OPENSHIFT
by Red Hat

OpenShift 3 Technical Architecture

Clayton Coleman, Dan McPherson
Lead Engineers

Principles

The future of *aaS

OPENSHIFT

Redefine the “Application”

e Networked components wired together

o Notjust a “web frontend” anymore

o Service-oriented-Architectures / microservices are real
o Make it easy to build, manage, deploy components

o HTTP frontends are just one type of component

e C(ritical: relationships between components

o If you can't abstract the connection between components you
can't evolve them independently

£5 OPENSHIFT

Immutable images as building blocks

e Image based deployment (Docker)

o Create once, test everywhere
o Build a single artifact containing the dependency chain
o Need tools to manage the build process and security updates

e Declarative application descriptions

o Record “intent” - this links to this, this should be deployed like

this, and let system converge to that intent

£ OPENSHIFT

Decouple Dev and Ops

e Reduce complexity of application topology
o Less need for complicated post-deploy setup
e Allow teams to share common stacks

o Better migration from dev stacks to production stacks
o Reduce vendor lock-in

e Ops and Devs can use same tools

o OpenShift is an app, so are most organizational tools
o Ensure patterns work cleanly for both

£5 OPENSHIFT

Decouple Dev and Ops (cont.)

e Templatize / blueprint everything

o Ensure that organizations have clear configuration chains
o Define common patterns for rolling out changes

e Easily provision new resources

o Allow infrastructure teams to provision at scale

o Subdivide resources for organizational teams with hard and soft

limits

£5 OPENSHIFT

Abstract Operational Complexity

e Networking

o App deployers should see flat networks
o Define private vs public, internal vs external, fast vs slow

e Storage

o Most components need *simple* persistent storage
o Ensure storage is not coupled to the host

e Health

o Every component should expose health information

£5 OPENSHIFT

Multi-Level Security

e Ensure containers “contain”
o SELinux, user namespaces, audit
o Decompose the Docker daemon over time
o Fine grained security controls on SSH access

e Allow easy integration with existing security tools
o Kerberos, system wide security, improved scoping of access
o More customization possible

e Allow application network isolation

£3 OPENSHIFT

by Red Hat

System Architecture

The moving pieces

OPENSHIFT

Create app

App centric

API

Orchestrator
API

l

The Management
infrastructure

~
AN

\

\

Domain Orchestrator () Create groups
‘ Model State ‘—k Orchestrator ‘ of containers \\
) T
Edge v v l \
Routers N () — (! Translates events into
: y Router State () Environment Scheduler (s o) i
- " » Router State @ Environment | Scheduler |, o 4o le - oo o L 2
’ API ’\Mﬁ Store State ‘Scheduler [« | OISy EEe Gontainer movor stars, hot
. : 1
Internal -’ K ’ |
Routers NG S |
- Pull API with | Il Accumulates events
hot from other
::;:zili:y Host State | subsystems
API |
Traffic Health | HostHealth | _ _ _ _ R — Event L »FventBus ‘
Monitor Monitor T aggregator API L)
C _- ¢ - J
-7 1
7 - |
4 I
/] |
/ / Git Source
/ I Repositories Repo API
Host Agent ,/ 1
. Y v
I /
[7 { Image Builds J‘* Build API J
Container R State -7 -
Health Monitor Reconciler
‘\ I Local state
The Hosts Mo o Container Docker Registry Security
N Manager Registry and Quota
\
\ .
. . Image
Container 1 Container N Management

OPENSHIFT

by Red Hat"

Kube

£3 OPENSHIFT

by Red Hat

kubectl (user commands)

Y

APIs

authorization
authentication

v

scheduling)

actuator

(pods, services, <
rep. controllers)

REST

N

LN

Scheduler

Master components
Colocated, or spread across machines,
as dictated by cluster size.

replication controller

Firewall

Distributed
Watchable
Storage

(implemented via etcd)

Node Y
kubelet Proxy
docker
A
Pod l Pod Pod
cAdvisor I:| contairier II
Node

kubelet

Proxy

\ docker

Pod

—1 |

cAdvisor

contairier

i

Pod

II

OpenSh

ift

kubectl (user commands)

osc (login/projects)

OpenShift Web Console

o S

Routers | Routers | ™
Node Y
kubelet ProxT|

T~
\

\ docker

Pod

—T |

cAdvisor

i

Pod Pod
contairier ’:I

II

Sortware betined
Netwaork

Node

kubelet

Proxy

Authorization | Authentication |
authorization
APls authentication
v
i) REST
OpenShift APls scheding Lol i comvices, 14
rep. controllers)
N X
Distributed
\ Watchable
Scheduler replication controller Storage
QUOta W (implemented via etcd)
ContrOI Ie rs Master components
C , or spread across machines,
as dictated by cluster size.
Deployment Metrics collection Source code / Cl

