Tagging

Steven Bird Ewan Klein Edward Loper

University of Melbourne, AUSTRALIA
University of Edinburgh, UK
University of Pennsylvania, USA
August 27, 2008

Parts of speech

- How can we predict the bahaviour of a previously unseen word?
- Words can be divided into classes that behave similarly.
- Traditionally eight parts of speech: noun, verb, pronoun, preposition, adverb, conjunction, adjective and article.
- More recently larger sets have been used: eg Penn Treebank (45 tags), Susanne (353 tags).

Parts of speech

- How can we predict the bahaviour of a previously unseen word?
- Words can be divided into classes that behave similarly.
- Traditionally eight parts of speech: noun, verb, pronoun, preposition, adverb, conjunction, adjective and article.
- More recently larger sets have been used: eg Penn Treebank (45 tags), Susanne (353 tags).

Parts of speech

- How can we predict the bahaviour of a previously unseen word?
- Words can be divided into classes that behave similarly.
- Traditionally eight parts of speech: noun, verb, pronoun, preposition, adverb, conjunction, adjective and article.
- More recently larger sets have been used: eg Penn Treebank (45 tags), Susanne (353 tags).

Parts of speech

- How can we predict the bahaviour of a previously unseen word?
- Words can be divided into classes that behave similarly.
- Traditionally eight parts of speech: noun, verb, pronoun, preposition, adverb, conjunction, adjective and article.
- More recently larger sets have been used: eg Penn Treebank (45 tags), Susanne (353 tags).

Parts of Speech

What use are parts of speech?
They tell us a lot about a word (and the words near it).

Parts of Speech

What use are parts of speech?
They tell us a lot about a word (and the words near it).

Parts of Speech

What use are parts of speech?
They tell us a lot about a word (and the words near it).

- Tell us what words are likely to occur in the neighbourhood (eg adjectives often followed by nouns, personal pronouns often followed by verbs, possessive pronouns by nouns)
- Pronunciations can be dependent on part of speech, eg speech recognition)
- Can heln information retrieval and extraction (stemming, partial parsing)
- Useful component in many NLP systems

Parts of Speech

What use are parts of speech?
They tell us a lot about a word (and the words near it).

- Tell us what words are likely to occur in the neighbourhood (eg adjectives often followed by nouns, personal pronouns often followed by verbs, possessive pronouns by nouns)
- Pronunciations can be dependent on part of speech, eg object, content, discount (useful for speech synthesis and speech recognition)
- Can help information retrieval and extraction (stemming, partial parsing)
- Useful component in many NLP systems

Parts of Speech

What use are parts of speech?
They tell us a lot about a word (and the words near it).

- Tell us what words are likely to occur in the neighbourhood (eg adjectives often followed by nouns, personal pronouns often followed by verbs, possessive pronouns by nouns)
- Pronunciations can be dependent on part of speech, eg object, content, discount (useful for speech synthesis and speech recognition)
- Can help information retrieval and extraction (stemming, partial parsing)
- Useful component in many NLP systems

Parts of Speech

What use are parts of speech?
They tell us a lot about a word (and the words near it).

- Tell us what words are likely to occur in the neighbourhood (eg adjectives often followed by nouns, personal pronouns often followed by verbs, possessive pronouns by nouns)
- Pronunciations can be dependent on part of speech, eg object, content, discount (useful for speech synthesis and speech recognition)
- Can help information retrieval and extraction (stemming, partial parsing)
- Useful component in many NLP systems

Closed and open classes

- Parts of speech may be categorised as open or closed classes
- Closed classes have a fixed membership of words (more or less), eg determiners, pronouns, prepositions
- Closed class words are usually function words frequently occurring, grammatically important, often short (eg of,it,the,in)
- The major open classes are nouns, verbs, adjectives and adverbs

Closed and open classes

- Parts of speech may be categorised as open or closed classes
- Closed classes have a fixed membership of words (more or less), eg determiners, pronouns, prepositions
- Closed class words are usually function words frequently occurring, grammatically important, often short (eg of,it,the,in)
- The major open classes are nouns, verbs, adjectives and adverbs

