OpenDDS Developer s Guide

[

OpenDDS Version 2.1

Supported by Object Computing, Inc. (OCI)
http://www.opendds.org
http://www.ociweb.com

ii

ociweb.com

OBJECT COMPUTING, INC.

Contents

Chapter 1

Chapter 2

Contentsoii i e e iiii
Preface e e ix
Introduction 1
DCPS OVEIVIEW oottt e e e e et e e e e e e e 2
Basic COoMCePLS . .ot v vttt e e 2
Built-In TOPICS . oot v et 5
Quality of Service Policies i 5
LIStENeTS . ..ottt e 6
Conditionsot 6
OpenDDS Implementation i 6
COmMPUANCE . ..ot e ettt e e 6
OpenDDS Architecture 11
Getting Started 15
Using DCPS ..o 15
Defining the Data Types oottt e 15

| |
I ociweb.com iii

OBJECT COMPUTING, INC.

Contents

Processing the IDL 16
Starting the DCPS Information Repository 19
A Simple Message Publisher 19
Setting up the Subscriber 25
The Data Reader Listener Implementation 28
Cleaningup in OpenDDS Clientsccititirinnnenn.. 30
Running the Example 31
Data Handling Optimizationsouiiiniinemnnennennenn.. 32
Registering and Using Instances in the Publisher 32
Reading Multiple Samples i 33
Zero-Copy Read i 33
Chapter 3 Quality of Service 37
Introduction 37
Supported Policies 37
Default QoS Policy Values ..., 39
LIVELINESS .. 43
RELIABILITY ..ttt e e e 44
HISTORY .. 45
DURABILITY .ot e 46
DURABILITY SERVICE i 47
RESOURCE LIMITS ... e 48
PARTITION ... e 49
DEADLINE . ..o 49
LIFESP AN 50
USER DAT A . 51
TOPIC DATA ..o 51
GROUP DATA e e 51
TRANSPORT PRIORITYo 52
LATENCY BUDGET 53
ENTITY _FACTORY ... e 55
PRESENTATION e 56
DESTINATION ORDER e 57
WRITER DATA LIFECYCLE i 58
READER DATA LIFECYCLE 59
TIME BASED FILTER e 59

| |
iv ociweb.com I

OBJECT COMPUTING, INC.

Contents

Unsupported Policies i 60
OWNERSHIP . ..o 60
OWNERSHIP_STRENGTH i 61

Policy Example 61

Chapter 4 Conditions and Listeners , 63

Introduction 63

Communication Status Types 64
Topic Status TyPes . ..ottt 64
Subscriber Status Typesot 65
Data Reader Status Typesovuii i 65
Data Writer Status Typesvt it et 68

LiSteners ..ot 70
Topic LiStenerot 72
Data Writer Listener i 72
Publisher Listenerttt 72
Data Reader Listenerc.iiuiiiiiininiiinenenn. 73
Subscriber Listener 73
Domain Participant Listenero 73

ConditionS ...ttt 73
OVeIVIBW .« ottt et e e e e e e e 73
Status Condition Example i 74
Additional Condition Types ...t 74
Read Conditions i 75
Query Conditionsttt e 75
Guard Conditionsot 75

Chapter 5 Configuration 77

Configuration Files e 77
Common Configuration Optionsiuiiienennnnenenan... 78
Transport Configuration Optionsc..cuiirniinennenneen..n. 82
Multiple DCPSInfoRepo Configuration, 88

LOgging .ot 89
DCPS Layer Loggingovtit ettt 89
Transport Layer Loggingt 89

[|
I ociweb.com v

OBJECT COMPUTING, INC.

Contents

Chapter 6 TransSpPorts 91
TP I 91

UD P TP o 93

IP MUlticast ..ottt e 93

Chapter 7 Built-In Topics 97
Introduction 97

Building Without BIT Support 98

DCPSParticipant TOPIC .. .ottt e 98

DCPSTOPIC TOPIC v v ettt e e e e e e e 99

DCPSPublication Topict 99
DCPSSubscription TOPIC .o\ v ittt e 100

Built-In Topic Subscription Example 101

Chapter 8 deps_ts.plOptions 103
deps_ts.pl Command Line Options ..., 103

Chapter 9 The DCPS Information Repository 107
DCPS Information Repository Options ..., 107

Repository Federation —......... ... i 109

Federation Managementouuiniturirenenennnnennn. 111

Federation Example 113

Chapter 10 OpenDDS JavaBindings oo, 117
Introduction 117

IDL and Code Generation —uuiuiiiun e, 117

Setting up an OpenDDS Java Project, 119

A Simple Message Publisher i 121

Initializing the Participant i, 122

Registering the Data Type and Creatinga Topic 122

Initializing and Registering the Transport 123

Creatinga Publisher 123

Creating a DataWriter and Registering an Instance 124

Setting up the Subscriber 124

| |
vi ociweb.com I

OBJECT COMPUTING, INC.

Contents

Creating a Subscriber 125
Creating a DataReader and Listener 125
The DataReader Listener Implementation 126
Cleaning up OpenDDS Java Clients c.. i .. 127
Configuring the Example i 128
Running the Example 129
Java Message Service (JMS) Support ... 129
INdeX .. e e e 131

| |
I ociweb.com vii

OBJECT COMPUTING, INC.

Contents

viii ociweb.com I

OBJECT COMPUTING, INC.

Preface

<

OBJECT COMPUTING, INC.

What Is OpenDDS?

OpenDDS is an open source implementation of the OMG Data Distribution
Service (DDS) for Real-Time Systems specification (OMG Document
formal/07-01-01). OpenDDS is sponsored by Object Computing, Inc.
(OCI) and is available via http://www.opendds.org/.

Licensing Terms

OpenDDS is made available under the open source software model. The
source code may be freely downloaded and is open for inspection, review,
comment, and improvement. Copies may be freely installed across all your
systems and those of your customers. There is no charge for development or
run-time licenses. The source code is designed to be compiled, and used,
across a wide variety of hardware and operating systems architectures. You
may modify it for your own needs, within the terms of the license agreements.
You must not copyright OpenDDS software. For details of the licensing terms,

ociweb.com ix

see the file named LICENSE that is included in the OpenDDS source code
distribution or visit http://www.opendds.org/license.html.

OpenDDS also utilizes other open source software products, including MPC
(Make Project Creator), ACE (the ADAPTIVE Communication
Environment), and TAO (The ACE ORB). More information about these
products is available from OCI’s web site at
http://www.ociweb.com/products.

OpenDDS is open source and the development team welcomes contributions
of code, tests, and ideas. Active participation by users ensures a robust
implementation. Contact OCI if you are interested in contributing to the
development of OpenDDS. Please note that any code that is contributed to and
becomes part of the OpenDDS open source code base is subject to the same
licensing terms as the rest of the OpenDDS code base.

About This Guide

This Developer’s Guide corresponds to OpenDDS version 2.1. This guide is
primarily focused on the specifics of using and configuring OpenDDS to build
distributed, publish-subscribe applications. While it does give a general
overview of the OMG Data Distribution Service, especially the Data-Centric
Publish-Subscribe (DCPS) layer, this guide is not intended to provide
comprehensive coverage of the specification. The intent of this guide is to
help you become proficient with OpenDDS as quickly as possible.

Highlights of the OpenDDS 2.1 Release

OpenDDS version 2.1 includes many new features and improvements over the
previous release. This section highlights some of the more important and
visible changes. See the NEWS file in the distribution ($DDS_ROOT/NEWS)
and the appropriate sections of this guide for more details on these and other
features.

ociweb.com @

OBJECT COMPUTING, INC.

i

OBJECT COMPUTING, INC.

OpenDDS-Bench Enhancements

* The OpenDDS-Bench performance testing framework has been enhanced
to include support for user-submitted performance results. This feature
should be considered experimental.

Run-time Instrumentation/Monitoring

* A new monitor library is available that introduces an instrumentation
mechanism for reporting OpenDDS run-time information.

* A new GUI application based on Qt4 is available to view running
OpenDDS service entities. The application is called odds monitor.
Documentation for odds monitor is located in
$DDS_ROOT/tools/odds monitor/doc/.

Transport Enhancements

* A new IP multicast transport implementation is available. This new
transport replaces the older ReliableMulticast and SimpleMcast
transports.

* A new UDP/IP transport implementation is available. This new transport
replaces the older SimpleUdp transport. This feature should be
considered experimental.

* Numerous bugs in the Extensible Transport Framework (ETF) have been
addressed to improve the stability of new and existing transports.
TAO Version Compatibility

* OpenDDS 2.1 is compatible with the current patch levels of TAO versions
1.5a and 1.6a, as well as the current DOC Group beta/micro release. See
the $DDS_ROOT/READVME file for details.

Conventions

This guide uses the following conventions:

Indicates example code or information a user

Fixed pitch text would enter using a keyboard.

ociweb.com X1

Indicates example code that has been modified
Bold fixed pitch text from a previous example or text appearing in a
menu or dialog box.

Italic text Indicates a point of emphasis.

A horizontal ellipsis indicates that the statement
is omitting text.

A vertical ellipsis indicates that a segment of code
is omitted from the example.

Coding Examples

Throughout this guide, we illustrate topics with coding examples. The
examples in this guide are intended for illustration purposes and should not be
considered to be “production-ready” code. In particular, error handling is
sometimes kept to a minimum to help the reader focus on the particular feature
or technique that is being presented in the example. The source code for all
these examples is available as part of the OpenDDS source code distribution
in the $DDS_ROOT/DevGuideExamples/ directory. MPC files are provided
with the examples for generating build-tool specific files, such as GNU
Makefiles or Visual C++ project and solution files. A Perl script named
run_test.pl is provided with each example so you can easily run it.

