
An FPGA-based 3D Graphics System

Master’s thesis completed in Electronics Systems
by

Niklas Knutsson

LiTH-ISY-EX--05/3624--SE
Linköping 2005

An FPGA-based 3D Graphics System

Master’s thesis completed in Electronics Systems
at Linköping Institute of Technology

by

Niklas Knutsson

LiTH-ISY-EX--05/3624--SE

Supervisor: Jonas Carlsson and Mattias Olsson

Examiner: Ass. Prof. Kent Palmkvist

Linköping 13th March 2005.

Avdelning, Institution
Division, Department

Institutionen för systemteknik
581 83 LINKÖPING

Datum
Date
2005-03-11

Språk
Language

Rapporttyp
Report category

ISBN

 Svenska/Swedish
X Engelska/English

 Licentiatavhandling
X Examensarbete

ISRN LITH-ISY-EX--05/3624--SE

 C-uppsats
 D-uppsats

Serietitel och serienummer
Title of series, numbering

ISSN

 Övrig rapport

URL för elektronisk version
http://www.ep.liu.se/exjobb/isy/2005/3624/

Titel
Title

Ett FPGA-baserat 3D-grafiksystem

An FPGA-based 3D Graphics System

Författare
 Author

Niklas Knutsson

Sammanfattning
Abstract
This report documents the work done by the author to design and implement a 3D graphics system
on an FPGA (Field Programmable Gate Array). After a preamble with a background presentation to
the project, a very brief introduction in computer graphics techniques and computer graphics theory
is given. Then, the hardware available to the project, along with an analysis of general requirements
is examined. The following chapter contains the proposed graphics system design for FPGA
implementation. A broad approach to separate the design and the eventual implementation was
used. Two 3D pipelines are suggested - one fully capable high-end version and one which use
minimal resources. The documentation of the effort to implement the minimal graphics system
previously discussed then follows. The documentation outlines the work done without going too
deep into detail, and is followed by the largest of the tests conducted. Finally, chapter seven
concludes the project with the most important project conclusions and some suggestions for future
work.

Nyckelord
Keyword
FPGA, 3D, Computer Graphics, IP-Cores

Abstract

This report documents the work done by the author to design and implement
a 3D graphics system on an FPGA (Field Programmable Gate Array). After a
preamble with a background presentation to the project, a very brief introduction
in computer graphics techniques and computer graphics theory is given. Then, the
hardware available to the project, along with an analysis of general requirements is
examined. The following chapter contains the proposed graphics system design for
FPGA implementation. A broad approach to separate the design and the eventual
implementation was used. Two 3D pipelines are suggested - one fully capable high-
end version and one which use minimal resources. The documentation of the effort
to implement the minimal graphics system previously discussed then follows. The
documentation outlines the work done without going too deep into detail, and is
followed by the largest of the tests conducted. Finally, chapter seven concludes
the project with the most important project conclusions and some suggestions for
future work.

i

Acknowledgments

I would like to thank my supervisors Jonas Carlsson and Mattias Olsson for many
interesting discussions, their good support and their friendly, encouraging attitudes.
I would also like to extend my thanks to the examiner Kent Palmkvist, the opponent
Anton Blad, and the rest of the staff at the Division of Electronics Systems.

Finally, I would like to thank everybody who supported and encouraged me
during the project. Especially my parents and Andreas Söderlind. You made the
project easier for me!

iii

Acronyms and Definitions

AD Analog Devices

AMBA ARM’s Microcontroller Bus Architecture

ARM Advanced RISC Machines Ltd.

ASIC Application Specific Integrated Circuits

ATI ATI Technologies Inc. A leading manufacturer of

graphics adapters.

CAS Column Address Strobe

CL CAS Latency

CLB Configurable Logic Block

CLUT Color LookUp Table

CMOS Complementary Metal Oxide Semiconductor

CORDIC COrdinate Rotation DIgital Computer.

CPU Central Processing Unit

Crossbar switch bus See section 4.

CRT Cathode Ray Tube.

DAC Digital to Analog Converter

DCM Digital Clock Manager

DDR Double Data Rate

DSP Digital Signal Processing

FIFO First in, first out.

v

Fixed-point A number representation scheme, where a number R

is represented by an integer N such that R = N ∗ B,

where B is the base of the representation.

Floating-point A number representation scheme, where the number

R is represented by M ∗ RE

FPGA Field-Programmable Gate Array.

FSL Fast Simplex Link

GPU Graphics Processing Unit.

GUI Graphical User Interface

HDL Hardware Description Language

IP-Core, Core Intellectual Property-Core.

JTAG Joint Test Action Group

LCD Liquid Crystal Display

LGPL Lesser General Public Licence

LMB Local Memory Bus

LUT Look-Up Table

LVDS Low Voltage Differential Signal

Microblaze A soft-core 32 bit RISC microprocessor designed

specifically for Xilinx FPGAs.

NVIDIA NVIDIA is a market leader in graphics and digital

media processors.

OPB Online Peripheral Bus

PCI Peripheral Component Interconnect

Picoblaze A fully embedded 8-bit microcontroller macro for the

Virtex series of FPGAs.

Pipeline A sequence of functional units which performs a task

in several steps.

Pixel Contraction of picture element.

Polygon A plane figure having many angles, and consequently

many sides. A triangle is a polygon.

PROM Programmable Read Only Memory

Raster graphics Computer graphics in which an image is composed of

an array of pixels arranged in rows and columns.

RAM Random Access Memory

Resource share bus See section 4.

RGB Red-Green-Blue

RISC Reduced Instruction Set Computer

ROM Read Only Memory

RS-232 The most common asynchronous serial line standard.

RTL Register Transfer Level

SDRAM Synchronous Dynamic Random Access Memory

TAP Test Access Port

Tri-state Allows a connector to either act as a signal driver, or

to be set to a high-impedance condition.

TTL Transistor-Transistor Logic

Vector graphics The representation of separate shapes such as lines,

polygons and text, and groups of such objects and

using them to render an image.

Verilog A Hardware Description Language for electronics de-

sign and gate level simulation.

Vertex The point of intersection of lines.

VHDL Very High Speed Integrated Circuit (VHSIC) Hard-

ware Description Language.

VGA Video Graphics Array

Wishbone A System-on-Chip Interconnect Architecture for use

with IP-Cores.

viii

Xilinx Founded in San Jose, California, in 1984, and invented

the field-programmable gate array.

Z80 An 8-bit microprocessor by Zilog Ltd.

3D Three dimensional

Contents

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 2
1.3 Outline . 2

2 Computer graphics rendering 5
2.1 Three dimensional mathematics . 6
2.2 A rendering pipeline . 7

2.2.1 Primitive decomposition and tessellation 7
2.2.2 Transformation and clipping 8
2.2.3 Rasterization . 8
2.2.4 Display . 8

2.3 Vertex and pixel processors . 9

3 FPGA-based design 11
3.1 Memec Design development board 11

3.1.1 The FPGA . 11
3.1.2 DDR-memory . 11
3.1.3 PROM . 12
3.1.4 JTAG . 13
3.1.5 P160 . 13
3.1.6 ADV7120 . 13
3.1.7 Other features . 14

3.2 FPGA - Virtex-II . 14
3.2.1 Features . 15

3.3 FPGA Design considerations . 16
3.3.1 Hardware description language, HDL 16
3.3.2 IP-Cores . 17
3.3.3 OpenCores . 17
3.3.4 Xilinx IP-cores . 17
3.3.5 IP-Core types . 18
3.3.6 Bus standards . 18
3.3.7 Tools . 18

ix

x Contents

3.4 Hardware prerequisites . 19
3.4.1 RAM . 19
3.4.2 DAC and CRT screen . 19
3.4.3 ROM . 20
3.4.4 Other . 21

4 Rendering pipeline design 23
4.1 The system overview . 23

4.1.1 VGA . 25
4.1.2 MEMORY . 25
4.1.3 GPU . 25
4.1.4 3D PIPELINE . 26
4.1.5 CONTROL REGISTERS . 26

4.2 The 3D pipeline . 26
4.2.1 General blocks . 26
4.2.2 High-end pipeline . 29
4.2.3 Minimal pipeline . 29

5 Implementation 31
5.1 General design decisions and simplifications 31

5.1.1 Hardware . 31
5.1.2 FPGA Design decision . 32

5.2 HDL Implementation . 33
5.2.1 Bus Master . 33
5.2.2 DDR memory interface . 34
5.2.3 VGA-block . 35
5.2.4 GPU . 37
5.2.5 GPU - Wishbone interface . 40
5.2.6 GPU - MemClear . 41
5.2.7 3D Pipeline . 42
5.2.8 Circuit Board design . 44

6 Testing and Analysis 47
6.1 High-level MATLAB simulation . 47

6.1.1 The test . 47
6.1.2 Results . 48

6.2 Integration test . 48
6.2.1 Introduction . 48
6.2.2 The test . 48
6.2.3 Results . 50

7 Conclusion 53
7.1 Future work . 54

Chapter 1

Introduction

1.1 Background

Real-time computer graphics hardware has undergone a major transition the last
two years: From supporting a few fixed algorithms, to being fully programmable.
This development is likely to continue in the future, and will allow developers to
interact more and more with the rendering mechanism. At the same time, the
performance increase of graphical processing units (GPUs) is even greater than
that of central processing units (CPUs), because GPUs can efficiently exploit the
enormous parallelism available in graphic computations. The parallelism implies
suitability for hardware implementation. Of course, the manufacturers use this:
The latest chips (the 6800 line) from NVIDIA contain 16 separate pipelines with
pixel processing units, each doing eight 64-bit floating-point operations in parallel.
Compared to the size of a Pentium 4, the GPUs are significantly larger.

The latest generation of GPUs provides pipeline programmability. GPUs here
refer to the ones available to low-cost systems. NVIDIA’s GeForce 3 and up or
ATI’s Radeon 8500 are good examples. The most common method to increase
programmability, is to include processors attached to the rendering pipeline. The
extreme parallelism of graphic algorithms, combined with the brute force compu-
tational power and the ability to control the hardware, i.e., programmability, gives
a huge performance-gain.

Field Programmable Gate Arrays (FPGAs) are basically pieces of program-
mable logic. Designs which previously would have required Application Specific
Integrated Circuits (ASICs) can now be implemented with a few standard parts
connected to a FPGA. As FPGAs have become more affordable they have found
their way into more and more designs. It has now become possible to build very
complex systems (for example an entire microprocessor with peripherals) based
around a ¿20 FPGA. The appeal of FPGAs is the ability to handle ’in hardware’
a number of complex functions which previously would have been handled in the
software domain. FPGA development is performed in a similar way to software
development, except with different languages and tools. Debugging is somewhat

1

2 Introduction

more difficult, and building a design generally takes longer for an FPGA than for
software. FPGAs are best used to augment the functionality of a CPU, to enable
the CPU to perform more tasks more quickly. Since hardware can perform many
operations in parallel, this can raise performance significantly. The price of this is
extra design complexity.

Currently, IP-cores available for integration must normally be purchased from
established vendors, often at very high prices. These costs can be burdensome,
especially for small design teams with limited funding. The purchaser might not
have access to the source, which makes the task of integration much more difficult,
perhaps even preventing it. Some Internet communities work in another direction.
One of them is OpenCores[6]. Their main objective is to design and publish core
designs under a license for hardware modeled on the Lesser General Public License
(LGPL) for software. The ideal of freely available, freely usable and re-usable open
source hardware is the commitment. Consequently, there is around a hundred cores
available at the website for use under the license.

The Division of Electronic Systems, at the Department of Electrical Engineer-
ing of Linköping Institute of Technology offer tuition in several topics, and one of
them is design of digital systems. To ensure a continuing interest for the divisions
education for students, and other informative reasons, a request for a demonstra-
tion design exists. The demonstration system should ideally interest the spectator
in modern, high-speed digital systems. Available to the division, are several devel-
opment boards, ideal for a digital system prototype.

1.2 Purpose

� Design and implement an FPGA-based graphics system on one of the divi-
sions development boards.

� Use and evaluate IP-cores in the design of the graphics system.