Closed and open classes

- Parts of speech may be categorised as open or closed classes
- Closed classes have a fixed membership of words (more or less), eg determiners, pronouns, prepositions
- Closed class words are usually function words frequently occurring, grammatically important, often short (eg of,it,the,in)
- The major open classes are nouns, verbs, adjectives and adverbs

Closed and open classes

- Parts of speech may be categorised as open or closed classes
- Closed classes have a fixed membership of words (more or less), eg determiners, pronouns, prepositions
- Closed class words are usually function words frequently occurring, grammatically important, often short (eg of,it,the,in)
- The major open classes are nouns, verbs, adjectives and adverbs

Closed classes in English

prepositions determiners pronouns conjunctions auxiliary verbs particles numerals
on, under, over, to, with, by
the, a, an, some
she, you, I, who
and, but, or, as, when, if
can, may, are
up, down, at, by
one, two, first, second

Open classes

nouns Proper nouns (Scotland, BBC), common nouns:

- count nouns (goat, glass)
- mass nouns (snow, pacifism)

verbs actions and processes (run, hope), also auxiliary

 verbsadjectives properties and qualities (age, colour, value) adverbs modify verbs, or verb phrases, or other adverbs: yesterday

Open classes

nouns Proper nouns (Scotland, BBC), common nouns:

- count nouns (goat, glass)
- mass nouns (snow, pacifism)
verbs actions and processes (run, hope), also auxiliary verbs
adjectives properties and qualities (age, colour, value) adverbs modify verbs, or verb phrases, or other adverbs: yesterday

Open classes

nouns Proper nouns (Scotland, BBC), common nouns:

- count nouns (goat, glass)
- mass nouns (snow, pacifism)
verbs actions and processes (run, hope), also auxiliary verbs
adjectives properties and qualities (age, colour, value) adverbs modify verbs, or verb phrases, or other adverbs: yesterday

Open classes

nouns Proper nouns (Scotland, BBC), common nouns:

- count nouns (goat, glass)
- mass nouns (snow, pacifism)
verbs actions and processes (run, hope), also auxiliary verbs
adjectives properties and qualities (age, colour, value)
adverbs modify verbs, or verb phrases, or other adverbs:

Open classes

nouns Proper nouns (Scotland, BBC), common nouns:

- count nouns (goat, glass)
- mass nouns (snow, pacifism)
verbs actions and processes (run, hope), also auxiliary verbs
adjectives properties and qualities (age, colour, value)
adverbs modify verbs, or verb phrases, or other adverbs:

Open classes

nouns Proper nouns (Scotland, BBC), common nouns:

- count nouns (goat, glass)
- mass nouns (snow, pacifism)
verbs actions and processes (run, hope), also auxiliary verbs
adjectives properties and qualities (age, colour, value)
adverbs modify verbs, or verb phrases, or other adverbs: Unfortunately John walked home extremely slowly yesterday

The Penn Treebank tagset (1)

CC	Coord Conjuncn	and,but,or	NN	Noun, sing. or mass	dog
CD	Cardinal number	one,two	NNS	Noun, plural	dogs
DT	Determiner	the,some	NNP	Proper noun, sing.	Edinburg
EX	Existential there	there	NNPS	Proper noun, plural	Orkneys
FW	Foreign Word	mon dieu	PDT	Predeterminer	all, both
IN	Preposition	of,in,by	POS	Possessive ending	's
JJ	Adjective	big	PP	Personal pronoun	I,you,she
JJR	Adj., comparative	bigger	PP\$	Possessive pronoun	my,one's
JJS	Adj., superlative	biggest	RB	Adverb	quickly
LS	List item marker	1,One	RBR	Adverb, comparative	faster
MD	Modal	can,should	RBS	Adverb, superlative	fastest

The Penn Treebank tagset (2)

RP	Particle	up,off	WP\$	Possessive-Wh	whose
SYM	Symbol	$+, \%, \&$	WRB	Wh-adverb	how, where
TO	"to"	to	\$	Dollar sign	\$
UH	Interjection	oh, oops	$\#$	Pound sign	\#
VB	verb, base form	eat	"	Left quote	',"
VBD	verb, past tense	ate	$"$	Right quote	,""
VBG	verb, gerund	eating	$($	Left paren	(
VBN	verb, past part	eaten	$)$	Right paren)
VBP	Verb, non-3sg, pres	eat	,	Comma	,
VBZ	Verb, 3sg, pres	eats	.	Sent-final punct	.$!?$
WDT	Wh-determiner	which,that	$:$	Mid-sent punct.	$: ;-\ldots$
WP	Wh-pronoun	what,who			