£5 OPENSHIFT

by Red Hat

Storage servers

Log servers

\ \ docker

Pod

—1 |

Pod Pod

cAdvisor

i

contamer II

Builds of images

Docker Registry

OpenShift Infrastructure View

I] |]
Openshitt Openshitt Openshitt Openshitt Openshitt Openshitt
Node Node Node Node Node Node.

VM 1 VM 2 VM 3 VM 4 VM 5 VM 6

Software Defined / Statically Allocated / Hybrid

=

-

£3 OPENSHIFT

by Red Hat

-

-

-

-

Nodes

Networking

Local Storage

OpenShift Infrastructure View

I] |]
Openshitt Openshitt Openshitt Openshitt Openshitt Openshitt
Node Node Node Node Node Node.

VM 1 VM 2 VM 3 VM 4 VM 5 VM 6

Software Defined / Statically Allocated / Hybrid

5
-

-

£3 OPENSHIFT

by Red Hat

=)
]

-

-

S
-

Nodes

Networking

Local Storage

Persistent Network
Storage

What are the pieces?

e Docker

o Container runtime and image distribution
o Roll your own solutions for everything

e Kubernetes

o Runtime and operational management of containers

e OpenShift

o Lifecycle of applications - build, deploy, manage, promote
o Manage tens to thousands of applications with teams

£5 OPENSHIFT

Docker Containers and Images

e Full access to the existing Docker ecosystem
o Be able to use images from anywhere
e QOperations and development share components

o Customization still possible
o Toolchains to support images

e Containers based on Linux Kernel tech

o Continuing to work with upstream to improve security and
reliability
£5 OPENSHIFT

Kubernetes

e Cluster Container Management

o The substrate for running containers at scale
o Contains just runtime and operational tools for containers
o Composable system - only enough to enable other use cases

e OpenShift adds:

o Ability to build, manage, and deliver app descriptions at scale
o Turning source code into new deployable components
o Moving from dev -> QA -> production

£3 OPENSHIFT

by Red Hat

Kubernetes - Components

e Masters (OS2: brokers)

o API (apiserver) - records client intent, displays current state
o Schedulers (scheduler) - allocates pods onto hosts
o Controllers (*-controller) - changes system from client intent
o State Storage - etcd, potentially others in future

e Nodes (hosts / minions)

o Agent (kubelet) - manages containers on each host
o Proxy (kube-proxy) - local service routing and load balancing

£5 OPENSHIFT

Kubernetes - Components

e Logging
o common interface for moving data on and off nodes
e Events

o communicate problems / changes back up to higher levels

e Node management

o add, remove, and script host / addition removal
o more control loops for health / problems

£5 OPENSHIFT

OpenShift - Components

e Microservice based architecture

o All components run on top of Kubernetes and provide
additional services
o Pieces are loosely coupled only core component is auth

e Offers an all-in-one mode for easy exploration

o docker run --net=host --privileged -v /var/run/docker.sock:

/var/run/docker.sock openshift/origin start

o Includes Kubernetes, etcd, OpenShift in single process

£5 OPENSHIFT

Image
Lifecycle

£5 OPENSHIFT

by Red Hat"

Builder
Several implementation types
—®| Docker, STI, External, pluggable
Takes inputs and creates images
into an image repository

v

Build
Record of a build happening
Links to output image, source
builder, success/failure

Source code repo
«—— A provisioned or external
repository of code, input to
build

Can exist
outside system

Used to let admins
and devs share
images efficiently

v v
Image Repository Image Image mgtadata
. : . . Env, port info, display name,
Related images over time Point to docker image -
. . . description
New images replace older images Link to metadata .
- May be shared across multiple
Template of metadata Tens of millions .
T images
Pod

A deployed set of
one or more images

I

Service Deployment Service
References images, l¢———— Deploys one or more
prevents deletion of recent images as pods onto
deployment images Kubernetes

x .
|

) |

‘ Tracks history ‘

Represents a unit
of changes

of an application

How updates happen

Security update

Base Image (RHEL7)

Layered build

PHP Security
update

Framework Image (PHP)

Layered build

Application Image (app) [1]_’[2]_’[3]

