
Objeck Programmer’s Guide

Randy Hollines
objeck@gmail.com

August 30, 2010

Abstract

Provides an introduction to the Objeck programming language and
it’s features. This article is intended to introduce programmers and
compiler enthusiasts to the unique features and design of the Objeck
programming language. Unless otherwise noted, this article covers
functionality that is included in release 1.1.2. For additional informa-
tion please refer to the general and technical project websites.

http://sourceforge.net/projects/objeck-lang/
http://code.google.com/p/objeck-lang/

Contents

1 Introduction 5

2 Getting Started 5
2.1 Compiling Source . 6
2.2 Executing . 6

3 The Basics 6
3.1 Variable Declarations . 7
3.2 Expressions . 8

3.2.1 Mathematical and Logical Expressions 8
3.2.2 Arrays . 10

3.3 Statements . 11
3.3.1 If Statement . 11
3.3.2 Select Statement . 11
3.3.3 While Statement . 12
3.3.4 Do/While Statement . 12
3.3.5 For Statements . 13
3.3.6 Each Statements . 13

4 User Defined Types 13
4.1 Enums . 13
4.2 Classes . 14

4.2.1 Class Inheritance . 14
4.2.2 Class Casting and Identification 15
4.2.3 Methods and Functions 16

4.3 Higher-Order Functions . 17
4.3.1 Assigning and Passing Functions 17
4.3.2 Envoking Functions . 17

5 Debugger 18
5.1 Starting the Debugger . 18
5.2 Debugging Commands . 19

6 Class Libraries 20
6.1 Core Libraries . 20

6.1.1 Base . 20
6.1.2 Bool . 20

2

6.1.3 Char . 20
6.1.4 Byte/Int . 21
6.1.5 Float . 22
6.1.6 String . 23

6.2 Data Structures . 26
6.2.1 Compare . 26
6.2.2 List/IntList/FloatList 26
6.2.3 Stack/IntStack/FloatStack 28
6.2.4 Vector/CompareVector/IntVector/FloatVector 28
6.2.5 Map/IntMap/FloatMap/StringMap 30
6.2.6 Hash/StringHash . 30

6.3 System Libraries . 31
6.3.1 Console . 31
6.3.2 Time . 32
6.3.3 File . 33
6.3.4 FileReader . 34
6.3.5 FileWriter . 34
6.3.6 Directory . 35
6.3.7 TCPSocket . 35
6.3.8 HttpClient . 36

7 Examples 37
7.1 Prime Numbers . 37
7.2 Simple HTTP client . 38

8 Appendix A: Example Debugging Session 39
8.1 Sample Source . 39
8.2 Compiling the Source and Starting the Debugger 40
8.3 Setting a Breakpoint and Running the Program 40
8.4 Printing a Value . 41

9 Appendix B: Compiler and VM Design 42
9.1 Compiler . 42

9.1.1 Scanner and Parser . 42
9.1.2 Contextual Analyser . 43
9.1.3 Intermediate Code Generator and Optimzier 43
9.1.4 Target Emitter . 43

9.2 Virtual Machine . 43

3

9.2.1 Loader . 43
9.2.2 Interpreter . 44
9.2.3 JIT Compiler . 44
9.2.4 Memory Manager . 44

10 Appendix C: VM Instruction Set 44

4

1 Introduction

The Objeck program language is an object-oriented computer language with
functional features. The language was designed to be an easy to use general
purpose programming system. The Objeck language allows programmers to
quickly create solutions by leveraging pre-existing class libraries. The syntax
for the language was designed with symmetry in mind and enforces the notion
that there should only be one way to do something. Features of this release
include:

• Support for object-oriented programming (all data types are treated as
objects)

• Functional support (higer-order functions)

• Cross platform (support for OS X, Linux and Windows)

• Concurrent runtime JIT support for Intel processors

• Multi-threaded memory management (garbage collector)

• Peephole optimizations

• Support for static libraries

• Command-line debugger

2 Getting Started

The Objeck computer language consist of a compiler and virtual machine.
The compiler program is named obc, while the runtime virtual machine (VM)
program is named obr. Here is the world famous “Hello World” program
written in the Objeck language:

bundle Default {

class Hello {

function : Main(args : String[]) ~ Nil {

"Hello World!"->PrintLine();

}

}

}

5

2.1 Compiling Source

The example below compiles the source program hello.obs into the target
binary file hello.obe. The two output file types that the compilers sup-
ports are executables and shared libraries. Shared libraries are binary files
that contain all of the metadata needed by the compiler to relink them into
programs. Both executables and shared libraries contain enough metadata
to support runtime introspection (a feature that will be added in a future re-
lease). As a naming convention, executables must end in *.obe while shared
libraries must end in *.obl.

Below is an example of compiling the “Hello World” program

obc -src tests\hello.obs -dest hello.obe

Additional compiler options are:

Option Description

-src path to source files, delimited by the ‘,’ character
-lib path to library files, delimited by the ‘,’ character
-tar target output exe for executable and lib for library; default is exe

-opt optimization level s0–s3 with s3 being the most aggressive; default is s0

-dest output file name
-debug if set, produces debug out for use by the interactive debugger (see below)

2.2 Executing

The command-line example below executes the hello.obe executable. Note,
for executables all required libraries are statically linked in the target output
file. When compiling shared libraries, other shared libraries are not linked
into the target output library file.

obr hello.obe

3 The Basics

Now lets introduce you the core features of the Objeck programming lan-
guage.