Tagging

- Definition: POS Tagging is the assignment of a single part-of-speech tag to each word (and punctuation marker) in a corpus. For example:
"/" The/DT guys/NNS that/WDT make/VBP traditional/JJ hardware/NN are/VBP really/RB being/VBG obsoleted/VBN by/IN microprocessor-based/JJ machines/NNS ,/, "/" said/VBD Mr./NNP Benton/NNP ./.
- Non-trivial: POS tagging must resolve ambiguities since the same word can have different tags in different contexts
- In the Brown cornus 11.5% of word types and 40% of word tokens are ambiguous
- In many cases one tag is much more likely for a given word than any other
- Limited scope: only supplying a tag for each word, no larger structures created (eg prepositional phrase attachment)

Tagging

- Definition: POS Tagging is the assignment of a single part-of-speech tag to each word (and punctuation marker) in a corpus. For example:
"/" The/DT guys/NNS that/WDT make/VBP traditional/JJ hardware/NN are/VBP
really/RB being/VBG obsoleted/VBN by/IN microprocessor-based/JJ
machines/NNS ,/, "/" said/VBD Mr./NNP Benton/NNP ./.
- Non-trivial: POS tagging must resolve ambiguities since the same word can have different tags in different contexts
- In the Brown corpus 11.5\% of word types and 40\% of word tokens are ambiguous
- In many cases one tag is much more likely for a given word than any other
- Limited scope: only supplying a tag for each word, no larger structures created (eg prepositional phrase attachment)

Tagging

- Definition: POS Tagging is the assignment of a single part-of-speech tag to each word (and punctuation marker) in a corpus. For example:
"/" The/DT guys/NNS that/WDT make/VBP traditional/JJ hardware/NN are/VBP
really/RB being/VBG obsoleted/VBN by/IN microprocessor-based/JJ
machines/NNS ,/, "/" said/VBD Mr./NNP Benton/NNP ./.
- Non-trivial: POS tagging must resolve ambiguities since the same word can have different tags in different contexts
- In the Brown corpus 11.5% of word types and 40% of word tokens are ambiguous
- In many cases one tag is much more likely for a given word than any other
- Limited scope: only supplying a tag for each word, no larger structures created (eg prepositional phrase attachment)

Tagging

- Definition: POS Tagging is the assignment of a single part-of-speech tag to each word (and punctuation marker) in a corpus. For example:
"/" The/DT guys/NNS that/WDT make/VBP traditional/JJ hardware/NN are/VBP
really/RB being/VBG obsoleted/VBN by/IN microprocessor-based/JJ
machines/NNS ,/, "/" said/VBD Mr./NNP Benton/NNP ./.
- Non-trivial: POS tagging must resolve ambiguities since the same word can have different tags in different contexts
- In the Brown corpus 11.5% of word types and 40% of word tokens are ambiguous
- In many cases one tag is much more likely for a given word than any other
- Limited scope: only supplying a tag for each word, no
larger structures created (eg prepositional phrase
attachment)

Tagging

- Definition: POS Tagging is the assignment of a single part-of-speech tag to each word (and punctuation marker) in a corpus. For example:
"/" The/DT guys/NNS that/WDT make/VBP traditional/JJ hardware/NN are/VBP
really/RB being/VBG obsoleted/VBN by/IN microprocessor-based/JJ
machines/NNS ,/, "/" said/VBD Mr./NNP Benton/NNP ./.
- Non-trivial: POS tagging must resolve ambiguities since the same word can have different tags in different contexts
- In the Brown corpus 11.5% of word types and 40% of word tokens are ambiguous
- In many cases one tag is much more likely for a given word than any other
- Limited scope: only supplying a tag for each word, no larger structures created (eg prepositional phrase attachment)

Information sources for tagging

What information can help decide the correct PoS tag for a word?

