

243

-module (element_panel) .
-include("wf.hrl").
-export ([
reflect/0,
render_element/1
DR
-spec reflect() -> [atom()].
reflect() -> record_info(fields, panel).
-spec render_element (#panel{}) -> body().
render_element (Record) ->
Body = [
wf:html_encode (Record#panel.text,
Record#panel .html _encode),
Record#panel . body
15
wf_tags:emit_tag(’div’, Body, [
{id, Record#panel.html id},
{class, Record#panel.class},
{title, Record#panel.title},
{style, Record#panel.style},
{data_fields, Record#panel.data_fields}
D.

Our changes here are simple. We’ve switched from -include_lib to
-include (a remnant from early Nitrogen versions), changed from export_all
to using explicit exports (when writing API-type things, you want to use
explict exports). And finally adding Erlang type specs, which not only
help with documentation, by being able to seeal what a function is sup-
posed to accept and return, and also with debugging using the Dialyzer
tool (which analyzes every call in the system to find type inconsistencies

244

before they’re reach runtime). For the sake of this demonstration, though,
it’s not critical to understand the nature of these fixes. We're just
demonstrating pull requests.

Let’s save our changes and commit them.

$ git commit -m "Add typespecs to #panel{}"
[panel_type_specs 7adc730] Add typespecs to #panel{}
1 file changed, 9 insertions(+), 3 deletions(-)

Here we commit the changes, then push our topic branch off to Github.

$ git push origin panel_type_specs
Counting objects: 36, done.
Delta compression using up to 4 threads.
Compressing objects: 1007 (6/6), done.
Writing objects: 100% (6/6), 660 bytes | O bytes/s,
done.

Total 6 (delta 5), reused 0 (delta 0)
To git@github.com:choptastic/nitrogen_core.git

* [new branch] panel_type_specs -> panel_type_specs

Fabulous, our topic branch is now there. Let’s have a look, shall we?
Head to https://github.com /nitrogen/nitrogen_ core and click the “Net-
work” tab on the right.

245

nitrogen / nitrogen_core @ Unwatch ~ 9 d Unstar 45 % Fork 45

The core Nitrogen library. http://nitrogenproject.com

<> Code
594 3 4 24
ssues 8
Pull Requests 1
choptastic:panel_type_specs
Wiki
I? branch: master ~ | nitrogen_core / + =
Pulse
Add #qr{}, WE:to_qs/1, WF-protocol/0, Wiurl/0 -
"i choptastic latest it eofaze17es B Graphs
ebin es, update version number
include Add ocol/0, wi:url/0 2d Seftings

Clicking that will open up a view of the all commits and branches by all
users who’ve forked our project and pushed their changes up to Github.
Quite frankly, the Network view is my absolute favorite part of Github.

Here we’ll see our branch, and by hovering over the commit dot on the
graph.

Graph | Members

The nitrogen_core network graph
All branches in the network using nitrogen/nitrogen_core as the reference point. Read our blog post about how it works.

Show Help Last updated: a minute ago

nitrogen a

choptastic
si14

paulperegud

Mrstaticvoid Add typespecs to #panel{}

billiob

Sweet, it’s there.

246

Now, let’s issue the pull request. Head back to the “Code” screen (or
just the default page for the repo) - the quickest way is to click the big
blue nitrogen_core link at the top of the screen.

Then you'll see a highlighted row showing our topic branch (choptas-
tic:panel type_specs). Click the “Compare & pull request” button.

nitrogen / nitrogen_core @ Unwatch ~ 9 o Unstar 45 Y Fork 4

The core Nitrogen library. hitp://nitrogenproject.com — Edit
4» Code

594 T 3 e 4 release 24
O Issues J
© pul Roquests

= Wiki

§# branch: master ~ | pitrogen_core / +

Add #qr{}, wf:to_qgs/1, wf:protocol/0, wh:url/0 ===

- Pulse

% choptastic T 228F latest connit eef43e17es B2 i Graphs

doc Add #qr{). wr:to_gs/1, wi:protocol/0, wf:url/0 2 days ago % Network

This will bring us to a pull request page to review and initate the pull
request. Fill out the pull request as detailed as you feel is necessary. Typ-
ically, if this solves an open Github issue issue, or some conversation from
the mailing list, it’s good form to provide a link to the relevant conversa-
tion, otherwise, explaining in detail your changes. Further, if your change
represents a change in an API, it’s a good idea to modify the documen-
tation accordingly. Every project is different in this regard, so make sure
you read every project’s CONTRIB file. Most large projects have one.

