
OpenDDS Developer’s Guide

OpenDDS Version 2.0.1
(Document Revision 1)

Supported by Object Computing, Inc. (OCI)
http://www.opendds.org
http://www.ociweb.com

ii o c i w e b . c o m

o c i w e b . c o m iii

Contents

Contents . iii

Preface . ix

Chapter 1 Introduction . 1
DCPS Overview . 2

Basic Concepts . 2
Built-In Topics . 5
Quality of Service Policies . 5
Listeners . 6
Conditions . 6

OpenDDS Implementation . 7
Compliance . 7
OpenDDS Architecture . 11

Chapter 2 Getting Started . 15
Using DCPS . 15

Defining the Data Types . 15

iv o c i w e b . c o m

C o n t e n t s

Processing the IDL . 16
Starting the DCPS Information Repository . 19
A Simple Message Publisher . 19
Setting up the Subscriber . 25
The Data Reader Listener Implementation . 28
Cleaning up in OpenDDS Clients . 30
Running the Example . 31

Data Handling Optimizations . 32
Registering and Using Instances in the Publisher . 32
Reading Multiple Samples . 33
Zero-Copy Read . 33

Chapter 3 Quality of Service . 37
 Introduction . 37
Supported Policies . 37

Default QoS Policy Values . 39
LIVELINESS . 43
RELIABILITY . 44
HISTORY . 45
DURABILITY . 46
DURABILITY_SERVICE . 47
RESOURCE_LIMITS . 48
PARTITION . 49
DEADLINE . 49
LIFESPAN . 50
USER_DATA . 51
TOPIC_DATA . 51
GROUP_DATA . 51
TRANSPORT_PRIORITY . 52
LATENCY_BUDGET . 53
ENTITY_FACTORY . 55
PRESENTATION . 56
DESTINATION_ORDER . 57
WRITER_DATA_LIFECYCLE . 58
READER_DATA_LIFECYCLE . 59
TIME_BASED_FILTER . 59

o c i w e b . c o m v

C o n t e n t s

Unsupported Policies . 60
OWNERSHIP . 60
OWNERSHIP_STRENGTH . 61

Policy Example . 61

Chapter 4 Conditions and Listeners . 63
Introduction . 63
Communication Status Types . 64

Topic Status Types . 64
Subscriber Status Types . 65
Data Reader Status Types . 65
Data Writer Status Types . 68

Listeners . 70
Topic Listener . 72
Data Writer Listener . 72
Publisher Listener . 72
Data Reader Listener . 73
Subscriber Listener . 73
Domain Participant Listener . 73

Conditions . 73
Overview . 73
Status Condition Example . 74
Additional Condition Types . 74
Read Conditions . 75
Query Conditions . 75
Guard Conditions . 75

Chapter 5 Configuration . 77
Configuration Files . 77

Common Configuration Settings . 78
Transport Configuration Settings . 81
Multiple DCPSInfoRepo Configuration . 88

Logging . 89
DCPS Layer Logging . 89
Transport Layer Logging . 90

vi o c i w e b . c o m

C o n t e n t s

Chapter 6 Pluggable Transports . 91
Simple TCP Transport . 91
Unreliable Datagram Transports . 93

SimpleUDP Transport . 93
SimpleMcast Transport . 94

Reliable Multicast Transport . 95

Chapter 7 Built-In Topics . 97
Introduction . 97
Building Without BIT Support . 98
DCPSParticipant Topic . 98
DCPSTopic Topic . 99
DCPSPublication Topic . 99
DCPSSubscription Topic . 100
Built-In Topic Subscription Example . 101

Chapter 8 dcps_ts.pl Options . 103
dcps_ts.pl Command Line Options . 103

Chapter 9 The DCPS Information Repository . 107
DCPS Information Repository Options . 107
Repository Federation . 109

Federation Management . 111
Federation Example . 113

Chapter 10 OpenDDS Java Bindings .117
Introduction .117
IDL and Code Generation .117
Setting up an OpenDDS Java Project .119
A Simple Message Publisher . 121

Initializing the Participant . 121
Registering the Data Type and Creating a Topic . 122
Initializing and Registering the Transport . 123
Creating a Publisher . 123

o c i w e b . c o m vii

C o n t e n t s

Creating a DataWriter and Registering an Instance . 123
Setting up the Subscriber . 124

Creating a Subscriber .125
Creating a DataReader and Listener . 125

The DataReader Listener Implementation . 125
Cleaning up OpenDDS Java Clients . 127
Configuring the Example . 128
Running the Example . 128
Java Message Service (JMS) Support . 129

Index . 131

viii o c i w e b . c o m

C o n t e n t s

o c i w e b . c o m ix

Preface

What Is OpenDDS?
OpenDDS is an open source implementation of the OMG Data Distribution
Service (DDS) for Real-Time Systems specification (OMG Document
formal/07-01-01). OpenDDS is sponsored by Object Computing, Inc. (OCI)
and is available via http://www.opendds.org/.

Licensing Terms
OpenDDS is made available under the open source software model. The
source code may be freely downloaded and is open for inspection, review,
comment, and improvement. Copies may be freely installed across all your
systems and those of your customers. There is no charge for development or
run-time licenses. The source code is designed to be compiled, and used,
across a wide variety of hardware and operating systems architectures. You
may modify it for your own needs, within the terms of the license agreements.
You must not copyright OpenDDS software. For details of the licensing terms,

x o c i w e b . c o m

see the file named LICENSE that is included in the OpenDDS source code
distribution or visit <http://www.opendds.org/license.html>.
OpenDDS also utilizes other open source software products, including MPC
(Make Project Creator), ACE (the ADAPTIVE Communication
Environment), and TAO (The ACE ORB). More information about these
products is available from OCI’s web site at
<http://www.ociweb.com/products>.
OpenDDS is open source and the development team welcomes contributions
of code, tests, and ideas. Active participation by users ensures a robust
implementation. Contact OCI if you are interested in contributing to the
development of OpenDDS. Please note that any code that is contributed to and
becomes part of the OpenDDS open source code base is subject to the same
licensing terms as the rest of the OpenDDS code base.

About This Guide
This Developer’s Guide corresponds to OpenDDS version 2.0.1. This guide is
primarily focused on the specifics of using and configuring OpenDDS to build
distributed, publish-subscribe applications. While it does give a general
overview of the OMG Data Distribution Service, especially the Data-Centric
Publish-Subscribe (DCPS) layer, this guide is not intended to provide
comprehensive coverage of the specification. The intent of this guide is to
help you become proficient with OpenDDS as quickly as possible.

Highlights of the OpenDDS 2.0 Release
OpenDDS version 2.0 includes many new features and improvements over the
previous release. This section highlights some of the more important and
visible changes. See the release notes in the distribution
($DDS_ROOT/DDS_release_notes.txt) and the appropriate sections of
this guide for more details on these and other features.

DDS Specification Compliance
With this release, OpenDDS is fully compliant with the Minimum and
Persistence profiles of the DDS version 1.2 specification (OMG Document
formal/07-01-01).

o c i w e b . c o m xi

Examples of changes in this release that affect compliance with the DDS
specification include:
• Implementations of many quality of service (QoS) policies have been

added or improved, including:
- PRESENTATION—All settings of coherent access and ordered

access are now supported for the INSTANCE and TOPIC access scope
settings; GROUP access scope (required for DCPS support for the
Object Model profile) is not yet supported;

- LIVELINESS—MANUAL_BY_TOPIC and
MANUAL_BY_PARTICIPANT liveliness kinds are now supported in
addition to AUTOMATIC;

- DESTINATION_ORDER—BY_SOURCE_TIMESTAMP ordering of
samples is now supported, as well as BY_RECEPTION_TIMESTAMP;
in addition, the implementation of DESTINATION_ORDER is
consistent with the ordered access setting of the PRESENTATION
policy;

- ENTITY_FACTORY—Newly created entities can now be enabled
manually or automatically via this policy;

- WRITER_DATA_LIFECYCLE—Data instances can now be
disposed automatically upon unregistration (including as a
consequence of data writer deletion) via this policy;

- READER_DATA_LIFECYCLE—Data samples maintained by a
data reader can now be purged automatically and resources allocated
for them released, after a specified duration, when either no writers
are alive or the data instances for those samples have been disposed,
according to the settings of this policy;

- TIME_BASED_FILTER—Data readers can now use this policy to
control the minimum separation time between samples, on a per data
instance basis, independently of the rate at which the samples are
written by the associated data writer;

• APIs have been updated to comply with the DDS version 1.2
specification, including changes to constant, type, and structure names, as
well as new or modified operation names and signatures on some
interfaces.

xii o c i w e b . c o m

See 1.3.1 for further details of OpenDDS’s compliance with the DDS
specification.

Other Implementation Improvements
• The implementation of instance handles has been improved. In particular,

unregistering and disposing instances now results in proper release of
resources once all samples in an affected instance have been removed.

TAO Version Compatibility
• OpenDDS 2.0 is compatible with the current patch levels of TAO 1.5a and

1.6a, as well as the current DOC Group beta/micro release. TAO 1.4a is
no longer supported as of this release. See the $DDS_ROOT/README file
for details on TAO versions that are compatible with OpenDDS.

Conventions
This guide uses the following conventions:

Coding Examples
Throughout this guide, we illustrate topics with coding examples. The
examples in this guide are intended for illustration purposes and should not be
considered to be “production-ready” code. In particular, error handling is
sometimes kept to a minimum to help the reader focus on the particular feature
or technique that is being presented in the example. The source code for all

Fixed pitch text Indicates example code or information a user
would enter using a keyboard.

Bold fixed pitch text Indicates example code that has been modified
from a previous example or text appearing in a
menu or dialog box.

Italic text Indicates a point of emphasis.

... A horizontal ellipsis indicates that the statement
is omitting text.

.

.

.
A vertical ellipsis indicates that a segment of code
is omitted from the example.

o c i w e b . c o m xiii

these examples is available as part of the OpenDDS source code distribution
in the $DDS_ROOT/DevGuideExamples directory. MPC files are provided
with the examples for generating build-tool specific files, such as GNU
Makefiles or Visual C++ project and solution files. A Perl script named
run_test.pl is provided with each example so you can easily run it.

OMG Specification References
Throughout this guide, we refer to various specifications published by the
Object Management Group (OMG). These references take the form
group/number where group represents the OMG working group responsible
for developing the specification, or the keyword formal if the specification
has been formally adopted, and number represents the year, month, and serial
number within the month the specification was released. For example, the
OMG DDS version 1.2 specification is referenced as formal/07-01-01.
You can download any referenced OMG specification directly from the OMG
web site by prepending <http://www.omg.org/cgi-bin/doc?> to the
specification’s reference. Thus, the specification formal/07-01-01
becomes <http://www.omg.org/cgi-bin/doc?formal/07-01-01>.
Providing this destination to a web browser should take you to a site from
which you can download the referenced specification document.

Additional Documents
Additional documentation on OpenDDS is available from the OpenDDS
Community Portal at <http://www.opendds.org>. In particular, be sure to
see the build instructions, architectural overview, Doxygen-generated
reference pages, and other information at
<http://www.opendds.org/documentation.html>, and visit the
OpenDDS Frequently Asked Questions (FAQ) pages at
<http://www.opendds.org/faq.html>.
Additional information and documents about DDS are available from the
OMG Data Distribution Portal at <http://portals.omg.org/dds>.

xiv o c i w e b . c o m

Supported Platforms
OCI regularly builds and tests OpenDDS on a wide variety of platforms,
operating systems, and compilers. We continually update OpenDDS to
support additional platforms. See the $DDS_ROOT/README file in the
distribution for the most recent platform support information.

Customer Support
Enterprises are discovering that it takes considerable experience, knowledge,
and money to design and build a complex distributed application that is robust
and scalable. OCI can help you successfully architect and deliver your
solution by drawing on the experience of seasoned architects who have
extensive experience in today's middleware technologies and who understand
how to leverage the power of DDS.
Our service areas include systems architecture, large-scale distributed
application architecture, and object oriented design and development. We
excel in technologies such as DDS (OpenDDS), CORBA (ACE+TAO and
JacORB), J2EE (JBoss), FIX (QuickFIX), and FAST (QuickFAST).
Support offerings for OpenDDS include:
• Consulting services to aid in the design of extensible, scalable, and robust

publish-subscribe solutions, including the validation of domain-specific
approaches, service selection, product customization and extension, and
migrating your applications to OpenDDS from other publish-subscribe
technologies and products.

• 24x7 support that guarantees the highest response level for your
production-level systems.

• On-demand service agreement for identification and assessment of minor
bugs and issues that may arise during the development and deployment of
OpenDDS-based solutions.

Our architects have specific and extensive domain expertise in security,
telecommunications, defense, financial, and other real-time distributed
applications.

o c i w e b . c o m xv

We can provide professionals who can assist you on short-term engagements,
such as architecture and design review, rapid prototyping, troubleshooting,
and debugging. Alternatively, for larger engagements, we can provide
mentors, architects, and programmers to work alongside your team, providing
assistance and thought leadership throughout the life cycle of the project.
Contact us at +1.314.579.0066 or <sales@ociweb.com> for more
information.

Object Technology Training
OCI provides a rich program of more than 50 well-focused courses designed
to give developers a solid foundation in a variety of technical topics, such as
Object Oriented Analysis and Design, C++ Programming, Java Programming,
Distributed Computing Technologies, Patterns, XML, and UNIX/Linux. Our
courses clearly explain major concepts and techniques, and demonstrate,
through hands-on exercises, how they map to real-world applications.

Note Our training offerings are constantly changing to meet the latest needs of our
clients and to reflect changes in technology. Be sure to check out our web site
at <http://www.ociweb.com> for updates to our Educational Programs.

On-Site Classes
We can provide the following courses at your company’s facility, integrating
them seamlessly with other employee development programs. For more
information about these or other courses in the OCI curriculum, visit our
course catalog on-line at <http://www.ociweb.com/training/>.

Introduction to CORBA
In this one-day course, you will learn the benefits of distributed object
computing; the role CORBA plays in developing distributed applications;
when and where to apply CORBA; and future development trends in CORBA.

xvi o c i w e b . c o m

CORBA Programming with C++
In this hands-on, four-day course, you will learn: the role CORBA plays in
developing distributed applications; the OMG’s Object Management
Architecture; how to write CORBA clients and servers in C++; how to use
CORBAservices such as Naming and Events; using CORBA exceptions; and
basic and advanced features of the Portable Object Adapter (POA). This
course also covers the specification of interfaces using OMG Interface
Definition Language (IDL) and details of the OMG IDL-to-C++ language
mapping, and provides hands-on practice in developing CORBA clients and
servers in C++ (using TAO).

Advanced CORBA Programming Using TAO
In this intensive, hands-on, four-day course, you will learn: several advanced
CORBA concepts and techniques and how they are supported by TAO; how to
configure TAO components for performance and space optimizations; and
how to use TAO’s various concurrency models to meet your application’s
end-to-end QoS guarantees. The course covers recent additions to the CORBA
specifications and to TAO to support real-time CORBA programming,
including Real-Time CORBA. It also covers TAO’s Real-Time Event Service,
Notification Service, and Implementation Repository, and provides extensive
hands-on practice in developing advanced TAO clients and servers in C++.
This course is intended for experienced and serious CORBA/C++
programmers.

Using the ACE C++ Framework
In this hands-on, four-day course, you will learn how to implement
Interprocess Communication (IPC) mechanisms using the ACE (ADAPTIVE
Communication Environment) IPC Service Access Point (SAP) classes and
the Acceptor/Connector pattern. The course will also show you how to use a
Reactor in event demultiplexing and dispatching; how to implement
thread-safe applications using the ACE thread encapsulation class categories;
and how to identify appropriate ACE components to use for your specific
application needs.

Object-Oriented Design Patterns and Frameworks
In this three-day course, you will learn the critical language and terminology
relating to design patterns, gain an understanding of key design patterns, learn
how to select the appropriate pattern to apply in a given situation, and learn

o c i w e b . c o m xvii

how to apply patterns to construct robust applications and frameworks. The
course is designed for software developers who wish to utilize advanced
object oriented design techniques and managers with a strong programming
background who will be involved in the design and implementation of object
oriented software systems.

OpenDDS Programming with C++
In this three-day course, you will learn to build applications using OpenDDS,
the open source implementation of the OMG’s Data Distribution Service
(DDS) for Real-Time Systems. You will learn how to build data-centric
systems that share data via OpenDDS. You will also learn to configure
OpenDDS to meet your application’s Quality of Service requirements.This
course if intended for experienced C++ developers.

C++ Programming Using Boost
In this four-day course, you will learn about the most widely used and useful
libraries that make up Boost. Students will learn how to easily apply these
powerful libraries in their own development through detailed expert
instructor-led training and by hands-on exercises. After finishing this course,
class participants will be prepared to apply Boost to their project, enabling
them to more quickly produce powerful, efficient, and platform independent
applications.

For information about training dates, contact us by phone at
+1.314.579.0066, via electronic mail at training@ociweb.com, or visit our
web site at <http://www.ociweb.com> to review the current course
schedule.

xviii o c i w e b . c o m

o c i w e b . c o m 1

CHAPTER 1

Introduction

OpenDDS is an open source implementation of the OMG Data Distribution
Service (DDS) for Real-Time Systems specification (OMG Document
formal/07-01-01). OpenDDS is sponsored by Object Computing, Inc. (OCI)
and is available via http://www.opendds.org/. This developer’s guide is
based on the version 2.0.1 release of OpenDDS.
DDS defines a service for efficiently distributing application data between
participants in a distributed application. This service is not specific to
CORBA. The specification provides a platform independent model (PIM) as
well as a platform specific model (PSM) that maps the PIM onto a CORBA
IDL implementation. The service is divided into two levels of interfaces: the
Data-Centric Publish-Subscribe (DCPS) layer and an optional Data Local
Reconstruction Layer (DLRL). The DCPS layer transports data from
publishers to subscribers according to Quality of Service constraints
associated with the data topic, publisher, and subscriber. The DLRL allows
distributed data to be shared by local objects located remotely from each other
as if the data were local. The DLRL is built on top of the DCPS layer.

2 o c i w e b . c o m

I n t r o d u c t i o n

For additional details about DDS, developers should refer to the DDS
specification (OMG Document formal/07-01-01) as it contains in-depth
coverage of all the service’s features.
OpenDDS is the open-source C++ implementation of OMG’s DDS
specification developed and commercially supported by OCI. It is available
for download from http://www.opendds.org/downloads.html and is
compatible with recent patch levels of TAO version 1.5a, 1.6a, and 1.7.x.
OpenDDS version 1.3 was the last release that supported TAO version 1.4a.

Note OpenDDS currently implements a subset of the DCPS layer and is mostly
compliant with the OMG DDS version 1.2 specification. None of the DLRL
functionality is currently implemented. See the compliance information in
1.2.1 or at http://www.opendds.org/ for more information.

1.1 DCPS Overview
In this section we introduce the main concepts and entities of the DCPS layer
and discuss how they interact and work together.

1.1.1 Basic Concepts
Figure 1-1 shows an overview of the DDS DCPS layer. The following
subsections define the concepts shown in this diagram.

o c i w e b . c o m 3

1 . 1 D C P S O v e r v i e w

Figure 1-1 DCPS Conceptual Overview

DataWriter

Topic B

Publisher

Data
Transmission

Subscriber

DataReader

Domain

DataReader

Subscriber

DataReader

DataWriter

Publisher

DataWriter

Topic A

4 o c i w e b . c o m

I n t r o d u c t i o n

1.1.1.1 Domain
The domain is the fundamental partitioning unit within DCPS. Each of the
other entities belongs to a domain and can only interact with other entities in
that same domain. Application code is free to interact with multiple domains
but must do so via separate entities that belong to the different domains.

1.1.1.2 DomainParticipant
A domain participant is the entry-point for an application to interact within a
particular domain. The domain participant is a factory for many of the objects
involved in writing or reading data.

1.1.1.3 Topic
The topic is the fundamental means of interaction between publishing and
subscribing applications. Each topic has a unique name within the domain and
a specific data type that it publishes. Each topic data type can specify zero or
more fields that make up its key. When publishing data, the publishing process
always specifies the topic. Subscribers request data via the topic. In DCPS
terminology you publish individual data samples for different instances on a
topic. Each instance is associated with a unique value for the key. A
publishing process publishes multiple data samples on the same instance by
using the same key value for each sample.

1.1.1.4 DataWriter
The data writer is used by the publishing application code to pass values to the
DDS. Each data writer is bound to a particular topic. The application uses the
data writer’s type-specific interface to publish samples on that topic. The data
writer is responsible for marshaling the data and passing it to the publisher for
transmission.

1.1.1.5 Publisher
The publisher is responsible for taking the published data and disseminating it
to all relevant subscribers in the domain. The exact mechanism employed is
left to the service implementation.

o c i w e b . c o m 5

1 . 1 D C P S O v e r v i e w

1.1.1.6 Subscriber
The subscriber receives the data from the publisher and passes it to any
relevant data readers that are connected to it.

1.1.1.7 DataReader
The data reader takes data from the subscriber, demarshals it into the
appropriate type for that topic, and delivers the sample to the application. Each
data reader is bound to a particular topic. The application uses the data
reader’s type-specific interfaces to receive the samples.

1.1.2 Built-In Topics
The DDS specification defines a number of topics that are built-in to the DDS
implementation. Subscribing to these built-in topics gives application
developers access to the state of the domain being used including which topics
are registered, which data readers and data writers are connected and
disconnected, and the QoS settings of the various entities. While subscribed,
the application receives samples indicating changes in the entities within the
domain.
The following table shows the built-in topics defined within the DDS
specification:

1.1.3 Quality of Service Policies
The DDS specification defines a number of Quality of Service (QoS) policies
that are used by applications to specify their QoS requirements to the service.
Participants specify what behavior they require from the service and the
service decides how to achieve these behaviors. These policies can be applied
to the various DCPS entities (topic, data writer, data reader, publisher,
subscriber, domain participant) although not all policies are valid for all types
of entities.

Topic Name Description
DCPSParticipant Each instance represents a domain participant.
DCPSTopic Each topic is an instance.
DCPSPublication Each instance represents a data writer
DCPSSubscription Each instance represents a data reader.

Figure 1-2 Built-In Topics

6 o c i w e b . c o m

I n t r o d u c t i o n

Subscribers and publishers collaborate to specify QoS through an
offer-request paradigm. Publishers offer a set of QoS policies to all
subscribers. Subscribers request a set of policies that they require. The DDS
implementation then attempts to match the requested policies with the offered
policies. If the policies are consistent the subscription is initiated. If the
policies are not consistent then the subscription attempt fails.
The QoS policies currently implemented by OpenDDS are discussed in detail
in Chapter 3.

1.1.4 Listeners
The DPCS layer defines a callback interface for each entity that allows an
application processes to “listen” for certain state changes or events pertaining
to that entity. For example, a Data Reader Listener is notified when there are
data values available for reading.

1.1.5 Conditions
Conditions and wait-sets allow an alternative to listeners in detecting events of
interest in DDS. The general pattern is
• The application creates a specific kind of condition object, such as a

Status Condition, and attaches it to a Wait Set.
• The application waits on the Wait Set until one or more Conditions

become true.
• The application calls operations on the corresponding entity objects to

extract the necessary information.
• The Data Reader interface also has operations that take a ReadCondition

argument.
• Query Conditions with queries of the form "ORDER BY ..." are

supported. These conditions are commonly used with the Data Reader
interface and not in conjunction with Wait Sets.

o c i w e b . c o m 7

1 . 2 O p e n D D S I m p l e m e n t a t i o n

1.2 OpenDDS Implementation

1.2.1 Compliance
Appendix A of the DDS specification defines five compliance points for a
DDS implementation:
1. Minimum Profile
2. Content-Subscription Profile
3. Persistence Profile
4. Ownership Profile
5. Object Model Profile
This section describes OpenDDS’s compliance with these profiles in terms of
the entities and quality of service policies defined by the DDS specification.

1.2.1.1 Entity Compliance
The DDS specification defines five modules that make up the DCPS PIM:
1. Infrastructure Module
2. Domain Module
3. Topic-Definition Module
4. Publication Module
5. Subscription Module
Various entities are defined within each module. Not all entities pertain to
every profile listed in 1.2.1. Table 1-1 through Table 1-5 show which entities
are included in each module and to which profiles each entity pertains, as well
as whether or not the entity is implemented by OpenDDS.
Table 1-1 Infrastructure Module Entities

Entity Name Profiles Impl?
Entity All Yes
DomainEntity All Yes
QosPolicy All Yes
Listener All Yes
Status All Yes
WaitSet All Yes

8 o c i w e b . c o m

I n t r o d u c t i o n

Condition All Yes
GuardCondition All Yes
StatusCondition All Yes

Table 1-2 Domain Module Entities

Entity Name Profiles Impl?
DomainParticipant All Yes
DomainParticipantFactory All Yes
DomainParticipantListener All Yes

Table 1-3 Topic-Definition Module Entities

Entity Name Profiles Impl?
TopicDescription All Yes
Topic All Yes
ContentFilteredTopic Content-Subscription No
MultiTopic Content-Subscription No
TopicListener All Yes
TypeSupport All Yes

Table 1-4 Publication Module Entities

Entity Name Profiles Impl?
Publisher All Yes
DataWriter All Yes
PublisherListener All Yes
DataWriterListener All Yes

Table 1-1 Infrastructure Module Entities

Entity Name Profiles Impl?

o c i w e b . c o m 9

1 . 2 O p e n D D S I m p l e m e n t a t i o n

1.2.1.2 Quality of Service (QoS) Compliance
The DDS specification defines several QoS policies. Each policy is applicable
to certain entities. Not all policies pertain to every profile listed in 1.2.1. Table
1-6 shows the various QoS policies and their possible values, the entities to
which the policies apply, the profiles to which each policy/value pertains, as
well as whether or not the policy/value is implemented by OpenDDS.

Table 1-5 Subscription Module Entities

Entity Name Profiles Impl?
Subscriber All Yes
DataReader All Yes
DataSample All Yes
SampleInfo All Yes
SubscriberListener All Yes
DataReaderListener All Yes
ReadCondition All Yes
QueryCondition Content-Subscription Partial1

1. Only queries of the form "ORDER BY ..." are supported.

Table 1-6 QoS Policies

Policy Name Entities Values Profiles Impl?