Other PoS tags Even though the PoS tags of other words may be uncertain too, we can use information that some tag sequences are more likely than others (eg the/AT red/JJ drink/NN vs the/AT red/JJ drink/VBP).
Using only information about the most likely PoS tag sequence does not result in an accurate tagger (about 77\% correct)
The word identity Many words can gave multiple possible tags,
but some are more likely than others (eg fall/VBP vs fall/NM)
Tagging each word with its most common tag results in a tagger with about 90\% accuracy

Information sources for tagging

What information can help decide the correct PoS tag for a word?

Other PoS tags Even though the PoS tags of other words may be uncertain too, we can use information that some tag sequences are more likely than others (eg the/AT red/JJ drink/NN vs the/AT red/JJ drink/VBP).
Using only information about the most likely PoS tag sequence does not result in an accurate tagger (about 77\% correct)
The word identity Many words can gave multiple possible tags, but some are more likely than others (eg fall/VBP vs fall/NM)
Tagging each word with its most common tag results in a tagger with about 90\% accuracy

Tagging in NLTK

The simplest possible tagger tags everything as a noun:

```
text = 'There are 11 players in a football team'
text_tokens = text.split()
# ['There', 'are', '11', 'players', 'in', 'a', 'football
```

mport nter

Eor t in mytageser. tagq(text_tokens):

Tagging in NLTK

The simplest possible tagger tags everything as a noun:

```
text ='There are 11 players in a football team'
text_tokens = text.split()
# ['There', 'are', '11', 'players', 'in', 'a', 'football
import nltk
mytagger = nltk.DefaultTagger('NN')
for t in mytagger.tag(text_tokens):
    print t
# ('There', 'NN')
# ('are', 'NN')
# ...
```


A regular expression tagger

We can use regular expressions to tag tokens based on regularities in the text, eg numerals:

```
default_pattern = (r'.*', 'NN')
cd_pattern = (r' ^[0-9]+(.[0-9]+)?$', 'CD')
patterns = [cd_pattern, default_pattern]
NN_CD_tagger = nltk.RegexpTagger(patterns)
re_tagged = NN_CD_tagger.tag(text_tokens)
# [('There', 'NN'), ('are', 'NN'), ('11', 'NN'), ('playe
('in', 'NN'), ('a', 'NN'), ('football', 'NN'), ('team',
```


A unigram tagger

The NLTK UnigramTagger class implements a tagging algorithm based on a table of unigram probabilities:

$$
\operatorname{tag}(w)=\arg \max _{t_{i}} P\left(t_{i} \mid w\right)
$$

Training a UnigramTagger on the Penn Treebank:

A unigram tagger

The NLTK UnigramTagger class implements a tagging algorithm based on a table of unigram probabilities:

$$
\operatorname{tag}(w)=\arg \max _{t_{i}} P\left(t_{i} \mid w\right)
$$

Training a UnigramTagger on the Penn Treebank:

```
# sentences 0-2999
```

train_sents $=$ nltk.corpus.treebank.tagged_sents() [:3000]
\# from sentence 3000 to the end
test_sents = nltk.corpus.treebank.tagged_sents() [3000:]
unigram_tagger = nltk. UnigramTagger(train_sents)

Unigram tagging

```
>>> sent = "Mr. Jones saw the book on the shelf"
>>> unigram_tagger.tag(sent.split())
[('Mr.', 'NNP'), ('Jones', 'NNP'), ('saw', 'VBD'), ('the
('book', 'NN'), ('on', 'IN'), ('the', 'DT'), ('shelf', N
```

The UnigramTagger assigns the default tag None to words that are not in the training data (eg shelf)
We can combine taggers to ensure every word is tagged:
\ggg unigram_tagger $=$ nltk. UnigramTagger(train_sents,

Unigram tagging

>>> sent $=$ "Mr. Jones saw the book on the shelf"
>>> unigram_tagger.tag(sent.split())
[('Mr.', 'NNP'), ('Jones', 'NNP'), ('saw', 'VBD'), ('the $(' b o o k ', ~ ' N N '), ~(' o n ', ~ ' I N '), ~(' t h e ', ~ ' D T '), ~(' s h e l f ', ~ N ~$

The UnigramTagger assigns the default tag None to words that are not in the training data (eg shelf)
We can combine taggers to ensure every word is tagged:
>>> unigram_tagger = nltk.UnigramTagger(train_sents, cut >>> unigram_tagger.tag(sent.split())
[('Mr.', 'NNP'), ('Jones', 'NNP'), ('saw', 'VBD'), ('the ('book', 'VB'), ('on', 'IN'), ('the', 'DT'), ('shelf',

Evaluating taggers

- Basic idea: compare the output of a tagger with a human-labelled gold standard
- Need to compare how well an automatic method does with the agreement between people
- The best automatic methods have an accuracy of about 96-97\% when using the (small) Penn treebank tagset (but this is still an average of one error every couple of sentences...)
- Inter-annotator agreement is also only about 97\%
- A good unigram baseline (with smoothing) can obtain 90-91\%!

