
o c i w e b . c o m 1175

CHAPTER 31

OpenDDS Developer’s Guide

31.1 Introduction
OpenDDS is an open source implementation of the OMG Data Distribution
Service (DDS) for Real-Time Systems specification (OMG Document
formal/07-01-01). OpenDDS is sponsored by Object Computing, Inc. (OCI)
and is available via http://www.opendds.org/. This documentation is
based on the version 1.2 release of OpenDDS.
DDS defines a service for efficiently distributing application data between
participants in a distributed application. This service is not specific to
CORBA. The specification provides a platform independent model (PIM) as
well as a platform specific model (PSM) that maps the PIM onto a CORBA
IDL implementation. The service is divided into two levels of interfaces: the
Data-Centric Publish-Subscribe (DCPS) layer and an optional Data Local
Reconstruction Layer (DLRL). The DCPS layer transports data from
publishers to subscribers according to Quality of Service constraints
associated with the data topic, publisher, and subscriber. The DLRL allows
distributed data to be shared by local objects located remotely from each other
as if the data were local. The DLRL is built on top of the DCPS layer.

1176 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

The DCPS layer provides another publish-subscribe API for applications that
is conceptually similar to the OMG Event and Notification Services as well as
the TAO Real-Time Event Service. The main difference with DCPS is that it
only specifies CORBA IDL interfaces for the set up, control, and
configuration of the application and assumes that the data transmission occurs
via mechanisms other than CORBA. This enables DDS implementations to
achieve higher performance and better quality of service than the
CORBA-based alternatives mentioned above.
For additional details about DDS, developers should refer to the DDS
specification (OMG Document formal/07-01-01) as it contains in-depth
coverage of all the service’s features.
OpenDDS is the open-source C++ implementation of OMG’s DDS
specification developed by OCI. It is available for download from
http://www.opendds.org/downloads.html and is compatible with
recent patch levels of TAO version 1.4a, 1.5a, and 1.6.x.

Note OpenDDS currently implements a subset of the DCPS layer and is mostly
compliant with the OMG DDS version 1.0 specification. None of the DLRL
functionality is currently implemented. See the compliance information in
31.3.1 or at http://www.opendds.org/ for more information.

31.2 DCPS Overview
In this section we introduce the main concepts and entities of the DCPS layer
and discuss how they interact and work together.

31.2.1 Basic Concepts
Figure 31-1 shows an overview of the DDS DCPS layer. The following
subsections define the concepts shown in this diagram.

o c i w e b . c o m 1177

3 1 . 2 D C P S O v e r v i e w

Figure 31-1 DCPS Conceptual Overview

DataWriter

Topic B

Publisher

Data
Transmission

Subscriber

DataReader

Domain

DataReader

Subscriber

DataReader

DataWriter

Publisher

DataWriter

Topic A

1178 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

31.2.1.1 Domain
The domain is the fundamental partitioning unit within DCPS. Each of the
other entities belongs to a domain and can only interact with other entities in
that same domain. Application code is free to interact with multiple domains
but must do so via separate entities that belong to the different domains.

31.2.1.2 Domain Participant
A domain participant is the entry-point for an application to interact within a
particular domain. The domain participant is a factory for many of the objects
involved in writing or reading data.

31.2.1.3 Topic
The topic is the fundamental means of interaction between publishing and
subscribing applications. Each topic has a unique name within the domain and
a specific data type that it publishes. Each topic data type can specify zero or
more fields that make up its key. When publishing data, the publishing process
always specifies the topic. Subscribers request data via the topic. In DCPS
terminology you publish individual data samples for different instances on a
topic. Each instance is associated with a unique value for the key. A
publishing process publishes multiple data samples on the same instance by
using the same key value for each sample.

31.2.1.4 Data Writer
The data writer is used by the publishing application code to pass values to the
DDS. Each data writer is bound to a particular topic. The application uses the
data writer’s type-specific interface to publish samples on that topic. The data
writer is responsible for marshaling the data and passing it to the publisher for
transmission.

31.2.1.5 Publisher
The publisher is responsible for taking the published data and disseminating it
to all relevant subscribers in the domain. The exact mechanism employed is
left to the service implementation.

o c i w e b . c o m 1179

3 1 . 2 D C P S O v e r v i e w

31.2.1.6 Subscriber
The subscriber receives the data from the publisher and passes it to any
relevant data readers that are connected to it.

31.2.1.7 Data Reader
The data reader takes data from the subscriber, demarshals it into the
appropriate type for that topic, and delivers the sample to the application. Each
data reader is bound to a particular topic. The application uses the data
reader’s type-specific interfaces to receive the samples.

31.2.2 Built-In Topics
The DDS specification defines a number of topics that are built-in to the DDS
implementation. Subscribing to these built-in topics gives application
developers access to the state of the domain being used including which topics
are registered, which Data Readers and Data Writers are connected and
disconnected, and the QoS settings of the various entities. While subscribed,
the application receives samples indicating changes in the entities within the
domain.
The following table shows the built-in topics defined within the DDS
specification:

31.2.3 Quality of Service Policies
The DDS specification defines a number of Quality of Service (QoS) policies
that are used by applications to specify their QoS requirements to the service.
Participants specify what behavior they require from the service and the
service decides how to achieve these behaviors. These policies can be applied
to the various DCPS entities (Topic, Data Writer, Data Reader, Publisher,
Subscriber, Domain Participant) although not all policies are valid for all
types of entities.

Topic Name Description
DCPSParticipant Each instance represents a domain participant.
DCPSTopic Each topic is an instance.
DCPSPublication Each instance represents a data writer
DCPSSubscription Each instance represents a data reader.

Figure 31-2 Built-In Topics

1180 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

Subscribers and publishers collaborate to specify QoS through an
offer-request paradigm. Publishers offer a set of QoS policies to all
subscribers. Subscribers request a set of policies that they require. The DDS
implementation then attempts to match the requested policies with the offered
policies. If the policies are consistent the subscription is initiated. If the
policies are not consistent then the subscription attempt fails.
The QoS policies currently implemented by OpenDDS are discussed in detail
in 31.7.

31.2.4 Listeners
The DPCS layer defines a callback interface for each entity that allows an
application processes to “listen” for certain state changes or events pertaining
to that entity. For example, a Data Reader Listener is notified when there are
data values available for reading.

31.2.5 Conditions

Note OpenDDS currently supports only Status and Guard Conditions. Read and
Query Conditions are not currently supported.

Conditions and wait-sets allow an alternative to listeners in detecting events of
interest in DDS. The general pattern is
• The application creates a specific kind of condition object, such as a

Status Condition, and attaches it to a Wait Set.
• The application waits on the Wait Set until one or more Conditions

become true.
• The application calls operations on the corresponding entity objects to

extract the necessary information.

o c i w e b . c o m 1181

3 1 . 3 O p e n D D S I m p l e m e n t a t i o n

31.3 OpenDDS Implementation

31.3.1 Compliance
Appendix A of the DDS specification defines five compliance points for a
DDS implementation:
1. Minimum Profile
2. Content-Subscription Profile
3. Persistence Profile
4. Ownership Profile
5. Object Model Profile
This section describes OpenDDS’s compliance with these profiles in terms of
the entities and quality of service policies defined by the DDS specification.

31.3.1.1 Entity Compliance
The DDS specification defines five modules that make up the DCPS PIM:
1. Infrastructure Module
2. Domain Module
3. Topic-Definition Module
4. Publication Module
5. Subscription Module
Various entities are defined within each module. Not all entities pertain to
every profile listed in 31.3.1. Table 31-1 through Table 31-5 show which
entities are included in each module and to which profiles each entity pertains,
as well as whether or not the entity is implemented by OpenDDS.
Table 31-1 Infrastructure Module Entities

Entity Name Profiles Impl?
Entity All Yes
DomainEntity All Yes
QosPolicy All Yes
Listener All Yes
Status All Yes
WaitSet All Yes

1182 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

Condition All Yes
GuardCondition All Yes
StatusCondition All Yes

Table 31-2 Domain Module Entities

Entity Name Profiles Impl?
DomainParticipant All Yes
DomainParticipantFactory All Yes
DomainParticipantListener All Yes

Table 31-3 Topic-Definition Module Entities

Entity Name Profiles Impl?
TopicDescription All Yes
Topic All Yes
ContentFilteredTopic Content-Subscription No
MultiTopic Content-Subscription No
TopicListener All Yes
TypeSupport All Yes

Table 31-4 Publication Module Entities

Entity Name Profiles Impl?
Publisher All Yes
DataWriter All Yes
PublisherListener All Yes
DataWriterListener All Yes

Table 31-1 Infrastructure Module Entities

Entity Name Profiles Impl?

o c i w e b . c o m 1183

3 1 . 3 O p e n D D S I m p l e m e n t a t i o n

31.3.1.2 Quality of Service (QoS) Compliance
The DDS specification defines several QoS policies. Each policy is applicable
to certain entities. Not all policies pertain to every profile listed in 31.3.1.
Table 31-6 shows the various QoS policies and their possible values, the
entities to which the policies apply, the profiles to which each policy/value
pertains, as well as whether or not the policy/value is implemented by
OpenDDS.

Table 31-5 Subscription Module Entities

Entity Name Profiles Impl?
Subscriber All Yes
DataReader All Yes
DataSample All Yes
SampleInfo All Yes
SubscriberListener All Yes
DataReaderListener All Yes
ReadCondition All No
QueryCondition Content-Subscription No

Table 31-6 QoS Policies

Policy Name Entities Values Profiles Impl?

USER_DATA
DomainParticipant
DataWriter
DataReader

sequence of octets All Yes

TOPIC_DATA Topic sequence of octets All Yes

GROUP_DATA Publisher
Subscriber sequence of octets All Yes

DURABILITY
Topic
DataWriter
DataReader

VOLATILE All Yes
TRANSIENT_LOCAL All Yes
TRANSIENT
(includes
DURABILITY_SERVICE)

Persistence Yes

PERSISTENT
(includes
DURABILITY_SERVICE)

Persistence Yes

1184 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

PRESENTATION Publisher
Subscriber

INSTANCE scope COHERENT=true All No
INSTANCE scope ORDERED=true All No
TOPIC scope COHERENT=true All No
TOPIC scope ORDERED=true All No

GROUP scope COHERENT=true
Object
Model No

GROUP scope ORDERED=true
Object
Model No

DEADLINE
Topic
DataWriter
DataReader

integer (period) All Yes

LATENCY_BUDGET
Topic
DataWriter
DataReader

integer (duration) All No

OWNERSHIP
Topic
DataWriter
DataReader

SHARED All Yes
EXCLUSIVE Ownership No

OWNERSHIP_STRENGTH
Topic
DataWriter
DataReader

integer (value) Ownership No

LIVELINESS
Topic
DataWriter
DataReader

AUTOMATIC All Yes
MANUAL_BY_PARTICIPANT All No
MANUAL_BY_TOPIC All No

TIME_BASED_FILTER DataReader integer (minimum_separation) All No

PARTITION Publisher
Subscriber sequence of strings All Yes1

RELIABILITY
Topic
DataWriter
DataReader

BEST_EFFORT All Yes
RELIABLE All Yes2

TRANSPORT_PRIORITY Topic
DataWriter integer All No

LIFESPAN Topic
DataWriter integer (duration) All Yes

DESTINATION_ORDER
Topic
DataWriter
DataReader

BY_RECEPTION_TIMESTAMP All Yes
BY_SOURCE_TIMESTAMP All No

HISTORY
Topic
DataWriter
DataReader

KEEP_LAST
integer (depth) All3 Yes

KEEP_ALL All Yes

Table 31-6 QoS Policies

Policy Name Entities Values Profiles Impl?

o c i w e b . c o m 1185

3 1 . 3 O p e n D D S I m p l e m e n t a t i o n

31.3.2 OpenDDS Architecture
This section gives a brief overview of the OpenDDS implementation, its
features, and some of its components. The $DDS_ROOT environment variable
should point to the base directory of the OpenDDS distribution. Source code
for OpenDDS can be found under $DDS_ROOT/dds. DDS tests can be found
under $DDS_ROOT/tests.

31.3.2.1 Pluggable Transport Layer
OpenDDS uses the CORBA interfaces defined by the DDS specification to
initialize and control service usage. Data transmission is accomplished via a
OpenDDS-specific Pluggable Transport layer that allows the service to be
used with a variety of transport protocols. OpenDDS currently implements
simple TCP, UDP, reliable multicast and unreliable multicast transports.
Transports are created via a factory object and are associated with publishers
and subscribers who use them for their data transmission.
The pluggable transport layer enables application developers to implement
their own customized protocols. Implementing your own custom transport
involves specializing a number of classes defined in the transport framework
directory $DDS_ROOT/dds/DCPS/transport/framework. See the simple

RESOURCE_LIMITS
Topic
DataWriter
DataReader

integer (max_samples)
integer (max_instances)
integer
(max_samples_per_instance)

All Yes

ENTITY_FACTORY

DomainParticipantFactory
DomainParticipant
Publisher
Subscriber

AUTO_ENABLE=true All Yes

AUTO_ENABLE=false All No

WRITER_DATA_
LIFECYCLE DataWriter

boolean
(autodispose_unregistered_
instances)

All No

READER_DATA_
LIFECYCLE DataReader

integer
(autopurge_nowriter_samples_
delay)
integer
(autopurge_disposed_samples_
delay)

All No

1. Only wildcards of ‘*’ and ‘?’ are currently supported.
2. RELIABILITY.kind=RELIABLE supported only if the TCP or Reliable Multicast transport implementation is used.
3. KEEP_LAST.depth > 1 only applies to Ownership profile.

Table 31-6 QoS Policies

Policy Name Entities Values Profiles Impl?

1186 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

TCP implementation in $DDS_ROOT/dds/DCPS/transport/simpleTCP
for details.

Figure 31-3 OpenDDS Pluggable Transport Framework

31.3.2.2 Custom Marshaling
Because data transmission is not done with CORBA, DDS implementations
are free to marshal the data using customized formats. OpenDDS uses a more
efficient variation of CORBA’s Common Data Representation (CDR). A new
IDL compiler switch (-Gdcps) causes the TAO IDL compiler to generate the
appropriate marshaling and instance key support code for DCPS-enabled
types.

TCP ...other...UDP

Wire Protocol

Pluggable
Discovery

Pluggable
Data Transfer

Application

DCPS Publisher

Application

DCPS Subscriber

Transport
Factory

Pluggable
Discovery

QoS QoS

Pluggable Transport AdapterTransport
Factory

o c i w e b . c o m 1187

3 1 . 3 O p e n D D S I m p l e m e n t a t i o n

31.3.2.3 DCPS Information Repository
The DCPS Information Repository acts as the intermediary or broker between
the publisher and subscriber. It is currently implemented as a CORBA server.
When a client requests a subscription for a topic, the DCPS Information
Repository locates the topic and notifies any existing publishers of the
location of the new subscriber. This process needs to be running whenever
OpenDDS is being used. The InfoRepo is not involved in data propagation, its
role is limited in scope to publishers and subscribers discovering one another.
It is possible to operate with more than a single repository providing a
distributed virtual repository. This is known as repository federation. In order
for individual repositories to participate in a federation, each one must specify
its own federation identifier value (a 32 bit numeric value) upon start-up. See
31.13.1 for further information about repository federations.

31.3.2.4 Threading
OpenDDS creates its own ORB as well as a separate thread upon which to run
that ORB. It also uses its own threads to process incoming and outgoing
non-CORBA transport I/O. A separate thread is created to cleanup resources
upon unexpected connection closure. Your application may get called back
from these threads via the Listener mechanism of DCPS.
When publishing a sample via DDS, OpenDDS attempts to send the sample to
any connected subscribers using the calling thread. If the send call blocks,
then the sample may be queued for sending on a separate service thread. This
behavior depends on the QoS policies described in 31.7.
All incoming data in the subscriber is read by the service thread and queued
for reading by the application. Data reader listeners are called from the service
thread.

31.3.2.5 Configuration
OpenDDS includes a file-based configuration framework for configuring both
global items such as debug level, memory allocation, and DCPSInfoRepo
locations, as well as transport implementations for publishers and subscribers.
The complete set of configuration settings is described in 31.8.

1188 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

31.4 Using DCPS
This section focuses on an example application using DCPS to distribute data
from a publisher process to a subscriber. It is based on a simple messenger
application where a single publisher publishes messages and a single
subscriber subscribes to them. We use the default QoS properties and the
Simple TCP transport. Full source code for this example is in the OpenDDS
source code distribution in the directory
$DDS_ROOT/DevGuideExamples/DCPS/Messenger. Additional DDS and
DCPS features are discussed in later sections.