OMG Specification References

Throughout this guide, we refer to various specifications published by the
Object Management Group (OMG). These references take the form
group/number where group represents the OMG working group responsible
for developing the specification, or the keyword formal if the specification
has been formally adopted, and number represents the year, month, and serial
number within the month the specification was released. For example, the
OMG DDS version 1.2 specification is referenced as formal/07-01-01.

You can download any referenced OMG specification directly from the OMG
web site by prepending http://www.omg.org/cgi-bin/doc? to the
specification’s reference. Thus, the specification formal/07-01-01
becomes http://www.omg.org/cgi-bin/doc?formal/07-01-01.

Xii

[|
ociweb.com I

OBJECT COMPUTING, INC.

<

OBJECT COMPUTING, INC.

Providing this destination to a web browser should take you to a site from
which you can download the referenced specification document.

Additional Documents

Additional documentation on OpenDDS is available from the OpenDDS
Community Portal at http://www.opendds.org. In particular, be sure to
see the build instructions, architectural overview, Doxygen-generated
reference pages, and other information at
http://www.opendds.org/documentation.html, and visit the
OpenDDS Frequently Asked Questions (FAQ) pages at
http://www.opendds.org/faqg.html.

Additional information and documents about DDS are available from the
OMG Data Distribution Portal at http://portals.omg.org/dds/.

Supported Platforms

OClI regularly builds and tests OpenDDS on a wide variety of platforms,
operating systems, and compilers. We continually update OpenDDS to
support additional platforms. See the $DDS_ROOT/READVME file in the
distribution for the most recent platform support information.

Customer Support

Enterprises are discovering that it takes considerable experience, knowledge,
and money to design and build a complex distributed application that is robust
and scalable. OCI can help you successfully architect and deliver your
solution by drawing on the experience of seasoned architects who have
extensive experience in today's middleware technologies and who understand
how to leverage the power of DDS.

Our service areas include systems architecture, large-scale distributed
application architecture, and object oriented design and development. We
excel in technologies such as DDS (OpenDDS), CORBA (ACE+TAO,
JacORB, and opalORB), Java EE (JBoss), FIX (QuickFIX), and FAST
(QuickFAST).

ociweb.com xiii

Note

Support offerings for OpenDDS include:

» Consulting services to aid in the design of extensible, scalable, and robust
publish-subscribe solutions, including the validation of domain-specific
approaches, service selection, product customization and extension, and
migrating your applications to OpenDDS from other publish-subscribe
technologies and products.

» 24x7 support that guarantees the highest response level for your
production-level systems.

* On-demand service agreement for identification and assessment of minor
bugs and issues that may arise during the development and deployment of
OpenDDS-based solutions.

Our architects have specific and extensive domain expertise in security,
telecommunications, defense, financial, and other real-time distributed
applications.

We can provide professionals who can assist you on short-term engagements,
such as architecture and design review, rapid prototyping, troubleshooting,
and debugging. Alternatively, for larger engagements, we can provide
mentors, architects, and programmers to work alongside your team, providing
assistance and thought leadership throughout the life cycle of the project.

Contact us at +1.314.579.0066 or email <sales@Rociweb.com> for more
information.

Object Technology Training

OCI provides a rich program of more than 50 well-focused courses designed
to give developers a solid foundation in a variety of technical topics, such as
Object Oriented Analysis and Design, C++ Programming, Java Programming,
Distributed Computing Technologies, Patterns, XML, and UNIX/Linux. Our
courses clearly explain major concepts and techniques, and demonstrate,
through hands-on exercises, how they map to real-world applications.

Our training offerings are constantly changing to meet the latest needs of our
clients and to reflect changes in technology. Be sure to check out our web site
athttp://www.ociweb.com for updates to our Educational Programs.

Xiv

[|
ociweb.com I

OBJECT COMPUTING, INC.

<

OBJECT COMPUTING, INC.

On-Site Classes

We can provide the following courses at your company’s facility, integrating
them seamlessly with other employee development programs. For more
information about these or other courses in the OCI curriculum, visit our
course catalog on-line at http://www.ociweb.com/training/.

Introduction to CORBA

In this one-day course, you will learn the benefits of distributed object
computing; the role CORBA plays in developing distributed applications;
when and where to apply CORBA; and future development trends in CORBA.

CORBA Programming with C++

In this hands-on, four-day course, you will learn: the role CORBA plays in
developing distributed applications; the OMG’s Object Management
Architecture; how to write CORBA clients and servers in C++; how to use
CORBAservices such as Naming and Events; using CORBA exceptions; and
basic and advanced features of the Portable Object Adapter (POA). This
course also covers the specification of interfaces using OMG Interface
Definition Language (IDL) and details of the OMG IDL-to-C++ language
mapping, and provides hands-on practice in developing CORBA clients and
servers in C++ (using TAO).

Advanced CORBA Programming Using TAO

In this intensive, hands-on, four-day course, you will learn: several advanced
CORBA concepts and techniques and how they are supported by TAO; how to
configure TAO components for performance and space optimizations; and
how to use TAQO’s various concurrency models to meet your application’s
end-to-end QoS guarantees. The course covers recent additions to the CORBA
specifications and to TAO to support real-time CORBA programming,
including Real-Time CORBA. It also covers TAO’s Real-Time Event Service,
Notification Service, and Implementation Repository, and provides extensive
hands-on practice in developing advanced TAO clients and servers in C++.
This course is intended for experienced and serious CORBA/C++
programmers.

ociweb.com XV

Using the ACE C++ Framework

In this hands-on, four-day course, you will learn how to implement
Interprocess Communication (IPC) mechanisms using the ACE (ADAPTIVE
Communication Environment) IPC Service Access Point (SAP) classes and
the Acceptor/Connector pattern. The course will also show you how to use a
Reactor in event demultiplexing and dispatching; how to implement
thread-safe applications using the ACE thread encapsulation class categories;
and how to identify appropriate ACE components to use for your specific
application needs.

Object-Oriented Design Patterns and Frameworks

In this three-day course, you will learn the critical language and terminology
relating to design patterns, gain an understanding of key design patterns, learn
how to select the appropriate pattern to apply in a given situation, and learn
how to apply patterns to construct robust applications and frameworks. The
course is designed for software developers who wish to utilize advanced
object oriented design techniques and managers with a strong programming
background who will be involved in the design and implementation of object
oriented software systems.

OpenDDS Programming with C++

In this three-day course, you will learn to build applications using OpenDDS,
the open source implementation of the OMG’s Data Distribution Service
(DDS) for Real-Time Systems. You will learn how to build data-centric
systems that share data via OpenDDS. You will also learn to configure
OpenDDS to meet your application’s Quality of Service requirements.This
course if intended for experienced C++ developers.

C++ Programming Using Boost

In this four-day course, you will learn about the most widely used and useful
libraries that make up Boost. Students will learn how to easily apply these
powerful libraries in their own development through detailed expert
instructor-led training and by hands-on exercises. After finishing this course,
class participants will be prepared to apply Boost to their project, enabling
them to more quickly produce powerful, efficient, and platform independent
applications.

Xvi

ociweb.com @

OBJECT COMPUTING

7 N

For information about training dates, contact us by phone at
+1.314.579.0066, via electronic mail at training@ociweb.com, or visit our
web site at http://www.ociweb.com to review the current course schedule.

| |
I ociweb.com xvii

OBJECT COMPUTING, INC.

xviil ociweb.com I

OBJECT COMPUTING, INC.

CHAPTER 1

Introduction

<

OBJECT COMPUTING, INC.

OpenDDS is an open source implementation of the OMG Data Distribution
Service (DDS) for Real-Time Systems specification (OMG Document
formal/07-01-01). OpenDDS is sponsored by Object Computing, Inc.
(OCI) and is available at http: //www.opendds.org/. This developer’s
guide is based on the version 2.1 release of OpenDDS.

DDS defines a service for efficiently distributing application data between
participants in a distributed application. This service is not specific to
CORBA. The specification provides a Platform Independent Model (PIM) as
well as a Platform Specific Model (PSM) that maps the PIM onto a CORBA
IDL implementation. The service is divided into two levels of interfaces: the
Data-Centric Publish-Subscribe (DCPS) layer and an optional Data Local
Reconstruction Layer (DLRL). The DCPS layer transports data from
publishers to subscribers according to Quality of Service constraints
associated with the data topic, publisher, and subscriber. The DLRL allows
distributed data to be shared by local objects located remotely from each other
as if the data were local. The DLRL is built on top of the DCPS layer.

ociweb.com

Introduction

1.1

Note

For additional details about DDS, developers should refer to the DDS
specification (OMG Document formal/07-01-01) as it contains in-depth
coverage of all the service’s features.

OpenDDS is the open-source C++ implementation of OMG’s DDS
specification developed and commercially supported by OCI. It is available
for download from http://www.opendds.org/downloads.html and is
compatible with the latest patch levels of TAO version 1.5a, 1.6a, and the
latest DOC release. OpenDDS version 1.3 was the last release that supported
TAO version 1.4a.

OpenDDS currently implements a subset of the DCPS layer and is minimally
compliant with the OMG DDS version 1.2 specification. None of the DLRL
functionality is currently implemented. See the compliance information in
1.2.1 orathttp://www.opendds.org/ for more information.

DCPS Overview

1.1.1

In this section we introduce the main concepts and entities of the DCPS layer
and discuss how they interact and work together.