USER_DATA
DomainParticipant
DataWriter
DataReader

sequence of octets All Yes

TOPIC_DATA Topic sequence of octets All Yes

GROUP_DATA Publisher
Subscriber sequence of octets All Yes

DURABILITY
Topic
DataWriter
DataReader

VOLATILE All Yes
TRANSIENT_LOCAL All Yes
TRANSIENT
(includes
DURABILITY_SERVICE)

Persistence Yes

PERSISTENT
(includes
DURABILITY_SERVICE)

Persistence Yes

10 o c i w e b . c o m

I n t r o d u c t i o n

PRESENTATION Publisher
Subscriber

INSTANCE scope COHERENT=true All Yes
INSTANCE scope ORDERED=true All Yes
TOPIC scope COHERENT=true All Yes
TOPIC scope ORDERED=true All Yes

GROUP scope COHERENT=true
Object
Model No

GROUP scope ORDERED=true
Object
Model No

DEADLINE
Topic
DataWriter
DataReader

integer (period) All Yes

LATENCY_BUDGET
Topic
DataWriter
DataReader

integer (duration) All Yes

OWNERSHIP
Topic
DataWriter
DataReader

SHARED All Yes
EXCLUSIVE Ownership No

OWNERSHIP_STRENGTH
Topic
DataWriter
DataReader

integer (value) Ownership No

LIVELINESS
Topic
DataWriter
DataReader

AUTOMATIC All Yes
MANUAL_BY_PARTICIPANT All Yes
MANUAL_BY_TOPIC All Yes

TIME_BASED_FILTER DataReader integer (minimum_separation) All Yes

PARTITION Publisher
Subscriber sequence of strings All Yes

RELIABILITY
Topic
DataWriter1
DataReader

BEST_EFFORT All Yes
RELIABLE All Yes2

TRANSPORT_PRIORITY Topic
DataWriter integer All Yes3

LIFESPAN Topic
DataWriter integer (duration) All Yes

DESTINATION_ORDER
Topic
DataWriter
DataReader

BY_RECEPTION_TIMESTAMP All Yes
BY_SOURCE_TIMESTAMP All Yes

HISTORY
Topic
DataWriter
DataReader

KEEP_LAST
integer (depth) All4 Yes

KEEP_ALL All Yes

Table 1-6 QoS Policies

Policy Name Entities Values Profiles Impl?

o c i w e b . c o m 11

1 . 2 O p e n D D S I m p l e m e n t a t i o n

1.2.2 OpenDDS Architecture
This section gives a brief overview of the OpenDDS implementation, its
features, and some of its components. The $DDS_ROOT environment variable
should point to the base directory of the OpenDDS distribution. Source code
for OpenDDS can be found under $DDS_ROOT/dds. DDS tests can be found
under $DDS_ROOT/tests.

1.2.2.1 Basic Philosophy
The OpenDDS implementation is based on a fairly strict interpretation of the
OMG IDL Platform Specific Model (PSM). In almost all cases the OMG’s
C++ Language Mapping for CORBA/IDL is used to define how the IDL in the
DDS specification is mapped into the C++ APIs that OpenDDS exposes to the
client.
The main deviation from the OMG IDL PSM is that local interfaces are used
for the entities and various other interfaces. These are defined as
unconstrained (non-local) interfaces in the DDS specification. Defining them
as local interfaces improves performance, reduces memory usage, simplifies
the client’s interaction with these interfaces, and makes it easier for clients to
build their own implementations of things like listeners.

RESOURCE_LIMITS
Topic
DataWriter
DataReader

integer (max_samples)
integer (max_instances)
integer
(max_samples_per_instance)

All Yes

ENTITY_FACTORY

DomainParticipantFactory
DomainParticipant
Publisher
Subscriber

AUTO_ENABLE=true All Yes

AUTO_ENABLE=false All Yes

WRITER_DATA_
LIFECYCLE DataWriter

boolean
(autodispose_unregistered_
instances)

All Yes

READER_DATA_
LIFECYCLE DataReader

integer
(autopurge_nowriter_samples_
delay)
integer
(autopurge_disposed_samples_
delay)

All Yes

1. For OpenDDS versions, up to 2.0, the default reliability kind for data writers is best effort. For versions 2.0.1 and later, this is
changed to reliable (to conform with the DDS specification).

2. RELIABILITY.kind=RELIABLE supported only if the TCP or Reliable Multicast transport implementation is used.
3. Not implemented as changeable.
4. KEEP_LAST.depth > 1 only applies to the Ownership profile.

Table 1-6 QoS Policies

Policy Name Entities Values Profiles Impl?

12 o c i w e b . c o m

I n t r o d u c t i o n

1.2.2.2 Pluggable Transport Layer
OpenDDS uses the CORBA interfaces defined by the DDS specification to
initialize and control service usage. Data transmission is accomplished via an
OpenDDS-specific Pluggable Transport layer that allows the service to be
used with a variety of transport protocols. OpenDDS currently implements
simple TCP, UDP, reliable multicast and unreliable multicast transports.
Transports are created via a factory object and are associated with publishers
and subscribers who use them for their data transmission.
The pluggable transport layer enables application developers to implement
their own customized protocols. Implementing your own custom transport
involves specializing a number of classes defined in the transport framework
directory $DDS_ROOT/dds/DCPS/transport/framework. See the simple
TCP implementation in $DDS_ROOT/dds/DCPS/transport/simpleTCP
for details.

o c i w e b . c o m 13

1 . 2 O p e n D D S I m p l e m e n t a t i o n

Figure 1-3 OpenDDS Pluggable Transport Framework

1.2.2.3 Custom Marshaling
Because data transmission is not done with CORBA, DDS implementations
are free to marshal the data using customized formats. OpenDDS uses a more
efficient variation of CORBA’s Common Data Representation (CDR). A new
IDL compiler switch (-Gdcps) causes the TAO IDL compiler to generate the
appropriate marshaling and instance key support code for DCPS-enabled
types.

1.2.2.4 DCPS Information Repository
The DCPS Information Repository (InfoRepo) acts as the intermediary or
broker between the publisher and subscriber. It is currently implemented as a

TCP ...other...UDP

Wire Protocol

Pluggable
Discovery

Pluggable
Data Transfer

Application

DCPS Publisher

Application

DCPS Subscriber

Transport
Factory

Pluggable
Discovery

QoS QoS

Pluggable Transport AdapterTransport
Factory

14 o c i w e b . c o m

I n t r o d u c t i o n

CORBA server. When a client requests a subscription for a topic, the DCPS
Information Repository locates the topic and notifies any existing publishers
of the location of the new subscriber. The InfoRepo process needs to be
running whenever OpenDDS is being used. The InfoRepo is not involved in
data propagation, its role is limited in scope to publishers and subscribers
discovering one another.
Application developers are free to run multiple information repositories with
each managing their own non-overlapping sets of DCPS domains.
It is also possible to operate domains with more than a single repository, thus
forming a distributed virtual repository. This is known as repository
federation. In order for individual repositories to participate in a federation,
each one must specify its own federation identifier value (a 32 bit numeric
value) upon start-up. See 9.2 for further information about repository
federations.

1.2.2.5 Threading
OpenDDS creates its own ORB as well as a separate thread upon which to run
that ORB. It also uses its own threads to process incoming and outgoing
non-CORBA transport I/O. A separate thread is created to cleanup resources
upon unexpected connection closure. Your application may get called back
from these threads via the Listener mechanism of DCPS.
When publishing a sample via DDS, OpenDDS attempts to send the sample to
any connected subscribers using the calling thread. If the send call blocks,
then the sample may be queued for sending on a separate service thread. This
behavior depends on the QoS policies described in Chapter 3.
All incoming data in the subscriber is read by the service thread and queued
for reading by the application. Data reader listeners are called from the service
thread.

1.2.2.6 Configuration
OpenDDS includes a file-based configuration framework for configuring both
global items such as debug level, memory allocation, and DCPSInfoRepo
locations, as well as transport implementations for publishers and subscribers.
The complete set of configuration settings is described in Chapter 5.

o c i w e b . c o m 15

CHAPTER 2

Getting Started

2.1 Using DCPS
This chapter focuses on an example application using DCPS to distribute data
from a publisher process to a subscriber. It is based on a simple messenger
application where a single publisher publishes messages and a single
subscriber subscribes to them. We use the default QoS properties and the
Simple TCP transport. Full source code for this example is in the OpenDDS
source code distribution in the directory
$DDS_ROOT/DevGuideExamples/DCPS/Messenger. Additional DDS and
DCPS features are discussed in later chapters.

2.1.1 Defining the Data Types
Each data type used by DDS is defined using IDL. OpenDDS uses #pragma
statements to identify the data types that DDS transmits and processes. These
data types are processed by the TAO IDL compiler and the dcps_ts.pl
script to generate code necessary for transmitting these types with DDS. Here
is the IDL file that defines our Message data type:

module Messenger {

16 o c i w e b . c o m

G e t t i n g S t a r t e d

#pragma DCPS_DATA_TYPE "Messenger::Message"
#pragma DCPS_DATA_KEY "Messenger::Message subject_id"

 struct Message {
 string from;
 string subject;
 long subject_id;
 string text;
 long count;
 };
};

The DCPS_DATA_TYPE pragma marks a data type for use with OpenDDS. A
fully scoped type name must be used with this pragma. Currently, OpenDDS
requires the data type to be a structure. The structure may contain scalar types
(short, long, float, etc.), enumerations, strings, sequences, arrays, structures,
and unions. This example defines the structure Message in the Messenger
module for use in this OpenDDS example.
The DCPS_DATA_KEY pragma identifies a field of the DCPS data type that is
used as the key for this type. A data type may have zero or more keys. These
keys are used to identify the different instances within a topic that use this
type. Each key should be a numeric or enumerated type, a string, or a typedef
of one of those types.1 The pragma is passed the fully scoped type name and
the member name that is the key for that type. Multiple keys are specified via
separate DCPS_DATA_KEY pragmas with the same data type. In the above
example, we identify the subject_id member of Messenger::Message as
the key. Each sample published with a unique subject_id value is defined
as a different instance within the topic. Subsequent samples with the same
subject_id value are treated as replacement values for that instance.

2.1.2 Processing the IDL
The OpenDDS IDL is processed like any other IDL with the exception that we
pass the -Gdcps option the TAO IDL compiler.

tao_idl -Gdcps Messenger.idl

1.Other types, such as structures, sequences, and arrays cannot be used directly as
keys, though a work around is to declare (via the DCPS_DATA_KEY pragma) in-
dividual members of structs or elements of sequences/arrays as keys.

o c i w e b . c o m 17

2 . 1 U s i n g D C P S

This causes the IDL compiler to generate additional serialization and key
support code that OpenDDS uses to marshal and demarshal the Message
structure.
In addition, we need to process the IDL file with the dcps_ts.pl script to
generate the required type support code for the data readers and writers. This
script is located in $DDS_ROOT/bin and generates three files for each IDL file
processed. The three files all begin with the original IDL file name and would
appear as follows:
• <filename>TypeSupport.idl

• <filename>TypeSupportImpl.h

• <filename>TypeSupportImpl.cpp

For example, running dcps_ts.pl as follows

dcps_ts.pl Messenger.idl

generates MessengerTypeSupport.idl,
MessengerTypeSupportImpl.h, and
MessengerTypeSupportImpl.cpp. The IDL file contains the
MessageTypeSupport, MessageDataWriter, and MessageDataReader
interface definitions. These are type-specific DDS interfaces that we use later
to register our data type with the domain, publish samples of that data type,
and receive published samples. The implementation files contain
implementations for these interfaces. The generated IDL file should itself be
compiled to generate stubs and skeletons. These and the implementation file
should be linked with your OpenDDS applications that use the Message type.
This type support generation script has a number of options that specialize the
generated code. These options are described in Chapter 8.
Typically, you do not directly invoke the IDL compiler or dcps_ts.pl script
as above, but let your build environment do it for you. The entire process is
simplified when using MPC, by inheriting from the dcpsexe_with_tcp
project. Here is the MPC file section common to both the publisher and
subscriber

project(*idl): dcps {
 // This project ensures the common components get built first.

 TypeSupport_Files {
 Messenger.idl

18 o c i w e b . c o m

G e t t i n g S t a r t e d

 }

 custom_only = 1
}

The dcps parent project adds the -Gdcps IDL compiler option and adds the
Type Support custom build rules. The TypeSupport_Files section above tells
MPC to generate the Message type support files from Messenger.idl using
the dcps_ts.pl script. Here is the publisher section:

project(*Publisher) : dcpsexe_with_tcp {

 exename = publisher
 after += *idl

 TypeSupport_Files {
 Messenger.idl
 }

 Source_Files {
 Publisher.cpp
 }
}

The dcpsexe_with_tcp project links in the DCPS library.
For completeness, here is the subscriber section of the MPC file:

project(*Subscriber) : dcpsexe_with_tcp {

 exename = subscriber
 after += *idl

 TypeSupport_Files {
 Messenger.idl
 }

 Source_Files {
 Subscriber.cpp
 DataReaderListenerImpl.cpp
 }
}

o c i w e b . c o m 19

2 . 1 U s i n g D C P S

2.1.3 Starting the DCPS Information Repository
The source code for the DCPS Information Repository server is found in
$DDS_ROOT/dds/InfoRepo and the server executable is
$DDS_ROOT/bin/DCPSInfoRepo. This server process hosts the DCPSInfo
CORBA object that is the entry point for all OpenDDS functionality. This
object is mapped against the key string ‘DCPSInfoRepo’ in the process’
IORTable. Thus a corbaloc ObjectURL such as:

corbaloc:iiop:localhost:12345/DCPSInfoRepo

can be used to locate the DCPSInfo object. The server also writes out the
DCPSInfo object’s IOR as a string to a file, which can also be used to
bootstrap clients. We can alter the file name used for writing this IOR with the
-o command line option.

$DDS_ROOT/bin/DCPSInfoRepo -o repo.ior

The full set of command line options for the DCPSInfoRepo server are
documented in Chapter 9.

2.1.4 A Simple Message Publisher
In this section we describe the steps involved in setting up a simple OpenDDS
publication process. The code is broken into logical sections and explained as
we present each section. We omit some uninteresting sections of the code
(such as #include directives, error handling, and cross-process
synchronization). The full source code for this sample publisher is found in
the Publisher.cpp and Writer.cpp files in
$DDS_ROOT/DevGuideExamples/DCPS/Messenger.

2.1.4.1 Initializing the Participant
The first section of main() initializes the current process as an OpenDDS
participant.

int main (int argc, char *argv[]) {
 try {
 DDS::DomainParticipantFactory_var dpf =
 TheParticipantFactoryWithArgs(argc, argv);
 DDS::DomainParticipant_var participant =
 dpf->create_participant(42, // domain ID
 PARTICIPANT_QOS_DEFAULT,

20 o c i w e b . c o m

G e t t i n g S t a r t e d

 DDS::DomainParticipantListener::_nil(),
 OpenDDS::DCPS::DEFAULT_STATUS_MASK);
 if (CORBA::is_nil(participant.in())) {
 std::cerr << "create_participant failed." << std::endl;
 return 1;
 }

The TheParticipantFactoryWithArgs macro is defined in
Service_Participant.h and initializes the Domain Participant Factory
with the command line arguments. These command line arguments are used to
initialize the ORB that the OpenDDS service uses as well as the service itself.
This allows us to pass ORB_init() options on the command line as well as
OpenDDS configuration options of the form -DCPS*. Available OpenDDS
options are fully described in Chapter 5. The create_participant()
operation uses the domain participant factory to register this process as a
participant in the domain specified by the ID of 42. The participant uses the
default QoS policies and no listeners. Use of the OpenDDS default status
mask ensures all relevant communication status changes (e.g., data available,
liveliness lost) in the middleware are communicated to the application (e.g.,
via callbacks on listeners).
The Domain Participant object reference returned is then used to register our
Message data type.

2.1.4.2 Registering the Data Type and Creating a Topic
First, we create a MessageTypeSupportImpl object, then register the type
with a type name using the register_type() operation. In this example, we
register the type with a nil string type name, which causes the
MessageTypeSupport interface repository identifier to be used as the type
name. A specific type name such as “Message” can be used as well.

 Messenger::MessageTypeSupport_var mts =
 new Messenger::MessageTypeSupportImpl();
 if (DDS::RETCODE_OK != mts->register_type(participant.in (), "")) {
 std::cerr << "register_type failed." << std::endl;
 return 1;
 }

Next, we obtain the registered type name from the type support object and
create the topic by passing the type name to the participant in the
create_topic() operation.

o c i w e b . c o m 21

2 . 1 U s i n g D C P S

 CORBA::String_var type_name = mts->get_type_name ();

 DDS::Topic_var topic =
 participant->create_topic ("Movie Discussion List",
 type_name.in (),
 TOPIC_QOS_DEFAULT,
 DDS::TopicListener::_nil(),
 OpenDDS::DCPS::DEFAULT_STATUS_MASK);
 if (CORBA::is_nil(topic.in())) {
 std::cerr << "create_topic failed." << std::endl;
 return 1;
 }

We have created a topic named “Movie Discussion List” with the registered
type and the default QoS policies.

2.1.4.3 Initializing and Registering the Transport
We now initialize the transport we want to use.

 OpenDDS::DCPS::TransportImpl_rch transport_impl =
 TheTransportFactory->create_transport_impl (
 OpenDDS::DCPS::DEFAULT_SIMPLE_TCP_ID,
 OpenDDS::DCPS::AUTO_CONFIG);

This code obtains the transport implementation from the singleton transport
factory, called TheTransportFactory. The
OpenDDS::DCPS::AUTO_CONFIG argument indicates that we are using a
configuration file to configure the transport implementation.The
OpenDDS::DCPS::DEFAULT_SIMPLE_TCP_ID specifies the transport id
value. Note that the code itself does not need to know any details about the
transport implementation, such as whether it uses TCP or UDP, what its
endpoints are, etc.
The code above uses the default simple TCP transport identity
DEFAULT_SIMPLE_TCP_ID. OpenDDS reserves a range(0xFFFFFF00 ~
0xFFFFFFFF)for default transport identities. Currently, only the simple TCP,
simple UDP, simple multicast, and reliable multicast transport identifiers are
supported. The default transport identifiers are defined in TransportDef.h
as follows:

 const TransportIdType DEFAULT_SIMPLE_TCP_ID = 0xFFFFFF00;
 const TransportIdType DEFAULT_SIMPLE_UDP_ID = 0xFFFFFF01;
 const TransportIdType DEFAULT_SIMPLE_MCAST_PUB_ID = 0xFFFFFF02;

22 o c i w e b . c o m

G e t t i n g S t a r t e d

 const TransportIdType DEFAULT_SIMPLE_MCAST_SUB_ID = 0xFFFFFF03;
 const TransportIdType DEFAULT_RELIABLE_MULTICAST_PUB_ID = 0xFFFFFF04;
 const TransportIdType DEFAULT_RELIABLE_MULTICAST_SUB_ID = 0xFFFFFF05;

Alternatively, you can define your own transport identifier and specify the
details of your transport via a configuration file. This is discussed in 5.1.2.
The TransportFactory also provides alternate APIs to create a transport
implementation.

 OpenDDS::DCPS::TransportIdType transport_impl_id = 1;
 OpenDDS::DCPS::TransportImpl_rch transport_impl =
 TheTransportFactory->create_transport_impl (
 transport_impl_id, "SimpleTcp", OpenDDS::DCPS::AUTO_CONFIG);

The code above creates a SimpleTCP transport implementation with default
configuration. This API can be used to create multiple transport instances with
the default configuration in a single process by passing unique transport IDs.
This API can be used with file-based configurations as long as the matching
transport configuration (based upon the transport id) also specifies the same
transport type (in our example that is “SimpleTCP”).
We can also configure the transport implementation programmatically,
eliminating the need for a configuration file. Here is sample code to create and
configure a simple TCP transport implementation.

 OpenDDS::DCPS::TransportIdType transport_impl_id = 1;
 OpenDDS::DCPS::TransportImpl_rch transport_impl =
 TheTransportFactory->create_transport_impl (
 transport_impl_id, "SimpleTcp", OpenDDS::DCPS::DONT_AUTO_CONFIG);

 OpenDDS::DCPS::TransportConfiguration_rch config =
 TheTransportFactory->create_configuration (transport_impl_id);
 OpenDDS::DCPS::SimpleTcpConfiguration* transport_config =
 static_cast <OpenDDS::DCPS::SimpleTcpConfiguration*> (config.in());

 transport_config->enable_nagle_algorithm_ = true;

 if (transport_impl->configure(config.in()) != 0)
 {
 std::cerr << "Failed to configure the transport." << std::endl;
 return 1;

o c i w e b . c o m 23

2 . 1 U s i n g D C P S

2.1.4.4 Creating a Publisher
Now we are ready to create the publisher and attach the transport
implementation we want it to use.

 DDS::Publisher_var pub =
 participant->create_publisher(
 PUBLISHER_QOS_DEFAULT,
 DDS::PublisherListener::_nil(),
 OpenDDS::DCPS::DEFAULT_STATUS_MASK);
 if (CORBA::is_nil(pub.in())) {
 std::cerr << "create_publisher failed." << std::endl;
 return 1;
 }

 // Attach the publisher to the transport.
 OpenDDS::DCPS::AttachStatus status = transport_impl->attach(pub.in());
 if (status != OpenDDS::DCPS::ATTACH_OK) {
 std::cerr << "Failed to attach to the transport." << std::endl;
 return 1;
 }

The publisher will now use the pluggable transport instance to which it is
attached to publish data samples to the network.

2.1.4.5 Creating a DataWriter and Waiting for the Subscriber
With the publisher in place, we create the data writer.

 // Create the datawriter
 DDS::DataWriter_var writer =
 pub->create_datawriter(topic.in (),
 DATAWRITER_QOS_DEFAULT,
 DDS::DataWriterListener::_nil(),
 OpenDDS::DCPS::DEFAULT_STATUS_MASK);
 if (CORBA::is_nil(writer.in())) {
 std::cerr << "create_datawriter failed." << std::endl;
 return 1;
 }

When we create the data writer we pass the topic object reference, the default
QoS policies, and a null listener reference. We now narrow the data writer
reference to a MessageDataWriter object reference so we can use the
type-specific publication operations.

 Messenger::MessageDataWriter_var writer_i =

24 o c i w e b . c o m

G e t t i n g S t a r t e d

 Messenger::MessageDataWriter::_narrow(writer.in());

The example code uses conditions and wait sets so the publisher waits for the
subscriber to become connected and fully initialized. In a simple example like
this, failure to wait for the subscriber may cause the publisher to publish its
samples before the subscriber is connected.
The basic steps involved in waiting for the subscriber are

1. Get the status condition from the data writer we created
2. Enable the Publication Matched status in the condition
3. Create a wait set
4. Attach the status condition to the wait set
5. Wait on the wait set for a specified period of time
6. Get the publication matched status
7. If the current count of matches is less than one, then go back to step 5

and wait some more
8. If the current count of matches is one or more, detach the condition

from the wait set and proceed to publication
Here is the corresponding code:

 // Block until Subscriber is available
 DDS::StatusCondition_var condition = writer->get_statuscondition();
 condition->set_enabled_statuses(DDS::PUBLICATION_MATCHED_STATUS);

 DDS::WaitSet_var ws = new DDS::WaitSet;
 ws->attach_condition(condition);

 DDS::ConditionSeq conditions;
 DDS::PublicationMatchedStatus matches = { 0, 0, 0, 0, 0 };
 DDS::Duration_t timeout = { 30, 0 };

 do {
 if (ws->wait(conditions, timeout) != DDS::RETCODE_OK) {
 std::cerr << "wait failed!" << std::endl;
 return 1;
 }

 if (writer->get_publication_matched_status(matches) != DDS::RETCODE_OK) {
 std::cerr << "get_publication_matched_status failed!" << std::endl;
 return 1;
 }

 } while (matches.current_count < 1);

o c i w e b . c o m 25

2 . 1 U s i n g D C P S

 ws->detach_condition(condition);

For more details about status, conditions, and wait set, see Chapter 4.

2.1.4.6 Sample Publication
The message publication is quite straightforward:

 // Populate instance
 Messenger::Message message;
 message.subject_id = 99;
 message.from = CORBA::string_dup("Comic Book Guy");
 message.subject = CORBA::string_dup("Review");
 message.text = CORBA::string_dup("Worst. Movie. Ever.");
 message.count = 0;
 DDS::ReturnCode_t ret = writer_i->write(message, DDS::HANDLE_NIL);

 if (ret != DDS::RETCODE_OK) {
 std::cerr << "MessageDataWriter::write() returned failed, " <<
 "return code = " << ret << std::endl;
 return 1;
 }

This message is distributed to all connected subscribers that are registered for
our topic. The second argument to write() specifies the instance on which
we are publishing the sample. It should be passed either a handle returned by
register_instance() or DDS::HANDLE_NIL. Passing a
DDS::HANDLE_NIL value indicates that the data writer should determine the
instance by inspecting the key of the sample. See 2.2.1 for details on using
instance handles in publication.

2.1.5 Setting up the Subscriber
Much of the subscriber’s code is identical or analogous to the publisher that
we just finished exploring. We will progress quickly through the similar parts
and refer you to the discussion above for details. The full source code for this
sample subscriber is found in the Subscriber.cpp and
DataReaderListener.cpp files in
$DDS_ROOT/DevGuideExamples/DCPS/Messenger.

26 o c i w e b . c o m

G e t t i n g S t a r t e d

2.1.5.1 Initializing the Participant
The beginning of the subscriber is identical to the publisher as we initialize the
service and join our domain:

int main (int argc, char *argv[])
{
 try {
 DDS::DomainParticipantFactory_var dpf =
 TheParticipantFactoryWithArgs(argc, argv);
 DDS::DomainParticipant_var participant =
 dpf->create_participant(42, // Domain ID
 PARTICIPANT_QOS_DEFAULT,
 DDS::DomainParticipantListener::_nil(),
 OpenDDS::DCPS::DEFAULT_STATUS_MASK);
 if (CORBA::is_nil (participant.in ())) {
 std::cerr << "create_participant failed." << std::endl;
 return 1 ;
 }

2.1.5.2 Registering the Data Type and Creating a Topic
Next, we initialize the message type and topic. Note that if the topic has
already been initialized in this domain with the same data type and compatible
QoS, the create_topic() invocation returns a reference corresponding to
the existing topic. If the type or QoS specified in our create_topic()
invocation do not match that of the existing topic then the invocation fails.
There is also a find_topic() operation our subscriber could use to simply
retrieve an existing topic.

 Messenger::MessageTypeSupport_var mts =
 new Messenger::MessageTypeSupportImpl();
 if (DDS::RETCODE_OK != mts->register_type(participant.in(), "")) {
 std::cerr << "Failed to register the MessageTypeSupport." << std::endl;
 return 1;
 }

 CORBA::String_var type_name = mts->get_type_name ();

 DDS::Topic_var topic =
 participant->create_topic("Movie Discussion List",
 type_name.in (),
 TOPIC_QOS_DEFAULT,
 DDS::TopicListener::_nil(),
 OpenDDS::DCPS::DEFAULT_STATUS_MASK);
 if (CORBA::is_nil(topic.in())) {

o c i w e b . c o m 27

2 . 1 U s i n g D C P S

 std::cerr << "Failed to create_topic." << std::endl;
 return 1;
 }

2.1.5.3 Initializing and Registering the Transport
We now initialize the Simple TCP transport the same way as in the publisher,
using the file-based configuration mechanism.