31.4.1 Defining the Data Types
Each data type used by DDS is defined using IDL. OpenDDS uses #pragma
statements to identify the data types that DDS transmits and processes. These
data types are processed by the TAO IDL compiler and the dcps_ts.pl
script to generate code necessary for transmitting these types with DDS. Here
is the IDL file that defines our Message data type:

module Messenger {

#pragma DCPS_DATA_TYPE "Messenger::Message"
#pragma DCPS_DATA_KEY "Messenger::Message subject_id"

 struct Message {
 string from;
 string subject;
 long subject_id;
 string text;
 long count;
 };
};

The DCPS_DATA_TYPE pragma marks a data type for use with OpenDDS. A
fully scoped type name must be used with this pragma. Currently, OpenDDS
requires the data type to be a structure. The structure may contain scalar types
(short, long, float, etc.), enumerations, strings, sequences, arrays, structures,
and unions. This example defines the structure Message in the Messenger
module for use in this OpenDDS example.
The DCPS_DATA_KEY pragma identifies a field of the DCPS data type that is
used as the key for this type. A data type may have zero or more keys. These

o c i w e b . c o m 1189

3 1 . 4 U s i n g D C P S

keys are used to identify the different instances within a topic that use this
type. Each key should be a numeric or enumerated type. The pragma is passed
the fully scoped type name and the member name that is the key for that type.
Multiple keys are specified via separate DCPS_DATA_KEY pragmas with the
same data type. In the above example, we identify the subject_id member
of Messenger::Message as the key. Each message published with a unique
subject ID value is defined as a different instance within a topic. Subsequent
samples with the same subject ID value are treated as replacement values for
that instance.

31.4.2 Processing the IDL
The OpenDDS IDL is processed like any other IDL with the exception that we
pass the -Gdcps option the TAO IDL compiler.

tao_idl -Gdcps Messenger.idl

This causes the IDL compiler to generate additional serialization and key
support code that OpenDDS uses to marshal and demarshal the Message
structure.
In addition, we need to process the IDL file with the dcps_ts.pl script to
generate the required type support code for the data readers and writers. This
script is located in $DDS_ROOT/bin and generates three files for each IDL file
processed. The three files all begin with the original IDL file name and would
appear as follows:
• <filename>TypeSupport.idl

• <filename>TypeSupportImpl.h

• <filename>TypeSupportImpl.cpp

For example, running dcps_ts.pl as follows

dcps_ts.pl Messenger.idl

generates MessengerTypeSupport.idl,
MessengerTypeSupportImpl.h, and
MessengerTypeSupportImpl.cpp. The IDL file contains the
MessageTypeSupport, MessageDataWriter, and MessageDataReader
interface definitions. These are type-specific DDS interfaces that we use later
to register our data type with the domain, publish samples of that data type,

1190 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

and receive published samples. The implementation files contain servant
implementations for these interfaces. The generated IDL file should itself be
compiled to generate stubs and skeletons. These and the implementation file
should be linked with your OpenDDS applications that use the Message type.
This type support generation script has a number of options that specialize the
generated code. These options are described in 31.12.
Typically, you do not directly invoke the IDL compiler or dcps_ts.pl script
as above, but let your build environment do it for you. The entire process is
simplified when using MPC, by inheriting from the dcpsexe_with_tcp
project. Here is the MPC file section common to both the publisher and
subscriber

project(DDS*idl): dcps {
 // This project ensures the common components get built first.

 TypeSupport_Files {
 Messenger.idl
 }

 custom_only = 1
}

The dcps parent project adds the -Gdcps IDL compiler option and adds the
Type Support custom build rules. The TypeSupport_Files section above tells
MPC to generate the Message type support files from Messenger.idl using
the dcps_ts.pl script. Here is the publisher section:

project(DDS*Publisher) : dcpsexe_with_tcp, dcps_unreliable_dgram,
 dcps_reliable_multicast {

 exename = publisher
 after += DDS*idl

 TypeSupport_Files {
 Messenger.idl
 }

 Source_Files {
 publisher.cpp
 Writer.cpp
 }
}

The dcpsexe_with_tcp project links in the DCPS library.

o c i w e b . c o m 1191

3 1 . 4 U s i n g D C P S

31.4.3 Starting the DCPS Information Repository
The source code for DCPS Information Repository server is found in
$DDS_ROOT/dds/InfoRepo and the server executable is
$DDS_ROOT/bin/DCPSInfoRepo. This server process hosts the DCPSInfo
CORBA object that is the entry point for all OpenDDS functionality. This
object is mapped against the key string ‘DCPSInfoRepo’ in the processes
IORTable. Thus a corbaloc ObjectURL such as:

corbaloc:iiop:localhost:12345/DCPSInfoRepo

can be used to locate the DCPSInfo object. The server also writes out the
DCPSInfo object’s IOR as a string to a file, which can also be used to
bootstrap clients. We can alter the file name used for writing this IOR with the
-o command line option.

$DDS_ROOT/bin/DCPSInfoRepo -o repo.ior

The full set of command line options for the DCPSInfoRepo server are
documented in 31.13.

31.4.4 A Simple Message Publisher
In this section we describe the steps involved in setting up a simple OpenDDS
publication process. The code is broken into logical sections and explained as
we present each section. We omit some uninteresting sections of the code
(such as #include directives, error handling, and cross-process
synchronization). The full source code for this sample publisher is found in
the publisher.cpp and Writer.cpp files in
$DDS_ROOT/DevGuideExamples/DCPS/Messenger.

31.4.4.1 Participant Initialization
The first section of main() initializes the current process as an OpenDDS
participant.

int main (int argc, char *argv[]) {
 try {
 DDS::DomainParticipantFactory_var dpf =
 TheParticipantFactoryWithArgs(argc, argv);
 DDS::DomainParticipant_var participant =
 dpf->create_participant(411, // domain ID
 PARTICIPANT_QOS_DEFAULT,

1192 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

 DDS::DomainParticipantListener::_nil());
 if (CORBA::is_nil (participant.in())) {
 std::cerr << "create_participant failed." << std::endl;
 return 1;
 }

The TheParticipantFactoryWithArgs macro is defined in
Service_Participant.h and initializes the Domain Participant Factory
with the command line arguments. These command line arguments are used to
initialize the ORB that the OpenDDS service uses as well as the service itself.
This allows us to pass ORB_init() options on the command line as well as
OpenDDS configuration options of the form -DCPS*. Available OpenDDS
options are fully described in 31.12. The create_participant() operation
uses the domain participant factory to register this process as a participant in
the domain specified by the ID of 411. The participant uses the default QoS
policies and no listeners.
The Domain Participant object reference returned is then used to register our
Message data type.

31.4.4.2 Data Type registration and topic creation
First, we create a MessageTypeSupportImpl object, then register the type
with a type name. In this example, the type is registered with a nil string type
name in which case the MessageTypeSupport interface repository id is used
as the type name. A specific type name such as “Message” can be used as
well.

MessageTypeSupport_var mts = new MessageTypeSupportImpl();
 if (DDS::RETCODE_OK != mts->register_type(participant.in (),
 "")) {
 std::cerr << "register_type failed." << std::endl;
 return 1;
 }

Next, we obtain the registered type name from the TypeSupport servant and
create the topic with the type name using the participant.

 CORBA::String_var type_name = mts->get_type_name ();

 DDS::Topic_var topic =
 participant->create_topic ("Movie Discussion List",
 type_name.in (),
 TOPIC_QOS_DEFAULT,

o c i w e b . c o m 1193

3 1 . 4 U s i n g D C P S

 DDS::TopicListener::_nil());
 if (CORBA::is_nil(topic.in())) {
 std::cerr << "create_topic failed." << std::endl;
 return 1;
 }

This creates a topic named “Movie Discussion List” with the registered type
and the default QoS policies.

31.4.4.3 Transport initialization and registration
We now initialize the transport we want to use.

 // This value must match the value in the publisher’s configuration file.
 const OpenDDS::DCPS::TransportIdType TRANSPORT_IMPL_ID = 1;

 OpenDDS::DCPS::TransportImpl_rch tcp_impl =
 TheTransportFactory->create_transport_impl (TRANSPORT_IMPL_ID,
 OpenDDS::DCPS::AUTO_CONFIG);

This code obtains the transport implementation from the singleton transport
factory, called TheTransportFactory. The
OpenDDS::DCPS::AUTO_CONFIG argument indicates that we are using a
configuration file to configure the transport implementation.The value of the
TRANSPORT_IMPL_ID identifier must match the transport id value in our
configuration file (more on that later). Note that the code itself does not need
to know any details about the transport implementation, such as whether it
uses TCP or UDP, what its endpoints are, etc.
The create_transport_impl() operation can also be used to create a
transport implementation with the default configuration:

 OpenDDS::DCPS::TransportImpl_rch tcp_impl =
 TheTransportFactory->create_transport_impl (
 OpenDDS::DCPS::DEFAULT_SIMPLE_TCP_ID, OpenDDS::DCPS::AUTO_CONFIG);

The code above uses the default simple TCP transport identity
DEFAULT_SIMPLE_TCP_ID. OpenDDS reserves a range(0xFFFFFF00 ~
0xFFFFFFFF)for default transport identities. Currently, only the simple TCP,
simple UDP and simple Mcast transport ids are supported. The default
transport identities are defined in TransportDef.h.

 const TransportIdType DEFAULT_SIMPLE_TCP_ID = 0xFFFFFF00;
 const TransportIdType DEFAULT_SIMPLE_UDP_ID = 0xFFFFFF01;

1194 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

 const TransportIdType DEFAULT_SIMPLE_MCAST_PUB_ID = 0xFFFFFF02;
 const TransportIdType DEFAULT_SIMPLE_MCAST_SUB_ID = 0xFFFFFF03;

The TransportFactory also provides alternate APIs to create a transport
implementation.

 const OpenDDS::DCPS::TransportIdType TRANSPORT_IMPL_ID = 1;
 OpenDDS::DCPS::TransportImpl_rch tcp_impl =
 TheTransportFactory->create_transport_impl (
 TRANSPORT_IMPL_ID, "SimpleTcp", OpenDDS::DCPS::AUTO_CONFIG);

The code above creates a SimpleTCP transport implementation with default
configuration. This API can be used to create multiple transport instances with
the default configuration in a single process by passing unique transport IDs.
This API can be used with file-based configurations as long as the matching
transport configuration (based upon the transport id) also specifies the same
transport type (in our example that is “SimpleTCP”).
We can also configure the transport implementation programmatically,
eliminating the need for a configuration file. Here is sample code to create and
configure a simple TCP transport implementation.

 const OpenDDS::DCPS::TransportIdType TRANSPORT_IMPL_ID = 1;
 OpenDDS::DCPS::TransportImpl_rch tcp_impl =
 TheTransportFactory->create_transport_impl (
 TRANSPORT_IMPL_ID, "SimpleTcp", OpenDDS::DCPS::DONT_AUTO_CONFIG);

 OpenDDS::DCPS::TransportConfiguration_rch config =
 TheTransportFactory->create_configuration (TRANSPORT_IMPL_ID);
 OpenDDS::DCPS::SimpleTcpConfiguration* tcp_config =
 static_cast <OpenDDS::DCPS::SimpleTcpConfiguration*> (config.in());

 ACE_INET_Addr local_address ("localhost:4444");
 tcp_config->local_address_ = local_address;
 tcp_config->local_address_str_ = "localhost:4444";

 if (tcp_impl->configure(config.in()) != 0)
 {
 ACE_ERROR((LM_ERROR,
 ACE_TEXT(" Failed to configure the transport.\n")));
 return -1;
 }

o c i w e b . c o m 1195

3 1 . 4 U s i n g D C P S

31.4.4.4 Publisher creation
Now we are ready to create the publisher and attach the transport
implementation we want it to use.

 DDS::Publisher_var pub =
 participant->create_publisher(
 PUBLISHER_QOS_DEFAULT, DDS::PublisherListener::_nil());
 if (CORBA::is_nil(pub.in())) {
 std::cerr << "create_publisher failed." << std::endl;
 return 1;
 }

 // Attach the publisher to the transport.
 OpenDDS::DCPS::PublisherImpl* pub_impl =
 dynamic_cast<OpenDDS::DCPS::PublisherImpl> (pub.in());
 if (0 == pub_impl) {
 std::cerr << "Failed to obtain publisher servant" << std::endl;
 return 1;
 }

 OpenDDS::DCPS::AttachStatus status =
 pub_impl->attach_transport(transport_impl.in());

We need to call attach_transport() on the publisher servant and not on
the publisher reference because the OMG-defined Publisher interface lacks
any OpenDDS-specific pluggable transport functionality. Since OpenDDS
uses a CORBA local object to implement the publisher interface, we can just
dynamically cast the publisher reference to the OpenDDS publisher
implementation type to access the servant’s functionality.

31.4.4.5 DataWriter creation and instance registration
With the publisher in place, we create the data writer.

 // Create the datawriter
 DDS::DataWriter_var dw =
 pub->create_datawriter(topic.in (),
 DATAWRITER_QOS_DEFAULT,
 DDS::DataWriterListener::_nil());
 if (CORBA::is_nil(dw.in())) {
 std::cerr << "create_datawriter failed." << std::endl;
 return 1;
 }

1196 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

When we create the data writer we pass the topic object reference, the default
QoS policies, and a null listener reference. Now we can register the instance
we wish to publish. We narrow the data writer reference to a
MessageDataWriter object reference so we can use the type-specific
registration and publication operations.

 ::Messenger::MessageDataWriter_var message_dw =
 ::Messenger::MessageDataWriter::_narrow(writer.in());

 Messenger::Message message;
 message.subject_id = 99;
 DDS::InstanceHandle_t handle = message_dw->_cxx_register (message);

After we populate the Message structure we called the _cxx_register()
function to register the instance. The instance is identified by the
subject_id value of 99 (because we earlier specified that field as the key).
We later use the returned instance handle when we publish a sample.

Note This registration operation is actually register() in IDL but because
register is a C++ keyword, the OMG IDL-to-C++ mapping maps the
operation to the _cxx_register() member function.

The example code waits for the subscriber to become connected and fully
initialized. Once this is completed, the message publication is quite
straightforward:

 //Populate instance
 message.from = CORBA::string_dup("Comic Book Guy");
 message.subject = CORBA::string_dup("Review");
 message.text = CORBA::string_dup("Worst. Movie. Ever.");
 message.count = 0;
 DDS::ReturnCode_t ret = message_dw->write(message, handle);

This message is distributed to all connected subscribers that are registered for
our topic. The second argument to write() specifies the instance we are
publishing the sample upon. It should be passed either a handle returned by
_cxx_register() or DDS::HANDLE_NIL. Passing a DDS::HANDLE_NIL
value indicates that the data writer should determine the instance by inspecting
the key of the sample.

o c i w e b . c o m 1197

3 1 . 4 U s i n g D C P S

31.4.5 Setting up the Subscriber
Much of the subscriber’s code is identical or analogous to the publisher that
we just finished exploring. We will progress quickly through the similar parts
and refer you to the discussion above for details.

31.4.5.1 Participant Initialization
The beginning of the subscriber is identical to the publisher as we initialize the
service and join our domain:

int main (int argc, char *argv[])
{
 try {
 DDS::DomainParticipantFactory_var dpf =
 TheParticipantFactoryWithArgs(argc, argv);
 DDS::DomainParticipant_var participant =
 dpf->create_participant(411, // Domain ID
 PARTICIPANT_QOS_DEFAULT,
 DDS::DomainParticipantListener::_nil());
 if (CORBA::is_nil (participant.in ())) {
 std::cerr << "create_participant failed." << std::endl;
 return 1 ;
 }

31.4.5.2 Data Type registration and topic creation
Then the message type and topic are initialized. Note that if the topic has
already been initialized in this domain with the same data type and compatible
QoS, the create_topic() invocation returns a reference corresponding to
the existing topic. If the type or QoS specified in our create_topic()
invocation do not match that of the existing topic then the invocation fails.
There is also a find_topic() operation our subscriber could use to simply
retrieve an existing topic.

 MessageTypeSupport_var mts = new MessageTypeSupportImpl();
 if (DDS::RETCODE_OK != mts->register_type(participant.in (),
 "")) {
 std::cerr << "Failed to register the MessageTypeSupport." << std::endl;
 return 1;
 }

 CORBA::String_var type_name = mts->get_type_name ();

 DDS::Topic_var topic =

1198 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

 participant->create_topic("Movie Discussion List",
 type_name.in (),
 TOPIC_QOS_DEFAULT,
 DDS::TopicListener::_nil());
 if (CORBA::is_nil(topic.in())) {
 std::cerr << "Failed to create_topic." << std::endl;
 return 1;
 }

31.4.5.3 Transport initialization and registration
We now initialize the Simple TCP transport the same way as in the publisher,
using the file-based configuration mechanism.

 // This value must match the value in the subscriber’s configuration file.
 const OpenDDS::DCPS::TransportIdType TRANSPORT_IMPL_ID = 1;

 OpenDDS::DCPS::TransportImpl_rch transport_impl =
 TheTransportFactory->create_transport_impl (TRANSPORT_IMPL_ID,
 OpenDDS::DCPS::AUTO_CONFIG);

Next, we create the subscriber with the default QoS and then attach the Simple
TCP object to the subscriber servant.