Basic Concepts
Figure 1-1 shows an overview of the DDS DCPS layer. The following
subsections define the concepts shown in this diagram.

ociweb.com @

OBJECT COMPUTING, INC.

1.1 DCPS Overview

<

OBJECT COMPUTING, INC.

Figure 1-1 DCPS Conceptual Overview

-

Domain)

DataWriter

DataWriter

DataWriter

Publisher

Publisher

Data

Transmission

" |Subscriber

Subscriber

DataReader

DataReader DataReader

/

ociweb.com

Introduction

1.1.1.1

1.1.1.2

1.1.1.3

1.1.1.4

1.1.1.5

Domain

The domain is the fundamental partitioning unit within DCPS. Each of the
other entities belongs to a domain and can only interact with other entities in
that same domain. Application code is free to interact with multiple domains
but must do so via separate entities that belong to the different domains.

DomainParticipant

A domain participant is the entry-point for an application to interact within a
particular domain. The domain participant is a factory for many of the objects
involved in writing or reading data.

Topic

The topic is the fundamental means of interaction between publishing and
subscribing applications. Each topic has a unique name within the domain and
a specific data type that it publishes. Each topic data type can specify zero or
more fields that make up its key. When publishing data, the publishing process
always specifies the topic. Subscribers request data via the topic. In DCPS
terminology you publish individual data samples for different instances on a
topic. Each instance is associated with a unique value for the key. A
publishing process publishes multiple data samples on the same instance by
using the same key value for each sample.

DataWriter

The data writer is used by the publishing application code to pass values to the
DDS. Each data writer is bound to a particular topic. The application uses the
data writer’s type-specific interface to publish samples on that topic. The data
writer is responsible for marshaling the data and passing it to the publisher for
transmission.

Publisher

The publisher is responsible for taking the published data and disseminating it
to all relevant subscribers in the domain. The exact mechanism employed is
left to the service implementation.

ociweb.com @

OBJECT COMPUTING

7 N

1.1 DCPS Overview

1.1.1.6

1.1.1.7

1.1.2

1.1.3

i

OBJECT COMPUTING, INC.

Subscriber

The subscriber receives the data from the publisher and passes it to any
relevant data readers that are connected to it.

DataReader

The data reader takes data from the subscriber, demarshals it into the
appropriate type for that topic, and delivers the sample to the application. Each
data reader is bound to a particular topic. The application uses the data
reader’s type-specific interfaces to receive the samples.

Built-In Topics

The DDS specification defines a number of topics that are built-in to the DDS
implementation. Subscribing to these built-in topics gives application
developers access to the state of the domain being used including which topics
are registered, which data readers and data writers are connected and
disconnected, and the QoS settings of the various entities. While subscribed,
the application receives samples indicating changes in the entities within the
domain.

The following table shows the built-in topics defined within the DDS
specification:

Topic Name Description

DCPSParticipant Each instance represents a domain participant.
DCPSTopic Each topic is an instance.

DCPSPublication Each instance represents a data writer
DCPSSubscription Each instance represents a data reader.

Figure 1-2 Built-In Topics

Quality of Service Policies

The DDS specification defines a number of Quality of Service (QoS) policies
that are used by applications to specify their QoS requirements to the service.
Participants specify what behavior they require from the service and the
service decides how to achieve these behaviors. These policies can be applied
to the various DCPS entities (topic, data writer, data reader, publisher,
subscriber, domain participant) although not all policies are valid for all types
of entities.

ociweb.com 5

Introduction

1.1.4

1.1.5

1.2

Subscribers and publishers are matched using a request-versus-offered (RxO)
model. Subscribers request a set of policies that are minimally required.
Publishers offer a set of QoS policies to potential subscribers. The DDS
implementation then attempts to match the requested policies with the offered
policies; if these policies are compatible then the association is formed.

The QoS policies currently implemented by OpenDDS are discussed in detail
in Chapter 3.

Listeners

The DPCS layer defines a callback interface for each entity that allows an
application processes to “listen” for certain state changes or events pertaining
to that entity. For example, a Data Reader Listener is notified when there are
data values available for reading.

Conditions
Conditions and Wait Sets allow an alternative to listeners in detecting events
of interest in DDS. The general pattern is

» The application creates a specific kind of condition object, such as a
Status Condition, and attaches it to a Wait Set.

* The application waits on the Wait Set until one or more Conditions
become true.

» The application calls operations on the corresponding entity objects to
extract the necessary information.

» The Data Reader interface also has operations that take a ReadCondition
argument.

* Query Conditions with queries of the form "ORDER BY ..." are
supported. These conditions are commonly used with the Data Reader
interface and not in conjunction with Wait Sets.

OpenDDS Implementation

1.2.1

Compliance
Appendix A of the DDS specification defines five compliance points for a

DDS implementation:
ociweb.com @

OBJECT COMPUTING

7 N

1.2 OpenDDS Implementation

1.21.1

i

OBJECT COMPUTING, INC.

1
2.
3.
4
5

Minimum Profile
Content-Subscription Profile
Persistence Profile
Ownership Profile

Object Model Profile

This section describes OpenDDS’s compliance with these profiles in terms of
the entities and quality of service policies defined by the DDS specification.

Entity Compliance
The DDS specification defines five modules that make up the DCPS PIM:

1
2.
3.
4
5

Infrastructure Module
Domain Module
Topic-Definition Module
Publication Module
Subscription Module

Various entities are defined within each module. Not all entities pertain to
every profile listed in 1.2.1. Table 1-1 through Table 1-5 show which entities
are included in each module and to which profiles each entity pertains, as well
as whether or not the entity is implemented by OpenDDS.

Table 1-1 Infrastructure Module Entities

Entity Name Profiles Impl?
Entity All Yes
DomainEntity All Yes
QosPolicy All Yes
Listener All Yes
Status All Yes
WaitSet All Yes
Condition All Yes
GuardCondition All Yes
StatusCondition All Yes
ociweb.com 7

Introduction

Table 1-2 Domain Module Entities

Entity Name Profiles Impl?
DomainParticipant All Yes
DomainParticipantFactory All Yes
DomainParticipantListener All Yes
Table 1-3 Topic-Definition Module Entities
Entity Name Profiles Impl?
TopicDescription All Yes
Topic All Yes
ContentFilteredTopic Content-Subscription No
MultiTopic Content-Subscription No
TopicListener All Yes
TypeSupport All Yes
Table 1-4 Publication Module Entities
Entity Name Profiles Impl?
Publisher All Yes
Dataliriter All Yes
PublisherListener All Yes
DataWriterListener All Yes
Table 1-5 Subscription Module Entities
Entity Name Profiles Impl?
Subscriber All Yes
DataReader All Yes
DataSample All Yes
SampleInfo All Yes
SubscriberListener All Yes

[|
3 ociweb.com I

OBJECT COMPUTING, INC.

1.2 OpenDDS Implementation

Table 1-5 Subscription Module Entities

Entity Name Profiles Impl?
DataReaderListener All Yes
ReadCondition All Yes
QueryCondition Content-Subscription Partial!
1. Only queries of the form "ORDER BY .. ." are supported.

1.21.2 Quality of Service (QoS) Compliance
The DDS specification defines several QoS policies. Each policy is applicable
to certain entities. Not all policies pertain to every profile listed in 1.2.1. Table
1-6 shows the various QoS policies and their possible values, the entities to
which the policies apply, the profiles to which each policy/value pertains, as
well as whether or not the policy/value is implemented by OpenDDS.

Table 1-6 QoS Policies

Policy Name Entities Values Profiles |Impl?
DomainParticipant
USER_DATA DataWriter sequence of octets All Yes
DataReader
TOPIC_DATA Topic sequence of octets All Yes
Publisher
GROUP_DATA Subscriber sequence of octets All Yes
VOLATILE All Yes
TRANSIENT LOCAL All Yes
Topic . TRANSIENT .
DURABILITY Dataliriter (includes Persistence | Yes
DataReader DURABILITY SERVICE)
PERSISTENT]
(includes Persistence | Yes
DURABILITY SERVICE)
INSTANCE scope COHERENT=true | All Yes
INSTANCE scope ORDERED=true | All Yes
TOPIC scope COHERENT=true All Yes
PRESENTATION Publisher TOPIC scope ORDERED=true All Yes
Subscriber
Object
GROUP scope COHERENT=true No
P Model
Object
GROUP scope ORDERED=true No
P Model

| |
I ociweb.com 9

OBJECT COMPUTING, INC.

Introduction

Table 1-6 QoS Policies

Policy Name Entities Values Profiles |Impl?
Topic
DEADLINE DataWriter integer (period) All Yes
DataReader
Topic
LATENCY BUDGET DataWriter integer (duration) All Yes
DataReader
Topic SHARED All Yes
OWNERSHIP DataWriter -
DataReader EXCLUSIVE Ownership | No
Topic .
OWNERSHIP STRENGTH| DataWriter integer (value) Ownership | No
DataReader
AUTOMATIC All Yes
Topic
LIVELINESS DataWriter MANUAL BY PARTICIPANT All Yes
DataReader
MANUAL BY TOPIC All Yes
TIME BASED FILTER | DataReader integer (minimum separation) All Yes
Publisher .
PARTITION Subscriber sequence of strings All Yes
Topic BEST EFFORT All Yes
RELIABILITY DataWriter’ 5
DataReader RELIABLE All Yes
Topic . 3
TRANSPORT_PRIORITY| j-¢" 0 .\ integer All Yes
Topic . .
LIFESPAN DataWriter integer (duration) All Yes
Topic BY RECEPTION TIMESTAMP All Yes
DESTINATION ORDER | DataWriter
DataReader BY SOURCE_TIMESTAMP All Yes
L e AF[ves
HISTORY DataWriter g P
DataReader KEEP ALL All Yes
. integer (max samples)
Topic . integer (max instances)
RESOURCE LIMITS DataWriter ; — All Yes
_ integer
DataReader .
(max_samples_per_ instance)
DomainParticipantFactory| AUTO ENABLE=true All Yes
ENTITY FACTORY goginiaitl“pant
uoiisne AUTO ENABLE=false All Yes
Subscriber —
boolean
WRITER DATA) :)
LIFECYCLE DataWriter Fautodlsposeiunreglsteredi All Yes
instances)
=
10 ociweb.com I

OBJECT COMPUTING, INC.