247

choptastic / nitrogen_core @Unwatch ~ 2 % str 2 Y For

forked from nitrogen/nitrogen_core

ik nitrogen:master . choptastic:panel type specs Edit
Add typespecs to #panel{} m
Write Preview Parsed as Markdown [E, Edit in fullscreen

« Able to merge.

- o These branches can be
Typespecs were missing from panel, this fixes that| automatically merged.

1 commit 1 file changed 0 comments 1 contributor

If you want to review your pull request before submitting it, just scroll
down the page and you’ll see a diff of all the changes. This will look like
this:

-module (element_panel).
7 --include_lib ("wf.hrl").
8 --compile(export_all).
+-include("wf.hrl").
+-export([
+ reflect/e,
+ render_element/1

+]).

+-spec reflect() -> [atom()].
reflect() -> record_info(fields, panel).

+-spec render_element(Record :: #panel{}) -> body().
render_element (Record) ->
Body = [
wf:html_encode{Record#panel.text, Record#panel.html_encode),

When you feel confident that your changes are up to your satisfaction,
click the “Create pull request” button.

248

Add typespecs to #panel{}

m choptastic wants to merge 1 commit into nitrogen:master from choptastic:panel_type_specs

™ Conversation 0 =0 Commits 1 @ Files changed 1

Df choptastic commented just now

Typespecs were missing from panel, this fixes that.

~§ Add typespecs to #panel{}

Add more commits by pushing to the panel_type_specs branch on choptastic/nitrogen_core

Congratulations, you've just submitted your first pull request! If a
change is simple enough, the owner will likely just merge the changes.

As a user, you'll receive an email regarding any action related to a pull
request, be it comments, or the owner closing, re-opening, or merging your
pull request.

If you are a repository owner (or someone will push permissions to a
repository), you’ll be given the ability to act on pull requests, either by
closing or merging them. If the pull request can be merged by Git without
conflict, you’ll be presented with a friendly green button:

This pull request can be automatically merged.
You can alse merge branches on the command line.

However, if the pull request can not be cleanly merged (usually caused
by the master branch changing the same line of code as one of the lines
changed in your own pull request), then you would be presented with this
message:

249

m We can’t automatically merge this pull request.

Use the command line to resolve conflicts before continuing

Clicking the “use the command line” link in either box will give you
instructions on manually completing the merge on the command line.

These commands, with a few additions, will look strikingly familiar.
Indeed, being a remote branch means nothing.

While clicking the “Merge pull request” box is the simpler route when
available, let’s use the command line to merge our changes (to better illus-
trate what we're typing, I've bolded our commands).

$ git checkout -b choptastic-panel_type_specs master
Switched to a new branch ’choptastic-panel_type_specs’
$ git pull git://github.com/choptastic/
nitrogen_core.git panel_type_specs
remote: Counting objects: 6, done.
remote: Compressing objects: 1007% (6/6), done.
remote: Total 6 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (6/6), done.
From git://github.com/choptastic/nitrogen_core
* branch panel _type_specs —-> FETCH_HEAD
Updating 09f4301..7adc730
Fast-forward
src/elements/layout/element_panel.erl | 12 +++++++++-——-
1 file changed, 9 insertions(+), 3 deletions(-)

Those two commands created a branch off master, then pulled the changes
down from the remote repository, merging them into our current branch.

Now we want to merge those changes into master and push those changes
off to Github.

250

$ git checkout master

Switched to branch ’master’

Your branch is up-to-date with ’origin/master’.

$ git merge choptastic-panel_type_specs

Updating 09f4301..7adc730

Fast-forward
src/elements/layout/element _panel.erl | 12 ++++++t+t——-
1 file changed, 9 insertions(+), 3 deletions(-)

$ git push origin master

Congratulations, you’ve merged your first pull request!