 // Create the subscriber and attach to the corresponding
 // transport.
 DDS::Subscriber_var sub =
 participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT,
 DDS::SubscriberListener::_nil());
 if (CORBA::is_nil(sub.in())) {
 std::cerr << "Failed to create_subscriber." << std::endl;
 return 1;
 }

 // Attach the subscriber to the transport.
 OpenDDS::DCPS::SubscriberImpl* sub_impl =
 dynamic_cast<OpenDDS::DCPS::SubscriberImpl> (sub.in());
 if (0 == sub_impl) {
 std::cerr << "Failed to obtain subscriber servant" << std::endl;
 return 1;
 }
 OpenDDS::DCPS::AttachStatus status =
 sub_impl->attach_transport(transport_impl.in());

o c i w e b . c o m 1199

3 1 . 4 U s i n g D C P S

31.4.5.4 DataReader and Listener activation
We need to attach a listener object to the data reader we create, so we can use
it to detect when data is available. The code below constructs the listener
servant and activates a listener CORBA local object. The
DataReaderListenerImpl class is shown in the next subsection.

 // activate the listener
 DDS::DataReaderListener_var listener (new DataReaderListenerImpl);
 DataReaderListenerImpl* listener_servant =
 dynamic_cast<DataReaderListenerImpl*>(listener.in());

 if (CORBA::is_nil(listener.in())) {
 std::cerr << "listener is nil." << std::endl;
 return 1;
 }

The listener is allocated on the heap and assigned to a
DataReaderListener_var object. This type provides reference counting
behavior so the listener is automatically cleaned up when the last reference to
it is removed. This usage is typical for heap allocations in OpenDDS
application code and frees the application developer from having to actively
manage the lifespan of the allocated objects. See 31.4.8 to see what changes to
the code are necessary for the listener to be allocated on the stack.

Note Previous versions of OpenDDS showed examples of objects being created on
the stack and being passed to the library. Such usage is no longer supported
and results in crashes on exit, unless the changes mentioned in 31.4.8 are also
implemented.

Now we can create the data reader and associate it with our topic, the default
QoS properties, and the listener object we just created.

 // Create the Datareaders
 DDS::DataReader_var dr = sub->create_datareader(topic.in (),
 DATAREADER_QOS_DEFAULT,
 listener.in ());
 if (CORBA::is_nil(dr.in())) {
 std::cerr << "create_datareader failed." << std::endl;
 return 1;
 }

1200 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

This thread is now free to perform other application work. Our listener object
will be called on an OpenDDS thread when a sample is available.

31.4.6 The Data Reader Listener Servant
Our listener servant implements the DDS::DataReaderListener interface
defined by the DDS specification. The DataReaderListener is wrapped within
a DCPS::LocalObject which resolves ambiguously-inherited members such
as _narrow and _ptr_type. The interface defines a number of operations we
must implement, each of which is invoked to inform us of different events.
The OpenDDS::DCPS::DataReaderListener defines operations for
OpenDDS’s special needs such as disconnecting and reconnected event
updates. Here is the interface definition:

module DDS {
 local interface DataReaderListener : Listener {
 void on_requested_deadline_missed(in DataReader reader,
 in RequestedDeadlineMissedStatus status);
 void on_requested_incompatible_qos(in DataReader reader,
 in RequestedIncompatibleQosStatus status);
 void on_sample_rejected(in DataReader reader, in SampleRejectedStatus status);
 void on_liveliness_changed(in DataReader reader,
 in LivelinessChangedStatus status);
 void on_data_available(in DataReader reader);
 void on_subscription_match(in DataReader reader,
 in SubscriptionMatchStatus status);
 void on_sample_lost(in DataReader reader, in SampleLostStatus status);
 };
};

Our example servant class stubs out most of these listener operations with
simple print statements. The only operation that is really needed for this
example is on_data_available() and it is the only function of this servant
we need to explore.

void DataReaderListenerImpl::on_data_available(DDS::DataReader_ptr reader)
 throw (CORBA::SystemException)
{
 num_reads_ ++;

 try {
 ::Messenger::MessageDataReader_var message_dr =
 ::Messenger::MessageDataReader::_narrow(reader);
 if (CORBA::is_nil(message_dr.in())) {
 std::cerr << "read: _narrow failed." << std::endl;

o c i w e b . c o m 1201

3 1 . 4 U s i n g D C P S

 return;
 }

The code above narrows the generic data reader passed into the listener to the
type-specific MessageDataReader interface. The following code takes the
next sample from the message reader. If the take is successful and returns
valid data, we print out each of the message’s fields.

 Messenger::Message message;
 DDS::SampleInfo si ;
 DDS::ReturnCode_t status = message_dr->take_next_sample(message, si) ;

 if (status == DDS::RETCODE_OK) {

 if (si.valid_data == 1) {

 std::cout << "Message: subject = " << message.subject.in() << std::endl
 << " subject_id = " << message.subject_id << std::endl
 << " from = " << message.from.in() << std::endl
 << " count = " << message.count << std::endl
 << " text = " << message.text.in() << std::endl;
 }
 else if (si.instance_state == DDS::NOT_ALIVE_DISPOSED_INSTANCE_STATE)
 {
 std::cout << "instance is disposed" << std::endl;
 }
 else if (si.instance_state == DDS::NOT_ALIVE_NO_WRITERS_INSTANCE_STATE)
 {
 std::cout << "instance is unregistered" << std::endl;
 }
 else
 {
 std::cerr << "ERROR: received unknown instance state "
 << si.instance_state << std::endl;
 }
 } else if (status == DDS::RETCODE_NO_DATA) {
 cerr << "ERROR: reader received DDS::RETCODE_NO_DATA!" << std::endl;
 } else {
 cerr << "ERROR: read Message: Error: " << status << std::endl;
 }

Note the sample read may contain invalid data. The valid_data flag
indicates if the sample has valid data. There are two samples with invalid data
delivered to the listener callback for notification purposes. One is the dispose
notification, which is received when the DataWriter calls dispose()
explicitly. The other is the unregistered notification, which is received when

1202 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

the DataWriter calls unregister() explicitly. The dispose notification is
delivered with the instance state set to
NOT_ALIVE_DISPOSED_INSTANCE_STATE and the unregister notification is
delivered with the instance state set to
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE.
If additional samples are available, the service calls this function again.
However, reading values a single sample at a time is not the most efficient
way to process incoming data. The Data Reader interface provides a number
of different options for processing data in a more efficient manner. We discuss
some of these operations in 31.6.

31.4.7 Cleaning up in OpenDDS Clients
After we are finished in the publisher and subscriber, we can use the following
code to clean up the OpenDDS-related objects:

 participant->delete_contained_entities();
 dpf->delete_participant(participant.in ());
 TheTransportFactory->release();
 TheServiceParticipant->shutdown ();

The domain participant’s delete_contained_entities() operation
deletes all the topics, subscribers, and publishers created with that participant.
Once this is done, we can use the domain participant factory to delete our
domain participant. Lastly, we release our transport factory and shutdown the
service participant.

31.4.8 Stack Allocated Listeners
Applications typically allocate objects on the heap and pass them to the
OpenDDS library. Developers can also allocate objects on the stack.
Following the example in 31.4.5.4, we could create the listener servant on the
stack and pass its address to the listener.

 StackDataReaderListenerImpl listener_servant;
 DDS::DataReaderListener_var listener (&listener_servant);

The class definition for StackDataReaderListenerImpl is identical to
DataReaderListenerImpl except that it inherits directly from
OpenDDS::DCPS::LocalObject_NoRefCount<DataReaderListenerImpl>,
rather than OpenDDS::DCPS::LocalObject<DDS::DataReaderListener>.

o c i w e b . c o m 1203

3 1 . 4 U s i n g D C P S

 class StackDataReaderListenerImpl : public virtual
 OpenDDS::DCPS::LocalObject_NoRefCount<DDS::DataReaderListener>

31.4.9 Configuring the Example
OpenDDS includes a file-based configuration mechanism. Using this
mechanism, you can configure a publisher’s or subscriber’s transport, the
location of the DCPSInfoRepo process, memory allocation, and many other
settings. The syntax of the configuration file is similar to the syntax of a
Windows INI file. It contains several sections, which in turn contain
property-like entries. The basic syntax is as follows:

 [section1-name]
 Attribute1=value1
 Attribute2=value2

 [section2-name]
 Attribute1=value1
 Attribute2=value2

Our example uses one configuration file, pub.ini, for the publisher, and a
second configuration file, sub.ini, for the subscriber. First, we will examine
pub.ini:

 [common]
 DCPSDebugLevel=0
 DCPSInfoRepo=file://repo.ior

 [transport_impl_1]
 transport_type=SimpleTcp
 local_address=localhost:4444

Notice that there are two sections, [common] and [transport_impl_1].
The [common] section contains configuration values that apply to the entire
process; in this configuration file, we specify a debug level and an object
reference for the DCPSInfoRepo object. The [transport_impl_1] section
contains configuration values for the transport with the id of “1”. We have
configured the publisher to use the Simple TCP transport and to listen on port
4444 on the loopback network interface.
Recall in the publisher’s code, we defined:

1204 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

 const OpenDDS::DCPS::TransportIdType TRANSPORT_IMPL_ID = 1;

and configured the transport via

 OpenDDS::DCPS::TransportImpl_rch transport_impl =
 TheTransportFactory->create_transport_impl (
 TRANSPORT_IMPL_ID,
 OpenDDS::DCPS::AUTO_CONFIG);

The “1” in the transport configuration file matches the “1” defined in code as a
transport id. Naturally, a publisher or subscriber process may contain more
than one transport, each configured differently.
Next, we will examine the subscriber’s configuration file, sub.ini:

 [common]
 DCPSDebugLevel=0
 DCPSInfoRepo=file://repo.ior

 [transport_impl_1]
 transport_type=SimpleTcp
 local_address=localhost

We have configured the subscriber to also use the Simple TCP transport and to
listen on an ephemeral port on the loopback network interface.
See 31.8 for a complete description of the OpenDDS configuration
parameters.

31.4.10 Running the Example
Our simple example is now ready to be run. It can be run with the following
commands. Running each of these commands in its own window should
enable you to most easily understand the output.

$DDS_ROOT/bin/DCPSInfoRepo -ORBSvcConf tcp.conf -o repo.ior
./publisher -ORBSvcConf tcp.conf -DCPSConfigFile pub.ini
./subscriber -ORBSvcConf tcp.conf -DCPSConfigFile sub.ini

The -DCPSConfigFile command-line argument passes the location of the
relevant configuration file to OpenDDS.
The -ORBSvcConf configuration directive file dynamically loads and
configures the SimpleTCP library.

o c i w e b . c o m 1205

3 1 . 5 O p e n D D S J a v a B i n d i n g s

One side effect of using the default QoS properties is that, as we increase the
number of samples being published, some of the samples will be dropped as
the subscriber falls behind. To avoid dropping samples, we need to either
ensure that the subscriber can keep up or change the QoS settings.

31.5 OpenDDS Java Bindings
Starting with release 1.2, OpenDDS provides Java JNI bindings. Java
applications can make use of the complete OpenDDS middleware just like
C++ applications.
See the $DDS_ROOT/java/INSTALL file for information on getting started,
including the prerequisites and dependencies.
See the $DDS_ROOT/java/FAQ file for information on common issues
encountered while developing applications with the Java bindings.

31.5.1 IDL and Code Generation
The OpenDDS Java binding is more than just a library that lives in one or two
.jar files. The DDS specification defines the interaction between a DDS
application and the DDS middleware. In particular, DDS applications send
and receive messages that are strongly-typed and those types are defined by
the application developer in IDL.
In order for the application to interact with the middleware in terms of these
user-defined types, code must be generated at compile-time based on this IDL.
C++, Java, and even some additional IDL code is generated. In most cases,
application developers do not need to be concerned with the details of all the
generated files. Scripts included with OpenDDS automate this process so that
the end result is a native library (.so or .dll) and a Java library (.jar or just
a classes directory) that together contain all of the generated code.
Below is a description of the generated files and which tools generate them. In
this example, Foo.idl contains a single struct Bar contained in module Baz
(IDL modules are similar to C++ namespaces and Java packages). To the right
of each file name is the name of the tool that generates it, followed by some
notes on its purpose.

1206 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

31.5.2 Setting up a OpenDDS Java project
These instructions assume you have completed the installation steps in the
$DDS_ROOT/java/INSTALL document, including having the various
environment variables defined.
1. Start with an empty directory that will be used for your IDL and the code

generated from it.
$DDS_ROOT/java/tests/messenger/messenger_idl is set up this
way.

2. Create an IDL file describing the data structure you will be using with
OpenDDS. See Messenger.idl for an example. This file will contain at

Table 31-7 Generated files descriptions

File Generation Tool

Foo.idl Developer-written description of
the DDS sample type

Foo{C,S}.{h,inl,cpp} tao_idl: C++ representation of
the IDL

FooTypeSupport.idl dcps_ts.pl: DDS
type-specific interfaces

FooTypeSupport{C,S}.{h,inl,cpp} tao_idl
Baz/BarSeq{Helper,Holder}.java idl2jni
Baz/BarData{Reader,Writer}*.java idl2jni
Baz/BarTypeSupport*.java idl2jni (except

TypeSupportImpl, see
below)

FooTypeSupportJC.{h,cpp} idl2jni: JNI native method
implementations

FooTypeSupportImpl.{h,cpp} dcps_ts.pl: DDS
type-specific C++ impl.

Baz/BarTypeSupportImpl.java dcps_ts.pl: DDS
type-specific Java impl.

Baz/Bar*.java idl2jni: Java representation of
IDL struct

FooJC.{h,cpp} idl2jni: JNI native method
implementations

o c i w e b . c o m 1207

3 1 . 5 O p e n D D S J a v a B i n d i n g s

least one line starting with “#pragma DCPS_DATA_TYPE”. For the sake
of these instructions, we will call the file Foo.idl.

3. The C++ generated classes will be packaged in a shared library to be
loaded at run-time by the JVM. This requires the packaged classes to be
exported for external visibility. ACE provides a utility script for
generating the correct export macros. The script usage is shown here:
Unix:
$ACE_ROOT/bin/generate_export_file.pl Foo > Foo_Export.h

Windows:
%ACE_ROOT%\bin\generate_export_file.pl Foo > Foo_Export.h

4. Create an mpc file, Foo.mpc, from this template:
 --- BEGIN Foo.mpc ---
 project: dcps_java {

 idlflags += -Wb,stub_export_include=Foo_Export.h \
 -Wb,stub_export_macro=Foo_Export
 dcps_ts_flags += --export=Foo_Export
 idl2jniflags += -Wb,stub_export_include=Foo_Export.h \
 -Wb,stub_export_macro=Foo_Export
 dynamicflags += FOO_BUILD_DLL

 specific {
 jarname = DDS_Foo_types
 }

 TypeSupport_Files {
 Foo.idl
 }
 }
 --- END Foo.mpc ---

You can leave out the specific {...} block if you do not need to
create a jar file. In this case you can directly use the Java .class files
which will be generated under the classes subdirectory of the current
directory.

5. Run MPC to generate platform-specific build files.
Unix:
$ACE_ROOT/bin/mwc.pl -type gnuace

Windows:
%ACE_ROOT%•in\mwc.pl -type [CompilerType]

1208 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

CompilerType can be vc71, vc8, vc9, and nmake
Make sure this is running ActiveState Perl.

6. Compile the generated C++ and Java code
Unix:
make (GNU make, so this may be "gmake" on Solaris systems)

Windows:
Build the generated .sln (Solution) file using your preferred method.
This can be either the Visual Studio IDE or one of the command-line
tools. If you use the IDE, start it from a command prompt using devenv
or vcexpress (Express Edition) so that it inherits the environment
variables. Command-line tools for building include vcbuild and
invoking the IDE (devenv or vcexpress) with the appropriate
arguments.

When this completes successfully you have a native library and a Java
.jar file. The native library names are as follows:
Unix:
libFoo.so

Windows:
Foo.dll (Release) or Food.dll (Debug)

You can change the locations of these libraries (including the .jar file)
by adding a line such as the following to the Foo.mpc file:
libout = $(PROJECT_ROOT)/lib

where PROJECT_ROOT can be any environment variable defined at
build-time.

7. You now have all of the Java and C++ code needed to compile and run a
Java OpenDDS application. The generated .jar file needs to be added to
your classpath. The generated C++ library needs to be available for
loading at run-time:
Unix:

Add the directory containing libFoo.so to the LD_LIBRARY_PATH.
Windows:

o c i w e b . c o m 1209

3 1 . 5 O p e n D D S J a v a B i n d i n g s

Add the directory containing Foo.dll (or Food.dll) to the PATH. If
you are using the debug version (Food.dll) you will need to inform the
OpenDDS middleware that it should not look for Foo.dll. To do this,
add -Djni.nativeDebug=1 to the Java VM arguments.