 // This value must match the value in the subscriber’s configuration file.
 OpenDDS::DCPS::TransportImpl_rch transport_impl =
 TheTransportFactory->create_transport_impl(
 OpenDDS::DCPS::DEFAULT_SIMPLE_TCP_ID,
 OpenDDS::DCPS::AUTO_CONFIG);

Next, we create the subscriber with the default QoS and attach the transport, as
in the publisher.

 // Create the subscriber and attach to the corresponding transport.
 DDS::Subscriber_var sub =
 participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT,
 DDS::SubscriberListener::_nil(),
 OpenDDS::DCPS::DEFAULT_STATUS_MASK);
 if (CORBA::is_nil(sub.in())) {
 std::cerr << "Failed to create_subscriber." << std::endl;
 return 1;
 }

 // Attach the subscriber to the transport.
 OpenDDS::DCPS::AttachStatus status = transport_impl->attach(sub.in());
 if (status != OpenDDS::DCPS::ATTACH_OK) {
 std::cerr << "Failed to attach to the transport." << std::endl;
 return 1;

2.1.5.4 Creating a DataReader and Listener
We need to associate a listener object with the data reader we create, so we
can use it to detect when data is available. The code below constructs the
listener object. The DataReaderListenerImpl class is shown in the next
subsection.

 DDS::DataReaderListener_var listener (new DataReaderListenerImpl);

28 o c i w e b . c o m

G e t t i n g S t a r t e d

The listener is allocated on the heap and assigned to a
DataReaderListener_var object. This type provides reference counting
behavior so the listener is automatically cleaned up when the last reference to
it is removed. This usage is typical for heap allocations in OpenDDS
application code and frees the application developer from having to actively
manage the lifespan of the allocated objects.
Now we can create the data reader and associate it with our topic, the default
QoS properties, and the listener object we just created.

 // Create the Datareader
 DDS::DataReader_var dr = sub->create_datareader(
 topic.in (),
 DATAREADER_QOS_DEFAULT,
 listener.in(),
 OpenDDS::DCPS::DEFAULT_STATUS_MASK);
 if (CORBA::is_nil(dr.in())) {
 std::cerr << "create_datareader failed." << std::endl;
 return 1;
 }

This thread is now free to perform other application work. Our listener object
will be called on an OpenDDS thread when a sample is available.

2.1.6 The Data Reader Listener Implementation
Our listener class implements the DDS::DataReaderListener interface
defined by the DDS specification. The DataReaderListener is wrapped within
a DCPS::LocalObject which resolves ambiguously-inherited members such
as _narrow and _ptr_type. The interface defines a number of operations we
must implement, each of which is invoked to inform us of different events.
The OpenDDS::DCPS::DataReaderListener defines operations for
OpenDDS’s special needs such as disconnecting and reconnected event
updates. Here is the interface definition:

module DDS {
 local interface DataReaderListener : Listener {
 void on_requested_deadline_missed(in DataReader reader,
 in RequestedDeadlineMissedStatus status);
 void on_requested_incompatible_qos(in DataReader reader,
 in RequestedIncompatibleQosStatus status);
 void on_sample_rejected(in DataReader reader,
 in SampleRejectedStatus status);
 void on_liveliness_changed(in DataReader reader,

o c i w e b . c o m 29

2 . 1 U s i n g D C P S

 in LivelinessChangedStatus status);
 void on_data_available(in DataReader reader);
 void on_subscription_matched(in DataReader reader,
 in SubscriptionMatchedStatus status);
 void on_sample_lost(in DataReader reader, in SampleLostStatus status);
 };
};

Our example listener class stubs out most of these listener operations with
simple print statements. The only operation that is really needed for this
example is on_data_available() and it is the only member function of
this class we need to explore.

void DataReaderListenerImpl::on_data_available(DDS::DataReader_ptr reader)
{
 num_reads_ ++;

 try {
 Messenger::MessageDataReader_var reader_i =
 Messenger::MessageDataReader::_narrow(reader);
 if (CORBA::is_nil(reader_i.in())) {
 std::cerr << "read: _narrow failed." << std::endl;
 return;
 }

The code above narrows the generic data reader passed into the listener to the
type-specific MessageDataReader interface. The following code takes the
next sample from the message reader. If the take is successful and returns
valid data, we print out each of the message’s fields.

 Messenger::Message message;
 DDS::SampleInfo si ;
 DDS::ReturnCode_t status = reader_i->take_next_sample(message, si) ;

 if (status == DDS::RETCODE_OK) {

 if (si.valid_data == 1) {

 std::cout << "Message: subject = " << message.subject.in() << std::endl
 << " subject_id = " << message.subject_id << std::endl
 << " from = " << message.from.in() << std::endl
 << " count = " << message.count << std::endl
 << " text = " << message.text.in() << std::endl;
 }
 else if (si.instance_state == DDS::NOT_ALIVE_DISPOSED_INSTANCE_STATE)
 {
 std::cout << "instance is disposed" << std::endl;

30 o c i w e b . c o m

G e t t i n g S t a r t e d

 }
 else if (si.instance_state == DDS::NOT_ALIVE_NO_WRITERS_INSTANCE_STATE)
 {
 std::cout << "instance is unregistered" << std::endl;
 }
 else
 {
 std::cerr << "ERROR: received unknown instance state "
 << si.instance_state << std::endl;
 }
 } else if (status == DDS::RETCODE_NO_DATA) {
 cerr << "ERROR: reader received DDS::RETCODE_NO_DATA!" << std::endl;
 } else {
 cerr << "ERROR: read Message: Error: " << status << std::endl;
 }

Note the sample read may contain invalid data. The valid_data flag
indicates if the sample has valid data. There are two samples with invalid data
delivered to the listener callback for notification purposes. One is the dispose
notification, which is received when the DataWriter calls dispose()
explicitly. The other is the unregistered notification, which is received when
the DataWriter calls unregister() explicitly. The dispose notification is
delivered with the instance state set to
NOT_ALIVE_DISPOSED_INSTANCE_STATE and the unregister notification is
delivered with the instance state set to
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE.
If additional samples are available, the service calls this function again.
However, reading values a single sample at a time is not the most efficient
way to process incoming data. The Data Reader interface provides a number
of different options for processing data in a more efficient manner. We discuss
some of these operations in 2.2.

2.1.7 Cleaning up in OpenDDS Clients
After we are finished in the publisher and subscriber, we can use the following
code to clean up the OpenDDS-related objects:

 participant->delete_contained_entities();
 dpf->delete_participant(participant.in ());
 TheTransportFactory->release();
 TheServiceParticipant->shutdown ();

o c i w e b . c o m 31

2 . 1 U s i n g D C P S

The domain participant’s delete_contained_entities() operation
deletes all the topics, subscribers, and publishers created with that participant.
Once this is done, we can use the domain participant factory to delete our
domain participant. Lastly, we release our transport factory and shutdown the
service participant.
Since the publication and subscription of data within DDS is decoupled, data
is not guaranteed to be delivered if a publication is disassociated (shutdown)
prior to all data that has been sent having been received by the subscriptions.
If the application requires that all published data be received, the
wait_for_acknowledgements() operation is available to allow the
publication to wait until all written data has been received. This operation is
called on individual DataWriters and includes a timeout value to bound the
time to wait. The following code illustrates the use of
wait_for_acknowledgements() to block for up to 15 seconds to wait for
subscriptions to acknowledge receipt of all written data:

 DDS::Duration_t shutdown_delay = { 15, 0 };
 DDS::ReturnCode_t result;
 result = writer->wait_for_acknowledgments(shutdown_delay);
 if(result != DDS::RETCODE_OK) {
 std::cerr << "Failed while waiting for acknowledgment of "
 << "data being received by subscriptions, some data "
 << "may not have been delivered." << std::endl;
 }

2.1.8 Running the Example
We are now ready to run our simple example. We can run it with the following
commands. Running each of these commands in its own window should
enable you to most easily understand the output.

$DDS_ROOT/bin/DCPSInfoRepo -ORBSvcConf tcp.conf -o repo.ior
./publisher -ORBSvcConf tcp.conf
./subscriber -ORBSvcConf tcp.conf

The -ORBSvcConf configuration directive file dynamically loads and
configures the SimpleTCP transport library.
One side effect of using the default QoS properties is that, as we increase the
number of samples being published, some of the samples will be dropped as
the subscriber falls behind. To avoid dropping samples, we need to either

32 o c i w e b . c o m

G e t t i n g S t a r t e d

ensure that the subscriber can keep up or change the QoS settings. QoS
policies are described in Chapter 3.
See Chapter 5 for a complete description of the OpenDDS configuration
parameters.

2.2 Data Handling Optimizations

2.2.1 Registering and Using Instances in the Publisher
The previous example implicitly specifies the instance it is publishing via the
sample’s data fields. When write() is called, the data writer queries the
sample’s key fields to determine the instance. The publisher also has the
option to explicitly register the instance by calling register_instance()
on the data writer:

 Messenger::Message message;
 message.subject_id = 99;
 DDS::InstanceHandle_t handle = message_writer->register_instance(message);

After we populate the Message structure we called the
register_instance() function to register the instance. The instance is
identified by the subject_id value of 99 (because we earlier specified that
field as the key).
We can later use the returned instance handle when we publish a sample:

 DDS::ReturnCode_t ret = data_writer->write(message, handle);

Publishing samples using the instance handle may be slightly more efficient
than forcing the writer to query for the instance and is much more efficient
when publishing the first sample on an instance. Without explicit registration,
the first write causes resource allocation by OpenDDS for that instance.
Because resource limitations can cause instance registration to fail, many
applications consider registration as part of setting up the publisher and
always do it when initializing the data writer.

o c i w e b . c o m 33

2 . 2 D a t a H a n d l i n g O p t i m i z a t i o n s

2.2.2 Reading Multiple Samples
The DDS specification provides a number of operations for reading and
writing data samples. In the examples above we used the
take_next_sample() operation, to read the next sample and “take”
ownership of it from the reader. The Message Data Reader also has the
following take operations.
• take()—Take a sequence of up to max_samples values from the reader
• take_instance()—Take a sequence of values for a specified instance
• take_next_instance()—Take a sequence of samples belonging to the

same instance, without specifying the instance.
There are also “read” operations corresponding to each of these “take”
operations that obtain the same values, but leave the samples in the reader and
simply mark them as read in the SampleInfo.
Since these other operations read a sequence of values, they are more efficient
when samples are arriving quickly. Here is a sample call to take() that reads
up to 5 samples at a time.

 MessageSeq messages(5);
 DDS::SampleInfoSeq sampleInfos(5);
 DDS::ReturnCode_t status = message_dr->take(messages, sampleInfos, 5,
 DDS::ANY_SAMPLE_STATE,
 DDS::ANY_VIEW_STATE,
 DDS::ANY_INSTANCE_STATE);

The three state parameters potentially specialize which samples are returned
from the reader. See the DDS specification for details on their usage.

2.2.3 Zero-Copy Read
The read and take operations that return a sequence of samples provide the
user with the option of obtaining a copy of the samples (single-copy read) or a
reference to the samples (zero-copy read). The zero-copy read can have
significant performance improvements over the single-copy read for large
sample types. Testing has shown that samples of 8KB or less do not gain
much by using zero-copy reads but there is little performance penalty for
using zero-copy on small samples.
The application developer can specify the use of the zero-copy read
optimization by calling take() or read() with a sample sequence

34 o c i w e b . c o m

G e t t i n g S t a r t e d

constructed with a max_len of zero. The message sequence and sample info
sequence constructors both take max_len as their first parameter and specify
a default value of zero. The following example code is taken from
DevGuideExamples/DCPS/Messenger_ZeroCopy/:

 Messenger::MessageSeq messages;
 DDS::SampleInfoSeq info;

 // get references to the samples (zero-copy read of the samples)
 DDS::ReturnCode_t status = dr->take (messages,
 info,
 DDS::LENGTH_UNLIMITED,
 DDS::ANY_SAMPLE_STATE,
 DDS::ANY_VIEW_STATE,
 DDS::ANY_INSTANCE_STATE);

After both zero-copy takes/reads and single-copy takes/reads, the sample and
info sequences’ length are set to the number of samples read. For the
zero-copy reads, the max_len is set to a value >= length.
Since the application code has asked for a zero-copy loan of the data, it must
return that loan when it is finished with the data:

 dr->return_loan (messages, info);

Calling return_loan() results in the sequences’ max_len being set to 0 and
its owns member set to false, allowing the same sequences to be used for
another zero-copy read.
If the first parameter of the data sample sequence constructor and info
sequence constructor were changed to a value greater than zero, then the
sample values returned would be copies. When values are copied, the
application developer has the option of calling return_loan(), but is not
required to do so.
If the max_len (the first) parameter of the sequence constructor is not
specified, it defaults to 0; hence using zero-copy reads. Because of this
default, a sequence will automatically call return_loan() on itself when it
is destroyed. To conform with the DDS specification and be portable to other
implementations of DDS, applications should not rely on this automatic
return_loan() feature.
The second parameter to the sample and info sequences is the maximum slots
available in the sequence. If the read() or take() operation’s

o c i w e b . c o m 35

2 . 2 D a t a H a n d l i n g O p t i m i z a t i o n s

max_samples parameter is larger than this value, then the maximum samples
returned by read() or take() will be limited by this parameter of the
sequence constructor.
Although the application can change the length of a zero-copy sequence, by
calling the length(len) operation, you are advised against doing so because
this call results in copying the data and creating a single-copy sequence of
samples.

36 o c i w e b . c o m

G e t t i n g S t a r t e d

o c i w e b . c o m 37

CHAPTER 3

Quality of Service

3.1 Introduction
The previous examples use default QoS policies for the various entities. This
chapter discusses which QoS policies are implemented in OpenDDS and the
details of their usage. See the DDS specification for further information about
the policies discussed in this chapter.

3.2 Supported Policies
Listed below are the QoS policies that are currently supported by OpenDDS.
Any policy not listed here uses its default value. The default values of
unsupported policies are as described in the DDS specification and are
discussed in 3.3.
Each policy defines a structure to specify its data. Each entity supports a
subset of the policies and defines a QoS structure that is composed of the
supported policy structures. The set of allowable policies for a given entity is

38 o c i w e b . c o m

Q u a l i t y o f S e r v i c e

constrained by the policy structures nested in its QoS structure. For example,
the Publisher’s QoS structure is defined in the specification’s IDL as follows:

module DDS {
 struct PublisherQos {
 PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 GroupDataQosPolicy group_data;
 EntityFactoryQosPolicy entity_factory;
 };
};

Setting policies is as simple as obtaining a structure with the default values
already set, modifying the individual policy structures as necessary, and then
applying the QoS structure to an entity (usually when it is created). We show
examples of how to obtain the default QoS policies for various entity types in
3.2.1.
Applications can change the QoS of any entity by calling the set_qos()
operation on the entity. If the QoS is changeable, the QoS changes are
propagated to the DCPSInfoRepo via QoS update invocations on the
corresponding entity, such as update_subscription_qos(). The
DCPSInfoRepo re-evaluates the QoS compatibility and associations according
to the QoS specification. If the compatibility checking fails, the call to
set_qos() will return an error. The association re-evaluation may result in
removal of existing associations or addition of new associations.
If the user attempts to change a QoS policy that is immutable (not
changeable), then set_qos() returns DDS::RETCODE_IMMUTABLE_POLICY.
A subset of the QoS policies are changeable. Some changeable QoS policies,
such as USER_DATA, TOPIC_DATA, GROUP_DATA, LIFESPAN,
OWNERSHIP, OWNERSHIP_STRENGTH, TIME_BASED_FILTER,
ENTITY_FACTORY, WRITER_DATA_LIFECYCLE, and
READER_DATA_LIFECYCLE, do not require compatibility and association
re-evaluation. The DEADLINE and LATENCY_BUDGET QoS policies
require compatibility re-evaluation, but not for association. The PARTITION
QoS policy does not require compatibility re-evaluation, but does require
association re-evaluation. The DDS specification lists
TRANSPORT_PRIORITY as changeable, but the OpenDDS implementation
does not support dynamically modifying this policy.

o c i w e b . c o m 39

3 . 2 S u p p o r t e d P o l i c i e s

3.2.1 Default QoS Policy Values
Applications obtain the default QoS policies for an entity by instantiating a
QoS structure of the appropriate type for the entity and passing it by reference
to the appropriate get_default_entity_qos() operation on the appropriate
factory entity. (For example, you would use a domain participant to obtain the
default QoS for a publisher or subscriber.) The following examples illustrate
how to obtain the default policies for publisher, subscriber, topic, domain
participant, data writer, and data reader.

// Get default Publisher QoS from a DomainParticipant:
DDS::PublisherQos pub_qos;
DDS::ReturnCode_t ret;
ret = domain_participant->get_default_publisher_qos(pub_qos);
if (DDS::RETCODE_OK != ret) {
 std::cerr << "Could not get default publisher QoS" << std::endl;
}

// Get default Subscriber QoS from a DomainParticipant:
DDS::SubscriberQos sub_qos;
ret = domain_participant->get_default_subscriber_qos(sub_qos);
if (DDS::RETCODE_OK != ret) {
 std::cerr << "Could not get default subscriber QoS" << std::endl;
}

// Get default Topic QoS from a DomainParticipant:
DDS::TopicQos topic_qos;
ret = domain_participant->get_default_topic_qos(topic_qos);
if (DDS::RETCODE_OK != ret) {
 std::cerr << "Could not get default topic QoS" << std::endl;
}

// Get default DomainParticipant QoS from a DomainParticipantFactory:
DDS::DomainParticipantQos dp_qos;
ret = domain_participant_factory->get_default_participant_qos(dp_qos);
if (DDS::RETCODE_OK != ret) {
 std::cerr << "Could not get default participant QoS" << std::endl;
}

// Get default DataWriter QoS from a Publisher:
DDS::DataWriterQos dw_qos;
ret = pub->get_default_datawriter_qos(dw_qos);
if (DDS::RETCODE_OK != ret) {
 std::cerr << "Could not get default data writer QoS" << std::endl;
}

// Get default DataReader QoS from a Subscriber:
DDS::DataReaderQos dr_qos;

40 o c i w e b . c o m

Q u a l i t y o f S e r v i c e

ret = pub->get_default_datareader_qos(dr_qos);
if (DDS::RETCODE_OK != ret) {
 std::cerr << "Could not get default data reader QoS" << std::endl;
}

The following tables summarize the default QoS policies for each entity type
in OpenDDS to which policies can be applied.

Table 3-1 Default DomainParticipant QoS Policies

Policy Member Default Value
USER_DATA value (not set)
ENTITY_FACTORY autoenable_created_entities true

Table 3-2 Default Topic QoS Policies

Policy Member Default Value
TOPIC_DATA value (not set)

DURABILITY
kind
service_cleanup_delay.sec
service_cleanup_delay.nanosec

VOLATILE_DURABILITY_QOS
DURATION_ZERO_SEC
DURATION_ZERO_NSEC

DURABILITY_SERVICE

service_cleanup_delay.sec
service_cleanup_delay.nanosec
history_kind
history_depth
max_samples
max_instances
max_samples_per_instance

DURATION_ZERO_SEC
DURATION_ZERO_NSEC
KEEP_LAST_HISTORY_QOS
1
LENGTH_UNLIMITED
LENGTH_UNLIMITED
LENGTH_UNLIMITED

DEADLINE period.sec
period.nanosec

DURATION_INFINITY_SEC
DURATION_INFINITY_NSEC

LATENCY_BUDGET duration.sec
duration.nanosec

DURATION_ZERO_SEC
DURATION_ZERO_NSEC

LIVELINESS
kind
lease_duration.sec
lease_duration.nanosec

AUTOMATIC_LIVELINESS_QOS
DURATION_INFINITY_SEC
DURATION_INFINITY_NSEC

RELIABILITY
kind
max_blocking_time.sec
max_blocking_time.nanosec

BEST_EFFORT_RELIABILITY_QOS
DURATION_INFINITY_SEC
DURATION_INFINITY_NSEC

DESTINATION_ORDER kind BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

HISTORY kind
depth

KEEP_LAST_HISTORY_QOS
1

RESOURCE_LIMITS
max_samples
max_instances
max_samples_per_instance

LENGTH_UNLIMITED
LENGTH_UNLIMITED
LENGTH_UNLIMITED

TRANSPORT_PRIORITY value 0

LIFESPAN duration.sec
duration.nanosec

DURATION_INFINITY_SEC
DURATION_INFINITY_NSEC

o c i w e b . c o m 41

3 . 2 S u p p o r t e d P o l i c i e s

OWNERSHIP kind SHARED_OWNERSHIP_QOS

Table 3-2 Default Topic QoS Policies

Policy Member Default Value

Table 3-3 Default Publisher QoS Policies

Policy Member Default Value

PRESENTATION
access_scope
coherent_access
ordered_access

INSTANCE_PRESENTATION_QOS
0
0

PARTITION name (empty sequence)
GROUP_DATA value (not set)
ENTITY_FACTORY autoenable_created_entities true

Table 3-4 Default Subscriber QoS Policies

Policy Member Default Value

PRESENTATION
access_scope
coherent_access
ordered_access

INSTANCE_PRESENTATION_QOS
0
0

PARTITION name (empty sequence)
GROUP_DATA value (not set)
ENTITY_FACTORY autoenable_created_entities true

Table 3-5 Default DataWriter QoS Policies

Policy Member Default Value

DURABILITY
kind
service_cleanup_delay.sec
service_cleanup_delay.nanosec

VOLATILE_DURABILITY_QOS
DURATION_ZERO_SEC
DURATION_ZERO_NSEC

DURABILITY_SERVICE

service_cleanup_delay.sec
service_cleanup_delay.nanosec
history_kind
history_depth
max_samples
max_instances
max_samples_per_instance

DURATION_ZERO_SEC
DURATION_ZERO_NSEC
KEEP_LAST_HISTORY_QOS
1
LENGTH_UNLIMITED
LENGTH_UNLIMITED
LENGTH_UNLIMITED

DEADLINE period.sec
period.nanosec

DURATION_INFINITY_SEC
DURATION_INFINITY_NSEC

LATENCY_BUDGET duration.sec
duration.nanosec

DURATION_ZERO_SEC
DURATION_ZERO_NSEC

42 o c i w e b . c o m

Q u a l i t y o f S e r v i c e

LIVELINESS
kind
lease_duration.sec
lease_duration.nanosec

AUTOMATIC_LIVELINESS_QOS
DURATION_INFINITY_SEC
DURATION_INFINITY_NSEC

RELIABILITY
kind
max_blocking_time.sec
max_blocking_time.nanosec

BEST_EFFORT_RELIABILITY_QOS1
DURATION_INFINITY_SEC
DURATION_INFINITY_NSEC

DESTINATION_ORDER kind BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

HISTORY kind
depth

KEEP_LAST_HISTORY_QOS
1

RESOURCE_LIMITS
max_samples
max_instances
max_samples_per_instance

LENGTH_UNLIMITED
LENGTH_UNLIMITED
LENGTH_UNLIMITED

TRANSPORT_PRIORITY value 0

LIFESPAN duration.sec
duration.nanosec

DURATION_INFINITY_SEC
DURATION_INFINITY_NSEC

USER_DATA value (not set)
OWNERSHIP kind SHARED_OWNERSHIP_QOS

OWNERSHIP_STRENGTH value 0

WRITER_DATA_LIFECYCLE autodispose_unregistered_instances 1

1. For OpenDDS versions, up to 2.0, the default reliability kind for data writers is best effort. For versions 2.0.1 and later, this is
changed to reliable (to conform to the DDS specification).

Table 3-5 Default DataWriter QoS Policies

Policy Member Default Value

Table 3-6 Default DataReader QoS Policies

Policy Member Default Value

DURABILITY
kind
service_cleanup_delay.sec
service_cleanup_delay.nanosec

VOLATILE_DURABILITY_QOS
DURATION_ZERO_SEC
DURATION_ZERO_NSEC

DEADLINE period.sec
period.nanosec

DURATION_INFINITY_SEC
DURATION_INFINITY_NSEC

LATENCY_BUDGET duration.sec
duration.nanosec

DURATION_ZERO_SEC
DURATION_ZERO_NSEC

LIVELINESS
kind
lease_duration.sec
lease_duration.nanosec

AUTOMATIC_LIVELINESS_QOS
DURATION_INFINITY_SEC
DURATION_INFINITY_NSEC

RELIABILITY
kind
max_blocking_time.sec
max_blocking_time.nanosec

BEST_EFFORT_RELIABILITY_QOS
DURATION_INFINITY_SEC
DURATION_INFINITY_NSEC

DESTINATION_ORDER kind BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

HISTORY kind
depth

KEEP_LAST_HISTORY_QOS
1

o c i w e b . c o m 43

3 . 2 S u p p o r t e d P o l i c i e s

3.2.2 LIVELINESS
The LIVELINESS policy applies to the topic, data reader, and data writer
entities via the liveliness member of their respective QoS structures.
Setting this policy on a topic means it is in effect for all data readers and data
writers on that topic. Below is the IDL related to the liveliness QoS policy:

enum LivelinessQosPolicyKind {
 AUTOMATIC_LIVELINESS_QOS,
 MANUAL_BY_PARTICIPANT_LIVELINESS_QOS,
 MANUAL_BY_TOPIC_LIVELINESS_QOS
};

struct LivelinessQosPolicy {
 LivelinessQosPolicyKind kind;
 Duration_t lease_duration;
};

The LIVELINESS policy controls when and how the service determines
whether participants are alive, meaning they are still reachable and active. The
kind member setting indicates whether liveliness is asserted automatically by
the service or manually by the specified entity. A setting of
AUTOMATIC_LIVELINESS_QOS means that the service periodically polls
participants for liveliness. The
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS or
MANUAL_BY_TOPIC_LIVELINESS_QOS setting means the specified entity
(data writer for the “by topic” setting or domain participant for the “by
participant” setting) must either write a sample or manually assert its
liveliness within a specified heartbeat interval. The desired heartbeat interval
is specified by the lease_duration member. The default lease duration is a
pre-defined infinite value, which disables any liveliness testing.

