
How to adapt Odoo
Accounting to your own
country

Quentin De Paoli • developer

EXPERIENCE

2016

super
important

Country-adapted accounting is

● Comfort zone for end-users
● Usable out of the box
● Avoid complex config/reports

How it works1

The different objects

Country-adapted demo data

How to easily create a financial report

2

3

4

How it works1

Install
Accounting

Detects
company’s

country

Installs
l10n_xx

Generates
objects

● Done in account/__init__.py: _auto_install_l10n()
● If no localization module found:

installs l10n_generic_coa (US)
● May install other localized modules (SEPA, …)
● l10n_xx module must contain a .yml file calling

try_loading_for_current_company()

How it works
●

The different objects2

Chart template
● Bank and cash prefixes
● Properties: default accounts for

○ Receivable, payable, expense, income, stock
operations, multi-currencies use cases

● Number of digits in your COA
● Anglo saxon or continental accounting
● Account for inter-bank transfers
● Currency
● Languages in case of l10n_multilang dependency

Chart template
<?xml version="1.0" encoding="utf-8"?>

<odoo>

 <record id="trans" model="account.account.template">

 <field name="name">Transferts</field>

 <field name="code">580</field>

 <field name="reconcile" eval="True"/>

 <field name="user_type_id" ref="account.data_account_type_current_assets"/>

 </record>

 <!-- Chart template -->

 <record id="l10nbe_chart_template" model="account.chart.template">

 <field name="name">Belgian PCMN</field>

 <field name="transfer_account_id" ref="trans"/>

 <field name="currency_id" ref="base.EUR"/>

 <field name="spoken_languages" eval="'nl_BE'"/>

 </record>

 <record id="trans" model="account.account.template">

 <field name="chart_template_id" ref="l10nbe_chart_template"/>

 </record>

</odoo>

Chart template
<?xml version="1.0" encoding="utf-8"?>

<odoo>

 <record id="l10nbe_chart_template" model="account.chart.template">

 <field name="name">Belgian PCMN</field>

 <field name="bank_account_code_prefix">550</field>

 <field name="cash_account_code_prefix">570</field>

 <field name="code_digits">6</field>

 <field name="transfer_account_id" ref="trans"/>

 <field name="property_account_receivable_id" ref="a4000"/>

 <field name="property_account_payable_id" ref="a440"/>

 <field name="property_account_expense_categ_id" ref="a600"/>

 <field name="property_account_income_categ_id" ref="a7010"/>

 <field name="property_stock_account_input_categ_id" ref="..."/>

 <field name="property_stock_account_output_categ_id" ref="..."/>

 <field name="property_stock_valuation_account_id" ref="..."/>

 <field name="expense_currency_exchange_account_id" ref="a654"/>

 <field name="income_currency_exchange_account_id" ref="a754"/>

 <!--

 <field name="complete_tax_set" eval="True"/>

 <field name="use_anglo_saxon" eval="False"/>

 -->

 </record>

</odoo>

Chart of Accounts
● Not too much accounts (200-300)
● No liquidity accounts
● Only 1 payable/receivable account
● Reuse account types from account module
● Tags on accounts for

○ an accurate cash flow statement
○ custom reports

Taxes
● Chart of Taxes in enterprise module

○ One tag per line in chart of taxe statement
○ Export in XML available
○ Tax adjustment wizard for manual input

● Could be
○ Simple rates set on the chart template
○ Complete set of tax template

Fiscal positions
● Optional
● Map accounts
● Map taxes
● Replace onchanges’ defaults in SO, PO and

invoices

Bank Operations
● New in v10
● Define common operations to use in bank

statement reconciliation widget

Bank Operations

 <record id="frais_bancaires_tva21_template" model="account.reconcile.model.template">

 <field name="name">Frais bancaires TVA21</field>

 <field name="account_id" ref="a656"/>

 <field name="amount_type">percentage</field>

 <field name="tax_id" ref="attn_TVA-21-inclus-dans-prix"/>

 <field name="amount">100</field>

 <field name="label">Frais bancaires TVA21</field>

 </record>

Country-adapted
demo data3

Demo Data
● Meaningful demo data is important
● Example: l10n_be/demo/l10n_be_demo.yml
-

 Set the demo tags on account templates and on their respective accounts (already generated during the loading

of data)