� GPUs benefit from pipeline programmability. FPGAs provide a flexible com-
promise between software and hardware, as the hardware itself can become
something that software can run on. Examine and investigate how this can
be used when designing graphics systems.

1.3 Outline

Chapter one is an introduction to the project and presents the background and the
purpose of the report.

Chapter two is an introduction to computer graphics techniques and computer
graphics theory. If the reader is already acquainted with basic computer graphics
this chapter can be skipped.

Chapter three serves to introduce the reader to the Memec Development Board
and the Virtex-II FPGA that was available for prototyping in the project.

1.3 Outline 3

Chapter four contains the design of a rendering pipeline for FPGA implementa-
tion. A general approach to separate the design and the eventual implementation
was used. Two 3D pipelines are suggested. One fully capable high-end version,
and one minimal resource use version.

Chapter five documents an attempt to implement the minimal graphics system
discussed in chapter four. The documentation outlines the work done without going
too deep into detail.

Chapter six portray the largest of the tests conducted throughout the imple-
mentation phase.

Chapter seven concludes the project with the most important conclusions and
and some suggestions for future work.

4 Introduction

Chapter 2

Computer graphics rendering

The process of image synthesis or rendering, is the process of transforming an
abstract description of objects into a digital image. The description is often referred
to as the virtual world - or more exact, the description represents the geometry
of the virtual world in a mathematical form. A form that can be used to render
the image. Although a renderer may be able to synthesize many advanced object
properties such as material and optical properties, the fundamental ability of a
renderer is to be able to render geometric primitives. Objects refer to a specific
part of the virtual world. Each object is composed of primitives. There are several
ways of describing these objects, but the most common way is often referred to as
vector graphics. For example, a virtual world may consist of an apple, lying on a
table. A model of this virtual world might consist of two objects, the table and
the apple. Both the table and the apple consist of several geometric primitives.
The table might consist of five rectangles. One for each leg, and one for the table
board.

Obviously a computer screen or display is a two dimensional surface, and a
virtual world is in most cases three dimensional. A traditional computer image is a
precise description of pixels, where pixel is a commonly used contraction of picture
element. An image, being an array of pixels form a raster. The quality of a raster
image is determined by the total number of pixels (called its resolution), and the
amount of information in each pixel (often called color depth). Raster graphics
cannot be scaled (resized) without loss of apparent quality (or more accurately,
once an image is rasterized, its quality is fixed and cannot improve even on better
display devices). It takes a large amount of data to store a high-quality raster
image, often data compression techniques are used to reduce this size. Some of
these techniques actually lose information, and therefore image quality. This is in
contrast to vector graphics, which easily scale to the quality of the device on which
they are rendered. In situations where the users’ screens vary in resolutions by as
much as a factor of ten in size, scaling is very important. Describing the screen’s
contents is very often a lot more efficient in comparison to implicitly specifying
each pixel. This gives rise to the demand for powerful renderers.

5

6 Computer graphics rendering

Rendering is a computationally intensive process. When being done in real time
on a personal computer(like in modern computer games for example), it is often
supported by 3D hardware accelerators in graphic cards.

There are a number of different phenomena that has to be simulated for realistic
results when rendering a scene:

� diffuse reflection

� specular reflection

� refraction

� global illumination

� depth of field

� motion blur

� diffraction

In 1986, Kajiya[7] introduced the rendering equation as a way of modeling global
illumination in an environment arising from the interplay of lights and surfaces. The
rendering equation and its various forms have since formed the basis for geometric
primitive-based rendering and enabled a new level of realism to be achieved in
computer graphics. Virtually all 3D rendering software and hardware produces an
approximation to a solution of some idealized rendering equation.

When using geometric primitive-based rendering, the primitives are constructed
from vertexes. A vertex is a point in three dimensional space with a particular
location, usually given in terms of its x, y, and z coordinates. It is one of the
fundamental structures in polygonal modeling: two vertexes, taken together, can
be used to define the endpoints of a line; three vertexes can be used to define a
planar triangle.

2.1 Three dimensional mathematics

Objects are represented as sets of vertexes, and each vertex can be seen as a vector
in a coordinate system. Often, it is required to find how vectors change when
the basis for the vector is changed. For example, an object is normally defined in
its own local coordinate system. This is synonymous with the more mathematical
description: the object is normally defined with its vectors and local basis. At some
point, an object will appear in front of the camera. It is natural then to convert
from the object’s basis to the cameras. This conversion can be done elegantly
using matrix math, where a set of fundamental matrices are multiplied together to
perform huge amounts of work.

Instead of representing each point in three-dimensional space with a three-
dimensional vector, homogeneous coordinates allow each point to be represented
by an infinite number of four dimensional vectors. Homogeneous coordinates utilize

2.2 A rendering pipeline 7

a mathematical trick to embed three-dimensional coordinates and transformations
into a four-dimensional matrix format. The three-dimensional vector correspond-
ing to any four-dimensional vector can be computed by dividing the first three
elements by the fourth, and a four-dimensional vector corresponding to any three-
dimensional vector can be created by simply adding a fourth element and setting
it equal to one.

There are excellent tutorials available on the topic of matrix math and its uses
in three dimensional graphics, and to repeat them here would be to go beyond the
scope of this report. Suggested reading is Edward Angels ”Interactive Computer
Graphics” [8]. A summary follows:

� A vertex is normally represented as a 4x1 column vector

� There are fundamental 4x4 matrices that, when multiplied with a 4x1 vector,
perform a fundamental transformation

� Three fundamental matrix operations are: Translation, Rotation and Scaling

� The matrices can be multiplied together, forming a new matrix that apply
all of the matrices’ operations at the same time

� A vector or vertex is represented by 4 floating-point numbers

Example: Consider a virtual world that consists of 200 vertexes. Each vertex
has to be scaled, translated and rotated twice to be projected to the screen basis (i.e
the two dimensional x and y coordinates). The matrix multiplication can be written
as STR1R2v where S,T ,R1 and R2 each represent a fundamental operation (scale,
translate, rotate one, rotate two). v represents a vertex in the form of a vector.
Each vertex vector is matrix multiplied four times, resulting in 800 4x4 matrix by
4x1 vector multiplications. If however, given that the matrices S,T ,R1 and R2 are
constant throughout the current frame, the matrices can be pre-multiplied. This
will result in a new matrix, M . Hence M = STR1R2. To build is 3 multiplications
and to process the vertexes are another 200 (200 vertexes), for a total of 203. The
prerequisite for this huge improvement was that the matrices are constant. This is
in fact the same as a constant position of the camera for the frame. This is almost
always the case.

2.2 A rendering pipeline

Figure 2.1 shows an abstract overview of a rendering pipeline.

2.2.1 Primitive decomposition and tessellation

The first step of rendering is the decomposition of objects used for modeling into
points, lines, or polygons suitable for the image synthesis algorithms. In order to
allow geometric transformations, the allowed type of objects should be limited. The

8 Computer graphics rendering

Figure 2.1. Overview of a computer graphics renderer

tessellation finds the sets of geometric objects whose type is invariant under ho-
mogeneous linear transformation. These types are the point, the line segment and
the polygon. Tessellation approximates all surface types by points, line segments
and polygons.

2.2.2 Transformation and clipping

Objects are defined in a variety of local coordinate systems. However, the genera-
tion of the image requires the objects to be in the coordinate system of the screen
since the color distribution of the screen has to be determined. This requires geo-
metric transformation. On the other hand, objects which lie outside the finite view
volume shape defined by the camera, and the sides of the viewing window, are not
interesting for further processing. The process of removing those invisible parts
(they are are outside what is refered to as the viewing frustum) is called clipping.
An object that lies inside the view volume, will not be displayed if it is obscured
by other objects. Algorithms for Hidden-surface removal must be carried out to
prevent rendering of surfaces that lie within the view volume, but face away from
the camera or is completely or partially hidden by other surfaces.

Collectively, these operations constitute what has been called front-end process-
ing. All involve three-dimensional computation and all require floating point oper-
ations.

2.2.3 Rasterization

At this stage in the pipeline only visible, two dimensional objects remain. For
example, after front-end processing, a line segment that in three dimensions was
defined by two three-dimensional vertexes are now represented by two two dimen-
sional vertexes. The final projection to the screen coordinate system, i.e., pixels,
is called the rasterization.

2.2.4 Display

The actual pixels has to be written to the frame buffer, i.e., RAM. Note that
transformation and clipping handle geometric primitives such as points, lines or
polygons, while in visibility computation - if it is done in image space - the primary
object is the pixel. Since the number of pixels is far more than the number of
primitives, the last step is critical for real-time rendering.

2.3 Vertex and pixel processors 9

2.3 Vertex and pixel processors

Today, the most common video cards for personal computers now support pixel
and vertex shaders in hardware, allowing their use for real-time rendering. The
term shader is often used and refers to an assembly language program run on a
dedicated processor. This enables the developer to complement the rasterization
stage inside the actual pipeline. The technology is by now quite mature, and the
latest generation of games, including Doom3 and Half-Life 2 make extensive use of
hardware shaders.

The addition of programmable vertex shaders and pixel shaders makes visual
quality in real-time graphics take a enormous leap toward cinematic realism. One
downside to the shaders is that older graphics card cannot support it because
they do not have programmable graphics processors, but all future cards will most
probably have one. Example effects that very successfully use, or require, shaders:

� Hair and fur

� Per-pixel lighting

� Underwater effects

� Clothing

Vertex shader

A vertex shader is a graphics processing function which manipulates vertex data
values through mathematical operations. These variations range from differences
in color, texture coordinates, orientations in space, fog (how dense it may appear
at a certain elevation) and point size.

When a vertex shader is enabled, it might replace the fixed-function pipeline for
vertexes. The shader does not operate on a primitive like a triangle, but on a single
vertex. A vertex shader cannot create or destroy vertexes, it can only manipulate
the vertexes. For every vertex to be processed, the shader program executes.

Pixel shader

Pixel shaders operate after the geometry pipeline and before final rasterization.
They often operate in parallel with texturing to produce a final pixel color and
z-value for the final, rasterization step in the graphics pipeline. Pixel shaders
often require data from and are ”driven” by the vertex shader. For example to
calculate per-pixel lighting the pixel shader needs the orientation of the triangle,
the orientation of the light vector and in some cases the orientation of the view
vector.

10 Computer graphics rendering

Chapter 3

FPGA-based design

The chapter serves to introduce the reader to the Memec Development Board and
the Virtex-II FPGA that was available for prototyping in the project. General
design issues are then listed, regarding both the design process and the general
hardware requirements around a graphics system.

3.1 Memec Design development board

The Division of Electronic Systems owns several FPGA- oriented development
boards. Designated for use in this project was the Virtex-II MB1000 Development
Kit from Memec Design. It provides a complete solution for prototype development
with the Xilinx Virtex-II FPGA. Optional P160 expansion modules enable further
application specific prototyping and testing. The system board includes a 16M x 16
DDR memory, two clock sources, RS-232 port, and additional support circuits. An
LVDS interface is provided with a 16-bit transmit and 16-bit receive port plus clock,
status, and control signals. Xilinx ISE software and a JTAG cable complement the
kit and easing development. Figure 3.1 gives an overview of the system.

3.1.1 The FPGA

The development board utilizes the 1-million gate Xilinx Virtex-II device (XC2
V1000-4FG456C) (speedgrade -4) in the 456 fine-pitch ball grid array package. The
high gate density and large number of user I/Os allows complete system solutions
to be implemented in the advanced platform FPGA. The Virtex-II FPGA family
has the advanced features needed to fit demanding, high-performance applications
such as graphic systems.