6

In Objeck, all data types are treated as objects. Basic objects provide
supports for boolean, character, byte, integer and decimal types. These basic
objects can be used to create complex user defined objects. The listing below
defines the basic objects that are supported in the language:

Type Description

Char 1–byte character
Char[] character array
Bool boolean value
Bool[] boolean array
Byte 1–byte integer
Byte[] byte array
Int 4–byte integer
Int[] integer array
Float 8–byte decimal
Float[] decimal array
Function Two 4–byte integers

As mentioned above, basic types are objects and have associated methods
for each basic class type. For example:

13->Min(3)->PrintLine();

13->Max(3)->PrintLine();

-22->Abs()->PrintLine();

Float->Pi()->PrintLine();

3.1 Variable Declarations

Variables can be declared for all of the basic types described above and for
user defined objects. Variables can be declared anywhere in a program and
are bound to traditional block scoping rules. Variable assignments can be
made during a declaration or at any other point in a program. Variables may
be declared as local, class instance or class variables. Class level variables
are declared using the static keyword. A class that is derived from another
class may access it’s parents variables if the parent class is declared in one of
the source programs. If a class is derived from a class declared in a shared
library then that class cannot access it’s parents variables, unless an accessor
method is provided. Local variables can be declared without specifying their

7

data type, such variables are bound to a type peceeding their first assignment.
Three different declaration styles are shown below:

a : Int;

b : Int := 13;

c := 7;

Types that are not initialized at declaration time are initialized with the
following default values:

Type Initialization

Char ‘\0’
Byte 0
Int 0
Float 0.0
Array Nil

Object Nil

Function Nil

3.2 Expressions

The Objeck language supports various expression types. Some of these ex-
pression types include mathematical, logical, array and method call expres-
sions. The preceding sections describe some of the expressions that are sup-
ported in the Objeck language.

3.2.1 Mathematical and Logical Expressions

The following code example demonstrates two ways to printing the number
42. The first way invokes the PrintLine() method for the literal 42. The
second prints the product of a variable and a literal.

bundle Default {

class Test {

function : Main() ~ Nil {

42->PrintLine();

eight := 8;

(eight * 7)->PrintLine();

8

}

}

}

The following mathematical operators are supported in the Objeck lan-
guage for integers and decimal types:

• addition (+)

• subtraction (-)

• multiplication (*)

• division (/)

• modulus – (% - for integer values only)

In addition the following assignment operators are supported:

• addition-equals (+=)

• subtraction-equals (-=)

• multiplication-equals (*=)

• division-equals (/=)

The following bitwise operators are also supported for integer types:

• and (and)

• or (or)

• xor (xor)

The [*, /, %] operators have a higher precedence than the [+, -] operators.
Operators of the same precedence are evaluated from left-to-right. Logical
operations are of lower precedence than mathematical operations. All logical
operators are of the same precedence and order is determined via left–to–right
evaluation. The [&, |] logical operators use short-circuit logic; meaning that
some expressions may not be executed if evaluation criteria is not satisfied.

The following logical operators are supported in the Objeck language:

9

• and (&)

• or (|)

• equal (=)

• not–equal (<>)

• less–than (<)

• greater–than (>)

• less–than–equal (<=)

• greater–than–equal (>=)

3.2.2 Arrays

The Objeck language supports single and multi-dimensional arrays. Arrays
are allocated dynamically from the system heap. The memory that is allo-
cated for arrays is managed automatically by the runtime garbage collector.
All of the basic types described above (as well as user defined types) can be
allocated as arrays. The code example below shows how a two-dimensional
array of type Int is allocated and dereferenced.

array := Int->New[2,3];

array[0,2] := 13;

array[1,0] := 7;

values : Int[,] := [[2,3][4,5]];

values[1,1]->PrintLine();

The size of an array can be obtained by calling the array’s Size() method.
The Size() method will return the number of elements in a given array. For
a multi-dimensional array the size method returns the number of elements
in the first dimension. Character array literals are allocated as String ob-
jects. It should also be noted that language has a String class that provides
support for advanced string operations.

str := "Hello World!";

str->Size()->PrintLine();

strs := ["Hello","World!"];

strs->Size()->PrintLine();

10

3.3 Statements

Besides providing support for declaration statements the language has sup-
port for conditional and control statements. As with other languages, control
statements can be nested in order to provide finer grain logical control. Gen-
eral control statements include if and select statements. Basic looping
statements include while, do/while and for loops. Note, all statements
rather decelerations or controls end with a ‘;’.

3.3.1 If Statement

An if statement is a control statement that executes the associated block of
code if it evaluates to true. If the evaluation statement does not evaluate
to true than an else if statement may be evaluated (if it exists), other-
wise an else statement will be executed (if it exists). The example below
demonstrates an if statement.

value : Int := Console.ReadLine()->ToInt();

if(value <> 3) {

"Not equal to 3"->PrintLine();

}

else if(value < 13) {

"Less than 13"->PrintLine();

}

else {

"Some other number"->PrintLine();

};

3.3.2 Select Statement

A select statement maps a value to 1 or more labels. Labels are associated
to statement blocks. A label may either be a literal or an enum value. Multiple
labels can be mapped to the same statement block. Below is an example of
a select statement.

select(v) {

label Color->Red: {

"Red"->PrintLine();

}

11

label 9:

label 19: {

v->PrintLine();

}

label 27: {

(3 * 9)->PrintLine();

}

};

3.3.3 While Statement

A while statement is a control statement that will continue to execute its
main body as long as its conditional expression evaluates to true. When its
conditional expression evaluates to false than the loop body will cease to
execute.

i : Int := 10;

while(i > 0) {

i->PrintLine();

i := i - 1;

}

3.3.4 Do/While Statement

A do/while statement is a control statement that will execute its main body
at least once and continue to execute its main body as long as its conditional
expression evaluates to true. When its conditional expression evaluates to
false than the loop body will cease to execute.

i : Int := 10;

do {

i->PrintLine();

i := i - 1;

}

while(i > 0);

12

3.3.5 For Statements

The for statement is another common looping construct. The for loop
consists of a pre-condition statement followed by an evaluation expression
and an update statement.

name : Char[] := "John"->ToCharArray();

for(i : Int := 0; i < name->Size(); i := i + 1;) {

name[i]->PrintLine();

}

3.3.6 Each Statements

The each statement is a specialized version of a for statement. The each

loop consists of a counter variable and a data structure that has a Size

method, such as arrays and Vector classes. The statement iterates thru all
elements in the data structure.

values := Int->New[3];

values[0] := 3;

values[1] := 9;

values[2] := 1;

each(i : values) {

ints[i]->PrintLine();

};

4 User Defined Types

4.1 Enums

Enums are user defined enumerated types. The main use of an enum is to
group a class of countable values, for example colors, into a distinct class.
Once enum values have been defined they may not be assigned or associated
to a other enum groups or integer classes. The valid operations for enums are
as follows:

• assignment (:=)

13

• equal (=)

• not–equal (<>)

In addition, enum values may be used in select statements as conditional
tests or labels.

enum Color {

Red,

Black,

Green

}

4.2 Classes

Classes are user defined types that allow programmers to create special-
ized data types. Classes are made up of attributes (data) and operations
(methods). Classes are used to encapsulate programming logic and localize
information. Operations that are associated to a class may either be at the
class level or instance level. Class instances are created by calling an object’s
New() function. Note, an object instance can only be created if one or more
New() functions have been defined.