-

 !python {model: account.account.template, id: False}: |

 mapping_list = [

 ('a1000', 'account.demo_capital_account'),

 ('a300', 'account.demo_stock_account'),

 ('a7600', 'account.demo_sale_of_land_account'),

 ('a6201', 'account.demo_ceo_wages_account'),

 ('a24011', 'account.demo_coffee_machine_account'),

]

 for xml_id, tag in mapping_list:

 account_template = self.browse(ref(xml_id))

 account_template.write({'tag_ids': [(4, ref(tag))]})

 accounts = self.env['account.account'].search([('code', 'like', account_template.code)])

 if accounts:

 accounts.write({'tag_ids': [(4,ref(tag))]})

How to easily create a
financial report4

Accounting Reports
Financial Custom
● Very easy to create (XML)

● Ready to use

● Only works with amls

● Only with sums over a

period

● More advanced (Python)

● Possibilities are much

more open

● Talk by Cédric “How to

create custom accounting

reports”

Report Object

● One account.financial.html.report object per report
● name: Name (title) of the report
● debit_credit: Toggles debit and credit columns (default = False)
● report_type:

○ date_range (Profit & Loss)
○ no_date_range (Balance Sheet)
○ … + _analytic (Toggles analytic filter)
○ date_range_cash (Cash Method by default)

● tax_report: set to True for tax statements
● parent_id: menuitem under which this report should appear

 <record id="account_financial_report_profitandloss0" model="account.financial.html.report">

 <field name="name">Profit and Loss</field>

 <field name="debit_credit" eval="False"/>

 <field name="report_type">date_range_analytic</field>

 <field name='parent_id' ref='account_reports_legal_statements_menu'/>

 </record>

Report Line Object

● name: what’s displayed on the report
● code: can be reused in other report lines
● parent_id: another account.financial.html.report.line
● sequence: sets their display order
● level: determines the layout

 <record id="account_financial_report_gross_profit0" model="account.financial.html.report.line">

 <field name="name">Gross Profit</field>

 <field name="code">GRP</field>

 <field name="formulas">balance = OPINC.balance - COS.balance</field>

 <field name="parent_id" ref='account_financial_report_totalincome0'/>

 <field name="sequence" eval="1"/>

 <field name="level" eval="2" />

 </record>

Report Line Object

● formulas: Assigns a value to the columns (balance= X [;debit=Y; credit=Z])

● Available objects in ‘formulas’:
○ Ndays: number of days in selected period (date_range reports)
○ another report line: <code>.balance, <code>.credit,

 <code>.debit, <code>.amount_residual
○ sum, sum_if_pos, sum_if_neg

● domain: An Odoo domain on the account move line object
● groupby: Group the account move lines by one of their columns

 <record id="account_financial_report_income0" model="account.financial.html.report.line">

 <field name="name">Operating Income</field>

 <field name="code">OPINC</field>

 <field name="formulas">balance = -sum.balance</field>

 <field name="parent_id" ref='account_financial_report_gross_profit0'/>

 <field name="domain" eval="[('account_id.user_type_id', '=', ref('account.data_account_type_revenue'))]" />

 <field name="groupby">account_id</field>

 <field name="sequence" eval="1"/>

 <field name="level" eval="3" />

 </record>

Other useful fields
● financial_report_id: For the root financial report lines. Must link to

the related accout.financial.html.report object
● figure_type: how to format the columns of the line. Can be ‘float’

(default, for monetary values), ‘percents’ or ‘no_unit’.
● hide_if_zero: False by default. If True and the line result is falsy,

hides the line.
● show_domain: How the domain of a line is displayed. Can be

‘foldable’ (default, hidden at the start but can be unfolded),
‘always’ (always displayed) or ‘never’ (never shown).

● green_on_positive: Used when computing the comparison column.
True (default) if growth is good (displayed in green) or not.

Other useful fields
● special_date_changer: If a specific line in a report should not use

the same dates as the rest of the report. Can be
○ ‘normal’: default,
○ ‘strict_range’: force the accounts with include_initial_balance

set to True to consider only the date range,
○ ‘from_beginning’: start date is epoch, eg. unnaffected

earnings line in a balance sheet,
○ ‘to_beginning_of_period’: start date is epoch and end date is

the start date of the selected period,
● action_id: Many2one linking to an action that will be executed

when clicking on the line name in the report.

Thank you.

#odooexperience

EXPERIENCE

2016