That just about covers the basics of working with Git. There are lots
of resources out there for dealing with some of Git’s warts, but the above
describes 99% of how you’ll work with Git.

10 Git recommendations that are so easy they’ll blow
your mind right out of your brain-hole!

Pardon the link-bait title! But because bullet points are so easy to grok,
I'll throw out some brief recommendations for you when working in Git
and contributing to Git-based Open Source Projects in general:

1. Keep commit titles short. Most projects say to keep the commit title
shorter than 50 characters.

2. Keep extended commit messages under 80 characters per line. You
can make your extended messages as long as necessary, but some
stricter open source authors will reject commits on this basis alone.
As always, read the CONTRIB doc for your project.

3. Keep the indentation and code style consistent with the original
project. If the project uses spaces instead of tabs, make sure you're
doing the same. A project maintainer will be annoyed at having to

251

10.

fix indentation when it’s something that can be easily done by the
pull request author.

If you accidentally commit something and realize there was a mis-
take in the commit message, you can modify that commit with git
commit --amend

If you need to pull a single commit from somewhere else without doing
a full merge, use git cherry-pick X where X is the commit hash.
If it’s from a remote repo, use git fetch git://url/to/repo.git
first, then git cherry-pick X

. Before merging a pile of potentially broken commits into master, it’s

usually a good idea to squash those broken commits all into a single
working commit. You can do this with git rebase -i X where
X is the commit to start with. Because rebasing can be relatively
complex, and there are several guides for doing so online, feel free to
search for “git rebase guide”. Search engines are your friend.

Make your git life easier with tig!, an ncurses-based interface for git.

. Accidentally add a file to the index and don’t actually want to com-

mit it? Unstage that beast with git reset HEAD <filename>. Or
use tig status, and press the u key (you did install tig after my
recommendation, right?)

. You can always edit your repository’s configuration in the root of

your project in .git/config. Incidentally, this .git directory is
where the whole repository structure is kept. Feel free to spelunk.

If you use vim and would like to take advantage of git in the editor,
Fugitive? is your friend.

Thttps://github.com/jonas/tig
2https://github.com /tpope/vim-fugitive

252

11. Notice that your current commit doesn’t work, but you know a past
commit does work, except that you don’t know which commit first?
Use git bisect®. This will do a sort of binary search of the com-
mits for you. Letting you test each commit, and then telling git if it
worked or not, then picking another commit until you’ve finally dis-
covered exactly which commit first caused the bug. It’s extraorinarily
powerful, but beyond the scope of this appendix.

3A simple guide for git bisect: http://www.metaltoad.com/blog/beginners-guide-
git-bisect-process-elimination

253

References

255

Index

Arity, 32
berypt, 138
Cowboy, 113

Debian, 9
Dialyzer, 242, 244
distributed computing, 9

Erlang OTP, 7
first class function, 32
git bisect, 253

Inets, 113

inets, 12

Install Nitrogen, 11
iolist, 52

MacBook Pro, 9
make, 12
Mochiweb, 113

Open Source, 242

Pull Requests, 242
qdate, 155

Raspberry Pi, 9
rebase, 252
Release, 207

SQL Injection, 135
sync, 29

tig, 252
timezones, 155
topic branch, 242

Ubuntu, 9
Unstage, 252

web framework, 7
Webmachine, 113
webserver, 113
Websocket, 113
WebSockets, 113
wi_tags:emit_tag/3, 148
Windows, 9

257

Yaws, 113

258

About the Authors

Lloyd R. Prentice

Lloyd is a novelist and small-press book publisher. His first computer
had a an S-100 bus and 8K of RAM. He has designed and developed more
than 100 educational and consumer software products for major publishers.
Web experience includes a soup-to-nuts application to support marketing
and management of world-class technical conferences; six months in the
making and ten years under non-stop revision and unrelenting deadlines.
"You haven’t lived," he says, "until several hundred conference attendees
— mandarins of I'T — log into your URL at the same time and bring your
server down." Jesse has patiently taught him much that he wish he’d known
at the time.

