
OpenCV Object
Detection:

Theory and Practice

Vadim Pisarevsky

Senior Software Engineer

Intel Corporation, Software and Solutions Group

 2

Agenda

• Quick introduction to object detection

• Basic theory

• History of the approach

• Object detection functions

• Haartraining workflow and tips

 3

Quick Introduction: Top-level view
“objects” “non-objects”

opencv/apps/haartraining

cvLoad, cvDetectHaarObjects

 4

Basic Theory of Haar-like Object Detectors

 5

Why is it called “Haar-like”?

The features are similar to the basis functions in Haar wavelets:

…

Pool of features used in OpenCV implementation:

Can be scaled => ~130.000 features for 24x24 window

 6

How are the features computed?

featurei,k=wi,k,1*RectSumi,k,orange+white(I)+wi,k,2*RectSumi,white(I)

Weights are compensated:
wi,k,1*Areai,k,orange+white+wi,k,2*Areai,k,white=0

wi,k,2= ─ 3*wi,k,1

wi,k,2= ─ 9*wi,k,1

 7

Rapid Computation

x

y

x

y

First, integral images (SAT, RSAT) are computed,
Then the features can be computed in O(1)

 8

Weak classifiers

featurei ,k< ti,k,1?
0 1

αi,k βi,k

1-split decision tree (stump)

featurei,k < ti,k,1?
0 1

αi,k

βi,k

2-split decision tree

featurei,k < ti,k,2?

0

1

γi,k

…

ti,k and the values at leaves are found using L.Brieman CART™ algorithm

 9

Making weak classifiers stronger: DAB etc.
Discrete Adaboost (DAB) (Freund, Schapire, 1996)

The Boosting Theorem (paraphrased): “As long as weak classifiers
are better than random, with sufficiently large M boosted classifier
may become as good as you wish”

There are also Real Adaboost (RAB), Logitboost (LB) and Gentle
Adaboost (GAB) implemented in OpenCV, and many other variants.

 10

Cascade of Classifiers

Premise:

Size of feature pool (>100000) exceeds
what any reasonable classifier can
handle

Cascade of classifiers (special kind of
decision tree) can outperform a single
stage classifier because it can use more
features at the same average
computational complexity

Input Pattern

Stage N

Stage 2

Stage 1 P(x|¬o)=.5
P(x|o) = .002

P(x|¬o)=.52

P(x|o) = .004

P(x|¬o)=.5N

P(x|o) ~ .1

Object

…

P(x|o) = .998

P(x|o) = .9982 = .996

P(x|o) = .998N ~ .90

 11

Cascade Concept

Target Concept
Background
removal in
stage 1

Background
removal in
stage 2

Background
removal in
stage 6

Background removal in stage 3

Background
removal in
stage 5

Background removal in stage 4

 12

Tuning global thresholds: ROC curves

Classical boosting algorithms give: F(x)=sign ∑m=0,M-1cmfm(x)

We replace it with: F(x)=sign [∑m=0,M-1cmfm(x) – T] =>

Instead of a fixed classifier we may choose an optimal balance between the hit-rate
and false alarms by varying T:

 13

Finding objects of different sizes in an image
window_size = window_size0

scale = 1
faces = {}
while window_size ≤ image_size do
 classifier_cascade = classifier_cascade0 scaled by scale
 dX = scale
 dY = scale
 for 0 ≤ Y < image_height – window_height do
 for 0 ≤ X < image_height – window_height do
 region_to_test = {0 ≤ x < X + window_width; 0 ≤ y < Y +

window_width}
 if classifier_cascade(region_to_test) == 1 then

faces = faces ∪ {region_to_test}
 end if
 X = X + dX
 end for
 Y = Y + dY
 end for
 scale = scale × C /* C – some constant, e.g. 1.1 or 1.2 */
end while

 14

Algorithm Structure
Different Object size

Different Locations

Cascade Stages

Weak classifiers

Haar feature
(2-3 rectangles)

 15

 16

History and the previous works

• C. Papageorgiou, M. Oren, and T. Poggio. A general framework for
Object Detection. In International Conference on Computer Vision,
1998. Introduced Haar-like features + boosted classifiers for face
detection.

• Paul Viola and Michael J. Jones. Rapid Object Detection using a
Boosted Cascade of Simple Features. IEEE CVPR, 2001. Simplified
features computed in O(1) using integral images, multi-stage
classifiers.

• Rainer Lienhart and Jochen Maydt. An Extended Set of Haarlike
Features for Rapid Object Detection. IEEE ICIP 2002, Vol. 1, pp.
900-903, Sep. 2002. Tilted features and algorithm tuning (GAB,
ROC optimization …).

