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Nuxeo CoreNuxeo Core

● Embeddable document management engine
● For the server
● For the client

● Pure POJO with a EJB3 facade

● Provides all low-level content management features and API 
for the Nuxeo 5 stack



  

Nuxeo Core FeaturesNuxeo Core Features

● Content storage and retrieval
● Content schemas management
● Indexing / query (using NXQL)
● Low level events
● Security (ACL-based, contextual security management)
● Versioning
● LifeCycle



  

Nuxeo Core – Modules (2)Nuxeo Core – Modules (2)
● NXCore – The repository model

● Content Storage and Retrieval
● Storage oriented event model
● ACL and security management
● Versionning

● NXCore API – Interfaces
● Defines NXCore API and interfaces

● NXCore Facade – EJB3 Facade
● Remoting API
● Security and Transaction integration



  

Nuxeo Core – Modules (2)Nuxeo Core – Modules (2)
● NXSchemas

● Schemas registration
● Schemas management

● NXQuery
● Query Model
● Query Engine

● NXJCRConnector
● Repository implementation on top of JSR 170 RI (JackRabbit)

● Additionnal modules
● NXVersionning
● NXDublinCore
● ...



  

Nuxeo Core – SchemasNuxeo Core – Schemas

● Schemas management
● Nuxeo Core stores content according to its attached schema
● Nuxeo Core schema format is W3C XML Schemas (XSD)
● Schemas compliance are enforce at the storage level to insure data 

integrity 
● Schemas contains fields

● Data type
● Default values
● Lazy attributes

● XSD Complex types are supported!
● Schemas are transparently mapped to JCR Nodes Types
● Schemas are registred using contributions to corresponding 

extension point



  

Schema Registration exampleSchema Registration example

<?xml version="1.0"?>

<component name="org.nuxeo.ecm.core.CoreExtensions">

  <extension target="org.nuxeo.ecm.core.schema.TypeService" point="schema">
    <schema name="core-types" src="schema/core-types.xsd" />
    <schema name="common" src="schema/common.xsd" />
    <schema name="dublincore" src="schema/dublincore.xsd" />
    <schema name="uid" src="schema/uid.xsd" />
    <schema name="file" src="schema/file.xsd" />
    <schema name="note" src="schema/note.xsd" />
  </extension>

</component>

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:complexType name="content">
  <xs:sequence>
    <xs:element name="encoding" type="xs:string"/>
    <xs:element name="mime-type" type="xs:string"/>
    <xs:element name="data" type="xs:base64Binary"/>
  </xs:sequence>
</xs:complexType>

</xs:schema>

Schemas reg istration

Schemas de!nition



  

ECM Core – Document TypeECM Core – Document Type

● A Document type is defined by
● a identifier (name)
● a set of schemas (that can be aliased)
● a set of facets

● A Facet is a declarative marker 
● It marks the document as compliant with a given behavior

● Folderish, Versionnable, Downloadable ...
● Most of the time it is not used directly by the core itself

● Like Schemas, Document Types support inheritance



  

Type De!nition ExampleType De!nition Example

  <extension target="org.nuxeo.ecm.core.schema.TypeService" 
point="doctype">

    <doctype name="Folder" extends="Document">
      <schema name="common" />
      <schema name="dublincore" prefix="dc" />
      <facet name="Folderish" />
    </doctype>

    <doctype name="Domain" extends="Folder" />

    <doctype name="WorkspaceRoot" extends="Folder" />

    <doctype name="Workspace" extends="Folder">
      <!-- for logo -->
      <schema name="file" />
    </doctype>
  </extension>



  

Life CycleLife Cycle

● The lifecycle represent the content state (from a functional 
point of view, not a technical one)
● Ex: In Progress, Approved, Under Review, Obsolete, Cancelled, etc. 

