
OpenShift 3 Technical Architecture
Clayton Coleman, Dan McPherson
Lead Engineers

Principles
The future of *aaS

Redefine the “Application”
● Networked components wired together

○ Not just a “web frontend” anymore
○ Service-oriented-Architectures / microservices are real
○ Make it easy to build, manage, deploy components
○ HTTP frontends are just one type of component

● Critical: relationships between components
○ If you can’t abstract the connection between components you

can’t evolve them independently

Immutable images as building blocks
● Image based deployment (Docker)

○ Create once, test everywhere
○ Build a single artifact containing the dependency chain
○ Need tools to manage the build process and security updates

● Declarative application descriptions
○ Record “intent” - this links to this, this should be deployed like

this, and let system converge to that intent

Decouple Dev and Ops
● Reduce complexity of application topology

○ Less need for complicated post-deploy setup

● Allow teams to share common stacks
○ Better migration from dev stacks to production stacks
○ Reduce vendor lock-in

● Ops and Devs can use same tools
○ OpenShift is an app, so are most organizational tools
○ Ensure patterns work cleanly for both

Decouple Dev and Ops (cont.)
● Templatize / blueprint everything

○ Ensure that organizations have clear configuration chains
○ Define common patterns for rolling out changes

● Easily provision new resources
○ Allow infrastructure teams to provision at scale

○ Subdivide resources for organizational teams with hard and soft

limits

Abstract Operational Complexity
● Networking

○ App deployers should see flat networks
○ Define private vs public, internal vs external, fast vs slow

● Storage
○ Most components need *simple* persistent storage
○ Ensure storage is not coupled to the host

● Health
○ Every component should expose health information

Multi-Level Security
● Ensure containers “contain”

○ SELinux, user namespaces, audit
○ Decompose the Docker daemon over time
○ Fine grained security controls on SSH access

● Allow easy integration with existing security tools
○ Kerberos, system wide security, improved scoping of access
○ More customization possible

● Allow application network isolation

System Architecture
The moving pieces

Kube

OpenShift APIs

Controllers

AuthenticationAuthorization

Quota

Routers Routers

Docker RegistryBuilds of images

Storage servers Log servers

Metrics collection Source code / CI

OpenShift osc (login/projects)

OpenShift Web Console

Deployment

Software Defined
Network

VM 1

OpenShift
Node

OpenShift Infrastructure View

VM 2

OpenShift
Node

OpenShift
Node

VM 3

OpenShift
Node

VM 4

OpenShift
Node

VM 5

OpenShift
Node

VM 6

Software Defined / Statically Allocated / Hybrid Networking

Local Storage

Nodes

VM 1

OpenShift
Node

OpenShift Infrastructure View

VM 2

OpenShift
Node

OpenShift
Node

VM 3

OpenShift
Node

VM 4

OpenShift
Node

VM 5

OpenShift
Node

VM 6

Software Defined / Statically Allocated / Hybrid Networking

Local Storage

Persistent Network
Storage

Nodes

What are the pieces?
● Docker

○ Container runtime and image distribution
○ Roll your own solutions for everything

● Kubernetes
○ Runtime and operational management of containers

● OpenShift
○ Lifecycle of applications - build, deploy, manage, promote
○ Manage tens to thousands of applications with teams

Docker Containers and Images
● Full access to the existing Docker ecosystem

○ Be able to use images from anywhere

● Operations and development share components
○ Customization still possible
○ Toolchains to support images

● Containers based on Linux Kernel tech
○ Continuing to work with upstream to improve security and

reliability

Kubernetes

● Cluster Container Management
○ The substrate for running containers at scale
○ Contains just runtime and operational tools for containers
○ Composable system - only enough to enable other use cases

● OpenShift adds:
○ Ability to build, manage, and deliver app descriptions at scale
○ Turning source code into new deployable components
○ Moving from dev -> QA -> production

Kubernetes - Components
● Masters (OS2: brokers)

○ API (apiserver) - records client intent, displays current state
○ Schedulers (scheduler) - allocates pods onto hosts
○ Controllers (*-controller) - changes system from client intent
○ State Storage - etcd, potentially others in future

● Nodes (hosts / minions)
○ Agent (kubelet) - manages containers on each host
○ Proxy (kube-proxy) - local service routing and load balancing

