
TAO Developer’s Guide

Excerpt

This is an excerpt from the comprehensive 2-volume TAO

Developer’s Guide provided by Object Computing

Incorporated. Information on how to obtain this guide can be

found at

http://www.theaceorb.com/product/index.html#TAO
Developers Guide .

© 2007 Object Computing, Inc.

http://www.theaceorb.com/product/index.html#TAO Developers Guide
http://www.theaceorb.com/product/index.html#TAO Developers Guide

o c i w e b . c o m 1175

CHAPTER 31

Data Distribution Service

31.1 Introduction

The OMG Data Distribution Service for Real-Time Systems specification

(OMG Document formal/04-12-02) defines a service for efficiently

distributing application data between participants in a distributed application.

This service is not specific to CORBA. The specification provides a platform

independent model (PIM) as well as a platform specific model (PSM) that

maps the PIM onto a CORBA IDL implementation. The service is divided

into two components: the Data-Centric Publish-Subscribe (DCPS) layer and

an optional Data Local Reconstruction Layer (DLRL). The DCPS layer

transports data from publishers to subscribers according to Quality of Service

constraints associated with the data topic, publisher, and subscriber. The

DLRL allows distributed data to be shared by local objects located remotely

from each other as if the data were local. The DLRL is built on top of the

DCPS layer.

The DCPS layer provides another publish-subscribe API for applications that

is conceptually similar to the OMG Event and Notification Services as well as

the TAO Real-Time Event Service. The main difference with DCPS is that it

1176 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

only specifies CORBA IDL interfaces for the set up, control, and

configuration of the application and assumes that the data transmission occurs

via mechanisms other than CORBA. This enables DDS implementations to

achieve higher performance and better quality of service than the

CORBA-based alternatives mentioned above.

For additional details about DDS, developers should refer to the DDS

specification (OMG Document formal/04-12-02) as it contains in-depth

coverage of all the service’s features.

OpenDDS is the open-source C++ implementation of OMG’s v1.0 DDS

specification developed by OCI. It is available for download from

http://download.ociweb.com/OpenDDS/ and is compatible with recent

patches of TAO version 1.4a, 1.5a and 1.5.x.

Note OpenDDS currently implements a subset of the DCPS layer. None of the
DLRL functionality are currently implemented.

31.2 DCPS Overview

In this section we introduce the main concepts and entities of the DCPS layer

and discuss how they interact and work together.

31.2.1 Basic Concepts
Figure 31-1 shows an overview of the DDS DCPS layer. The following

subsections define the concepts shown in this diagram.

http://download.ociweb.com/DDS/

o c i w e b . c o m 1177

3 1 . 2 D C P S O v e r v i e w

Figure 31-1 DCPS Conceptual Overview

DataWriter

Topic B

Publisher

Data
Transmission

Subscriber

DataReader

Domain

DataReader

Subscriber

DataReader

DataWriter

Publisher

DataWriter

Topic A

1178 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

31.2.1.1 Domain
The domain is the fundamental partitioning unit within DCPS. Each of the

other entities belongs to a domain and can only interact with other entities in

that same domain. Application code is free to interact with multiple domains

but must do so via separate entities that belong to the different domains.

31.2.1.2 Domain Participant
A domain participant is the entry-point for an application to interact within a

particular domain. The domain participant is a factory for many of the classes

involved in writing or reading data.

31.2.1.3 Topic
The topic is the fundamental means of interaction between publishing and

subscribing applications. Each topic has a unique name within the domain and

a specific data type that it publishes. Each topic data type can specify zero or

more fields that make up its key. When publishing data, the publishing process

always specify the topic. Subscribers request data via the topic. In DCPS

terminology you publish individual data samples for different instances on a

topic. Each instance is associated with a unique value for the key. A

publishing process publishes multiple data samples on the same instance by

using the same key value for each sample.

31.2.1.4 Data Writer
The data writer is used by the publishing application code to pass values to

the DDS. Each data writer is bound to a particular topic. The application uses

the data writer’s type-specific interface to publish samples on that topic. The

data writer is responsible for marshaling the data and passing it to the

publisher for transmission.

31.2.1.5 Publisher
The publisher is responsible for taking the published data and disseminating it

to all relevant subscribers in the domain. The exact mechanism employed is

left to the service implementation.

o c i w e b . c o m 1179

3 1 . 2 D C P S O v e r v i e w

31.2.1.6 Subscriber
The subscriber receives the data from the publisher and passes it to any

relevant data readers that are connected to it.

31.2.1.7 Data Reader
The data reader takes data from the subscriber, demarshals it into the

appropriate type for that topic, and delivers the sample to the application.

Each data reader is bound to a particular topic. The application uses the data

reader’s type-specific interfaces to receive the samples.

31.2.2 Built-In Topics
The DDS specification defines a number of topics that are built-in to the DDS

implementation. Subscribing to these built-in topics gives application

developers access to the state of the domain being used including which topics

are registered, which Data Readers and Data Writers are connected and

disconnected, and the QoS settings of the various entities. While subscribed,

the application receives samples indicating changes in the entities within the

domain.

The following table shows the built-in topics defined within the DDS

specification:

31.2.3 Quality of Service Policies
The DDS specification defines a number of Quality of Service (QoS) policies

that are used by applications to specify their QoS requirements to the service.

Participants specify what behavior they require from the service and the

service decides how to achieve these behaviors. These policies can be applied

to the various DCPS entities (Topic, Data Writer, Data Reader, Publisher,

Subscriber, Domain Participant) although not all policies are valid for all

types of entities.

Topic Name Description

DCPSParticipant Each instance represents the a domain participant.

DCPSTopic Each topic is an instance.

DCPSPublication Each instance represents a data writer

DCPSSubscription Each instance represents a data reader.

Figure 31-2 Built-In Topics

1180 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

Subscribers and publishers collaborate to specify QoS through an

offer-request paradigm. Publishers offer a set of QoS policies to all

subscribers. Subscribers request a set of policies that they require. The DDS

implementation then attempts to match the requested policies with the offered

policies. If the policies are consistent the subscription is initiated. If the

policies are not consistent then the subscription attempt fails.

The QoS policies currently implemented by OpenDDS are discussed in detail

in 31.6.

31.2.4 Listeners
The DPCS layer defines a callback interface for each entity that allows an

application processes to “listen” for certain state changes or events pertaining

to that entity. For example, a Data Reader Listener is notified when there are

data values available for reading.

31.2.5 Conditions

Note OpenDDS does not currently support conditions.

Conditions and wait-sets allow an alternative to listeners in detecting events of

interest in DDS. The general pattern is

• The application creates a specific kind of condition object, such as a Read

Condition, and attaches it to a Wait Set.

• The application waits on the Wait Set until one or more Conditions

become true.

• The application calls operations on the corresponding entity objects to

extract the necessary information.

31.3 OpenDDS Implementation

31.3.1 Compliance

Appendix A of the DDS specification defines five compliance points for a

DDS implementation:

o c i w e b . c o m 1181

3 1 . 3 O p e n D D S I m p l e m e n t a t i o n

1. Minimum Profile

2. Content-Subscription Profile

3. Persistence Profile

4. Ownership Profile

5. Object Model Profile

OpenDDS is working towards the Minimum Compliance Profile.

31.3.2 OpenDDS Architecture
This section gives a brief overview of the OpenDDS implementation, its

features, and some of its components. The $DDS_ROOT environment variable

should point to the base directory of the OpenDDS distribution. Source code

for OpenDDS can be found under $DDS_ROOT/dds. DDS tests can be found

under $DDS_ROOT/tests .

31.3.2.1 Pluggable Transport Layer
OpenDDS uses the CORBA interfaces defined by the DDS specification to

initialize and control service usage. Data transmission is accomplished via a

OpenDDS-specific Pluggable Transport layer that allows the service to be

used with a variety of transport protocols. OpenDDS currently implements

simple TCP, UDP, reliable multicast and unreliable multicast transports.

Transports are created via a factory object and are associated with publishers

and subscribers who use them for their data transmission.

The pluggable transport layer enables application developers to implement

their own customized protocols. Implementing your own custom transport

involves specializing a number of classes defined in the transport framework

directory $DDS_ROOT/dds/DCPS/transport/framework . See the simple

TCP implementation in $DDS_ROOT/dds/DCPS/transport/simpleTCP
for details.

1182 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

Figure 31-3 OpenDDS Pluggable Transport Framework

31.3.2.2 Custom Marshaling
Because data transmission is not done with CORBA, DDS implementations

are free to marshal the data using customized formats. OpenDDS uses a more

efficient variation of CORBA’s Common Data Representation (CDR). A new

IDL compiler switch (-Gdcps) causes the TAO IDL compiler to generate the

appropriate marshaling and instance key support code for DCPS-enabled

types.

31.3.2.3 DCPS Information Repository
The DCPS Information Repository is a CORBA server that acts as the

intermediary or broker between the publisher and subscriber. When a client

TCP ...other...UDP

Wire Protocol

Pluggable
Discovery

Pluggable
Data Transfer

Application

DCPS Publisher

Application

DCPS Subscriber

Transport
Factory

Pluggable
Discovery

QoS QoS

Pluggable Transport AdapterTransport
Factory

o c i w e b . c o m 1183

3 1 . 4 U s i n g D C P S

requests a subscription for a topic, the DCPS Information Repository locates

the topic and notifies any existing publishers of the location of the new

subscriber. This process needs to be running whenever OpenDDS is being

used. The InfoRepo isn’t involved in data propagation, its role being limited in

scope to publisher/subscriber association establishment.

31.3.2.4 Threading
OpenDDS creates its own ORB as well as a separate thread upon which to run

that ORB. It also uses its own threads to process incoming and outgoing

non-CORBA transport I/O. A separate thread is created to cleanup resources

upon unexpected connection closure. Your application may get called back

from these threads via the Listener mechanism of DCPS.

When publishing a sample via DDS, OpenDDS attempts to send the sample to

any connected subscribers using the calling thread. If the send call blocks,

then the sample may be queued for sending on a separate service thread. This

behavior depends on the QoS policies described in 31.6.

All incoming data in the subscriber is read by the service thread and queued

for reading by the application. Data reader listeners are called from the service

thread.

31.3.2.5 Configuration

OpenDDS includes a file-based configuration framework for configuring both

global items such as debug level, memory allocation and DCPSInfoRepo
location as well as transport implementations for publishers and subscribers.

The complete set of configuration settings is described in 31.7.

31.4 Using DCPS

This section focuses on an example application using DCPS to distribute data

from a publisher process to a subscriber. It is based on a simple messenger

application where a single publisher publishes messages and a single

subscriber subscribes to them. We use the default QoS properties and the

Simple TCP transport. Full source code for this example is in the DDS source

code distribution in the directory

1184 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

$DDS_ROOT/DevGuideExamples/DCPS/Messenger. Additional DDS and

DCPS features are discussed in later sections.