RESOURCE_LIMITS
max_samples
max_instances
max_samples_per_instance

LENGTH_UNLIMITED
LENGTH_UNLIMITED
LENGTH_UNLIMITED

USER_DATA value (not set)
OWNERSHIP kind SHARED_OWNERSHIP_QOS

TIME_BASED_FILTER minimum_separation.sec
minimum_separation.nanosec

DURATION_ZERO_SEC
DURATION_ZERO_NSEC

READER_DATA_LIFECYCLE autopurge_nowriter_samples_delay.sec
autopurge_nowriter_samples_delay.nanosec

DURATION_ZERO_SEC
DURATION_ZERO_NSEC

Table 3-6 Default DataReader QoS Policies

Policy Member Default Value

44 o c i w e b . c o m

Q u a l i t y o f S e r v i c e

To manually assert liveliness without publishing a sample, the application
must call the assert_liveliness() operation on the data writer (for the
“by topic” setting) or on the domain participant (for the “by participant”
setting) within the specified heartbeat interval.
Data writers specify (offer) their own liveliness criteria and data readers
specify (request) the desired liveliness of their writers. Writers that are not
heard from within the lease duration (either by writing a sample or by
asserting liveliness) cause a change in the LIVELINESS_CHANGED_STATUS
communication status and notification to the application (e.g., by calling the
data reader listener’s on_liveliness_changed() callback operation or by
signaling any related wait sets).
This policy is considered during the establishment of associations between
data writers and data readers. The value of both sides of the association must
be compatible in order for an association to be established. Compatibility is
determined by comparing the data reader’s requested liveliness with the data
writer’s offered liveliness. Both the kind of liveliness (automatic, manual by
topic, manual by participant) and the value of the lease duration are
considered in determining compatibility. The writer’s offered kind of
liveliness must be greater than or equal to the reader’s requested kind of
liveliness. The liveliness kind values are ordered as follows:

MANUAL_BY_TOPIC_LIVELINESS_QOS >
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS >
AUTOMATIC_LIVELINESS_QOS

In addition, the writer’s offered lease duration must be less than or equal to the
reader’s requested lease duration. Both of these conditions must be met for the
offered and requested liveliness policy settings to be considered compatible
and the association established.

3.2.3 RELIABILITY
The RELIABILITY policy applies to the topic, data reader, and data writer
entities via the reliability member of their respective QoS structures.
Below is the IDL related to the reliability QoS policy:

enum ReliabilityQosPolicyKind {
 BEST_EFFORT_RELIABILITY_QOS,
 RELIABLE_RELIABILITY_QOS
};

o c i w e b . c o m 45

3 . 2 S u p p o r t e d P o l i c i e s

struct ReliabilityQosPolicy {
 ReliabilityQosPolicyKind kind;
 Duration_t max_blocking_time;
};

This policy controls how data readers and writers treat the data samples they
process. The “best effort” value (BEST_EFFORT_RELIABILITY_QOS) makes
no promises as to the reliability of the samples and could be expected to drop
samples under some circumstances. The “reliable” value
(RELIABLE_RELIABILITY_QOS) indicates that the service should eventually
deliver all values to eligible data readers.
The SimpleTCP transport supports the “reliable” value for this policy and the
SimpleUDP transport only supports the “best effort” value. The
max_blocking_time member of this policy is used when the history QoS
policy is set to “keep all” and the writer is unable to return because of resource
limits (due to transport backpressure—see 3.2.7 for details). When this
situation occurs and the writer blocks for more than the specified time, then
the write fails with a timeout return code. The default for this policy is “best
effort.”
This policy is considered during the creation of associations between data
writers and data readers. The value of both sides of the association must be
compatible in order for an association to be created. The liveliness kind of
data writer must be greater than or equal to the value of data writer.

Note Versions of OpenDDS up to 2.0, incorrectly set the default reliability kind of
data writers to BEST_EFFORT_RELIABILITY_QOS instead of
RELIABLE_RELIABILITY_QOS.

3.2.4 HISTORY
The HISTORY policy determines how samples are held in the data writer and
data reader for a particular instance. For data writers these values are held
until the publisher retrieves them and successfully sends them to all connected
subscribers. For data readers these values are held until “taken” by the
application. This policy applies to the topic, data reader, and data writer
entities via the history member of their respective QoS structures. Below is
the IDL related to the history QoS policy:

enum HistoryQosPolicyKind {

46 o c i w e b . c o m

Q u a l i t y o f S e r v i c e

 KEEP_LAST_HISTORY_QOS,
 KEEP_ALL_HISTORY_QOS
};

struct HistoryQosPolicy {
 HistoryQosPolicyKind kind;
 long depth;
};

The “keep all” value (KEEP_ALL_HISTORY_QOS) specifies that all possible
samples for that instance should be kept. When “keep all” is specified and the
number of unread samples is equal to the “resource limits” field of
max_samples_per_instance then any incoming samples are rejected.
The “keep last” value (KEEP_LAST_HISTORY_QOS) specifies that only the
last depth values should be kept. When a data writer contains depth samples
of a given instance, a write of new samples for that instance are queued for
delivery and the oldest unsent samples are discarded. When a data reader
contains depth samples of a given instance, any incoming samples for that
instance are kept and the oldest samples are discarded.
This policy defaults to a “keep last” with a depth of one.

3.2.5 DURABILITY
The DURABILITY policy controls whether data writers should maintain
samples after they have been sent to known subscribers. This policy applies to
the topic, data reader, and data writer entities via the durability member of
their respective QoS structures. Below is the IDL related to the durability QoS
policy:

enum DurabilityQosPolicyKind {
 VOLATILE_DURABILITY_QOS, // Least Durability
 TRANSIENT_LOCAL_DURABILITY_QOS,
 TRANSIENT_DURABILITY_QOS,
 PERSISTENT_DURABILITY_QOS // Greatest Durability
};

struct DurabilityQosPolicy {
 DurabilityQosPolicyKind kind;
 Duration_t service_cleanup_delay;
};

o c i w e b . c o m 47

3 . 2 S u p p o r t e d P o l i c i e s

By default the kind is VOLATILE_DURABILITY_QOS and
service_cleanup_delay is zero which means infinite time delay.
A durability kind of VOLATILE_DURABILITY_QOS means samples are
discarded after being sent to all known subscribers. As a side effect,
subscribers cannot recover samples sent before they connect.
A durability kind of TRANSIENT_LOCAL_DURABILITY_QOS means that data
readers that are associated/connected with a data writer will be sent all of the
samples in the data writer’s history.
A durability kind of TRANSIENT_DURABILITY_QOS means that samples
outlive a data writer and last as long as the process is alive. The samples are
kept in memory, but are not persisted to permanent storage. A data reader
subscribed to the same topic and partition within the same domain will be sent
all of the cached samples that belong to the same topic/partition.
A durability kind of PERSISTENT_DURABILITY_QOS provides basically the
same functionality as transient durability except the cached samples are
persisted and will survive process destruction.
When transient or persistent durability is specified, the
service_cleanup_delay specifies how long to delay the instance cleanup
after the instance is disposed and all data writers unregister the instance.
The durability policy is considered during the creation of associations between
data writers and data readers. The value of both sides of the association must
be compatible in order for an association to be created. The durability kind
value of the data writer must be greater than or equal to the corresponding
value of the data reader. The durability kind values are ordered as follows:

PERSISTENT_DURABILITY_QOS >
TRANSIENT_DURABILITY_QOS >
TRANSIENT_LOCAL_DURABILITY_QOS >
VOLATILE_DURABILITY_QOS

3.2.6 DURABILITY_SERVICE
The DURABILITY_SERVICE policy controls deletion of samples in
TRANSIENT or PERSISTENT durability cache. This policy applies to the
topic and data writer entities via the durability_service member of their
respective QoS structures and provides a way to specify HISTORY and

48 o c i w e b . c o m

Q u a l i t y o f S e r v i c e

RESOURCE_LIMITS for the sample cache. Below is the IDL related to the
durability service QoS policy:

struct DurabilityServiceQosPolicy {
 Duration_t service_cleanup_delay;
 HistoryQosPolicyKind history_kind;
 long history_depth;
 long max_samples;
 long max_instances;
 long max_samples_per_instance;
};

The history and resource limits members are analogous to, although
independent of, those found in the HISTORY and RESOURCE_LIMITS
policies. The service_cleanup_delay can be set to a desired value. By
default, it is set to zero, which means never clean up cached samples.

3.2.7 RESOURCE_LIMITS
The RESOURCE_LIMITS policy determines the amount of resources the
service can consume in order to meet the requested QoS. This policy applies
to the topic, data reader, and data writer entities via the resource_limits
member of their respective QoS structures. Below is the IDL related to the
resource limits QoS policy.

struct ResourceLimitsQosPolicy {
 long max_samples;
 long max_instances;
 long max_samples_per_instance;
};

The max_samples member specifies the maximum number of samples a
single data writer or data reader can manage across all of its instances. The
max_instances member specifies the maximum number of instances that a
data writer or data reader can manage. The max_samples_per_instance
member specifies the maximum number of samples that can be managed for
an individual instance in a single data writer or data reader. The values of all
these members default to unlimited (DDS::LENGTH_UNLIMITED).
Resources are used by the data writer to queue samples written to the data
writer but not yet sent to all data readers because of backpressure from the
transport. Resources are used by the data reader to queue samples that have
been received, but not yet read/taken from the data reader.

o c i w e b . c o m 49

3 . 2 S u p p o r t e d P o l i c i e s

3.2.8 PARTITION
The PARTITION QoS policy allows the creation of logical partitions within a
domain. It only allows data readers and data writers to be associated if they
have matched partition strings. This policy applies to the publisher and
subscriber entities via the partition member of their respective QoS
structures. Below is the IDL related to the partition QoS policy.

struct PartitionQosPolicy {
 StringSeq name;
};

The name member defaults to an empty sequence of strings. The default
partition name is an empty string and causes the entity to participate in the
default partition. The partition names may contain wildcard characters as
defined by the POSIX fnmatch function (POSIX 1003.2-1992 section B.6).
The establishment of data reader and data writer associations depends on
matching partition strings on the publication and subscription ends. Failure to
match partitions is not considered a failure and does not trigger any callbacks
or set any status values.
The value of this policy may be changed at any time. Changes to this policy
may cause associations to be removed or added.

3.2.9 DEADLINE
The DEADLINE QoS policy allows the application to detect when data is not
written or read within a specified amount of time. This policy applies to the
topic, data writer, and data reader entities via the deadline member of their
respective QoS structures. Below is the IDL related to the deadline QoS
policy.

struct DeadlineQosPolicy {
 Duration_t period;
};

The default value of the period member is infinite, which requires no
behavior. When this policy is set to a finite value, then the data writer
monitors the changes to data made by the application and indicates failure to
honor the policy by setting the corresponding status condition and triggering
the on_offered_deadline_missed() listener callback. A data reader that

50 o c i w e b . c o m

Q u a l i t y o f S e r v i c e

detects that the data has not changed before the period has expired sets the
corresponding status condition and triggers the
on_requested_deadline_missed() listener callback.
This policy is considered during the creation of associations between data
writers and data readers. The value of both sides of the association must be
compatible in order for an association to be created. The deadline period of the
data reader must be greater than or equal to the corresponding value of data
writer.
The value of this policy may change after the associated entity is enabled. In
the case where the policy of a data reader or data writer is made, the change is
successfully applied only if the change remains consistent with the remote end
of all associations in which the reader or writer is participating. If the policy of
a topic is changed, it will affect only data readers and writers that are created
after the change has been made. Any existing readers or writers, and any
existing associations between them, will not be affected by the topic policy
value change.

3.2.10 LIFESPAN
The LIFESPAN QoS policy allows the application to specify when a sample
expires. Expired samples will not be delivered to subscribers. This policy
applies to the topic and data writer entities via the lifespan member of their
respective QoS structures. Below is the IDL related to the lifespan QoS policy.

struct LifespanQosPolicy {
 Duration_t duration;
}

The default value of the duration member is infinite, which means samples
never expire. OpenDDS currently supports expired sample detection on the
publisher side when using a DURABILITY kind other than VOLATILE. The
current OpenDDS implementation may not remove samples from the data
writer and data reader caches when they expire after being placed in the cache.
The value of this policy may be changed at any time. Changes to this policy
affect only data written after the change.

o c i w e b . c o m 51

3 . 2 S u p p o r t e d P o l i c i e s

3.2.11 USER_DATA
The USER_DATA policy applies to the domain participant, data reader, and
data writer entities via the user_data member of their respective QoS
structures. Below is the IDL related to the user data QoS policy:

struct UserDataQosPolicy {
 sequence<octet> value;
};

By default, the value member is not set. It can be set to any sequence of
octets which can be used to attach information to the created entity. The value
of the USER_DATA policy is available in respective built-in topic data. The
remote application can obtain the information via the built-in topic and use it
for its own purposes. For example, the application could attach security
credentials via the USER_DATA policy that can be used by the remote
application to authenticate the source.

3.2.12 TOPIC_DATA
The TOPIC_DATA policy applies to topic entities via the topic_data
member of TopicQoS structures. Below is the IDL related to the topic data
QoS policy:

struct TopicDataQosPolicy {
 sequence<octet> value;
};

By default, the value is not set. It can be set to attach additional information
to the created topic. The value of the TOPIC_DATA policy is available in data
writer, data reader, and topic built-in topic data. The remote application can
obtain the information via the built-in topic and use it in an
application-defined way.

3.2.13 GROUP_DATA
The GROUP_DATA policy applies to the publisher and subscriber entities via
the group_data member of their respective QoS structures. Below is the IDL
related to the group data QoS policy:

struct GroupDataQosPolicy {
 sequence<octet> value;
};

52 o c i w e b . c o m

Q u a l i t y o f S e r v i c e

By default, the value member is not set. It can be set to attach additional
information to the created entities. The value of the GROUP_DATA policy is
propagated via built-in topics. The data writer built-in topic data contains the
GROUP_DATA from the publisher and the data reader built-in topic data
contains the GROUP_DATA from the subscriber. The GROUP_DATA
policy could be used to implement matching mechanisms similar to those of
the PARTITION policy described in 3.2.8 except the decision could be made
based on an application-defined policy.

3.2.14 TRANSPORT_PRIORITY
The TRANSPORT_PRIORITY policy applies to topic and data writer entities
via the transport_priority member of their respective QoS policy
structures. Below is the IDL related to the TransportPriority QoS policy:

struct TransportPriorityQosPolicy {
 long value;
};

The default value member of transport_priority is zero. This policy is
considered a hint to the transport layer to indicate at what priority to send
messages. Higher values indicate higher priority. OpenDDS maps the priority
value directly onto thread and DiffServ codepoint values. A default priority of
zero will not modify either threads or codepoints in messages.
OpenDDS will attempt to set the thread priority of the sending transport as
well as any associated receiving transport. Transport priority values are
mapped from zero (default) through the maximum thread priority linearly
without scaling. If the lowest thread priority is different from zero, then it is
mapped to the transport priority value of zero. Where priority values on a
system are inverted (higher numeric values are lower priority), OpenDDS
maps these to an increasing priority value starting at zero. Priority values
lower than the minimum (lowest) thread priority on a system are mapped to
that lowest priority. Priority values greater than the maximum (highest) thread
priority on a system are mapped to that highest priority. On most systems,
thread priorities can only be set when the process scheduler has been set to
allow these operations. Setting the process scheduler is generally a privileged
operation and will require system privileges to perform. On POSIX based
systems, the system calls of sched_get_priority_min() and

o c i w e b . c o m 53

3 . 2 S u p p o r t e d P o l i c i e s

sched_get_priority_max() are used to determine the system range of
thread priorities.
OpenDDS will attempt to set the DiffServ codepoint on the socket used to
send data for the data writer. If the network hardware honors the codepoint
values, higher codepoint values will result in better (faster) transport for
higher priority samples. The default value of zero will be mapped to the
(default) codepoint of zero. Priority values from 1 through 63 are then mapped
to the corresponding codepoint values, and higher priority values are mapped
to the highest codepoint value (63).
OpenDDS does not currently support modifications of the
transport_priority policy values after creation of the data writer. This
can be worked around by creating new data writers as different priority values
are required.

3.2.15 LATENCY_BUDGET
The LATENCY_BUDGET policy applies to topic, data reader, and data
writer entities via the latency_budget member of their respective QoS
policy structures. Below is the IDL related to the LatencyBudget QoS policy:

struct LatencyBudgetQosPolicy {
 Duration_t duration;
};

The default value of duration is zero indicating that the delay should be
minimized. This policy is considered a hint to the transport layer to indicate
the urgency of samples being sent. OpenDDS uses the value to bound a delay
interval for reporting unacceptable delay in transporting samples from
publication to subscription. This policy is used for monitoring purposes only
at this time. Use the TRANSPORT_PRIORITY policy to modify the sending
of samples. The data writer policy value is used only for compatibility
comparisons and if left at the default value of zero will result in all requested
duration values from data readers being matched.
An additional listener extension has been added to allow reporting delays in
excess of the policy duration setting. The
OpenDDS::DCPS::DataReaderListener interface has an additional
operation for notification that samples were received with a measured
transport delay greater than the latency_budget policy duration. The IDL
for this method is:

54 o c i w e b . c o m

Q u a l i t y o f S e r v i c e

 struct BudgetExceededStatus {
 long total_count;
 long total_count_change;
 DDS::InstanceHandle_t last_instance_handle;
 };

 void on_budget_exceeded(
 in DDS::DataReader reader,
 in BudgetExceededStatus status);

To use the extended listener callback you will need to derive the listener
implementation from the extended interface, as shown in the following code
fragment:

 class DataReaderListenerImpl
 : public virtual
 OpenDDS::DCPS::LocalObject<OpenDDS::DCPS::DataReaderListener>

Then you must provide a non-null implementation for the
on_budget_exceeded() operation. Note that you will need to provide
empty implementations for the following extended operations as well:

 on_subscription_disconnected()
 on_subscription_reconnected()
 on_subscription_lost()
 on_connection_deleted()

OpenDDS also makes the summary latency statistics available via an extended
interface of the data reader. This extended interface is located in the
OpenDDS::DCPS module and the IDL is defined as:

 struct LatencyStatistics {
 GUID_t publication;
 unsigned long n;
 double maximum;
 double minimum;
 double mean;
 double variance;
 };

 typedef sequence<LatencyStatistics> LatencyStatisticsSeq;

 local interface DataReaderEx : DDS::DataReader {
 /// Obtain a sequence of statistics summaries.
 void get_latency_stats(inout LatencyStatisticsSeq stats);

o c i w e b . c o m 55

3 . 2 S u p p o r t e d P o l i c i e s

 /// Clear any intermediate statistical values.
 void reset_latency_stats();

 /// Statistics gathering enable state.
 attribute boolean statistics_enabled;
 };

To gather this statistical summary data you will need to use the extended
interface. You can do so simply by dynamically casting the OpenDDS data
reader pointer and calling the operations directly. In the following example,
we assume that reader is initialized correctly by calling
DDS::Subscriber::create_datareader():

 DDS::DataReader_var reader;
 // ...

 // To start collecting new data.
 dynamic_cast<OpenDDS::DCPS::DataReaderImpl*>(reader.in())->
 reset_latency_stats();
 dynamic_cast<OpenDDS::DCPS::DataReaderImpl*>(reader.in())->
 statistics_enabled(true);

 // ...

 // To collect data.
 OpenDDS::DCPS::LatencyStatisticsSeq stats;
 dynamic_cast<OpenDDS::DCPS::DataReaderImpl*>(reader.in())->
 get_latency_stats(stats);
 for (unsigned long i = 0; i < stats.length(); ++i)
 {
 std::cout << "stats[" << i << "]:" << std::endl;
 std::cout << " n = " << stats[i].n << std::endl;
 std::cout << " max = " << stats[i].maximum << std::endl;
 std::cout << " min = " << stats[i].minimum << std::endl;
 std::cout << " mean = " << stats[i].mean << std::endl;
 std::cout << " variance = " << stats[i].variance << std::endl;
 }

3.2.16 ENTITY_FACTORY
The ENTITY_FACTORY policy controls whether entities are automatically
enabled when they are created. Below is the IDL related to the Entity Factory
QoS policy:

struct EntityFactoryQosPolicy {

56 o c i w e b . c o m

Q u a l i t y o f S e r v i c e

 boolean autoenable_created_entities;
};

This policy can be applied to entities that serve as factories for other entities
and controls whether or not entities created by those factories are
automatically enabled upon creation. This policy can be applied to the domain
participant factory (as a factory for domain participants), domain participant
(as a factory for publishers, subscribers, and topics), publisher (as a factory for
data writers), or subscriber (as a factory for data readers). The default value
for the autoenable_created_entities member is true, indicating that
entities are automatically enabled when they are created. Applications that
wish to explicitly enable entities some time after they are created should set
the value of the autoenable_created_entities member of this policy to
false and apply the policy to the appropriate factory entities. The application
must then manually enable the entity by calling the entity’s enable()
operation.
The value of this policy may be changed at any time. Changes to this policy
affect only entities created after the change.

3.2.17 PRESENTATION
The PRESENTATION QoS policy controls how changes to instances by
publishers are presented to data readers. It affects the relative ordering of these
changes and the scope of this ordering. Additionally, this policy introduces the
concept of coherent change sets. Here is the IDL for the Presentation QoS:

enum PresentationQosPolicyAccessScopeKind {
 INSTANCE_PRESENTATION_QOS,
 TOPIC_PRESENTATION_QOS,
 GROUP_PRESENTATION_QOS
};

struct PresentationQosPolicy {
 PresentationQosPolicyAccessScopeKind access_scope;
 boolean coherent_access;
 boolean ordered_access;
};

The scope of these changes (access_scope) specifies the level in which an
application may be made aware:

o c i w e b . c o m 57

3 . 2 S u p p o r t e d P o l i c i e s

- INSTANCE_PRESENTATION_QOS (the default) indicates that
changes occur to instances independently. Instance access
essentially acts as a no-op with respect to coherent_access and
ordered_access. Setting either of these values to true has no
observable affect within the subscribing application.

- TOPIC_PRESENTATION_QOS indicates that accepted changes are
limited to all instances within the same data reader or data writer.

- GROUP_PRESENTATION_QOS indicates that accepted changes are
limited to all instances within the same publisher or subscriber.
OpenDDS does not currently support group presentation.

Coherent changes (coherent_access) allow one or more changes to an
instance be made available to an associated data reader as a single change. If a
data reader does not receive the entire set of coherent changes made by a
publisher, then none of the changes are made available. The semantics of
coherent changes are similar in nature to those found in transactions provided
by many relational databases. By default, coherent_access is false.
Changes may also be made available to associated data readers in the order
sent by the publisher (ordered_access). This is similar in nature to the
DESTINATION_ORDER QoS policy, however ordered_access permits
data to be ordered independently of instance ordering. By default,
ordered_access is false.

Note This policy controls the ordering and scope of samples made available to the
subscriber, but the subscriber application must use the proper logic in
reading samples to guarantee the requested behavior. For more details, see
Section 7.1.2.5.1.9 of the Version 1.2 DDS Specification.

3.2.18 DESTINATION_ORDER
The DESTINATION_ORDER QoS policy controls the order in which
samples within a given instance are made available to a data reader. If a
history depth of one (the default) is specified, the instance will reflect the most
recent value written by all data writers to that instance. Here is the IDL for the
Destination Order Qos:

enum DestinationOrderQosPolicyKind {
 BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS,

58 o c i w e b . c o m

Q u a l i t y o f S e r v i c e

 BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS
};

struct DestinationOrderQosPolicy {
 DestinationOrderQosPolicyKind kind;
};

The BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS value (the
default) indicates that samples within an instance are ordered in the order in
which they were received by the data reader. Note that samples are not
necessarily received in the order sent by the same data writer. To enforce this
type of ordering, the BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS
value should be used.
The BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS value indicates that
samples within an instance are ordered based on a timestamp provided by the
data writer. It should be noted that if multiple data writers write to the same
instance, care should be taken to ensure that clocks are synchronized to
prevent incorrect ordering on the data reader.

3.2.19 WRITER_DATA_LIFECYCLE
The WRITER_DATA_LIFECYCLE QoS policy controls the lifecycle of data
instances managed by a data writer. Here is the IDL for the Writer Data
Lifecycle QoS policy:

struct WriterDataLifecycleQosPolicy {
 boolean autodispose_unregistered_instances;
};

When autodispose_unregistered_instances is set to true (the
default), a data writer disposes an instance when it is unregistered. In some
cases, it may be desirable to prevent an instance from being disposed when an
instance is unregistered. This policy could, for example, allow an
EXCLUSIVE data writer to gracefully defer to the next data writer without
affecting the instance state. Deleting a data writer implicitly unregisters all of
its instances prior to deletion.

o c i w e b . c o m 59

3 . 2 S u p p o r t e d P o l i c i e s

3.2.20 READER_DATA_LIFECYCLE
The READER_DATA_LIFECYCLE QoS policy controls the lifecycle of data
instances managed by a data reader. Here is the IDL for the Reader Data
Lifecycle QoS policy:

struct ReaderDataLifecycleQosPolicy {
 Duration_t autopurge_nowriter_samples_delay;
 Duration_t autopurge_disposed_samples_delay;
};

Normally, a data reader maintains data for all instances until there are no more
associated data writers for the instance, the instance has been disposed, or the
data has been taken by the user.
In some cases, it may be desirable to constrain the reclamation of these
resources. This policy could, for example, permit a late-joining data writer to
prolong the lifetime of an instance in fail-over situations.
The autopurge_nowriter_samples_delay controls how long the data
reader waits before reclaiming resources once an instance transitions to the
NOT_ALIVE_NO_WRITERS state. By default,
autopurge_nowriter_samples_delay is infinite.
The autopurge_disposed_samples_delay controls how long the data
reader waits before reclaiming resources once an instance transitions to the
NO_ALIVE_DISPOSED state. By default,
autopurge_disposed_samples_delay is infinite.

3.2.21 TIME_BASED_FILTER
The TIME_BASED_FILTER QoS policy controls how often a data reader
may be interested in changes in values to a data instance. Here is the IDL for
the Time Based Filter QoS:

struct TimeBasedFilterQosPolicy {
 Duration_t minimum_separation;
};

An interval (minimum_separation) may be specified on the data reader.
This interval defines a minimum delay between instance value changes; this
permits the data reader to throttle changes without affecting the state of the
associated data writer. By default, minimum_separation is zero, which

60 o c i w e b . c o m

Q u a l i t y o f S e r v i c e

indicates that no data is filtered. This QoS policy does not conserve bandwidth
as instance value changes are still sent to the subscriber process. It only affects
which samples are made available via the data reader.

3.3 Unsupported Policies
The unsupported policies cannot be modified with OpenDDS and always take
the default value. The following subsections discuss some of the default
values that may affect application behavior.