4.2.1 Class Inheritance

Classes may be derived from other classes using the from keyword. Class in-
heritance allows classes to share common functionality. The Objeck language
supports single class inheritance, meaning that a derived class may only have
one parent. The language also supports virtual classes, which assures that
derived classes have been defined for all required operations declared in the
base class. Virtual classes also allow the programmer to define non-virtual
methods that contain program behavior. Virtual classes are dynamically
bound to implementation classes at runtime.

class Foo {

@lhs : Int;

New(lhs : Int) {

@lhs := lhs;

14

}

method : native : AddTwo(rhs : Int) ~ Int {

return 2 + rhs;

}

method : virtual : AddThree(int rhs) ~ Int;

method : GetLhs() ~ Int {

return lhs;

}

}

class Bar from Foo {

New(value : Int) {

Parent(value);

}

method : native : AddThree(rhs : Int) ~ Int {

return 3 + rhs;

}

function : Main() ~ Nil {

bar : b := Bar->New(31);

b->AddThree(9)->PrintLine();

}

}

4.2.2 Class Casting and Identification

An object that is inherited from another object may be either upcasted or
downcasted. Object casting can be performed using the As() operator. The
Object language detects upcasting and downcastng at compile time. Upcast-
ing requires a runtime check, while down casting does not. If cross casting is
detected then a compile time error will be generated.

method : public : Compare(right : Base) ~ Int {

if(right <> Nil) {

15

if(GetClassID() = right->GetClassID()) {

a : A := right->As(A);

if(@value = a->Get()) {

return 0;

};

...

The class that a given object instance belongs to can found by calling its
GetClassID method. This method returns an enum that is associated with
that instance’s class type. This method is generally used to determine if two
object instances are of the same or different classes.

4.2.3 Methods and Functions

The Objeck language support both methods and functions. Functions are
public static procedures that may be executed by any class. Methods are
operations that may be performed on an object instance. Methods have
public and private qualifiers. Methods that are private may only be
called from within the same class, while public methods may be called from
other classes. Note, methods are private by default. The Objeck language
supports polymorphic methods and functions, meaning that there can be
multiple methods with the same name within the same class as long as their
declaration arguments vary.

Methods and functions can either be executed in an interpreted or JIT
compiled mode. Interpreted execution mimics microprocessor functions in a
platform independent manner. JIT execution takes the compiled stack code
an produces native machine code. Note, that there is initial overhead involved
in the JIT compilation process since it occurs at runtime. In addition, some
methods can not be compiled into native machine code but this is a rare
case. The keyword native is used to JIT compile methods and function at
runtime.

A function or method may be defined as virtual meaning that any class
that originates from that class must implement all of the class’s virtual

methods or functions. Virtual methods are a way to ensure that certain
operations are available to a family of classes. If a class declares a virtual

method then the class become virtual, meaning that it cannot be directly
instantiated.

16

Below is an example of declaring a virtual method:

method : virtual : public : Compare(right : Base ~ Int;

4.3 Higher-Order Functions

The Objeck language supports the notion of higher-order functions such that
a given function may be bound to a variable at runtime. Variables are as-
signed based upon functional prototypes. Prototypes enforce strong type
checking by ensuring that a function parameters and return type are consis-
tent between assignments. Once a variable is bound, it may be assigned to
other variables, passed to other functions/methods, returned from other func-
tions/method or dynamically evoked. Please note, methods are not treated
as higher-order constructs only functions.

4.3.1 Assigning and Passing Functions

The following example shows how a function is defined and assigned to a
variable:

class Foo {

function : GetSize(s : String) ~ Int {

return s->Size();

}

}

....

s1 : (String) ~ Int := Foo-> GetSize(String) ~ Int;

s2 := Foo-> GetSize(String) ~ Int;

size := EnvokeSize("Hello", s2);

4.3.2 Envoking Functions

The following example shows how a function variable is envoked:

...

method : public : EnvokeSize(s : String, f : (String) ~ Int) ~ Int {

return f(s);

}

...

17

5 Debugger

The Objeck compiler toolset contains a simple interactive read-only debug-
ger, which allows programmers to inspect values within their programs. The
debugger allows programmers to set breakpoints within methods based upon
source line numbers. The debugger can also calculate simple arithmetic ex-
pressions involving variables and constants. The following commands are
currently supported:

5.1 Starting the Debugger

The source program must be compiled with the -debug set. The command
line debugger is started up running the odb executable. The -exe option
must be present and specify the path to the executable. The The -src

option is optional and specifies the path to the program source. Also note,
to print instance level variables the path must start with @self→.

18

5.2 Debugging Commands

Command Description Example

[b]reak sets a breakpoint b hello.obs:10

breaks shows all breakpoints
[d]elete deletes a breakpoint d hello.obs:10

clear clears all breakpoints
[n]ext moves to the next line

with debug informa-
tion

[o]ut jumps out of an exist-
ing method/function
and moves to the next
line with debug infor-
mation

args specifies program ar-
guments

args "Hello World"

[r]un runs a loaded program
[p]rint prints the value of an

expression, along with
metadata

p @self→value

[l]ist lists a range of lines
in a source file or the
lines near the current
breakpoint

l hello.obs:10

[i]nfo displays the vari-
ables for a class or
method/function

i class=Foo method=New

stack displays the
method/function
call stack

exe loads a new exe-
cutable

exe "./../test.obe"

src specifies a new source
path

src "../../"

[q]uit exits a given debug-
ging session

19

6 Class Libraries

Objeck includes class libraries that provides access to system resources, such
as files and sockets, while also providing support for basic data structures like
lists and vectors. As new class libraries are added they will be documented
in this section.