1.2 OpenDDS Implementation

Table 1-6 QoS Policies

Policy Name

Entities Values Profiles |Impl?

READER DATA
LIFECYCLE

integer

(autopurge nowriter samples
delay)

DataReader integer All Yes

(autopurge disposed samples

delay)

1. For OpenDDS versions, up to 2.0, the default reliability kind for data writers is best effort. For versions 2.0.1 and later, this is
changed to reliable (to conform with the DDS specification).

W

1.2.2

1.2.2.1

1.2.2.2

RELIABILITY.kind=RELIABLE supported only if the TCP or Reliable Multicast transport implementation is used.
Not implemented as changeable.
HISTORY.depth > 1 only applies to the Ownership profile.

OpenDDS Architecture

This section gives a brief overview of the OpenDDS implementation, its
features, and some of its components. The $DDS_ROOT environment variable
should point to the base directory of the OpenDDS distribution. Source code
for OpenDDS can be found under the $DDS ROOT/dds/ directory. DDS tests
can be found under $DDS_ROOT/tests/.

Basic Philosophy

The OpenDDS implementation is based on a fairly strict interpretation of the
OMG IDL PSM. In almost all cases the OMG’s C++ Language Mapping for
CORBAV/IDL is used to define how the IDL in the DDS specification is
mapped into the C++ APIs that OpenDDS exposes to the client.

The main deviation from the OMG IDL PSM is that local interfaces are used
for the entities and various other interfaces. These are defined as
unconstrained (non-local) interfaces in the DDS specification. Defining them
as local interfaces improves performance, reduces memory usage, simplifies
the client’s interaction with these interfaces, and makes it easier for clients to
build their own implementations.

Extensible Transport Framework (ETF)

OpenDDS uses the CORBA interfaces defined by the DDS specification to
initialize and control service usage. Data transmission is accomplished via an
OpenDDS-specific transport framework that allows the service to be used
with a variety of transport protocols. OpenDDS currently supports TCP/IP,
UDP/IP, and IP multicast transport protocols. Transports are created via a

[|
I ociweb.com 11

OBJECT COMPUTING, INC.

Introduction

1.2.2.3

factory object and are attached to Publishers and Subscribers to facilitate the
exchange of data.

The ETF enables application developers to implement their own customized
transports. Implementing a custom transport involves specializing a number of
classes defined in the transport framework. The udp transport provides a good
foundation developers may use when creating their own implementation. See
the $DDS_ROOT/dds/DCPS/transport/udp/ directory for details.

Application Application

DCPS Publisher DCPS Subscriber

QoS QoS

Transport Pluggable Transport Adapter ~ [Transport
Factory Factory
Pluggable Pluggable
Discovery Discovery

Pluggable
Data Transfer

Wire Protocol

Figure 1-3 OpenDDS Extensible Transport Framework

Custom Marshaling
Because data transmission is not done with CORBA, DDS implementations
are free to marshal the data using customized formats. OpenDDS uses a more

12

ociweb.com @

OBJECT COMPUTING

7 N

1.2 OpenDDS Implementation

1.2.2.4

1.2.2.5

<

OBJECT COMPUTING, INC.

efficient variation of CORBA’s Common Data Representation (CDR). A new
IDL compiler switch (-Gdcps) causes the TAO IDL compiler to generate the
appropriate marshaling and instance key support code for DCPS-enabled

types.

DCPS Information Repository

The DCPS Information Repository (InfoRepo) acts as the discovery
mechanism between the publisher and subscriber processes. It is currently
implemented as a CORBA server. When a client requests a subscription for a
topic, the DCPS Information Repository locates the topic and notifies any
existing publishers of the location of the new subscriber. The InfoRepo
process needs to be running whenever OpenDDS is being used. The InfoRepo
is not involved in data propagation, its role is limited in scope to publishers
and subscribers discovering one another.

Application developers are free to run multiple information repositories with
each managing their own non-overlapping sets of DCPS domains.

It is also possible to operate domains with more than a single repository, thus
forming a distributed virtual repository. This is known as Repository
Federation. In order for individual repositories to participate in a federation,
each one must specify its own federation identifier value (a 32 bit numeric
value) upon start-up. See 9.2 for further information about repository
federations.

Threading

OpenDDS creates its own ORB as well as a separate thread upon which to run
that ORB. It also uses its own threads to process incoming and outgoing
non-CORBA transport I/O. A separate thread is created to cleanup resources
upon unexpected connection closure. Your application may get called back
from these threads via the Listener mechanism of DCPS.

When publishing a sample via DDS, OpenDDS attempts to send the sample to
any connected subscribers using the calling thread. If the send call blocks,
then the sample may be queued for sending on a separate service thread. This
behavior depends on the QoS policies described in Chapter 3.

All incoming data in the subscriber is read by the service thread and queued
for reading by the application. DataReader listeners are called from the service
thread.

ociweb.com 13

Introduction

1.2.2.6 Configuration
OpenDDS includes a file-based configuration framework for configuring both
global items such as debug level, memory allocation, and DCPSInfoRepo
endpoints, as well as transport implementation details for publishers and
subscribers. The complete set of configuration options are described in
Chapter 5.

[|
14 ociweb.com I

OBJECT COMPUTING, INC.

CHAPTER 2

Getting Started

2.1

Using DCPS

21.1

<

OBJECT COMPUTING, INC.

This chapter focuses on an example application using DCPS to distribute data
from a single publisher process to a single subscriber process. It is based on a
simple messenger application where a single publisher publishes messages
and a single subscriber subscribes to them. We use the default QoS properties
and the default TCP/IP transport. Full source code for this example may be
found under the $DDS_ROOT/DevGuideExamples/DCPS/Messenger/
directory. Additional DDS and DCPS features are discussed in later chapters.

Defining the Data Types

Each data type used by DDS is defined using IDL. OpenDDS uses #pragma
directives to identify the data types that DDS transmits and processes. These
data types are processed by the TAO IDL compiler and the dcps_ts.pl
script to generate the necessary code to transmit these types with OpenDDS.
Here is the IDL file that defines our Message data type:

module Messenger {

ociweb.com 15

Getting Started

2.1.2

#pragma DCPS DATA TYPE "Messenger::Message"
#pragma DCPS DATA KEY "Messenger::Message subject id"

struct Message {
string from;
string subject;
long subject id;
string text;
long count;

b

}i

The DCPS_DATA TYPE pragma marks a data type for use with OpenDDS. A
fully scoped type name must be used with this pragma. Currently, OpenDDS
requires the data type to be a structure. The structure may contain scalar types
(short, long, float, etc.), enumerations, strings, sequences, arrays, structures,
and unions. This example defines the structure Message in the Messenger
module for use in this OpenDDS example.

The DCPS_DATA KEY pragma identifies a field of the DCPS data type that is
used as the key for this type. A data type may have zero or more keys. These
keys are used to identify different instances within a topic. Each key should be
a numeric or enumerated type, a string, or a typedef of one of those types.1
The pragma is passed the fully scoped type and the member name that
identifies the key for that type. Multiple keys are specified with separate
DCPS_DATA KEY pragmas. In the above example, we identify the

subject id member of Messenger: :Message as a key. Each sample
published with a unique subject id value will be defined as belonging to a
different instance within the same topic. Since we are using the default QoS
policies, subsequent samples with the same subject id value are treated as
replacement values for that instance.

Processing the IDL
The OpenDDS IDL is processed like any other IDL with the exception that we
pass the -Gdcps option the TAO IDL compiler.

tao _idl -Gdcps Messenger.idl

1.0ther types, such as structures, sequences, and arrays cannot be used directly as
keys, though a work around is to declare (via the DCPS DATA KEY pragma) in-
dividual members of structs or elements of sequences/arrays as keys.

16

ociweb.com @

OBJECT COMPUTING, INC.

2.1 Using DCPS

i

OBJECT COMPUTING, INC.

This causes the IDL compiler to generate additional serialization and key
support code that OpenDDS requires to marshal and demarshal the Message
structure.

In addition, we need to process the IDL file with the dcps_ts.pl script to
generate the required type support code for the data readers and writers. This
script is located in $DDS_ROOT /bin/ and generates three files for each IDL
file processed. The three files all begin with the original IDL file name and
would appear as follows:

o <filename>TypeSupport.idl
o <filename>TypeSupportImpl.h
e <filename>TypeSupportImpl.cpp

For example, running dcps ts.pl as follows

dcps_ts.pl Messenger.idl

generates MessengerTypeSupport.idl,
MessengerTypeSupportImpl.h, and
MessengerTypeSupportImpl.cpp. The IDL file contains the
MessageTypeSupport, MessageDatalWriter, and MessageDataReader
interface definitions. These are type-specific DDS interfaces that we use later
to register our data type with the domain, publish samples of that data type,
and receive published samples. The implementation files contain
implementations for these interfaces. The generated IDL file should itself be
compiled to generate stubs and skeletons. These and the implementation file
should be linked with your OpenDDS applications that use the Message type.
This type support generation script has a number of options that specialize the
generated code. These options are described in Chapter 8.