Code change

£3 OPENSHIFT

by Red Hat

Managing image promotion

Developer 1 [—>[2]" 3 "[4]_' 5
oy U — <-Images are dev only, not used in prod
—) (5)

Developer 2 1 ——> 2 >3
__ - J —

Team build [1 | 2 (3 | 4 [5]
. 7 . I }'L 7 . I }'L 7
| I <- Developer tags image for test

Ready for testing i]—> 4 |

I <- Tester/admin/op tags image for prod

Deploy to production

£3 OPENSHIFT

Image Lifecycle

e |Image Registries
o Places to store images so they can be accessed by Docker
o Administrative tools for managing images at scale (quota,

pruning, retention)

o Content tracking, provenance, scanning of image data
m Red Hat Satellite

e Building images
o Need to be able to build thousands of new images for security

updates
£3 OPENSHIFT P

by Red Hat

Image Lifecycle (cont.)

e Watching for changes to images

o Allow teams and organizations to define “flows” for images
o Trigger deployment automatically when an image is ready

e Testing images

o Images need to be tested and validated in many environments
o Much should be automated

e Promotion of images

o Allow teams to combine process and flows

£5 OPENSHIFT

Network and Routing

e Allow containers to appear on the outside network
o Declaratively expose a stable IP or port outside

o Services with routable protocols (HTTP, TLS with SNI) can be
aggregated efficiently behind proxies (HAProxy, Apache, Nginx)

e Segregate container traffic internally

o Isolated based on team or topology structure
o Allow integration with complex SDN (advanced scenarios)

e Allow containers to be auto-scaled based on traffic

£3 OPENSHIFT

Storage

e Allow easy integration with network storage

o Block, Object, Shared filesystem (with SELinux)
o Allow easy allocation / deallocation for operators
o Add a fourth type similar to OSE 2.x for low cost hosting

e Reduce complexity on failover for persistent data

o Operators can easily evacuate hosts

o Focus is on keeping operational complexity low both on setup

and runtime

£3 OPENSHIFT

Integrations with

e OpenStack

o Similar to OSE 2.x - HEAT templates and autoscaling
o Deeper keystone / ceilometer integration
o Containerization integration w/ Docker and Nova - TBD

e Red Hat Atomic

o RHEL distribution tuned for containers
o Network and storage configurations

£5 OPENSHIFT

by Red Hat

Concepts
OpenShift 3 Nouns

OPENSHIFT

Pods and Containers

e Fundamental unit in the system

o Podis a group of related containers on the same system
o Each container can be its own image with its own env
o Pods share an IP address and volumes

e Pods are transient and not “special”

o Pods should be able to be deleted at any time
o Storage can be detached and reattached elsewhere
o Different pods talk to each other through abstractions

£3 OPENSHIFT

Pod Examples

e Single container - JBoss, MySQL, etc

e Web server and log parser

o Web server container logs HTTP requests to disk
o Log parser reads from disk and sends summary info elsewhere

e Apache security proxy and PHP app

o Apache container listens on port 80 and uses mod_auth to

check authentication, then proxies port 8080
o PHP container listens on 127.0.0.1:8080 and serves a web app

£3 OPENSHIFT

Pod Examples (cont.)

e Wordpress pod with PHP and MySQL

o PHP is visible externally, MySQL is not
o Can't be scaled up, but self contained and works

e Ruby worker application with local Redis

o Ruby web application takes incoming HTTP requests and stores

them in local Redis
o Redis is queried by other servers for processing

o Can be scaled out

£5 OPENSHIFT

Pods (cont.)

dh/dEh

A
A(mysql) [B(php)] [C(activemq)\
A(adminui) C(agent)

£3 OPENSHIFT

by Red Hat

Pod A

MySQL

] Nvarflog/mysq|
phpMyAdmin @ Local disk

Pods
Group of related containers
placed onto the same host

Docker Containers
Application processes and
filesystem libraries

Hosts
Runs pods

Shared Volumes

Ivar/lib/mysq|l
Network Attached

IP Addr
10.244.1.5
‘ MySQL < port 3306
‘ phpMyAdmin < port 8080

Volumes per Pod
Each pod has a list of volumes that
all containers access the same

Volume Types

Each volume can have different types,
like local transient storage or network
attached storage backed by Cinder,
GCE, EBS, etc

Pod Networking
Each pod has an IP address
that other pods can contact

Shared Ports
Each container must share pod
ports. No conflicts allowed

Connecting Pods

e Need a way for pod A to talk to pod B

o Option 1: Hardcode IP address
o Option 2: Query the server

e If there are 10 copies of pod A, which do you use?

o Pick one randomly?
o Load balance!

e What if it fails?
o Want to have all copies of pod A talk to all copies of pod B

£5 OPENSHIFT

Services

e Abstract a set of pods as a single IP and port

o Each host has a proxy that knows where other pods are
o Simple TCP/UDP load balancing
o No central load balancer (no SPOF)

e C(reates environment variables in other pods

o Like “docker link”, but across hosts
o Service named “mysql” gets MYSQL_HOST and MYSQL_PORT

£3 OPENSHIFT

Services (cont.)