Evaluating taggers

- Basic idea: compare the output of a tagger with a human-labelled gold standard
- Need to compare how well an automatic method does with the agreement between people
- The best automatic methods have an accuracy of about 96-97\% when using the (small) Penn treebank tagset (but this is still an average of one error every couple of sentences...)
- Inter-annotator agreement is also only about 97\%
- A good uniaram baseline (with smoothing) can obtair 90-91\%!

Evaluating taggers

- Basic idea: compare the output of a tagger with a human-labelled gold standard
- Need to compare how well an automatic method does with the agreement between people
- The best automatic methods have an accuracy of about 96-97\% when using the (small) Penn treebank tagset (but this is still an average of one error every couple of sentences...)
- Inter-annotator agreement is also only about 97\%
- A good unigram baseline (with smoothing) can obtain 90-91\%!

Evaluating taggers

- Basic idea: compare the output of a tagger with a human-labelled gold standard
- Need to compare how well an automatic method does with the agreement between people
- The best automatic methods have an accuracy of about 96-97\% when using the (small) Penn treebank tagset (but this is still an average of one error every couple of sentences...)
- Inter-annotator agreement is also only about 97\%
- A good unigram baseline (with smoothing) can obtain 90-91\%!

Evaluating taggers

- Basic idea: compare the output of a tagger with a human-labelled gold standard
- Need to compare how well an automatic method does with the agreement between people
- The best automatic methods have an accuracy of about 96-97\% when using the (small) Penn treebank tagset (but this is still an average of one error every couple of sentences...)
- Inter-annotator agreement is also only about 97\%
- A good unigram baseline (with smoothing) can obtain 90-91\%!

Evaluating taggers in NLTK

NLTK provides a function tag. accuracy to automate evaluation. It needs to be provided with a tagger, together with some text to be tagged and the gold standard tags.

We can make print more prettily:

Evaluating taggers in NLTK

NLTK provides a function tag.accuracy to automate evaluation. It needs to be provided with a tagger, together with some text to be tagged and the gold standard tags.
We can make print more prettily:

```
def print_accuracy(tagger, data):
    print '%3.1f%%' % (100 * nltk.tag.accuracy(tagg
```

>>> print_accuracy (NN_CD_tagger, test_sents) \ggg print_accuracy (unigram_tagger, test_sents)

Evaluating taggers in NLTK

NLTK provides a function tag.accuracy to automate evaluation. It needs to be provided with a tagger, together with some text to be tagged and the gold standard tags.
We can make print more prettily:

```
def print_accuracy(tagger, data):
    print '%3.1f%%' % (100 * nltk.tag.accuracy(tagg
>>> print_accuracy(NN_CD_tagger, test_sents)
15.0%
>>> print_accuracy(unigram_tagger, train_sents)
93.8%
>>> print_accuracy(unigram_tagger, test_sents)
82.8%
```


Error analysis

- The \% correct score doesn't tell you everything - it is useful know what is misclassified as what
- Confusion matrix: A matrix (ntags x ntags) where the rows correspond to the correct tags and the columns correspond to the tagger output. Cell (i, j) gives the count of the number of times tag i was classified as tag j
- The leading diagonal elements correspond to correct classifications
- Off diagonal elements correspond to misclassifications
- Thus a confusion matrix gives information on the major problems facing a tagger (eg NNP vs. NN vs. JJ)
- See section 3 of the NLTK tutorial on Tagging