3.3.1 OWNERSHIP
The OWNERSHIP policy controls whether more than one Data Writer is able
to write samples for the same data-object instance. Ownership can be
EXCLUSIVE or SHARED. Below is the IDL related to the Ownership QoS
policy:

enum OwnershipQosPolicyKind {
 SHARED_OWNERSHIP_QOS,
 EXCLUSIVE_OWNERSHIP_QOS
};

struct OwnershipQosPolicy {
 OwnershipQosPolicyKind kind;
};

If the kind member is set to SHARED_OWNERSHIP_QOS, more than one Data
Writer is allowed to update the same data-object instance. If the kind member
is set to EXCLUSIVE_OWNERSHIP_QOS, only one Data Writer is allowed to
update a given data-object instance (i.e., the Data Writer is considered to be
the owner of the instance) and associated Data Readers will only see samples
written by that Data Writer. The owner of the instance is determined by value
of the OWNERSHIP_STRENGTH policy; the data writer with the highest
value of strength is considered the owner of the data-object instance. Other
factors may also influence ownership, such as whether the data writer with the
highest strength is “alive” (as defined by the LIVELINESS policy) and has not
violated its offered publication deadline constraints (as defined by the
DEADLINE policy).

o c i w e b . c o m 61

3 . 4 P o l i c y E x a m p l e

The Ownership policy is optional for compliance with the Minimum profile
and is required for compliance with the Ownership profile. OpenDDS only
supports the default ownership kind value of SHARED.

3.3.2 OWNERSHIP_STRENGTH
The OWNERSHIP_STRENGTH policy is used in conjunction with the
OWNERSHIP policy, when the OWNERSHIP kind is set to EXCLUSIVE.
Below is the IDL related to the Ownership Strength QoS policy:

struct OwnershipStrengthQosPolicy {
 long value;
};

The value member is used to determine which Data Writer is the owner of
the data-object instance. The default value is zero.
The Ownership Strength policy is optional for compliance with the Minimum
profile and is required for compliance with the Ownership profile. Setting the
Ownership Strength policy has no affect in OpenDDS.

3.4 Policy Example
The following sample code illustrates some policies being set and applied for
a publisher.

 DDS::DataWriterQos dw_qos;
 pub->get_default_datawriter_qos (dw_qos);

 dw_qos.history.kind = DDS::KEEP_ALL_HISTORY_QOS;

 dw_qos.reliability.kind = DDS::RELIABLE_RELIABILITY_QOS;
 dw_qos.reliability.max_blocking_time.sec = 10;
 dw_qos.reliability.max_blocking_time.nanosec = 0;

 dw_qos.resource_limits.max_samples_per_instance = 100;

 DDS::DataWriter_var dw =
 pub->create_datawriter(topic.in (),
 dw_qos,
 DDS::DataWriterListener::_nil(),
 OpenDDS::DCPS::DEFAULT_STATUS_MASK);

62 o c i w e b . c o m

Q u a l i t y o f S e r v i c e

This code creates a publisher with the following qualities:
• HISTORY set to Keep All
• RELIABILITY set to Reliable with a maximum blocking time of 10

seconds
• The maximum samples per instance resource limit set to 100
This means that when 100 samples are waiting to be delivered, the writer can
block up to 10 seconds before returning an error code. These same QoS
settings on the Data Reader side would mean that up to 100 unread samples
are queued by the framework before any are rejected. Rejected samples are
dropped and the SampleRejectedStatus is updated.

o c i w e b . c o m 63

CHAPTER 4

Conditions and Listeners

4.1 Introduction
The DDS specification defines two separate mechanisms for notifying
applications of DCPS communication status changes. Most of the status types
define a structure that contains information related to the change of status and
can be detected by the application using conditions or listeners. The different
status types are described in 4.2.
Each entity type (domain participant, topic, publisher, subscriber, data reader,
and data writer) defines its own corresponding listener interface. Applications
can implement this interface and then attach their listener implementation to
the entity. Each listener interface contains an operation for each status that can
be reported for that entity. The listener is asynchronously called back with the
appropriate operation whenever a qualifying status change occurs. Details of
the different listener types are discussed in 4.3.
Conditions are used in conjunction with Wait Sets to let applications
synchronously wait on events. The basic usage pattern for conditions involves
creating the condition objects, attaching them to a wait set, and then waiting
on the wait set until one of the conditions is triggered. The result of wait tells

64 o c i w e b . c o m

C o n d i t i o n s a n d L i s t e n e r s

the application which conditions were triggered, allowing the application to
take the appropriate actions to get the corresponding status information.
Conditions are described in greater detail in 4.4.

4.2 Communication Status Types
Each status type is associated with a particular entity type. This section is
organized by the entity types, with the corresponding statuses described in
subsections under the associated entity type.
Most of the statuses below are plain communication statuses. The exceptions
are DATA_ON_READERS and DATA_AVAILABLE which are read
statuses. Plain communication statuses define an IDL data structure. Their
corresponding section below describes this structure and its fields. The read
statuses are simple notifications to the application which then reads or takes
the samples as desired.
Incremental values in the status data structure report a change since the last
time the status was accessed. A status is considered accessed when a listener
is called for that status or the status is read from its entity.
Fields in the status data structure with a type of InstanceHandle_t identify
an entity (topic, data reader, data writer, etc.) by the instance handle used for
that entity in the Built-In-Topics.

4.2.1 Topic Status Types

4.2.1.1 Inconsistent Topic Status
The INCONSISTENT_TOPIC status indicates that a topic was attempted to
be registered that already exists with different characteristics. Typically, the
existing topic may have a different type associated with it. The IDL associated
with the Inconsistent Topic Status is listed below:

struct InconsistentTopicStatus {
 long total_count;
 long total_count_change;
};

o c i w e b . c o m 65

4 . 2 C o m m u n i c a t i o n S t a t u s T y p e s

The total_count value is the cumulative count of topics that have been
reported as inconsistent. The total_count_change value is the incremental
count of inconsistent topics since the last time this status was accessed.

4.2.2 Subscriber Status Types

4.2.2.1 Data On Readers Status
The DATA_ON_READERS status indicates that new data is available on
some of the data readers associated with the subscriber. This status is
considered a read status and does not define an IDL structure. Applications
receiving this status can call get_datareaders() on the subscriber to get
the set of data readers with data available.

4.2.3 Data Reader Status Types

4.2.3.1 Sample Rejected Status
The SAMPLE_REJECTED status indicates that a sample received by the data
reader has been rejected. The IDL associated with the Sample Rejected Status
is listed below:

enum SampleRejectedStatusKind {
 NOT_REJECTED,
 REJECTED_BY_INSTANCES_LIMIT,
 REJECTED_BY_SAMPLES_LIMIT,
 REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT
};

struct SampleRejectedStatus {
 long total_count;
 long total_count_change;
 SampleRejectedStatusKind last_reason;
 InstanceHandle_t last_instance_handle;
};

The total_count value is the cumulative count of samples that have been
reported as rejected. The total_count_change value is the incremental
count of rejected samples since the last time this status was accessed. The
last_reason value is the reason the most recently rejected sample was
rejected. The last_instance_handle value indicates the instance of the
last rejected sample.

66 o c i w e b . c o m

C o n d i t i o n s a n d L i s t e n e r s

4.2.3.2 Liveliness Changed Status
The LIVELINESS_CHANGED status indicates that there have been
liveliness changes for one or more data writers that are publishing instances
for this data reader. The IDL associated with the Liveliness Changed Status is
listed below:

struct LivelinessChangedStatus {
 long alive_count;
 long not_alive_count;
 long alive_count_change;
 long not_alive_count_change;
 InstanceHandle_t last_publication_handle;
};

The alive_count value is the total number of data writers currently active
on the topic this data reader is reading. The not_alive_count value is the
total number of data writers writing to the data reader’s topic that are no
longer asserting their liveliness. The alive_count_change value is the
change in the alive count since the last time the status was accessed. The
not_alive_count_change value is the change in the not alive count since
the last time the status was accessed. The last_publication_handle is
the handle of the last data writer whose liveliness has changed.

4.2.3.3 Requested Deadline Missed Status
The REQUESTED_DEADLINE_MISSED status indicates that the deadline
requested via the Deadline QoS policy was not respected for a specific
instance. The IDL associated with the Requested Deadline Missed Status is
listed below:

struct RequestedDeadlineMissedStatus {
 long total_count;
 long total_count_change;
 InstanceHandle_t last_instance_handle;
};

The total_count value is the cumulative count of missed requested
deadlines that have been reported. The total_count_change value is the
incremental count of missed requested deadlines since the last time this status
was accessed. The last_instance_handle value indicates the instance of
the last missed deadline.

o c i w e b . c o m 67

4 . 2 C o m m u n i c a t i o n S t a t u s T y p e s

4.2.3.4 Requested Incompatible QoS Status
The REQUESTED_INCOMPATIBLE_QOS status indicates that one or more
QoS policy values that were requested were incompatible with what was
offered. The IDL associated with the Requested Incompatible QoS Status is
listed below:

struct QosPolicyCount {
 QosPolicyId_t policy_id;
 long count;
};

typedef sequence<QosPolicyCount> QosPolicyCountSeq;

struct RequestedIncompatibleQosStatus {
 long total_count;
 long total_count_change;
 QosPolicyId_t last_policy_id;
 QosPolicyCountSeq policies;
};

The total_count value is the cumulative count of times data writers with
incompatible QoS have been reported. The total_count_change value is
the incremental count of incompatible data writers since the last time this
status was accessed. The last_policy_id value identifies one of the QoS
policies that was incompatible in the last incompatibility detected. The
policies value is a sequence of values that indicates the total number of
incompatibilities that have been detected for each QoS policy.

4.2.3.5 Data Available Status
The DATA_AVAILABLE status indicates that samples are available on the
data writer. This status is considered a read status and does not define an IDL
structure. Applications receiving this status can use the various take and read
operations on the data reader to retrieve the data.

4.2.3.6 Sample Lost Status
The SAMPLE_LOST status indicates that a sample has been lost and never
received by the data reader. The IDL associated with the Sample Lost Status is
listed below:

struct SampleLostStatus {
 long total_count;

68 o c i w e b . c o m

C o n d i t i o n s a n d L i s t e n e r s

 long total_count_change;
};

The total_count value is the cumulative count of samples reported as lost.
The total_count_change value is the incremental count of lost samples
since the last time this status was accessed.

4.2.3.7 Subscription Matched Status
The SUBSCRIPTION_MATCHED status indicates that either a compatible
data writer has been matched or a previously matched data writer has ceased
to be matched. The IDL associated with the Subscription Matched Status is
listed below:

struct SubscriptionMatchedStatus {
 long total_count;
 long total_count_change;
 long current_count;
 long current_count_change;
 InstanceHandle_t last_publication_handle;
};

The total_count value is the cumulative count of data writers that have
compatibly matched this data reader. The total_count_change value is the
incremental change in the total count since the last time this status was
accessed. The current_count value is the current number of data writers
matched to this data reader. The current_count_change value is the
change in the current count since the last time this status was accessed. The
last_publication_handle value is a handle for the last data writer
matched.

4.2.4 Data Writer Status Types

4.2.4.1 Liveliness Lost Status
The LIVELINESS_LOST status indicates that the liveliness that the data
writer committed through its Liveliness QoS has not been respected. This
means that any connected data readers will consider this data writer no longer
active.The IDL associated with the Liveliness Lost Status is listed below:

struct LivelinessLostStatus {
 long total_count;

o c i w e b . c o m 69

4 . 2 C o m m u n i c a t i o n S t a t u s T y p e s

 long total_count_change;
};

The total_count value is the cumulative count of times that an alive data
writer has become not alive. The total_count_change value is the
incremental change in the total count since the last time this status was
accessed.

4.2.4.2 Offered Deadline Missed Status
The OFFERED_DEADLINE_MISSED status indicates that the deadline
offered by the data writer has been missed for one or more instances. The IDL
associated with the Offered Deadline Missed Status is listed below:

struct OfferedDeadlineMissedStatus {
 long total_count;
 long total_count_change;
 InstanceHandle_t last_instance_handle;
};

The total_count value is the cumulative count of times that deadlines have
been missed for an instance. The total_count_change value is the
incremental change in the total count since the last time this status was
accessed. The last_instance_handle value indicates the last instance that
has missed a deadline.

4.2.4.3 Offered Incompatible QoS Status
The OFFERED_INCOMPATIBLE_QOS status indicates that an offered QoS
was incompatible with the requested QoS of a data reader. The IDL associated
with the Offered Incompatible QoS Status is listed below:

struct QosPolicyCount {
 QosPolicyId_t policy_id;
 long count;
};
typedef sequence<QosPolicyCount> QosPolicyCountSeq;

struct OfferedIncompatibleQosStatus {
 long total_count;
 long total_count_change;
 QosPolicyId_t last_policy_id;
 QosPolicyCountSeq policies;
};

70 o c i w e b . c o m

C o n d i t i o n s a n d L i s t e n e r s

The total_count value is the cumulative count of times that data readers
with incompatible QoS have been found. The total_count_change value is
the incremental change in the total count since the last time this status was
accessed. The last_policy_id value identifies one of the QoS policies
that was incompatible in the last incompatibility detected. The policies
value is a sequence of values that indicates the total number of
incompatibilities that have been detected for each QoS policy.

4.2.4.4 Publication Matched Status
The PUBLICATION_MATCHED status indicates that either a compatible
data reader has been matched or a previously matched data reader has ceased
to be matched. The IDL associated with the Publication Matched Status is
listed below:

struct PublicationMatchedStatus {
 long total_count;
 long total_count_change;
 long current_count;
 long current_count_change;
 InstanceHandle_t last_subscription_handle;
};

The total_count value is the cumulative count of data readers that have
compatibly matched this data writer. The total_count_change value is the
incremental change in the total count since the last time this status was
accessed. The current_count value is the current number of data readers
matched to this data writer. The current_count_change value is the
change in the current count since the last time this status was accessed. The
last_subscription_handle value is a handle for the last data reader
matched.

4.3 Listeners
Each entity defines its own listener interface based on the statuses it can
report. Any entity’s listener interface also inherits from the listeners of its
owned entities, allowing it to handle statuses for owned entities as well. For
example, a subscriber listener directly defines an operation to handle Data On
Readers statuses and inherits from the data reader listener as well.

o c i w e b . c o m 71

4 . 3 L i s t e n e r s

Each status operation takes the general form of
on_<status_name>(<entity>, <status_struct>), where
<status_name> is the name of the status being reported, <entity> is a
reference to the entity the status is reported for, and <status_struct> is the
structure with details of the status. Read statuses omit the second parameter.
For example, here is the operation for the Sample Lost status:

 void on_sample_lost(in DataReader the_reader, in SampleLostStatus status);

Listeners can either be passed to the factory function used to create their entity
or explicitly set by calling set_listener() on the entity after it is created.
Both of these functions also take a status mask as a parameter. The mask
indicates which statuses are enabled in that listener. Mask bit values for each
status are defined in DdsDcpsInfrastructure.idl:

module DDS {
 typedef unsigned long StatusKind;
 typedef unsigned long StatusMask; // bit-mask StatusKind

 const StatusKind INCONSISTENT_TOPIC_STATUS = 0x0001 << 0;
 const StatusKind OFFERED_DEADLINE_MISSED_STATUS = 0x0001 << 1;
 const StatusKind REQUESTED_DEADLINE_MISSED_STATUS = 0x0001 << 2;
 const StatusKind OFFERED_INCOMPATIBLE_QOS_STATUS = 0x0001 << 5;
 const StatusKind REQUESTED_INCOMPATIBLE_QOS_STATUS = 0x0001 << 6;
 const StatusKind SAMPLE_LOST_STATUS = 0x0001 << 7;
 const StatusKind SAMPLE_REJECTED_STATUS = 0x0001 << 8;
 const StatusKind DATA_ON_READERS_STATUS = 0x0001 << 9;
 const StatusKind DATA_AVAILABLE_STATUS = 0x0001 << 10;
 const StatusKind LIVELINESS_LOST_STATUS = 0x0001 << 11;
 const StatusKind LIVELINESS_CHANGED_STATUS = 0x0001 << 12;
 const StatusKind PUBLICATION_MATCHED_STATUS = 0x0001 << 13;
 const StatusKind SUBSCRIPTION_MATCHED_STATUS = 0x0001 << 14;
};

Simply do a bit-wise “or” of the desired status bits to construct a mask for
your listener. Here is an example of attaching a listener to a data reader (for
just Data Available statuses):

 DDS::DataReaderListener_var listener (new DataReaderListenerImpl);
 // Create the Datareader
 DDS::DataReader_var dr = sub->create_datareader(
 topic.in (),
 DATAREADER_QOS_DEFAULT,
 listener.in(),
 DDS::DATA_AVAILABLE_STATUS);

72 o c i w e b . c o m

C o n d i t i o n s a n d L i s t e n e r s

Here is an example showing how to change the listener using
set_listener():

 dr->set_listener(listener.in(),
 DDS::DATA_AVAILABLE_STATUS | DDS::LIVELINESS_CHANGED_STATUS);

When a plain communication status changes, OpenDDS invokes the most
specific relevant listener operation. This means, for example, that a data
reader’s listener would take precedence over the subscriber’s listener for
statuses related to the data reader.
The following sections define the different listener interfaces. For more details
on the individual statuses, see 4.2.

4.3.1 Topic Listener
interface TopicListener : Listener {
 void on_inconsistent_topic(in Topic the_topic,
 in InconsistentTopicStatus status);
};

4.3.2 Data Writer Listener
interface DataWriterListener : Listener {
 void on_offered_deadline_missed(in DataWriter writer,
 in OfferedDeadlineMissedStatus status);
 void on_offered_incompatible_qos(in DataWriter writer,
 in OfferedIncompatibleQosStatus status);
 void on_liveliness_lost(in DataWriter writer,
 in LivelinessLostStatus status);
 void on_publication_matched(in DataWriter writer,
 in PublicationMatchedStatus status);
};

4.3.3 Publisher Listener
interface PublisherListener : DataWriterListener {
};

o c i w e b . c o m 73

4 . 4 C o n d i t i o n s

4.3.4 Data Reader Listener
interface DataReaderListener : Listener {
 void on_requested_deadline_missed(in DataReader the_reader,
 in RequestedDeadlineMissedStatus status);
 void on_requested_incompatible_qos(in DataReader the_reader,
 in RequestedIncompatibleQosStatus status);
 void on_sample_rejected(in DataReader the_reader,
 in SampleRejectedStatus status);
 void on_liveliness_changed(in DataReader the_reader,
 in LivelinessChangedStatus status);
 void on_data_available(in DataReader the_reader);
 void on_subscription_matched(in DataReader the_reader,
 in SubscriptionMatchedStatus status);
 void on_sample_lost(in DataReader the_reader,
 in SampleLostStatus status);
};

4.3.5 Subscriber Listener
interface SubscriberListener : DataReaderListener {
 void on_data_on_readers(in Subscriber the_subscriber);
};

4.3.6 Domain Participant Listener
interface DomainParticipantListener : TopicListener,
 PublisherListener,
 SubscriberListener {
};

4.4 Conditions

4.4.1 Overview
Each entity has a status condition object associated with it and a
get_statuscondition() operation that lets applications access the status
condition. Each condition has a set of enabled statuses that can trigger that
condition. Attaching one or more conditions to a wait set allows application
developers to wait on the condition’s status set. Once an enabled status is

74 o c i w e b . c o m

C o n d i t i o n s a n d L i s t e n e r s

triggered, the wait call returns from the wait set and the developer can query
the relevant status condition on the entity. Querying the status condition resets
the status.

4.4.2 Status Condition Example
This example enables the Offered Incompatible QoS status on a data writer,
waits for it, and then queries it when it triggers. The first step is to get the
status condition from the data writer, enable the desired status, and attach it to
a wait set:

 DDS::StatusCondition_var cond = data_writer->get_statuscondition();
 cond->set_enabled_statuses(DDS::OFFERED_INCOMPATIBLE_QOS_STATUS);

 DDS::WaitSet_var ws = new DDS::WaitSet;
 ws->attach_condition(cond);

Now we can wait ten seconds for the condition:

 DDS::ConditionSeq active;
 DDS::Duration ten_seconds = {10, 0};
 int result = ws->wait(active, ten_seconds);

The result of this operation is either a timeout or a set of triggered conditions
in the active sequence:

 if (result == DDS::RETCODE_TIMEOUT) {
 cout << "Wait timed out" << std::endl;
 } else if (result == DDS::RETCODE_OK) {
 DDS::OfferedIncompatibleQosStatus incompatibleStatus;
 data_writer->get_offered_incompatible_qos(incompatibleStatus);
 // Access status fields as desired...
 }

Developers have the option of attaching multiple conditions to a single wait
set as well as enabling multiple statuses per condition.

4.4.3 Additional Condition Types
The DDS specification also defines three other types of conditions: Read
Conditions, Query Conditions, and Guard Conditions. These conditions do not
directly involve the processing of statuses but allow the integration of other
activities into the condition and wait set mechanisms. These are other

o c i w e b . c o m 75

4 . 4 C o n d i t i o n s

conditions are briefly described here. For more information see the DDS
specification or the OpenDDS tests in $DDS_ROOT/tests.

4.4.4 Read Conditions
Read conditions are created using the data reader and the same masks that are
passed to the read and take operations. When waiting on this condition, it is
triggered whenever samples match the specified masks. Those samples can
then be retrieved using the read_w_condition() and
take_w_condition() operations which take the read condition as a
parameter.

4.4.5 Query Conditions
Query Conditions are a specialized form of read conditions, that are created
with a limited form of an SQL-like query. This allows applications to filter the
data samples that trigger the condition and then are read use the normal read
condition mechanisms. OpenDDS currently supports only a subset of the
query syntax specified by the specification. Only queries of the form "ORDER
BY ..." are currently supported.

4.4.6 Guard Conditions
The guard condition is a simple interface that allows your application to create
its own condition classes and trigger it when certain application events occur.

76 o c i w e b . c o m

C o n d i t i o n s a n d L i s t e n e r s

o c i w e b . c o m 77

CHAPTER 5

Configuration

5.1 Configuration Files
OpenDDS includes a file-based configuration framework for configuring both
global settings as well as transport implementations for publishers and
subscribers.This chapter summarizes the configuration settings in OpenDDS.
We use the -DCPSConfigFile command-line argument to pass the location
of the configuration file into OpenDDS. For example,

 ./publisher -DCPSConfigFile pub.ini

causes the OpenDDS service participant to read configuration settings from
the pub.ini configuration file. More accurately, we pass the publisher’s
command-line arguments to the service participant singleton when we
initialize the domain participant factory. We did this in the preceding
examples by using the TheParticipantFactoryWithArgs macro:

#include <dds/DCPS/Service_Participant.h>

int main (int argc, char* argv[])
{

78 o c i w e b . c o m

C o n f i g u r a t i o n

 DDS::DomainParticipantFactory_var dpf =
 TheParticipantFactoryWithArgs(argc, argv);

The Service_Participant class also provides methods that allow an
application to configure the dds service. See the header file
DDS/DCPS/Service_Participant.h for details.

5.1.1 Common Configuration Settings
The [common] section of the OpenDDS configuration file contains settings
for attributes such as debugging output, the default object reference of the
DCPSInfoRepo process, and memory preallocation settings. A sample
[common] section follows:

 [common]
 DCPSDebugLevel=0
 DCPSInfoRepo=corbaloc:iiop:localhost:12345/DCPSInfoRepo
 DCPSLivelinessFactor=80
 DCPSChunks=20
 DCPSChunksAssociationMultiplier=10
 DCPSBitTransportPort=
 DCPSBitLookupDurationMsec=2000
 DCPSPendingTimeout=30

It is not necessary to specify every attribute.
Attribute values in the [common] section with names that begin with “DCPS”
can be overridden by a command-line argument. The command-line argument
has the same name as the configuration option with a “-” prepended to it. For
example:

 subscriber -DCPSInfoRepo corbaloc:iiop:localhost:12345/DCPSInfoRepo

The following table summarizes the [common] configuration attributes:
Table 5-1 Common Configuration Settings

Option Description Default

DCPSDebugLevel n

Integer value that controls the
amount of debug information
the DCPS layer prints. Valid
values are 0 through 10.

0

o c i w e b . c o m 79

5 . 1 C o n f i g u r a t i o n F i l e s

DCPSTransportDebugLevel n

Integer value for controlling
the transport logging
granularity. Legal values span
from 0 to 5.

0

DCPSInfoRepo objref
Object reference for locating
the DCPS Information
Repository

file://repo.ior

DCPSLivelinessFactor n

Percent of the liveliness lease
duration after which a
liveliness message is sent. A
value of 80 implies a 20%
cushion of latency from the
last detected heartbeat
message.

80

DCPSChunks n

Configurable number of
chunks that a data writer's and
reader's cached allocators will
preallocate when the
RESOURCE_LIMITS QoS
value is infinite. When all of
the preallocated chunks are in
use, OpenDDS allocates from
the heap.

20

DCPSChunkAssociationMultiplier n

Multiplier for the
DCPSChunks or
resource_limits.max_samples
value to determine the total
number of shallow copy
chunks that are preallocated.
Set this to a value greater than
the number of connections so
the preallocated chunk
handles do not run out. A
sample written to multiple
data readers will not be copied
multiple times but there is a
shallow copy handle to that
sample used to manage the
delivery to each data reader.
The size of the handle is small
so there is not great need to set
this value close to the number
of connections.

10

Table 5-1 Common Configuration Settings

Option Description Default

80 o c i w e b . c o m

C o n f i g u r a t i o n

DCPSBit [1|0]
Toggle Built-In-Topic
support. 1

DCPSBitTransportPort port Port used by the Simple TCP
transport for Built-In Topics.

none; OS
chooses port

DCPSBitTransportIPAddress

IP address identifying the
local interface to be used by
SimpleTcp transport for the
Built-In Topics.

empty string;
equivalent to
INADDR_ANY

DCPSBitLookupDurationMsec msec

The maximum duration in
milliseconds that the
framework will wait for latent
Built-In Topic information
when retrieving BIT data
given an instance handle. The
participant code may get an
instance handle for a remote
entity before the framework
receives and processes the
related BIT information. The
framework waits for up to the
given amount of time before it
fails the operation.

2000

DCPSPersistentDataDir path

The path on the file system
where durable data will be
stored. If the directory does
not exist it will be created
automatically.

OpenDDS-dura
ble-data-dir

DCPSPendingTimeout sec

The maximum duration in
seconds a data writer will
block to allow unsent samples
to drain on deletion.

0; blocks
indefinitely

Table 5-1 Common Configuration Settings

Option Description Default

o c i w e b . c o m 81

5 . 1 C o n f i g u r a t i o n F i l e s

The DCPSInfoRepo option’s value is passed to
CORBA::ORB::string_to_object() and can be any Object URL type
understandable by TAO (file, IOR, corbaloc, corbaname).
The DCPSChunks option allows application developers to tune the amount of
memory preallocated when the RESOURCE_LIMITS are set to infinite. Once
the allocated memory is exhausted, additional chunks are
allocated/deallocated from the heap. This feature of allocating from the heap
when the preallocated memory is exhausted provides flexibility but
performance will decrease when the preallocated memory is exhausted.