31.4.1 Defining the Data Types
Each data type used by DDS is defined using IDL. OpenDDS uses #pragma
statements to identify the data types that DDS processes. These data types are

processed by the TAO IDL compiler and the dcps_ts.pl script to generate

code necessary for transmitting these types with DDS. Here is the IDL file that

defines our Message data type:

module Messenger {

#pragma DCPS_DATA_TYPE "Messenger::Message"
#pragma DCPS_DATA_KEY "Messenger::Message subject_id"

 struct Message {
 string from;
 string subject;
 long subject_id;
 string text;
 long count;
 };
};

The DCPS_DATA_TYPE pragma marks a data type for use with DDS. A fully

scoped type name must be used with this pragma. Currently, OpenDDS

requires the data type to be a structure. The structure may contain scalar types

(short, long, float, etc.), enumerations, strings, sequences, arrays, structures,

and unions. This example defines the structure Message in the Messenger
module for use in this DDS example.

The DCPS_DATA_KEY pragma identifies a field of the DDS data type that is

used as the key for this type. A data type may have zero or more keys. These

keys are used to identify the different instances within a topic that use this

type. The key should be a numeric or enumerated type. The pragma is passed

the fully scoped type name and the member name that is the key for that type.

In the above example, we identify the subject_id member of

Messenger::Message as the key. Each message published with a unique

subject ID value is defined as a different instance within a topic. Subsequent

samples with the same subject ID value are treated as replacement values for

that instance.

o c i w e b . c o m 1185

3 1 . 4 U s i n g D C P S

31.4.2 Processing the IDL
The DDS IDL is processed like any other IDL with the exception that we pass

the -Gdcps option the TAO IDL compiler.

tao_idl -Gdcps Messenger.idl

This causes the IDL compiler to generate additional serialization and key

support code that DDS uses to marshal and demarshal the Message structure.

In addition, we need to process the IDL file with the dcps_ts.pl script to

generate the required type support code for the data readers and writers. This

script is located in $DDS_ROOT/bin and generates three files for each

DCPS_DATA_TYPEpragma encountered. The three files all begin with the data

type name (without enclosing scopes) and are appended as follows:

• <type>TypeSupport.idl

• <type>TypeSupportImpl.h

• <type>TypeSupportImpl.cpp

For example, running dcps_ts.pl as follows:

dcps_ts.pl Messenger.idl

generates MessageTypeSupport.idl , MessageTypeSupportImpl.h ,

and MessageTypeSupportImpl.cpp . The IDL file contains the

MessageTypeSupport , MessageDataWriter , and MessageDataReader
interface definitions. These are type-specific DDS interfaces that we use later

to register our data type with the domain, publish samples of that data type,

and receive published samples. The implementation files contain servant

implementations for these interfaces. The generated IDL file should itself be

compiled to generate stubs and skeletons. These and the implementation file

should be linked with your DDS applications that use the Message type. This

type support generation script has a number of options that specialize the

generated code. These options are described in 31.11.

Typically, you do not directly invoke the IDL compiler or dcps_ts.pl script

as above, but let your build environment do it for you. The entire process is

simplified when using MPC, by inheriting from the dcpsexe_with_tcp
project. Here is the MPC file section common to both the publisher and

subscriber

1186 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

project(DDS*idl): dcps {
 // This project ensures the common components get built first.

 TypeSupport_Files {
Messenger.idl >> MessageTypeSupport.idl MessageTypeSupportImpl.h MessageTyp\

eSupportImpl.cpp
 }

 IDL_Files {
 Messenger.idl
 MessageTypeSupport.idl
 }

 custom_only = 1
}

The dcps parent project adds the -Gdcps IDL compiler option and adds the

Type Support custom build rules. The TypeSupport_Files section above tells

MPC to generate the Message type support files from Messenger.idl using the

dcps_ts.pl script. Here is the publisher section:

project(DDS*Publisher) : dcpsexe_with_tcp, dcps_unreliable_dgram,
 dcps_reliable_multicast {

 exename = publisher
 after += DDS*idl

 IDL_Files {
 Messenger.idl
 MessageTypeSupport.idl
 }

 Source_Files {
 publisher.cpp
 Writer.cpp
 MessageTypeSupportImpl.cpp
 }
}

The dcpsexe_with_tcp project links in the DCPS library.

31.4.3 Starting the DCPS Information Repository
The DCPS Information Repository server is found in

$DDS_ROOT/dds/InfoRepo . This process hosts the DCPSInfo CORBA

object that is the entry point for all DDS functionality. This object is mapped

o c i w e b . c o m 1187

3 1 . 4 U s i n g D C P S

against the key string ‘DCPSInfoRepo’ in the process IORTable. Thus a

corbaloc url e.g.

corbaloc:iiop:localhost:12345/DCPSInfoRepo

can be used to locate the DCPSInfo object. The server also writes out the

object IOR to a file, which can also be used to bootstrap clients. We can alter

the file name used with the -o option.

$DDS_ROOT/bin/DCPSInfoRepo -o repo.ior

The full set of command line options for this server are documented in 31.12.

31.4.4 A Simple Message Publisher
In this section we will step through the setup of a simple DDS publication

process. The code is broken into logical sections and explained as we present

each section. We omit some uninteresting sections of the code (such as

#include directives, error handling, and cross-process synchronization). To

see the full code see the publisher.cpp and Writer.cpp files in

$DDS_ROOT/DevGuideExamples/DCPS/Messenger .

31.4.4.1 Participant Initialization

The first section of main() initializes this process as a DDS participant.

int main (int argc, char *argv[]) {
 try {
 DDS::DomainParticipantFactory_var dpf =
 TheParticipantFactoryWithArgs(argc, argv);
 DDS::DomainParticipant_var participant =
 dpf->create_participant(411, // domain ID
 PARTICIPANT_QOS_DEFAULT,
 DDS::DomainParticipantListener::_nil());
 if (CORBA::is_nil (participant.in())) {
 std::cerr << "create_participant failed." << std::endl;
 return 1;
 }

The TheParticipantFactoryWithArgs macro is defined in

Service_Participant.h and initializes the Domain Participant Factory

with the command line arguments. These command line arguments are used to

initialize the ORB that the DDS service uses as well as the service itself. This

allows us to pass ORB_init() options on the command line as well as DDS

1188 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

configuration options of the form -DCPS* . These options are fully described

in 31.11. The create_participant() operation uses the domain

participant factory to register this process as a participant in the domain

specified by the ID of 411. The participant uses the default QoS policies and

no listeners.

The Domain Participant object reference returned is then used to register our

Message data type.

31.4.4.2 Data Type registration and topic creation
 MessageTypeSupport_var mts = new MessageTypeSupportImpl();
 if (DDS::RETCODE_OK != mts->register_type(participant.in (),
 "")) {
 std::cerr << "register_type failed." << std::endl;
 return 1;
 }

First, we create a MessageTypeSupportImpl object, then register the type

with a type name. In this example, the type is registered with a nil string type

name in which case the MessageTypeSupport interface repository id is used

as the type name. A specific type name such as “Message” can be used as

well. Next, we get the registered type name from the TypeSupport servant and

create the topic with the type name using the participant.

CORBA::String_var type_name = mts->get_type_name ();

 DDS::TopicQos topic_qos;
 participant->get_default_topic_qos(topic_qos);
 DDS::Topic_var topic =
 participant->create_topic ("Movie Discussion List",

type_name.in () ,
 topic_qos,
 DDS::TopicListener::_nil());
 if (CORBA::is_nil(topic.in())) {
 std::cerr << "create_topic failed." << std::endl;
 return 1;
 }

This creates a topic named “Movie Discussion List” with the registered type

and the default QoS policies.

31.4.4.3 Transport initialization and registration

We may now initialize the transport we want to use.

o c i w e b . c o m 1189

3 1 . 4 U s i n g D C P S

 // this value must match the value in the publisher’s configuration file.
 const OpenDDS::DCPS::TransportIdType TRANSPORT_IMPL_ID = 1;

 OpenDDS::DCPS::TransportImpl_rch tcp_impl =
 TheTransportFactory->create_transport_impl (TRANSPORT_IMPL_ID,
 OpenDDS::DCPS::AUTO_CONFIG);

This code gets the transport implementation from the singleton transport

factory, called TheTransportFactory . The

OpenDDS::DCPS::AUTO_CONFIG argument indicates that we're using a

configuration file to configure the transport implementation.The value of the

TRANSPORT_IMPL_ID identifier must match the transport id value in our

configuration file (more on that later). Note that the code itself does not need

to know any details about the transport implementation -- whether it uses

TCP, UDP, what its endpoints are, etc.

The function above can also be used to create a transport implementation with

default configuration.

 OpenDDS::DCPS::TransportImpl_rch tcp_impl =

TheTransportFactory->create_transport_impl(OpenDDS::DCPS::DEFAULT_SIMPLE_TCP_ID
,
 OpenDDS::DCPS::AUTO_CONFIG);

This code uses the default simple TCP transport identity -

DEFAULT_SIMPLE_TCP_ID. OpenDDS reserves a range(0xFFFFFF00 ~
0xFFFFFFFF) for default transport identities. Currently, only the simple TCP,

simple UDP and simple Mcast are supported, the default transport identities

are defined in TransportDef.h .
 const TransportIdType DEFAULT_SIMPLE_TCP_ID = 0xFFFFFF00;
 const TransportIdType DEFAULT_SIMPLE_UDP_ID = 0xFFFFFF01;
 const TransportIdType DEFAULT_SIMPLE_MCAST_PUB_ID = 0xFFFFFF02;
 const TransportIdType DEFAULT_SIMPLE_MCAST_SUB_ID = 0xFFFFFF03;

The TransportFactory also provides alternate API’s to create a transport

implementation.

 const OpenDDS::DCPS::TransportIdType TRANSPORT_IMPL_ID = 1;
 OpenDDS::DCPS::TransportImpl_rch tcp_impl =
 TheTransportFactory->create_transport_impl (TRANSPORT_IMPL_ID,
 ”SimpleTcp”,
 OpenDDS::DCPS::AUTO_CONFIG);

This creates a SimpleTCP transport implementation with default

configuration. This API can be used to create multiple transport instances with

the default configuration in a single process by passing unique transport ID’s.

1190 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

This API can be used with file based configurations as long as the matching

transport configuration (based upon the transport id) also specifies the same

transport type (in our example that is “SimpleTCP”).