Error analysis

- The \% correct score doesn't tell you everything - it is useful know what is misclassified as what
- Confusion matrix: A matrix (ntags x ntags) where the rows correspond to the correct tags and the columns correspond to the tagger output. Cell (i, j) gives the count of the number of times tag i was classified as tag j
- The leading diagonal elements correspond to correct classifications
- Off diagonal elements correspond to misclassifications
- Thus a confusion matrix gives information on the major problems facing a tagger (eg NNP vs. NN vs. JJ)
- See section 3 of the NLTK tutorial on Tagging

Error analysis

- The \% correct score doesn't tell you everything - it is useful know what is misclassified as what
- Confusion matrix: A matrix (ntags x ntags) where the rows correspond to the correct tags and the columns correspond to the tagger output. Cell (i, j) gives the count of the number of times tag i was classified as tag j
- The leading diagonal elements correspond to correct classifications
- Off diagonal elements correspond to misclassifications
- Thus a confusion matrix gives information on the major problems facing a tagger (eg NNP vs. NN vs. JJ)
- See section 3 of the NLTK tutorial on Tagging

Error analysis

- The \% correct score doesn't tell you everything - it is useful know what is misclassified as what
- Confusion matrix: A matrix (ntags x ntags) where the rows correspond to the correct tags and the columns correspond to the tagger output. Cell (i, j) gives the count of the number of times tag i was classified as tag j
- The leading diagonal elements correspond to correct classifications
- Off diagonal elements correspond to misclassifications
- Thus a confusion matrix gives information on the major problems facing a tagger (eg NNP vs. NN vs. JJ)
- See section 3 of the NLTK tutorial on Tagging

Error analysis

- The \% correct score doesn't tell you everything - it is useful know what is misclassified as what
- Confusion matrix: A matrix (ntags x ntags) where the rows correspond to the correct tags and the columns correspond to the tagger output. Cell (i, j) gives the count of the number of times tag i was classified as tag j
- The leading diagonal elements correspond to correct classifications
- Off diagonal elements correspond to misclassifications
- Thus a confusion matrix gives information on the major problems facing a tagger (eg NNP vs. NN vs. JJ)
- See section 3 of the NLTK tutorial on Tagging

Error analysis

- The \% correct score doesn't tell you everything - it is useful know what is misclassified as what
- Confusion matrix: A matrix (ntags x ntags) where the rows correspond to the correct tags and the columns correspond to the tagger output. Cell (i, j) gives the count of the number of times tag i was classified as tag j
- The leading diagonal elements correspond to correct classifications
- Off diagonal elements correspond to misclassifications
- Thus a confusion matrix gives information on the major problems facing a tagger (eg NNP vs. NN vs. JJ)
- See section 3 of the NLTK tutorial on Tagging

N -gram taggers

- Basic idea: Choose the tag that maximises:

$$
P(\text { word } \mid \text { tag }) \cdot P(\text { tag } \mid \text { previous } \mathrm{n} \text { tags })
$$

- For a bigram model the best tag at position i is:

$$
t_{i}=\arg \max _{t_{j}} P\left(w_{i} \mid t_{j}\right) P\left(t_{j} \mid t_{i-1}\right)
$$

Assuming that you know the previous tag, t_{i-1}.

- Interpretation: choose the tad t_{i} that is most likely to generate word w_{i} given that the previous tag was t_{i-1}

N -gram taggers

- Basic idea: Choose the tag that maximises:

$$
P(\text { word } \mid \text { tag }) \cdot P(\text { tag } \mid \text { previous } \mathrm{n} \text { tags })
$$

- For a bigram model the best tag at position i is:

$$
t_{i}=\arg \max _{t_{j}} P\left(w_{i} \mid t_{j}\right) P\left(t_{j} \mid t_{i-1}\right)
$$

Assuming that you know the previous tag, t_{i-1}.

- Interpretation: choose the tag t_{i} that is most likely to generate word w_{i} given that the previous tag was t_{i-1}

N -gram taggers

- Basic idea: Choose the tag that maximises:

$$
P(\text { word } \mid \text { tag }) \cdot P(\text { tag } \mid \text { previous } \mathrm{n} \text { tags })
$$

- For a bigram model the best tag at position i is:

$$
t_{i}=\arg \max _{t_{j}} P\left(w_{i} \mid t_{j}\right) P\left(t_{j} \mid t_{i-1}\right)
$$

Assuming that you know the previous tag, t_{i-1}.