5.1.2 Transport Configuration Settings
An OpenDDS user may configure one or more transports in a single
configuration file. A sample transport configuration is below:

 [transport_impl_1]
 transport_type=SimpleTcp
 swap_bytes=0

scheduler=(SCHED_RR|SCHED_FIFO|
SCHED_OTHER)

Selects the thread scheduler to
use. Setting the scheduler to a
value other than the default
requires privileges on most
systems. A value of
SCHED_RR, SCHED_FIFO, or
SCHED_OTHER can be set.
SCHED_OTHER is the default
scheduler on most systems;
SCHED_RR is a round robin
scheduling algorithm; and
SCHED_FIFO allows each
thread to run until it either
blocks or completes before
switching to a different
thread.

SCHED_OTHER

scheduler_slice usec

Some operating systems, such
as SunOS, require a time slice
value to be set when selecting
schedulers other than the
default. For those systems,
this option can be used to set a
value in microseconds.

none; OS
chooses time
slice.

Table 5-1 Common Configuration Settings

Option Description Default

82 o c i w e b . c o m

C o n f i g u r a t i o n

 optimum_packet_size=8192

Again, it is not necessary to specify every attribute.
The “1” in the transport_impl_1 marker is the identifier for the transport. That
number must match the transport id passed to create_transport_impl()
in the code.

 OpenDDS::DCPS::TransportIdType transport_impl_id = 1;

 OpenDDS::DCPS::TransportImpl_rch transport_impl =
 TheTransportFactory->create_transport_impl (transport_impl_id,
 OpenDDS::DCPS::AUTO_CONFIG);

Thus, we can see where the transport's identifier of “1” in the configuration
file maps to the creation of the transport in the code and the configuration
settings from that file are applied to that transport implementation.

5.1.2.1 Common Transport Configuration Settings
The following table summarizes the transport configuration attributes that are
common to all transports:
Table 5-2 Transport Configuration Settings

Option Description Default

transport_type transport

Type of the transport; the list of
available transports can be extended
programmatically via the OpenDDS
Pluggable Transport Framework.
SimpleTcp, SimpleUdp,
SimpleMcast, and
ReliableMulticast are included
with OpenDDS.

none

swap_bytes 0|1

A value of 0 causes DDS to serialize
data in the source machine's native
endianness; a value of 1 causes DDS to
serialize data in the opposite
endianness. The receiving side will
adjust the data for its endianness so
there is no need to match this setting
between machines. The purpose of this
setting is to allow the developer to
decide which side will make the
endian adjustment, if necessary.

0

o c i w e b . c o m 83

5 . 1 C o n f i g u r a t i o n F i l e s

Enabling the thread_per_connection setting will increase performance
when writing to multiple data readers on different process as long as the
overhead of thread context switching does not outweigh the benefits of
parallel writes. This balance of network performance to context switching
overhead is best determined by experimenting. If a machine has multiple
network cards, it may improve performance by creating a transport for each
network card.

queue_messages_per_pool n

When backpressure is detected,
messages to be sent are queued. When
the message queue must grow, it
grows by this number.

10

queue_initial_pools n

The initial number of pools for the
backpressure queue. The default
settings of the two backpressure queue
values preallocate space for 50
messages (5 pools of 10 messages).

5

max_packet_size n
The maximum size of a transport
packet, including its transport header,
sample header, and sample data.

2147481599

max_samples_per_packet n Maximum number of samples in a
transport packet. 10

optimum_packet_size n

Transport packets greater than this size
will be sent over the wire even if there
are still queued samples to be sent.
This value may impact performance
depending on your network
configuration and application nature.

4096

thread_per_connection 0|1 Enable or disable the thread per
connection send strategy. 0(disabled)

datalink_release_delay

The datalink_release_delay is the
delay (in seconds) for datalink release
after no associations. Increasing this
value may reduce the overhead of
re-establishment when reader/writer
associations are added and removed
frequently.

10

Table 5-2 Transport Configuration Settings

Option Description Default

84 o c i w e b . c o m

C o n f i g u r a t i o n

5.1.2.2 SimpleTcp Transport Configuration Settings
The following table summarizes the transport configuration attributes that are
either unique to the Simple TCP transport, or whose default value or
description is overridden by the Simple TCP transport:
Table 5-3 SimpleTcp Configuration Settings

Option Description Default

local_address host:port

Hostname and port of the connection
acceptor. The default value is the
FQDN and port 0, which means the
OS will choose the port. If only the
host is specified and the port number
is omitted, the ‘:’ is still required on
the host specifier.

fqdn:0

enable_nagle_algorithm 0|1

Enable or disable the Nagle’s
algorithm. By default, it is disabled.
Enabling the Nagle’s algorithm may
increase throughput at the expense
of increased latency.

0

conn_retry_initial_delay n

Initial delay (milliseconds) for
reconnect attempt. As soon as a lost
connection is detected, a reconnect
is attempted. If this reconnect fails, a
second attempt is made after this
specified delay.

500

conn_retry_backoff_multiplier n

The backoff multiplier for
reconnection tries. After the initial
delay described above, subsequent
delays are determined by the product
of this multiplier and the previous
delay. For example, with a
conn_retry_initial_delay of 500 and
a conn_retry_backoff_multiplier of
1.5, the second reconnect attempt
will be 0.5 seconds after the first
retry connect fails; the third attempt
will be 0.75 seconds after the second
retry connect fails; the fourth
attempt will be 1.125 seconds after
the third retry connect fails.

2.0

conn_retry_attempts n

Number of reconnect attempts
before giving up and calling the
on_publication_lost() and
on_subscription_lost()
callbacks.

3

o c i w e b . c o m 85

5 . 1 C o n f i g u r a t i o n F i l e s

SimpleTcp Reconnection Options
When a TCP connection gets closed DDS attempts to reconnect. The
reconnection process is (a successful reconnect ends this sequence):
• Upon detecting a lost connection immediately attempt reconnect.
• If that fails, then wait conn_retry_initial_delay milliseconds and

attempt reconnect.
• While we have not tried more than conn_retry_attempts, wait

(previous wait time * conn_retry_backoff_multiplier)
milliseconds and attempt to reconnect.

5.1.2.3 SimpleUdp/SimpleMcast Transport Configuration Settings
While both SimpleUdp and SimpleMcast are unreliable datagram transports,
they share a set of common transport configuration attributes. The following
table summarizes those common transport configuration attributes that are
either unique to both SimpleUdp and SimpleMcast transports, or whose

max_output_pause_period n

Maximum period (milliseconds) of
not being able to send queued
messages. If there are samples
queued and no output for longer than
this period then the connection will
be closed and on_*_lost()
callbacks will be called. The default
value of zero means that this check
is not made.

0

passive_connect_duration n

Timeout (milliseconds) for initial
passive connection establishment.
This
does NOT affect the reconnect
timing.

0 (wait
forever)

passive_reconnect_duration n

The time period (milliseconds) for
the passive connection side to wait
for the connection to be reconnected.
If not reconnected within this period
then the on_*_lost() callbacks
will be called.

2000

Table 5-3 SimpleTcp Configuration Settings

Option Description Default

86 o c i w e b . c o m

C o n f i g u r a t i o n

default value or description is overridden by SimpleUdp and SimpleMcast
transports:

The SimpleUdp and SimpleMcast share the local_address configuration
but its meaning is different for the different transport implementations. Here
are the settings unique to the SimpleUdp transport:

In addition to the common configuration attributes listed above, the
SimpleMcast transport specifies a few other configuration attributes. The
following table summarizes those configuration attributes that are unique to
the SimpleMcast transport.

Table 5-4 SimpleUdp and SimpleMcast Common Configuration Settings

Option Description Default

max_packet_size n

Maximum size of a UDP packet. The
SimpleUdp and SimpleMcast
transports have a different default value than
the other transports.

62501

max_output_pause_period n

Maximum period (milliseconds) of not
being able to send queued messages. If there
are samples queued and no output for longer
than this period then the socket will be
closed and on_*_lost() callbacks will be
called. If the value is zero, the default, then
this check will not be made.

0

Table 5-5 SimpleUdp Configuration Settings

Option Description Default

local_address host:port

Address and port at which the transport
reads UDP packets. The default value is
the FQDN and port 0, which means the
OS will choose the port. If only the host is
specified and the port number is omitted,
the ‘:’ is still required on the host
specifier.

fqdn:0

o c i w e b . c o m 87

5 . 1 C o n f i g u r a t i o n F i l e s

Table 5-6 SimpleMcast Configuration Settings

5.1.2.4 ReliableMcast Transport Configuration Settings
The ReliableMcast transport builds data reliability upon the multicast
protocol. There are some similarities between its options and those of the
SimpleMcast transport. Here is the full list of ReliableMcast options:

Option Description Default

local_address host:port

Used on the publisher side to specify
which NIC card will be used. This is
not available on the subscriber side; it
defaults to use the FQDN and port 0,
which means the OS will choose the
port. If only the host is specified and
the port number is omitted, the ‘:’ is
still required on the host specifier.

fqdn:0

multicast_group_addr
ess host:port

Address at which the publisher sends
multicast packets to and subscriber
receives multicast packets from. Uses
ACE default multicast address as
default.

224.9.9.2:20001
(IPv4)

ff05:0::ff01:1:2
0001(IPv6)

receiver 0|1

Flag indicates if the transport is
receiving side (subscriber) or sending
side (publisher). Defaults to 0
(publisher) side.

0

Table 5-7 ReliableMcast Configuration Settings

Option Description Default

local_address
host:port

Used on the publisher side to specify
which NIC will be used. This is not
available on the subscriber side; it
defaults to use the FQDN and port 0,
which means the OS will choose the
port. If only the host is specified and the
port number is omitted, the ‘:’ is still
required on the host specifier.

fqdn:0

multicast_group_addr
ess host:port

Address at which the publisher sends
multicast packets to and subscriber
receives multicast packets from. Uses
ACE default multicast address as
default.

224.9.9.2:20001
(IPv4)

ff05:0::ff01:1:2
0001(IPv6)

88 o c i w e b . c o m

C o n f i g u r a t i o n

5.1.3 Multiple DCPSInfoRepo Configuration
A single OpenDDS process can be associated with multiple DCPS
information repositories (DCPSInfoRepo).
The repository information and domain associations can be configured using
configuration file, or via application API. Previously used defaults, command
line arguments, and configuration file settings will work as is for existing
applications that do not want to use multiple DCPSInfoRepo associations.
Domains not explicitly mapped with a repository are automatically associated
with the default repository. Individual DCPSInfoRepos can be associated with
multiple domains, however domains cannot be shared between multiple
DCPSInfoRepos.
Repository and domain association information is contained within individual
[repository] and [domain] subsections within the configuration file. The
subsections are specified using a slash separated path syntax. Repository
subsection header follow the format [repository/<NAME>] where the
“repository/” is literal and “<NAME>” is replaced with an arbitrarily chosen
but unique subsection name. Similarly, a domain subsection is specified as
[domain/<NAME>]. There may be any number of repository or domain
sections within a single configuration file.

receiver 0|1

Flag indicates if the transport is
receiving side (subscriber) or sending
side (publisher). Defaults to 0
(publisher) side.

0

sender_history_size n

Specifies the history buffer size for the
sender, in units of packets. The history
buffer consumes memory but provides
recall in the event of dropped packets at
any receiver.

1024

receiver_buffer_size n

Specifies the buffer size for a receiver,
in units of packets. This buffer lets the
receiver properly order incoming
packets and detect gaps. A larger buffer
will consume memory, while a smaller
one would reduce the effectiveness of
the reliability protocol.

256

Table 5-7 ReliableMcast Configuration Settings

Option Description Default

o c i w e b . c o m 89

5 . 2 L o g g i n g

Each repository section requires the keys RepositoryIor and
RepositoryKey to be defined. The RepositoryKey values must be unique
for each repository within the configuration file.
Each Domain subsection requires the keys DomainId and DomainRepoKey
to be defined. The DomainRepoKey matched to a RepositoryKey maps the
domain to that repository. The special value DEFAULT_REPO can be used to
associate a domain with the default repository.

5.2 Logging
By default, the OpenDDS framework will only log when there is a serious
error that is not indicated by a return code. An OpenDDS user may increase
the amount of logging via controls at the DCPS and Transport layers.

5.2.1 DCPS Layer Logging
Logging in the DCPS layer of OpenDDS is controlled by the
DCPSDebugLevel configuration setting and command-line option. It can
also be set programmatically in application code using:

OpenDDS::DCPS::set_DCPS_debug_level(level)

The level defaults to a value of 0 and has values of 0 to 10 as defined below:
• 0 - logs that indicate serious errors that are not indicated by return

codes (almost none).
• 1 - logs that should happen once per process or are warnings
• 2 - logs that should happen once per DDS entity
• 4 - logs that are related to administrative interfaces
• 6 - logs that should happen every Nth sample write/read

Table 5-8 Multiple repository configuration sections

Subsection Key Value

[repository/<NAME>]
RepositoryIor Repository IOR.
RepositoryKey Unique key value for the repository.

[domain/<NAME>]
DomainId

Domain being associated with a
repository.

DomainRepoKey Key value of the mapped repository.

90 o c i w e b . c o m

C o n f i g u r a t i o n

• 8 - logs that should happen once per sample write/read
• 10 - logs that may happen more than once per sample write/read

5.2.2 Transport Layer Logging
OpenDDS transport layer logging is controlled via the
DCPSTransportDebugLevel configuration option. For example, to add
transport layer logging to any OpenDDS application, add the following option
to the command line:

-DCPSTransportDebugLevel=level;

The transport layer logging level can also be programmatically configured by
appropriately setting the variable:

OpenDDS::DCPS::Transport_debug_level = level;

Valid transport logging levels range from 0 to 5 with increasing verbosity of
output.

Note Actually, transport logging level 6 is available to generate system trace logs.
Using this level is not recommended as the amount of data generated can be
overwhelming and is mostly of interest only to OpenDDS developers. Setting
the logging level to 6 requires defining the DDS_BLD_DEBUG_LEVEL
macro to 6 and rebuilding OpenDDS.

o c i w e b . c o m 91

CHAPTER 6

Pluggable Transports

The Configuration chapter gave an overview of currently available
configuration options. What follows is a discussion of the specifics of the
individual transports and how their behavior can be modified by using these
options.

6.1 Simple TCP Transport
As observed in the previous chapter, there are a number of configurable
options for SimpleTCP. A properly configured transport provides added
resilience to underlying stack disturbances. Almost all of the options available
to customize the connection and reconnection strategies have reasonable
defaults, but ultimately these values should to be chosen based upon a careful
study of the quality of the network and the desired QoS in the specific DDS
application and target environment.
The local_address parameter is used by the peer to establish a connection.
By default, the TCP transport selects a random port number on the NIC with
FQDN (fully qualified domain name) resolved. Therefore, you may wish to
explicitly set the address if you have multiple NICs or if you wish to specify

92 o c i w e b . c o m

P l u g g a b l e T r a n s p o r t s

the port number. When you configure an inter-host test, the local_address
can not be localhost and should be configured with an externally visible
interface(i.e. 192.168.0.2), or you can leave it unspecified in which case the
FQDN and a random port will be used. Note that this parameter also applies to
unreliable datagram transports with the same restrictions.
FQDN resolution is dependent upon system configuration. In the absence of a
FQDN (e.g. example.ociweb.com), OpenDDS will use any discovered short
names (e.g. example). If that fails, it will use the name resolved from the
loopback address (e.g. loopback).
OpenDDS IPV6 support requires that the underlying ACE/TAO components
be built with IPV6 support enabled. The local_address needs to be an IPv6
decimal address or a FQDN with port number. The FQDN must be resolvable
to an IPv6 address.
The passive_connect_duration parameter is typically set to a non-zero,
positive integer. Without a suitable connection timeout, the subscriber
endpoint can potentially enter a state of deadlock while waiting for the remote
side to initiate a connection. When a FQDN is not found, the system will emit
a warning.
SimpleTCP exists as an independent library and therefore needs to be linked
and configured like the other pluggable transport libraries. The -ORBSvcConf
option feeds the ACE Service Configuration directive file to configure the
SimpleTCP library. The Messenger example from 2.1.4 demonstrates
dynamically loading and configuring the SimpleTCP library.
When the SimpleTCP library is built statically, your application must link
directly against the SimpleTCP library. To do this, your application must first
include the proper header for service initialization,
$DDS_ROOT/dds/DCPS/transport/simpleTCP/SimpleTcp.h. Then, the
static initialization directive

static DCPS_SimpleTcpLoader "-type SimpleTcp"

will configure the SimpleTCP transport at run-time.
You can also configure the publisher and subscriber transport
implementations programatically, as described in 2.1. Configuring subscribers
and publishers should be identical, but different addresses/ports should be
assigned to each Transport Implementation.

o c i w e b . c o m 93

6 . 2 U n r e l i a b l e D a t a g r a m T r a n s p o r t s

6.2 Unreliable Datagram Transports
As mentioned in previous sections, two unreliable datagram transports,
SimpleUdp and SimpleMcast, are supported in this release. Both transports
exist in the SimpleUnreliableDgram library. To use these transports, the
SimpleUnreliableDgram library needs be dynamically or statically linked
via the -ORBSvcConf option. You can dynamically load the
SimpleUnreliableDgram library with a service configuration directive:

dynamic OPENDDS_DCPS_SimpleUnreliableDgramLoader Service_Object *
SimpleUnreliableDgram:_make_OPENDDS_DCPS_SimpleUnreliableDgramLoader()
"-type SimpleUdp"

With this service configuration directive, the SimpleUdp component is
registered with the transport factory as the library is loaded. To apply the
SimpleMcast transport, replace SimpleUdp in the directive above with
SimpleMcast. A single process can apply both SimpleUdp and SimpleMcast
transports via multiple service configuration directives.
Because the unreliable datagram transports do not support fragmentation of a
single sample into multiple packets, they currently limit the size of marshaled
samples, including headers, to 64 KB. Attempting to send a sample greater
than 64 KB with these unreliable datagram transports will result in an error
message and the sample not being delivered.
Using the unreliable datagram transport involves the same steps that we have
seen before: creating a Transport Implementation, attaching it to the publisher
and subscriber objects, and configuring it through one or more configuration
files. As observed in the previous section, SimpleUdp and SimpleMcast
transport configurations share a common set of attributes. In addition, the
SimpleMcast transport has its own specific attributes. The following sections
show a transport configuration example for SimpleUdp and SimpleMcast and
special notes for the individual attributes.

6.2.1 SimpleUDP Transport
Here is a SimpleUDP transport configuration example:

 # file pub_udp.ini

 [common]
 DCPSDebugLevel=0

94 o c i w e b . c o m

P l u g g a b l e T r a n s p o r t s

 DCPSInfoRepo=file://repo.ior

 [transport_impl_2]
 transport_type=SimpleUdp
 local_address=localhost:16701
 max_output_pause_period=0

According to this configuration file, a publisher application will read UDP
packets on port 16701 on the loopback network interface.
Note that the max_output_pause_period configuration attribute specifies
the timeout when the transport is under backpressure. Unlike SimpleTcp and
SimpleMcast transports, backpressure has not been observed during internal
testing and development; this parameter and its functionality have been
included as such a situation may exist in a DDS deployment environment.
Backpressure is handled in a similar manner to SimpleTcp and SimpleMcast.
The example above shows the configuration for a publisher, but a subscriber’s
configuration may just differ in terms of its local_address (IP address and
port).

6.2.2 SimpleMcast Transport
Here is a SimpleMcast transport configuration example for a publisher:

 # file pub_mcast.ini

 [common]
 DCPSDebugLevel=0
 DCPSInfoRepo=file://repo.ior

 [transport_impl_3]
 transport_type=SimpleMcast
 local_address=192.168.0.2:16701
 multicast_group_address=224.0.0.1:29803
 receiver=0
 max_output_pause_period=0

In this example, a publisher sends multicast packets to port 29803 on the
224.0.0.1 multicast group address from port 16701 on the NIC with the IP
address of 192.168.0.2.
Note that on Win32 machines, the local_address parameter should not be
the loopback address (localhost, or 127.0.0.1). It must have an external

o c i w e b . c o m 95

6 . 3 R e l i a b l e M u l t i c a s t T r a n s p o r t

interface’s address or remain blank to let the transport automatically select the
default NIC.
Here is the configuration for a SimpleMcast subscriber:

 # file sub_mcast.ini

 [common]
 DCPSDebugLevel=0
 DCPSInfoRepo=file://repo.ior

 [transport_impl_3]
 transport_type=SimpleMcast
 multicast_group_address=224.0.0.1:29803
 receiver=1
 max_output_pause_period=0

This example configures a subscriber application to listen to the 224.0.0.1
multicast group address, again at port 29803. The same
multicast_group_address should be used for both publishers and
subscribers.
The receiver configuration attribute specifies the role of the transport. It
must be 0 on the publisher side and 1 on the subscriber side. Unlike
SimpleTcp and SimpleUdp transports, the same SimpleMcast transport object
cannot be shared by both the publisher and subscriber.
Of particular importance is the missing local_address parameter. While it
is perfectly acceptable to specify this parameter for a publisher, it is not
available for subscribers in this version of OpenDDS.

6.3 Reliable Multicast Transport
The reliable multicast transport provides reliable operation on an unreliable
multicast channel. Understanding the meaning of “reliable”, how this
reliability is achieved, and what happens when reliability is compromised are
all vital to properly configuring the transport. Of note to developers is that the
reliability components of this transport are completely separate from those
that handle sending and receiving of data. Thus, the reliability portion could
be extracted and reused in another transport, provided the underlying transport
allows for bidirectional communication.

96 o c i w e b . c o m

P l u g g a b l e T r a n s p o r t s

In the context of this transport, reliability is defined as in-order, lossless
delivery of data. Since multicast is UDP, it exhibits UDP’s loss and
transmission characteristics. Therefore, to achieve the desired level of
reliability, both the sending and receiving side must have special logic:
A sender must:
• Fragment outgoing messages from the transport framework into packets

with headers appropriate for reliability and reassembly.
• Maintain a packet history buffer to respond to retransmission requests.
• Send out periodic heartbeat messages to let receivers detect loss at the end

of a burst.
• Respond to requests for expired historical data with a “not available”

packet.
A receiver must:
• Buffer data received out of order.
• Detect “gaps” in the transmission and request retransmissions.
• Deliver complete messages to the transport framework in the proper order.
• Report disconnection upon receipt of a “not available” packet for data it

has requested and not yet received.
Like other transports ReliableMcast needs to be either dynamically or
statically configured. Shown below is directive to dynamically load and
configure the transport:

dynamic OPENDDS_DCPS_ReliableMulticastLoader Service_Object *
ReliableMulticast:_make_OPENDDS_DCPS_ReliableMulticastLoader() ""

Static configuration requires the inclusion of the header file:
#include "dds/DCPS/transport/ReliableMulticast/ReliableMulticast.h"

and the service config directive:

static OPENDDS_DCPS_ReliableMulticastLoader ""

o c i w e b . c o m 97

CHAPTER 7

Built-In Topics

7.1 Introduction
In OpenDDS, built-in topics (BITs) are published by the DCPSInfoRepo
server. The InfoRepo’s -NOBITS command line option may be used to
suppress publication of built-in topics. Four separate topics are defined for
each domain that a DCPSInfoRepo server manages. Each is dedicated to a
particular entity (domain participant, topic, data writer, data reader) and
publishes instances describing the state for each entity in the domain.
Subscriptions to built-in topics are automatically created for each domain
participant. A participant’s support for BITs can be toggled via the DCPSBit
configuration option (see Table 5-1). To view the built-in topic data, simply
obtain the built-in Subscriber and then use it to access the Data Reader for the
built-in topic of interest. The Data Reader can then be used like any other Data
Reader.

Note The Built-In Topics feature is currently dependent upon the SimpleTCP
transport library. The DCPSInfoRepo server as well as any participating

98 o c i w e b . c o m

B u i l t - I n T o p i c s

subscribers and publishers will need to configure the SimpleTCP library to
handle Built-In topics.

Sections 7.3 through 7.6 provide details on the data published for each of the
four built-in topics. An example showing how to read from a built-in topic
follows those sections.

7.2 Building Without BIT Support
If you are not planning on using Built-in-Topics in your application, you can
configure DDS to remove BIT support at build time. Doing so can reduce the
footprint of the core DDS library by up to 30%. To remove support for
Built-In Topics follow these steps:
1. Regenerate the project files without the Built-In Topic feature. Either use

the command line “feature” argument to MPC:

mwc.pl -type <type> -features built_in_topics=0 DDS.mwc

Or alternatively, add the line built_in_topics=0 to the file
$DDS_ROOT/MPC/config/default.features and regenerate the
project files using MPC.

2. If you are using the gnuace MPC project type (which is the case if you
will be using GNU make as your build system), add line
“built_in_topics=0” to the file
$ACE_ROOT/include/makeinclude/platform_macros.GNU.

3. Build DDS as usual (see $DDS_ROOT/docs/INSTALL for instructions).

7.3 DCPSParticipant Topic
The DCPSParticipant topic publishes information about the Domain
Participants of the Domain. Here is the IDL that defines the structure
published for this topic:

 struct ParticipantBuiltinTopicData {
 BuiltinTopicKey_t key; // struct containing an array of 3 longs
 UserDataQosPolicy user_data;
 };

o c i w e b . c o m 99

7 . 4 D C P S T o p i c T o p i c

Each Domain Participant is defined by a unique key and is its own instance
within this topic.

7.4 DCPSTopic Topic
The DCPSTopic topic publishes information about the topics in the domain.
Here is the IDL that defines the structure published for this topic:

 struct TopicBuiltinTopicData {
 BuiltinTopicKey_t key;
 string name;
 string type_name;
 DurabilityQosPolicy durability;
 QosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 TransportPriorityQosPolicy transport_priority;
 LifespanQosPolicy lifespan;
 DestinationOrderQosPolicy destination_order;
 HistoryQosPolicy history;
 ResourceLimitsQosPolicy resource_limits;
 OwnershipQosPolicy ownership;
 TopicDataQosPolicy topic_data;
 };

Each topic is identified by a unique key and is its own instance within this
built-in topic. The members above identify the name of the topic, the name of
the topic type, and the set of QoS policies for that topic.

7.5 DCPSPublication Topic
The DCPSPublication topic publishes information about the Data Writers in
the Domain. Here is the IDL that defines the structure published for this topic:

 struct PublicationBuiltinTopicData {
 BuiltinTopicKey_t key;
 BuiltinTopicKey_t participant_key;
 string topic_name;
 string type_name;
 DurabilityQosPolicy durability;
 DeadlineQosPolicy deadline;

100 o c i w e b . c o m

B u i l t - I n T o p i c s

 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 LifespanQosPolicy lifespan;
 UserDataQosPolicy user_data;
 OwnershipStrengthQosPolicy ownership_strength;
 PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 TopicDataQosPolicy topic_data;
 GroupDataQosPolicy group_data;
 };

Each Data Writer is assigned a unique key when it is created and defines its
own instance within this topic. The fields above identify the Domain
Participant (via its key) that the Data Writer belongs to, the topic name and
type, and the various QoS policies applied to the Data Writer.