6.1 Core Libraries

6.1.1 Base

Base class for all objects.

• GetClassID - returns the class ID

– method : public : native : GetClassID(), ClassID

• GetInstanceID - returns a unique instance ID

– method : public : native : GetInstanceID(), Int

6.1.2 Bool

• Print - prints the current value

– method : native : Print(), Nil

• PrintLine - prints the current value along with a line return

– method : native : PrintLine(), Nil

• ToString - converts the current value to a String object instance

– method : native : ToString(), String

6.1.3 Char

• IsDigit - determines if the character is a digit (in the range of 0-9)

– method : native : IsDigit(), Bool

• IsChar - determines if the character is a alpha (in the range of A-Z or
a-z)

20

– method : native : IsChar(), Bool

• Min - returns the smallest of the two numbers; returns the same number
if they are equal

– method : native : Min(r : Byte), Byte

• Max - returns the largest of the two numbers; returns the same number
if they are equal

– method : native : Max(r : Byte), Byte

• Print - prints the current value

– method : native : Print(), Nil

• PrintLine - prints the current value along with a line return

– method : native : PrintLine(), Nil

• ToString - converts the current value to a String object instance

– method : native : ToString(), String

6.1.4 Byte/Int

• Min - returns the smallest of the two numbers; returns the same number
if they are equal

– method : native : Min(r : Byte), Byte

• Max - returns the largest of the two numbers; returns the same number
if they are equal

– method : native : Max(r : Byte), Byte

• Abs - returns the absolute value of the current number

– method : native : Abs(), Byte

• Print - prints the current value

– method : native : Print(), Nil

21

• PrintLine - prints the current value along with a line return

– method : native : PrintLine(), Nil

• ToString - converts the current value to a String object instance

– method : native : ToString(), String

6.1.5 Float

• Min - returns the smallest of the two numbers; returns the same number
if they are equal

– method : native : Min(r : Byte), Float

• Max - returns the largest of the two numbers; returns the same number
if they are equal

– method : native : Max(r : Byte), Float

• Abs - returns the absolute value of the current number

– method : native : Abs(), Float

• Floor - returns the floor of the current number

– method : Floor(), Float

• Ceiling - returns the ceiling of the current number

– method : Ceiling(), Float

• Sin - returns the sine of the radian value

– method : Sin(), Float

• Cos - returns the cosine of the radian value

– method : Cos(), Float

• Tan - returns the tangent of the radian value

– method : Tan(), Float

22

• Log - returns the natural log of the radian value

– method : Log(), Float

• Pi - returns the value of Pi

– function : Pi(), Float

• Power - returns the exponential power value

– method : Power(), Float

• SquareRoot - returns the square root

– method : SquareRoot(), Float

• Random - returns a puedo-random number between 0.0 and 1.0

– function : Random(), Float

• Print - prints the current value

– method : native : Print(), Nil

• PrintLine - prints the current value along with a line return

– method : native : PrintLine(), Nil

• ToString - converts the current value to a String object instance

– method : native : ToString(), String

6.1.6 String

• New

– New()

– New(s : String)

– New(a : Char[])

– New(a : Byte[])

• Append - Appends a String, Char[], Char, Int or Float to the current
String instance

23

– method : public : native : Append(s : String), Nil

– method : public : native : Append(c : Char), Nil

– method : public : native : Append(b : Byte), Nil

– method : public : native : Append(i : Int), Nil

– method : public : native : Append(f : Float), Nil

– method : public : native : Append(a : Char[]), Nil

• Find - returns the index of the first occurrence of a given Character

– method : public : native : Find(c : Char), Int

• Find - returns the index of the first occurrence of a given String

– method : public : native : Find(s : String), Int

• Size - returns the size of the String

– method : public : native : Size(), Int

• Get - returns the Character at the given index or -1 if not found

– method : public : native : Get(i : Int), Char

• ToCharArray - converts a string to a Char[]

– method : public : native : ToCharArray(), Char[]

• ToInt - converts a string to a Int

– method : public : native : ToInt(), Int

• ToFloat - converts a string to a Float

– method : public : native : ToFloat(), Int

• SubString - creates a new string that contains a subset of the string’s
contents

– method : public : native : SubString(offset : Int), String

– method : public : native : SubString(offset : Int, length : Int),
String

24

• Trim - removes all leading and trailing whitespace

– method : public : native : Trim(), String

• StartsWith - returns true if String starts with matching pattern;
returns false otherwise

– method : public : native : StartsWith(), Bool

• EndsWith - returns true if String ends with matching pattern; returns
false otherwise

– method : public : native : EndsWith(), Bool

• ToUpper - coverts all lowercase characters to uppercase characters

– method : public : native : ToUpper(), String

• ToLower - coverts all uppercase characters to lowercase characters

– method : public : native : ToLower(), String

• Reverse - returns a string with reversed characters

– method : public : native : Reverse(), String

• Equals - compares two string returns true if they are equal

– method : public : Equals(rhs : String), Bool

• Compare - compares two string returns 0 if they are equal

– method : public : native : Compare(rhs : Compare), Int

• Split - breaks a string into tokens based upon a given delimiter

– method : public : native : Split(delim : String), String[]

• Print - prints the current value

– method : native : Print(), Nil

• PrintLine - prints the current value along with a line return

– method : native : PrintLine(), Nil

25

6.2 Data Structures

6.2.1 Compare

Base class for all objects that use comparative algorithms.

• Compare - compares two object instances; 0 if equal, less-then 0 if less
and greater-then 0 if greater.

