

 Nuxeo CoreNuxeo Core

Nuxeo CoreNuxeo Core

● Embeddable document management engine
● For the server
● For the client

● Pure POJO with a EJB3 facade

● Provides all low-level content management features and API
for the Nuxeo 5 stack

Nuxeo Core FeaturesNuxeo Core Features

● Content storage and retrieval
● Content schemas management
● Indexing / query (using NXQL)
● Low level events
● Security (ACL-based, contextual security management)
● Versioning
● LifeCycle

Nuxeo Core – Modules (2)Nuxeo Core – Modules (2)
● NXCore – The repository model

● Content Storage and Retrieval
● Storage oriented event model
● ACL and security management
● Versionning

● NXCore API – Interfaces
● Defines NXCore API and interfaces

● NXCore Facade – EJB3 Facade
● Remoting API
● Security and Transaction integration

Nuxeo Core – Modules (2)Nuxeo Core – Modules (2)
● NXSchemas

● Schemas registration
● Schemas management

● NXQuery
● Query Model
● Query Engine

● NXJCRConnector
● Repository implementation on top of JSR 170 RI (JackRabbit)

● Additionnal modules
● NXVersionning
● NXDublinCore
● ...

Nuxeo Core – SchemasNuxeo Core – Schemas

● Schemas management
● Nuxeo Core stores content according to its attached schema
● Nuxeo Core schema format is W3C XML Schemas (XSD)
● Schemas compliance are enforce at the storage level to insure data

integrity
● Schemas contains fields

● Data type
● Default values
● Lazy attributes

● XSD Complex types are supported!
● Schemas are transparently mapped to JCR Nodes Types
● Schemas are registred using contributions to corresponding

extension point

Schema Registration exampleSchema Registration example

<?xml version="1.0"?>

<component name="org.nuxeo.ecm.core.CoreExtensions">

 <extension target="org.nuxeo.ecm.core.schema.TypeService" point="schema">
 <schema name="core-types" src="schema/core-types.xsd" />
 <schema name="common" src="schema/common.xsd" />
 <schema name="dublincore" src="schema/dublincore.xsd" />
 <schema name="uid" src="schema/uid.xsd" />
 <schema name="file" src="schema/file.xsd" />
 <schema name="note" src="schema/note.xsd" />
 </extension>

</component>

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:complexType name="content">
 <xs:sequence>
 <xs:element name="encoding" type="xs:string"/>
 <xs:element name="mime-type" type="xs:string"/>
 <xs:element name="data" type="xs:base64Binary"/>
 </xs:sequence>
</xs:complexType>

</xs:schema>

Schemas reg istration

Schemas de!nition

ECM Core – Document TypeECM Core – Document Type

● A Document type is defined by
● a identifier (name)
● a set of schemas (that can be aliased)
● a set of facets

● A Facet is a declarative marker
● It marks the document as compliant with a given behavior

● Folderish, Versionnable, Downloadable ...
● Most of the time it is not used directly by the core itself

● Like Schemas, Document Types support inheritance

Type De!nition ExampleType De!nition Example

 <extension target="org.nuxeo.ecm.core.schema.TypeService"
point="doctype">

 <doctype name="Folder" extends="Document">
 <schema name="common" />
 <schema name="dublincore" prefix="dc" />
 <facet name="Folderish" />
 </doctype>

 <doctype name="Domain" extends="Folder" />

 <doctype name="WorkspaceRoot" extends="Folder" />

 <doctype name="Workspace" extends="Folder">
 <!-- for logo -->
 <schema name="file" />
 </doctype>
 </extension>

Life CycleLife Cycle

● The lifecycle represent the content state (from a functional
point of view, not a technical one)
● Ex: In Progress, Approved, Under Review, Obsolete, Cancelled, etc.