See the publisher and subscriber directories in
$DDS_ROOT/java/tests/messenger for examples of publishing and
subscribing applications using the OpenDDS Java bindings.

8. If you make subsequent changes to Foo.idl, start by re-running MPC
(step #5 above). This is needed because certain changes to Foo.idl will
affect which files are generated and need to be compiled.

31.5.3 A Simple Message Publisher
This section presents a simple OpenDDS Java publishing process. The
complete code for this can be found at
$DDS_ROOT/java/tests/messenger/publisher/TestPublisher.ja
va. Uninteresting segments such as imports and error handling have been
omitted here. The code has been broken down and explained in logical
subsections.

31.5.3.1 Participant Initialization
DDS applications are boot-strapped by obtaining an initial reference to the
Participant Factory. A call to the static method
TheParticipantFactory.WithArgs() returns a Factory reference. This
also transparently initializes the C++ Participant Factory. We can then create
Participants for specific domains.

 public static void main(String[] args) {

 DomainParticipantFactory dpf =
 TheParticipantFactory.WithArgs(new StringSeqHolder(args));
 if (dpf == null) {
 System.err.println ("Domain Participant Factory not found");
 return;
 }
 DomainParticipant dp = dpf.create_participant(411,
 PARTICIPANT_QOS_DEFAULT.get(), null);
 if (dp == null) {
 System.err.println ("Domain Participant creation failed");
 return;
 }

1210 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

Object creation failure is indicated by a null return. The third argument to
create_participant() takes a Participant events listener. If one is not
available, a null can be passed instead as done in our example.

31.5.3.2 Data Type registration and Topic creation
Next we register our data type with the Domain Participant. We can specify a
type name or pass an empty string. An empty string denotes application intent
for the middleware to use the idl compiler generated Id.

 MessageTypeSupportImpl servant = new MessageTypeSupportImpl();
 if (servant.register_type(dp, "") != RETCODE_OK.value) {
 System.err.println ("register_type failed");
 return;
 }

Next we create a topic using the type support servant’s registered name.

 Topic top = dp.create_topic("Movie Discussion List",
 servant.get_type_name(),
 TOPIC_QOS_DEFAULT.get(), null);

Now we have a topic named “Movie Discussion List” with the registered data
type and default QoS policies.

31.5.3.3 Transport initialization and registration
We now initialize the transport we want to use.

 TransportImpl transport_impl =
 TheTransportFactory.create_transport_impl(1,
 TheTransportFactory.AUTO_CONFIG);

The TheTransportFactory.AUTO_CONFIG argument indicates intent to
use a configuration file for transport initialization. The supplied transport Id
must have a matching entry in the configuration file. The code itself is
independent of the transport implementation details.

31.5.3.4 Publisher creation
Next, we create a publisher:

 Publisher pub = dp.create_publisher(PUBLISHER_QOS_DEFAULT.get(), null);

o c i w e b . c o m 1211

3 1 . 5 O p e n D D S J a v a B i n d i n g s

and attach it to the transport we previously initialized:

 AttachStatus stat = transport_impl.attach_to_publisher(pub);

DataWriters and DataReaders spawned from this publisher will use the
attached transport.

31.5.3.5 DataWriter creation and instance registration
With the publisher attached to a transport, we can now create a DataWriter:

 DataWriter dw = pub.create_datawriter(top, DATAWRITER_QOS_DEFAULT.get(),
 null);

The DataWriter is for a specific topic. For our example, we use the default
DataWriter QOS policies and a null DataWriterListener.
Next, we narrow the generic DataWriter to the type-specific DataWriter and
register the instance we wish to publish. In our data definition IDL we had
specified the subject_id field as the key, so it needs to be populated with
the instance id (99 in our example):

 MessageDataWriter mdw = MessageDataWriterHelper.narrow(dw);
 Message msg = new Message();
 msg.subject_id = 99;
 int handle = mdw.register(msg);

Our example waits for any peers to be initialized and connected. It then
publishes a few messages which are distributed to any subscribers of this topic
in the same domain.

 msg.from = "OpenDDS-Java";
 msg.subject = "Review";
 msg.text = "Worst. Movie. Ever.";
 msg.count = 0;
 int ret = mdw.write(msg, handle);

31.5.4 Setting up the Subscriber
Much of the initialization code for a subscriber is identical to the Publisher.
The Subscriber needs to create a participant in the same domain, register an

1212 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

identical data type, create the same named topic, and initialize a compatible
transport.

 public static void main(String[] args) {

 DomainParticipantFactory dpf =
 TheParticipantFactory.WithArgs(new StringSeqHolder(args));
 if (dpf == null) {
 System.err.println ("Domain Participant Factory not found");
 return;
 }
 DomainParticipant dp = dpf.create_participant(411,
 PARTICIPANT_QOS_DEFAULT.get(), null);
 if (dp == null) {
 System.err.println ("Domain Participant creation failed");
 return;
 }

 MessageTypeSupportImpl servant = new MessageTypeSupportImpl();

 Topic top = dp.create_topic("Movie Discussion List",
 servant.get_type_name(),
 TOPIC_QOS_DEFAULT.get(), null);

 TransportImpl transport_impl =
 TheTransportFactory.create_transport_impl(1,
 TheTransportFactory.AUTO_CONFIG);

31.5.4.1 Subscriber creation
As with the Publisher, we create a Subscriber and attach it to the transport:

 Subscriber sub = dp.create_subscriber(SUBSCRIBER_QOS_DEFAULT.get(),
 null);
 AttachStatus stat = transport_impl.attach_to_subscriber(sub);

31.5.4.2 DataReader and Listener activation
Providing a DataReaderListener to the middleware is the simplest way to be
notified of the receipt of data and to access the data. We therefore create an
instance of a DataReaderListenerImpl and pass it as a DataWriter creation
parameter:

 DataReaderListenerImpl listener = new DataReaderListenerImpl();
 DataReader dr = sub.create_datareader(top, DATAREADER_QOS_DEFAULT.get(),

o c i w e b . c o m 1213

3 1 . 5 O p e n D D S J a v a B i n d i n g s

 listener);

Any incoming messages will be received by the Listener in the middleware’s
thread. The application thread is free to perform other tasks at this time.

31.5.5 The DataReader Listener
The application defined DataReaderListenerImpl needs to implement the
specification’s DDS.DataReaderListener interface. OpenDDS provides an
abstract class DDS._DataReaderListenerLocalBase. The application’s
listener class extends this abstract class and implements the abstract methods
to add application-specific functionality.
Our example DataReaderListener stubs out most of the Listener methods. The
only method implemented is the message available callback from the
middleware:

public class DataReaderListenerImpl extends DDS._DataReaderListenerLocalBase {

 private int num_reads_;

 public synchronized void on_data_available(DDS.DataReader reader) {
 ++num_reads_;
 MessageDataReader mdr = MessageDataReaderHelper.narrow(reader);
 if (mdr == null) {
 System.err.println ("read: narrow failed.");
 return;
 }

The Listener callback is passed a reference to a generic DataReader. The
application narrows it to a type-specific DataReader:

 MessageHolder mh = new MessageHolder(new Message());
 SampleInfoHolder sih = new SampleInfoHolder(new SampleInfo(0, 0, 0,
 new DDS.Time_t(), 0, 0, 0, 0, 0, 0, 0, false));
 int status = mdr.take_next_sample(mh, sih);

It then creates holder objects for the actual message and associated
SampleInfo and takes the next sample from the DataReader. Once taken,
that sample is removed from the DataReader’s available sample pool.

 if (status == RETCODE_OK.value) {

 System.out.println ("SampleInfo.sample_rank = "+ sih.value.sample_rank);
 System.out.println ("SampleInfo.instance_state = "+

1214 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

 sih.value.instance_state);

 if (sih.value.valid_data) {

 System.out.println("Message: subject = " + mh.value.subject);
 System.out.println(" subject_id = " + mh.value.subject_id);
 System.out.println(" from = " + mh.value.from);
 System.out.println(" count = " + mh.value.count);
 System.out.println(" text = " + mh.value.text);
 System.out.println("SampleInfo.sample_rank = " +
 sih.value.sample_rank);
 }
 else if (sih.value.instance_state ==
 NOT_ALIVE_DISPOSED_INSTANCE_STATE.value) {
 System.out.println ("instance is disposed");
 }
 else if (sih.value.instance_state ==
 NOT_ALIVE_NO_WRITERS_INSTANCE_STATE.value) {
 System.out.println ("instance is unregistered");
 }
 else {
 System.out.println ("DataReaderListenerImpl::on_data_available: "+
 "received unknown instance state "+
 sih.value.instance_state);
 }

 } else if (status == RETCODE_NO_DATA.value) {
 System.err.println ("ERROR: reader received DDS::RETCODE_NO_DATA!");
 } else {
 System.err.println ("ERROR: read Message: Error: "+ status);
 }
 }

 .
 .
 .
}

The SampleInfo contains meta-information regarding the message such as
the message validity, instance state, etc.

31.5.6 Cleaning up OpenDDS Java clients
An OpenDDS environment can be cleaned up with the following steps:

 dp.delete_contained_entities();

o c i w e b . c o m 1215

3 1 . 5 O p e n D D S J a v a B i n d i n g s

Cleans up all topics, subscribers and publishers associated with that
Participant.

 dpf.delete_participant(dp);

The DomainParticipantFactory reclaims any resources associated with the
DomainParticipant.

 TheTransportFactory.release();

Closes down any open Transports.

 TheServiceParticipant.shutdown();

Shuts down the ServiceParticipant. This cleans up all OpenDDS associated
resources.

31.5.7 Configuring the Example
OpenDDS offers a file-based configuration mechanism. The syntax of the
configuration file is similar to a Windows INI file. The properties are divided
into named sections corresponding to common and individual transports
configuration.
The Messenger example has a common property for the DCPSInfoRepo
objects location:

[common]
DCPSInfoRepo=file://repo.ior

and a transport type property:

[transport_impl_1]
transport_type=SimpleTcp

The [transport_impl_1] section contains configuration information for
the transport with the id of “1”. This id is used for transport creation in both
our publisher and subscriber:

 TransportImpl transport_impl =
 TheTransportFactory.create_transport_impl(1,
 TheTransportFactory.AUTO_CONFIG);

1216 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

See 31.8 for a complete description of all OpenDDS configuration parameters.

31.5.8 Running the example
To run the Messenger Java OpenDDS application, use the following
commands:

$DDS_ROOT/bin/DCPSInfoRepo -ORBSvcConf tcp.conf -o repo.ior

$JAVA_HOME/bin/java -ea -cp
classes:$DDS_ROOT/lib/i2jrt.jar:$DDS_ROOT/lib/OpenDDS_DCPS.jar:classes
TestPublisher -ORBSvcConf tcp.conf -DCPSConfigFile pub_tcp.ini

$JAVA_HOME/bin/java -ea -cp
classes:$DDS_ROOT/lib/i2jrt.jar:$DDS_ROOT/lib/OpenDDS_DCPS.jar:classes
TestSubscriber -ORBSvcConf tcp.conf -DCPSConfigFile sub_tcp.ini

The -DCPSConfigFile command-line argument passes the location of the
OpenDDS configuration file.
The -ORBSvcConf configuration directive file dynamically loads and
configures the SimpleTCP transport library.

31.6 Data Handling Optimizations

31.6.1 Reading Multiple Samples
The DDS specification provides a number of operations for reading and
writing data samples. In the examples above we used the
take_next_sample() operation, to read the next sample and “take”
ownership of it from the reader. The Message Data Reader also has the
following take operations.
• take()—Take a sequence of up to max_samples values from the reader
• take_instance()—Take a sequence of values for a specified instance
• take_next_instance()—Take a sequence of samples belonging to the

same instance, without specifying the instance.
There are also “read” operations corresponding to each of these “take”
operations that obtain the same values, but leave the samples in the reader and
simply mark them as read in the SampleInfo.

o c i w e b . c o m 1217

3 1 . 6 D a t a H a n d l i n g O p t i m i z a t i o n s

Since these other operations read a sequence of values, they are more efficient
when samples are quickly arriving. Here is a sample call to take() that reads
up to 5 samples at a time.

 MessageSeq messages(5);
 DDS::SampleInfoSeq sampleInfos(5);
 DDS::ReturnCode_t status = message_dr->take(messages, sampleInfos, 5,
 DDS::ANY_SAMPLE_STATE,
 DDS::ANY_VIEW_STATE,
 DDS::ANY_INSTANCE_STATE);

The three state parameters specialize which samples are returned from the
reader. See the DDS specification for details on their usage.

31.6.2 Zero-Copy Read
The read and take operations that return a sequence of samples provide the
user with the option of obtaining a copy of the samples (single-copy read) or a
reference to the samples (zero-copy read). The zero-copy read can have
significant performance improvements over the single-copy read for large
sample types. Testing has shown that samples of 8KB or less do not gain
much by using zero-copy reads but there is little performance penalty for
using zero-copy on small samples.
The application developer can specify the use of the zero-copy read
optimization by constructing a data sequence with max_len (the first
parameter) of zero as shown by this sample code (from
DevGuideExamples/DCPS/Messenger_ZeroCopyRead/):

 CORBA::Long MAX_ELEMS_TO_RETURN = 3;
 Messenger::MessageSeq the_data (0, MAX_ELEMS_TO_RETURN);
 DDS::SampleInfoSeq the_info (0, MAX_ELEMS_TO_RETURN);

 // get references to the samples (zero-copy read of the samples)
 DDS::ReturnCode_t status = dr->read (the_data
 , the_info
 , MAX_ELEMS_TO_RETURN
 , ::DDS::ANY_SAMPLE_STATE
 , ::DDS::ANY_VIEW_STATE
 , ::DDS::ANY_INSTANCE_STATE);

For both zero-copy reads and single-copy reads, the sample and info
sequences’ length are set to the number of samples read. For the zero-copy
reads, the max_len is be set to a value >= length.

1218 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

Since the application code has asked for a zero-copy loan of the data, it must
return that loan when it is finished with the data:

 dr->return_loan (the_data, the_info);

Calling return_loan() results in the sequences’ max_len being set to 0 and
its owns member set to false; therefore the same sequences could be used for
another zero-copy read.
If the first parameter of the data sample sequence constructor and info
sequence constructor were changed to a value > 0, then the sample values
returned would be copies. When values are copied, the application developer
has the option of calling return_loan(), but is not required to do so.
If the max_len (the first) parameter of the sequence is not specified, it
defaults to 0; hence using zero-copy reads. Because of this default, a sequence
will automatically call return_loan() on itself when it is destroyed. To
conform with the DDS specification and be portable to other implementations
of DDS, applications should not rely on this automatic return_loan()
feature.
The second parameter to the sample and info sequences is the maximum slots
available in the sequence. If the read() or take() operation’s
max_samples parameter is larger than this value, then the maximum samples
returned by read() or take() will be limited by this parameter of the
sequence constructor.
Although the application can change the length of a zero-copy sequence, by
calling the length(len) operation, you are advised against doing so because
this call results in copying the data and creating a single-copy sequence of
samples.

31.7 Policies
The previous examples use default QoS policies for the various entities. This
section discusses which QoS policies are implemented in OpenDDS and the
details of their usage.

o c i w e b . c o m 1219

3 1 . 7 P o l i c i e s

31.7.1 Supported Policies
Listed below are the QoS policies that are currently supported by OpenDDS.
Any policy not listed here uses its default value. The default values of
unsupported policies are as described in the DDS specification and some are
discussed in 31.7.2.
Each policy defines a structure to specify its data. Each entity supports a
subset of the policies and defines a QoS structure that is composed of the
supported policy structures. The set of allowable policies for a given entity is
constrained by the policy structures nested in its QoS structure. For example
the Publisher’s QoS structure is defined in the specification’s IDL as follows.

module DDS {
 struct PublisherQos {
 PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 GroupDataQosPolicy group_data;
 EntityFactoryQosPolicy entity_factory;
 };
};

Setting policies is as simple as obtaining a structure with the default values
set, modifying the individual policy structures as necessary, and then applying
the QoS structure to an entity (usually when it is created).
Applications can change the QoS of any entity via the set_qos() operation.
If the QoS is changeable, the QoS changes are propagated to DCPSInfoRepo
via QoS update invocations on the corresponding entity, such as
update_subscription_qos(). The DCPSInfoRepo re-evaluates the QoS
compatibility and associations according to the QoS specification. If the
compatibility checking fails, the call to set_qos() will return an error. The
association re-evaluation may result in removal of existing associations and
addition of new associations.
Most of the currently supported QoS policies are not changeable. Some
changeable QoS policies, including USER_DATA, TOPIC_DATA,
GROUP_DATA, and LIFESPAN, do not require compatibility and
association re-evaluation. The DEADLINE QoS policy requires compatibility
re-evaluation, but not for association.The PARTITION QoS policy does not
require compatibility re-evaluation, but does require association re-evaluation.