Kubernetes - Components
● Logging

○ common interface for moving data on and off nodes

● Events
○ communicate problems / changes back up to higher levels

● Node management
○ add, remove, and script host / addition removal
○ more control loops for health / problems

OpenShift - Components
● Microservice based architecture

○ All components run on top of Kubernetes and provide

additional services
○ Pieces are loosely coupled only core component is auth

● Offers an all-in-one mode for easy exploration
○ docker run --net=host --privileged -v /var/run/docker.sock:

/var/run/docker.sock openshift/origin start

○ Includes Kubernetes, etcd, OpenShift in single process

Image
Lifecycle

1 2Base Image (RHEL7)

Framework Image (PHP)

Security update

1 2

PHP Security
update

Application Image (app) 1 2
Code change

Layered build

3

Layered build

3

4

How updates happen

Managing image promotion

1 2Developer 1 3 4 5

1Developer 2 2 3

Team build

2Ready for testing 4

1 2 3 4 5

Deploy to production 4

<- Developer tags image for test

<- Tester/admin/op tags image for prod

<- Images are dev only, not used in prod

Image Lifecycle
● Image Registries

○ Places to store images so they can be accessed by Docker

○ Administrative tools for managing images at scale (quota,

pruning, retention)
○ Content tracking, provenance, scanning of image data

■ Red Hat Satellite

● Building images
○ Need to be able to build thousands of new images for security

updates

Image Lifecycle (cont.)
● Watching for changes to images

○ Allow teams and organizations to define “flows” for images
○ Trigger deployment automatically when an image is ready

● Testing images
○ Images need to be tested and validated in many environments
○ Much should be automated

● Promotion of images
○ Allow teams to combine process and flows

Network and Routing
● Allow containers to appear on the outside network

○ Declaratively expose a stable IP or port outside

○ Services with routable protocols (HTTP, TLS with SNI) can be

aggregated efficiently behind proxies (HAProxy, Apache, Nginx)

● Segregate container traffic internally
○ Isolated based on team or topology structure
○ Allow integration with complex SDN (advanced scenarios)

● Allow containers to be auto-scaled based on traffic

Storage
● Allow easy integration with network storage

○ Block, Object, Shared filesystem (with SELinux)
○ Allow easy allocation / deallocation for operators
○ Add a fourth type similar to OSE 2.x for low cost hosting

● Reduce complexity on failover for persistent data
○ Operators can easily evacuate hosts

○ Focus is on keeping operational complexity low both on setup

and runtime

Integrations with
● OpenStack

○ Similar to OSE 2.x - HEAT templates and autoscaling
○ Deeper keystone / ceilometer integration
○ Containerization integration w/ Docker and Nova - TBD

● Red Hat Atomic
○ RHEL distribution tuned for containers
○ Network and storage configurations

Concepts
OpenShift 3 Nouns

Pods and Containers
● Fundamental unit in the system

○ Pod is a group of related containers on the same system
○ Each container can be its own image with its own env
○ Pods share an IP address and volumes

● Pods are transient and not “special”
○ Pods should be able to be deleted at any time
○ Storage can be detached and reattached elsewhere
○ Different pods talk to each other through abstractions

Pod Examples
● Single container - JBoss, MySQL, etc
● Web server and log parser

○ Web server container logs HTTP requests to disk
○ Log parser reads from disk and sends summary info elsewhere

● Apache security proxy and PHP app
○ Apache container listens on port 80 and uses mod_auth to

check authentication, then proxies port 8080
○ PHP container listens on 127.0.0.1:8080 and serves a web app

Pod Examples (cont.)
● Wordpress pod with PHP and MySQL

○ PHP is visible externally, MySQL is not
○ Can’t be scaled up, but self contained and works

● Ruby worker application with local Redis
○ Ruby web application takes incoming HTTP requests and stores

them in local Redis
○ Redis is queried by other servers for processing
○ Can be scaled out

Pods (cont.)

Connecting Pods
● Need a way for pod A to talk to pod B

○ Option 1: Hardcode IP address
○ Option 2: Query the server

● If there are 10 copies of pod A, which do you use?
○ Pick one randomly?
○ Load balance!

● What if it fails?
○ Want to have all copies of pod A talk to all copies of pod B

Services
● Abstract a set of pods as a single IP and port

○ Each host has a proxy that knows where other pods are
○ Simple TCP/UDP load balancing
○ No central load balancer (no SPOF)

● Creates environment variables in other pods
○ Like “docker link”, but across hosts
○ Service named “mysql” gets MYSQL_HOST and MYSQL_PORT

Services (cont.)