----- Recent improvements (under consideration) ------

Floatboost, more efficient feature selection …

 17

Detecting Objects with OpenCV

 18

Object detection within OpenCV package

opencv/

 apps/haartraining/ - haartraining application

 apps/haartraining/doc – haartraining user guide

 cv/include/ - data structures and object detection functions.

 cv/src/cvhaar.cpp – detection algorithm source code

 data/haarcascades – pre-trained classifiers (read the license!)

 samples/c/facedetect.c – object detection demo

 19

Object Detection Sample
#include "cv.h"
#include "highgui.h"
int main(int argc, char** argv)
{
 static CvMemStorage* storage = cvCreateMemStorage(0);
 static CvHaarClassifierCascade* cascade = 0;
 if(argc != 3 || strncmp(argv[1], "--cascade=", 10))
 return -1;
 cascade = (CvHaarClassifierCascade*)cvLoad(argv[1] + 10);
 CvCapture* capture = cvCaptureFromAVI(argv[2]);
 if(!cascade || !capture) return -1;
 cvNamedWindow("Video", 1);
 for(;;) {
 IplImage* frame = cvQueryFrame(capture), *img;
 if(!frame)
 break;
 img = cvCloneImage(frame); img->origin = 0;
 if(frame->origin) cvFlip(img, img);
 cvClearMemStorage(&storage);
 CvSeq* faces = cvHaarDetectObjects(img, cascade, storage,
 1.1, 2, CV_HAAR_DO_CANNY_PRUNING, cvSize(20, 20));
 for(int i = 0; i < (faces ? faces->total : 0); i++) {
 CvRect* r = (CvRect*)cvGetSeqElem(faces, i);
 cvRectangle(img, cvPoint(r->x,r->y),
 cvPoint(r->x+r->width,r->y+r->height),
 CV_RGB(255,0,0), 3);
 }
 cvShowImage("Video", img);
 cvReleaseImage(&img);
 if(cvWaitKey(10) >= 0) break;
 }
 cvReleaseCapture(&capture);
 return 0;
}

./facedetect –-cascade=opencv/data/haarcascades/haarcascade_frontalface_alt2.xml screetcar.avi

 20

Object detection functions

• CvHaarClassifierCascade* cascade =
 (CvHaarClassifierCascade*)cvLoad(<classifier_filename.xml>);

• CvSeq* face_rects = cvHaarDetectObjects(image, cascade,
memory_storage, scale_factor, min_neighbors, flags, min_size);

– scale – classifier cascade scale factor. typically, 1.1 or 1.2 (10% and 20%,
respectively)

– min_size – starting minimum size of objects. By specifying large enough
minimum size one can speedup processing a lot!

Let’s look at the other parameters …

 21

min_neighbors: clustering output
rectangles

min_neighbors=0 min_neighbors=2

 22

flags

CV_HAAR_DO_CANNY_PRUNING (reject regions with too few or too
many edges inside (parameters are tuned for faces!)):

CV_HAAR_FIND_BIGGEST_OBJECT:

Decreases the processing time by factor of 10(!)
when you need to find at most 1 face (the biggest one)

 23

Haartraining

 24

Haartraining use:
1. Put all the positive samples in a directory, prepare textual description (info file) in a

special format, e.g.:

Directory with positive samples:

mydir/positive/

face1.jpg

face2.jpg

my_family.png

…

Info file (e.g. my_info.dat):

mydir/positive/face1.jpg 1 140 100 45 45
mydir/positive/face2.jpg 1 10 20 50 50
mydir/positive/my_family.png 4 100 200 50 50 50 30 25 25 …

1. Run opencv/bin/createsamples.exe:

 createsamples –vec pos_samples.vec –info my_info.dat –w <width> -h <height>

createsamples can also generate a set of positive samples out of a single image.
See the reference in opencv/apps/haartraining/doc.

 25

Haartraining use:
1. Now prepare collection of negative samples and another corresponding text file:

Directory with negative samples:

mydir/negative/

my_house.jpg

beijing_view.jpg

riverside.png

…

Background info file (e.g. bg.txt):

mydir/negative/my_house.jpg
mydir/negative/beijing_view.jpg
mydir/negative/riverside.jpg

1. Now run opencv/bin/haartraining.exe:

 haartraining –vec pos_samples.vec –bg bg.txt –w <width> -h <height> -data
my_classifier_dir –nsplits 1 –nstages 15 –npos N1 –nneg N2 –mem
<mem_buf_size>

See the reference for detailed description of haartraining parameters

 26

Haartraining tips
• Get the fastest machine with a lot of memory (few gig’s), and specify large

enough buffer size using –mem option of haartraining

• Build OpenMP-enabled haartraining (or use precompiled one from OpenCV
distribution)

• Haartraining resumes training automatically starting from the last trained
stage.

• Positive samples: take care of proper alignment, avoid a lot of background;
the smaller is standard deviation => easier for classifier to learn; consider
training several classifiers instead of a single almighty one.

• Negative samples: make sure you have enough large-resolution background
images (a big percentage of background images is rejected by first few
stages => those images can not be used on later stages).

• Choose the optimal object size for haartraining. Play with the other
parameters (set of haar features, type of boosting algorithm, number of
splits in weak classifier etc.) too. See “Empirical Analysis of Detection
Cascades of Boosted Classifiers for Rapid Object Detection” technical
report by R.Lienhart et al for empirical study of face detection classifier.