Typically, you do not directly invoke the IDL compiler or dcps_ts.pl script
as above, but let your build environment do it for you. The entire process is
simplified when using MPC, by inheriting from the dcpsexe with tcp
project. Here is the MPC file section common to both the publisher and
subscriber

project (*idl) : dcps {
// This project ensures the common components get built first.

TypeSupport Files {
Messenger.idl

ociweb.com 17

Getting Started

}

custom only = 1

}

The dcps parent project adds the -Gdcps IDL compiler option and adds the

Type Support custom build rules. The TypeSupport Files section above tells
MPC to generate the Message type support files from Messenger. idl using
the dcps_ts.pl script. Here is the publisher section:

project (*Publisher) : dcpsexe with tcp {

exename = publisher
after = *idl

TypeSupport Files {
Messenger.idl

}

Source Files {
Publisher.cpp
}

The dcpsexe with tcp project links in the DCPS library.

For completeness, here is the subscriber section of the MPC file:

project (*Subscriber) : dcpsexe with tcp {
exename = subscriber
after = *idl

TypeSupport Files {
Messenger.idl

}

Source Files {
Subscriber.cpp
DataReaderListenerImpl.cpp

}

[|
18 ociweb.com I

OBJECT COMPUTING, INC.

2.1 Using DCPS

2.1.3

21.4

21.41

i

OBJECT COMPUTING, INC.

Starting the DCPS Information Repository

The source code for the DCPS Information Repository server is found in
$DDS_ROOT/dds/InfoRepo/ and the server executable is
$DDS_ROOT/bin/DCPSInfoRepo. This server process hosts the DCPSInfo
CORBA object that is the entry point for all OpenDDS functionality. This
object is mapped against the key string “DCPSInfoRepo” in the process’
IORTable. Thus a corbaloc ObjectURL such as:

corbaloc::localhost:12345/DCPSInfoRepo

can be used to locate the DCPSInfo object. The server also writes out the
DCPSInfo object’s IOR as a string to a file, which can also be used to
bootstrap clients. We can alter the file name used for writing this IOR with the
-o command line option.

$DDS_ROOT/bin/DCPSInfoRepo -o repo.ior

The full set of command line options for the DCPSInfoRepo server are
documented in Chapter 9.

A Simple Message Publisher

In this section we describe the steps involved in setting up a simple OpenDDS
publication process. The code is broken into logical sections and explained as
we present each section. We omit some uninteresting sections of the code
(such as #include directives, error handling, and cross-process
synchronization). The full source code for this sample publisher is found in
the Publisher.cpp and Writer.cpp files in
$DDS_ROOT/DevGuideExamples/DCPS/Messenger/.

Initializing the Participant
The first section of main () initializes the current process as an OpenDDS
participant.

int main (int argc, char *argv[]) {
try {
DDS::DomainParticipantFactory var dpf =
TheParticipantFactoryWithArgs (argc, argv);
DDS::DomainParticipant var participant =
dpf->create participant (42, // domain ID
PARTICIPANT QOS DEFAULT,

ociweb.com 19

Getting Started

21.4.2

DDS::DomainParticipantListener:: nil(),
OpenDDS: :DCPS: : DEFAULT STATUS MASK) ;
if (CORBA::is nil(participant.in())) {
std::cerr << "create participant failed." << std::endl;
return 1;

}

The TheParticipantFactoryWithArgs macro is defined in

Service Participant.h and initializes the Domain Participant Factory
with the command line arguments. These command line arguments are used to
initialize the ORB that the OpenDDS service uses as well as the service itself.
This allows us to pass ORB_init () options on the command line as well as
OpenDDS configuration options of the form -DCPS*. Available OpenDDS
options are fully described in Chapter 5.

The create participant () operation uses the domain participant factory
to register this process as a participant in the domain specified by the ID of 42.
The participant uses the default QoS policies and no listeners. Use of the
OpenDDS default status mask ensures all relevant communication status
changes (e.g., data available, liveliness lost) in the middleware are
communicated to the application (e.g., via callbacks on listeners).

Users may define any number of domains using IDs in the range (0x0 ~
O0x7FFFFFFF). All other values are reserved for internal use by the
implementation.

The Domain Participant object reference returned is then used to register our
Message data type.

Registering the Data Type and Creating a Topic

First, we create a MessageTypeSupportImpl object, then register the type
with a type name using the register type () operation. In this example, we
register the type with a nil string type name, which causes the
MessageTypeSupport interface repository identifier to be used as the type
name. A specific type name such as “Message” can be used as well.

Messenger: :MessageTypeSupport var mts =
new Messenger: :MessageTypeSupportImpl ();

if (DDS::RETCODE OK != mts->register type(participant.in (), "")) {
std::cerr << "register type failed." << std::endl;
return 1;

}

20

[|
ociweb.com I

OBJECT COMPUTING, INC.

2.1 Using DCPS

Next, we obtain the registered type name from the type support object and
create the topic by passing the type name to the participant in the
create topic () operation.

CORBA::String var type name = mts->get type name ();

DDS::Topic var topic =
participant->create topic ("Movie Discussion List",
type _name.in (),
TOPIC QOS DEFAULT,
DDS::TopicListener:: nil(),
OpenDDS: :DCPS: : DEFAULT STATUS_MASK) ;
if (CORBA::is nil(topic.in())) |
std::cerr << "create topic failed." << std::endl;
return 1;

}

We have created a topic named “Movie Discussion List” with the registered
type and the default QoS policies.

2143 Initializing and Registering the Transport

We now initialize the transport we want to use.

OpenDDS: :DCPS: :TransportImpl rch transport impl =
TheTransportFactory->create transport impl (
OpenDDS: :DCPS: :DEFAULT SIMPLE TCP 1ID,
OpenDDS: : DCPS: : AUTO_CONFIG) ;

This code obtains the transport implementation from the singleton transport
factory, called TheTransportFactory. The

OpenDDS: :DCPS: :AUTO CONFIG argument indicates that we are using a
configuration file to configure the transport implementation.The

OpenDDS: :DCPS: :DEFAULT SIMPLE TCP ID specifies the transport id
value. Note that the code itself does not need to know any details about the
transport implementation, such as whether it uses TCP/IP or UDP/IP, what its
endpoints are, etc.

The code above uses the default TCP/IP transport ID

DEFAULT SIMPLE TCP_ID. OpenDDS reserves the range (OXxFFFFFF00 ~
O0xFFFFFFFF) for default transport identifiers. Current values defined in
TransportDefs.h are as follows:

const TransportIdType DEFAULT SIMPLE_TCP_ID = OxFFFFFF00;

[|
I ociweb.com 21

OBJECT COMPUTING, INC.

Getting Started

const TransportIdType DEFAULT UDP ID OxFFFFFFO04;
const TransportIdType DEFAULT MULTICAST ID = OxFFFFFF08;

Alternatively, you can define your own transport identifier and specify the
details of your transport via a configuration file. This is discussed in 5.1.2.

The TransportFactory also provides alternate APIs to create a transport
implementation.

OpenDDS: :DCPS::TransportIdType transport impl id = 1;
OpenDDS: :DCPS::TransportImpl rch transport impl =
TheTransportFactory->create transport impl (
transport impl id, "SimpleTcp", OpenDDS::DCPS::AUTO CONFIG) ;

The code above creates a SimpleTcp transport implementation with default
configuration. This API can be used to create multiple transport instances with
the default configuration in a single process by passing unique transport IDs.
This API can be used with file-based configurations as long as the matching
transport configuration (based upon the transport id) also specifies the same
transport type (in our example that is “SimpleTcp”).

We can also configure the transport implementation programmatically,
eliminating the need for a configuration file. Here is sample code to create and
configure a simple TCP transport implementation.

OpenDDS: :DCPS: : TransportIdType transport impl id = 1;

OpenDDS: :DCPS: :TransportImpl rch transport impl
TheTransportFactory->create transport impl (
transport impl id, "SimpleTcp", OpenDDS::DCPS::DONT AUTO_ CONFIG);

OpenDDS: :DCPS: :TransportConfiguration rch config =
TheTransportFactory->create configuration (transport impl id);

OpenDDS: :DCPS::SimpleTcpConfiguration* transport config =
static_cast <OpenDDS::DCPS::SimpleTcpConfiguration*> (config.in());

transport config->enable nagle algorithm = true;

if (transport impl->configure(config.in()) != 0)

{
std::cerr << "Failed to configure the transport." << std::endl;
return 1;

[|
22 ociweb.com I

OBJECT COMPUTING, INC.

2.1 Using DCPS

2144

2.1.4.5

i

OBJECT COMPUTING, INC.

Creating a Publisher

Now we are ready to create the publisher and attach the transport
implementation we want it to use.

DDS::Publisher var pub =
participant->create publisher(
PUBLISHER QOS DEFAULT,
DDS::PublisherListener:: nil(),
OpenDDS: :DCPS: : DEFAULT STATUS MASK) ;
if (CORBA::is nil(pub.in())) {
std::cerr << "create publisher failed." << std::endl;
return 1;

// Attach the publisher to the transport.
OpenDDS: :DCPS::AttachStatus status = transport impl->attach (pub.in());
if (status != OpenDDS::DCPS::ATTACH OK) {
std::cerr << "Failed to attach to the transport." << std::endl;
return 1;

The publisher will now use the transport instance to which it is attached to
publish data samples.