1220 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

31.7.1.1 LIVELINESS
The LIVELINESS policy applies to the Topic, Data Reader, and Data Writer
entities via the liveliness member of their respective QoS structures.
Below is the IDL related to the Liveliness QoS policy:

enum LivelinessQosPolicyKind {
 AUTOMATIC_LIVELINESS_QOS,
 MANUAL_BY_PARTICIPANT_LIVELINESS_QOS,
 MANUAL_BY_TOPIC_LIVELINESS_QOS
};

struct LivelinessQosPolicy {
 LivelinessQosPolicyKind kind;
 Duration_t lease_duration;
};

The LIVELINESS policy controls when and how the service determines
whether participants are alive, meaning they are still reachable and active. The
kind member is restricted to Automatic (AUTOMATIC_LIVELINESS_QOS) in
OpenDDS. This means that the service periodically polls participants for
liveliness. The lease_duration member is set to the desired heartbeat
interval. The default lease duration is a pre-defined infinite value, which
disables any liveliness testing.
Data writers specify their own liveliness criteria and data readers specify the
desired liveliness of their writers. Writers that are not heard from within the
lease duration cause notification via the Data Reader Listener’s
on_liveliness_changed() operation. Because OpenDDS’s Liveliness is
always set to Automatic, the on_liveliness_lost() callback is never
called on the publisher side.
This policy is considered during the creation of associations between
DataWriters and DataReaders. The value of both sides of the association must
be compatible in order for an association to be created.The liveliness kind is
always compatible since OpenDDS just supports
AUTOMATIC_LIVELINESS_QOS currently. The lease_duration of
DataReader must be bigger than or equal to the value of DataWriter.

o c i w e b . c o m 1221

3 1 . 7 P o l i c i e s

31.7.1.2 RELIABILITY
The RELIABILITY policy applies to the Topic, Data Reader, and Data Writer
entities via the reliability member of their respective QoS structures.
Below is the IDL related to the Reliability QoS policy:

enum ReliabilityQosPolicyKind {
 BEST_EFFORT_RELIABILITY_QOS,
 RELIABLE_RELIABILITY_QOS
};

struct ReliabilityQosPolicy {
 ReliabilityQosPolicyKind kind;
 Duration_t max_blocking_time;
};

This policy controls how data readers and writers treat the data samples they
process. The Best Effort value (BEST_EFFORT_RELIABILITY_QOS) makes
no promises as to the reliability of the samples and could be expected to drop
samples under some circumstances. The Reliable value
(RELIABLE_RELIABILITY_QOS) indicates that the service should eventually
deliver all values to eligible Data Readers.
The Simple TCP transport supports the Reliable value for this policy and the
Simple UDP transport only supports the Best Effort value. The
max_blocking_time member of this policy is used when the History QoS
Policy is set to Keep All and the writer is unable to return because of resource
limits (due to transport backpressure—see 31.7.1.6 for details). When this
situation occurs and the writer blocks for more than the specified time, then
the write fails with a timeout return code. The default for this policy is Best
Effort.
This policy is considered during the creation of associations between
DataWriters and DataReaders. The value of both sides of the association must
be compatible in order for an association to be created. The liveliness kind of
DataWriter must be bigger than or equal to the value of DataWriter.

31.7.1.3 HISTORY
The HISTORY policy determines how samples are held in the Data Writer
and Data Reader for a particular instance. For Data Writers these values are
held until the Publisher retrieves them and successfully sends them to all
connected subscribers. For Data Readers these values are held until “taken” by
the application. This policy applies to the Topic, Data Reader, and Data Writer

1222 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

entities via the history member of their respective QoS structures. Below is
the IDL related to the History QoS policy:

enum HistoryQosPolicyKind {
 KEEP_LAST_HISTORY_QOS,
 KEEP_ALL_HISTORY_QOS
};

struct HistoryQosPolicy {
 HistoryQosPolicyKind kind;
 long depth;
};

The Keep All value (KEEP_ALL_HISTORY_QOS) specifies that all possible
samples for that instance should be kept. When Keep All is specified and the
number of unread samples is equal to the Resource Limits field of
max_samples_per_instance then any incoming samples are rejected.
The Keep Last value (KEEP_LAST_HISTORY_QOS) specifies that only the last
depth values should be kept. When a data writer contains depth samples of a
given instance, a write of new samples for that instance are queued for
delivery and the oldest unsent samples are discarded. When a data reader
contains depth samples of a given instance, any incoming samples for that
instance are kept and the oldest samples are discarded.
This policy defaults to a Keep Last with a depth of one.

31.7.1.4 DURABILITY
The DURABILITY policy controls whether Data Writers should maintain
samples after they have been sent to known subscribers. This policy applies to
the Topic, Data Reader, and Data Writer entities via the durability member
of their respective QoS structures. Below is the IDL related to the Durability
QoS policy:

enum DurabilityQosPolicyKind {
 VOLATILE_DURABILITY_QOS, // Least Durability
 TRANSIENT_LOCAL_DURABILITY_QOS,
 TRANSIENT_DURABILITY_QOS,
 PERSISTENT_DURABILITY_QOS // Greatest Durability
};

struct DurabilityQosPolicy {
 DurabilityQosPolicyKind kind;

o c i w e b . c o m 1223

3 1 . 7 P o l i c i e s

 Duration_t service_cleanup_delay;
};

By default the kind is Volatile and service_cleanup_delay is zero which
means infinite time delay. OpenDDS currently supports all four kinds
durability as listed above, however, the service_cleanup_delay is not
supported.
The Volatile durability means samples are discarded after being sent to all
known subscribers. A side effect of this is that subscribers cannot recover
samples sent before they connect.
The Transient Local durability means that Data Readers that are
associated/connected with a Data Writer will be sent all of the samples in the
Data Writer’s history.
The Transient durability means that samples outlive Data Writer and last as
long as the process. The samples are kept in memory but not in permanent
storage. The Data Reader subscribed to the same topic within the same
domain will be sent of all cached samples that belong to the same topic.
The Persistent durability provides basically the same functionality as
Transient Durability except the cached samples will survive process
destruction.
This policy is considered during the creation of associations between
DataWriters and DataReaders. The value of both sides of the association must
be compatible in order for an association to be created. The durability kind of
DataReader must be bigger than or equal to the value of DataWriter. The order
of durability kinds is as listed in the enumeration definition in the IDL above;
VOLATILE _DURABILITY_QOS is the least durable setting and
PERSISTENT_DURABILITY_QOS is the most durable setting.

31.7.1.5 DURABILITY_SERVICE
The DURABILITY_SERVICE policy controls deletion of samples in
TRANSIENT or PERSISTENT durability cache. This policy applies to the
Topic and Data Writer entities via the durability_service member of
their respective QoS structures and provides a way to specify HISTORY and
RESOURCE_LIMITS for the sample cache. Below is the IDL related to the
DURABILITY_SERVICE QoS policy:

1224 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

struct DurabilityServiceQosPolicy {
 Duration_t service_cleanup_delay;
 HistoryQosPolicyKind history_kind;
 long history_depth;
 long max_samples;
 long max_instances;
 long max_samples_per_instance;
};

The history and resource limits members are analogous to, although
independent of, those found in the HISTORY and RESOURCE_LIMITS
policies. The service_cleanup_delay can be set to a desired value. By
default, it is set to zero, which means never clean up cached samples.

31.7.1.6 RESOURCE_LIMITS
The RESOURCE_LIMITS policy determines the amount of resources the
service can consume in order to meet the requested QoS. This policy applies
to the Topic, Data Reader, and Data Writer entities via the
resource_limits member of their respective QoS structures. Below is the
IDL related to the Resource Limits QoS policy.

struct ResourceLimitsQosPolicy {
 long max_samples;
 long max_instances;
 long max_samples_per_instance;
};

The max_samples member specifies the maximum number of samples a
single Data Writer or Data Reader can manage across all of its instances. The
max_instances member specifies the maximum number of instances that a
Data Writer or Data Reader can manage. The max_samples_per_instance
member specifies the maximum number of samples that can be managed for
an individual instance in a single Data Writer or Reader. All of these members
default to unlimited (DDS::LENGTH_UNLIMITED).
Resources are used by the Data Writer to queue samples written to the data
writer but not yet sent to all data readers because of backpressure from the
transport. Resources are used by the Data Reader to queue samples that have
been received but not yet read/taken from the Data Reader.

o c i w e b . c o m 1225

3 1 . 7 P o l i c i e s

31.7.1.7 PARTITION
The PARTITION QoS policy allows the creation of logical partitions within a
domain. It only allows DataReaders and DataWriters to be associated if they
have matched partition strings. This policy applies to the Publisher and
Subscriber via the partition member of their respective QoS structures.
Below is the IDL related to the PARTITION QoS policy.

struct PartitionQosPolicy {
 StringSeq name;
};

The name member defaults to an empty string sequence. The default partition
name is an empty string and causes the entity to participate in the default
partition. The partition names may contain wildcard characters.

Note According to the DDS specification, PARTITION names can be regular
expressions and include wildcards as defined by the POSIX fnmatch API
(1003.2-1992 section B.6). In OpenDDS, only the“*” and “?” wildcards are
currently supported.

The establishment of DataReader and DataWriter association depends on
matching partition strings on the publication and subscription ends, the failure
to match partitions is not considered a failure and does not trigger any
callbacks or set any status values.
The value of this policy may be changed at any time. Changes to this policy
may cause associations to be removed or added.

31.7.1.8 DEADLINE
The DEADLINE QoS policy allows the application to detect when data is not
written or read within a specified amount of time. This policy applies to the
Topic, Data Writer and Data Reader via the deadline member of their
respective QoS structures. Below is the IDL related to the DEADLINE QoS
policy.

struct DeadlineQosPolicy {
 Duration_t period;
};

1226 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

The default period is infinite, which requires no behavior. When this policy
is set to a finite value, then the DataWriter monitors the changes to data made
by the application and indicates failure to honor the policy by setting the
corresponding status condition and triggering the
on_offered_deadline_missed() listener callback. A DataReader which
detects that the data has not changed before the period has expired sets the
corresponding status condition and triggers the
on_requested_deadline_missed() listener callback.
This policy is considered during the creation of associations between
DataWriters and DataReaders. The value of both sides of the association must
be compatible in order for an association to be created. The deadline period of
DataReader must be bigger than or equal to the value of DataWriter.
The value of this policy may change after the associated entity is enabled. In
the case where the policy of a DataReader or DataWriter is made, the change
is successfully applied only if the change remains consistent with the remote
end of all associations in which the DataReader or DataWriter is participating.
If the policy of a Topic is changed, it will affect only DataReaders and
DataWriters that are created after the change has been made. Any existing
DataReaders or DataWriters, and any existing associations between them, will
not be affected by the Topic policy value change.

31.7.1.9 LIFESPAN
The LIFESPAN QoS policy allows the application to specify when a sample
expires. Expired samples will not be delivered to subscribers. This policy
applies to the Topic and Data Writer via the lifespan member of their
respective QoS structures. Below is the IDL related to the Lifespan QoS
policy.

struct LifespanQosPolicy {
 Duration_t duration;
}

The default duration of LifespanQosPolicy is infinite, which means samples
never expire. OpenDDS currently supports expired sample detection on the
publisher side when using a DURABILITY kind other than VOLATILE.
Expired samples are not removed from DataWriter and DataReader caches in
the current version.

o c i w e b . c o m 1227

3 1 . 7 P o l i c i e s

The value of this policy may be changed at any time. Changes to this policy
affect only data written after the change.

31.7.1.10 USER_DATA
The USER_DATA policy applies to the DomainParticipant, Data Reader and
Data Writer entities via the user_data member of their respective QoS
structures. Below is the IDL related to the UserData QoS policy:

struct UserDataQosPolicy {
 sequence<octet> value;
};

By default, the value member is not set. It can be set to any sequence of
octets which can be used to attach information to the created entity. The value
of the USER_DATA policy is available in respective built-in-topic data. The
remote application can obtain the information via built-in-topic and use it for
its own purposes. For example, the application could attach security
credentials via the USER_DATA policy that can be used by the remote
application to authenticate the source.

31.7.1.11 TOPIC_DATA
This TOPIC_DATA policy applies to the Topic entities via the topic_data
member of TopicQoS structures. Below is the IDL related to the TopicData
QoS policy:

struct TopicDataQosPolicy {
 sequence<octet> value;
};

By default, the value is not set. It can be set to attach additional information
to the created Topic. The value of TopicData is available in DataWriter,
DataReader and Topic built-in-topic data. The remote application can obtain
the information via built-in-topic and use it in an application-defined way.

31.7.1.12 GROUP_DATA
This GROUP_DATA policy applies to the Publisher and Subscriber entities
via the group_data member of their respective QoS structures. Below is the
IDL related to the GroupData QoS policy:

1228 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

struct GroupDataQosPolicy {
 sequence<octet> value;
};

By default, the value member of GroupDataQosPolicy is not set. It can be set
to attach additional information to the created entities. The value of the
GROUP_DATA policy is propagated via built-in-topic. The DataWriter
built-in-topic data contains the GROUP_DATA from the publisher and the
DataReader built-in-topic data contains the GROUP_DATA from the
subscriber. The GROUP_DATA policy could be used to implement matching
mechanisms similar to those of the PARTITION policy described in 31.7.1.7
except the decision could be made based on an application-defined policy.

31.7.2 Unsupported Policies
The unsupported policies cannot be modified with OpenDDS and always take
the default value. The following subsections discuss some of the default
values that may affect application behavior.

31.7.2.1 ENTITY_FACTORY
The ENTITY_FACTORY policy controls whether created entities are
automatically enabled. The default is that all entities are automatically enabled
on creation.

31.7.2.2 PRESENTATION
The PRESENTATION policy controls the ordering or grouping of samples in
a topic. The default value of Instance means that all samples within an
instance are delivered in the order the subscriber receives them. Samples from
different instances of the same topic may be arbitrarily reordered by the
service.

31.7.3 Policy Example
The following sample code illustrates some policies being set and applied for
a publisher.

 DDS::DataWriterQos dw_qos;
 pub->get_default_datawriter_qos (dw_qos);

 dw_qos.history.kind = DDS::KEEP_ALL_HISTORY_QOS;

o c i w e b . c o m 1229

3 1 . 8 C o n f i g u r a t i o n

 dw_qos.reliability.kind = DDS::RELIABLE_RELIABILITY_QOS;
 dw_qos.reliability.max_blocking_time.sec = 10;
 dw_qos.reliability.max_blocking_time.nanosec = 0;

 dw_qos.resource_limits.max_samples_per_instance = 100;

 DDS::DataWriter_var dw =
 pub->create_datawriter(topic.in (),
 dw_qos,
 DDS::DataWriterListener::_nil());

This code creates a publisher with the following qualities:
• HISTORY set to Keep All
• RELIABILITY set to Reliable with a maximum blocking time of 10

seconds
• The maximum samples per instance resource limit set to 100
This means that when 100 samples are waiting to be delivered, the writer can
block up to 10 seconds before returning an error code. These same QoS
settings on the Data Reader side would mean that up to 100 unread samples
are queued by the framework before any are rejected. Rejected samples are
dropped and the SampleRejectedStatus is updated.

31.8 Configuration
OpenDDS includes a file-based configuration framework for configuring both
global settings as well as transport implementations for publishers and
subscribers.This section summarizes the configuration settings in OpenDDS.
We use the -DCPSConfigFile command-line argument to pass the location
of the configuration file into OpenDDS. For example,

 ./publisher -DCPSConfigFile pub.ini

causes the OpenDDS service participant to read configuration settings from
the pub.ini configuration file. More accurately, we pass the publisher’s
command-line arguments to the service participant singleton when we
initialize the domain participant factory. We did this in the preceding
examples by using the TheParticipantFactoryWithArgs macro:

1230 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

#include <dds/DCPS/Service_Participant.h>

int main (int argc, char* argv[])
{

 ::DDS::DomainParticipantFactory_var dpf =
 TheParticipantFactoryWithArgs(argc, argv);

The Service_Participant class also provides methods that allow an
application to configure the dds service. See the header file
DDS/DCPS/Service_Participant.h for details.