– method : virtual : public : Compare(rhs : System.Compare), Int

• HashID - returns a unique value for the given class type

– method : virtual : public : HashID(), Int

6.2.2 List/IntList/FloatList

The List class allow values to be added, removed and deleted from a list.
There are two specialized version of this class: IntList and FloatList.
The IntList and FloatList classes use Int and Float types respectively
instead of Compare type. The general class supports the following operations:

• AddBack - adds a new value to the back of the list

– method : public : native : AddBack(value : Compare), Nil

• RemoveBack - removes the last element in the list

– method : public : RemoveBack(), Nil

• AddFront - adds a new value to the front of the list

– method : public : native : AddFront(value : Compare), Nil

• RemoveFront - removes the first element in the list

– method : public : RemoveFront(), Nil

• Find - finds an element in the list

– method : public : Find(value : Compare), Bool

• Has - returns true if item is in list

26

– method : public : Has(value : Compare), Bool

• Insert - inserts a new value in the position pointed to the cursor

– method : public : Insert(value : Compare), Bool

• Remove - removes the last element in the list

– method : public : Remove(), Nil

• Insert - inserts an element into the current cursor position

– method : public : Insert(value : Compare), Bool

• Next - advances the internal cursor by one element

– method : public : Next(), Nil

• Pervious - retreats the internal cursor by one element

– method : public : Pervious(), Nil

• Get - returns the value of the element pointed to by the cursor

– method : public : Get(), Compare

• Forward - moves the cursor to the end of the list

– method : public : Forward(), Nil

• Rewind - moves the cursor to the start of the list

– method : public : Rewind(), Nil

• IsStart - returns true if cursor is at the start of the list

– method : public : IsStart(), Bool

• IsEnd - returns true if cursor is at the end of the list

– method : public : IsEnd(), Bool

• Size - returns the size of the list

27

6.2.3 Stack/IntStack/FloatStack

The Stack class support the concept of a growing stack. There are two
specialized version of this class: IntStack and FloatStack. The IntStack

and FloatStack classes use Int and Float types respectively instead of Base
type. The general class supports the following operations:

• Push - pushes a new value onto the stack

– method : public : Push(value : Base), Nil

• Pop - pops a values from the top of the stack

– method : public : Pop(), Base

• Top - retrieves the top value from the stack (without popping the stack)

– method : public : Top(), Base

• IsEmpty - returns true if stack is empty

– method : public : IsEmpty(), Bool

6.2.4 Vector/CompareVector/IntVector/FloatVector

The Vector class support the concept of a growing array. There are three spe-
cialized version of this class: CompareVector, IntVector and FloatVector.
The IntVector, FloatVector and CompareVector classes use Int, Float

and Compare types respectively instead of Base type. The general class sup-
ports the following operations:

• AddBack - adds a new value to the back of the vector

– method : public : AddBack(value : Base), Nil

• RemoveBack - removes the last element in the vector

– method : public : RemoveBack(), Nil

• Get - returns the value of the element pointed to by the cursor

– method : public : Get(index : Int), Base

28

• Set - replaces the list value based upon the given index

– method : public : Set(value : Base, index : Int), Bool

• Size - returns the size of the list

– method : public : Size(), Int

• ToArray - returns an array of elements

– method : public : ToArray(), Base

Additional methods for CompareVector/IntVector/FloatVector

• Sort - sorts a vector of values using a merge sort algorithm in O(n log2 n)
time.

– method : public : Sort(), Nil

• BinarySearch - performs a binary search for an element in a sorted
vector using an iterative binary search algorithm in O(log2 n) time.

– method : public : BinarySearch(v : Compare), Nil

Additional methods for IntVector/FloatVector

• Min - returns the smallest value in the vector

– method : public : native : Min(), Int/Float

• Max - returns the largest value in the vector

– method : public : native : Max(), Int/Float

• Average - returns the calculated average for all values in the list

– method : public : native : Average(), Int/Float

• Filter - applys the result of the passed in function to each element in
the array

– method : public : Filter(func : (Int/Float/Compare) ∼ Bool),
IntVector/FloatVector/CompareVector

29

• Apply - applys the result of the passed in function to each element in
the array

– method : public : Apply(func : (Int/Float) ∼ Int/Float), IntVec-
tor/FloatVector

6.2.5 Map/IntMap/FloatMap/StringMap

The Map class supports the concept of an associative array with key/value
pairs. The class implements a balance binary tree algorithm such that inserts,
deletes and searches are O(log2 n).

• Insert - adds a new value to the tree

– method : public : Insert(key : Compare, value : Base), Nil

• Remove - removes a value from the tree

– method : public : Remove(key : Compare), Nil

• Find - searches for a value based upon a key

– method : public : Find(key : Compare), Base

• Has - returns true if item is in map

– method : public : Has(value : Compare), Bool

• GetKeys - returns a vector of keys

– method : public : GetKeys(), Vector

• Gets - returns a vector of values

– method : public : Gets(), Vector

6.2.6 Hash/StringHash

The Hash class supports the concept of an associative array with key/value
pairs. The class implements a hashing algorithm that is optimized for pairs
of 256 or less (consider using the Map class for larger sets):

• Insert - adds a new value to the hash table

30

– method : public : Insert(key : Compare, value : Base), Nil

• Remove - removes a value from the hash table

– method : public : Remove(key : Compare), Nil

• Find - searches for a value based upon a key

– method : public : Find(key : Compare), Base

• Has - returns true if item is in hash

– method : public : Has(value : Compare), Bool

• GetKeys - returns a vector of keys

– method : public : GetKeys(), Vector

• Gets - returns a vector of values

– method : public : Gets(), Vector

.

6.3 System Libraries

6.3.1 Console

The Console class allows programmers to read and write information to the
system console. The class supports the following operations:

• GetInstance - returns the console instance

– function : GetInstance(), Console

• Print - prints all basic types including String and Char[] to standard
out.

• PrintLine - prints all basic types including String and Char[] to
standard out followed by a newline.

• ReadString - reads in a line of text as a Char[] from standard in.

– method : public : ReadString(), String

31

6.3.2 Time

The Time class allows programmers gain access to the current system time.
The class supports the following operations:

• New

– New()

• GetDay - return the current day as an Int.