7.6 DCPSSubscription Topic
The DCPSSubscription topic publishes information about the Data Readers in
the Domain. Here is the IDL that defines the structure published for this topic:

 struct SubscriptionBuiltinTopicData {
 BuiltinTopicKey_t key;
 BuiltinTopicKey_t participant_key;
 string topic_name;
 string type_name;
 DurabilityQosPolicy durability;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 DestinationOrderQosPolicy destination_order;
 UserDataQosPolicy user_data;
 TimeBasedFilterQosPolicy time_based_filter;
 PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 TopicDataQosPolicy topic_data;
 GroupDataQosPolicy group_data;
 };

Each Data Reader is assigned a unique key when it is created and defines its
own instance within this topic. The fields above identify the Domain

o c i w e b . c o m 101

7 . 7 B u i l t - I n T o p i c S u b s c r i p t i o n E x a m p l e

Participant (via its key) that the Data Reader belongs to, the topic name and
type, and the various QoS policies applied to the Data Reader.

7.7 Built-In Topic Subscription Example
The following code uses a domain participant to get the built-in subscriber. It
then uses the subscriber to get the Data Reader for the DCPSParticipant topic
and subsequently reads samples for that reader.

 Subscriber_var bit_subscriber = participant->get_builtin_subscriber() ;
 DDS::DataReader_var dr =
 bit_subscriber->lookup_datareader(BUILT_IN_PARTICIPANT_TOPIC);
 DDS::ParticipantBuiltinTopicDataDataReader_var part_dr =
 DDS::ParticipantBuiltinTopicDataDataReader::_narrow(dr.in());

 DDS::ParticipantBuiltinTopicDataSeq part_data;
 DDS::SampleInfoSeq infos;
 DDS::ReturnCode_t ret = part_dr->read (part_data, infos, 20,
 DDS::ANY_SAMPLE_STATE,
 DDS::ANY_VIEW_STATE,
 DDS::ANY_INSTANCE_STATE) ;

 // Check return status and read the participant data

The code for the other built-in topics is similar.

102 o c i w e b . c o m

B u i l t - I n T o p i c s

o c i w e b . c o m 103

CHAPTER 8

dcps_ts.pl Options

8.1 dcps_ts.pl Command Line Options
The dcps_ts.pl script is located in $DDS_ROOT/bin and parses a single
IDL file for DCPS-enabled types then generates type support code for those
types. For each IDL file processed, such as xyz.idl, it generates three files:
xyzTypeSupport.idl, xyzTypeSupportImpl.h, and
xyzTypeSupportImpl.cpp. In the typical usage, the script is passed a
number of options and the IDL file name as a parameter. For example,

$DDS_ROOT/bin/dcps_ts.pl Foo.idl

The following table summarizes the entire set of options the script supports.
Note that many have terse and verbose variants of the same option.
Table 8-1 dcps_ts.pl Command Line Options

Option Description Default
--verbose
--noverbose Enables/disables verbose execution Quiet execution
--debug
-d Enable debug statements in the script No debug output

104 o c i w e b . c o m

d c p s _ t s . p l O p t i o n s

These options mainly divide into two main categories, those related to the
execution of the script and those that control the generated code. In the former
category are documentation options like --help and --man as well as script
debugging options like --verbose and --debug.
The code generation options allow the application developer to use the
generated code in a wide variety of environments. The -dir option lets you
operate on IDL files in other directories and causes the generated IDL code to
use the proper paths in the includes. The --export option lets you add an
export macro to your class definitions. This is required if the generated code is
going to reside in a shared library and the compiler (such as Visual C++ or
GCC 4) uses the export keyword. The --pch option is required if the

--help
-h Prints a usage message and exits N/A

--man Prints a man page and exits N/A
--dir=dirpath
-S dirpath Subdirectory where IDL file is located No subdir used

--export=macro
-X macro

Export macro used for generating C++
implementation code.

No export macro
used

--pch=file
Pre-compiled header file to include in
generated C++ files

No pre-compiled
header included

--module=name
Specifies the name of the C++ namespace (and
IDL module) into which generated code should
be placed.

Generated code
is placed in the
global
namespace.

--timestamp
-t

Backup any previously existing generated files
with a timestamp suffix.

Old files are not
backed up

--nobackup Do not back up the previously generated files Old files are not
backed up

--idl=file The IDL file to process.
IDL file is
assumed to be a
parameter

--output=outdir
-o outputdir

Output directory where dcps_ts.pl should place
the generated files.

The current
directory

--extension=mod
ule_name

Allows additional functionality to be added at
run time through another Perl module.

No additional
functionality is
added at run
time.

Table 8-1 dcps_ts.pl Command Line Options

Option Description Default

o c i w e b . c o m 105

8 . 1 d c p s _ t s . p l C o m m a n d L i n e O p t i o n s

generated implementation code is to be used in a component that uses
precompiled headers. The --module option allows you to put the generated
C++ code in a namespace (and the generated IDL into a module) to avoid
name collisions and pollution of the global name space. The --timestamp
and --nobackup options control whether older versions of the generated files
are preserved with timestamp-appended file name or whether they are simply
overwritten.
The --idl option allows you to specify the IDL file to process with an option
instead of with a simple parameter.

106 o c i w e b . c o m

d c p s _ t s . p l O p t i o n s

o c i w e b . c o m 107

CHAPTER 9

The DCPS Information Repository

9.1 DCPS Information Repository Options
The table below shows the command line options for the DCPSInfoRepo
server.
Table 9-1 DCPS Information Repository Options

Option Description Default

-o file Write the IOR of the DCPSInfo object to
the specified file repo.ior

-NOBITS Disable the publication of built-in topics Built-in topics
are published

-a address Listening address for built-in topics (when
built-in topics are published). Random port

-z Turn on verbose transport logging
Minimal
transport
logging.

-r Resurrect from persistent file 1(true)

108 o c i w e b . c o m

T h e D C P S I n f o r m a t i o n R e p o s i t o r y

OpenDDS clients often use the IOR file that DCPSInfoRepo outputs to locate
the service. The -o option allows you to place the IOR file into an
application-specific directory or file name.
Applications that do not use built-in topics may want to disable them with
-NOBITS to reduce the load on the server. If you are publishing the built-in
topics, then the -a option lets you pick the listen address of the Simple TCP
transport that is used for these topics.
Using the -z option causes the invocation of many transport-level debug
messages. This option is only effective when the DCPS library is built with
the DCPS_TRANS_VERBOSE_DEBUG environment variable defined.
The -FederationId and -FederateWith options are used to control the
federation of multiple DCPSInfoRepo servers into a single logical repository.
See 9.2 for descriptions of the federation capabilities and how to use these
options.
File persistence is implemented as an ACE Service object and is controlled via
service config directives. Currently available configuration options are:

The following directive:

static PersistenceUpdater_Static_Service "-file info.pr -reset 1"

-FederationId <id>
Unique identifier for this repository within
any federation. This is supplied as a 32 bit
decimal numeric value.

N/A

-FederateWith <ref>

Repository federation reference at which to
join a federation. This is supplied as a valid
CORBA object reference in string form:
stringified IOR, file: or corbaloc:
reference string.

N/A

-? Display the command line usage and exit N/A

Table 9-2 InfoRepo persistence directives

Options Description Defaults
-file Name of the persistent file InforepoPersist
-reset Wipe out old persistent data. 0 (false)

Table 9-1 DCPS Information Repository Options

Option Description Default

o c i w e b . c o m 109

9 . 2 R e p o s i t o r y F e d e r a t i o n

will persist InfoRepo updates to local file info.pr. If a file by that name already
exists, its contents will be erased. Used with the command-line option -r, the
InfoRepo can be reincarnated to a prior state.

9.2 Repository Federation

Note Repository federation should be considered an experimental feature.

Repository Federation allows multiple DCPS Information Repository servers
to collaborate with one another into a single federated service. This allows
applications obtaining service metadata and events from one repository to
obtain them from another if the original repository is no longer available.
While the motivation to create this feature was the ability to provide a measure
of fault tolerance to the DDS service metadata, other use cases can benefit
from this feature as well. This includes the ability of initially separate systems
to become federated and gain the ability to pass data between applications that
were not originally reachable. An example of this would include two
platforms which have independently established internal DDS services
passing data between applications; at some point during operation the systems
become reachable to each other and federating repositories allows data to pass
between applications on the different platforms.
The current federation capabilities in OpenDDS provide only the ability to
statically specify a federation of repositories at startup of applications and
repositories. A mechanism to dynamically discover and join a federation is
planned for a future OpenDDS release.
OpenDDS automatically detects the loss of a repository by using the
LIVELINESS Quality of Service policy on a Built-in Topic. When a
federation is used, the LIVELINESS QoS policy is modified to a non-infinite
value. When LIVELINESS is lost for a Built-in Topic an application will
initiate a failover sequence causing it to associate with a different repository
server. Because the federation implementation currently uses a Built-in Topic
ParticipantDataDataReaderListener entity, applications should not
install their own listeners for this topic. Doing so would affect the federation
implementation’s capability to detect repository failures.

110 o c i w e b . c o m

T h e D C P S I n f o r m a t i o n R e p o s i t o r y

The federation implementation distributes repository data within the
federation using a reserved DDS domain. The default domain used for
federation is defined by the constant
Federator::DEFAULT_FEDERATIONDOMAIN, has a value of 1382379631
(0x5265706f), and should not be used by applications for data distribution.
Currently only static specification of federation topology is available. This
means that each DCPS Information Repository, as well as each application
using a federated DDS service, needs to include federation configuration as
part of its configuration data. This is done by specifying each available
repository within the federation to each participating process and assigning
each repository to a different key value in the configuration files as described
in 5.1.3.
Each application and repository must include the same set of repositories in its
configuration information. Failover sequencing will attempt to reach the next
repository in numeric sequence (wrapping from the last to the first) of the
repository key values. This sequence is unique to each application configured,
and should be different to avoid overloading any individual repository.
Once the topology information has been specified, then repositories will need
to be started with two additional command line arguments. These are shown in
Table 9-1. One, -FederationId <value>, specifies the unique identifier
for a repository within the federation. This is a 32 bit numeric value and needs
to be unique for all possible federation topologies.
The second command line argument required is -FederateWith <ref>.
This causes the repository to join a federation at the <ref> object reference
after initialization and before accepting connections from applications.
Only repositories which are started with a federation identification number
may participate in a federation. The first repository started should not be given
a -FederateWith command line directive. All others are required to have
this directive in order to establish the initial federation. There is a command
line tool (federation) supplied that can be used to establish federation
associations if this is not done at startup. See 9.2.1 for a description. It is
possible, with the current static-only implementation, that the failure of a
repository before a federation topology is entirely established could result in a
partially unusable service. Due to this current limitation, it is highly
recommended to always establish the federation topology of repositories prior
to starting the applications.

o c i w e b . c o m 111

9 . 2 R e p o s i t o r y F e d e r a t i o n

9.2.1 Federation Management
A new command line tool has been provided to allow some minimal run-time
management of repository federation. This tool allows repositories started
without the -FederateWith option to be commanded to participate in a
federation. Since the operation of the federated repositories and failover
sequencing depends on the presence of connected topology, it is
recommended that this tool be used before starting applications that will be
using the federated set of repositories.
The command is named opendds_repo_ctl and is located in the
$DDS_ROOT/bin directory. It has a command format syntax of:

opendds_repo_ctl <cmd> <arguments>

Where each individual command has its own format as shown in Table 9-3.
Some options contain endpoint information. This information consists of an
optional host specification, separated from a required port specification by a
colon. This endpoint information is used to create a CORBA object reference
using the corbaloc: syntax in order to locate the 'Federator' object of the
repository server.
Table 9-3 opendds_repo_ctl Repository Management Command

Command Syntax Description

join opendds_repo_ctl join <target>
<peer> [<federation domain>]

Calls the <peer> to join <target>
to the federation. <federation
domain> is passed if present, or
the default Federation Domain
value is passed.

leave opendds_repo_ctl leave <target>

Causes the <target> to gracefully
leave the federation, removing
all managed associations
between applications using
<target> as a repository with
applications that are not using
<target> as a repository.

112 o c i w e b . c o m

T h e D C P S I n f o r m a t i o n R e p o s i t o r y

A join command specifies two repository servers (by endpoint) and asks the
second to join the first in a federation:

opendds_repo_ctl join 2112 otherhost:1812

This generates a CORBA object reference of
corbaloc:iiop:otherhost:1812/Federator that the federator connects
to and invokes a join operation. The join operation invocation passes the
default Federation Domain value (because we did not specify one) and the
location of the joining repository which is obtained by resolving the object
reference corbaloc:iiop:localhost:2112/Federator.
A full description of the command arguments are shown in Table 9-4

shutdown opendds_repo_ctl shutdown
<target>

Causes the <target> to shutdown
without removing any managed
associations. This is the same
effect as a repository which has
crashed during operation.

kill opendds_repo_ctl kill <target>

Kills the <target> repository
regardless of its federation
status.

help opendds_repo_ctl help Prints a usage message and quits.

Table 9-4 Federation Management Command Arguments

Option Description

<target>

This is endpoint information that can be used to locate
the Federator::Manager CORBA interface of a
repository which is used to manage federation
behavior. This is used to command leave and
shutdown federation operations and to identify the
joining repository for the join command.

<peer>

This is endpoint information that can be used to locate
the Federator::Manager CORBA interface of a
repository which is used to manage federation
behavior. This is used to command join federation
operations.

Table 9-3 opendds_repo_ctl Repository Management Command

Command Syntax Description

o c i w e b . c o m 113

9 . 2 R e p o s i t o r y F e d e r a t i o n

9.2.2 Federation Example
In order to illustrate the setup and use of a federation, this section walks
through a simple example that establishes a federation and a working service
that uses it.
This example is based on a two repository federation, with the simple
Message publisher and subscriber from 2.1 configured to use the federated
repositories.

9.2.2.1 Configuring the Federation Example
There are two configuration files to create for this example one each for the
message publisher and subscriber.
The Message Publisher configuration pub.ini for this example is as follows:

 [common]
 DCPSDebugLevel = 0

 [domain/information]
 DomainId = 42
 DomainRepoKey = 1

 [repository/primary]
 RepositoryKey = 1
 RepositoryIor = corbaloc:iiop:localhost:2112/InfoRepo

 [repository/secondary]
 RepositoryKey = 2
 RepositoryIor = file://repo.ior

Note that the DCPSInfo attribute/value pair has been omitted from the
[common] section. This has been replaced by the [domain/user] section as

<federation domain>

This is the domain specification used by federation
participants to distribute service metadata amongst the
federated repositories. This only needs to be specified
if more than one federation exists among the same set
of repositories, which is currently not supported. The
default domain is sufficient for single federations.

Table 9-4 Federation Management Command Arguments

Option Description

114 o c i w e b . c o m

T h e D C P S I n f o r m a t i o n R e p o s i t o r y

described in 5.1.3. The user domain is 42, so that domain is configured to use
the primary repository for service metadata and events.
The [repository/primary] and [repository/secondary] sections
define the primary and secondary repositories to use within the federation (of
two repositories) for this application. The RepositoryKey attribute is an
internal key value used to uniquely identify the repository (and allow the
domain to be associated with it, as in the preceding [domain/information]
section). The RepositoryIor attributes contain string values of resolvable
object references to reach the specified repository. The primary repository is
referenced at port 2112 of the localhost and is expected to be available via the
TAO IORTable with an object name of /InfoRepo. The secondary repository
is expected to provide an IOR value via a file named repo.ior in the local
directory.
The subscriber process is configured with the sub.ini file as follows:

 [common]
 DCPSDebugLevel = 0

 [domain/information]
 DomainId = 42
 DomainRepoKey = 1

 [repository/primary]
 RepositoryKey = 1
 RepositoryIor = file://repo.ior

 [repository/secondary]
 RepositoryKey = 2
 RepositoryIor = corbaloc:iiop:localhost:2112/InfoRepo

Note that this is the same as the pub.ini file except the subscriber has
specified that the repository located at port 2112 of the localhost is the
secondary and the repository located by the repo.ior file is the primary. This is
opposite of the assignment for the publisher. It means that the publisher is
started using the repository at port 2112 for metadata and events while the
subscriber is started using the repository located by the IOR contained in the
file. In each case, if a repository is detected as unavailable the application will
attempt to use the other repository if it can be reached.
The repositories do not need any special configuration specifications in order
to participate in federation, and so no files are required for them in this
example.

o c i w e b . c o m 115

9 . 2 R e p o s i t o r y F e d e r a t i o n

9.2.2.2 Running the Federation Example
The example is executed by first starting the repositories and federating them,
then starting the application publisher and subscriber processes the same way
as was done in the example of 2.1.8.
Start the first repository as:

 $DDS/bin/DCPSInfoRepo -ORBSvcConf tcp.conf -o repo.ior -FederationId 1024

The -o repo.ior option ensures that the repository IOR will be placed into
the file as expected by the configuration files. The -FederationId 1024
option assigns the value 1024 to this repository as its unique id within the
federation. The -ORBSvcConf tcp.conf option is the same as in the
previous example.
Start the second repository as:

 $DDS/bin/DCPSInfoRepo -ORBSvcConf tcp.conf \
 -ORBListenEndpoints iiop://localhost:2112 \
 -FederationId 2048 -FederateWith file://repo.ior

Note that this is all intended to be on a single command line. The
-ORBSvcConf tcp.conf option is the same as in the previous example. The
-ORBListenEndpoints iiop://localhost:2112 option ensures that the
repository will be listening on the port that the previous configuration files are
expecting. The -FederationId 2048 option assigns the value 2048 as the
repositories unique id within the federation. The -FederateWith
file://repo.ior option initiates federation with the repository located at
the IOR contained within the named file - which was written by the previously
started repository.
Once the repositories have been started and federation has been established
(this will be done automatically after the second repository has initialized), the
application publisher and subscriber processes can be started and should
execute as they did for the previous example in 2.1.8.

116 o c i w e b . c o m

T h e D C P S I n f o r m a t i o n R e p o s i t o r y

o c i w e b . c o m 117

CHAPTER 10

OpenDDS Java Bindings

10.1 Introduction
OpenDDS provides Java JNI bindings. Java applications can make use of the
complete OpenDDS middleware just like C++ applications.
See the $DDS_ROOT/java/INSTALL file for information on getting started,
including the prerequisites and dependencies.
See the $DDS_ROOT/java/FAQ file for information on common issues
encountered while developing applications with the Java bindings.

10.2 IDL and Code Generation
The OpenDDS Java binding is more than just a library that lives in one or two
.jar files. The DDS specification defines the interaction between a DDS
application and the DDS middleware. In particular, DDS applications send
and receive messages that are strongly-typed and those types are defined by
the application developer in IDL.

118 o c i w e b . c o m

O p e n D D S J a v a B i n d i n g s

In order for the application to interact with the middleware in terms of these
user-defined types, code must be generated at compile-time based on this IDL.
C++, Java, and even some additional IDL code is generated. In most cases,
application developers do not need to be concerned with the details of all the
generated files. Scripts included with OpenDDS automate this process so that
the end result is a native library (.so or .dll) and a Java library (.jar or just
a classes directory) that together contain all of the generated code.
Below is a description of the generated files and which tools generate them. In
this example, Foo.idl contains a single struct Bar contained in module Baz
(IDL modules are similar to C++ namespaces and Java packages). To the right
of each file name is the name of the tool that generates it, followed by some
notes on its purpose.

Table 10-1 Generated files descriptions

File Generation Tool

Foo.idl Developer-written description of
the DDS sample type

Foo{C,S}.{h,inl,cpp} tao_idl: C++ representation of
the IDL

FooTypeSupport.idl dcps_ts.pl: DDS type-specific
interfaces

FooTypeSupport{C,S}.{h,inl,cpp} tao_idl

Baz/BarSeq{Helper,Holder}.java idl2jni

Baz/BarData{Reader,Writer}*.java idl2jni

Baz/BarTypeSupport*.java idl2jni (except
TypeSupportImpl, see below)

FooTypeSupportJC.{h,cpp} idl2jni: JNI native method
implementations

FooTypeSupportImpl.{h,cpp} dcps_ts.pl: DDS type-specific
C++ impl.

Baz/BarTypeSupportImpl.java dcps_ts.pl: DDS type-specific
Java impl.

Baz/Bar*.java idl2jni: Java representation of
IDL struct

FooJC.{h,cpp} idl2jni: JNI native method
implementations

o c i w e b . c o m 119

1 0 . 3 S e t t i n g u p a n O p e n D D S J a v a P r o j e c t

10.3 Setting up an OpenDDS Java Project
These instructions assume you have completed the installation steps in the
$DDS_ROOT/java/INSTALL document, including having the various
environment variables defined.
1. Start with an empty directory that will be used for your IDL and the code

generated from it.
$DDS_ROOT/java/tests/messenger/messenger_idl is set up this
way.

2. Create an IDL file describing the data structure you will be using with
OpenDDS. See Messenger.idl for an example. This file will contain at
least one line starting with “#pragma DCPS_DATA_TYPE”. For the sake
of these instructions, we will call the file Foo.idl.

3. The C++ generated classes will be packaged in a shared library to be
loaded at run-time by the JVM. This requires the packaged classes to be
exported for external visibility. ACE provides a utility script for
generating the correct export macros. The script usage is shown here:
Unix:
$ACE_ROOT/bin/generate_export_file.pl Foo > Foo_Export.h

Windows:
%ACE_ROOT%\bin\generate_export_file.pl Foo > Foo_Export.h

4. Create an mpc file, Foo.mpc, from this template:
 --- BEGIN Foo.mpc ---
 project: dcps_java {

 idlflags += -Wb,stub_export_include=Foo_Export.h \
 -Wb,stub_export_macro=Foo_Export
 dcps_ts_flags += --export=Foo_Export
 idl2jniflags += -Wb,stub_export_include=Foo_Export.h \
 -Wb,stub_export_macro=Foo_Export
 dynamicflags += FOO_BUILD_DLL

 specific {
 jarname = DDS_Foo_types
 }

 TypeSupport_Files {
 Foo.idl
 }
 }
 --- END Foo.mpc ---

120 o c i w e b . c o m

O p e n D D S J a v a B i n d i n g s

You can leave out the specific {...} block if you do not need to
create a jar file. In this case you can directly use the Java .class files
which will be generated under the classes subdirectory of the current
directory.

5. Run MPC to generate platform-specific build files.
Unix:
$ACE_ROOT/bin/mwc.pl -type gnuace

Windows:
%ACE_ROOT%\bin\mwc.pl -type [CompilerType]

CompilerType can be vc71, vc8, vc9, and nmake
Make sure this is running ActiveState Perl.

6. Compile the generated C++ and Java code
Unix:
make (GNU make, so this may be "gmake" on Solaris systems)

Windows:
Build the generated .sln (Solution) file using your preferred method.
This can be either the Visual Studio IDE or one of the command-line
tools. If you use the IDE, start it from a command prompt using devenv
or vcexpress (Express Edition) so that it inherits the environment
variables. Command-line tools for building include vcbuild and
invoking the IDE (devenv or vcexpress) with the appropriate
arguments.

When this completes successfully you have a native library and a Java
.jar file. The native library names are as follows:
Unix:
libFoo.so

Windows:
Foo.dll (Release) or Food.dll (Debug)

You can change the locations of these libraries (including the .jar file)
by adding a line such as the following to the Foo.mpc file:

o c i w e b . c o m 121

1 0 . 4 A S i m p l e M e s s a g e P u b l i s h e r

libout = $(PROJECT_ROOT)/lib

where PROJECT_ROOT can be any environment variable defined at
build-time.

7. You now have all of the Java and C++ code needed to compile and run a
Java OpenDDS application. The generated .jar file needs to be added to
your classpath. The generated C++ library needs to be available for
loading at run-time:
Unix:

Add the directory containing libFoo.so to the LD_LIBRARY_PATH.
Windows:

Add the directory containing Foo.dll (or Food.dll) to the PATH. If
you are using the debug version (Food.dll) you will need to inform the
OpenDDS middleware that it should not look for Foo.dll. To do this,
add -Djni.nativeDebug=1 to the Java VM arguments.

See the publisher and subscriber directories in
$DDS_ROOT/java/tests/messenger for examples of publishing and
subscribing applications using the OpenDDS Java bindings.

8. If you make subsequent changes to Foo.idl, start by re-running MPC
(step #5 above). This is needed because certain changes to Foo.idl will
affect which files are generated and need to be compiled.

10.4 A Simple Message Publisher
This section presents a simple OpenDDS Java publishing process. The
complete code for this can be found at
$DDS_ROOT/java/tests/messenger/publisher/TestPublisher.ja
va. Uninteresting segments such as imports and error handling have been
omitted here. The code has been broken down and explained in logical
subsections.

10.4.1 Initializing the Participant
DDS applications are boot-strapped by obtaining an initial reference to the
Participant Factory. A call to the static method
TheParticipantFactory.WithArgs() returns a Factory reference. This

122 o c i w e b . c o m

O p e n D D S J a v a B i n d i n g s

also transparently initializes the C++ Participant Factory. We can then create
Participants for specific domains.

 public static void main(String[] args) {

 DomainParticipantFactory dpf =
 TheParticipantFactory.WithArgs(new StringSeqHolder(args));
 if (dpf == null) {
 System.err.println ("Domain Participant Factory not found");
 return;
 }
 DomainParticipant dp = dpf.create_participant(42,
 PARTICIPANT_QOS_DEFAULT.get(), null, DEFAULT_STATUS_MASK.value);
 if (dp == null) {
 System.err.println ("Domain Participant creation failed");
 return;
 }

Object creation failure is indicated by a null return. The third argument to
create_participant() takes a Participant events listener. If one is not
available, a null can be passed instead as done in our example.

10.4.2 Registering the Data Type and Creating a Topic
Next we register our data type with the Domain Participant using the
register_type() operation. We can specify a type name or pass an empty
string. Passing an empty string indicates that the middleware should simply
use the identifier generated by the IDL compiler for the type.

 MessageTypeSupportImpl = new MessageTypeSupportImpl();
 if (servant.register_type(dp, "") != RETCODE_OK.value) {
 System.err.println ("register_type failed");
 return;
 }

Next we create a topic using the type support servant’s registered name.

 Topic top = dp.create_topic("Movie Discussion List",
 servant.get_type_name(),
 TOPIC_QOS_DEFAULT.get(), null,
 DEFAULT_STATUS_MASK.value);

Now we have a topic named “Movie Discussion List” with the registered data
type and default QoS policies.

o c i w e b . c o m 123

1 0 . 4 A S i m p l e M e s s a g e P u b l i s h e r

10.4.3 Initializing and Registering the Transport
We now initialize the transport we want to use.

 TransportImpl transport_impl =
 TheTransportFactory.create_transport_impl(1,
 TheTransportFactory.AUTO_CONFIG);

The TheTransportFactory.AUTO_CONFIG argument indicates intent to
use a configuration file for transport initialization. The supplied transport Id
must have a matching entry in the configuration file. The code itself is
independent of the transport implementation details.