3.1.2 DDR-memory

The development board provides 32MB of DDR memory on the system board. This
memory is a Toshiba TC59WM815-80 16Mx16 DDR device. The -80 version is the

11

12 FPGA-based design

ISP PROM

Virtex-II FPGA
XC2V1000
(FG456)

JTAG Port

2M x 16
DDR SDRAM

16-Bit LVDS TX

Clocks (2)

Reset Circuit

16-Bit LVDS RX

Voltage
Regulators

SelectMap
Slave Serial

7-Segment
Display

DIP Switches

User LEDs

RS-232

Push Button
Switches

1.5 Volts

2.5 Volts

3.3 Volts

I/O Connector

I/O Connector

P160 Slot

I/O
 C

on
ne

ct
or

s

RS-232

USB

10/100 PHY

LCD I/F

PS/2

I2C

SPI

SRAM
256K x 32

Flash
2Mx32 I/O

 C
on

ne
ct

or
s

I/O
 C

on
ne

ct
or

s

I/O
 C

on
ne

ct
or

s

2 x 20
Headers

2 x 20
Headers

2 x 20
Headers

2 x 20
Headers

Prototype
Area

User
LED

Power
LEDs

Virtex-II System Board

P160 Communications Module

P160 Prototype Module

Figure 3.1. Functional overview of the development board and the available expansion
modules[9]

slowest one, with the most important parameter tCK (clock cycle time) being 8
ns when using a CL (CAS latency) of 2.5. Its also possible to use CL 2.0 with a
resulting 10 ns for tCK. In effect, at CL=2 maximum frequency for the memory
is 100 MHz (which results in 200MHz with the DDR capability).

3.1.3 PROM

The development board utilizes the Xilinx XC18V04 ISP PROM, which allows
FPGA designers to quickly download revisions of a design and verify the design
changes in order to meet the final system-level design requirements. The XC18V04
ISP PROM uses two interfaces to accomplish the configuration of the Virtex-II
FPGA. The JTAG port on the XC18V04 device is used to program the PROM
with the design bit file. Once the XC18V04 has been programmed, the user can
configure the Virtex-II device in Master Serial or Master SelectMap mode. Once
selected, the XC18V04 device will use its FPGA Configuration Port to configure
the Virtex-II FPGA.

3.1 Memec Design development board 13

3.1.4 JTAG

The Virtex-II development board provides a JTAG connector that can be used to
program the onboard ISP PROM and configure the Virtex-II FPGA.

3.1.5 P160

The development kit includes a P160 Prototype module, which connects to the
main system development board via the I/O module connectors. This board can
be used to prototype various user I/O interfaces. A high-level block diagram of
this module is given in figure 3.2.

February 13, 2002 2

P160 Pro to type Board

J
3

 C
o

n
n

e
c

to
r

J
4

 C
o

n
n

e
c

to
r

J
5

 C
o

n
n

e
c

to
r

J
6

 C
o

n
n

e
c

to
r

1 2 1 2 1 2 1 2

39 40 39 40 39 40 39 40

P r o t o t y p e A r e a

3.3V

GND
u s e r

l ed

2 . 5 V

led

3 . 3 V

led

V i n

l ed

Figure 2 – P160 Prototype Module Block Diagram

3 User Headers

The P160 Prototype module provides four 2 x 20 headers for connection to the P160 Expansion
signals. These signals are driven from the main system board and are defined by the FPGA
design implemented. Tables 1 through 4 define the connections between the headers and the
P160 connectors. Corresponding connections between the P160 connectors and the system
board FPGA can be found in the related system board User Guide.

Table 1 – J3 Pin Assignments

FPGA Pin # J3 Pin # FPGA Pin #
Vin 1 2 3.3V
2.5V 3 4 GND

RIOA1 5 6 NC
RIOA2 7 8 LIOB8
LIOB9 9 10 LIOB10
LIOB11 11 12 LIOB12
LIOB13 13 14 LIOB14
LIOB15 15 16 LIOB16
LIO17 17 18 LIOB18

LIOB19 19 20 LIOB20
LIOB21 21 22 LIOB22
LIOB23 23 24 LIOB24
LIOB25 25 26 LIOB26
LIOB27 27 28 LIOB28
LIOB29 29 30 LIOB30
LIOB31 31 32 LIOB32
LIOB33 33 34 LIOB34
LIOB35 35 36 LIOB36
LIOB37 37 38 LIOB38
LIOB39 39 40 LIOB40

Figure 3.2. P160 Prototype board overview[10]

3.1.6 ADV7120

The ADV7120 is a digital to analog video converter on a single monolithic chip. The
part is specifically designed for high resolution color graphics and video systems.
It is also ideal for any high speed Communications type applications requiring
low cost, high speed DACs. It consists of three, high speed, 8-bit, video D/A
converters (RGB); a standard TTL input interface and high impedance, analog
output, current sources. The ADV7120 has three separate, 8-bit, pixel input ports,
one each for red, green and blue video data. Additional video input controls for
the part include composite sync, blank and reference white. A 5 V supply and an
external 1.23 V reference is needed for proper operation.

14 FPGA-based design

REV. B

Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices.

a CMOS
80 MHz, Triple 8-Bit Video DAC

ADV7120

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 617/329-4700 Fax: 617/326-8703

FUNCTIONAL BLOCK DIAGRAM

REF WHITE

PIXEL
INPUT
PORT

IOR

IOG

IOB

R0
R7

CLOCK

8

SYNC

ADV7120

VREF

GND

G0

G7
8

B0

B7
8

BLANK

 FS
ADJUST

8

8

8

ISYNC

VAA

REFERENCE
AMPLIFIER

COMP

DAC

CONTROL
REGISTER SYNC

CONTROL

RED
REGISTER

GREEN
REGISTER

BLUE
REGISTER

DAC

DAC

PRODUCT HIGHLIGHTS
1. Fast video refresh rate, 80 MHz.

2. Compatible with a wide variety of high resolution color
graphics video systems.

3. Guaranteed monotonic with a maximum differential non-
linearity of ±0.5 LSB. Integral nonlinearity is guaranteed to
be a maximum of ±1 LSB.

GENERAL DESCRIPTION
The ADV7120 (ADV) is a digital to analog video converter on
a single monolithic chip. The part is specifically designed for
high resolution color graphics and video systems. It is also ideal
for any high speed communications type applications requiring
low cost, high speed DACs. It consists of three, high speed,
8-bit, video D/A converters (RGB); a standard TTL input inter-
face and high impedance, analog output, current sources.

The ADV7120 has three separate, 8-bit, pixel input ports, one
each for red, green and blue video data. Additional video input
controls on the part include composite sync, blank and refer-
ence white. A single +5 V supply, an external 1.23 V reference
and pixel clock input are all that are required to make the part
operational.

The ADV7120 is capable of generating RGB video output sig-
nals, which are compatible with RS-343A and RS-170 video
standards, without requiring external buffering.

The ADV7120 is fabricated in a +5 V CMOS process. Its
monolithic CMOS construction ensures greater functionality
with low power dissipation. The part is packaged in both a 0.6",
40-pin plastic DIP and a 44-pin plastic leaded (J-lead) chip car-
rier, PLCC. The ADV7120 is also available in a very small 48-
lead Thin Quad Flatpack (TQFP).
ADV is a registered trademark of Analog Devices, Inc.
*Speed grades up to 140 MHz are also available upon special request.
Please contact Analog Devices or its representatives for further details.

FEATURES

80 MHz Pipelined Operation

Triple 8-Bit D/A Converters

RS-343A/RS-170 Compatible Outputs

TTL Compatible Inputs

+5 V CMOS Monolithic Construction

40-Pin DIP or 44-Pin PLCC and 48-Lead TQFP

APPLICATIONS

High Resolution Color Graphics

CAE/CAD/CAM Applications

Image Processing

Instrumentation

Video Signal Reconstruction

Desktop Publishing

Direct Digital Synthesis (DDS) and I/Q Modulation

SPEED GRADES*

80 MHz

50 MHz

30 MHz

Figure 3.3. ADV7120 functional overview[11]

3.1.7 Other features

� The Virtex-II system board provides two on-board oscillators, one at 100Mhz
and the other at 24Mhz.

� Several voltage regulators are used on the Virtex-II development board to
provide the required on-board voltage sources. The main 5.0V voltage is
provided to all on-board regulators to generate the 1.5V, 2.5V, and 3.3V
voltages.

3.2 FPGA - Virtex-II

The Virtex-II family is a platform FPGA developed for high performance from low-
density to high-density designs that are based on IP cores and customized modules.
The family delivers complete solutions for telecommunication, wireless, network-
ing, video, and DSP applications, including PCI, LVDS, and DDR interfaces. The
leading-edge 0.15µm/0.12µm CMOS 8 layer metal process and the Virtex-II ar-
chitecture are optimized for high speed with low power consumption. Combining
a wide variety of flexible features and a large range of densities up to 10 million
system gates, the Virtex-II family enhances programmable logic design capabilities.

3.2 FPGA - Virtex-II 15

3.2.1 Features

Configurable Logic Blocks (CLBs)

CLB resources include four slices and two tri-state buffers. The XC2V1000 has
40*32=1280 CLBs and consequentially 5120 slices and 2560 tri-state buffers. Each
slice is equivalent and contains:

� Two function generators (F & G)

� Two storage elements

� Arithmetic logic gates

� Large multiplexers

� Wide function capability

� Fast carry look-ahead chain

� Horizontal cascade chain (OR gate)

The function generators F & G are configurable as 4-input look-up tables (LUTs),
as 16-bit shift registers, or as 16-bit distributed SelectRAM memory. Supported
SelectRAM memory for the XC2V1000 is 163840 bits. It is important to realize
that using CLB’s as distributed SelectRAM make them unavailable for use as logic.
Usage of the Block SelectRAM memory is preferred. In addition, the two storage
elements are either edge-triggered D-type flip-flops or level-sensitive latches. Each
CLB has internal fast interconnect and connects to a switch matrix to access general
routing resources.

Block SelectRAM Memory

The block SelectRAM memory resources are 18Kb of dual-port RAM, program-
mable from 16K x 1 bit to 512 x 36 bits, in various depth and width configurations.
Each port is totally synchronous and independent, offering three read-during-write
modes. Block SelectRAM memory is cascadable to implement large embedded
storage blocks. The XC2V1000 contain a total of 40 SelectRAM blocks.

Multipliers

A multiplier block is associated with each SelectRAM memory block. The mul-
tiplier block is a dedicated 18 x 18-bit multiplier and is optimized for operations
based on the block SelectRAM content on one port. The 18 x 18 multiplier can be
used independently of the block SelectRAM resource. Read/multiply/accumulate
operations and DSP filter structures are extremely efficient. Both the SelectRAM
memory and the multiplier resource are connected to four switch matrices to access
the general routing resources.

16 FPGA-based design

Global Clocking

The DCM and global clock multiplexer buffers provide a complete solution for de-
signing high-speed clocking schemes. The XCV2-1000 have 8 DCM blocks. To
generate de-skewed internal or external clocks, each DCM can be used to elimi-
nate clock distribution delay. The DCM also provides 90-, 180-, and 270-degree
phase-shifted versions of its output clocks. Fine-grained phase shifting offers high-
resolution phase adjustments in increments of 1/256 of the clock period. Very
flexible frequency synthesis provides a clock output frequency equal to any M/D
ratio of the input clock frequency, where M and D are two integers.

Boundary Scan

Boundary scan instructions and associated data registers support a standard method-
ology for accessing and configuring Virtex-II devices that complies with IEEE stan-
dards 1149.1-1993 and 1532. A system mode and a test mode are implemented. In
system mode, a Virtex-II device performs its intended mission even while executing
non-test boundary-scan instructions. In test mode, boundary-scan test instructions
control the I/O pins for testing purposes. The Virtex-II Test Access Port (TAP)
supports BYPASS, PRELOAD, SAMPLE, IDCODE, and USERCODE non-test
instructions. The EXTEST, INTEST, and HIGHZ test instructions are also sup-
ported.

3.3 FPGA Design considerations

In this section, various considerations that are important for the design process
associated with FPGAs are listed.

3.3.1 Hardware description language, HDL

There are two industry standard hardware description languages, VHDL and Ver-
ilog. The complexity of designing with FPGAs with specific tools and methods
of mapping the described hardware onto FPGA hardware has increased. As a re-
sult, it is important to master both languages, and that the tools used allow both
languages to be used together. The choice of HDL is shown to not be based on
technical capability, but on three primary issues[12]:

� Personal preference

� Tool availability

� Business and marketing issues.