– method : public : GetDay(), Int

• GetMonth - return the current month as an Int.

– method : public : GetMonth(), Int

• GetYear - return the current year as an Int.

– method : public : GetYear(), Int

• GetHours - return the current hour as an Int.

– method : public : GetHours(), Int

• GetMinutes - return the current minutes as an Int.

– method : public : GetMinutes(), Int

• GetSeconds - return the current seconds as an Int.

– method : public : GetSeconds(), Int

• IsSavingsTime - return true if daylights saving time, false otherwise

– method : public : IsSavingsTime(), Bool

32

6.3.3 File

The File class allows programmers manipulate system files. The class sup-
ports the following operations:

• New

– New(name : String)

• IsOpen - returns true if file is open.

– method : public : IsOpen(), Bool

• IsEOF - returns true if the file pointer is at the EOF.

– method : public : IsEOF(), Bool

• Seek - seeks to a position in a file.

– method : public : Seek(p : Int), Bool

• Rewind - moves the file pointer to the beginning of a file.

– method : public : Rewind(), Nil

• Size - returns the size of the file.

– function : Size(name : String), Int

• Remove - deletes a file.

– function : Remove(n : String), Bool

• Exists - returns true if the file exists.

– function : Exists(n : String), Bool

• Rename - renames a file

– function : Rename(from : String, to : String), Bool

33

6.3.4 FileReader

The FileReader is inherited from the File class and allows programmers read
files. The class supports the following operations:

• New

– New(name : String)

• Close - closes a file.

– method : public : Close(), Nil

• ReadByte - reads a byte from a file.

– method : public : ReadByte(), Byte

• ReadBuffer - reads n number of bytes from a file.

– method : public : ReadBuffer(offset : Int, num : Int, buffer :
Byte[]), Int

• ReadString - reads a line from a file.

– method : public : ReadString(), String

6.3.5 FileWriter

The FileReader is inherited from the File class and allows programmers read
files. The class supports the following operations:

• Close - closes a file.

– method : public : Close(), Nil

• WriteByte - writes a byte to a file.

– method : public : WriteByte(b : Int), Bool

• WriteBuffer - writes n number of bytes to a file.

– method : public : WriteBuffer(offset : Int, num : Int, buffer :
Byte[]), Int

• WriteString - writes a string to a file.

– method : public : WriteString(s : String), Nil

34

6.3.6 Directory

The Directory class allows programmers manipulate file system directories.
The class supports the following operations:

• Create - creates a new directory.

– function : Create(n : String), Bool

• Exists - returns true if the directory exists.

– function : Exists(n : String), Bool

• List - returns vector of file and directory names.

– function : List(n : String), String[]

6.3.7 TCPSocket

The TCPSocket class allows programmers connect to TCP/IP socket servers.
The class supports the following operations:

• New

– New(address : String, port : Int)

• IsOpen - returns true if the socket is connected.

– method : public : IsOpen(), Bool

• Close - closes a connected socket.

– method : public : Close(), Nil

• WriteByte - writes a byte to a file.

– method : public : WriteByte(b : Int), Bool

• WriteBuffer - writes n number of bytes to a file.

– method : public : WriteBuffer(offset : Int, num : Int, buffer :
Byte[]), Int

• WriteString - writes a string to a file.

35

– method : public : WriteString(s : String), Nil

• ReadByte - reads a byte from a file.

– method : public : ReadByte(), Byte

• ReadBuffer - reads n number of bytes from a file.

– method : public : ReadBuffer(offset : Int, num : Int, buffer :
Byte[]), Int

• ReadString - reads a line from a file.

– method : public : ReadString(), String

• HostName - returns the host name

– function : HostName(), String

6.3.8 HttpClient

The HttpClient class allows programmers access HTTP 1.1 websites:

• New

– New(url : String, port : Int)

• New

– New(url : String, content type: String, port : Int)

• Post - Performs a HTTP POST to the connected website, returns true
is successful

– method : public : Post(content : String), Bool

• Get - Performs a HTTP GET from the connected website, returns a
Vector of strings

– method : public : Get(), Vector

• GetHeaders - Returns a Map of headers information. HTTP header
information is populated after a HTTP GET request.

– method : GetHeaders(), Map

36

7 Examples

7.1 Prime Numbers

bundle Default {

class FindPrime {

function : Main() ~ Nil {

Run(1000000);

}

function : native : Run(topCandidate : Int)~ Nil {

candidate : Int := 2;

while(candidate <= topCandidate) {

trialDivisor : Int := 2;

prime : Int := 1;

found : Bool := true;

while(trialDivisor * trialDivisor <= candidate & found) {

if(candidate % trialDivisor = 0) {

prime := 0;

found := false;

}

else {

trialDivisor := trialDivisor + 1;

};

};

if(found) {

candidate->PrintLine();

};

candidate := candidate + 1;

};

}

}

}

37

7.2 Simple HTTP client

use Net;

use IO;

use Structure;

bundle Default {

class HttpTest {

function : Main(args : String[]) ~ Nil {

if(args->Size() = 1) {

client := HttpClient->New(args[0], 80);

lines := client->Get();

for(i := 0; i < lines->Size(); i := i + 1;) {

lines->Get(i)->As(String)->PrintLine();

};

};

}

}

}

38

8 Appendix A: Example Debugging Session

8.1 Sample Source

bundle Default {

class Bar {

v1 : Float;

v2 : Int;

New() {

v1 := 2.31;

v2 := 26;

}

}

class Foo {

bar : Bar;

value : Int;

New(v : Int) {

value := v;z

}

method : public : Get() ~ Int {

return value;

}

method : public : SetBar() ~ Nil {

bar := Bar->New();

}

}

class Test {

function : Main(args : System.String[]) ~ Nil {

d : Float := 11.12;

z := Int->New[5,6];

z[2,3] := 27;

39

f := Foo->New(24);

f->SetBar();

v := f->Get();

}

}

}

The sample file is named debug.obs.