Jesse Gumm

Jesse wrote his first program in QBASIC for DOS: a two-player text-based
fighter game. He’s now an entrepreneur specializing in web application
development. His current flagship product, BracketPal, is a sports league
management system written in Nitrogen. In open source, he’s the project
leader of Nitrogen and its core dependency SimpleBridge, and he has a
hand in a number of other Erlang projects: sync (automatic compilation),
ChicagoBoss (MVC web framework), and qdate (date and timezone man-
agement). With Lloyd’s help, he’s learning how to write technical content
that won’t put the reader to sleep. Also, if you're ever in the Milwaukee

259

area and looking for a beach volleyball partner, he’s your guy.

260

261

Working Notes - Delete in Final
Draft

263

git clone git://github.com/nitrogen/nitrogen
cd nitrogen

make slim_inets mv rel/nitrogen ~/nb

cd ~/wboard

git init

This will put the whole release and its included stand-alone erlang instal-
lation under source control.

If you want a smaller release that doesn’t include the full release, you
could do ‘make slim__inets' in place of ‘make rel_inets’, then adding the
whole release to source control is a little more manageable because it
doesn’t include the full erlang installation.

265

266

The basics are:
Making an HTML template, https://docs.google.com/presentation/d/19y
Referencing your Template in in your erlang code: #template{file="p

Working with simple nitrogen elements (#panel{}, #span{}, #button{}
http://nitrogenproject.com/demos/simplecontrols

Working with postbacks
http://nitrogenproject.com/demos/postback

Wiring page updates.
http://nitrogenproject.com/demos/ajax http://nitrogenproject.com/de

After all that, probably circle back to describe the anatomy of a p

And maybe end with a "bang" by showing how easy it is to do live-up
http://sigma-star.com/blog/post/sync_panel

And you can try it with:
git clone git://github.com/nitrogen/NitrogenProject.com cd Nitrogen

That’1ll be a copy of the latest NitrogenProject.com code with my up

	Contents
	I Frying Pan to Fire
	1 You want me to build what?
	2 Enter the lion's den
	2.1 The big picture
	2.2 Install Nitrogen
	2.3 Lay of the land

	II Projects
	3 nitroBoard I
	3.1 Plan of attack
	3.2 Create a new project
	3.3 Prototype welcome page
	3.4 Anatomy of a page
	3.5 Anatomy of a route
	3.6 Anatomy of a template
	3.7 Elements
	3.8 Actions
	3.9 Triggers and Targets
	3.10 Enough theory
	3.11 Visitors
	3.12 Styling
	3.13 Debugging
	3.14 What you've learned
	3.15 Think and do

	4 nitroBoard II
	4.1 Plan of attack
	4.2 Associates
	4.3 I am in/I am out
	4.4 Styling
	4.5 What you've learned
	4.6 Think and do

	5 A Simple Login System
	5.1 Getting Started
	5.2 Dependencies
	5.2.1 Rebar Dependency: erlpass

	5.3 The index page
	5.4 Creating an account
	5.4.1 db_login module

	5.5 The login form
	5.5.1 Verifying the password (back to db_login)

	5.6 Some finishing touches
	5.6.1 Adding Validation to the Login Form
	5.6.2 Adding Validation to Account Creation

	5.7 Closing thoughts on login systems
	5.8 Links

	6 A Tale of Three Backends
	7 nitroProjectLog
	8 NitroMail

	III Core Nitrogen Concepts
	9 How to choose a webserver
	10 How to structure your Nitrogen projects
	11 Nitrogen Functions
	12 Nitrogen Elements
	13 Nitrogen Actions
	14 Nitrogen Templates
	15 Anatomy of a page and the path of execution
	16 Comet and long-running processes
	17 Secure your site

	IV Advanced Nitrogen Concepts
	18 Custom Elements
	19 Nitrogen Plugins
	20 Advanced Postbacks
	21 Custom Handlers
	22 Clustering
	23 Troubleshooting
	24 The challenges of e-mail

	V DevOps
	25 Deployment
	26 Choose a host
	27 Stack the deck
	28 Launch day
	29 Maintain maintain

	VI Appendices
	A Erlang from the top down
	B Erlang build tools
	C Erlang resources
	D Just enough git
	Index