10.4.4 Creating a Publisher
Next, we create a publisher:

 Publisher pub = dp.create_publisher(
 PUBLISHER_QOS_DEFAULT.get(),
 null,
 DEFAULT_STATUS_MASK.value);

and attach it to the transport we previously initialized:

 AttachStatus stat = transport_impl.attach_to_publisher(pub);

DataWriters and DataReaders spawned from this publisher will use the
attached transport.

10.4.5 Creating a DataWriter and Registering an Instance
With the publisher attached to a transport, we can now create a DataWriter:

 DataWriter dw = pub.create_datawriter(
 top, DATAWRITER_QOS_DEFAULT.get(), null, DEFAULT_STATUS_MASK.value);

The DataWriter is for a specific topic. For our example, we use the default
DataWriter QOS policies and a null DataWriterListener.
Next, we narrow the generic DataWriter to the type-specific DataWriter and
register the instance we wish to publish. In our data definition IDL we had
specified the subject_id field as the key, so it needs to be populated with
the instance id (99 in our example):

124 o c i w e b . c o m

O p e n D D S J a v a B i n d i n g s

 MessageDataWriter mdw = MessageDataWriterHelper.narrow(dw);
 Message msg = new Message();
 msg.subject_id = 99;
 int handle = mdw.register(msg);

Our example waits for any peers to be initialized and connected. It then
publishes a few messages which are distributed to any subscribers of this topic
in the same domain.

 msg.from = "OpenDDS-Java";
 msg.subject = "Review";
 msg.text = "Worst. Movie. Ever.";
 msg.count = 0;
 int ret = mdw.write(msg, handle);

10.5 Setting up the Subscriber
Much of the initialization code for a subscriber is identical to the publisher.
The subscriber needs to create a participant in the same domain, register an
identical data type, create the same named topic, and initialize a compatible
transport.

 public static void main(String[] args) {

 DomainParticipantFactory dpf =
 TheParticipantFactory.WithArgs(new StringSeqHolder(args));
 if (dpf == null) {
 System.err.println ("Domain Participant Factory not found");
 return;
 }
 DomainParticipant dp = dpf.create_participant(42,
 PARTICIPANT_QOS_DEFAULT.get(), null, DEFAULT_STATUS_MASK.value);
 if (dp == null) {
 System.err.println ("Domain Participant creation failed");
 return;
 }

 MessageTypeSupportImpl servant = new MessageTypeSupportImpl();

 Topic top = dp.create_topic("Movie Discussion List",
 servant.get_type_name(),
 TOPIC_QOS_DEFAULT.get(), null,
 DEFAULT_STATUS_MASK.value);

o c i w e b . c o m 125

1 0 . 6 T h e D a t a R e a d e r L i s t e n e r I m p l e m e n t a t i o n

 TransportImpl transport_impl =
 TheTransportFactory.create_transport_impl(1,
 TheTransportFactory.AUTO_CONFIG);

10.5.1 Creating a Subscriber
As with the publisher, we create a subscriber and attach it to the transport:

 Subscriber sub = dp.create_subscriber(
 SUBSCRIBER_QOS_DEFAULT.get(), null, DEFAULT_STATUS_MASK.value);
 AttachStatus stat = transport_impl.attach_to_subscriber(sub);

10.5.2 Creating a DataReader and Listener
Providing a DataReaderListener to the middleware is the simplest way to be
notified of the receipt of data and to access the data. We therefore create an
instance of a DataReaderListenerImpl and pass it as a DataWriter creation
parameter:

 DataReaderListenerImpl listener = new DataReaderListenerImpl();
 DataReader dr = sub.create_datareader(
 top, DATAREADER_QOS_DEFAULT.get(), listener,
 DEFAULT_STATUS_MASK.value);

Any incoming messages will be received by the Listener in the middleware’s
thread. The application thread is free to perform other tasks at this time.

10.6 The DataReader Listener Implementation
The application defined DataReaderListenerImpl needs to implement the
specification’s DDS.DataReaderListener interface. OpenDDS provides an
abstract class DDS._DataReaderListenerLocalBase. The application’s
listener class extends this abstract class and implements the abstract methods
to add application-specific functionality.
Our example DataReaderListener stubs out most of the Listener methods. The
only method implemented is the message available callback from the
middleware:

public class DataReaderListenerImpl extends DDS._DataReaderListenerLocalBase {

126 o c i w e b . c o m

O p e n D D S J a v a B i n d i n g s

 private int num_reads_;

 public synchronized void on_data_available(DDS.DataReader reader) {
 ++num_reads_;
 MessageDataReader mdr = MessageDataReaderHelper.narrow(reader);
 if (mdr == null) {
 System.err.println ("read: narrow failed.");
 return;
 }

The Listener callback is passed a reference to a generic DataReader. The
application narrows it to a type-specific DataReader:

 MessageHolder mh = new MessageHolder(new Message());
 SampleInfoHolder sih = new SampleInfoHolder(new SampleInfo(0, 0, 0,
 new DDS.Time_t(), 0, 0, 0, 0, 0, 0, 0, false));
 int status = mdr.take_next_sample(mh, sih);

It then creates holder objects for the actual message and associated
SampleInfo and takes the next sample from the DataReader. Once taken,
that sample is removed from the DataReader’s available sample pool.

 if (status == RETCODE_OK.value) {

 System.out.println ("SampleInfo.sample_rank = "+ sih.value.sample_rank);
 System.out.println ("SampleInfo.instance_state = "+
 sih.value.instance_state);

 if (sih.value.valid_data) {

 System.out.println("Message: subject = " + mh.value.subject);
 System.out.println(" subject_id = " + mh.value.subject_id);
 System.out.println(" from = " + mh.value.from);
 System.out.println(" count = " + mh.value.count);
 System.out.println(" text = " + mh.value.text);
 System.out.println("SampleInfo.sample_rank = " +
 sih.value.sample_rank);
 }
 else if (sih.value.instance_state ==
 NOT_ALIVE_DISPOSED_INSTANCE_STATE.value) {
 System.out.println ("instance is disposed");
 }
 else if (sih.value.instance_state ==
 NOT_ALIVE_NO_WRITERS_INSTANCE_STATE.value) {
 System.out.println ("instance is unregistered");
 }
 else {
 System.out.println ("DataReaderListenerImpl::on_data_available: "+

o c i w e b . c o m 127

1 0 . 7 C l e a n i n g u p O p e n D D S J a v a C l i e n t s

 "received unknown instance state "+
 sih.value.instance_state);
 }

 } else if (status == RETCODE_NO_DATA.value) {
 System.err.println ("ERROR: reader received DDS::RETCODE_NO_DATA!");
 } else {
 System.err.println ("ERROR: read Message: Error: "+ status);
 }
 }

 .
 .
 .
}

The SampleInfo contains meta-information regarding the message such as
the message validity, instance state, etc.

10.7 Cleaning up OpenDDS Java Clients
An OpenDDS environment can be cleaned up with the following steps:

 dp.delete_contained_entities();

Cleans up all topics, subscribers and publishers associated with that
Participant.

 dpf.delete_participant(dp);

The DomainParticipantFactory reclaims any resources associated with the
DomainParticipant.

 TheTransportFactory.release();

Closes down any open Transports.

 TheServiceParticipant.shutdown();

Shuts down the ServiceParticipant. This cleans up all OpenDDS associated
resources.

128 o c i w e b . c o m

O p e n D D S J a v a B i n d i n g s

10.8 Configuring the Example
OpenDDS offers a file-based configuration mechanism. The syntax of the
configuration file is similar to a Windows INI file. The properties are divided
into named sections corresponding to common and individual transports
configuration.
The Messenger example has a common property for the DCPSInfoRepo
objects location:

[common]
DCPSInfoRepo=file://repo.ior

and a transport type property:

[transport_impl_1]
transport_type=SimpleTcp

The [transport_impl_1] section contains configuration information for
the transport with the id of “1”. This id is used for transport creation in both
our publisher and subscriber:

 TransportImpl transport_impl =
 TheTransportFactory.create_transport_impl(1,
 TheTransportFactory.AUTO_CONFIG);

See 1.7 for a complete description of all OpenDDS configuration parameters.

10.9 Running the Example
To run the Messenger Java OpenDDS application, use the following
commands:

$DDS_ROOT/bin/DCPSInfoRepo -ORBSvcConf tcp.conf -o repo.ior

$JAVA_HOME/bin/java -ea -cp
classes:$DDS_ROOT/lib/i2jrt.jar:$DDS_ROOT/lib/OpenDDS_DCPS.jar:classes
TestPublisher -ORBSvcConf tcp.conf -DCPSConfigFile pub_tcp.ini

$JAVA_HOME/bin/java -ea -cp
classes:$DDS_ROOT/lib/i2jrt.jar:$DDS_ROOT/lib/OpenDDS_DCPS.jar:classes
TestSubscriber -ORBSvcConf tcp.conf -DCPSConfigFile sub_tcp.ini

o c i w e b . c o m 129

1 0 . 1 0 J a v a M e s s a g e S e r v i c e (J M S) S u p p o r t

The -DCPSConfigFile command-line argument passes the location of the
OpenDDS configuration file.
The -ORBSvcConf configuration directive file dynamically loads and
configures the SimpleTCP transport library.

10.10 Java Message Service (JMS) Support
OpenDDS provides partial support for JMS version 1.1
<http://java.sun.com/products/jms/>. Enterprise Java applications
can make use of the complete OpenDDS middleware just like standard Java
and C++ applications.
See the INSTALL file in the $DDS_ROOT/java/jms directory for information
on getting started with the OpenDDS JMS support, including the prerequisites
and dependencies.

130 o c i w e b . c o m

O p e n D D S J a v a B i n d i n g s

o c i w e b . c o m 131

Index

A

ace x
ADAPTIVE Communication Environment x
Advanced CORBA Programming Using TAO course xvi

B

BIT
See built-in topic

built-in topic 5, 51–52, 97–99, 101, 107–109
DCPSParticipant 5, 98, 101
DCPSPublication 5, 99
DCPSSubscription 5, 100
DCPSTopic 5, 99
example 101

132 o c i w e b . c o m

C

C

c++ example 15–32
C++ Programming with Boost course xvii
common configuration settings 78
common data representation (CDR) 13
common transport configuration 82
compliance x, 7
condition 6
configuration 14–32, 77–89, 128

common settings 78
common transport 82
reliablemcast transport 87
simplemcast transport 85
simpletcp transport 84
simpleudp transport 85
transport 81

configuring multiple DCPSInfoRepos 88
CORBA Programming with C++ course xvi
create_participant() operation 20, 122
create_topic() operation 26
customer support

See support

D

data distribution service (DDS)
data local reconstruction layer (DLRL) 1
data-centric publish-subscribe (DCPS) 1

overview 2–6
platform independent model (PIM) 1
platform specific model (PSM) 1

data local reconstruction layer (DLRL) 1
data marshaling 4–5, 13, 17
data reader 5–6, 14, 17, 27–30, 33, 43–46, 48–52, 60, 62, 97, 100–101
data sample 4–5, 14, 16–17, 25, 28–33, 45–46, 48, 62, 93, 101
data writer 4–5, 17, 23, 25, 33, 43–52, 60, 97, 99–100, 123
data-centric publish-subscribe (DCPS) 1

information repository 13, 19, 31, 79, 97, 107–109

o c i w e b . c o m 133

D

overview 2–6
DataReaderListener implementation 28
DataReaderListener interface 28
DCPS

See data-centric publish-subscribe (DCPS)
DCPS_DATA_KEY pragma 16
DCPS_DATA_TYPE pragma 16
DCPS_TRANS_VERBOSE_DEBUG environment variable 108
dcps_ts.pl program 15, 17–18, 103
DCPSBit option 80
DCPSBitLookupDurationMsec option 80
DCPSBitTransportIPAddress option 80
DCPSBitTransportPort option 80
DCPSChunkAssociationMultiplier option 79
DCPSChunks option 79, 81
DCPSConfigFile option 77
DCPSDebugLevel option 78
DCPSInfoRepo 13, 19, 31, 79, 97, 107–109

configuration 88
configuring multiple 88
federation 108–115

example 113
management 111

DCPSInfoRepo option 79
DCPSLivelinessFactor option 79
DCPSParticipant built-in topic 5, 98, 101
DCPSPendingTimeout option 80
DCPSPersistentDataDir option 80
DCPSPublication built-in topic 5, 99
DCPSSubscription built-in topic 5, 100
DCPSTopic built-in topic 5, 99
DCPSTransportDebugLevel option 79
DDS_ROOT environment variable 11–12, 15, 17, 19, 25, 103
deadline policy 49, 60
delete_contained_entities() operation 31
dispose() operation 30
DLRL

See data local reconstruction layer (DLRL)
domain 4–5, 17, 26, 49, 97–100, 110
domain participant 5, 31, 51, 56, 97–101
domain participant factory 20, 31, 56, 77
durability policy 46

134 o c i w e b . c o m

E

durability_service policy 47

E

enable() operation 56
entity_factory policy 55
environment variables

DCPS_TRANS_VERBOSE_DEBUG 108
DDS_ROOT 11–12, 15, 17, 19, 25, 103

example
built-in topic 101
c++ 15–32
DCPSInfoRepo federation 113
java 121–129
quality of service (QoS) policy 61

F

factory
domain participant 20, 31, 56, 77
transport 12, 31

find_topic() operation 26
frequently asked questions (FAQ) xiii

G

group_data policy 51

H

history policy 45, 62

o c i w e b . c o m 135

I

I

IDL compiler
Gdcps option 13, 16, 18

instance xii, 4, 13, 16, 25, 32–33, 45–46, 48, 60, 62, 97, 99–100
interface

DataReaderListener 28
type-specific 17, 29

interface definition language (IDL)
tao_idl program 16

Introduction to CORBA course xv

J

java bindings 117–129
jms support 129

java example 121–129
java message service (jms) 129

L

latency_budget policy 53
licensing terms ix
lifespan policy 50
listener 6, 14, 20, 23, 27–29, 44, 49–50, 125
liveliness policy 43, 60, 109

M

Make Project Creator x
marshaling 4–5, 13, 17
mpc x
multithreading 14

136 o c i w e b . c o m

O

O

Object Computing, Inc. (OCI) ix–x, xiv–xv, 1
Object Management Group (OMG) specifications

Data Distribution Service for Real-Time Systems (formal/07-01-01) ix–x, 1–2
Object Oriented Design Patterns and Frameworks course xvi
on_data_available() operation 29
on_liveliness_changed() operation 44
on_offered_deadline_missed() operation 49
on_requested_deadline_missed() operation 50
open source software ix
OpenDDS Programming with C++ course xvii
opendds_repo_ctl program 111
operations

create_participant() 20, 122
create_topic() 26
delete_contained_entities() 31
dispose() 30
enable() 56
find_topic() 26
on_data_available() 29
on_liveliness_changed() 44
on_offered_deadline_missed() 49
on_requested_deadline_missed() 50
ORB_init() 20
register_instance() 25, 32
register_type() 20, 122
return_loan() 34
set_qos() 38
string_to_object() 81
take_instance() 33
take_next_instance() 33
take_next_sample() 33
take() 33
unregister() 30
update_subscription_qos() 38
wait_for_acknowledgements() 31

options
DCPSBit 80
DCPSBitLookupDurationMsec 80
DCPSBitTransportIPAddress 80

o c i w e b . c o m 137

P

DCPSBitTransportPort 80
DCPSChunkAssociationMultiplier 79
DCPSChunks 79, 81
DCPSConfigFile 77
DCPSDebugLevel 78
DCPSInfoRepo 79
DCPSLivelinessFactor 79
DCPSPendingTimeout 80
DCPSPersistentDataDir 80
DCPSTransportDebugLevel 79
ORBSvcConf 31
scheduler 81
scheduler_slice 81

ORB_init() operation 20
ORBSvcConf option 31
ownership policy 60–61
ownership_strength policy 60–61

P

partition policy 49, 52
platform independent model (PIM) 1
platform specific model (PSM) 1
platform support xiv
pluggable transports 12–13, 23–96
policy

quality of service (QoS) 5–6, 14, 20–21, 23, 37–62
deadline 49, 60
durability 46
durability_service 47
entity_factory 55
example 61
group_data 51
history 45, 62
latency_budget 53
lifespan 50
liveliness 43, 60, 109
ownership 60–61
ownership_strength 60–61
partition 49, 52

138 o c i w e b . c o m

Q

reader_data_lifecycle 59
reliability 44, 62
resource_limits 48, 62
supported 37
time_based_filter 59
topic_data 51
transport_priority 52
unsupported 60
user_data 51
writer_data_lifecycle 58

policy example 61
pragma

DCPS_DATA_KEY 16
DCPS_DATA_TYPE 16

publisher 4–6, 12–15, 17–19, 23, 25, 27, 30–31, 38, 45, 49–52, 56, 61–62, 93, 123

Q

quality of service (QoS) policy 5–6, 14, 20–21, 23, 37–62
deadline 49, 60
durability 46
durability_service 47
entity_factory 55
group_data 51
history 45, 62
latency_budget 53
lifespan 50
liveliness 43, 60, 109
ownership 60–61
ownership_strength 60–61
partition 49, 52
reader_data_lifecycle 59
reliability 44, 62
resource_limits 48, 62
supported 37
time_based_filter 59
topic_data 51
transport_priority 52
unsupported 60
user_data 51

o c i w e b . c o m 139

R

writer_data_lifecycle 58
quality of service (QoS) policy example 61

R

reader_data_lifecycle 59
register_instance() operation 25, 32
register_type() operation 20, 122
reliability policy 44, 62
reliablemcast transport 95

configuring 87
resource_limits policy 48, 62
return_loan() operation 34

S

sample 4–5, 14, 16–17, 25, 28–33, 45–46, 48, 60, 62, 93, 101
scheduler option 81
scheduler_slice option 81
set_qos() operation 38
simplemcast transport 94

configuring 85
simpletcp transport 12, 15, 21, 27, 45, 108

configuring 84
simpleudp transport 45, 93

configuring 85
single-copy read 33
specification

compliance x, 7
string_to_object() operation 81
subscriber 5–6, 12–15, 17–18, 24–27, 30–32, 45–46, 49–52, 56, 93, 97, 101, 124–
125, 127
support xiv
supported platforms xiv
supported policies 37

140 o c i w e b . c o m

T

T

take_instance() operation 33
take_next_instance() operation 33
take_next_sample() operation 33
take() operation 33
tao x, xii
The ACE ORB x, xii
time_based_filter 59
topic 4–5, 14, 16, 20–21, 23, 25–26, 28, 31, 43–51, 97–101, 108
topic_data policy 51
training xv, xvii

Advanced CORBA Programming Using TAO xvi
C++ Programming with Boost xvii
CORBA Programming with C++ xvi
Introduction to CORBA xv
Object Oriented Design Patterns and Frameworks xvi
OpenDDS Programming with C++ xvii
Using the ACE C++ Framework xvi

transport 12, 14–15, 21, 27, 45, 93, 107–108
pluggable 12–13, 23–96
reliablemcast 95
simplemcast 94
simpletcp 12, 15, 21, 27, 45, 108
simpleudp 45, 93

transport configuration 81
transport factory 12, 31
transport_priority policy 52
type-specific interface 17, 29
type-support code generation

dcps_ts.pl program 15, 17–18, 103

U

unregister() operation 30
unsupported policies 60
update_subscription_qos() operation 38
user_data policy 51
Using the ACE C++ Framework course xvi

o c i w e b . c o m 141

W

W

wait set 6
wait_for_acknowledgements() operation 31
writer_data_lifecycle 58

Z

zero-copy read 33

142 o c i w e b . c o m

Z

	Contents
	Preface
	What Is OpenDDS?
	Licensing Terms
	About This Guide
	Highlights of the OpenDDS 2.0 Release
	Conventions
	Coding Examples
	OMG Specification References
	Additional Documents
	Supported Platforms
	Customer Support
	Object Technology Training
	On-Site Classes

	Introduction
	1.1 DCPS Overview
	1.1.1 Basic Concepts
	1.1.1.1 Domain
	1.1.1.2 DomainParticipant
	1.1.1.3 Topic
	1.1.1.4 DataWriter
	1.1.1.5 Publisher
	1.1.1.6 Subscriber
	1.1.1.7 DataReader

	1.1.2 Built-In Topics
	1.1.3 Quality of Service Policies
	1.1.4 Listeners
	1.1.5 Conditions

	1.2 OpenDDS Implementation
	1.2.1 Compliance
	1.2.1.1 Entity Compliance
	1.2.1.2 Quality of Service (QoS) Compliance

	1.2.2 OpenDDS Architecture
	1.2.2.1 Basic Philosophy
	1.2.2.2 Pluggable Transport Layer
	1.2.2.3 Custom Marshaling
	1.2.2.4 DCPS Information Repository
	1.2.2.5 Threading
	1.2.2.6 Configuration

	Getting Started
	2.1 Using DCPS
	2.1.1 Defining the Data Types
	2.1.2 Processing the IDL
	2.1.3 Starting the DCPS Information Repository
	2.1.4 A Simple Message Publisher
	2.1.4.1 Initializing the Participant
	2.1.4.2 Registering the Data Type and Creating a Topic
	2.1.4.3 Initializing and Registering the Transport
	2.1.4.4 Creating a Publisher
	2.1.4.5 Creating a DataWriter and Waiting for the Subscriber
	2.1.4.6 Sample Publication

	2.1.5 Setting up the Subscriber
	2.1.5.1 Initializing the Participant
	2.1.5.2 Registering the Data Type and Creating a Topic
	2.1.5.3 Initializing and Registering the Transport
	2.1.5.4 Creating a DataReader and Listener

	2.1.6 The Data Reader Listener Implementation
	2.1.7 Cleaning up in OpenDDS Clients
	2.1.8 Running the Example

	2.2 Data Handling Optimizations
	2.2.1 Registering and Using Instances in the Publisher
	2.2.2 Reading Multiple Samples
	2.2.3 Zero-Copy Read

	Quality of Service
	3.1 Introduction
	3.2 Supported Policies
	3.2.1 Default QoS Policy Values
	3.2.2 LIVELINESS
	3.2.3 RELIABILITY
	3.2.4 HISTORY
	3.2.5 DURABILITY
	3.2.6 DURABILITY_SERVICE
	3.2.7 RESOURCE_LIMITS
	3.2.8 PARTITION
	3.2.9 DEADLINE
	3.2.10 LIFESPAN
	3.2.11 USER_DATA
	3.2.12 TOPIC_DATA
	3.2.13 GROUP_DATA
	3.2.14 TRANSPORT_PRIORITY
	3.2.15 LATENCY_BUDGET
	3.2.16 ENTITY_FACTORY
	3.2.17 PRESENTATION
	3.2.18 DESTINATION_ORDER
	3.2.19 WRITER_DATA_LIFECYCLE
	3.2.20 READER_DATA_LIFECYCLE
	3.2.21 TIME_BASED_FILTER

	3.3 Unsupported Policies
	3.3.1 OWNERSHIP
	3.3.2 OWNERSHIP_STRENGTH

	3.4 Policy Example

	Conditions and Listeners
	4.1 Introduction
	4.2 Communication Status Types
	4.2.1 Topic Status Types
	4.2.1.1 Inconsistent Topic Status

	4.2.2 Subscriber Status Types
	4.2.2.1 Data On Readers Status

	4.2.3 Data Reader Status Types
	4.2.3.1 Sample Rejected Status
	4.2.3.2 Liveliness Changed Status
	4.2.3.3 Requested Deadline Missed Status
	4.2.3.4 Requested Incompatible QoS Status
	4.2.3.5 Data Available Status
	4.2.3.6 Sample Lost Status
	4.2.3.7 Subscription Matched Status

	4.2.4 Data Writer Status Types
	4.2.4.1 Liveliness Lost Status
	4.2.4.2 Offered Deadline Missed Status
	4.2.4.3 Offered Incompatible QoS Status
	4.2.4.4 Publication Matched Status

	4.3 Listeners
	4.3.1 Topic Listener
	4.3.2 Data Writer Listener
	4.3.3 Publisher Listener
	4.3.4 Data Reader Listener
	4.3.5 Subscriber Listener
	4.3.6 Domain Participant Listener

	4.4 Conditions
	4.4.1 Overview
	4.4.2 Status Condition Example
	4.4.3 Additional Condition Types
	4.4.4 Read Conditions
	4.4.5 Query Conditions
	4.4.6 Guard Conditions

	Configuration
	5.1 Configuration Files
	5.1.1 Common Configuration Settings
	5.1.2 Transport Configuration Settings
	5.1.2.1 Common Transport Configuration Settings
	5.1.2.2 SimpleTcp Transport Configuration Settings
	5.1.2.3 SimpleUdp/SimpleMcast Transport Configuration Settings
	5.1.2.4 ReliableMcast Transport Configuration Settings

	5.1.3 Multiple DCPSInfoRepo Configuration

	5.2 Logging
	5.2.1 DCPS Layer Logging
	5.2.2 Transport Layer Logging

	Pluggable Transports
	6.1 Simple TCP Transport
	6.2 Unreliable Datagram Transports
	6.2.1 SimpleUDP Transport
	6.2.2 SimpleMcast Transport

	6.3 Reliable Multicast Transport

	Built-In Topics
	7.1 Introduction
	7.2 Building Without BIT Support
	7.3 DCPSParticipant Topic
	7.4 DCPSTopic Topic
	7.5 DCPSPublication Topic
	7.6 DCPSSubscription Topic
	7.7 Built-In Topic Subscription Example

	dcps_ts.pl Options
	8.1 dcps_ts.pl Command Line Options

	The DCPS Information Repository
	9.1 DCPS Information Repository Options
	9.2 Repository Federation
	9.2.1 Federation Management
	9.2.2 Federation Example
	9.2.2.1 Configuring the Federation Example
	9.2.2.2 Running the Federation Example

	OpenDDS Java Bindings
	10.1 Introduction
	10.2 IDL and Code Generation
	10.3 Setting up an OpenDDS Java Project
	10.4 A Simple Message Publisher
	10.4.1 Initializing the Participant
	10.4.2 Registering the Data Type and Creating a Topic
	10.4.3 Initializing and Registering the Transport
	10.4.4 Creating a Publisher
	10.4.5 Creating a DataWriter and Registering an Instance

	10.5 Setting up the Subscriber
	10.5.1 Creating a Subscriber
	10.5.2 Creating a DataReader and Listener

	10.6 The DataReader Listener Implementation
	10.7 Cleaning up OpenDDS Java Clients
	10.8 Configuring the Example
	10.9 Running the Example
	10.10 Java Message Service (JMS) Support

	Index