8.2 Compiling the Source and Starting the Debugger

obc -src test_src\debug.obs -dest a.obe -debug

obd -exe ..\..\compiler\a.obe -src ..\..\compiler\test_src

Objeck v1.1.2 - Interactive Debugger

loaded executable: file=’../../compiler/a.obe’

source files: path=’../../compiler/test_src/’

8.3 Setting a Breakpoint and Running the Program

> b debug.obs:31

added break point: file=’debug.obs:31’

> r

break: file=’debug.obs:31’, method=’Test->Main(..)’

> l

List

26: }

27: }

28:

29: class Test {

30: function : Main(args : System.String[]) ~ Nil {

=> 31: d : Float := 11.12;

32: z := Int->New[5,6];

33: z[2,3] := 27;

34:

35: f := Foo->New(24);

40

36: f->SetBar();

> n

break: file=’debug2.obs:32’, method=’Test->Main(..)’

8.4 Printing a Value

> p d

print: type=Float, value=11.12

> b debug.obs:37

added break point: file=’debug.obs:37’

> c

break: file=’debug2.obs:37’, method=’Test->Main(..)’

> p z

print: type=Int[], value=2197556(0x218834), dimension=2, size=30

> p z[2,3]

print: type=Int[], value=27(0x1b)

> p f->value

print: type=Int, value=24

> p f->bar

print: type=Bar, value=0x218864

> p f->bar->v1

print: type=Float, value=2.31

> q

> p f->bar->v1 * 3.5

print: type=Float, value=8.085

goodbye.

41

9 Appendix B: Compiler and VM Design

The following section gives a brief overview of the major architectural
components the comprise the Objeck language compiler and virtual machine.

9.1 Compiler

The language compiler is written in C++ and makes heavy use of the C++
STL for portability across platforms. As mentioned in the introduction, the
compiler accepts source files and shared libraries as inputs and produces ei-
ther executables or shared libraries. Note, the compiler has two modes of
operation: User Mode compiles traditional end-user programs, while System

Mode compiles system libraries and processes special system language direc-
tives.

9.1.1 Scanner and Parser

The scanner component reads source files and parses the text into tokens.
The scanner works in conjugation with the LL(k) parser by providing k looka-
head tokens for parsing. Note, the scanner can only scan system language

42

directives while in System Mode. The source parser is a recursive-decent
parser that generates an abstract parser tree, which is passed to the Contex-
tual Analyser for validation.

9.1.2 Contextual Analyser

The Contextual Analyser is responsible for ensuring that a source program
is valid. In addition, the context analyser also creates relationships between
contextually resolved entities (i.e. methods ←→ method calls). The analyser
accepts an abstract parser tree and shared libraries as input and produces a
decorated parse tree as output. The decorated parse tree is then passed to
the Intermediate Code Generator for the production of VM instructions.

9.1.3 Intermediate Code Generator and Optimzier

The Intermediate Code Generator accpets a decorated parse and produces
a flat list of VM stack instructions. These instruction lists are then passed
to the Optimizer for basic block optimizations (constant folding, strength
reduction, instruction simplification and method inlining).

9.1.4 Target Emitter

Finally, the improved intermediate code is passed to code emitter component,
which writes it to a file.

9.2 Virtual Machine

The language VM is written in C/C++ and was designed to be highly
portable. The VM makes heavy use of operating system specific APIs (i.e.
WIN32 and POSIX) but does so in an abstracted manner. The JIT com-
piler is targeted to produce machine code for the IA-32 and AMD64 (future)
hardware architectures.

9.2.1 Loader

The loader component allows the VM to read target code structures such
as classes, methods and VM instructions. The loader create an in-memory
representation of this information, which is used by the VM interpreter and

43

JIT compiler. In addition, the loader processes command-line parameters
that are passed into the VM prior to execution.

9.2.2 Interpreter

The Interpreter executes stack based VM instructions (listed below) and
manages two primary stacks: the execution stack and call stack. The execu-
tion stack is used to manage the data that is needed for VM calculations. The
call stack is used to manage function/method calls and the states between
those calls.

9.2.3 JIT Compiler

The JIT compiler translates stack based VM instruction into processor spe-
cific machine code (i.e. IA-32). The JIT compiler is evoked by the interpreter
and methods are translated in a separate execution thread. This process al-
low methods to be executed concurrently in an interpreted manner while they
are being compiled into machine code. Note, methods are only converted into
machine code once.

9.2.4 Memory Manager

The Memory Manager component allows the runtime system to manage the
user allocation/deallocation of heap memory. The memory mangers imple-
mentes a multi-thread “mark and sweep” algorithm. The marking stage
of the process is multi-thread, such that, each root in scanned in a sepa-
rate thread. The sweeping stage is done in a single thread since the data
structures that are needed to manage the state of the running program are
modified.

10 Appendix C: VM Instruction Set

The appendix below lists the types of stack instructions that are executed by
the Objeck VM. The VM was designed to be portable and language indepen-
dent. Early development versions of the VM included an inline assembler,
which may be re-added in future releases.

44

Stack Operators
Mnemonic Opcode(s) Description

LOAD INT LIT 4-byte integer pushes integer onto stack
LOAD FLOAT LIT 8-byte float pushes float onto stack
LOAD INT VAR variable index pushes integer onto stack
LOAD FLOAT VAR variable index pushes float onto stack
LOAD FUNC VAR variable index pushes float onto stack
LOAD SELF n/a pushes self integer on stack
STOR INT VAR variable index pops integer from stack and saves

to index location
STOR FLOAT VAR variable index pops float from stack and saves to

index location
STOR FUNC VAR variable index pops float from stack and saves to

index location
COPY INT VAR variable index copies an integer from stack and

saves to index location
COPY FLOAT VAR variable index copies a float from stack and saves

to index location
LOAD BYTE ARY ELM array dimension pushes byte onto stack; assumes

array address was pushed prior
LOAD INT ARY ELM array dimension pushes integer onto stack; as-

sumes array address was pushed
prior

LOAD FLOAT ARY ELM array dimension pushes float onto stack; assumes
array address was pushed prior

LOAD ARY SIZE n/a pushes array size as integer onto
stack; assumes array address was
pushed prior