Creating a DataWriter and Waiting for the Subscriber

With the publisher in place, we create the data writer.

// Create the datawriter
DDS::DataWriter var writer =
pub->create datawriter (topic.in (),
DATAWRITER QOS DEFAULT,
DDS::DataWriterListener:: nil(),
OpenDDS: :DCPS: : DEFAULT STATUS MASK) ;
if (CORBA::is nil(writer.in())) {
std::cerr << "create datawriter failed." << std::endl;
return 1;

When we create the data writer we pass the topic object reference, the default
QoS policies, and a null listener reference. We now narrow the data writer
reference to a MessageDataWriter object reference so we can use the
type-specific publication operations.

Messenger::MessageDataWriter var writer i =

ociweb.com 23

Getting Started

Messenger: :MessageDataWriter:: narrow(writer.in());

The example code uses conditions and wait sets so the publisher waits for the
subscriber to become connected and fully initialized. In a simple example like
this, failure to wait for the subscriber may cause the publisher to publish its
samples before the subscriber is connected.

The basic steps involved in waiting for the subscriber are

1. Get the status condition from the data writer we created
. Enable the Publication Matched status in the condition
. Create a wait set
. Attach the status condition to the wait set
. Wait on the wait set for a specified period of time

. Get the publication matched status

~N N L AW

. If the current count of matches is less than one, then go back to step 5
and wait some more

8. If the current count of matches is one or more, detach the condition
from the wait set and proceed to publication

Here is the corresponding code:

// Block until Subscriber is available
DDS::StatusCondition var condition = writer->get statuscondition();
condition->set enabled statuses (DDS::PUBLICATION MATCHED_ STATUS) ;

DDS::WaitSet var ws = new DDS::WaitSet;
ws->attach condition(condition);

DDS::ConditionSeq conditions;

DDS::PublicationMatchedStatus matches = { 0, 0, 0, 0, 0 };
DDS::Duration_ t timeout = { 30, 0 };
do {
if (ws->wait (conditions, timeout) != DDS::RETCODE OK) ({
std::icerr << "wait failed!" << std::endl;
return 1;
}
if (writer->get publication matched status(matches) != DDS::RETCODE OK) {
std::cerr << "get publication matched status failed!" << std::endl;
return 1;

} while (matches.current count < 1);

[|
24 ociweb.com I

OBJECT COMPUTING, INC.

2.1 Using DCPS

ws->detach condition(condition);

For more details about status, conditions, and wait set, see Chapter 4.

21.4.6 Sample Publication

The message publication is quite straightforward:

// Populate instance

Messenger: :Message message;

message.subject id = 99;

message.from CORBA: :string dup ("Comic Book Guy");
message.subject = CORBA::string dup ("Review");

message.text CORBA::string dup("Worst. Movie. Ever.");
message.count 0;

DDS::ReturnCode t ret = writer i->write(message, DDS::HANDLE NIL);

if (ret != DDS::RETCODE OK) {

std::cerr << "MessageDataWriter::write() returned failed, " <<
"return code = " << ret << std::endl;
return 1;

}

This message is distributed to all connected subscribers that are registered for
our topic. The second argument to write () specifies the instance on which
we are publishing the sample. It should be passed either a handle returned by
register instance() or DDS::HANDLE NIL. Passing a

DDS: :HANDLE NIL value indicates that the data writer should determine the
instance by inspecting the key of the sample. See 2.2.1 for details on using
instance handles during publication.

21.5 Setting up the Subscriber

Much of the subscriber’s code is identical or analogous to the publisher that
we just finished exploring. We will progress quickly through the similar parts
and refer you to the discussion above for details. The full source code for this
sample subscriber is found in the Subscriber.cpp and
DataReaderListener.cpp files in
$DDS_ROOT/DevGuideExamples/DCPS/Messenger/.

||
I ociweb.com 25

OBJECT COMPUTING, INC.

Getting Started

2.1.51

2.1.5.2

Initializing the Participant
The beginning of the subscriber is identical to the publisher as we initialize the
service and join our domain:

int main (int argc, char *argv[])
{
try {
DDS::DomainParticipantFactory var dpf =
TheParticipantFactoryWithArgs (argc, argv);
DDS::DomainParticipant var participant =
dpf->create participant (42, // Domain ID
PARTICIPANT QOS DEFAULT,
DDS::DomainParticipantListener:: nil(),
OpenDDS: :DCPS: : DEFAULT STATUS MASK) ;
if (CORBA::is nil (participant.in ())) {
std::cerr << "create participant failed." << std::endl;
return 1 ;

Registering the Data Type and Creating a Topic

Next, we initialize the message type and topic. Note that if the topic has
already been initialized in this domain with the same data type and compatible
QoS, the create topic () invocation returns a reference corresponding to
the existing topic. If the type or QoS specified in our create topic()
invocation do not match that of the existing topic then the invocation fails.
There is also a find topic () operation our subscriber could use to simply
retrieve an existing topic.

Messenger: :MessageTypeSupport_var mts =
new Messenger: :MessageTypeSupportImpl ();

if (DDS::RETCODE_OK != mts->register type(participant.in(), "")) {
std::cerr << "Failed to register the MessageTypeSupport." << std::endl;
return 1;

CORBA::String var type name = mts->get type name ();

DDS::Topic_var topic =
participant->create topic("Movie Discussion List",
type name.in (),
TOPIC_QOS_DEFAULT,
DDS::TopicListener:: nil(),
OpenDDS: :DCPS: : DEFAULT STATUS MASK) ;

26

if (CORBA::is nil(topic.in())) {
[|
ociweb.com I

OBJECT COMPUTING, INC.

2.1 Using DCPS

std::cerr << "Failed to create topic." << std::endl;
return 1;

21.5.3 Initializing and Registering the Transport
We now initialize the SimpleTcp transport the same way as in the publisher,
using the file-based configuration mechanism.

// This value must match the value in the subscriber’s configuration file.
OpenDDS: :DCPS: :TransportImpl rch transport impl =
TheTransportFactory->create transport impl(
OpenDDS: :DCPS: :DEFAULT SIMPLE TCP 1ID,
OpenDDS: :DCPS: :AUTO CONFIG) ;

Next, we create the subscriber with the default QoS and attach the transport, as
in the publisher.

// Create the subscriber and attach to the corresponding transport.
DDS::Subscriber var sub =
participant->create subscriber (SUBSCRIBER QOS DEFAULT,
DDS::SubscriberListener:: nil(),
OpenDDS: :DCPS: : DEFAULT STATUS MASK) ;
if (CORBA::is nil(sub.in())) {
std::cerr << "Failed to create subscriber." << std::endl;
return 1;

}

// Attach the subscriber to the transport.
OpenDDS: :DCPS: :AttachStatus status = transport impl->attach(sub.in());
if (status != OpenDDS::DCPS::ATTACH OK) {

std::cerr << "Failed to attach to the transport." << std::endl;

return 1;

2154 Creating a DataReader and Listener
We need to associate a listener object with the data reader we create, so we
can use it to detect when data is available. The code below constructs the
listener object. The DataReaderListenerImpl class is shown in the next
subsection.

DDS::DataReaderListener var listener (new DataReaderListenerImpl);

||
I ociweb.com 27

OBJECT COMPUTING, INC.

Getting Started

2.1.6

The listener is allocated on the heap and assigned to a
DataReaderListener var object. This type provides reference counting
behavior so the listener is automatically cleaned up when the last reference to
it is removed. This usage is typical for heap allocations in OpenDDS
application code and frees the application developer from having to actively
manage the lifespan of the allocated objects.

Now we can create the data reader and associate it with our topic, the default
QoS properties, and the listener object we just created.

// Create the Datareader

DDS::DataReader var dr = sub->create datareader(
topic.in (),
DATAREADER_QOS_DEFAULT,
listener.in(),
OpenDDS: :DCPS: :DEFAULT STATUS MASK) ;

if (CORBA::is nil(dr.in())) {
std::cerr << "create datareader failed." << std::endl;
return 1;

This thread is now free to perform other application work. Our listener object
will be called on an OpenDDS thread when a sample is available.

The Data Reader Listener Implementation

Our listener class implements the DDS: : DataReaderListener interface
defined by the DDS specification. The DataReaderListener is wrapped within
aDCPS: : LocalObject which resolves ambiguously-inherited members such
as narrowand ptr type. The interface defines a number of operations we
must implement, each of which is invoked to inform us of different events.
The OpenDDS: : DCPS: : DataReaderListener defines operations for
OpenDDS’s special needs such as disconnecting and reconnected event
updates. Here is the interface definition:

module DDS {
local interface DataReaderListener : Listener {
voild on_requested deadline missed(in DataReader reader,
in RequestedDeadlineMissedStatus status);
void on requested incompatible gos(in DataReader reader,
in RequestedIncompatibleQosStatus status);
void on sample rejected(in DataReader reader,
in SampleRejectedStatus status);

28

void on_liveliness_changed(in DataReader reader,
[|
ociweb.com I

OBJECT COMPUTING, INC.

2.1 Using DCPS

i

OBJECT COMPUTING, INC.

in LivelinessChangedStatus status);
void on data available (in DataReader reader);
void on_subscription matched(in DataReader reader,
in SubscriptionMatchedStatus status);
void on sample lost(in DataReader reader, in SampleLostStatus status);
}i
}i

Our example listener class stubs out most of these listener operations with
simple print statements. The only operation that is really needed for this
example is on_data available () and it is the only member function of
this class we need to explore.

void DataReaderListenerImpl::on data available (DDS::DataReader ptr reader)
{

num_reads_ ++;

try {
Messenger: :MessageDataReader_var reader i =
Messenger: :MessageDataReader:: narrow(reader);

if (CORBA::is nil(reader i.in())) {
std::cerr << "read: narrow failed." << std::endl;
return;

The code above narrows the generic data reader passed into the listener to the
type-specific MessageDataReader interface. The following code takes the
next sample from the message reader. If the take is successful and returns
valid data, we print out each of the message’s fields.