31.8.1 Common Configuration Settings
The [common] section of the OpenDDS configuration file contains settings
for attributes such as debugging output, the default object reference of the
DCPSInfoRepo process, and memory preallocation settings. A sample
[common] section follows:

 [common]
 DCPSDebugLevel=0
 DCPSInfoRepo=corbaloc:iiop:localhost:12345/DCPSInfoRepo
 DCPSLivelinessFactor=80
 DCPSChunks=20
 DCPSChunksAssociationMultiplier=10
 DCPSBitTransportPort=
 DCPSBitLookupDurationMsec=2000

It is not necessary to specify every attribute.
Each [common] attribute's value can be overridden by a command-line
argument. The command-line argument has the same name as the
configuration option with a “-” prepended to the front of it. For example,

 subscriber -DCPSInfoRepo corbaloc:iiop:localhost:12345/DCPSInfoRepo

The following table summarizes the [common] configuration attributes:
Table 31-8 Common Configuration Settings

Option Description Default

DCPSDebugLevel n

Integer value that controls the
amount of debug information
the DCPS layer prints. Valid
values are 0 through 10.

0

o c i w e b . c o m 1231

3 1 . 8 C o n f i g u r a t i o n

DCPSTransportDebugLevel n

Integer value for controlling
the transport logging
granularity. Legal values span
from 0 to 5.

0

DCPSInfoRepo objref
Object reference for locating
the DCPS Information
Repository

file://repo.ior

DCPSLivelinessFactor n

Percent of the liveliness lease
duration after which a
liveliness message is sent. A
value of 80 implies a 20%
cushion of latency from the
last detected heartbeat
message.

80

DCPSChunks n

Configurable number of
chunks that a data writer's and
reader's cached allocators will
preallocate when the
RESOURCE_LIMITS QoS
value is infinite. When all of
the preallocated chunks are in
use, OpenDDS allocates from
the heap.

20

DCPSChunkAssociationMultiplier n

Multiplier for the
DCPSChunks or
resource_limits.max_samples
value to determine the total
number of shallow copy
chunks that are preallocated.
Set this to a value greater than
the number of connections so
the preallocated chunk
handles do not run out. A
sample written to multiple
data readers will not be copied
multiple times but there is a
shallow copy handle to that
sample used to manage the
delivery to each data reader.
The size of the handle is small
so there is not great need to set
this value close to the number
of connections.

10

Table 31-8 Common Configuration Settings

Option Description Default

1232 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

The DCPSInfoRepo option’s value is passed to
CORBA::ORB::string_to_object() and can be any Object URL type
understandable by TAO (file, IOR, corbaloc, corbaname).
The DCPSChunks option allows application developers to tune the amount of
memory preallocated when the RESOURCE_LIMITS are set to infinite. Once
the allocated memory is exhausted, additional chunks are
allocated/deallocated from the heap. This feature of allocating from the heap
when the preallocated memory is exhausted provides flexibility but
performance will decrease when the preallocated memory is exhausted.

31.8.2 Transport Configuration Settings
A OpenDDS user may configure one or more transports in a single
configuration file. A sample transport configuration is below:

 [transport_impl_1]
 transport_type=SimpleTcp
 local_address=localhost:4444

DCPSBit [1|0]
Toggle Built-In-Topic
support. 1

DCPSBitTransportPort port Port used by the Simple TCP
transport for Built-In Topics.

none; OS chooses
port

DCPSBitTransportIPAddress

IP address identifying the
local interface to be used by
SimpleTcp transport for the
Built-In Topics.

empty string;
equivalent to
INADDR_ANY

DCPSBitLookupDurationMsec msec

The maximum duration in
milliseconds that the
framework will wait for latent
Built-In Topic information
when retrieving BIT data
given an instance handle. The
participant code may get an
instance handle for a remote
entity before the framework
receives and processes the
related BIT information. The
framework waits for up to the
given amount of time before it
fails the operation.

2000

Table 31-8 Common Configuration Settings

Option Description Default

o c i w e b . c o m 1233

3 1 . 8 C o n f i g u r a t i o n

 swap_bytes=0
 optimum_packet_size=8192

Again, it is not necessary to specify every attribute.
The “1” in the transport_impl_1 marker is the identifier for the transport. That
number must match the transport id in our code. You may recall, in both the
publisher and subscriber, we identified the transport id as follows:

 const OpenDDS::DCPS::TransportIdType TRANSPORT_IMPL_ID = 1;

and created the transport implementation object as follows:

 OpenDDS::DCPS::TransportImpl_rch trans_impl =
 TheTransportFactory->create_transport_impl (
 TRANSPORT_IMPL_ID,
 OpenDDS::DCPS::AUTO_CONFIG);

Thus, we can see where the transport's identifier of “1” in the configuration
file maps to the creation of the transport in the C++ code.

31.8.2.1 Common Transport Configuration Settings
The following table summarizes the transport configuration attributes that are
common to all transports:
Table 31-9 Transport Configuration Settings

Option Description Default

transport_type transport

Type of the transport; the list of
available transports can be extended
programmatically via the OpenDDS
Pluggable Transport Framework.
SimpleTcp, SimpleUdp,
SimpleMcast, and
ReliableMulticast are included
with OpenDDS.

none

1234 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

swap_bytes 0|1

A value of 0 causes DDS to serialize
data in the source machine's native
endianness; a value of 1 causes DDS to
serialize data in the opposite
endianness. The receiving side will
adjust the data for its endianness so
there is no need to match this setting
between machines. The purpose of this
setting is to allow the developer to
decide which side will make the
endian adjustment, if necessary.

0

queue_messages_per_pool n

When backpressure is detected,
messages to be sent are queued. When
the message queue must grow, it
grows by this number.

10

queue_initial_pools n

The initial number of pools for the
backpressure queue. The default
settings of the two backpressure queue
values preallocate space for 50
messages (5 pools of 10 messages).

5

max_packet_size n
The maximum size of a transport
packet, including its transport header,
sample header, and sample data.

2147481599

max_samples_per_packet n
Maximum number of samples in a
transport packet. 10

optimum_packet_size n

Transport packets greater than this size
will be sent over the wire even if there
are still queued samples to be sent.
This value may impact performance
depending on your network
configuration and application nature.

4096

thread_per_connection 0|1
Enable or disable the thread per
connection send strategy. 0(disabled)

datalink_release_delay

The datalink_release_delay is the
delay (in seconds) for datalink release
after no associations. Increasing this
value may reduce the overhead of
re-establishment when reader/writer
associations are added and removed
frequently.

10

Table 31-9 Transport Configuration Settings

Option Description Default

o c i w e b . c o m 1235

3 1 . 8 C o n f i g u r a t i o n

Enabling the thread_per_connection setting will increase performance
when writing to multiple data readers on different process as long as the
overhead of thread context switching does not outweigh the benefits of
parallel writes. This balance of network performance to context switching
overhead is best determined by experimenting. If a machine has multiple
network cards, it may improve performance by creating a transport for each
network card.

31.8.2.2 SimpleTcp Transport Configuration Settings
The following table summarizes the transport configuration attributes that are
either unique to the Simple TCP transport, or whose default value or
description is overridden by the Simple TCP transport:
Table 31-10 SimpleTcp Configuration Settings

Option Description Default

local_address host:port

Hostname and port of the connection
acceptor. The default value is the
FQDN and port 0, which means the
OS will choose the port.

fqdn:0

enable_nagle_algorithm 0|1

Enable or disable the Nagle’s
algorithm. By default, it is disabled.
Enabling the Nagle’s algorithm may
increase throughput at the expense
of increased latency.

0

conn_retry_initial_delay n

Initial delay (milliseconds) for
reconnect attempt. As soon as a lost
connection is detected, a reconnect
is attempted. If this reconnect fails, a
second attempt is made after this
specified delay.

500

1236 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

SimpleTcp Reconnection Options
When a TCP connection gets closed DDS attempts to reconnect. The
reconnection process is (a successful reconnect ends this sequence):

conn_retry_backoff_multiplier n

The backoff multiplier for
reconnection tries. After the initial
delay described above, subsequent
delays are determined by the product
of this multiplier and the previous
delay. For example, with a
conn_retry_initial_delay of 500 and
a conn_retry_backoff_multiplier of
1.5, the second reconnect attempt
will be 0.5 seconds after the first
retry connect fails; the third attempt
will be 0.75 seconds after the second
retry connect fails; the fourth
attempt will be 1.125 seconds after
the third retry connect fails.

2.0

conn_retry_attempts n

Number of reconnect attempts
before giving up and calling
on_publication_lost and
on_subscription_lost callback.

3

max_output_pause_period n

Maximum period (milliseconds) of
not being able to send queued
messages. If there are samples
queued and no output for longer than
this period then the connection will
be closed and on_*_lost callbacks
will be called. The default value of
zero means that this check is not
made.

0

passive_connect_duration n

Timeout (milliseconds) for initial
passive connection establishment.
This
does NOT affect the reconnect
timing.

0 (wait
forever)

passive_reconnect_duration n

The time period (milliseconds) for
the passive connection side to wait
for the connection to be reconnected.
If not reconnected within this period
then the on_*_lost callbacks will be
called.

2000

Table 31-10 SimpleTcp Configuration Settings

Option Description Default

o c i w e b . c o m 1237

3 1 . 8 C o n f i g u r a t i o n

• Upon detecting a lost connection immediately attempt reconnect.
• If that fails, then wait conn_retry_initial_delay milliseconds and

attempt reconnect.
• While we have not tried more than conn_retry_attempts, wait

(previous wait time * conn_retry_backoff_multiplier)
milliseconds and attempt to reconnect.

31.8.2.3 SimpleUdp/SimpleMcast Transport Configuration Settings
While both SimpleUdp and SimpleMcast are unreliable datagram transports,
they share a set of common transport configuration attributes. The following
table summarizes those common transport configuration attributes that are
either unique to both SimpleUdp and SimpleMcast transports, or whose
default value or description is overridden by SimpleUdp and SimpleMcast
transports:

The SimpleUdp and SimpleMcast share the local_address configuration
but its meaning is different for the different transport implementations. Here
are the settings unique to the SimpleUdp transport:

Table 31-11 SimpleUdp and SimpleMcast Common Configuration
Settings

Option Description Default

max_packet_size n

Maximum size of a UDP packet. The
SimpleUdp and SimpleMcast
transports have a different default value than
the other transports.

62501

max_output_pause_period n

Maximum period (milliseconds) of not
being able to send queued messages. If there
are samples queued and no output for longer
than this period then the socket will be
closed and on_*_lost callbacks will be
called. If the value is zero, the default, then
this check will not be made.

0

Table 31-12 SimpleUdp Configuration Settings

Option Description Default

local_address host:port

Address and port at which the transport
reads UDP packets. The default value is
the FQDN and port 0, which means the
OS will choose the port.

fqdn:0

1238 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

In addition to the common configuration attributes listed above, the
SimpleMcast transport specifies a few other configuration attributes. The
following table summarizes those configuration attributes that are unique to
the SimpleMcast transport.
Table 31-13 SimpleMcast Configuration Settings

31.8.2.4 ReliableMcast Transport Configuration Settings
The ReliableMcast transport builds data reliability upon the multicast
protocol. There are some similarities between its options and those of the
SimpleMcast transport. Here is the full list of ReliableMcast options:

Option Description Default

local_address host:port

Used on the publisher side to specify
which NIC card will be used. This is
not available on the subscriber side; it
defaults to use the FQDN and port 0,
which means the OS will choose the
port.

fqdn:0

multicast_group_addr
ess host:port

Address at which the publisher sends
multicast packets to and subscriber
receives multicast packets from. Uses
ACE default multicast address as
default.

224.9.9.2:20001
(IPv4)

ff05:0::ff01:1:2
0001(IPv6)

receiver 0|1

Flag indicates if the transport is
receiving side (subscriber) or sending
side (publisher). Defaults to 0
(publisher) side.

0

Table 31-14 ReliableMcast Configuration Settings

Option Description Default

local_address
host:port

Used on the publisher side to specify
which NIC card will be used. This is not
available on the subscriber side; it
defaults to use the FQDN and port 0,
which means the OS will choose the
port.

fqdn:0

multicast_group_addr
ess host:port

Address at which the publisher sends
multicast packets to and subscriber
receives multicast packets from. Uses
ACE default multicast address as
default.

224.9.9.2:20001
(IPv4)

ff05:0::ff01:1:2
0001(IPv6)

o c i w e b . c o m 1239

3 1 . 8 C o n f i g u r a t i o n

31.8.3 Multiple DCPSInfoRepo Configuration
With the release of OpenDDS 1.1, a single OpenDDS process can be
associated with multiple DCPS information repositories (DCPSInfoRepo).
The repository information and domain associations can be configured using
configuration file, or via application API. Previously used defaults, command
line arguments, and configuration file settings will work as is for existing
applications that do not want to use multiple DCPSInfoRepo associations.
Domains not explicitly mapped with a repository are automatically associated
with the default repository. Individual DCPSInfoRepos can be associated with
multiple domains, however domains cannot be shared between multiple
DCPSInfoRepos.
Repository and domain association information is contained within individual
[repository] and [domain] subsections within the configuration file. The
subsections are specified using a slash separated path syntax. Repository
subsection header follow the format [repository/<NAME>] where the
“repository/” is literal and “<NAME>” is replaced with an arbitrarily chosen
but unique subsection name. Similarly, a domain subsection is specified as
[domain/<NAME>]. There may be any number of repository or domain
sections within a single configuration file.

receiver 0|1

Flag indicates if the transport is
receiving side (subscriber) or sending
side (publisher). Defaults to 0
(publisher) side.

0

sender_history_size n

Specifies the history buffer size for the
sender, in units of packets. The history
buffer consumes memory but provides
recall in the event of dropped packets at
any receiver.

1024

receiver_buffer_size n

Specifies the buffer size for a receiver,
in units of packets. This buffer lets the
receiver properly order incoming
packets and detect gaps. A larger buffer
will consume memory, while a smaller
one would reduce the effectiveness of
the reliability protocol.

256

Table 31-14 ReliableMcast Configuration Settings

Option Description Default

1240 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

Each repository section requires the keys RepositoryIor and
RepositoryKey to be defined. The RepositoryKey values must be unique
for each repository within the configuration file.
Each Domain subsection requires the keys DomainId and DomainRepoKey
to be defined. The DomainRepoKey matched to a RepositoryKey maps the
domain to that repository. The special value DEFAULT_REPO can be used to
associate a domain with the default repository.

31.9 Pluggable Transports
The previous section gave an overview of currently available configuration
options. What follows is a discussion of the specifics of the individual
transports and how their behavior can be modified by using these options.

31.9.1 Simple TCP Transport
As observed in the previous section, there are a number of configurable
options for SimpleTCP. A properly configured transport provides added
resilience to underlying stack disturbances. Almost all of the options available
to customize the connection and reconnection strategies have reasonable
defaults, but ultimately these values should to be chosen based upon a careful
study of the quality of the network and the desired QoS in the specific DDS
application and target environment.
The local_address parameter is used by the peer to establish a connection.
By default, the TCP transport selects a random port number on the NIC with
FQDN (fully qualified domain name) resolved. Therefore, you may wish to
explicitly set the address if you have multiple NICs or if you wish to specify
the port number. When you configure an inter-host test, the local_address
can not be localhost and should be configured with an externally visible

Table 31-15 Multiple repository configuration sections

Subsection Key Value

[repository/<NAME>]
RepositoryIor Repository IOR.
RepositoryKey Unique key value for the repository.

[domain/<NAME>]
DomainId

Domain being associated with a
repository.

DomainRepoKey Key value of the mapped repository.

o c i w e b . c o m 1241

3 1 . 9 P l u g g a b l e T r a n s p o r t s

interface(i.e. 192.168.0.2), or you can leave it unspecified in which case the
FQDN and a random port will be used. Note that this parameter also applies to
unreliable datagram transports with the same restrictions.
FQDN resolution is dependent upon system configuration. In the absence of a
FQDN (e.g. example.ociweb.com), OpenDDS will use any discovered short
names (e.g. example). If that fails, it will use the name resolved from the
loopback address (e.g. loopback).
OpenDDS IPV6 support requires that the underlying ACE/TAO components
be built with IPV6 support enabled. The local_address needs to be an IPv6
decimal address or a FQDN with port number. The FQDN must be resolvable
to an IPv6 address.
The passive_connect_duration parameter is typically set to a non-zero,
positive integer. Without a suitable connection timeout, the subscriber
endpoint can potentially enter a state of deadlock while waiting for the remote
side to initiate a connection. When a FQDN is not found, the system will emit
a warning.
SimpleTCP exists as an independent library and therefore needs to be linked
and configured like the other pluggable transport libraries. The -ORBSvcConf
option feeds the ACE Service Configuration directive file to configure the
SimpleTCP library. The Messenger example from 31.4.4 demonstrates
dynamically loading and configuring the SimpleTCP library.
When the SimpleTCP library is built statically, your application must link
directly against the SimpleTCP library. To do this, your application must first
include the proper header for service initialization,
$DDS_ROOT/dds/DCPS/transport/simpleTCP/SimpleTcp.h. Then, the
static initialization directive

 static DCPS_SimpleTcpLoader "-type SimpleTcp"

will configure the SimpleTCP transport at run-time.
You can also configure the publisher and subscriber transport
implementations programatically, as described in 31.4. Configuring
subscribers and publishers should be identical, but different addresses/ports
should be assigned to each Transport Implementation.