Given this, it is rather likely that both languages will have to be used. Just as
likely is that some problems will arise out of this.

3.3 FPGA Design considerations 17

3.3.2 IP-Cores

When designing a digital system of reasonable size using a HDL, the use of pre-
designed IP-cores, or cores, should be considered. An IP-core is a component, or
collection of components, that when employed supply functions to the design. The
advantages are many but the most important ones are perhaps:

� A user of a IP-core must not necessarily know the exact implementation of
the IP-core, only how to use it.

� Code and design reusability and flexibility

� Portability through the use of interconnection standards

� Predictability and performance

Example: An IP-core that offer easy and straightforward communication with a
DDR-memory to a system. A DDR-memory uses several clocks, a rather sophisti-
cated command protocol and other extras that the some designers probably would
prefer not to concentrate on.

3.3.3 OpenCores

Today there are many companies, with a primary business to design IP-cores and
sell or license them for use by other companies. The license fee is often high.
This is understandable considering the expertise that has been put into the IP-
core. Sadly, this fact makes the use of such professional IP-cores not very feasible
for university projects. A very interesting development the last years have seen
the emergence of communities, primarily Internet based, that supply IP-cores for
free. One such community is OpenCores with URL: www.opencores.org. Many
IP-cores are developed by amateurs with an interest for digital design, but just as
many are developed by hardware design professionals that want to contribute. At
time of writing there is around a hundred IP-cores available at the website. About
half of them are written using Verilog HDL and the rest in VHDL. Most of them
are still under constant refinement or development.

Some of the IP-cores available at OpenCores could prove very useful in the
project. These include a DDR-controller, IP-core interconnectioncores, VGA/LCD-
controller, several microcontrollers and CORDIC-cores.

3.3.4 Xilinx IP-cores

The Division of Electronic Systems is under the possession of several IP-cores under
license from Xilinx, one of them is the popular Microblaze IP-core. Microblaze
is a popular full featured processor IP-core. Supplied with the Xilinx Foundation
Toolkit is also the CoreGen utility. This utility lets the user generate and customize
IP-cores for use in the design. The IP-cores are generated for a specific FPGA and
makes very good use of the resources available in the FPGA. For instance, inferring
Block SelectRAM in the system using CoreGen is a simple process.

18 FPGA-based design

3.3.5 IP-Core types

Rajsuman[13] defines soft, firm and hard IP-cores. For FPGA design there are
mainly two aspects. All of OpenCores IP-cores are soft cores, meaning they are
RTL descriptions that can be mapped to (synthesized) to virtually any FPGA ,i.e.,
vendor-independent. Xilinx IP-cores on the other hand are firm IP-cores as they
are mapped to Xilinx primitives. These primitives can then be mapped to the
specific hardware by Xilinx own tools. Hard IP-cores are hardly usable in FPGA
design. The effect of this is that, should the project use Xilinx IP-cores, a speed and
especially area optimized IP-core can be expected. This at the cost of restriction
to Xilinx hardware use.

3.3.6 Bus standards

The hardware, or logic, necessary to interconnect IP-cores is often referred to as
glue logic. It is easy to underestimate the time required to design and verify glue
logic. The vital testing to ensure proper function can dampen some of the glare
associated, at first inspection, with the use of IP-cores. One attempt to solve this
problem is specification of bus standards. Apart from being used for pure data
transfer, a bus can also be used to specify the communication protocol between the
IP-cores. Especially when used together with memory mapped control registers.
The VGA/LCD controller from OpenCores contains a bus slave interface that is
connected to the bus. Any master interface that is connected to the bus can then
write to the slave on different memory locations. Each memory location relates to
a function register that control how the IP-core operates. One register for instance
control horizontal resolution of the output display.

This is all very good, only that the industry is full of different bus standards.
OpenCores for instance use its own WishBone bus standard. Most (not all) IP-cores
from OpenCores[6] use this standard. The Xilinx IP-cores on the other hand tend
to use the OPB (Online peripheral bus) as its primary, low-speed, bus. Microblaze
on its own use three different bus standards (OPB, LMB and FSL). AMBA is
another worth mentioning. Solutions exist, there are bus-bridges, that make IP-
cores from different bus standards communicate, but sometimes there are none.
Bridges can also include unavoidable wait states and thus, slowing down bus cycles
which can be critical. If is possible to use groups of IP-cores that are designed
for use with the same bus standard, a lot of potential problems and delays can be
avoided.

3.3.7 Tools

As the complexity and size of designs becomes larger, the need for advanced de-
velopment tools increase. Even if HDL design is often text based and the work
can be done using a text editor and command-line compilers, there are some very
important advantages of using more integrated solutions. Several companies, one
of them Xilinx, offer complete development environments that include graphical

3.4 Hardware prerequisites 19

design utilities. The use of these tools often aid in designing and viewing the hi-
erarchy of the design. It also greatly simplifies the process of merging Verilog and
VHDL modules. This is indeed a very important aspect. Verilog and VHDL source
code tend to include redundant code parts. The graphical design tools have the
ability to generate HDL from diagrams, saving time for the developer. Consider
for example, in VHDL, an entity that use say five counters. None of them use
the common counter feature load although the actual component have it. All use
the same clock, count enable and reset. In VHDL this will result in a rather large
source file with a lot redundancy in the component instantiations. In the graphical
diagram much if this is resolved using global connectors. The diagram is quickly
built and the VHDL can be automatically generated.

3.4 Hardware prerequisites

Although todays FPGAs have a lot of features it is probably necessary to comple-
ment any with external components.

3.4.1 RAM

Graphics systems require RAM and lots of it. Consider a 640*480 pixel resolution
screen with a color depth of 16 bits. It would require 614.4 kB of memory to store
just one frame. A larger frame and perhaps more modern of 1280*960*32 gives
4.9125 MB. FPGAs often supply RAM but rarely, if ever, this much. To be on the
safe side and to allow for texture data and a working space for graphical algorithms,
at least 16 MB of RAM should be available to the system. The speed of the RAM
is also critical for the performance of the graphics system.

3.4.2 DAC and CRT screen

A cathode ray tube screen take analog signals as input. The most important signals
are the color levels of red,green and blue respectively plus two synchronization
signals. Conversion from digital data to analog signals is done through DACs.
Consider again the 640*480*16 case. Assume the memory where the frame data
resides has a word length of 16 bits and hence one read supplies one pixel for the
screen. The screen is drawn by a raster beam that move across the screen from side
to side, row by row. This must be done at least 60 times per second to fool human
eye of a constant screen. Slower updates and flicker would appear. This would
yield 640*480*60 pixels per second. That equals to about 18.5 million memory
reads, or around 54 ns of memory cycle time. And it gets worse. Because of the
time required for the raster beam to retrace when switching line and frames, the
frequency must be higher. This can be seen as the resolution is 800*500. Figure
3.4 portrays this representation where total horizontal image size is 800 pixels and
the horizontal gate is 640 pixels. Total vertical image size is 500 pixels and the
vertical gate is 480 pixels. In effect, this means that a 25 MHz pixel clock frequency

20 FPGA-based design

is required. This is equivalent to a 40 ns duty cycle. And this is only to draw the
current frame on the screen. What about changes to the actual screen?

The DAC must be able to convert digital data at a rate of at least 25MHz to
supply an industry standard VGA screen with data. This is a lot faster than many
DACs operate. Fortunately there are special DACs for this purpose, called Video
DACs.

Total Vertical Image Size
Ve

rtic
al

Sy
nc

Ve
rtic

al
Ga

te
De

lay

Horizontal Gate
Horizontal Horizontal

Sync Gate Delay

Total Horizontal Length

Ve
rtic

al
Ga

te
Ve

rtic
al

Le
ng

th

Total Horizontal Image Size

Visible Area

Pixel (0,0)

Figure 3.4. Resolution representation with borders and refresh/retrace times.

3.4.3 ROM

Depending on the type of FPGA chosen, a ROM (or EEPROM) might be necessary.
The ROM’s function is simply to reconfigure the FPGA when the power is switched
on. Without a ROM, it would be required to connect the FPGA to the computer

3.4 Hardware prerequisites 21

with source BIT-file for reconfiguring. Never, except in an early prototype is this
an option.

3.4.4 Other

Since there will be a DAC present in the system that require an analog ground,
it is very important to have proper decoupling. Digital circuits typically caused
by in the systems, interference signals can cause strange effects on the screen such
as flickering and uneven colors. Consequently, some capacitors at different sizes is
essential to the system. To improve even more analog ground shielding, a Ferrite
bead. Most DACs need reference voltage levels as well.

22 FPGA-based design

Chapter 4

Rendering pipeline design

This chapter documents the design of a rendering pipeline for FPGA implemen-
tation. The design work was not done with any specific FPGA vendor or type in
mind. Instead a more general approach was used to separate design and the even-
tual implementation. Two 3D pipelines are suggested. One, fully capable, high-end
version and one minimal resource focused. The latter is called the minimal pipeline
and is used as the basis for an implementation in chapter five.

Figure 4.1. System overview

4.1 The system overview

The graphics system could be seen as a gigantic state machine. It does not neces-
sarily require interaction with control units outside the system when started. Such

23

24 Rendering pipeline design

interaction take place when the state of the graphic system has to change, in a way
not previously specified.

Figure 4.1 details a high level overview of the proposed graphics system. There
are two buses in the system. The external handles communication between the
graphic system and other parts within the FPGA. The internal bus is used for the
internal data flow of the system. The main reason for this is that the internal bus
is bound to be very busy with just providing data for the DACs. This process must
not be interrupted as any lack of data for the DACs will at least result in flicker
on the screen which can be considered as a failure of the graphics system. Note as
well that the buses are assumed to be of crossbar switch type. To understand what

Figure 4.2. A regular type bus

a crossbar switch type bus is, consider an example system with three masters and
three slaves. With an ordinary type of bus (sometimes referred to as a resource
share bus, see figure 4.2), if master A acquires the bus for communication with
slave B, then if any other of the two masters require the bus for communication
with any other slave, the masters have to wait.

With a crossbar switch type bus, see figure 4.3, master B and master C can still
acquires the bus for communication with any of slave A or slave C. Resource share
bus is similar to a traditional, circuit board, hardware bus between for example a
processor chip and a memory chip. A crossbar switch type bus is more of a data
router. It requires some extra routing resources.

Figure 4.3. A crossbar switch type bus

4.1 The system overview 25

4.1.1 VGA

This block’s task is to supply the DACs with correct color data, blank signals and
horizontal and vertical retrace signals. This will require a pixel clock at frequencies
in the order of tens of megahertz, as discussed in section 3.4.2. Note that this
frequency is the absolute minimum, for the system clock of the whole FPGA. The
VGA block accesses the memory and reads the color data from it.

4.1.2 MEMORY

As seen in the figure 4.1 and as stated in section 3.4.2, external memory is required.
The memory containing the current frame is bound to be rather busy. A fast
SDRAM today can have access cycles of around 20 ns. Each read is bound to be
accompanied with some overhead. The memory is not active during the blanking
period, but nevertheless the bottle neck potential is obvious already at this stage.
The solution is straight forward. A second memory is added. While the first
memory is used to supply data for the pixels on screen, the next frame is built up
in the second memory. Another advantage of this scheme is that double buffering is
achieved for free. Double buffer is a common term in computer graphics and means
that nothing is drawn on the frame while it is being displayed as this might induce
flicker. Instead, drawing takes place on a secondary memory space, and when a
new frame is to be displayed the VGA block switches memory to read from. Note
that no actual copy of data is done between the buffers, the data is simply read
from alternating places. The different frames are often referred to as the primary
buffer and the secondary or double buffer.

A third memory is added to the cycle, and thereby improving it to a triple
buffer. The reason is that, to clear the memory with a predefined background
color or image is a rather time consuming operation. As said earlier over 600kB
has to be written for a full frame, and before each buffer is used for drawing, it’s
important of course that it does not already from the beginning contain the colors
of a previous frame. By using three memory capsules we have assured that the
drawing mechanisms will have full access to frame memory during a whole frame.