We can also configure the transport implementation programmatically,

eliminating the need for a configuration file. Here is example code to create

and configure a simple TCP transport implementation.

 const OpenDDS::DCPS::TransportIdType TRANSPORT_IMPL_ID = 1;
 OpenDDS::DCPS::TransportImpl_rch tcp_impl
 = TheTransportFactory->create_transport_impl (TRANSPORT_IMPL_ID,
 “SimpleTcp”,

OpenDDS::DCPS::DONT_AUTO_CONFIG);

 OpenDDS::DCPS::TransportConfiguration_rch config
 = TheTransportFactory->create_configuration (TRANSPORT_IMPL_ID);
 OpenDDS::DCPS::SimpleTcpConfiguration* tcp_config
 = static_cast <OpenDDS::DCPS::SimpleTcpConfiguration*> (config.in ());

 ACE_INET_Addr local_address (“localhost:4444”);
 tcp_config->local_address_ = local_address;

 if (tcp_impl->configure(tcp_config.in()) != 0)
 {
 ACE_ERROR((LM_ERROR,
 ACE_TEXT(" Failed to configure the transport.\n")));
 return -1;
 }

31.4.4.4 Publisher creation

Now we are ready to create the publisher and attach the transport

implementation we want it to use.

 DDS::Publisher_var pub =
 participant->create_publisher(PUBLISHER_QOS_DEFAULT,
 DDS::PublisherListener::_nil());
 if (CORBA::is_nil(pub.in())) {
 std::cerr << "create_publisher failed." << std::endl;
 return 1;
 }

 // Attach the publisher to the transport.
 OpenDDS::DCPS::PublisherImpl* pub_impl =
 OpenDDS::DCPS::reference_to_servant< OpenDDS::DCPS::PublisherImpl> (pub);
 if (0 == pub_impl) {
 std::cerr << "Failed to obtain publisher servant" << std::endl;
 return 1;
 }

o c i w e b . c o m 1191

3 1 . 4 U s i n g D C P S

 OpenDDS::DCPS::AttachStatus status =
 pub_impl->attach_transport(transport_impl.in());

We need to do the attach_transport() on the servant and not on the

reference. The reference implements the OMG-defined Publisher interface

and lacks any OpenDDS specific pluggable transport functionality. The

reference_to_servant function template is a convenience function for

navigating from the object reference of an entity to the servant.

31.4.4.5 DataWriter creation and instance registration

With the publisher in place, we create the data writer.

 // Create the datawriter
 DDS::DataWriterQos dw_qos;
 pub->get_default_datawriter_qos (dw_qos);

 DDS::DataWriter_var dw =
 pub->create_datawriter(topic.in (),
 dw_qos,
 DDS::DataWriterListener::_nil());
 if (CORBA::is_nil(dw.in())) {
 std::cerr << "create_datawriter failed." << std::endl;
 return 1;
 }

When we create the data writer we pass the topic object reference, the default

QoS policies, and a null listener reference. Now we can register the instance

we wish to publish. We’ll narrow the data writer reference to a

MessageDataWriter object reference so we can use the type-specific

registration and publication operations.

 ::Messenger::MessageDataWriter_var message_dw =
 ::Messenger::MessageDataWriter::_narrow(writer.in());

 Messenger::Message message;
 message.subject_id = 99;
 DDS::InstanceHandle_t handle = message_dw->_cxx_register (message);

After we populate the Message structure we called the _cxx_register()
function to register the instance. The instance is identified by the

subject_id value of 99 (because we earlier specified that field as the key).

We later use the returned instance handle when we publish a sample.

1192 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

Note This registration operation is actually register() in IDL but because
register is a C++ keyword, the OMG IDL-to-C++ mapping maps the
operation to the _cxx_register() member function.

The example code waits for the subscriber to become connected and fully

initialized. Once this is completed, the message publication is quite

straightforward:

 //Populate instance
 message.from = CORBA::string_dup("Comic Book Guy");
 message.subject = CORBA::string_dup("Review");
 message.text = CORBA::string_dup("Worst. Movie. Ever.");
 message.count = 0;
 DDS::ReturnCode_t ret = message_dw->write(message, handle);

This message is distributed to all connected subscribers that are registered for

our topic. The second argument to write() specifies the instance we are

publishing the sample upon. It should be passed either a handle returned by

_cxx_register() or DDS::HANDLE_NIL . Passing a DDS::HANDLE_NIL
value indicates that the data writer should determine the instance by

inspecting the key of the sample.

31.4.5 Setting up the Subscriber
A lot of the subscriber’s code is identical or analogous to the publisher that we

just finished exploring. We will progress quickly through the similar parts and

refer you to the discussion above for details. The beginning of the subscriber

is identical to the publisher as we initialize the service and join our domain.

31.4.5.1 Participant Initialization
int main (int argc, char *argv[])
{
 try {
 DDS::DomainParticipantFactory_var dpf =
 TheParticipantFactoryWithArgs(argc, argv);
 DDS::DomainParticipant_var participant =
 dpf->create_participant(411, // Domain ID
 PARTICIPANT_QOS_DEFAULT,
 DDS::DomainParticipantListener::_nil());
 if (CORBA::is_nil (participant.in ())) {
 std::cerr << "create_participant failed." << std::endl;
 return 1 ;

o c i w e b . c o m 1193

3 1 . 4 U s i n g D C P S

 }

31.4.5.2 Data Type registration and topic creation

Then the message type and topic are initialized. Note that if the topic has

already been initialized in this domain with the same data type and compatible

QoS, the create_topic() invocation returns a reference corresponding to

the existing topic. If the type or QoS specified in our create_topic()
invocation do not match that of the existing topic then the invocation fails.

There is also a find_topic() operation our subscriber could use to simply

retrieve an existing topic.

 MessageTypeSupport_var mts = new MessageTypeSupportImpl();
 if (DDS::RETCODE_OK != mts->register_type(participant.in (),
 "")) {
 std::cerr << "Failed to register the MessageTypeSupport." << std::endl;
 return 1;
 }

 CORBA::String_var type_name = mts->get_type_name ();
 DDS::TopicQos topic_qos;
 participant->get_default_topic_qos(topic_qos);
 DDS::Topic_var topic =
 participant->create_topic("Movie Discussion List",

type_name .in (),
 topic_qos,
 DDS::TopicListener::_nil());
 if (CORBA::is_nil(topic.in())) {
 std::cerr << "Failed to create_topic." << std::endl;
 return 1;
 }

31.4.5.3 Transport initialization and registration

Now we initialize the Simple TCP transport the same way as in the publisher,

using the file-based configuration mechanism.

 // this value must match the value in the subscriber’s configuration file.
 const OpenDDS::DCPS::TransportIdType TRANSPORT_IMPL_ID = 1;

 OpenDDS::DCPS::TransportImpl_rch transport_impl =
 TheTransportFactory->create_transport_impl (TRANSPORT_IMPL_ID,
 OpenDDS::DCPS::AUTO_CONFIG);

1194 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

Next we can create the subscriber with the default QoS and then attach the

Simple TCP object to the subscriber servant.

 // Create the subscriber and attach to the corresponding
 // transport.
 DDS::Subscriber_var sub =
 participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT,
 DDS::SubscriberListener::_nil());
 if (CORBA::is_nil(sub.in())) {
 std::cerr << "Failed to create_subscriber." << std::endl;
 return 1;
 }

 // Attach the subscriber to the transport.
 OpenDDS::DCPS::SubscriberImpl* sub_impl =
 OpenDDS::DCPS::reference_to_servant< OpenDDS::DCPS::SubscriberImpl>
(sub.in());
 if (0 == sub_impl) {
 std::cerr << "Failed to obtain subscriber servant\n" << std::endl;
 return 1;
 }
 OpenDDS::DCPS::AttachStatus status =
 sub_impl->attach_transport(transport_impl.in());

31.4.5.4 DataReader and Listener activation

We need to attach a listener object to the data reader we create, so we can use

it to detect when data is available. The code below constructs the listener

servant and activates a listener local object. The DataReaderListenerImpl
class is shown in the next subsection.

 // activate the listener
 DataReaderListenerImpl listener_servant;
 DDS::DataReaderListener_var listener =
 ::OpenDDS::DCPS::servant_to_reference (&listener_servant);
 if (CORBA::is_nil(listener.in())) {
 std::cerr << "listener is nil." << std::endl;
 return 1;
 }

Now we can create the data reader, associating it with our topic, the default

QoS properties, and the listener object we just created.

 // Create the Datareaders
 DDS::DataReaderQos dr_qos;
 sub->get_default_datareader_qos (dr_qos);
 DDS::DataReader_var dr = sub->create_datareader(topic.in (),

o c i w e b . c o m 1195

3 1 . 4 U s i n g D C P S

 dr_qos,
 listener.in ());
 if (CORBA::is_nil(dr.in())) {
 std::cerr << "create_datareader failed." << std::endl;
 return 1;
 }

Now this thread is free to do any application work we want while our listener

object should get called from one of the service’s threads when a sample is

available.

31.4.6 The Data Reader Listener Servant
Our listener servant implements the DDS::DataReaderListener defined by

the DDS specification. The DataReaderListener gets wrapped within a

DCPS::LocalObject which resolves ambigously-inherited members like

_narrow and _ptr_type. The interface defines a number of operations we must

implement each of which is invoked to inform us of different events. The

OpenDDS::DCPS::DataReaderListener defines operations for OpenDDS’s

special needs such as disconnecting and reconnected event updates. Here is the

interface definition:

module DDS {
 local interface DataReaderListener : Listener {
 void on_requested_deadline_missed(in DataReader reader,
 in RequestedDeadlineMissedStatus status);
 void on_requested_incompatible_qos(in DataReader reader,
 in RequestedIncompatibleQosStatus status);

void on_sample_rejected(in DataReader reader, in SampleRejectedStatus status);
 void on_liveliness_changed(in DataReader reader,
 in LivelinessChangedStatus status);
 void on_data_available(in DataReader reader);
 void on_subscription_match(in DataReader reader,
 in SubscriptionMatchStatus status);
 void on_sample_lost(in DataReader reader, in SampleLostStatus status);
 };
};

The servant class stubs out most of these listener operations with simple print

statements. The only operation truly needed for this example is

on_data_available() and it is the only function of this servant we need to

explore.

void DataReaderListenerImpl::on_data_available(DDS::DataReader_ptr reader)
 throw (CORBA::SystemException)

1196 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

{
 num_reads_ ++;

 try {
 ::Messenger::MessageDataReader_var message_dr =
 ::Messenger::MessageDataReader::_narrow(reader);
 if (CORBA::is_nil(message_dr.in())) {
 std::cerr << "read: _narrow failed." << std::endl;
 return;
 }

The code above narrows the generic data reader passed into the listener to the

type-specific MessageDataReader interface. The following code takes the

next sample from the message reader and, if successful, prints out each of the

messages fields.