1242 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

31.9.2 Unreliable Datagram Transports
As mentioned in previous sections, two unreliable datagram transports,
SimpleUdp and SimpleMcast, are supported in this release. Both transports
exist in the SimpleUnreliableDgram library. To use these transports, the
SimpleUnreliableDgram library needs be dynamically or statically linked
via the -ORBSvcConf option. You can dynamically load the
SimpleUnreliableDgram library with a service configuration directive:

dynamic OPENDDS_DCPS_SimpleUnreliableDgramLoader Service_Object *
SimpleUnreliableDgram:_make_OPENDDS_DCPS_SimpleUnreliableDgramLoader()
"-type SimpleUdp"

With this service configuration directive, the SimpleUdp component is
registered with the transport factory as the library is loaded. To apply the
SimpleMcast transport, replace SimpleUdp in the directive above with
SimpleMcast. A single process can apply both SimpleUdp and SimpleMcast
transports via multiple service configuration directives.
Because the unreliable datagram transports do not support fragmentation of a
single sample into multiple packets, they currently limit the size of marshaled
samples, including headers, to 64 KB. Attempting to send a sample greater
than 64 KB with these unreliable datagram transports will result in an error
message and the sample not being delivered.
Using the unreliable datagram transport involves the same steps that we have
seen before: creating a Transport Implementation, attaching it to the Publisher
and Subscriber servants, and configuring it through one or more configuration
files. As observed in the previous section, SimpleUdp and SimpleMcast
transport configurations share a common set of attributes. In addition, the
SimpleMcast transport has its own specific attributes. The following sections
show a transport configuration example for SimpleUdp and SimpleMcast and
special notes for the individual attributes.

31.9.2.1 SimpleUDP Transport
Here is a SimpleUDP transport configuration example:

 # file pub_udp.ini

 [common]
 DCPSDebugLevel=0
 DCPSInfoRepo=file://repo.ior

o c i w e b . c o m 1243

3 1 . 9 P l u g g a b l e T r a n s p o r t s

 [transport_impl_2]
 transport_type=SimpleUdp
 local_address=localhost:16701
 max_output_pause_period=0

According to this configuration file, a publisher application will read UDP
packets on port 16701 on the loopback network interface.
Note that the max_output_pause_period configuration attribute specifies
the timeout when the transport is under backpressure. Unlike SimpleTcp and
SimpleMcast transports, backpressure has not been observed during internal
testing and development; this parameter and its functionality have been
included as such a situation may exist in a DDS deployment environment.
Backpressure is handled in a similar manner to SimpleTcp and SimpleMcast.
The example above shows the configuration for a publisher, but a subscriber’s
configuration may just differ in terms of its local_address (IP address and
port).

31.9.2.2 SimpleMcast Transport
Here is a SimpleMcast transport configuration example for a publisher:

 # file pub_mcast.ini

 [common]
 DCPSDebugLevel=0
 DCPSInfoRepo=file://repo.ior

 [transport_impl_3]
 transport_type=SimpleMcast
 local_address=192.168.0.2:16701
 multicast_group_address=224.0.0.1:29803
 receiver=0
 max_output_pause_period=0

In this example, a publisher sends multicast packets to port 29803 on the
224.0.0.1 multicast group address from port 16701 on the NIC with the IP
address of 192.168.0.2.
Note that on Win32 machines, the local_address parameter should not be
the loopback address (localhost, or 127.0.0.1). It must have an external
interface’s address or remain blank to let the transport automatically select the
default NIC.

1244 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

Here is the configuration for a SimpleMcast subscriber:

 # file sub_mcast.ini

 [common]
 DCPSDebugLevel=0
 DCPSInfoRepo=file://repo.ior

 [transport_impl_3]
 transport_type=SimpleMcast
 multicast_group_address=224.0.0.1:29803
 receiver=1
 max_output_pause_period=0

This example configures a subscriber application to listen to the 224.0.0.1
multicast group address, again at port 29803. The same
multicast_group_address should be used for both publishers and
subscribers.
The receiver configuration attribute specifies the role of the transport. It
must be 0 on the publisher side and 1 on the subscriber side. Unlike
SimpleTcp and SimpleUdp transports, the same SimpleMcast transport object
cannot be shared by both the publisher and subscriber.
Of particular importance is the missing local_address parameter. While it
is perfectly acceptable to specify this parameter for a publisher, it is not
available for subscribers in this version of DDS.

31.9.3 Reliable Multicast Transport
The reliable multicast transport provides reliable operation on an unreliable
multicast channel. Understanding the meaning of “reliable”, how this
reliability is achieved, and what happens when reliability is compromised are
all vital to properly configuring the transport. Of note to developers is that the
reliability components of this transport are completely separate from those
that handle sending and receiving of data. Thus, the reliability portion could
be extracted and reused in another transport, provided the underlying transport
allows for bidirectional communication.
In the context of this transport, reliability is defined as in-order, lossless
delivery of data. Since multicast is UDP, it exhibits UDP’s loss and
transmission characteristics. Therefore, to achieve the desired level of
reliability, both the sending and receiving side must have special logic:

o c i w e b . c o m 1245

3 1 . 1 0 U s i n g B u i l t - I n T o p i c s

A sender must:
• Fragment outgoing messages from the transport framework into packets

with headers appropriate for reliability and reassembly.
• Maintain a packet history buffer to respond to retransmission requests.
• Send out periodic heartbeat messages to let receivers detect loss at the end

of a burst.
• Respond to requests for expired historical data with a “not available”

packet.
A receiver must:
• Buffer data received out of order.
• Detect “gaps” in the transmission and request retransmissions.
• Deliver complete messages to the transport framework in the proper order.
• Report disconnection upon receipt of a “not available” packet for data it

has requested and not yet received.
Like other transports ReliableMcast needs to be either dynamically or
statically configured. Shown below is directive to dynamically load and
configure the transport:

dynamic OPENDDS_DCPS_ReliableMulticastLoader Service_Object *
ReliableMulticast:_make_OPENDDS_DCPS_ReliableMulticastLoader() ""

Static configuration requires the inclusion of the header file:
#include "dds/DCPS/transport/ReliableMulticast/ReliableMulticast.h"

and the service config directive:

static OPENDDS_DCPS_ReliableMulticastLoader ""

31.10 Using Built-In Topics
The built-in topics are published by the DCPSInfoRepo server whenever the
-NOBITS option is not specified. Four separate topics are defined for each
domain that this server manages. Each is dedicated to a particular entity
(Domain Participant, Topic, Data Writer, Data Reader) and publishes
instances describing the state for each entity in the domain.

1246 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

Subscriptions to the built-in topics are automatically created for each domain
participant. Participants support for BITs can be toggled via configuration
option DCPSBit (see Table 31-8). To view the data you must simply obtain
the built-in Subscriber and then use it to get the Data Reader for the built-in
topic of your interest. Then the Data Reader can be used like any other Data
Reader.

Note The Built-In Topics feature is currently dependent upon the SimpleTCP
transport library. The DCPSInfoRepo server as well as any participating
subscribers and publishers will need to configure the SimpleTCP library to
handle Built-In topics.

Sections 31.10.2 through 31.10.5 provide details on the data published for
each of the four built-in topics. An example showing how to read from a
built-in topic follows those sections.

31.10.1 Building Without BIT Support
If you are not planning on using Built-in-Topics in your application, you can
configure DDS to remove BIT support at build time. Doing so can reduce the
footprint of the core DDS library by up to 30%. To remove support for
Built-In Topics follow these steps:
1. Regenerate the project files without the Built-In Topic feature. Either use

the command line “feature” argument to MPC:

mwc.pl -type <type> -features built_in_topics=0 DDS.mwc

Or alternatively, add the line built_in_topics=0 to the file
$DDS_ROOT/MPC/config/default.features and regenerate the
project files using MPC.

2. If you are using the gnuace MPC project type (which is the case if you
will be using GNU make as your build system), add line
“built_in_topics=0” to the file
$ACE_ROOT/include/makeinclude/platform_macros.GNU.

3. Build DDS as usual (see $DDS_ROOT/docs/INSTALL for instructions).

o c i w e b . c o m 1247

3 1 . 1 0 U s i n g B u i l t - I n T o p i c s

31.10.2 DCPSParticipant Topic
The DCPSParticipant topic publishes information about the Domain
Participants of the Domain. Here is the IDL that defines the structure
published for this topic:

 struct ParticipantBuiltinTopicData {
 BuiltinTopicKey_t key;
 UserDataQosPolicy user_data;
 };

Each Domain Participant is defined by a unique key and is its own instance
within this topic.

31.10.3 DCPSTopic Topic
The DCPSTopic topic publishes information about the Topics in the Domain.
Here is the IDL that defines the structure published for this topic:

 struct TopicBuiltinTopicData {
 BuiltinTopicKey_t key;
 string name;
 string type_name;
 DurabilityQosPolicy durability;
 QosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 TransportPriorityQosPolicy transport_priority;
 LifespanQosPolicy lifespan;
 DestinationOrderQosPolicy destination_order;
 HistoryQosPolicy history;
 ResourceLimitsQosPolicy resource_limits;
 OwnershipQosPolicy ownership;
 TopicDataQosPolicy topic_data;
 };

Each Topic is identified by a unique key and is its own instance within this
built-in topic. The members above identify the name of the Topic, the name of
the topic type, and the set of QoS policies for that Topic.

31.10.4 DCPSPublication Topic
The DCPSPublication topic publishes information about the Data Writers in
the Domain. Here is the IDL that defines the structure published for this topic:

1248 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

 struct PublicationBuiltinTopicData {
 BuiltinTopicKey_t key;
 BuiltinTopicKey_t participant_key;
 string topic_name;
 string type_name;
 DurabilityQosPolicy durability;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 LifespanQosPolicy lifespan;
 UserDataQosPolicy user_data;
 OwnershipStrengthQosPolicy ownership_strength;
 PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 TopicDataQosPolicy topic_data;
 GroupDataQosPolicy group_data;
 };

Each Data Writer is assigned a unique key when it is created and defines its
own instance within this topic. The fields above identify the Domain
Participant (via its key) that the Data Writer belongs to, the Topic name and
type, and the various QoS policies applied to the Data Writer.

31.10.5 DCPSSubscription Topic
The DCPSSubscription topic publishes information about the Data Readers in
the Domain. Here is the IDL that defines the structure published for this topic:

 struct SubscriptionBuiltinTopicData {
 BuiltinTopicKey_t key;
 BuiltinTopicKey_t participant_key;
 string topic_name;
 string type_name;
 DurabilityQosPolicy durability;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 DestinationOrderQosPolicy destination_order;
 UserDataQosPolicy user_data;
 TimeBasedFilterQosPolicy time_based_filter;
 PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 TopicDataQosPolicy topic_data;
 GroupDataQosPolicy group_data;
 };

o c i w e b . c o m 1249

3 1 . 1 1 L o g g i n g

Each Data Reader is assigned a unique key when it is created and defines its
own instance within this topic. The fields above identify the Domain
Participant (via its key) that the Data Reader belongs to, the Topic name and
type, and the various QoS policies applied to the Data Reader.

31.10.6 Built-In Topic Subscription Example
The following code uses a domain participant to get the built-in subscriber. It
then uses the subscriber to get the Data Reader for the DCPSParticipant topic
and subsequently reads samples for that reader.

 Subscriber_var bit_subscriber = participant->get_builtin_subscriber() ;
 DDS::DataReader_var dr =
 bit_subscriber->lookup_datareader(BUILT_IN_PARTICIPANT_TOPIC);
 DDS::ParticipantBuiltinTopicDataDataReader_var part_dr =
 DDS::ParticipantBuiltinTopicDataDataReader::_narrow(dr.in());

 DDS::ParticipantBuiltinTopicDataSeq part_data;
 DDS::SampleInfoSeq infos;
 DDS::ReturnCode_t ret = part_dr->read (part_data, infos, 20,
 DDS::ANY_SAMPLE_STATE,
 DDS::ANY_VIEW_STATE,
 DDS::ANY_INSTANCE_STATE) ;

 // Check return status and read the participant data

The code for the other built-in topics is similar.

31.11 Logging
By default, the OpenDDS framework will only log when there is a serious
error that is not indicated by a return code. An OpenDDS user may increase
the amount of logging via controls at the DCPS and Transport levels.

31.11.1 DCPS Level Logging
Logging in the DCPS level of OpenDDS is controlled by the
DCPSDebugLevel configuration setting and command-line option. It can
also be set programmatically from application code using:

OpenDDS::DCPS::set_DCPS_debug_level(level)

1250 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

The level defaults to a value of 0 and has values of 0 to 10 as defined below:
• 0 - logs that indicate serious errors that are not indicated by return codes

(almost none).
• 1 - logs that should happen once per process or are warnings
• 2 - logs that should happen once per DDS entity
• 4 - logs that are related to administrative interfaces
• 6 - logs that should happen every Nth sample write/read
• 8 - logs that should happen once per sample write/read
• 10 - logs that may happen more than once per sample write/read

31.11.2 Transport Level Logging
OpenDDS transport level logging is controlled via the
DCPSTransportDebugLevel configuration option. For example, to add
transport level logging to any OpenDDS application, add the following option
to the command line:

-DCPSTransportDebugLevel=level;

Transport level logging can also be programmatically configured by
appropriately setting the variable:

OpenDDS::DCPS::Transport_debug_level = level;

Valid transport logging levels range from 0 to 5 with increasing verbosity of
output.

Note Actually, transport logging level 6 is available to generate system trace logs.
Using this level is not recommended as the amount of data generated can be
overwhelming and is mostly of interest only to OpenDDS developers. Setting
the logging level to 6 requires defining the DDS_BLD_DEBUG_LEVEL
macro to 6 and rebuilding OpenDDS.

31.12 dcps_ts.pl Command Line Options
The dcps_ts.pl script is located in $DDS_ROOT/bin and parses a single
IDL file for DCPS-enabled types then generates type support code for those

o c i w e b . c o m 1251

3 1 . 1 2 d c p s _ t s . p l C o m m a n d L i n e O p t i o n s

types. For each IDL file processed, such as xyz.idl, it generates three files:
xyzTypeSupport.idl, xyzTypeSupportImpl.h, and
xyzTypeSupportImpl.cpp. In the typical usage, the script is passed a
number of options and the IDL file name as a parameter. For example,

$DDS_ROOT/bin/dcps_ts.pl Foo.idl

The following table summarizes the entire set of options the script supports.
Note that many have terse and verbose variants of the same option.

These options mainly divide into two main categories, those related to the
execution of the script and those that control the generated code. In the former
category are documentation options like --help and --man as well as script
debugging options like --verbose and --debug.
The code generation options allow the application developer to use the
generated code in a wide variety of environments. The -dir option lets you

Table 31-16 dcps_ts.pl Command Line Options

Option Description Default
--verbose
--noverbose Enables/disables verbose execution Quiet execution
--debug
-d Enable debug statements in the script No debug output
--help
-h Prints a usage message and exits N/A

--man Prints a man page and exits N/A
--dir=dirpath
-S dirpath Subdirectory where IDL file is located No subdir used

--export=macro
-X macro

Export macro used for generating C++
implementation code.

No export macro
used

--pch=file
Pre-compiled header file to include in
generated C++ files

No pre-compiled
header included

--timestamp
-t

Backup any previously existing generated files
with a timestamp suffix.

Old files are not
backed up

--nobackup Do not back up the previously generated files Old files are not
backed up

--idl=file The IDL file to process.
IDL file is
assumed to be a
parameter

--output=outdir
-o outputdir

Output directory where dcps_ts.pl should place
the generated files.

The current
directory

1252 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

operate on IDL files in other directories and causes the generated IDL code to
use the proper paths in the includes. The --export option lets you add an
export macro to your class definitions. This is required if the generated code is
going to reside in a shared library and the compiler (such as Visual C++ or
GCC 4) uses the export keyword. The --pch option is required if the
generated servant code is to be used in a component that uses precompiled
headers. The --module option allows you to put the generated code in a C++
namespace and avoid name collisions and pollution of the global name space.
The --timestamp and --nobackup options control whether older versions
of the generated files are preserved with timestamp-appended file name or
whether they are simply overwritten.
The --idl option allows you to specify the IDL file to process with an option
instead of with a simple parameter.

31.13 DCPS Information Repository
The table below shows the command line options for the DCPSInfoRepo
server.
Table 31-17 DCPS Information Repository Options

Option Description Default

-o file Write the IOR of the DCPSInfo object to
the specified file repo.ior

-NOBITS Disable the publication of built-in topics Built-in topics
are published

-a address
Listening address for built-in topics (when
built-in topics are published). Random port

-z Turn on verbose transport logging
Minimal
transport
logging.