Messenger: :Message message;
DDS::SampleInfo si ;
DDS::ReturnCode t status = reader i->take next sample (message, si) ;

if (status == DDS::RETCODE_OK) {

if (si.valid data == 1) {
std::cout << "Message: subject = " << message.subject.in() << std::endl
<< " subject id = " << message.subject id << std::endl
<< " from = " << message.from.in() << std::endl
<< " count = " << message.count << std::endl
<< " text = " << message.text.in() << std::endl;

}
else if (si.instance_state == DDS::NOT_ALIVE DISPOSED_INSTANCE_ STATE)
{

std::cout << "instance is disposed" << std::endl;

ociweb.com 29

Getting Started

21.7

}
else if (si.instance state == DDS::NOT ALIVE NO WRITERS INSTANCE STATE)
{
std::cout << "instance is unregistered" << std::endl;
}
else

{
std::cerr << "ERROR: received unknown instance state
<< si.instance_state << std::endl;

n

}
} else if (status == DDS::RETCODE NO DATA) {
cerr << "ERROR: reader received DDS::RETCODE NO DATA!" << std::endl;
} else {
cerr << "ERROR: read Message: Error: " << status << std::endl;

}

Note the sample read may contain invalid data. The valid data flag
indicates if the sample has valid data. There are two samples with invalid data
delivered to the listener callback for notification purposes. One is the dispose
notification, which is received when the DataWriter calls dispose ()
explicitly. The other is the unregistered notification, which is received when
the DataWriter calls unregister () explicitly. The dispose notification is
delivered with the instance state set to

NOT ALIVE DISPOSED INSTANCE STATE and the unregister notification is
delivered with the instance state set to

NOT ALIVE NO WRITERS INSTANCE STATE.

If additional samples are available, the service calls this function again.
However, reading values a single sample at a time is not the most efficient
way to process incoming data. The Data Reader interface provides a number
of different options for processing data in a more efficient manner. We discuss
some of these operations in 2.2.

Cleaning up in OpenDDS Clients
After we are finished in the publisher and subscriber, we can use the following
code to clean up the OpenDDS-related objects:

participant->delete contained entities();
dpf->delete participant (participant.in ());
TheTransportFactory->release () ;
TheServiceParticipant->shutdown ();

30

ociweb.com @

OBJECT COMPUTING, INC.

2.1 Using DCPS

The domain participant’s delete contained entities () operation
deletes all the topics, subscribers, and publishers created with that participant.
Once this is done, we can use the domain participant factory to delete our
domain participant. Lastly, we release our transport factory and shutdown the
service participant.

Since the publication and subscription of data within DDS is decoupled, data
is not guaranteed to be delivered if a publication is disassociated (shutdown)
prior to all data that has been sent having been received by the subscriptions.
If the application requires that all published data be received, the

wait for acknowledgements () operation is available to allow the
publication to wait until all written data has been received. This operation is
called on individual DataWriters and includes a timeout value to bound the
time to wait. The following code illustrates the use of

wait for acknowledgements () to block for up to 15 seconds to wait for
subscriptions to acknowledge receipt of all written data:

DDS::Duration_t shutdown delay = { 15, 0 };
DDS: :ReturnCode t result;
result = writer->wait for acknowledgments (shutdown delay);
if(result != DDS::RETCODE OK) {
std::cerr << "Failed while waiting for acknowledgment of "
<< "data being received by subscriptions, some data "
<< "may not have been delivered." << std::endl;

21.8 Running the Example
We are now ready to run our simple example. We can run it with the following
commands. Running each of these commands in its own window should
enable you to most easily understand the output.

$DDS_ROOT/bin/DCPSInfoRepo -ORBSvcConf tcp.conf -o repo.ior
./publisher -ORBSvcConf tcp.conf
./subscriber -ORBSvcConf tcp.conf

The -ORBSvcConf configuration directive file dynamically loads and
configures the SimpleTcp transport library.

One side effect of using the default QoS properties is that, as we increase the
number of samples being published, some of the samples will be dropped as
the subscriber falls behind. To avoid dropping samples, we need to either

||
I ociweb.com 31

OBJECT COMPUTING, INC.

Getting Started

2.2

ensure that the subscriber can keep up or change the QoS settings. QoS
policies are described in Chapter 3.

See Chapter 5 for a complete description of the OpenDDS configuration
parameters.

Data Handling Optimizations

2.2.1

Registering and Using Instances in the Publisher
The previous example implicitly specifies the instance it is publishing via the
sample’s data fields. When write () is called, the data writer queries the
sample’s key fields to determine the instance. The publisher also has the
option to explicitly register the instance by calling register instance ()
on the data writer:

Messenger: :Message message;
message.subject_id = 99;
DDS::InstanceHandle t handle = message writer->register instance (message);

After we populate the Message structure we called the

register instance () function to register the instance. The instance is
identified by the subject id value of 99 (because we earlier specified that
field as the key).

We can later use the returned instance handle when we publish a sample:

DDS::ReturnCode_t ret = data writer->write (message, handle);

Publishing samples using the instance handle may be slightly more efficient
than forcing the writer to query for the instance and is much more efficient
when publishing the first sample on an instance. Without explicit registration,
the first write causes resource allocation by OpenDDS for that instance.

Because resource limitations can cause instance registration to fail, many
applications consider registration as part of setting up the publisher and
always do it when initializing the data writer.

32

[|
ociweb.com I

OBJECT COMPUTING, INC.

2.2 Data Handling Optimizations

2.2.2

2.2.3

i

OBJECT COMPUTING, INC.

Reading Multiple Samples

The DDS specification provides a number of operations for reading and
writing data samples. In the examples above we used the

take next sample () operation, to read the next sample and “take”
ownership of it from the reader. The Message Data Reader also has the
following take operations.

* take ()—Take a sequence of up to max_samples values from the reader
* take instance () —Take a sequence of values for a specified instance
* take next instance () —Take a sequence of samples belonging to the

same instance, without specifying the instance.

There are also “read” operations corresponding to each of these “take”
operations that obtain the same values, but leave the samples in the reader and
simply mark them as read in the SampleInfo.

Since these other operations read a sequence of values, they are more efficient
when samples are arriving quickly. Here is a sample call to take () that reads
up to 5 samples at a time.

MessageSeq messages (5) ;

DDS::SampleInfoSeq sampleInfos(5);

DDS::ReturnCode t status = message dr->take (messages, samplelnfos, 5,
DDS::ANY SAMPLE STATE,
DDS::ANY VIEW STATE,
DDS: :ANY INSTANCE STATE);

The three state parameters potentially specialize which samples are returned
from the reader. See the DDS specification for details on their usage.

Zero-Copy Read

The read and take operations that return a sequence of samples provide the
user with the option of obtaining a copy of the samples (single-copy read) or a
reference to the samples (zero-copy read). The zero-copy read can have
significant performance improvements over the single-copy read for large
sample types. Testing has shown that samples of 8KB or less do not gain
much by using zero-copy reads but there is little performance penalty for
using zero-copy on small samples.

The application developer can specify the use of the zero-copy read
optimization by calling take () or read () with a sample sequence

ociweb.com 33

Getting Started

constructed with amax len of zero. The message sequence and sample info
sequence constructors both take max 1len as their first parameter and specify
a default value of zero. The following example code is taken from
DevGuideExamples/DCPS/Messenger ZeroCopy/:

Messenger: :MessageSeq messages;
DDS: :SampleInfoSeq info;

// get references to the samples (zero-copy read of the samples)
DDS::ReturnCode t status = dr->take (messages,
info,
DDS: : LENGTH UNLIMITED,
DDS::ANY SAMPLE STATE,
DDS::ANY VIEW STATE,
DDS::ANY INSTANCE STATE);

After both zero-copy takes/reads and single-copy takes/reads, the sample and
info sequences’ length are set to the number of samples read. For the
zero-copy reads, the max lenis set to a value >= length.

Since the application code has asked for a zero-copy /oan of the data, it must
return that loan when it is finished with the data:

dr->return_loan (messages, info);

Calling return loan () results in the sequences’ max len being set to 0 and
its owns member set to false, allowing the same sequences to be used for
another zero-copy read.

If the first parameter of the data sample sequence constructor and info
sequence constructor were changed to a value greater than zero, then the
sample values returned would be copies. When values are copied, the
application developer has the option of calling return loan (), butis not
required to do so.

If the max len (the first) parameter of the sequence constructor is not
specified, it defaults to 0; hence using zero-copy reads. Because of this
default, a sequence will automatically call return loan () on itself when it
is destroyed. To conform with the DDS specification and be portable to other
implementations of DDS, applications should not rely on this automatic
return loan () feature.

The second parameter to the sample and info sequences is the maximum slots
available in the sequence. If the read () or take () operation’s

34

[|
ociweb.com I

OBJECT COMPUTING, INC.

2.2 Data Handling Optimizations

max_samples parameter is larger than this value, then the maximum samples
returned by read () or take () will be limited by this parameter of the
sequence constructor.

Although the application can change the length of a zero-copy sequence, by
calling the length (1len) operation, you are advised against doing so because
this call results in copying the data and creating a single-copy sequence of
samples.

| |
I ociweb.com 35

OBJECT COMPUTING, INC.