4.1.3 GPU

This block, has several responsibilities. First of all it handles communication,
through the external bus, with other parts of the FPGA, or even outside of it.
This might for instance be a sophisticated processor IP-core. A user of the graphic
system can then use a high level language and compiler to write software to interact
with the graphics system. The GPU also acts as a general control unit for the
system. It configures the function of the VGA unit. Another task is to start a
memory frame data write for clearing with background data. Yet another is to set
the control registers, either as a result of commands from outside of the graphics
system or as a result of some special event.

26 Rendering pipeline design

4.1.4 3D PIPELINE

While the VGA block handles the supply of data to the screen, the 3D pipeline
builds the data in memory in the first place. This perhaps makes it the heart of
the graphics system. A special section (4.2) is devoted to its design.

4.1.5 CONTROL REGISTERS

This block is what controls the function of the pipeline. An example register is the
projection matrix used for screen projection. Functions also include to turn on and
off each different part of the 3D pipeline.

4.2 The 3D pipeline

The 3D pipeline builds the raster data in memory, perhaps making it the heart
of the graphics system. As said in section 1.1, performance is achieved mainly by
identifying and utilizing parallelism. This in turn is achieved mainly by increasing
the size of the design. Many of the blocks of the pipeline are bound by this prin-
ciple. The more hardware resources allocated, the better the performance. The
FPGA available to a designer often has a fixed size. Therefore two designs of the
3D pipeline are presented below. A high-end pipeline, which includes all parts
necessary for a high performance graphics system. The minimal pipeline on the
other hand contains only the blocks the are mandatory for a rendering process.

Figures 4.4 and 4.5 show the high level organizations of the pipelines. In the
figures, each white block signifies a part (or block) of the respective pipeline. Each
block retrieves data from the previous block and transfer data to the next. The
actual transfer is done using dual port FIFO buffers, each optimized for the specific
communication between the blocks. The FIFO buffers are asynchronous, meaning
that each block can in effect run at its own clock frequency. While this potentially
increases the complexity of the design, it can be necessary and as well performance
increasing. By allowing bottle neck parts of the pipeline to run at a higher clock
frequency the performance of the whole system is increased.

The names of the blocks in figures 4.4 and 4.5 refer to the different functions
as explained in 2.2. Although each block has some specific function associated
with it, the slowest of them will inherently limit the performance of the whole
pipeline. One of the big advantages of design using FPGAs and HDLs is that
during design, simulation will reveal which part is the bottle neck of the pipeline.
During implementation, the designer can then apply more design resources to the
specific block thereby improving performance. Applying more resources generally
means increasing the size of the block, exploiting parallelism.

4.2.1 General blocks

Below follows a short description of each part of the pipeline.

4.2 The 3D pipeline 27

Primitive reader

Vertex FIFO

Tesselator

Vertex FIFO

Viewport Transformation

Primitive Drawer

Vertex FIFO

Primitive FIFO

Vertex shader

Texturizer Pixel shader

Horiz. Line FIFO

Internal Bus

Memory writer

Figure 4.4. High-end 3D Pipeline implementation

Vertex FIFO This FIFO holds information about the world on a vertex level.
Each vertex is a structure of four floating point coordinates, color value and how
the vertexes are connected with other vertexes to form primitives. Any other infor-
mation associated with a vertex can easily be appended here to add functionality
to the pipeline. A good example is for the high-end pipeline: what programs are
run for the vertex by the vertex shader and pixel shader respectively. Example
structure bit sizes are given in table 4.1. Bit size 72 for the minimal pipeline is

28 Rendering pipeline design

Vertex Reader

Vertex FIFO

Viewport Transformation

Primitive Drawer

Vertex FIFO

Primitive FIFO

Colorizer

Horiz. Line FIFO

Internal Bus

Memory Writer

Figure 4.5. Minimal 3D Pipeline implementation

selected to make each entry optimally fit in a Xilinx BlockRam.

Primitive FIFO A storage FIFO buffer for storing 2D-primitives ready to be
drawn onto the frame buffer. The primitives supported are normally triangles, lines
and points.

Horizontal line FIFO In this FIFO buffer, the primitives have been converted
into horizontal line segments and they are stored here until finally being burst-
written to the memory.

4.2 The 3D pipeline 29

Field High-end Minimal

Coordinates 4*32 4*13
Color 32 16
Identification 16 4
Pixel Shader 8 0
Vertex Shader 8 0
Total bits 192 72

Table 4.1. Vertex FIFO structure example sizes

Viewport transformation Mainly contains the Matrix-vector multiplication
blocks. Is responsible for making the objects appear where they should in front of
where the camera is in the virtual world.

Memory writer This is the last block of the pipeline and burst-writes horizontal
lines into the active frame buffer.

4.2.2 High-end pipeline

Primitive reader This block reads the primitives of the supported primitive
types. This can be triangles and lines but also more complex primitives like poly-
gons, squares or circles. The primitives are stored on vertex basis, and they are
coupled/identified together using the identification bits.

Tesselator This block works on the primitives of the supported primitive types
(which can be triangles and lines or more complex primitives like polygons, squares
or circles). These complex primitives are converted into the basic primitives by the
tesselator. Basic primitives are normally triangles, lines and dots.

Vertex and Pixel shaders Extra processing power to the pipeline is added
with the vertex and pixel processors. See section 2.3 for more information.

Texturizer A block that computes various extra functionality that is supported
by the pipeline. See section 2.2.2 for more information. The final pixel color value
that is written in the frame buffer is determined here.

4.2.3 Minimal pipeline

Vertex reader This block reads vertexes directly from memory, thereby assum-
ing that the primitives already have been tesselated into basic primitives. The
vertexes are written to the area where they are read by the vertex reader by the
GPU.

30 Rendering pipeline design

Colorizer A simplified texturizer (see above) that merely computes the color of
the pixels associated with the active vertexes.

Chapter 5

Implementation

This chapter documents an attempt to implement the minimal graphics system
discussed in chapter four. By implementing the minimal pipeline first, it can then
gradually be expanded toward the full pipeline. It is a prototype and the imple-
mentation phase was done under a very narrow time budget. As a result a number
of different design simplifying decisions had to be taken. The documentation below
tries to outline the work done without going too deep into detail.

5.1 General design decisions and simplifications

5.1.1 Hardware

The hardware available for the implementation is the Memec Development board.
The Virtex-II FPGA provides plenty of fast, customizable and flexible resources.
The FPGA and the ROM are on the development board. A P160 prototype board
is also available for use. The P160 can ideally be used to connect the DAC to the
development board. The P160 will however not have the space to fit extra ram
when used for the DAC. The LVDS connectors on the board will not be used and
can be used to connect extra ram. A separate circuit board is required for this,
preferably a printed one. As a result of the sparse amount of time available to the
implementation phase, the decision was made not to include the extra ram in the
first implementation. The FPGA (see section 3.2.1) includes a lot of memory but
it is still not enough to be used for raw data storage. Instead the block rams will
be used as FIFOs and other temporary storage within the actual design. Only the
on-board DDR-memory will be used to store the frame data. While this severely
limits the performance of the graphics system, it is also relatively easy to add later,
when the basic prototype is functioning.

The DACs available for use is the 30MHz version of ADV7120, meaning the
pixel clock has a maximum of 30MHz. Since the resolution 640*480@60Hz already
requires a pixel clock of 25Mhz, this resolution will be the highest available. In
fact, the decision is taken that in the first implementation the resolution is fixed to

31

32 Implementation

640*480@60Hz with a color depth of 16-bits. Although this limit comes from the
speed of the DACs, it does not necessarily impose a further limit on the performance
of the system. With the previous decision to use only the on-board DDR-memory,
higher resolutions would require too much bandwidth of the memory’s capacity for
just the VGA-part. There would be almost no bandwidth left for the 3D-pipeline.

The implementation will use both oscillators available on the development
board. The 24 MHz oscillator will be used as pixel clock, as the fixed resolu-
tion requires exactly this frequency if no borders (or margins) on the CRT display
are used. The 100 MHz oscillator will be used as system clock. All parts of the
implementation will be designed to be able to run at 100 MHz. As the Virtex-II
FPGA available is of speed grade -4 (the slowest one) this demand might prove
difficult to meet.

Design decisions summary

� No extra RAM implemented, use only the on-board DDR-memory.

� BlockRam used for internal temporary storage, program memory for proces-
sor IP-cores and FIFOs etc.

� Fixed Resolution of 640*480@60Hz, 16-bit color

� Use the ADV7120, 30MHz version, mounted on a P160.

� 100Mhz system clock, 24 MHz pixel clock

5.1.2 FPGA Design decision

There are two main design options: base the design on Xilinx IP-cores, i.e., a mix of
free and commercial IP-cores, or base the design on OpenCores IP-cores. By using
Xilinx IP-cores, one can expect a more probable success with the implementation
of the system. By using the OpenCores IP-cores the risk of using faulty, or just IP-
cores with bugs, is considerably higher. On the other hand, should the OpenCores
IP-cores work really well the system will remain non-commercial. As one of the
goals of the project is to evaluate IP-cores, using the OpenCores family of IP-cores
is a sound decision even though the risk is higher. The desicion is hence made to
work with OpenCores and the Wishbone interconnection style. This means that
the Xilinx IP-cores will only be used to complement the OpenCores IP-cores.

� Use the OpenCores family of IP-cores

� Use Wishbone to interconnect IP-cores

� Complement with Xilinx IP-cores when required

5.2 HDL Implementation 33

5.2 HDL Implementation

5.2.1 Bus Master

Introduction

The bus master is not depicted in figure 4.1. Its function is to control the traffic
on the internal Wishbone bus. OpenCores presently hosts three different IP-cores
with this ability. All three are interesting for the implementation.

The first one is the CONBUS IP-core. It is a straightforward Verilog description
and it is clear and easy to modify. Sadly the IP-core does not include any support
for Wishbone Rev B3 signals. As this revision includes the tag-signals to support
transfer modes such as linear incremental burst and such, this IP-core can only be
used after improvement or either a severe performance penalty.

The next IP-core is the Interconnect Matrix by Rudolf Usselmann, CONMAX.
Main features are 1,2 or 4 priority levels and up to 8/16 masters/slaves. The IP-
core is well written and is very well documented although it seems to focus on
functionality rather than speed. Sadly there is no Wishbone Rev B3 Support.

The one IP-core that remains and that actually do support the Wishbone Rev
B3 signals is the Wishbone builder IP-core. The configuration of the Wishbone
arbiter is typed into a define file. The syntax of this file is described in the docu-
mentation. The generator is a Perl script that outputs HDL code generated from
the contents of the define file. Its even possible to use a GUI for tailoring the
arbiter. Independently of the GUI a define file is always generated.

Implementation

There are a lot of parameters to set in the define file, allowing the user to choose how
the bus master is implemented. Many signals are optional (allowing reduction of for
example multiplexer sizes), the user can choose to use multiplexers, a simple and-
or architecture or tri-state gates to implement the switching. There are multiple
arbitration options to choose from, round-robin for example. The bus can be
implemented as shared bus or crossbar switch.

Problems and notes

When using the IP-core it does not take a long time to run into problems. On the
OpenCore website the IP-core is marked as done but the results of the Perl script
reveal something else. The script was not tested for all configurations (i.e. define
files) but when set to the configuration needed in the graphic system the Perl script
generated unusable code. Having identified the obvious errors of having decimal
numbers (for example 11.98776) as port sizes in VHDL these were corrected in hope
that the error was only a minor bug. However, after having tried to use the IP-core
successfully for over a week, it was finally decided to remove it from the system.
Since the graphic system needed a fairly simply arbitration method, a completely
new IP-core would be designed to do the bus mastering.

34 Implementation

BusCop Introduction

The new IP-core was given the name BusCop. It was designed from and imple-
mented from scratch by the author because no functioning IP-core that satisfied
the requirements where found. In short, the basic requirements were:

� Support Wishbone Rev. B3 signals

� Allow an external bus arbitration override to ease debugging. This allows
the designer to lock bus grant to a master/slave combination, bypassing the
arbitration logic.

� Scalable. It must be relatively easy and quick to add or remove masters/slaves.