STOR BYTE ARY ELM variable index stores byte at index location; as-
sumes array address was pushed
prior

STOR INT ARY ELM variable index stores integer at index location
; assumes array address was
pushed prior

STOR FLOAT ARY ELM variable index stores float at index location; as-
sumes array address was pushed
prior

45

Logical Operators
Mnemonic Opcode(s) Description

EQL INT n/a pops top two integer values and
pushes result of equal operation

NEQL INT n/a pops top two integer values and
pushes result of not-equal opera-
tion

LES INT n/a pops top two integer values and
pushes result of less-than opera-
tion

GTR INT n/a pops top two integer values and
pushes result of greater-than op-
eration

LES EQL INT n/a pops top two integer values and
pushes result of less-than-equal
operation

GTR EQL INT n/a pops top two integer values and
pushes result of greater-than-
equal operation

EQL FLOAT n/a pops top two floats values and
pushes result of equal operation

NEQL FLOAT n/a pops top two floats values and
pushes result of not-equal opera-
tion

LES FLOAT n/a pops top two floats values and
pushes result of less-than opera-
tion

GTR FLOAT n/a pops top two floats values and
pushes result of greater-than op-
eration

LES EQL FLOAT n/a pops top two floats values and
pushes result of less-than-equal
operation

GTR EQL FLOAT n/a pops top two floats values and
pushes result of greater-than-
equal operation

46

Logical Operators
Mnemonic Opcode(s) Description

AND INT n/a pops top two integer values and
pushes result of add operation

OR INT n/a pops top two integer values and
pushes result of or operation

47

Mathematical Operators
Mnemonic Opcode(s) Description

ADD INT n/a pops top two integer values and
pushes result of add operation

SUB INT n/a pops top two integer values and
pushes result of subtract opera-
tion

MUL INT n/a pops top two integer values and
pushes result of multiply opera-
tion

DIV INT n/a pops top two integer values and
pushes result of divide operation

SHL INT n/a pops top two floats values and
pushes result of shift left opera-
tion

SHR INT n/a pops top two floats values and
pushes result of shift right oper-
ation

MOD INT n/a pops top two integer values and
pushes result of modulus opera-
tion

ADD FLOAT n/a pops top two floats values and
pushes result of greater-than-
equal operation

SUB FLOAT n/a pops top two floats values and
pushes result of subtract opera-
tion

MUL FLOAT n/a pops top two floats values and
pushes result of multiply opera-
tion

DIV FLOAT n/a pops top two floats values and
pushes result of divide operation

I2F n/a pop top integer and pushes result
of float cast

F2I n/a pop top float and pushes result of
integer cast

48

Objects/Methods/Traps
Mnemonic Opcode(s) Description

SWAP INT n/a swaps the top two integer values
on the stack

POP INT n/a control pop of an integer from the
stack

POP FLOAT n/a control pop of a float from the
stack

RTRN n/a exits existing method returning
control to callee

MTHD CALL integer values for class
id and method id

synchronous call to given method
releasing control

DYN MTHD CALL pops integer values for
class id and method id

dynamic synchronous call to
given method releasing control

ASYNC MTHD CALL integer values for class
id and method id;
pushes new thread id

asynchronous call to given
method

ASYNC JOIN thread id waits for identified thread to end
execution

LBL label id identifies a jump label
JMP label id and con-

ditional context
(1=true, 0=uncondi-
tional, -1=false)

jump to label id

NEW BYTE ARY array dimension pushes address of new byte array
NEW INT ARY array dimension pushes address of new integer ar-

ray
NEW FLOAT ARY array dimension pushes address of new float array
NEW OBJ INST integer value for class

id
pushes address of new class in-
stance

OBJ INST CAST integer values for
“from” class and “to”
class

performs runtime class cast check
(note: only required for up cast-
ing)

49

Objects/Methods/Traps
Mnemonic Opcode(s) Description

THREAD CREATE n/a creates an new thread instance
(calculation stack and stack
pointer)

THREAD WAIT n/a waits for worker threads to stop
execution

CRITICAL START n/a creates a mutex such that only
one thread can execute in a given
section

CRITICAL END n/a releases a system mutex
TRAP integer value for trap

id
calls runtime subroutine releasing
control

TRAP RTRN integer value for trap
id and number of ar-
guments

calls runtime subroutine releasing
control and then process an inte-
ger return value

LIB NEW OBJ INST n/a symbolic library link for a new ob-
ject instance

LIB MTHD CALL n/a symbolic library link for a method
call

LIB OBJ INST CAST n/a symbolic library link for an object
cast

50

	Introduction
	Getting Started
	Compiling Source
	Executing

	The Basics
	Variable Declarations
	Expressions
	Mathematical and Logical Expressions
	Arrays

	Statements
	If Statement
	Select Statement
	While Statement
	Do/While Statement
	For Statements
	Each Statements

	User Defined Types
	Enums
	Classes
	Class Inheritance
	Class Casting and Identification
	Methods and Functions

	Higher-Order Functions
	Assigning and Passing Functions
	Envoking Functions

	Debugger
	Starting the Debugger
	Debugging Commands

	Class Libraries
	Core Libraries
	Base
	Bool
	Char
	Byte/Int
	Float
	String

	Data Structures
	Compare
	List/IntList/FloatList
	Stack/IntStack/FloatStack
	Vector/CompareVector/IntVector/FloatVector
	Map/IntMap/FloatMap/StringMap
	Hash/StringHash

	System Libraries
	Console
	Time
	File
	FileReader
	FileWriter
	Directory
	TCPSocket
	HttpClient

	Examples
	Prime Numbers
	Simple HTTP client

	Appendix A: Example Debugging Session
	Sample Source
	Compiling the Source and Starting the Debugger
	Setting a Breakpoint and Running the Program
	Printing a Value

	Appendix B: Compiler and VM Design
	Compiler
	Scanner and Parser
	Contextual Analyser
	Intermediate Code Generator and Optimzier
	Target Emitter

	Virtual Machine
	Loader
	Interpreter
	JIT Compiler
	Memory Manager

	Appendix C: VM Instruction Set