Getting Started

| |
36 ociweb.com I

OBJECT COMPUTING, INC.

CHAPTER 3

Quality of Service

3.1 Introduction

3.2

The previous examples use default QoS policies for the various entities. This
chapter discusses which QoS policies are implemented in OpenDDS and the
details of their usage. See the DDS specification for further information about
the policies discussed in this chapter.

Supported Policies

<

OBJECT COMPUTING, INC.

Listed below are the QoS policies that are currently supported by OpenDDS.
Any policy not listed here assumes its default value. The default values of
unsupported policies are as described in the DDS specification and are
discussed in 3.3.

Each policy defines a structure to specify its data. Each entity supports a
subset of the policies and defines a QoS structure that is composed of the
supported policy structures. The set of allowable policies for a given entity is

ociweb.com 37

Quality of Service

constrained by the policy structures nested in its QoS structure. For example,
the Publisher’s QoS structure is defined in the specification’s IDL as follows:

module DDS {
struct PublisherQos {
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
GroupDataQosPolicy group data;
EntityFactoryQosPolicy entity factory;
i
b

Setting policies is as simple as obtaining a structure with the default values
already set, modifying the individual policy structures as necessary, and then
applying the QoS structure to an entity (usually when it is created). We show
examples of how to obtain the default QoS policies for various entity types in
3.2.1.

Applications can change the QoS of any entity by calling the set gos ()
operation on the entity. If the QoS is changeable, the QoS changes are
propagated to the DCPSInfoRepo via QoS update invocations on the
corresponding entity, such as update subscription gos (). The
DCPSInfoRepo re-evaluates the QoS compatibility and associations according
to the QoS specification. If the compatibility checking fails, the call to

set _gos () will return an error. The association re-evaluation may result in
removal of existing associations or addition of new associations.

If the user attempts to change a QoS policy that is immutable (not

changeable), then set gos () returns DDS: :RETCODE IMMUTABLE POLICY.

A subset of the QoS policies are changeable. Some changeable QoS policies,
such as USER_DATA, TOPIC_DATA, GROUP_DATA, LIFESPAN,
OWNERSHIP, OWNERSHIP_STRENGTH, TIME _BASED_FILTER,
ENTITY FACTORY, WRITER DATA LIFECYCLE, and
READER DATA LIFECYCLE, do not require compatibility and association
re-evaluation. The DEADLINE and LATENCY BUDGET QoS policies
require compatibility re-evaluation, but not for association. The PARTITION
QoS policy does not require compatibility re-evaluation, but does require
association re-evaluation. The DDS specification lists

TRANSPORT_ PRIORITY as changeable, but the OpenDDS implementation
does not support dynamically modifying this policy.

38

ociweb.com @

OBJECT COMPUTING

7 N

3.2 Supported Policies

3.2.1

i

OBJECT COMPUTING, INC.

Default QoS Policy Values

Applications obtain the default QoS policies for an entity by instantiating a
QoS structure of the appropriate type for the entity and passing it by reference
to the appropriate get default entity gos () operation on the appropriate
factory entity. (For example, you would use a domain participant to obtain the
default QoS for a publisher or subscriber.) The following examples illustrate
how to obtain the default policies for publisher, subscriber, topic, domain
participant, data writer, and data reader.

// Get default Publisher QoS from a DomainParticipant:
DDS::PublisherQos pub_dos;
DDS::ReturnCode_t ret;
ret = domain participant->get default publisher gos(pub gos);
if (DDS::RETCODE OK != ret) ({

std::cerr << "Could not get default publisher QoS" << std::endl;
}

// Get default Subscriber QoS from a DomainParticipant:
DDS::SubscriberQos sub gos;
ret = domain participant->get default subscriber gos(sub_gos);
if (DDS::RETCODE OK != ret) ({

std::cerr << "Could not get default subscriber QoS" << std::endl;
}

// Get default Topic QoS from a DomainParticipant:
DDS::TopicQos topic_gos;
ret = domain participant->get default topic_qos(topic_qos);
if (DDS::RETCODE OK != ret) {

std::cerr << "Could not get default topic QoS" << std::endl;
}

// Get default DomainParticipant QoS from a DomainParticipantFactory:
DDS::DomainParticipantQos dp_qos;
ret = domain participant factory->get default participant qos(dp gos);
if (DDS::RETCODE OK != ret) {

std::cerr << "Could not get default participant QoS" << std::endl;
}

// Get default DataWriter QoS from a Publisher:
DDS::DataWriterQos dw gos;
ret = pub->get default datawriter gos(dw_gos);
if (DDS::RETCODE_OK = ret) {
std::cerr << "Could not get default data writer QoS" << std::endl;
}

// Get default DataReader QoS from a Subscriber:
DDS::DataReaderQos dr dos;

ociweb.com 39

Quality of Service

ret = pub->get default datareader qos(dr qos);
if (DDS::RETCODE OK != ret) {
std::cerr << "Could not get default data reader QoS" << std::endl;

The following tables summarize the default QoS policies for each entity type
in OpenDDS to which policies can be applied.

Table 3-1 Default DomainParticipant QoS Policies

Policy Member Default Value
USER_DATA value (not set)
ENTITY FACTORY autoenable created entities true

Table 3-2 Default Topic QoS Policies

Policy Member Default Value
TOPIC_DATA value (not set)
kind VOLATILE DURABILITY QOS
DURABILITY service cleanup delay.sec DURATION ZERO SEC
service_cleanup_delay.nanosec DURATION_ ZERO NSEC
service_cleanup_delay.sec DURATION_ZERO SEC
service cleanup delay.nanosec DURATION ZERO NSEC
history kind KEEP_LAST HISTORY QOS
DURABILITY SERVICE history depth 1
max_samples LENGTH_UNLIMITED
max_instances LENGTH_UNLIMITED
max samples per instance LENGTH UNLIMITED
period.sec DURATION INFINITY SEC
DEADLINE period.nanosec DURATION INFINITY NSEC
duration.sec DURATION ZERO SEC
LATENCY_BUDGET duration.nanosec DURATION ZERO NSEC
kind AUTOMATIC LIVELINESS QOS
LIVELINESS lease duration.sec DURATION INFINITY SEC
lease duration.nanosec DURATION INFINITY NSEC
kind BEST_EFFORT_RELIABILITY QOS
RELIABILITY max_blocking time.sec DURATION INFINITY SEC
max blocking time.nanosec DURATION INFINITY NSEC

BY RECEPTION TIMESTAMP

DESTINATION ORDER kind DE§TINATIONO§DER_QOS
HISTORY kind KEEP_LAST HISTORY QOS
depth 1
max_samples LENGTH_UNLIMITED
RESOURCE_LIMITS max_instances LENGTH_UNLIMITED
max_samples_per instance LENGTH_UNLIMITED
TRANSPORT PRIORITY value 0
LIFESPAN duration.sec DURATION INFINITY SEC
duration.nanosec DURATION_INFINITY NSEC

||
40 ociweb.com I

OBJECT COMPUTING, INC.

3.2 Supported Policies

Table 3-2 Default Topic QoS Policies

Policy

Member

Default Value

OWNERSHIP

kind

SHARED OWNERSHIP Q0S

Table 3-3 Default Publisher QoS Policies

Policy Member Default Value
access_scope INSTANCE PRESENTATION QOS
PRESENTATION coherent _access 0
ordered access 0
PARTITION name (empty sequence)
GROUP_DATA value (not set)
ENTITY FACTORY autoenable created entities true

Table 3-4 Default Subscriber QoS Policies

Policy Member Default Value
access_scope INSTANCE_PRESENTATION_QOS
PRESENTATION coherent_access 0
ordered_access 0
PARTITION name (empty sequence)
GROUP_DATA value (not set)
ENTITY FACTORY autoenable created entities true

Table 3-5 Default DataWriter QoS Policies

service cleanup delay.nanosec

Policy Member Default Value
kind VOLATILE DURABILITY QOS
DURABILITY service cleanup delay.sec DURATION_ ZERO SEC

DURATION ZERO NSEC

DURABILITY SERVICE

service cleanup delay.sec
service cleanup delay.nanosec
history kind

history depth

max_samples

max_instances
max_samples per instance

DURATION ZERO SEC
DURATION ZERO NSEC
KEEP_LAST HISTORY_ QOS
1

LENGTH UNLIMITED
LENGTH_UNLIMITED
LENGTH_UNLIMITED

DEADLINE

period.sec
period.nanosec

DURATION INFINITY SEC
DURATION_INFINITY NSEC

LATENCY BUDGET

duration.sec
duration.nanosec

DURATION ZERO SEC
DURATION ZERO NSEC

[|
I ociweb.com

OBJECT COMPUTING, INC.

41

Quality of Service

Table 3-5 Default DataWriter QoS Policies

max_blocking time.nanosec

Policy Member Default Value

kind AUTOMATIC LIVELINESS QOS
LIVELINESS lease duration.sec DURATION INFINITY SEC

lease duration.nanosec DURATION INFINITY NSEC

kind BEST_EFFORT RELIABILITY QOS’
RELIABILITY max_blocking time.sec DURATION INFINITY SEC

DURATION INFINITY NSEC

BY RECEPTION TIMESTAMP

DESTINATION ORDER kind DEgTINATIONoﬁDER_QOS
HISTORY kind KEEP_LAST HISTORY_QOS
depth 1

RESOURCE LIMITS

max_samples
max_instances
max_samples_per instance

LENGTH_UNLIMITED
LENGTH UNLIMITED
LENGTH_UNLIMITED

TRANSPORT PRIORITY

value