� Arbitration must be conducted by a separate block so it easily can be im-
proved or customized or even complemented with other arbitration units for
different arbitration schemes.

BusCop Implementation

The implementation, in VHDL, is built in HDL designer but is centered around
a package header file where the number of masters and slaves to be serviced is
entered as constants. Should the number of masters/slaves that are connected to
the system change, they can be added to the system graphically. By changing
the two constants and updating a component, the necessary ports appear and
can be connect. All Wishbone signals are bundled together to reduce code size,
readability and ease development. The separate arbitration block simple prioritize
between different masters (the VGA block has the highest priority) in the system
but this can be expanded at a later point. The external bus arbitration is fully
implemented.

Problems and notes

During the integration test (see 6.2), the arbitration was occasionally controlled
by the DIP switches on the development board. This was proved really useful for
debugging purposes.

5.2.2 DDR memory interface

Introduction

The DDR SDRAM Controller IP-core of OpenCores.org has been designed for use
in XILINX Virtex II FPGAs and is easily adapted to different DDR SDRAM de-
vices. It is written by Markus Lemke. On the contrary to most IP-cores originating
from OpenCores, the DDR SDRAM Controller IP-core does not have a Wishbone
interface. Some key features include:

� up to 100 MHz system clock frequency in -4 speed grade

5.2 HDL Implementation 35

� CL = 2.0

� Automatic, configurable Auto Refresh

� Automatic precharge/activate when changing ROW/BANK

Implementation

The IP-core uses a rather neat trick to hide the DDR-standard signals with clocking
on negative edges from rest of the system. The IP-core uses a burst length of 2, and
then presents(or modifies) the data as a 32-bit data word. The IP-cores interface
has just two simple commands, read and write. By using two Xilinx Virtex-II
DCMs, the IP-core generates the clocks for the DDR SDRAM device. The phase
shift of DCM 0 is adjusted, depending an board delays. The data mask signals are
not used at all, meaning that there is no way to modify say less than all of the 32
bits. Since a pixel is 16 bits, there is no way to modify less then two pixels at the
time. To change the IP-core to use the data mask signals would remedy this.

Problems and notes

The DDR SDRAM Controller IP-core has been designed for use in Xilinx Vir-
tex FPGAs but not specifically for the Toshiba DDR memory. Hence the tim-
ing constants in the ddr sdr conf pkg.vhd file has to be modified to suit the timing
parameters of the Toshiba memory. Carefully studying the data sheet of the mem-
ory gives the necessary data, the most critical one perhaps being tRC, Active to
Pre-charge delay. While the simple interface shields the DDR-signals from the rest
of the system, it also makes it impossible to use dynamic burst lengths. With image
frame data, often huge amounts of data are read in long bursts as they are located
linearly in the memory. The lack of burst control will limit the graphic systems
performance. The design decision was made to have a Wishbone type system bus.
To use the IP-core with the system bus a bridge of some sort is necessary. While
it is very likely that such a bridge will become available on the OpenCores website
within a year or so, it is not at the time of writing and as a result a bridge was
designed. A better name for the specific bridge developed for this implementation
is perhaps interface, because the interface is not a full bridge. Instead, it was de-
veloped to expand on the concept of what is needed for the graphic system and to
optimize this. In this way the interface is not a strict Wishbone-validated interface,
but close to.

5.2.3 VGA-block

Introduction

The OpenCores VGA/LCD ControllerIP-core provides VGA capabilities for em-
bedded systems and is written by Richard Herveille. It supports CRT with user
programmable resolutions and video timings. The video memory is suitably located

36 Implementation

outside the primary IP-core. The horizontal, vertical, and composite synchroniza-
tion polarization levels, as well as the blanking polarization level are programmable
by software. There is support for a maximum of two Hardware cursors.

Implementation

A Wishbone Slave interface manages all accesses to user readable/writable reg-
isters. The registers define the operation of the IP-core. A Wishbone Master
interface manages all accesses to the external memory. It consists of a number
of interacting state machines. The color processor and the cursor processor issue
requests to the Wishbone Master. The Wishbone Master interface then generates
the memory addresses for the image and the cursors. The dual-clocked Line FIFO
ensures a continuous data stream toward the CRT display and ensures a correct
transformation from the Wishbone clock domain to, i.e., the system clock, and the
pixel clock domain. The Color Processor translates the received pixel data to RGB
color information.

The cursor buffers are 512x32 bit single clock synchronous static memories.
Each buffer contains a copy of the current cursor pattern. Finally, the Color Lookup
Table (or CLUT) is a 512x24 bit single clock synchronous static random access
memory divided into two separate CLUTs of 256x24 bit each. Each color lookup
table contains a 24-bit RGB value for each entry. The output from the color lookup
table is the RGB data for the current pixel.

Problems and notes

While the IP-core is in overall very well written and well documented, it contains
more functionality than what is necessary for the graphic system. It is also written
in a very general way, supporting several color depths and resolution etc. There
are also problems to use the IP-core in the Virtex-II FPGA with speed grade -4 at
100 MHz. One of the advantages of using OpenCores is obviously that the source
code is available. To remedy the problems, the IP-core has been used as a starting
point for rather big changes and optimizations resulting in a much smaller and
specialized IP-core.

Important changes

� The support for multiple resolutions has been limited. The IP-core used 32-
bit registers for storing the current x and y positions on the frame. The worst
case scenario thus gives a ripple carry addition of 64-bits. By limiting each
register to 10 bits(i.e. only these bits are used), and adding a wait state the
potential critical path was eliminated. 10 bits allow a maximum resolution
of 1024 * 1024 pixels.

� The support for multiple color depths has been removed. In both the slave
and the master interfaces and as well in the color processor, each color depth
case had to handled separately with extra logic and multiplexers. The color
processor, when synthesized with Precision RTL, contained a nasty bug where

5.2 HDL Implementation 37

signals bundles were inverted ,i.e., [15:0] becomes [0:15]. Some time was spent
to try to figure out how this could happen, but since the part with the bug
could be removed when removing color depth support, the problem remained
unsolved.

� The slave interface part of the IP-core contains all the control registers. They
have been modified to reset to the 640*480 @ 60 Hz resolution and use a color
depth of 16 bits. The slave can still be accessed and thus allowing changes
to these values, but the previously mandatory 10 or more Wishbone writes
to set up the system through the slave are now optional.

� Hardware cursor functionality was removed. The use of such cursors, might
be interesting in an expanded version of the system. Its is likely that support
for a lot more cursors are added then in a more complete sprite functionality.

5.2.4 GPU

The block is implemented with a CPU IP-core and complemented with a special
memory clear unit. Depending on the chosen CPU IP-core a Wishbone interface
might be needed.

GPU

CPU

MemClear

W
ishbone
W

ishboneExternal Bus Internal Bus

Figure 5.1. GPU implementation overview

Introduction

This block handles communication, through the external bus, with the other parts
of the FPGA. The block also acts as a control unit for the system, starting the
vga-block’s cycles of memory reads for each frame and the memory frame data

38 Implementation

write for clearing with background data. The block could be seen more as a state-
machine than a devoted CPU running crucial code. Hence there is not a critical
speed requirement as such in terms of instructions per second.

Implementation

There were three options available to implement the CPU:

� Use a CPU IP-core from OpenCores. There are numerous CPU IP-cores at
OpenCores, but most likely at varying quality.

� Use a commercial IP-core such as Xilinx Microblaze.
Although this options seems very interesting at first there are complications.
The version of the IP-core available to the department at the time of writing
it is not the latest version. The MicroBlaze does not use Wishbone but OPB.
Using it would require a bus bridge

� Design a specialized CPU from scratch.
This is the most desirable option and also the most likely one in a late version
of the graphic system. It allows complete customization to suit the system.
The extra time this would require will most likely exceed the time available
to build this early prototype implementation.

For this prototype implementation, option number one is chosen, in hope to
save precious project time. OpenCores hosts numerous CPU cores. About half of
them feature a Wishbone interface. For this implementation, the three primary
requirements are the ability to do 32-bit Wishbone reads/writes and that the IP-
core is small and fast. None of the OpenCores CPU IP-cores meet all of these
requirements. The only IP-cores even close to run at high clock speeds such as 100
MHz, are the really small 8-bit ones. Hence, the decision was taken to prioritize
clock speed and size when choosing a 8 bit CPU IP-core. By adding some extra
registers outside of the CPU IP-core a 32-bit Wishbone write can be accomplished
even though the data bus for the 8-bit CPU IP-cores are only 8-bit. There are a
number of different 8-bit CPU IP-cores available. Perhaps the most interesting one
at first sight is the Wishbone Z80 IP-core.

Z80

The Wishbone Z80 from OpenCores is a remake of the classic Zilog Z-80 CPU. It is
boosted with a Wishbone interface to enhance interconnectability and portability.
The IP-cores was designed to operate efficiently with internal static RAM.

Thus, a two stage pipeline is implemented to allow instruction execution
at the access rate of a 32 kbyte RAM. This could be well over 300 Mhz.
depending on implementation technology.

Sadly, when synthesized with Precision RTL for a Virtex-II, the IP-core does not
come close to that clock speed. Even 100 MHz wasn’t reached, meaning either
alteration of the IP-core or using multiple clock domains would be necessary.

5.2 HDL Implementation 39

MiniRISC

The OpenCores Mini-RISC CPU IP-core is mostly compatible with the PIC 16C57
from Microchip. It was written by Rudolf Usselmann, who also wrote the CON-
MAX IP-core. The design claims to be fully software compatible with the Microchip
Implementation of the PIC 16C57, except for some minor extensions. While the
IP-core is very well written, it does not have a Wishbone interface. It will not run
at 100 MHz as well but probably not much lower.

� A PIC compatible Microcontroller that runs a lot faster

� Separate (External to the IP-core) Program Memory

� Options to extend the IP-core

PicoBlaze

Using the Xilinx macro-processor PicoBlaze would seem to be a mix of all three
options in section 5.2.4. Actually, even though it is designed by Xilinx it is a free
to use IP-core and hence not commercial in this way. The advantage of using
PicoBlaze is that it is very well documented and as well it has a company to back
on it’s performance. Furthermore it seems to be able to run at at clock speed of
100MHz yielding 50 MIPS! It is 8-bit and the instruction set is very limited. In
fact, one of its more common uses is as a substitute for big state machines. This is
possible mainly because the whole IP-core uses only 55 slices of space in a Virtex-II!
Program memory is single BlockRAM.

The drawback is the obvious lack of a Wishbone interface. The IP-core has two
8-bit ports (where one is a kind of address port for the other) that must be used
to build the full 32-bit Wishbone interface.

Problems and notes

In general, the implementation of the GPU block was successful and everything
worked fine at the simulation level. However, when synthesizing the system strange
problems surfaced. The whole system started to behave very strangely when the
Picoblaze was used. Errors arose in parts of the design that the Picoblaze was
not even connected to. The problem seem to lie within the process of synthesizing
Picoblaze with Precision. For example, when doing a back-annotate, the primitive
HDL descriptions were invalid, implying that Precision was not able to interpret
the Picoblaze macro code correctly. At least not the memory contents. Without
a functioning back-annotate, and a perfectly working RTL simulation, debugging
was really difficult. Especially as the problems seemed very random. Later it
was discovered that stability seemed to increase, the bigger the margin toward the
estimated maximum clock frequency given by Precision. Nevertheless, the problem
was not all together solved. As the debugging was so difficult it is sometime easier
to just walk around the problem. During the debugging phase, a block to let

40 Implementation

the CPU work at its own clock frequency was added. Hence the MiniRisc IP-
core could be implemented as well without adding any new blocks. MPLab is a
free development IDE from MicroLabs. Using the IDE, its possible to write and
simulate assembly language for different types of PICs, including the 16C47 PIC.
There are also free C compilers available, making the MiniRISC very nice to use.
It was used successfully and replaced the Picoblaze. The direct advantage of using
the MiniRISC over the Picoblaze is that a Xilinx FPGA is not required. The
MiniRISC executes instructions with a varying number of clock cycles available.
On the whole it is slightly slower then the Picoblaze.