● A lifecycle scheme is associated to each document type
● The mapping is done via an Extension Point

● LifeCycle != Workflow
● LifeCycle does not represent a process
● LifeCycle does not specify security restrictions nor actors

● The Life Cycle defines
● all allowed states of a document
● transitions between these states

LifeCycle: default schemeLifeCycle: default scheme

● States
● Project (Work)
● Review (in process)
● Approved (destination state for a process)
● Obsolete

● Transitions
● Review
● Approve
● Back to Project
● Make Obsolete

ECM Core – Security ManagementECM Core – Security Management

● Nuxeo 5 Security Model
● ACE : Access Control Entry

● User / Group – GRANT/DENY – Permission / Group of Permissions
● ACL : Access Control List

● Ordoned list of ACE
● ACP : Access Control Policy

● Ordoned list of ACL

● Each document can be associated with a ACP
● Security is placefull
● Security is inherited

● A document can have several ACL
● One ACL for basic rights
● One ACL for each process

Nuxeo Core – Security ManagementNuxeo Core – Security Management

● Nuxeo Core
● Stores security descriptors
● Provides an API for managing ACPs/ACLs/ACEs
● Check security on each access

● Security descriptors are handled by a specific Core service
● currently, security informations are stored on the document
● it could be stored into a separated location (via an EP)

Nuxeo Core - EventsNuxeo Core - Events

● Nuxeo Core offers an Event system
● Before and After each document related operation

● Event Handlers can be hooked inside the Core
● Using an Extension Point (Synchronous)
● Used for implementing some build-in features

● Audit
● DubinCore schema management (modification date ...)
● Pluggable Versionning Policy

● Events are also for forwarded as JMS messages
● Enables the implementation of asynchronous event handlers
● Enabled non-core components to register and get core's events

Nuxeo Core - EventsNuxeo Core - Events

● Declaring an EventHandler is so easy! :-)
<?xml version="1.0"?>

<component name="DublinCoreStorageService">

<implementation
class="org.nuxeo.ecm.platform.ec.dublincore.service.DublinCoreStorageService"/>

<require>org.nuxeo.ecm.core.listener.CoreEventListenerService</require>

<extension target="org.nuxeo.ecm.core.listener.CoreEventListenerService"
 point="listener">
<listener name="dclistener"
 class="org.nuxeo.ecm.platform.ec.dublincore.listener.DublinCoreListener"
 />
</extension>

</component>

Nuxeo Core - QueryNuxeo Core - Query

● Nuxeo Core includes a Query System
● NXQL : SQL-like query language for document-oriented data

● Returns lists of DocumentModels
● Simple yet powerfull Query langage!

● SELECT * FROM document WHERE dc:contributors = '?' ORDER BY
dc:modified DESC

● SELECT * FROM document WHERE ecm:path STARTSWITH '?/'
ORDER BY dc:modified DESC

Nuxeo Core FacadeNuxeo Core Facade

● Nuxeo Core it self is Pure POJO
● Not remote accessible
● No JEE integration

● Core Facade provides JEE Integration using a EJB3 layer on
top of Nuxeo Core's services

● It provides
● Remoting

● EJB3 Remoting or SOAP
● JEE Security integration

● JAAS Principal is transmited
● Transaction integration via JCA
● A Connection Pooling system

● This is the DocumentManager

Nuxeo Core Architecture DiagramNuxeo Core Architecture Diagram

ECM Core

Nuxeo Core
(Content Repository)

Nx ECM ServicesNx ECM ServicesNuxeo ECM Services

Nuxeo ECM Core API

POJO Local API
JEE Local and
Remote API

JCA

JCR / Jack Rabbit

Storage Adapter

Document ObjectDocument Object

● Inside the Core
● CoreDocuments

● Outside the Core
 (In and Out)
● DocumentModel

NxContent Model

NxCore Services

Core Documents

NxCore ServicesNxCore Services

ECM Core

Nuxeo
Runtime

NxCore ServicesNxCore ServicesNxCore Services

Core Documents

Core API

DocumenModels

CoreDocumentCoreDocument

● CoreDocument is
● a type identifier (name)
● a set of schemas
● a set of facet (Folderish, Orderable ...)

● CoreDocument has no GUI information

● CoreDocument always holds all informations (references)

Motivations for DocumentModel Motivations for DocumentModel

● Detach document from Nuxeo Core
● Use Serializable objects
● Reduce network calls

● Transparent Lazy fetching
● DocumentModel know how to reconnect to the Core to fetch missing

data

● Transmit a consolidated artifact of the content object
● DocumentModel will be completed by the service layer

● Caching and Invalidation management

Nuxeo Core ExtensionsNuxeo Core Extensions

● NXDublinCore
● MetaData update

● NXUIDGenerator
● Customize UID generation

● NXDocumentUpdater
● Synchronize File and Document MetaData

● NXVersionning
● Pluggable version policy management