 Messenger::Message message;
 DDS::SampleInfo si ;
 DDS::ReturnCode_t status = message_dr->take_next_sample(message, si) ;

 if (status == DDS::RETCODE_OK) {
std::cout << "Message: subject = " << message.subject.in() << std::endl

<< " subject_id = " << message.subject_id << std::endl
<< " from = " << message.from.in() << std::endl
<< " count = " << message.count << std::endl
<< " text = " << message.text.in() << std::endl;

 std::cout << "SampleInfo.sample_rank = " << si.sample_rank << std::endl;
 } else if (status == DDS::RETCODE_NO_DATA) {
 std::cerr << "ERROR: reader received DDS::RETCODE_NO_DATA!" << std::endl;
 } else {
 std::cerr << "ERROR: read Message: Error: " << status << std::endl;
 }
 } catch (CORBA::Exception& e) {
 std::cerr << "Exception caught in read:" << std::endl << e << std::endl;
 }
}

If additional samples are available, the service calls this function again.

Reading values a single sample at a time is not the most efficient way to

process incoming data. The Data Reader interface gives a number of different

options for processing data in a more efficient manner. We’ll look at some of

these operations in 31.5.

o c i w e b . c o m 1197

3 1 . 4 U s i n g D C P S

31.4.7 Cleaning up in DDS Clients
After we are finished in the publisher and subscriber, we can use the following

code to clean up the DDS-related objects:

 participant->delete_contained_entities();
 dpf->delete_participant(participant.in ());
 TheTransportFactory->release();
 TheServiceParticipant->shutdown ();

The domain participant’s delete_contained_entities() operation

deletes all the topics, subscribers, and publishers created with that participant.

Once this is done, we can use the domain participant factory to delete our

domain participant. Lastly, we release our transport factory and shutdown the

service participant.

31.4.8 Configuring the Example
OpenDDS includes a file-based configuration mechanism. With it, a user may

configure a publisher's or subscriber's transport, the location of the

DCPSInfoRepo process, memory allocation, and many other settings. The

syntax of the configuration file is similar to the syntax of a Windows INI file.

It contains several sections, which in turn contain property-like entries. The

basic syntax is as follows:

 [section1-name]
 Attribute1=value1
 Attribute2=value2

 [section2-name]
 Attribute1=value1
 Attribute2=value2

Our example uses one configuration file, pub.ini , for the publisher, and a

second configuration file, sub.ini , for the subscriber. First, we’ll examine

pub.ini :

 [common]
 DCPSDebugLevel=0
 DCPSInfoRepo=file://repo.ior

 [transport_impl_1]
 transport_type=SimpleTcp
 local_address=localhost:4444

1198 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

Notice that there are two sections, [common] and [transport_impl_1] .

The [common] section contains configuration values that apply to the entire

process; in this configuration file, we specify a debug level and an object

reference for the DCPSInfoRepo object. The [transport_impl_1] section

contains configuration values for the transport with the id of "1". We’ve

configured publisher to use the Simple TCP transport and to listen on port

4444 on the loopback network interface.

Recall that the publisher’s code, we defined

 const OpenDDS::DCPS::TransportIdType TRANSPORT_IMPL_ID = 1;

and configured the transport via

 OpenDDS::DCPS::TransportImpl_rch transport_impl =
 TheTransportFactory->create_transport_impl (
 TRANSPORT_IMPL_ID,
 OpenDDS::DCPS::AUTO_CONFIG);

The "1" in the transport configuration file matches the "1" defined in code as a

transport id. Naturally, a publisher or subscriber process may contain more

than one transport, each configured differently.

Next, we’ll examine the subscriber’s configuration file, sub.ini :

 [common]
 DCPSDebugLevel=0
 DCPSInfoRepo=file://repo.ior

 [transport_impl_1]
 transport_type=SimpleTcp
 local_address=localhost:2222

We’ve configured subscriber to also use the Simple TCP transport and to

listen on port 2222 on the loopback network interface.

For a complete description of the OpenDDS configuration parameters, please

see 31.7.

31.4.9 Running the Example
This example can be run with the following commands.

$DDS_ROOT/bin/DCPSInfoRepo -ORBSvcConf tcp.conf -o repo.ior -d domain_ids

o c i w e b . c o m 1199

3 1 . 5 D a t a H a n d l i n g O p t i m i z a t i o n s

./publisher -ORBSvcConf tcp.conf -DCPSConfigFile pub.ini

./subscriber -ORBSvcConf tcp.conf -DCPSConfigFile sub.ini

The -DCPSConfigFile command-line argument passes the location of the

relevant configuration file to OpenDDS.

The -ORBSvcConf configuration directive file dynamically loads and

configures the SimpleTCP library.

Running each of these commands in its own window should enable you to

most easily understand the output. One side effect of using the default QoS

properties is that as we increase the number of samples being published some

of the samples will be dropped as the subscriber falls behind. If we don’t want

this to happen we need to either ensure that the subscriber can keep up or

change the QoS settings.

31.5 Data Handling Optimizations

31.5.1 Reading Multiple Samples
The DDS specification supplies a number of operations for reading and

writing data samples. In the examples above we used the

take_next_sample() operation, to read the next sample and “take”

ownership of it from the reader. The Message Data Reader also has the

following take operations.

• take() —Take a sequence of up to max_samples values from the reader

• take_instance() —Take a sequence of values for a specified instance

• take_next_instance() —Take a sequence of samples belonging to the

same instance, without specifying the instance.

There are also “read” operations corresponding to each of these “take”

operations that obtain the same values, but leave the samples in the reader and

simply mark them as read in the SampleInfo .

Since these other operations read a sequence of values, they are more efficient

when samples are quickly arriving. Here is a sample call to take() that reads

up to 5 samples at a time.

 MessageSeq messages(5);
 DDS::SampleInfoSeq sampleInfos(5);

1200 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

 DDS::ReturnCode_t status = message_dr->take(messages, sampleInfos, 5,
 DDS::ANY_SAMPLE_STATE,
 DDS::ANY_VIEW_STATE,
 DDS::ANY_INSTANCE_STATE);

The three state parameters specialize which samples are returned from the

reader. See the DDS specification for details on their usage.

31.5.2 Zero-Copy Read
The read and take operations that return a sequence of samples provide the

user with the option of getting a copy of the samples (single-copy read) or a

reference to the samples (zero-copy read). The zero-copy read can have

significant performance improvements over the single-copy read for large

sample types. Testing has shown that samples of 8KB or less do not gain

much by using zero-copy reads but there is little performance penalty for

using zero-copy on small samples.

The user code specifies its desire to use zero-copy read by constructing a data

sequence with max_len (the first parameter) of zero as shown by this sample

code (from DevGuideExamples/DCPS/Messenger_ZeroCopyRead):

 CORBA::Long MAX_ELEMS_TO_RETURN = 3;
 Messenger::MessageSeq the_data (0, MAX_ELEMS_TO_RETURN);
 DDS::SampleInfoSeq the_info (0, MAX_ELEMS_TO_RETURN);

 // get references to the samples (zero-copy read of the samples)
 DDS::ReturnCode_t status = dr->read (the_data
 , the_info
 , MAX_ELEMS_TO_RETURN
 , ::DDS::ANY_SAMPLE_STATE
 , ::DDS::ANY_VIEW_STATE
 , ::DDS::ANY_INSTANCE_STATE);
For both zero-copy reads and single-copy reads the sample and info

sequences’ length will be set to the number of samples read. For the zero-copy

reads the max_len will be set to a value >= length.

Since the user code has asked for a zero-copy loan of the data, it must return

that loan when it is done with the data:

 dr_impl->return_loan (the_data, the_info);

This call will result in the sequences’ max_len set to 0 and its owns set to false

so the same sequences could be used for another zero-copy read call

If the first parameter of the data sample sequence constructor and info

sequence constructor were changed to a value > 0, then the sample values

o c i w e b . c o m 1201

3 1 . 6 Q o S P o l i c i e s

returned would be copies. When values are copied, the user has the option of

calling return_loan() but is not required to do so.

If the max_len (the first) parameter of the sequence is not specified, it defaults

to 0; hence using zero-copy reads. Because of this default, a sequence will

automatically call return_loan on itself when it is destroyed. To conform with

the DDS specification and be portable to other implementations of DDS,

applications should not rely on this automatic return_loan feature.

The second parameter to the sample and info sequences is the maximum slots

available in the sequence. If the read/take’s max_samples parameter is larger

than this value, then the maximum samples returned by read/take call will be

limited by this parameter of the sequence constructor.

Although the user can change the length of a zero-copy sequence, by calling

length(len), its use discouraged because this call results in copying the data

and creating a single-copy sequence of samples.

31.6 QoS Policies

The above examples use default QoS policies for the various entities. This

section discusses which QoS policies are implemented in OpenDDS and the

details of their usage.

31.6.1 Supported Policies
Listed below are the QoS policies that are currently supported by OpenDDS.

Any policy not listed here uses its default value. The default values of

unsupported policies are as described in the DDS specification and some are

discussed in 31.6.2.

Each policy defines a structure to specify its data. Each entity supports a

subset of the policies and defines a QoS structure that is composed of the

supported policy structures. The set of allowable policies for a given entity is

constrained by the policy structures nested in its QoS structure. For example

the Publisher’s QoS structure is defined in the specification’s IDL as follows.

module DDS {
 struct PublisherQos {
 PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 GroupDataQosPolicy group_data;

1202 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

 EntityFactoryQosPolicy entity_factory;
 };
};

Setting policies is as simple as obtaining a structure with the default values

set, modifying the individual policy structures as necessary, and then applying

the QoS structure to an entity (usually when it is created).

Note OpenDDS does not currently support changing the QoS of an existing entity,
so all QoS policies must be applied when the entity is created.

31.6.1.1 Liveliness
The Liveliness policy applies to the Topic, Data Reader, and Data Writer

entities via the liveliness member of their respective QoS structures.

Below is the IDL related to the Liveliness QoS policy:

enum LivelinessQosPolicyKind {
 AUTOMATIC_LIVELINESS_QOS,
 MANUAL_BY_PARTICIPANT_LIVELINESS_QOS,
 MANUAL_BY_TOPIC_LIVELINESS_QOS
};

struct LivelinessQosPolicy {
 LivelinessQosPolicyKind kind;
 Duration_t lease_duration;
};

The Liveliness policy controls when and how the service determines whether

participants are alive, meaning they are still reachable and active. The kind
member is restricted to Automatic (AUTOMATIC_LIVELINESS_QOS) in
OpenDDS. This means that the service periodically polls participants for

liveliness. The lease_duration member is set to the desired heartbeat

interval. The default lease duration is a pre-defined infinite value, which

disables any liveliness testing.