Why Services?
● Stable endpoint for pods to reference

○ Allows list of pods to change dynamically

● Need a way to know where other pods are
○ By *name* (mysql is recognizable)
○ Simple service discovery

● Lots of other options for service discovery
○ The simplest thing that works at scale

Services (cont.)
● Improvements planned

○ Allow pods to alter how services are exposed (localhost:3306)
○ Point to external (outside) IPs and DNS
○ Internal private DNS (mysql.myapp.local)
○ Pluggable balancers like HAProxy
○ Bind service to external IP?
○ Use services between different security zones

● Fundamental “link” abstraction

What is an app?
● One or more set of pods

○ JBoss, MySQL, Redis, ActiveMQ, Backend Workers, Frontends

● Linked together by services
○ Edge router for myapp.com -> JBoss frontend pods
○ JBoss frontend pods -> backend service
○ backend service -> PHP pods
○ PHP pods -> mysql service
○ mysql service -> MySQL pod with attached storage

http://www.myapp.com

Deployments
● Define the lifecycle for a single image

○ Each deployment records a particular image and settings for

that image at a point in time
○ Users create new deployments that describe new desired state

○ Sometimes, new images change details of deployment and

those must be taken into account

● A record of the history of a single component

Templates and Config
● Config is declarative description of topology

○ Set of resources that describe a version of an app
○ Any object can be part of the description
○ Tools for applying config and ensuring reality matches config

● Templates let you parameterize config
○ For consumption by end users of standard patterns
○ Simple key/value substitution today

Templates and Config (cont.)
● Config is an active topic of iteration upstream

○ We plan to enable config as a core principle of the system

○ Additional concepts may be required to ease config use for end

users
○ Deployments are stripped down and simplified Config

Building Images
● Allow infrastructure to build images

○ Everything depends on Docker images
○ Source to Image (STI) - artifacts or source into images
○ Integration with Jenkins and other build systems
○ Builds are run in containers under user resource limits

● Easy integration for existing build infrastructure
○ Push images into an image repository
○ Extend OpenShift with new builders

Source Code
● Easy integration with external source repos

○ GitHub webhooks, extensible to other patterns
○ Can easily connect builds with other systems via hooks as well
○ Future integration with other systems

● Simple high-density Git hosting OOTB
○ Easy to spin up new Git repositories for new projects
○ Lower operational cost than 2.x

Users, Teams, and Projects
● Allow cluster resources to be subdivided

○ A project controls access to a set of resources
○ Projects are allocated resources with hard and soft limits
○ Typically based on organizational boundaries

● Continue 2.x improvements on top of Kube
○ Teams, LDAP integration continue
○ Give additional control to operators with flexible policy
○ Simplify access control and authorization via OAuth

Quota and Usage
● Kubernetes brings finer grained resource control

○ Allows many dimensional specification of performance
○ Requires corresponding deeper quota and usage tracking
○ Policy and

Developer Experience
● Operators create images for teams to code on

○ Our JBoss environment
○ Custom MySQL tuning

● Also create templates for types of applications
○ Templates are blueprints for applications, can be complex

● Developers create from template or from scratch
● Code in their favorite toolchain

Developer Experience (cont.)
● Like 2.x, push code to a source repository

○ GitHub, external, or created in OpenShift

● Build runs and generates an image
● Image is deployed

● Lots of exciting changes coming...

30s Admin Experience
● Run OpenShift in 30 seconds or less

○ Download from Releases, install Docker
○ `openshift start`

● Reduce operational complexity for small deploys
○ Vagrant environment for default network setup
○ Deploy direct to IaaS (OpenStack, GCE, AWS)

● Future work
○ Run OpenShift/Kubernetes inside Docker

https://github.com/openshift/origin/releases
https://github.com/openshift/origin/releases

QUESTIONS?
GitHub http://github.com/openshift/origin

Clayton Coleman ccoleman@redhat.com

Dan McPherson dmphers@redhat.com

09/22/2014

http://github.com/openshift/origin
mailto:ccoleman@redhat.com
mailto:dmphers@redhat.com

TODO
● Better pod -> service -> pod diagram
● Storage diagram
● Deployment flow diagram
● Skill sets for ops
● Integrating operational tools