● A lifecycle scheme is associated to each document type
● The mapping is done via an Extension Point

● LifeCycle != Workflow
● LifeCycle does not represent a process
● LifeCycle does not specify security restrictions nor actors

● The Life Cycle defines 
● all allowed states of a document
● transitions between these states



  

LifeCycle: default schemeLifeCycle: default scheme

● States
● Project (Work)
● Review (in process)
● Approved (destination state for a process)
● Obsolete 

● Transitions
● Review
● Approve
● Back to Project
● Make Obsolete



  

ECM Core – Security ManagementECM Core – Security Management

● Nuxeo 5 Security Model
● ACE : Access Control Entry

● User / Group – GRANT/DENY – Permission / Group of Permissions
● ACL : Access Control List

● Ordoned list of ACE
● ACP : Access Control Policy

● Ordoned list of ACL

● Each document can be associated with a ACP
● Security is placefull
● Security is inherited

● A document can have several ACL
● One ACL for basic rights
● One ACL for each process



  

Nuxeo Core – Security ManagementNuxeo Core – Security Management

● Nuxeo Core
● Stores security descriptors
● Provides an API for managing ACPs/ACLs/ACEs
● Check security on each access

● Security descriptors are handled by a specific Core service
● currently, security informations are stored on the document
● it could be stored into a separated location (via an EP)



  

Nuxeo Core - EventsNuxeo Core - Events

● Nuxeo Core offers an Event system
● Before and After each document related operation

● Event Handlers can be hooked inside the Core
● Using an Extension Point (Synchronous)
● Used for implementing some build-in features

● Audit
● DubinCore schema management (modification date ...)
● Pluggable Versionning Policy

● Events are also for forwarded as JMS messages
● Enables the implementation of asynchronous event handlers
● Enabled non-core components to register and get core's events



  

Nuxeo Core - EventsNuxeo Core - Events

● Declaring an EventHandler is so easy! :-)
<?xml version="1.0"?>

<component name="DublinCoreStorageService">

<implementation 
class="org.nuxeo.ecm.platform.ec.dublincore.service.DublinCoreStorageService"/>

<require>org.nuxeo.ecm.core.listener.CoreEventListenerService</require>

<extension target="org.nuxeo.ecm.core.listener.CoreEventListenerService"
   point="listener">
<listener name="dclistener"
  class="org.nuxeo.ecm.platform.ec.dublincore.listener.DublinCoreListener"
  />
</extension>

</component>



  

Nuxeo Core - QueryNuxeo Core - Query

● Nuxeo Core includes a Query System
● NXQL : SQL-like query language for document-oriented data

● Returns lists of DocumentModels
● Simple yet powerfull Query langage!

● SELECT * FROM document WHERE dc:contributors = '?' ORDER BY 
dc:modified DESC

● SELECT * FROM document WHERE ecm:path STARTSWITH '?/' 
ORDER BY dc:modified DESC



  

Nuxeo Core FacadeNuxeo Core Facade

● Nuxeo Core it self is Pure POJO
● Not remote accessible
● No JEE integration

● Core Facade provides JEE Integration using a EJB3 layer on 
top of Nuxeo Core's services

● It provides
● Remoting

● EJB3 Remoting or SOAP
● JEE Security integration

● JAAS Principal is transmited
● Transaction integration via JCA
● A Connection Pooling system

● This is the DocumentManager



  

Nuxeo Core Architecture DiagramNuxeo Core Architecture Diagram
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Document ObjectDocument Object

● Inside the Core
● CoreDocuments

● Outside the Core 
  (In and Out)
● DocumentModel

NxContent Model

NxCore Services

Core Documents

NxCore ServicesNxCore Services

ECM Core

Nuxeo
Runtime

NxCore ServicesNxCore ServicesNxCore Services

Core Documents
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CoreDocumentCoreDocument

● CoreDocument is
● a type identifier (name)
● a set of schemas
● a set of facet (Folderish, Orderable ...)

● CoreDocument has no GUI information

● CoreDocument always holds all informations (references)



  

Motivations for DocumentModel Motivations for DocumentModel 

● Detach document from Nuxeo Core
● Use Serializable objects
● Reduce network calls

● Transparent Lazy fetching
● DocumentModel know how to reconnect to the Core to fetch missing 

data

● Transmit a consolidated artifact of the content object
● DocumentModel will be completed by the service layer

● Caching and Invalidation management



  

Nuxeo Core ExtensionsNuxeo Core Extensions

● NXDublinCore
● MetaData update

● NXUIDGenerator
● Customize UID generation

● NXDocumentUpdater
● Synchronize File and Document MetaData

● NXVersionning
● Pluggable version policy management