Data writers specify their own liveliness criteria and data readers specify the

desired liveliness of their writers. Writers that can’t be contacted within the

lease duration cause notification via the Data Reader Listener’s

on_liveliness_changed() operation. Because OpenDDS’s Liveliness is

always set to Automatic, the on_liveliness_changed() callback is never

called on the publisher side.

o c i w e b . c o m 1203

3 1 . 6 Q o S P o l i c i e s

31.6.1.2 Reliability
The Reliability policy applies to the Topic, Data Reader, and Data Writer

entities via the reliability member of their respective QoS structures.

Below is the IDL related to the Reliability QoS policy:

enum ReliabilityQosPolicyKind {
 BEST_EFFORT_RELIABILITY_QOS,
 RELIABLE_RELIABILITY_QOS
};

struct ReliabilityQosPolicy {
 ReliabilityQosPolicyKind kind;
 Duration_t max_blocking_time;
};

This policy controls how data readers and writers treat the data samples they

process. The Best Effort value (BEST_EFFORT_RELIABILITY_QOS) makes

no promises as to the reliability of the samples and could be expected to drop

samples under some circumstances. The Reliable value

(RELIABLE_RELIABILITY_QOS) indicates that the service should eventually

deliver all values to eligible Data Readers.

The Simple TCP transport supports the Reliable value for this policy and the

Simple UDP transport only supports the Best Effort value. The

max_blocking_time member of this policy is used when the History QoS

Policy is set to Keep All and the writer is unable to return because of resource

limits (due to transport backpressure -- see section 31.6.1.5 for details). When

this situation occurs and the writer blocks for more than the specified time,

then the write fails with a timeout return code. The default for this policy is

Best Effort

31.6.1.3 History
The History policy determines how samples are held in the Data Writer and

Data Reader for a particular instance. For Data Writers these values are held

until the Publisher retrieves them and successfully sends them to all connected

subscribers. For Data Readers these values are held until “taken” by the

application. This policy applies to the Topic, Data Reader, and Data Writer

entities via the history member of their respective QoS structures. Below is

the IDL related to the History QoS policy:

enum HistoryQosPolicyKind {

1204 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

 KEEP_LAST_HISTORY_QOS,
 KEEP_ALL_HISTORY_QOS
};

struct HistoryQosPolicy {
 HistoryQosPolicyKind kind;
 long depth;
};

The Keep All value (KEEP_ALL_HISTORY_QOS) specifies that all possible

samples for that instance should be kept. When Keep All is specified and the

number of unread samples is equal to the Resource Limits field of

max_samples_per_instance then any incoming samples are rejected.

The Keep Last value (KEEP_LAST_HISTORY_QOS) specifies that only the last

depth values should be kept. When a data writer contains depth samples of a

given instance, a write of new samples for that instance are queued for

delivery and the oldest unsent samples are discarded. When a data reader

contains depth samples of a given instance, any incoming samples for that

instance are kept and the oldest samples are discarded.

This policy defaults to a Keep Last with a depth of one.

31.6.1.4 Durability
The Durability policy controls whether Data Writers should maintain samples

after they have been sent to known subscribers. OpenDDS currently supports

Volatile and Transient Local values of the Durability QoS.

By default the Durability is Volatile which means samples are discarded after

being sent to all known subscribers. A side effect of this is that subscribers

cannot recover samples sent before they connect.

The Transient Local Durability means that Data Readers that are

associated/connected with a Data Writer will be sent all of the samples in the

Data Writer’s history.

OpenDDS does not currently support the Transient or Persistent values for the

Durability QoS.

31.6.1.5 Resource Limits
The Resource Limits policy determines the amount of resources the service

can consume in order to meet the requested QoS. This policy applies to the

Topic, Data Reader, and Data Writer entities via the resource_limits

o c i w e b . c o m 1205

3 1 . 6 Q o S P o l i c i e s

member of their respective QoS structures. Below is the IDL related to the

Resource Limits QoS policy.

struct ResourceLimitsQosPolicy {
 long max_samples;
 long max_instances;
 long max_samples_per_instance;
};

The max_samples member specifies the maximum number of samples a

single Data Writer or Data Reader can manage across all of its instances. The

max_instances member specifies the maximum number of instances that a

Data Writer or Data Reader can manage. The max_samples_per_instance
member specifies the maximum number of samples that can be managed for

an individual instance in a single Data Writer or Reader. All of these members

default to unlimited (DDS::LENGTH_UNLIMITED).

Resources are used by the Data Writer to queue samples written to the data

writer but not yet sent to all data readers because of backpressure from the

transport. Resources are used by the Data Reader to queue samples that have

been received but not yet read/taken from the Data Reader.

31.6.2 Unsupported Policies
The unsupported policies cannot be modified with OpenDDS and always take

the default value. The following subsections discuss some of the default

values that may affect application behavior.

31.6.2.1 Entity Factory
The Entity Factory policy controls whether created entities are automatically

enabled. The default is that all entities are automatically enabled on creation.

31.6.2.2 Presentation
The Presentation policy controls the ordering or grouping of samples in a

topic. The default value of Instance means that all samples within an instance

are delivered in the order the subscriber receives them. Samples from different

instances of the same topic may be arbitrarily reordered by the service.

31.6.3 Policy Example
Here are some policies being set and applied for a publisher.

1206 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

 DDS::DataWriterQos dw_qos;
 pub->get_default_datawriter_qos (dw_qos);

 dw_qos.history.kind = DDS::KEEP_ALL_HISTORY_QOS;

 dw_qos.reliability.kind = DDS::RELIABLE_RELIABILITY_QOS;
 dw_qos.reliability.max_blocking_time.sec = 10;
 dw_qos.reliability.max_blocking_time.nanosec = 0;

 dw_qos.resource_limits.max_samples_per_instance = 100;

 DDS::DataWriter_var dw =
 pub->create_datawriter(topic.in (),
 dw_qos,
 DDS::DataWriterListener::_nil());

This code creates a publisher with the following qualities:

• History set to Keep All

• Reliability set to Reliable with a maximum blocking time of 10 seconds

• The maximum samples per instance resource limit set to 100

This means that when 100 samples are waiting to be delivered, the writer can

block up to 10 seconds before returning an error code. These same QoS

settings on the Data Reader side would mean that up to 100 unread samples

are queued by the framework before any are rejected. Rejected samples are

dropped and the SampleRejectedStatus is updated.

31.7 Configuration

OpenDDS includes a file-based configuration framework for configuring both

global settings as well as transport implementations for publishers and

subscribers.This section summarizes the configuration settings in OpenDDS.

We use the -DCPSConfigFile command-line argument to pass the location

of the configuration file into OpenDDS. For example,

. ./publisher -DCPSConfigFile pub.ini

causes the OpenDDS service participant to read configuration settings from

the pub.ini configuration file. More accurately, we pass the publisher’s

command-line arguments to the service participant singleton when we

o c i w e b . c o m 1207

3 1 . 7 C o n f i g u r a t i o n

initialize the domain participant factory. We did this in the preceding

examples by using the TheParticipantFactoryWithArgs macro:

#include <dds/DCPS/Service_Participant.h>

int main (int argc, char* argv[])
{

 ::DDS::DomainParticipantFactory_var dpf =
 TheParticipantFactoryWithArgs(argc, argv);

The Service_Participant class also provides methods that allow an

application to configure the dds service. See

DDS/DCPS/Service_Participant.h for details.

31.7.1 Common Configuration Settings

The [common] section of the OpenDDS configuration file contains settings

for attributes such as debugging output, the object reference of the

DCPSInfoRepo process, and memory preallocation settings. A sample

[common] section follows:

 [common]
 DCPSDebugLevel=0
 DCPSInfoRepo=corbaloc:iiop:localhost:12345/DCPSInfoRepo
 DCPSLivelinessFactor=80
 DCPSChunks=20
 DCPSChunksAssociationMultiplier=10
 DCPSBitTransportPort=
 DCPSBitLookupDurationMsec=2000

It is not necessary to specify every attribute.

Each [common] attribute's value can be overridden by a command-line

argument. The command-line argument has the same name as the

configuration option with a "-" prepended to the front of it. For example,

 subscriber -DCPSInfoRepo corbaloc:iiop:localhost:12345/DCPSInfoRepo

1208 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

The following table summarizes the [common] configuration attributes:

Table 31-1 Common Configuration Settings

Option Description Default

DCPSDebugLevel n

Integer value that controls
the amount of debug
information that service
prints. Valid values are 0
through 10.

See 31.10.1, “DCPS Level
Logging” for details.

0

DCPSInfoRepo objref
Object reference for locating
the DCPS Information
Repository

file://repo.ior

DCPSLivelinessFactor n

Percent of the liveliness
lease duration after which a
liveliness message is sent. A
value of 80 implies a 20%
cushion of latency from the
last detected heartbeat
message.

80

DCPSChunks n

Configurable number of
chunks that a data writer's
and reader's cached
allocators will preallocate
when the
RESOURCE_LIMITS QoS
value is infinite. When all of
the preallocated chunks are
in use, OpenDDS allocates
from the heap.

20

o c i w e b . c o m 1209

3 1 . 7 C o n f i g u r a t i o n

DCPSChunkAssociationMultiplier n

Multiplier for the
DCPSChunks or
resource_limits.max_sample
s value to determine the total
number of shallow copy
chunks that are preallocated.
Set this to a value greater
than the number of
connections so the
preallocated chunk handles
do not run out. A sample
written to multiple data
readers will not be copied
multiple times but there is a
shallow copy handle to that
sample used to manage the
delivery to each data reader.
The size of the handle is
small so there is not great
need to set this value close
to the number of
connections.

10

DCPSBit [1|0]
Toggle Built-In-Topic
support.

1

DCPSBitTransportPort port
Port used by the Simple
TCP transport for Built-In
Topics.

none; OS chooses
port

DCPSBitTransportIPAddress

IP address identifying the
local interface to be used by
SimpleTcp transport for the
Built-In Topics.

empty string;
equivalent to
INADDR_ANY

Table 31-1 Common Configuration Settings

Option Description Default

1210 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

The debug level is useful for diagnosing issues with processes interacting with

DDS. A debug level of 10 gives the maximum amount of debug information.

The DCPSInfoRepo option’s value is passed to

ORB::string_to_object() and can be of any CORBA URL type

understandable by TAO (file , IOR, corbaloc , corbaname).

The DCPSChunks option allows application developers to tune the amount of

memory preallocated when the RESOURCE_LIMITS are set to infinite. Once

the allocated memory is exhausted, additional chunks are

allocated/deallocated from the heap. This feature of allocating from the heap

when the preallocated memory is exhausted provides flexibility but

performance will decrease when the preallocated memory is exhausted.

31.7.2 Transport Configuration Settings
A OpenDDS user may configure one or more transports in a single

configuration file. A sample transport configuration is below:

 [transport_impl_1]
 transport_type=SimpleTcp
 local_address=localhost:4444
 swap_bytes=0
 optimum_packet_size=8192

Again, it is not necessary to specify every attribute.