5.2.5 GPU - Wishbone interface

Introduction

The Wishbone interface assumes the 8-bit processor has two 8-bit ports. One is
used as an address port and one as data port. The processor also needs a write
strobe signal and a read strobe signal. The interface updates the register the
address port points to with the value on the data port on a rising edge on write
strobe. The actual Wishbone cycle is starting by writing to the Control-Register.
In table 5.1 each 8-bit register is associated with an address so that the 8-bit CPU
can build the complete 32-bit registers.

With this method it might take 20 CPU instructions to set up the Wishbone
register, but as soon as it is started the registers are shifted and saved so the
processor can start updating the registers for the next read. Given that the CPU’s
sole responsibility is to do wishbone cycles, combined with the fact that a Wishbone
burst cycle is often over 20 clock cycles, so there should not be a lot of performance
decrease by using the small 8-bit CPU.

Address port Target 8-bit Register Register use in Wishbone cycle

x00 Data0 WB-DataRegBits 0-7
x01 Data1 WB-DataRegBits 8-15
x02 Data2 WB-DataRegBits 16-23
x03 Data3 WB-DataRegBits 24-31
x04 Addr0 WB-AddrRegBits 0-7
x05 Addr1 WB-AddrRegBits 8-15
x06 Addr2 WB-AddrRegBits 16-23
x07 Addr3 WB-AddrRegBits 24-31
x08 Cntrl Control-Register
x09-xFF N/A Not used

Table 5.1. Wishbone interface registers

5.2 HDL Implementation 41

Implementation

Figure 5.2 shows a principle overview of the block.

Data 0
Data 1
Data 2
Data 3

Addr 0
Addr 1
Addr 2
Addr 3

WB 32 bit Data

WB 32 bit Addr

Control

Output Wishbone
Signals8-bit CPU

Figure 5.2. Wishbone 8-bit to 32-bit interface overview

Problems and notes

No problems occurred during implementation.

5.2.6 GPU - MemClear

Introduction

The memory clear unit’s responsibility is fairly self explanatory. It clears a frame
with background data. This is done using many memory write bursts. The memory
is assumed to be stored in order and not split up.

Implementation

The target addresses of the memory bursts are increased linearly. Hence, the
block can be implemented around two relatively big counters. It keeps track of
the starting address and increment it with the burst length. In effect, the counter
counts the number of bursts done and when the whole memory clear action is
finished.

42 Implementation

The second counter works more closely with memory and the Wishbone in-
terface. It increments the address for each write within a burst and receives the
starting address for each respective burst from the first counter.

Problems and notes

No problems occurred during implementation.

5.2.7 3D Pipeline

Introduction

This block is the only block in the graphics system that was not adequately imple-
mented. The reason was lack of project time which is unfortunate. On the other
hand future work on the system can focus on implementing the minimal or the full
3D-pipeline as specified in chapter 4. The integration test (see section 6.2) shows
that the rest of the system can be used as a framework for a 3D-pipeline. It can
even be used with most kinds of common image rendering techniques.

The development and the design of the system was not done one block at a
time though, meaning that some experimental implementation of the 3D-pipeline
was started. For example, the Matrix multiplier which is the main component of
the Viewport transformation in the minimal pipeline, is detailed below.

3D pipeline - Matrix multiplier

Introduction

In section 2.1 it was said that a vector based mathematical description of the
objects in a scene is very effective. The object is normally defined with its vectors
and local basis. When the 3D pipeline translates, scales and rotates the objects
to its various different forms the transformation can be done using matrix math.
This block performs this multiplication.

Implementation

In the 3D pipeline each vertex, represented as a vector composed of four floating
point numbers, is multiplied by a standard viewing matrix. This matrix translates,
scales and rotates the camera to achieve the sensation of a moving camera. Moving
the whole world instead of moving the camera to change the way the camera
views the world might seem a bit odd, but mathematically its just another way
of representing the phenomena. By updating the viewing matrix once before each
frame is rendered, the effect of a moving camera or viewer can be achieved.

As said, each vector is represented by four floating point numbers. The vector
has to be multiplied by the viewing matrix, which in term is represented by 16
(4 by 4) floating point numbers. The result is a new vector which represents the
old vector translated, scaled and rotated. The implementation given here is based
around some heavy pipelining. A matrix multiplication has to be seen as a rather

5.2 HDL Implementation 43

complex operation and if it was to be done all at once in one or two clock cycles,
the resource requirements would be huge. The numbers has to be represented as
floating point since the size numbers can vary enormously. A 16-bit floating point
number is perhaps the smallest number of bits that can be used. Smaller sizes
reduce the resolution of the floating point number too much for a satisfying result.
With 16 matrix values, 16 bits each, that equals 256 bits of data. Size soon becomes
a problem. The work around lies with pipelining and resource sharing. The actual
calculation can be seen as 16 multiplications and 12 additions (or 16 if seen as an
addition with 0).


m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33




x
y
z
w

 =


xm00 + ym01 + zm02 + wm03

xm10 + ym11 + zm12 + wm13

xm20 + ym21 + zm22 + wm23

xm30 + ym31 + zm32 + wm33


To allow for the resource sharing and pipelining the matrix multiplication is

done in four steps. The resulting vector R with the four floating number regis-
ters r1...4 is assumed to be cleared, and then with each step one row is used to
accumulate the result in the registers. Figure 5.3 depicts the implementation.

m00

m10

m20

m30

m01

m11

m21

m31

m02

m12

m22

m32

m03

m13

m23

m33

3-stage
MUL

3-stage
ADD

x y z w

r1

r2

r3

r4

mi0 mi1 mi2 mi3

Figure 5.3. Pipeline and resource share implementation of the 4x4 matrix with 4x1
multiplier.

Problems and notes

By pipelining each floating point operation, finally an operational clock speed of
over 100 MHz could be reached. The two operations are done in three pipeline

44 Implementation

steps each and a new operation can be started each clock cycle. There are 16
multiplications and 12 addition to be done. Since there is only one multiplier at
least 16 cycles is required for the floating point operations. Each multiplication
result has a delay of three cycles and all of them has to be added to the result
register, which in turn has another three cycles delay. As as result, a full matrix
multiplication operation is 22 (16+3+3) clock cycles long. This is satisfying given
that it was successfully implemented at well over 100 MHz. 100 MHz / 22 is
around 4500000 vertex transformations per second. At 60Hz frame rate, 75000
vertexes can be processed for each frame. This will not be the limiting factor of
the performance of the pipeline. Very complex worlds can be achieved with as few
as 200-300 vertexes.

5.2.8 Circuit Board design

As stated previously, to connect the FPGA with the DACs (they are not on the
development board) and the DACs with the CRT screen, a P160 prototype module
was used. Figure 5.4 is taken from the ADV7120 data sheet[11]. It shows how
the ADV7120 should be connected to minimize noise. This is especially important
when having digital circuits on the same board. The circuit was built more or
less exactly as suggested by Analog Devices. No soldering was used when the first
integration test (see section 6.2) was done. Instead all connections were wired on,
leaving a rather messy look (see figure 6.1). The reason was of course that had
soldering been used, a new prototype board would be required to change the design,
should it become necessary. There is also the matter of heat from the soldering
process that might hurt the ADV7120 circuit. Nevertheless, the image on the CRT
was close to rock solid. Table 5.2 lists components used.

Component Description

C1 33mF Tantulum capacitor
C2 10mF Tantulum capacitor
C3, C4, C5, C6 0.1mF Ceramic Capacitor
L1, L2 Ferrite bead
R1, R2, R3 75 Ω 1% Metal Film resistor
Rset 560 Ω 1% Metal Film resistor
Z1 1.235V Voltage reference

Table 5.2. Blocks tested during the Integration test

5.2 HDL Implementation 45

ADV7120

R
E

V
. B

–1
0

–

P
C

 B
O

A
R

D
 L

A
Y

O
U

T
 C

O
N

S
ID

E
R

A
T

IO
N

S
T

he A
D

V
7120 is optim

ally designed for low
est noise perfor-

m
ance, both radiated and conducted noise. T

o com
plem

ent the
excellent noise perform

ance of the A
D

V
7120, it is im

perative
that great care be given to the P

C
 board layout. F

igure 8 show
s

a recom
m

ended connection diagram
 for the A

D
V

7120.

T
he layout should be optim

ized for low
est noise on the

A
D

V
7120 pow

er and ground lines. T
his can be achieved by

shielding the digital inputs and providing good decoupling. T
he

lead length betw
een groups of V

A
A and G

N
D

 pins should by
m

inim
ized so as to m

inim
ize inductive ringing.

G
rou

n
d P

lan
es

T
he A

D
V

7120 and associated analog circuitry, should have a
separate ground plane referred to as the analog ground plane.
T

his ground plane should connect to the regular P
C

B
 ground

plane at a single point through a ferrite bead, as illustrated in
F

igure 8. T
his bead should be located as close as possible

(w
ithin 3 inches) to the A

D
V

7120.

T
he analog ground plane should encom

pass all A
D

V
7120

ground pins, voltage reference circuitry, pow
er supply bypass

circuitry, the analog output traces and any output am
plifiers.

T
he regular P

C
B

 ground plane area should encom
pass all the

digital signal traces, excluding the ground pins, leading up to
the A

D
V

7120.

G
N

D

F
S

 A
D

JU
S

T

IO
R

IO
G

IO
B

G
R

O
U

N
D

A
D

V
7120

C
3

0.1µF
C

5
0.1µF
 Z

1 (A
D

589)

R
1

75Ω
R

2
75Ω

R
3

75Ω

C
1

33µF
C

2
10µF

C
O

M
P

C
6

0.1µF

A
N

A
L

O
G

 P
O

W
E

R
 P

L
A

N
E

V
A

A

V
R

E
F

L
2 (F

E
R

R
IT

E
 B

E
A

D
)

R
0

R
7

G
0

G
7

B
0

B
7

C
L

O
C

K

R
E

F
 W

H
IT

E

S
Y

N
C

B
L

A
N

K

R
G

B
V

ID
E

O
O

U
T

P
U

T

V
ID

E
O

D
A

TA
IN

P
U

T
S

V
ID

E
O

C

O
N

T
R

O
L

IN
P

U
T

S

A
N

A
L

O
G

 G
R

O
U

N
D

 P
L

A
N

E

C
4

0.1µF

R
S

E
T

560Ω

L
1 (F

E
R

R
IT

E
 B

E
A

D
)

+5V
 (V

C
C

)

IS
Y

N
C

S
E

T

C
O

M
P

O
N

E
N

TC
1

C
2

C
3, C

4, C
5, C

6
L

1, L
2

R
1, R

2, R
3

R
set

Z
1

S
E

T

D
E

S
C

R
IP

T
IO

N
33µF

 T
A

N
T

A
L

U
M

 C
A

P
A

C
IT

O
R

10µF
 T

A
N

T
A

L
U

M
 C

A
P

A
C

IT
O

R

0.1µF
 C

E
R

A
M

IC
 C

A
P

A
C

IT
O

R
F

E
R

R
IT

E
 B

E
A

D

75Ω
 1%

 M
E

T
A

L
 F

IL
M

 R
E

S
IS

T
O

R
560Ω

 1%
 M

E
T

A
L

 F
IL

M
 R

E
S

IS
T

O
R

1.235V
 V

O
L

T
A

G
E

 R
E

F
E

R
E

N
C

E

V
E

N
D

O
R

 P
A

R
T

 N
U

M
B

E
R

F
A

IR
-R

IT
E

 274300111 O
R

 M
U

R
A

T
A

 B
L

01/02/03

D
A

L
E

 C
M

F
-55C

D
A

L
E

 C
M

F
-55C

A
N

A
L

O
G

 D
E

V
IC

E
S

 A
D

589JH

Fig
u

re 8.
A

D
V

7120 T
yp

ical C
o

n
n

ectio
n

 D
iag

ram
 an

d
 C

o
m

p
o

n
en

t List

Figure 5.4. Overview of connections and discrete components around the ADV7120.