-r Resurrect from persistent file 1(true)

-FederationId <id>
Unique identifier for this repository within
any federation. This is supplied as a 32 bit
decimal numeric value.

N/A

o c i w e b . c o m 1253

3 1 . 1 3 D C P S I n f o r m a t i o n R e p o s i t o r y

OpenDDS clients often use the IOR file that DCPSInfoRepo outputs to locate
the service. The -o option allows you to place the IOR file into an
application-specific directory or file name.
Applications that do not use built-in topics may want to disable them with
-NOBITS to reduce the load on the server. If you are publishing the built-in
topics, then the -a option lets you pick the listen address of the Simple TCP
transport that is used for these topics.
Using the -z option causes the invocation of many transport-level debug
messages. This option is only effective when the DCPS library is built with
the DCPS_TRANS_VERBOSE_DEBUG environment variable defined.
The -FederationId and -FederateWith options are used to control the
federation of multiple DCPSInfoRepo servers into a single logical repository.
See 31.13.1 for descriptions of the federation capabilities and how to use these
options.
File persistence is implemented as an ACE Service object and is controlled via
service config directives. Currently available configuration options are:

The following directive:
static PersistenceUpdater_Static_Service "-file info.pr -reset 1"

will persist InfoRepo updates to local file info.pr. If a file by that name already
exists, its contents will be erased. Used with the command-line option -r, the
InfoRepo can be reincarnated to a prior state.

-FederateWith <ref>

Repository federation reference at which to
join a federation. This is supplied as a valid
CORBA object reference in string form:
stringified IOR, file: or corbaloc:
reference string.

N/A

-? Display the command line usage and exit N/A

Table 31-18 InfoRepo persistence directives

Options Description Defaults
-file Name of the persistent file InforepoPersist
-reset Wipe out old persistent data. 0 (false)

Table 31-17 DCPS Information Repository Options

Option Description Default

1254 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

31.13.1 Repository Federation

Note Repository federation is a new feature in OpenDDS 1.2 and should be
considered experimental at this time.

Repository Federation allows multiple DCPS Information Repository servers
to collaborate with one another into a single federated service. This allows
applications obtaining service metadata and events from one repository to
obtain them from another if the original repository is no longer available.
While the motivation to create this feature was the ability to provide a measure
of fault tolerance to the DDS service metadata, other use cases can benefit
from this feature as well. This includes the ability of initially separate systems
to become federated and gain the ability to pass data between applications that
were not originally reachable. An example of this would include two
platforms which have independently established internal DDS services
passing data between applications; at some point during operation the systems
become reachable to each other and federating repositories allows data to pass
between applications on the different platforms.
The current federation capabilities in OpenDDS 1.2 provide only the ability to
statically specify a federation of repositories at startup of applications and
repositories. A mechanism to dynamically discover and join a federation is
planned for a future OpenDDS release.
OpenDDS automatically detects the loss of a repository by using the
LIVELINESS Quality of Service policy on a Built-in Topic. When a
federation is used, the LIVELINESS QoS policy is modified to a non-infinite
value. When LIVELINESS is lost for a Built-in Topic an application will
initiate a failover sequence causing it to associate with a different repository
server. Because the federation implementation currently uses a Built-in Topic
ParticipantDataDataReaderListener entity, applications should not
install their own listeners for this topic. Doing so would affect the federation
implementation’s capability to detect repository failures.
The federation implementation distributes repository data within the
federation using a reserved DDS domain. The default domain used for
federation is defined by the constant
Federator::DEFAULT_FEDERATIONDOMAIN, has a value of 1382379631
(0x5265706f), and should not be used by applications for data distribution.

o c i w e b . c o m 1255

3 1 . 1 3 D C P S I n f o r m a t i o n R e p o s i t o r y

Currently only static specification of federation topology is available. This
means that each DCPS Information Repository, as well as each application
using a federated DDS service, needs to include federation configuration as
part of its configuration data. This is done by specifying each available
repository within the federation to each participating process and assigning
each repository to a different key value in the configuration files as described
in 31.8.3.
Each application and repository must include the same set of repositories in its
configuration information. Failover sequencing will attempt to reach the next
repository in numeric sequence (wrapping from the last to the first) of the
repository key values. This sequence is unique to each application configured,
and should be different to avoid overloading any individual repository.
Once the topology information has been specified, then repositories will need
to be started with two additional command line arguments. These are shown in
Table 31-17. One, -FederationId <value>, specifies the unique identifier
for a repository within the federation. This is a 32 bit numeric value and needs
to be unique for all possible federation topologies.
The second command line argument required is -FederateWith <ref>.
This causes the repository to join a federation at the <ref> object reference
after initialization and before accepting connections from applications.
Only repositories which are started with a federation identification number
may participate in a federation. The first repository started should not be given
a -FederateWith command line directive. All others are required to have
this directive in order to establish the initial federation. There is a command
line tool (federation) supplied that can be used to establish federation
associations if this is not done at startup. See 31.13.1.1 for a description. It is
possible, with the current static-only implementation, that the failure of a
repository before a federation topology is entirely established could result in a
partially unusable service. Due to this current limitation, it is highly
recommended to always establish the federation topology of repositories prior
to starting the applications.

31.13.1.1 Federation Management
A new command line tool has been provided to allow some minimal run-time
management of repository federation. This tool allows repositories started
without the -FederateWith option to be commanded to participate in a

1256 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

federation. Since the operation of the federated repositories and failover
sequencing depends on the presence of connected topology, it is
recommended that this tool be used before starting applications that will be
using the federated set of repositories.
The command is named federation and is located in the $DDS_ROOT/bin
directory. It has a command format syntax of:

federation <cmd> <arguments>

Where each individual command has its own format as shown in Table 31-19.
Some options contain endpoint information. This information consists of an
optional host specification, separated from a required port specification by a
colon. This endpoint information is used to create a CORBA object reference
using the corbaloc: syntax in order to locate the 'Federator' object of the
repository server.

A join command specifies two repository servers (by endpoint) and asks the
second to join the first in a federation:

Table 31-19 Federation Management Command

Command Syntax Description

join federation join <target> <peer>
[<federation domain>]

Calls the <peer> to join <target>
to the federation. <federation
domain> is passed if present, or
the default Federation Domain
value is passed.

leave federation leave <target>

Causes the <target> to gracefully
leave the federation, removing
all managed associations
between applications using
<target> as a repository with
applications that are not using
<target> as a repository.

shutdown federation shutdown <target>

Causes the <target> to shutdown
without removing any managed
associations. This is the same
effect as a repository which has
crashed during operation.

help federation help Prints a usage message and quits.

o c i w e b . c o m 1257

3 1 . 1 3 D C P S I n f o r m a t i o n R e p o s i t o r y

federation join 2112 otherhost:1812

This generates a CORBA object reference of
corbaloc:iiop:otherhost:1812/Federator that the federator connects
to and invokes a join operation. The join operation invocation passes the
default Federation Domain value (because we did not specify one) and the
location of the joining repository which is obtained by resolving the object
reference corbaloc:iiop:localhost:2112/Federator.
A full description of the command arguments are shown in Table 31-20

31.13.1.2 Federation Example
In order to illustrate the setup and use of a federation, this section walks
through a simple example that establishes a federation and a working service
that uses it.
This example is based on a two repository federation, with the Simple
Message Publisher and Subscriber from 31.4 configured to use the federated
repositories.

Table 31-20 Federation Management Command Arguments

Option Description

<target>

This is endpoint information that can be used to locate
the Federator::Manager CORBA interface of a
repository which is used to manage federation
behavior. This is used to command leave and
shutdown federation operations and to identify the
joining repository for the join command.

<peer>

This is endpoint information that can be used to locate
the Federator::Manager CORBA interface of a
repository which is used to manage federation
behavior. This is used to command join federation
operations.

<federation domain>

This is the domain specification used by federation
participants to distribute service metadata amongst the
federated repositories. This only needs to be specified
if more than one federation exists among the same set
of repositories, which is currently not supported. The
default domain is sufficient for single federations.

1258 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

Configuring the Federation Example
There are two configuration files to create for this example one each for the
message publisher and subscriber. These are extensions of the configurations
from the previous examples with some slight modifications.
The Message Publisher configuration pub.ini for this example is as follows:

 [common]
 DCPSDebugLevel = 0

 [domain/information]
 DomainId = 411
 DomainRepoKey = 1

 [repository/primary]
 RepositoryKey = 1
 RepositoryIor = corbaloc:iiop:localhost:2112/InfoRepo

 [repository/secondary]
 RepositoryKey = 2
 RepositoryIor = file://repo.ior

 [transport_impl_1]
 transport_type = SimpleTcp
 local_address = localhost:4444

Note that the DCPSInfo attribute/value pair has been removed from the
[common] section. This has been replaced by the [domain/user] section as
described in 31.8.3. The user domain is 411, so that domain is configured to
use the primary repository for service metadata and events.
The [repository/primary] and [repository/secondary] sections define the
primary and secondary repositories to use within the federation (of two
repositories) for this application. The RepositoryKey attribute is an internal
key value used to uniquely identify the repository (and allow the domain to be
associated with it, as in the preceding [domain/information] section). The
RepositoryIor attributes contain string values of resolvable object references
to reach the specified repository. The primary repository is referenced at port
2112 of the localhost and is expected to be available via the TAO IORTable
with an object name of /InfoRepo. The secondary repository is expected to
provide an IOR value via a file named repo.ior in the local directory.
The [transport_impl_1] section and programming for the transport is
unchanged from the earlier example. No change to the Message Publisher
application code is required.

o c i w e b . c o m 1259

3 1 . 1 3 D C P S I n f o r m a t i o n R e p o s i t o r y

The Subscriber process is configured with the sub.ini file as follows:

 [common]
 DCPSDebugLevel = 0

 [domain/information]
 DomainId = 411
 DomainRepoKey = 1

 [repository/primary]
 RepositoryKey = 1
 RepositoryIor = file://repo.ior

 [repository/secondary]
 RepositoryKey = 2
 RepositoryIor = corbaloc:iiop:localhost:2112/InfoRepo

 [transport_impl_1]
 transport_type = SimpleTcp
 local_address = localhost

Note that this is the same as the pub.ini file except for the transport
specification section, which is the same as the sub.ini file in the previous
example of 31.4.9. The Subscriber has specified that the repository located at
port 2112 of the localhost is the secondary and the repository located by the
repo.ior file is the primary. This is opposite of the assignment for the
publisher. It means that the publisher is started using the repository at port
2112 for metadata and events while the Subscriber is started using the
repository located by the IOR contained in the file. In each case, if a repository
is detected as unavailable the application will attempt to use the other
repository if it can be reached.
The repositories do not need any special configuration specifications in order
to participate in federation, and so no files are required for them in this
example.

Running the Federation Example
The example is executed by first starting the repositories and federating them,
then starting the application publisher and subscriber processes the same way
as was done in the example of 31.4.10.
Start the first repository as:

$DDS/bin/DCPSInfoRepo -ORBSvcConf tcp.conf -o repo.ior -FederationId 1024

1260 o c i w e b . c o m

O p e n D D S D e v e l o p e r ’ s G u i d e

The -o repo.ior option ensures that the repository IOR will be placed into
the file as expected by the configuration files. The -FederationId 1024
option assigns the value 1024 to this repository as its unique id within the
federation. The -ORBSvcConf tcp.conf option is the same as in the
previous example.
Start the second repository as:

$DDS/bin/DCPSInfoRepo -ORBSvcConf tcp.conf \
-ORBListenEndpoints iiop://localhost:2112 \
-FederationId 2048 -FederateWith file://repo.ior

Note that this is all intended to be on a single command line. The
-ORBSvcConf tcp.conf option is the same as in the previous example. The
-ORBListenEndpoints iiop://localhost:2112 option ensures that the
repository will be listening on the port that the previous configuration files are
expecting. The -FederationId 2048 option assigns the value 2048 as the
repositories unique id within the federation. The -FederateWith
file://repo.ior option initiates federation with the repository located at
the IOR contained within the named file - which was written by the previously
started repository.
Once the repositories have been started and federation has been established
(this will be done automatically after the second repository has initialized), the
application publisher and subscriber processes can be started and should
execute as they did for the previous example in 31.4.10.

	OpenDDS Developer’s Guide
	31.1 Introduction
	31.2 DCPS Overview
	31.2.1 Basic Concepts
	31.2.1.1 Domain
	31.2.1.2 Domain Participant
	31.2.1.3 Topic
	31.2.1.4 Data Writer
	31.2.1.5 Publisher
	31.2.1.6 Subscriber
	31.2.1.7 Data Reader

	31.2.2 Built-In Topics
	31.2.3 Quality of Service Policies
	31.2.4 Listeners
	31.2.5 Conditions

	31.3 OpenDDS Implementation
	31.3.1 Compliance
	31.3.1.1 Entity Compliance
	31.3.1.2 Quality of Service (QoS) Compliance

	31.3.2 OpenDDS Architecture
	31.3.2.1 Pluggable Transport Layer
	31.3.2.2 Custom Marshaling
	31.3.2.3 DCPS Information Repository
	31.3.2.4 Threading
	31.3.2.5 Configuration

	31.4 Using DCPS
	31.4.1 Defining the Data Types
	31.4.2 Processing the IDL
	31.4.3 Starting the DCPS Information Repository
	31.4.4 A Simple Message Publisher
	31.4.4.1 Participant Initialization
	31.4.4.2 Data Type registration and topic creation
	31.4.4.3 Transport initialization and registration
	31.4.4.4 Publisher creation
	31.4.4.5 DataWriter creation and instance registration

	31.4.5 Setting up the Subscriber
	31.4.5.1 Participant Initialization
	31.4.5.2 Data Type registration and topic creation
	31.4.5.3 Transport initialization and registration
	31.4.5.4 DataReader and Listener activation

	31.4.6 The Data Reader Listener Servant
	31.4.7 Cleaning up in OpenDDS Clients
	31.4.8 Stack Allocated Listeners
	31.4.9 Configuring the Example
	31.4.10 Running the Example

	31.5 OpenDDS Java Bindings
	31.5.1 IDL and Code Generation
	31.5.2 Setting up a OpenDDS Java project
	31.5.3 A Simple Message Publisher
	31.5.3.1 Participant Initialization
	31.5.3.2 Data Type registration and Topic creation
	31.5.3.3 Transport initialization and registration
	31.5.3.4 Publisher creation
	31.5.3.5 DataWriter creation and instance registration

	31.5.4 Setting up the Subscriber
	31.5.4.1 Subscriber creation
	31.5.4.2 DataReader and Listener activation

	31.5.5 The DataReader Listener
	31.5.6 Cleaning up OpenDDS Java clients
	31.5.7 Configuring the Example
	31.5.8 Running the example

	31.6 Data Handling Optimizations
	31.6.1 Reading Multiple Samples
	31.6.2 Zero-Copy Read

	31.7 Policies
	31.7.1 Supported Policies
	31.7.1.1 LIVELINESS
	31.7.1.2 RELIABILITY
	31.7.1.3 HISTORY
	31.7.1.4 DURABILITY
	31.7.1.5 DURABILITY_SERVICE
	31.7.1.6 RESOURCE_LIMITS
	31.7.1.7 PARTITION
	31.7.1.8 DEADLINE
	31.7.1.9 LIFESPAN
	31.7.1.10 USER_DATA
	31.7.1.11 TOPIC_DATA
	31.7.1.12 GROUP_DATA

	31.7.2 Unsupported Policies
	31.7.2.1 ENTITY_FACTORY
	31.7.2.2 PRESENTATION

	31.7.3 Policy Example

	31.8 Configuration
	31.8.1 Common Configuration Settings
	31.8.2 Transport Configuration Settings
	31.8.2.1 Common Transport Configuration Settings
	31.8.2.2 SimpleTcp Transport Configuration Settings
	31.8.2.3 SimpleUdp/SimpleMcast Transport Configuration Settings
	31.8.2.4 ReliableMcast Transport Configuration Settings

	31.8.3 Multiple DCPSInfoRepo Configuration

	31.9 Pluggable Transports
	31.9.1 Simple TCP Transport
	31.9.2 Unreliable Datagram Transports
	31.9.2.1 SimpleUDP Transport
	31.9.2.2 SimpleMcast Transport

	31.9.3 Reliable Multicast Transport

	31.10 Using Built-In Topics
	31.10.1 Building Without BIT Support
	31.10.2 DCPSParticipant Topic
	31.10.3 DCPSTopic Topic
	31.10.4 DCPSPublication Topic
	31.10.5 DCPSSubscription Topic
	31.10.6 Built-In Topic Subscription Example

	31.11 Logging
	31.11.1 DCPS Level Logging
	31.11.2 Transport Level Logging

	31.12 dcps_ts.pl Command Line Options
	31.13 DCPS Information Repository
	31.13.1 Repository Federation
	31.13.1.1 Federation Management
	31.13.1.2 Federation Example