DCPSBitLookupDurationMsec msec

The maximum duration in
milliseconds that the
framework will wait for
latent Built-In Topic
information when retrieving
BIT data given an instance
handle. The participant code
may get an instance handle
for a remote entity before
the framework receives and
processes the related BIT
information. The framework
waits for up to the given
amount of time before it
fails the operation.

2000

Table 31-1 Common Configuration Settings

Option Description Default

o c i w e b . c o m 1211

3 1 . 7 C o n f i g u r a t i o n

The "1" in the transport_impl_1 marker is the identifier for the transport. That

number must match the transport id in our code. You'll recall that, in both the

publisher and subscriber, we identified the transport id as follows:

 const OpenDDS::DCPS::TransportIdType TRANSPORT_IMPL_ID = 1;

and created the transport implementation object as follows:

 OpenDDS::DCPS::TransportImpl_rch trans_impl =
 TheTransportFactory->create_transport_impl (
 TRANSPORT_IMPL_ID,
 OpenDDS::DCPS::AUTO_CONFIG);

Thus, we can see where the transport's identifier of "1" in the configuration

file maps to the creation of the transport in the C++ code.

The following table summarizes the transport configuration attributes that are

common to all transports:

Table 31-2 Transport Configuration Settings

Option Description Default

transport_type transport

Type of the transport; the list of
available transports can be extended
programmatically via the OpenDDS
Pluggable Transport Framework.
SimpleTcp , SimpleUdp ,
SimpleMcast, and
ReliableMulticast are
included with OpenDDS.

none

swap_bytes 0|1

A value of 0 causes DDS to serialize
data in the source machine's native
endianness; a value of 1 causes DDS
to serialize data in the opposite
endianness. The receiving side will
adjust the data for its endianness so
there is no need to match this setting
between machines. The purpose of
this setting is to allow the developer
to decide which side will make the
endian adjustment, if necessary.

0

queue_messages_per_pool n

When backpressure is detected,
messages to be sent are queued.
When the message queue must grow,
it grows by this number.

10

1212 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

Enabling the thread_per_connection setting will increase performance when

writing to multiple data readers on different process as long as the overhead of

thread context switching does not outweigh the benefits of parallel writes.

This balance of network performance to context switching overhead is best

determined by experimenting. If a machine has multiple network cards, it may

improve performance by creating a transport for each network card.

queue_initial_pools n

The initial number of pools for the
backpressure queue. The default
settings of the two backpressure
queue values preallocate space for
50 messages (5 pools of 10
messages).

5

max_packet_size n

The maximum size of a transport
packet, including its transport
header, sample header, and sample
data.

2147481599

max_samples_per_packet n
Maximum number of samples in a
transport packet.

10

optimum_packet_size n

Transport packets greater than this
size will be sent over the wire even if
there are still queued samples to be
sent. This value may impact
performance depending on your
network configuration and
application nature.

4096

thread_per_connection 0|1
Enable or disable the thread per
connection send strategy.

0(disabled)

keep_link 0|1

Enable or disable link releasing
when last association is removed.

This may be useful in cases where
data readers/data writers are added
and removed frequently. Preventing
removal of the connections will
reduce the overhead of
re-establishment when adding a
reader – writer association.

0(disabled)

Table 31-2 Transport Configuration Settings

Option Description Default

o c i w e b . c o m 1213

3 1 . 7 C o n f i g u r a t i o n

The following table summarizes the transport configuration attributes that are

either unique to the Simple TCP transport, or whose default value or

description is overridden by the Simple TCP transport:

Table 31-3 SimpleTcp Configuration Settings

Option Description Default

local_address host:port

Hostname and port of the connection
acceptor. The default value is the
hostname from the hostname()

system call and port 0, which means the
OS will choose the port.

host:0

enable_nagle_algorithm 0|1

Enable or disable the Nagle’s algorithm.
By default, it is disabled.

Enabling the Nagle’s algorithm may
increase throughput at the expense of
increase latency.

0

conn_retry_initial_dela
y n

Initial delay (milliseconds) for
reconnect attempt. The first attempt is at
the time lost connection is detected. The
second attempt will be after this delay if
first retry connect fails.

500

conn_retry_backoff_multipl
ier n

The backoff multiplier for reconnection
strategy. The third and so on reconnect
will be this value * the previous delay.
Hence with
conn_retry_initial_delay=500 and
conn_retry_backoff_multiplier=1.5, the
second reconnect attempt will be at 0.5
seconds after first retry connect fails; the
third attempt will be 0.75 seconds after
the second retry connect fails; the fourth
attempt will be 1.125 seconds after the
third retry connect fails.

2.0

conn_retry_attempts n

Number of reconnect attempts before
giving up and calling
on_publication_lost and
on_subscription_lost callback.

3

max_output_pause_period n

Maximum period (milliseconds) of not
being able to send queued messages. If
there are samples queued and no output
for longer than this period then the
connection will be closed and on_*_lost
callbacks will be called. If the value is
zero, the default, then this check will not
be made.

0

1214 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

Reconnection options

When a TCP connection gets closed DDS attempts to reconnect. The

reconnection process is:

• Upon detecting a lost connection immediately attempt reconnect.

• If that fails then wait conn_retry_initial_delay milliseconds
and attempt reconnect.

• while haven't tried more than conn_retry_attempts ,

• wait (previous wait time * conn_retry_backoff_multiplier)
milliseconds and attempt to reconnect

While both SimpleUdp and SimpleMcast are unreliable datagram transports,

they share a set of common transport configuration attributes. The following

table summarizes those common transport configuration attributes that are

either unique to both SimpleUdp and SimpleMcast transports, or whose

default value or description is overridden by SimpleUdp and SimpleMcast

transports:

passive_connect_duration n

Timeout (milliseconds) for initial
passive connection establishment. This

does NOT affect the reconnect timing.

0 (wait
forever)

passive_reconnect_duration
n

The time period (milliseconds) for the
passive connection side to wait for the
connection to be reconnected. If not
reconnected within this period then the
on_*_lost callbacks will be called.

2000

Table 31-4 SimpleUdp and SimpleMcast Common Configuration Settings

Option Description Default

max_packet_size n

Maximum size of a UDP packet. The
SimpleUdp and SimpleMcast
transports have a different default value
than the other transports.

62501

Table 31-3 SimpleTcp Configuration Settings

Option Description Default

o c i w e b . c o m 1215

3 1 . 7 C o n f i g u r a t i o n

The SimpleUdp and SimpleMcast share the local_address configuration

but its meaning is different for the different transport implementations. Here

are the settings unique to the SimpleUdp transport:

In addition of the common configuration attributes listed above, the

SimpleMcast transport specifies a few other configuration attributes. The

following table summarizes those configuration attributes that are unique to

the SimpleMcast transport.

Table 31-6 SimpleMcast Configuration Settings

max_output_pause_period n

Maximum period (milliseconds) of not
being able to send queued messages. If
there are samples queued and no output
for longer than this period then the socket
will be closed and on_*_lost callbacks
will be called. If the value is zero, the
default, then this check will not be made.

0

Table 31-5 SimpleUdp Configuration Settings

Option Description Default

local_address host:port
Address and port at which the transport
reads UDP packets.

none

Option Description Default

local_address host:port

Used on the publisher side to specify
which NIC card will be used. This is not
available on the subscriber side; it used
the “default” NIC.

none

multicast_group_addres
s host:port

Address at which the publisher sends
multicast packet to and subscriber
receives multicast packets from. Use
ACE default multicast address as default.

224.9.9.
2:20001

receiver 0|1

Flag indicates if the transport is receiving
side (subscriber) or sending side
(publisher). Defaults to be 0 - as
publisher side.

0

Table 31-4 SimpleUdp and SimpleMcast Common Configuration Settings

Option Description Default

1216 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

ReliableMcast transport builds data reliability upon the multicast protocol. It

supports options similar to the SimpleMcast transport. It accepts the following

additional parameters for tuning reliability and performance:

31.8 Pluggable Transports

The previous section gave an overview of currently available configuration

options. What follows is a discussion of the specifics of the individual

transports and how their behavior can be modified by using these options.

31.8.1 Simple TCP Transport
As observed in the previous section, there are a number of configurable

options for SimpleTCP. A properly configured transport provides added

resilience to underlying stack disturbances. Almost all of the options available

to customize the connection and reconnection strategies have reasonable

defaults, but ultimately these values should to be chosen based upon a careful

study of the quality of the network and the desired QoS in the specific DDS

application and target environment.

The local_address parameter is used by the peer to establish a connection.

By default, the TCP transport selects a random port number on the default

NIC. Therefore, you may wish to explicitly set the address if you have a

multiple NICs or if you wish to specify the port number. When you configure

an inter-host test, the local_address can not be "localhost " and should

be configured with an externally visible interface(i.e. 192.168.0.2), or you

can leave it unspecified in which case the default NIC address and a random

Table 31-7 ReliableMcast Configuration Settings

Option Description Default

sender_histo
ry_size n

Specifies the history buffer size for the sender, in
units of packets. The history buffer consumes
memory but provides recall in the event of
dropped packets at any receiver.

1024

receiver_buf
fer_size n

Specifies the buffer size for a receiver, in units of
packets. This buffer lets the receiver properly
order incoming packets and detect gaps. A larger
buffer will consume memory, while a smaller one
would reduce the effectiveness of the reliability
protocol.

256

o c i w e b . c o m 1217

3 1 . 8 P l u g g a b l e T r a n s p o r t s

port will be used. Note that this parameter also applies to unreliable datagram

transports with the same restrictions.

The passive_connect_duration parameter is typically set to a non-zero,

positive integer. Without a suitable connection timeout, the subscriber

endpoint can potentially enter a state of deadlock while waiting for the remote

side to initiate a connection.

SimpleTCP exists as an independent library and therefore needs to be linked

and configured like the other pluggable transport libraries. The -ORBSvcConf
option feeds the ACE Service Configuration directive file to configure the

SimpleTCP library. The Messenger example from section 31.4.4 demonstrates

dynamically loading and configuring the SimpleTCP library.

When the SimpleTCP library is built statically, your application must link

directly against the SimpleTCP library. To do this, your application must first

include the proper header for service initialization,

$DDS_ROOT/dds/DCPS/transport/simpleTCP/SimpleTcp.h . Then,

the static initialization directive

 static DCPS_SimpleTcpLoader "-type SimpleTcp"

will configure the SimpleTCP transport at run-time.

You can also configure the publisher and subscriber transport

implementations programatically, as described in section 31.4. Configuring

subscribers and publishers should be identical, but different addresses/ports

should be assigned to each Transport Implementation.