46 Implementation

Chapter 6

Testing and Analysis

Throughout the implementation phase a respectable amount of testing and calcu-
lation was done to ensure proper function and performance of the system. This
chapter documents the largest of the tests.

6.1 High-level MATLAB simulation

The purpose of this test was to ensure, at an early stage, whether or not some of
the IP-cores from OpenCores actually did function.

6.1.1 The test

The IP-cores are the expanded DDR-controller and the VGA-unit. Added to the
DDR-controller was now the customized Rev. B3 Wishbone-interface. The VGA-
unit could hence in theory read its bursts of video data from the DDR chip. The
principle of the test, in three steps, can be seen in table 6.1. The test unit is
implemented in VHDL, but is not to be synthesized in hardware. For example it
contains the functions that access a Jpeg from disk. After the simulation has been

Step Test unit(Simulation VHDL) VGA unit DDR controller

1. Converting Jpeg into Disabled Writing full frame
VHDL data of VHDL data(the Jpg)

2. Idle Disabled Idle
3. Converting output R,G and B Reading in memory Reading full frame of

data into MATLAB data R,G and B data

Table 6.1. High level memory function test

47

48 Testing and Analysis

run, a separate MATLAB script can read the R,G and B data and assemble a new
Jpeg image. Obviously, if the test was a success, the new Jpeg looks the same as
the Jpeg that was written to the memory in the first step. The test uses a VHDL
simulation model for the memory chip.

During phase 1, burst writes are tested to ensure the proper function of the
write part of the Wishbone-interface and the actual DDR-controller. During phase
3, burst reads are tested in a similar way, again to ensure the proper function of the
Wishbone-interface and the actual DDR-controller. Now, the data is also used by
the VGA-unit. The data, is stored in a FIFO temporarily inside the VGA-unit to
be used at the correct time when the actual pixel that the data represents is to be
displayed. The test hence rigidly tests the DDR-controller, the Wishbone-interface
and the VGA-unit.

6.1.2 Results

After some rather time consuming scripting, the test was possible to be executed.
On the SUN workstation that the test was run on, the simulation time in Model-
Sim for a full frame was just over 4 hrs. The test Jpeg (the classic Lenna bitmap)
appeared, making the test successful. At this relatively early point in the imple-
mentation it was reassuring to have a system level test verifying the design and the
function of some parts of the IP-core.

6.2 Integration test

6.2.1 Introduction

The largest test that was carried out in the project was called the integration test.
The reason for this is simply as its purpose was to integrate and employ as many
parts of the complete graphic system, thereby achieving a limited system. The
time budget, optimistic at first, was almost used up. Completely assembling the
system and actually connecting all the blocks in the FPGA was no small feat.
The compensation was to verify that what was done so far actually worked. To
enable further work on the project by other developers, the integration test was
mandatory.

6.2.2 The test

To do the test the hardware was assembled according to section 5.4, the CPU
block, the memory controller and the BusCop block were all more or less finished
and could be used in the test. The 3D pipeline was only designed in theory, so
two counters were developed into a very simple horizontal line drawer. In this
way, a very inactive 3D pipeline could be simulated. In various configurations,
and by using the push buttons and switches available on the FPGA various simple
horizontal line based digital images could be rendered on a VGA screen. What is
important to realize is that with each second, 60 frames were drawn on the screen.

6.2 Integration test 49

For each pixel on every frame, the correct color value in 16-bit format was read
from the DDR-memory. The system was thus very active indeed even though the
still image on the screen might fool an observer into something else. Table 6.2
lists the most important blocks and how rigorously they were tested during the
integration test. Column two very briefly summarize what was expected of the
block and column three gives an estimate of to what extent did the integration test
evaluate the features of the block. This is in relation to how much of them are
implemented. Thorough means the all functions were tested. Some means most
functions were tested but more testing is needed to employ all the capabilities of
the block. Blocks tested less than this are not included in table 6.2.

Part of system Functions tested Extent

BusCop Arbitration and crossbar switch, Thorough
both forced and priority mode.

DDR-core Normal and burstdata transfers. Thorough
Both reads and writes.

Wishbone DDR Normal and burst data transfers. Some
Both reads and writes

Mod. VGA-core Full operation at design Thorough
resolution/color depth. Act as master
on bus to read frame pixel data.Act
as slave on bus to receive commands.

8-bit CPU Execute instructions in dedicated Some
program memory (block ram)
High speed operation of the
wishbone interface.

CPU Wishbone interface Act as master on bus Some
to write to several blocks.

MemClear Act as master on bus Thorough
to write frame pixel data.

Table 6.2. Blocks tested during the Integration test

Similarly, the hardware listed in table 6.3 were used.

50 Testing and Analysis

Hardware Part Extent

The FPGA development board DDR-memory Thorough
JTAG Thorough
P160 prototype and socket Thorough
Oscillators Thorough
Voltage regulatiors Thorough

VGA-screen connection Thorough

ADV7120 DACs Thorough

Discrete components Thorough

Virtex-II BlockRams Thorough
DCMs Thorough

Table 6.3. Hardware tested during the Integration test

6.2.3 Results

A lot of time was spent assembling and conducting the test, but the results were
rewarding. Once the inevitable bugs were removed the systems worked as expected.
In a coarse way, most of the system had been tested to verify that high-speed
graphics is possible with FPGAs. As the system was set up, the memory was idle
for long periods each frame, ideal for some drawing to update the frame, achieving
high-color 60 frames per second graphics. The main test result in a designer’s point
of view was perhaps, it was time to start to implement a proper 3D-pipeline. In
figure 6.1 the system assembled during the implementation test can be seen.

6.2 Integration test 51

Figure 6.1. The ADV7210 on the P160 prototype board, with discrete components and
standard 15-pin connection to VGA-screen.

52 Testing and Analysis

Chapter 7

Conclusion

GPUs benefit from pipeline programmability. FPGAs provide a unique middle
way between software and hardware, as the hardware itself can be configured as
a processor where the software can run. One of the aims of this project was to
investigate how this can be used for graphic system design. After theoretical design
and an investigating implementation, the experience is that FPGAs can be used
rather effectively for graphic system design. The key to this lies with being able
to use the advantage of implementing in hardware were preferable over software,
but also since the graphic system’s performance is limited to the slowest link of the
chain, the capability to assign the FPGAs resources to where it is needed the most
is important. During the implementation phase of this project, this advantage was
used constantly to reach various performance goals.

Entwined with this aim was the purpose of implementing a simple graphics
system on one of the division’s development boards. An incomplete system was
implemented and the Memec development board with a Xilinx Virtex-II FPGA
was used. The actual implementation development was satisfying in terms of per-
formance and function, but unsatisfactory when it came to progress pace. The
inexperience of the author when it came to estimation of the implementation time
is the prime reason that the project does not include a complete, implemented and
functioning graphic system. Nevertheless conclusions regarding the development
board and the FPGA can be drawn. The Virtex-II version used meets the high
speed and resource demands to host a quite complex and able graphic system. As
said, the capability to assign the Virtex-II’s resources to where it was needed the
most was critical.

During the project, it was also found that synthesis tools from different vendors
other than that of the FPGA can impose problems. Generally, a frustrating part
of the problems that did occur could be blamed on the tools, meaning that the
developer was not really to blame. When these problems arise the developer is
hopelessly in the hands of the tools, which can be a rather discouraging experience.

Another objective of the project was to use and evaluate IP-cores in the de-
sign the graphic system. At a relatively early phase of the project, this purpose

53

54 Conclusion

was complemented with the more strict rationale of evaluating IP-cores from the
OpenCores Internet community. It was found that, even though the principle of
free IP-cores is very compelling, the fact that nobody guarantees the quality of the
IP-cores severely limits the IP-cores’ uses. This is perhaps the most certain and
important conclusion of the project. When using an IP-core from the Internet as
such the designer is taking a big risk since the function is by no means assured
by anybody. Thus the function can not be taken for granted. Some of the IP-
cores tried in this project were full of bugs or simply faulty, even though they were
marked as done. The Internet community of OpenCores deserves all the support
they can get though.

7.1 Future work

By continuing the work begun in this project done here a more complete graphic
system can most likely be achieved. The framework around the 3d-pipeline is truly
essential for the systems performance, and a lot of attention was put on this in
the project. The BusCop block is a very good starting point for an advanced bus
arbiter. The Wishbone burst accesses use the available memory effectively to push
performance possibilities high. By using the framework developed, a developer can
focus on the 3D pipeline block. Maybe even a master thesis project like this can
be based around the 3D pipeline.

By expanding the development board with a memory board (3 memory chips
or more) would improve the performance immensely, opening for much higher res-
olutions and deeper color-depth.

Some sort of interaction with the graphics system would increase its potential
use.

More work could be done to evolve some parts developed from scratch into full,
general IP-cores. These in term can be uploaded to the OpenCores community.
The BusCop arbiter and the wishbone interfaces for the DDR-controller and 8-bit
CPUs are primarily referred to.

Continued evaluation of open source IP-cores from OpenCores or any other
source is always feasible and can contribute a lot to the community. One must
never forget that a community can not evolve unless its members contribute.

The principle of open source hardware is still very new and not even close to
where the software equivalent is today in terms of use, availability, number of users
or just simply age. By enhancing the forum capabilities of the community, users
can document how they used the IP-core and how it function and, most import,
make other potential users aware of the IP-core’s quality. As the communities
grow, more quality IP-cores will appear. A pleased IP-core user is more likely to
contribute. With interest will hardware designers all over the world observe how
the community evolves, and the author is one of them.

Bibliography

[1] Randima Fernando and Mark J. Kilgard. The Cg Tutorial. Addison-Wesley,
2003.

[2] James C. Leiterman. Learn Vertex and Pixel Shader programming with DirectX
9. Wordware Publishing Inc., 2004.

[3] J.F. Wakerly. Microcomputer architecture and programming. John Wiley &
Sons, 1981.

[4] Stefan Sjöholm and Lennart Lindh. VHDL för konstruktion. Studentlitter-
atur,Lund, 1999.

[5] James R. Armstrong and Gail F. Gray. VHDL Design Representation and
Synthesis. Prentice-Hall Inc., 2000.

[6] The opencores internet community.
http://www.opencores.org, [DEC 2004].

[7] James T. Kajiya. The rendering equation. In Computer Graphics (SIGGRAPH
’86 Proceedings), volume 20, pages 143–150, August 1986.

[8] Edward Angel. Interactive Computer Graphics. Pearson Education, 2003.

[9] Virtex-ii microblaze development kit product brief.

[10] P160 prototype module user’s guide.
Version 1.0 February 2002.

[11] Datasheet, analog devices triple 8-bit dac adv7120.
http://www.analog.com/UploadedFiles/Data Sheets/173587347adv7120.pdf,
[DEC 2004].

[12] Vhdl & verilog compared & contrasted plus modeled example written in vhdl,
verilog and c.
http://www.bawankule.com/verilogcenter/verilogvhdl.html, [DEC
2004].

[13] Rochit Rajsuman. System-on-a-Chip: Design and Test. Artech House signal
processing library, 2000.

55

56 Conclusion

På svenska

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –
under en längre tid från publiceringsdatum under förutsättning att inga extra-
ordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ick-
ekommersiell forskning och för undervisning. Överföring av upphovsrätten vid
en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ
art.
Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den
omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna
sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i
sådant sammanhang som är kränkande för upphovsmannens litterära eller konst-
närliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se för-
lagets hemsidahttp://www.ep.liu.se/

In English

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time from the date of publication barring excep-
tional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for your own use and to
use it unchanged for any non-commercial research and educational purpose. Sub-
sequent transfers of copyright cannot revoke this permission. All other uses of
the document are conditional on the consent of the copyright owner. The pub-
lisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be men-
tioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity, please
refer to its WWW home page:http://www.ep.liu.se/

© Niklas Knutsson

	copyright_uppsats.pdf
	Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god...
	In English
	The publishers will keep this document online on the Internet - or its possible replacement - for...
	The online availability of the document implies a permanent permission for anyone to read, to dow...
	According to intellectual property law the author has the right to be mentioned when his/her work...
	For additional information about the Linköping University Electronic Press and its procedures for...