- Interpretation: choose the tag t_{i} that is most likely to generate word w_{i} given that the previous tag was t_{i-1}

N -gram taggers

Example (J+M, p304)

Secretariat/NNP is/VBZ expected/VBZ to/TO race/VB tomorrow/NN
People/NNS continue/VBP to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN

- "race" is a verb in the first, a noun in the second.
- Assume that race is the only untagged word, so we can assume the tags of the others.
- Probabilities of "race" being a verb, or race being a noun in the first example:

$$
\begin{aligned}
& P(\text { race is } V B)=P(V B \mid T O) P(\text { race } \mid V B) \\
& P(\text { race is } N N)=P(N N \mid T O) P(\text { race } \mid N N)
\end{aligned}
$$

Example (J+M, p304)

Secretariat/NNP is/VBZ expected/VBZ to/TO race/VB tomorrow/NN
People/NNS continue/VBP to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN

- "race" is a verb in the first, a noun in the second.
- Assume that race is the only untagged word, so we can assume the tags of the others.
- Probabilities of "race" beina a verb, or race being a noun in the first example:

$$
\begin{aligned}
& P(\text { race is } V B)=P(V B \mid T O) P(\text { race } \mid V B) \\
& P(\text { race is } N N)=P(N N \mid T O) P(\text { race } \mid N N)
\end{aligned}
$$

Example (J+M, p304)

Secretariat/NNP is/VBZ expected/VBZ to/TO race/VB tomorrow/NN
People/NNS continue/VBP to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN

- "race" is a verb in the first, a noun in the second.
- Assume that race is the only untagged word, so we can assume the tags of the others.
- Probabilities of "race" being a verb, or race being a noun in the first example:

$$
\begin{aligned}
& P(\text { race is } V B)=P(V B \mid T O) P(\text { race } \mid V B) \\
& P(\text { race is } N N)=P(N N \mid T O) P(\text { race } \mid N N)
\end{aligned}
$$

Example (J+M, p304)

Secretariat/NNP is/VBZ expected/VBZ to/TO race/VB tomorrow/NN
People/NNS continue/VBP to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN

- "race" is a verb in the first, a noun in the second.
- Assume that race is the only untagged word, so we can assume the tags of the others.
- Probabilities of "race" being a verb, or race being a noun in the first example:

$$
\begin{aligned}
& P(\text { race is } V B)=P(V B \mid T O) P(\text { race } \mid V B) \\
& P(\text { race is } N N)=P(N N \mid T O) P(\text { race } \mid N N)
\end{aligned}
$$

Example (continued)

$$
\begin{aligned}
P(N N \mid T O) & =0.021 \\
P(V B \mid T O) & =0.34
\end{aligned}
$$

$$
\begin{aligned}
P(\text { race } \mid N N) & =0.00041 \\
P(\text { race } \mid V B) & =0.00003
\end{aligned}
$$

$$
\begin{aligned}
P(\text { race is } V B) & =P(V B \mid T O) P(\text { race } \mid V B) \\
& =0.34 \times 0.00003=0.00001 \\
P(\text { race is } N N) & =P(N N \mid T O) P(\text { race } \mid N N) \\
& =0.021 \times 0.00041=0.000007
\end{aligned}
$$

Simple bigram tagging in NLTK

```
>>> default_pattern = (r'.*', 'NN')
>>> cd_pattern = (r' ^[0-9]+(.[0-9]+)?$', 'CD')
>>> patterns = [cd_pattern, default_pattern]
>>> NN_CD_tagger = nltk.RegexpTagger(patterns)
>>> unigram_tagger = nltk.UnigramTagger(train_sents, cut
>>> bigram_tagger = tag.BigramTagger(train_sents, backof
>>> print_accuracy(bigram_tagger, train_sents)
95.6%
>>> print_accuracy(bigram_tagger, test_sents)
84.2%
```


Limitation of NLTK n-gram taggers

- Does not find the most likely sequence of tags, simply works left to right always assigning the most probable single tag (given the previous tag assignments)
- Does not cope with zero probability problem well (no smoothing or discounting)
- see module nltk.tag. hmm

Brill Tagger

- Problem with n-gram taggers: size
- A rule-based system...
- ...but the rules are learned from a corpus
- Basic approach: start by applyina general rules, then successively refine with additional rules that correct the mistakes (painting analogy)
- Learn the rules from a corpus, using a set of rule templates, eg:
Change tag \mathbf{a} to \mathbf{b} when the following word is tagged \mathbf{z}
- Choose the best rule each iteration