Note that you can modify and apply the above configuration technique when

using the other available transport libraries.

31.8.2 Unreliable Datagram Transports

As mentioned in previous sections, two unreliable datagram transports,

SimpleUdp and SimpleMcast, are supported in this release. Both transports

exist in the SimpleUnreliableDgram library. To use these transports, the

SimpleUnreliableDgram library needs be dynamically or statically linked

via the -ORBSvcConf option. You can dynamically load the

SimpleUnreliableDgram library with a service configuration directive:

dynamic OPENDDS_DCPS_SimpleUnreliableDgramLoader Service_Object *
SimpleUnreliableDgram:_make_OPENDDS_DCPS_SimpleUnreliableDgramLoader()
"-type SimpleUdp"

1218 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

With this service configuration directive, the SimpleUdp component is

registered with the transport factory as the library is loaded. To apply the

SimpleMcast transport, replace SimpleUdp in the directive above with

SimpleMcast . A single process can apply both SimpleUdp and SimpleMcast

transports via multiple service configuration directives.

Because the unreliable datagram transports do not support fragmentation of a

single sample into multiple packets, they currently limit the size of samples to

about 64 KB. Attempting to send a sample over 64 KB with these unreliable

datagram transports will result in an error message and the sample not being

delivered.

Using the unreliable datagram transport involves the same steps that we have

seen before: creating a Transport Implementation, attaching it to the Publisher

and Subscriber servants, and configuring it through one or more configuration

files. As observed in the previous section, SimpleUdp and SimpleMcast

transport configurations share a common set of attributes. In addition, the

SimpleMcast transport has its own specific attributes. The following sections

show a transport configuration example for SimpleUdp and SimpleMcast and

special notes for the individual attributes.

31.8.2.1 SimpleUDP Transport

Let’s look at a SimpleUDP transport configuration example:

 # file pub_udp.ini

 [common]
 DCPSDebugLevel=0
 DCPSInfoRepo=file://repo.ior

 [transport_impl_2]
 transport_type= SimpleUdp
 local_address=localhost:16701

max_output_pause_period=0

According to this configuration file, a publisher application will read UDP

packets on port 16701 on the loopback network interface.

Note that the max_output_pause_period configuration attribute specifies

the timeout when the transport is under backpressure. Unlike SimpleTcp and

SimpleMcast transports, backpressure has not been observed during internal

testing and development; this parameter and its functionality have been

o c i w e b . c o m 1219

3 1 . 8 P l u g g a b l e T r a n s p o r t s

included as such a situation may exist in a DDS deployment environment.

Backpressure is handled in a similar manner to SimpleTcp and SimpleMcast.

The example above shows the configuration for a publisher, but a subscriber’s

configuration may just differ in terms of its local_address (IP address and

port).

31.8.2.2 SimpleMcast Transport
Let’s look at a SimpleMcast transport configuration example, first for a

publisher:

 # file pub_mcast.ini

 [common]
 DCPSDebugLevel=0
 DCPSInfoRepo=file://repo.ior

 [transport_impl_3]
 transport_type= SimpleMcast
 local_address=192.168.0.2:16701
 multicast_group_address=224.0.0.1:29803
 receiver=0
 max_output_pause_period=0

In this example, a publisher sends multicast packets to port 29803 on the

224.0.0.1 multicast group address from port 16701 on the NIC with the IP

address of 192.168.0.2.

Note that on Win32 machines, the local_address parameter should not be

the loopback address (localhost , or 127.0.0.1). It must have an external

interface’s address or remain blank to let the transport automatically select the

default NIC.

Next, let’s examine the configuration for a SimpleMcast subscriber:

 # file sub_mcast.ini

 [common]
 DCPSDebugLevel=0
 DCPSInfoRepo=file://repo.ior

 [transport_impl_3]
 transport_type= SimpleMcast
 multicast_group_address=224.0.0.1:29803
 receiver=1

1220 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

 max_output_pause_period=0

This example configures a subscriber application to listen to the 224.0.0.1

multicast group address, again at port 29803. The same

multicast_group_address should be used for both publishers and

subscribers.

The receiver configuration attribute specifies the role of the transport. It

must be 0 on the publisher side and 1 on the subscriber side. Unlike

SimpleTcp and SimpleUdp transports, the same SimpleMcast transport object

cannot be shared by both the publisher and subscriber.

Of particular importance is the missing local_address parameter. While it

is perfectly acceptable to specify this parameter for a publisher, it is not

available for subscribers in this version of DDS.

31.8.3 Reliable Multicast Transport
The reliable multicast transport provides reliable operation on an unreliable

multicast channel. Understanding the meaning of "reliable", how this

reliability is achieved, and what happens when reliability is compromised are

all vital to properly configuring the transport. Of note to developers is that the

reliability components of this transport are completely separate from those

that handle sending and receiving of data. Thus, the reliability portion could

be extracted and reused in another transport, provided the underlying transport

allows for bidirectional communication.

In the context of this transport, reliability is defined as in-order, lossless

delivery of data. Since multicast is UDP, it exhibits UDP’s loss and

transmission characteristics. Therefore, to achieve the desired level of

reliability, both the sending and receiving side must have special logic:

 A sender must:

• Fragment outgoing messages from the transport framework into packets

with headers appropriate for reliability and reassembly.

• Maintain a packet history buffer to respond to retransmission requests.

• Send out periodic heartbeat messages to let receivers detect loss at the end

of a burst.

• Respond to requests for expired historical data with a "not available"

packet.

o c i w e b . c o m 1221

3 1 . 9 U s i n g B u i l t - I n T o p i c s

 A receiver must:

• Buffer data received out of order.

• Detect "gaps" in the transmission and request retransmissions.

• Deliver complete messages to the transport framework in the proper

order.

• Report disconnection upon receipt of a "not available" packet for data it

has requested and not yet received.

Like other transports ReliableMcast needs to be either dynamically or

statically configured. Shown below is directive to dynamically load and

configure the transport:

dynamic OPENDDS_DCPS_ReliableMulticastLoader Service_Object *
ReliableMulticast:_make_OPENDDS_DCPS_ReliableMulticastLoader() ""

Static configuration requires the inclusion of the header file:

#include "dds/DCPS/transport/ReliableMulticast/ReliableMulticast.h"

and the service config directive:

static OPENDDS_DCPS_ReliableMulticastLoader ""

31.9 Using Built-In Topics

The built-in topics are published by the DCPSInfoRepo server whenever the

-NOBITS option is not specified. Four separate topics are defined for each

domain that this server manages. Each is dedicated to a particular entity

(Domain Participant, Topic, Data Writer, Data Reader) and publishes

instances describing the state for each entity in the domain.

Subscriptions to the built-in topics are automatically created for each domain

participant. Participants support for BITs can be toggled via configuration

option DCPSBit (see Table 31.1). To view the data you must simply obtain the

built-in Subscriber and then use it to get the Data Reader for the built-in topic

of your interest. Then the Data Reader can be used like any other Data Reader.

Note Built-In topics is currently dependent upon the SimpleTCP transport library.
The DCPSInfoRepo server as well as any participating subscribers and
publishers will need to configure the SimpleTCP library to handle Built-In
topics.

1222 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

Sections 31.9.2 on detail the data published for each of the four built-in topics.

Following these sections is some example code that shows how to read from a

built-in topic.

31.9.1 Building Without BIT Support
If you are not planning on using Built-in-Topics in your application, you can

configure DDS to remove BIT support at build time. Doing so can reduce the

footprint of the core DDS library by up to 30%. To remove support for

Built-In Topics follow these steps:

1. Regenerate the project files with option “-features built_in_topics=0”.

mwc.pl -type <yourtype> -features built_in_topics=0
DDS.mwc

This has the same effect as adding line “built_in_topics=0” to the file

$DDS_ROOT/MPC/config/default.features

2. If you are using the gnuace MPC project type (which is the case if you
will be using GNU make as your build system), add line
“built_in_topics=0” to the file
$ACE_ROOT/include/makeinclude/platform_macros.GNU.

3. Build DDS as usual (see $DDS_ROOT/docs/INSTALL for instructions).

31.9.2 DCPSParticipant Topic
The DCPSParticipant topic publishes information about the Domain

Participants of the Domain. Here is the IDL that defines the structure

published for this topic:

 struct ParticipantBuiltinTopicData {
 BuiltinTopicKey_t key;
 UserDataQosPolicy user_data;
 };

Each Domain Participant is defined by a unique key, making each one its own

instance within this topic.

31.9.3 DCPSTopic Topic
The DCPSTopic topic publishes information about the Topics in the Domain.

Here is the IDL that defines the structure published for this topic:

 struct TopicBuiltinTopicData {

o c i w e b . c o m 1223

3 1 . 9 U s i n g B u i l t - I n T o p i c s

 BuiltinTopicKey_t key;
 string name;
 string type_name;
 DurabilityQosPolicy durability;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 TransportPriorityQosPolicy transport_priority;
 LifespanQosPolicy lifespan;
 DestinationOrderQosPolicy destination_order;
 HistoryQosPolicy history;
 ResourceLimitsQosPolicy resource_limits;
 OwnershipQosPolicy ownership;
 TopicDataQosPolicy topic_data;
 };

Each Topic is identified by a unique key and is its own instance within this

built-in topic. The members above identify the name of the Topic, the name of

the topic type, and the set of QoS policies for that Topic.

31.9.4 DCPSPublication Topic
The DCPSPublication topic publishes information about the Data Writers in

the Domain. Here is the IDL that defines the structure published for this topic:

 struct PublicationBuiltinTopicData {
 BuiltinTopicKey_t key;
 BuiltinTopicKey_t participant_key;
 string topic_name;
 string type_name;
 DurabilityQosPolicy durability;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 LifespanQosPolicy lifespan;
 UserDataQosPolicy user_data;
 OwnershipStrengthQosPolicy ownership_strength;
 PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 TopicDataQosPolicy topic_data;
 GroupDataQosPolicy group_data;
 };

Each Data Writer is assigned a unique key when it is created and defines its

own instance within this topic. The fields above identify the Domain

1224 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

Participant (via its key) that the Data Writer belongs to, the Topic name and

type, and the various QoS policies applied to the Data Writer.

31.9.5 DCPSSubscription Topic
The DCPSSubscription topic publishes information about the Data Readers in

the Domain. Here is the IDL that defines the structure published for this topic:

 struct SubscriptionBuiltinTopicData {
 BuiltinTopicKey_t key;
 BuiltinTopicKey_t participant_key;
 string topic_name;
 string type_name;
 DurabilityQosPolicy durability;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 DestinationOrderQosPolicy destination_order;
 UserDataQosPolicy user_data;
 TimeBasedFilterQosPolicy time_based_filter;
 PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 TopicDataQosPolicy topic_data;
 GroupDataQosPolicy group_data;
 };

Each Data Reader is assigned a unique key when it is created and defines its

own instance within this topic. The fields above identify the Domain

Participant (via its key) that the Data Reader belongs to, the Topic name and

type, and the various QoS policies applied to the Data Reader.

31.9.6 Built-In Topic Subscription Example
The following code uses a domain participant to get the built-in subscriber. It

then uses the subscriber to get the Data Reader for the DCPSParticipant topic

and subsequently reads samples for that reader.

 Subscriber_var bit_subscriber = participant->get_builtin_subscriber() ;
 DDS::DataReader_var dr =
 bit_subscriber->lookup_datareader(BUILT_IN_PARTICIPANT_TOPIC);
 DDS::ParticipantBuiltinTopicDataDataReader_var part_dr =
 DDS::ParticipantBuiltinTopicDataDataReader::_narrow(dr.in());

 DDS::ParticipantBuiltinTopicDataSeq part_data;
 DDS::SampleInfoSeq infos;

o c i w e b . c o m 1225

3 1 . 1 0 L o g g i n g

 DDS::ReturnCode_t ret = part_dr->read (part_data, infos, 20,
 DDS::ANY_SAMPLE_STATE,
 DDS::ANY_VIEW_STATE,
 DDS::ANY_INSTANCE_STATE) ;

 // Check return status and read the participant data

The code for the other built-in topics is similar.

31.10 Logging

By default, the OpenDDS framework will only log when there is a serious

error that is not indicated by a return code. A DDS user may increase the

amount of logging by controls at the DCPS and Transport levels.

31.10.1 DCPS Level Logging
Logging in the DCPS level of OpenDDS is controlled by the

DCPSDebugLevel configuration setting and command-line option. It can

also be set from application code using

OpenDDS::DCPS:: set_DCPS_debug_level(level).

The level defaults to a value of 0 and has values of 0 to 10 as defined below:

• 0 - logs that indicate serious errors that are not indicated by return codes
(almost none).

• 1 - logs that should happen once per process or are warnings

• 2 - logs that should happen once per DDS entity

• 4 - logs that are related to administrative interfaces

• 6 - logs that should happen every Nth sample write/read

• 8 - logs that should happen once per sample write/read

• 10 - logs that may happen more than once per sample write/read

31.10.2 Transport Level Logging

DDS has a stratified logging mechanism where the most critical errors will

always be output to stderr. Most DDS log messages fall in the range of 0-5

with 0 being the highest priority messages.

Turning on logging is a two stage process where firstly the DDS core needs to

be built to the desired logging level. This is done by setting the build macro

DDS_BLD_DEBUG_LEVEL between 0-5. For run-time optimization the

1226 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

default is 1. Once built, the application macro DDS_RUN_DEBUG_LEVEL

can be used to tweak the actual debug level between

0-DDS_BLD_DEBUG_LEVEL.

The below code will output the maximum logging currently compiled in.

 int
 main (int argc, ACE_TCHAR *argv[])
 {
 DDS_RUN_DEBUG_LEVEL = DDS_BLD_DEBUG_LEVEL;

31.11 dcps_ts.pl Command Line Options

The dcps_ts.pl script is located in $DDS_ROOT/bin and parses a single

IDL file for DCPS-enabled types then generates type support code for those

types. For each type it finds, such as xyz , it generates three files:

xyzTypeSupport.idl , xyzTypeSupportImpl.h , and

xyzTypeSupportImpl.cpp . Because a single IDL file could find multiple

DCPS-enable types, an invocation of the script may generate a multitude of

files. In the typical usage, the script is passed a number of options and the IDL

file name as a parameter. For example,

$DDS_ROOT/bin/dcps_ts.pl Foo.idl

The following table summarizes the entire set of options the script supports.

Note that many have terse and verbose variants of the same option.

Table 31-8 dcps_ts.pl Command Line Options

Option Description Default

--verbose
--noverbose Enables/disables verbose execution Quiet execution

--debug
-d Enable debug statements in the script No debug output

--help
-h Prints a usage message and exits N/A

--man Prints a man page and exits N/A

--dir=dirpath
-S= dirpath Subdirectory where IDL file is located No subdir used

--export= macro
-X= macro

Export macro used for generating C++
implementation code.

No export macro
used

o c i w e b . c o m 1227

3 1 . 1 1 d c p s _ t s . p l C o m m a n d L i n e O p t i o n s

These options mainly divide into two main categories, those related to the

execution of the script and those that control the generated code. In the former

category are documentation options like --help and --man as well as script

debugging options like --verbose and --debug .

The code generation options allow the application developer to use the

generated code in a wide variety of environments. The -dir option lets you

operate on IDL files in other directories and causes the generated IDL code to

use the proper paths in the includes. The --export option lets you add an

export macro to your class definitions. This is required if the generated code is

going to reside in a shared library and the compiler (such as Visual C++ or

GCC 4) uses the export keyword. The --pch option is required if the

generated servant code is to be used in a component that uses precompiled

headers. The --module option allows you to put the generated code in a C++

namespace and avoid name collisions and pollution of the global name space.

The --timestamp and --nobackup options control whether older versions

of the generated files are preserved with timestamp-appended file name or

whether they are simply overwritten.

The --idl option allows you to specify IDL file to process with an option

instead of with the simple parameter.

--pch=file
Pre-compiled header file to include in generated
C++ files

No pre-compiled
header included

--timestamp
-t

Backup any previously existing generated files
with a timestamp suffix.

Old files are not
backed up

--nobackup Do not back up the previously generated files
Old files are not
backed up

--idl= file The IDL file to process.
IDL file is
assumed to be a
parameter

Table 31-8 dcps_ts.pl Command Line Options

Option Description Default

1228 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

31.12 DCPS Information Repository

The table below shows the command line options when running the

DCPSInfoRepo server.

DDS clients usually use the IOR file that DCPSInfoRepo outputs to locate the

service. The -o option allows you to place the IOR file into an

application-specific directory or file name.

The domain file is a simple list of integer domain ID values, one per line. Any

domain IDs used that do not appear in this file are assumed to be invalid and

result in an INVALID_DOMAIN exception being thrown.

Applications that do not use built-in topics may want to disable them with

-NOBITS to reduce the load on the server. If you are publishing the built-in

topics, then the -a option lets you pick the listen address of the Simple TCP

transport that is used for these topics.

Using the -z option causes the invocation of many transport-level debug

messages. This option is only effective when the DCPS library is built with

the DCPS_TRANS_VERBOSE_DEBUG environment variable defined.

Table 31-9 DCPS Information Repository Options

Option Description Default

-o file
Write the IOR of the DCPSInfo object to the
specified file

repo.ior

-d file Load domain IDs from the specified file domain_ids

-NOBITS Disable the publication of built-in topics
Built-in topics
are published

-a address
Listening address for built-in topics (when built-in
topics are published).

Random port

-z Turn on verbose transport logging
Minimal
transport
logging.

-r Resurrect from persistent file 1(true)

-? Display the command line usage and exit N/A

o c i w e b . c o m 1229

3 1 . 1 2 D C P S I n f o r m a t i o n R e p o s i t o r y

File persistence is implemented as an ACE Service object and is controlled via

service config directives. Currently available configuration options are:

The following directive:

static PersistenceUpdater_Static_Service "-file info.pr -reset 1"

will persist InfoRepo updates to local file info.pr. If a file by that name already

exists, its contents will be erased. Used with the command-line option -r, the

InfoRepo can be reincarnated to a prior state.

Table 31-10 InfoRepo persistence directives

Options Description Defaults

-file Name of the persistent file InforepoPersist

-reset Wipe out old persistent data. 0 (false)

1230 o c i w e b . c o m

D a t a D i s t r i b u t i o n S e r v i c e

	Data Distribution Service
	31.1 Introduction
	31.2 DCPS Overview
	31.2.1 Basic Concepts
	31.2.1.1 Domain
	31.2.1.2 Domain Participant
	31.2.1.3 Topic
	31.2.1.4 Data Writer
	31.2.1.5 Publisher
	31.2.1.6 Subscriber
	31.2.1.7 Data Reader

	31.2.2 Built-In Topics
	31.2.3 Quality of Service Policies
	31.2.4 Listeners
	31.2.5 Conditions

	31.3 OpenDDS Implementation
	31.3.1 Compliance
	31.3.2 OpenDDS Architecture
	31.3.2.1 Pluggable Transport Layer
	31.3.2.2 Custom Marshaling
	31.3.2.3 DCPS Information Repository
	31.3.2.4 Threading
	31.3.2.5 Configuration

	31.4 Using DCPS
	31.4.1 Defining the Data Types
	31.4.2 Processing the IDL
	31.4.3 Starting the DCPS Information Repository
	31.4.4 A Simple Message Publisher
	31.4.4.1 Participant Initialization
	31.4.4.2 Data Type registration and topic creation
	31.4.4.3 Transport initialization and registration
	31.4.4.4 Publisher creation
	31.4.4.5 DataWriter creation and instance registration

	31.4.5 Setting up the Subscriber
	31.4.5.1 Participant Initialization
	31.4.5.2 Data Type registration and topic creation
	31.4.5.3 Transport initialization and registration
	31.4.5.4 DataReader and Listener activation

	31.4.6 The Data Reader Listener Servant
	31.4.7 Cleaning up in DDS Clients
	31.4.8 Configuring the Example
	31.4.9 Running the Example

	31.5 Data Handling Optimizations
	31.5.1 Reading Multiple Samples
	31.5.2 Zero-Copy Read

	31.6 QoS Policies
	31.6.1 Supported Policies
	31.6.1.1 Liveliness
	31.6.1.2 Reliability
	31.6.1.3 History
	31.6.1.4 Durability
	31.6.1.5 Resource Limits

	31.6.2 Unsupported Policies
	31.6.2.1 Entity Factory
	31.6.2.2 Presentation

	31.6.3 Policy Example

	31.7 Configuration
	31.7.1 Common Configuration Settings
	31.7.2 Transport Configuration Settings

	31.8 Pluggable Transports
	31.8.1 Simple TCP Transport
	31.8.2 Unreliable Datagram Transports
	31.8.2.1 SimpleUDP Transport
	31.8.2.2 SimpleMcast Transport

	31.8.3 Reliable Multicast Transport

	31.9 Using Built-In Topics
	31.9.1 Building Without BIT Support
	31.9.2 DCPSParticipant Topic
	31.9.3 DCPSTopic Topic
	31.9.4 DCPSPublication Topic
	31.9.5 DCPSSubscription Topic
	31.9.6 Built-In Topic Subscription Example

	31.10 Logging
	31.10.1 DCPS Level Logging
	31.10.2 Transport Level Logging

	31.11 dcps_ts.pl Command Line Options
	31.12 DCPS Information Repository