Brill Tagger

- Problem with n-gram taggers: size
- A rule-based system...
- ...but the rules are learned from a corpus
- Basic approach: start by applying general rules, then successively refine with additional rules that correct the mistakes (painting analogy)
- Learn the rules from a corpus, using a set of rule templates, eg:
Change tag a to b when the following word is tagged \mathbf{z}
- Choose the best rule each iteration

Brill Tagger

- Problem with n-gram taggers: size
- A rule-based system...
- ...but the rules are learned from a corpus
- Basic approach: start by applying general rules, then successively refine with additional rules that correct the mistakes (painting analogy)
- Learn the rules from a corpus, using a set of rule templates, eg:
Change tag a to b when the following word is tagged z
- Choose the best rule each iteration

Brill Tagger

- Problem with n-gram taggers: size
- A rule-based system...
- ...but the rules are learned from a corpus
- Basic approach: start by applying general rules, then successively refine with additional rules that correct the mistakes (painting analogy)
- Learn the rules from a corpus, using a set of rule templates, eg: Change tag \mathbf{a} to \mathbf{b} when the following word is tagged \mathbf{z}
- Choose the best rule each iteration

Brill Tagger

- Problem with n-gram taggers: size
- A rule-based system...
- ...but the rules are learned from a corpus
- Basic approach: start by applying general rules, then successively refine with additional rules that correct the mistakes (painting analogy)
- Learn the rules from a corpus, using a set of rule templates, eg:
Change tag \mathbf{a} to \mathbf{b} when the following word is tagged \mathbf{z}
- Choose the best rule each iteration

Brill Tagger

- Problem with n-gram taggers: size
- A rule-based system...
- ...but the rules are learned from a corpus
- Basic approach: start by applying general rules, then successively refine with additional rules that correct the mistakes (painting analogy)
- Learn the rules from a corpus, using a set of rule templates, eg:
Change tag \mathbf{a} to \mathbf{b} when the following word is tagged \mathbf{z}
- Choose the best rule each iteration

Brill Tagger: Example

Sentence	Gold	Unigram	Replace nN with VB when the previous word is TO	Replace то with I when the next tag
The	AT	AT		
President	NN-TL	NN-TL		
said	VBD	VBD		
he	PPS	PPS		
will	MD	MD		
ask	VB	VB		IN
Congress	NP	NP		
to	TO	TO		
increase	VB	NN	VB	
grants	NNS	NNS		
to	IN	TO	TO	
states	NNS	NNS		
for	IN	IN		
vocational	JJ	JJ		
rehabilitation	NN	NN		

Summary

- Reading: Jurafsky and Martin, chapter 8 (esp. sec 8.5); Manning and Schütze, chapter 10;
- Rule-based and statistical tagging
- HMMs and n-grams for statistical tagging
- Operation of a simple bigram tagger
- TnT - an accurate trigram-based tagger

Summary

- Reading: Jurafsky and Martin, chapter 8 (esp. sec 8.5); Manning and Schütze, chapter 10;
- Rule-based and statistical tagging
- HMMs and n-grams for statistical tagging
- Operation of a simple bigram tagger
- TnT - an accurate trigram-based tagaer

Summary

- Reading: Jurafsky and Martin, chapter 8 (esp. sec 8.5); Manning and Schütze, chapter 10;
- Rule-based and statistical tagging
- HMMs and n-grams for statistical tagging
- Operation of a simple bigram tagger
- TnT - an accurate trigram-based tagger

Summary

- Reading: Jurafsky and Martin, chapter 8 (esp. sec 8.5); Manning and Schütze, chapter 10;
- Rule-based and statistical tagging
- HMMs and n-grams for statistical tagging
- Operation of a simple bigram tagger
- TnT - an accurate trigram-based tagger

Summary

- Reading: Jurafsky and Martin, chapter 8 (esp. sec 8.5); Manning and Schütze, chapter 10;
- Rule-based and statistical tagging
- HMMs and n-grams for statistical tagging
- Operation of a simple bigram tagger
- TnT - an accurate trigram-based tagger