Services abstract other pods
/ Service "web" \ A service is a TCP port that may
transparently load balance other ports

port<f3080 port<f3080
/ AN Replication controllers copy pods
A controller ensures there are a certain
[JBoss J [JBoss] number of copies of a pod, so if a host
is lost another pod gets created.
Pod A Pod B
10.244.1.5 10.244.2.2

£3 OPENSHIFT

by Red Hat

Why Services?

e Stable endpoint for pods to reference
o Allows list of pods to change dynamically

e Need a way to know where other pods are
o By *name* (mysql is recognizable)
o Simple service discovery

e Lots of other options for service discovery

o The simplest thing that works at scale

£3 OPENSHIFT

Services (cont.)

e Improvements planned

o Allow pods to alter how services are exposed (localhost:3306)
o Point to external (outside) IPs and DNS

o Internal private DNS (mysgl.myapp.local)

o Pluggable balancers like HAProxy

o Bind service to external IP?

o Use services between different security zones

e Fundamental “link” abstraction

£3 OPENSHIFT

What is an app?

e One or more set of pOdS
o JBoss, MySQL, Redis, ActiveMQ, Backend Workers, Frontends

e Linked together by services

o Edge router for myapp.com -> JBoss frontend pods
o JBoss frontend pods -> backend service

o backend service -> PHP pods

o PHP pods -> mysql service

o mysgl service -> MySQL pod with attached storage

£3 OPENSHIFT

http://www.myapp.com

Deployments

e Define the lifecycle for a single image

o Each deployment records a particular image and settings for

that image at a point in time
o Users create new deployments that describe new desired state

o Sometimes, new images change details of deployment and

those must be taken into account
e Arecord of the history of a single component

£3 OPENSHIFT

Templates and Config

e Configis declarative description of topology

o Set of resources that describe a version of an app

o Any object can be part of the description

o Tools for applying config and ensuring reality matches config
e Templates let you parameterize config

o For consumption by end users of standard patterns
o Simple key/value substitution today

£5 OPENSHIFT

Templates and Config (cont.)

e Configis an active topic of iteration upstream

o We plan to enable config as a core principle of the system

o Additional concepts may be required to ease config use for end
users

o Deployments are stripped down and simplified Config

£5 OPENSHIFT

Building Images

e Allow infrastructure to build images

o Everything depends on Docker images

o Source to Image (STI) - artifacts or source into images
o Integration with Jenkins and other build systems

o Builds are run in containers under user resource limits

e FEasyintegration for existing build infrastructure

o Pushimages into an image repository
o Extend OpenShift with new builders

£3 OPENSHIFT

Source Code

e FEasy integration with external source repos

o GitHub webhooks, extensible to other patterns
o Can easily connect builds with other systems via hooks as well
o Future integration with other systems

e Simple high-density Git hosting OOTB
o Easy to spin up new Git repositories for new projects
o Lower operational cost than 2.x

£3 OPENSHIFT

Users, Teams, and Projects

e Allow cluster resources to be subdivided

o A project controls access to a set of resources
o Projects are allocated resources with hard and soft limits
o Typically based on organizational boundaries

e Continue 2.x improvements on top of Kube

o Teams, LDAP integration continue
o Give additional control to operators with flexible policy
o Simplify access control and authorization via OAuth

£5 OPENSHIFT

Quota and Usage

e Kubernetes brings finer grained resource control

o Allows many dimensional specification of performance
o Requires corresponding deeper quota and usage tracking
o Policy and

£5 OPENSHIFT

Developer Experience

e Operators create images for teams to code on

o Our JBoss environment
o Custom MySQL tuning

e Also create templates for types of applications
o Templates are blueprints for applications, can be complex

e Developers create from template or from scratch
e (Code in their favorite toolchain

£5 OPENSHIFT

Developer Experience (cont.)

e Like 2.x, push code to a source repository
o GitHub, external, or created in OpenShift

e Build runs and generates an image
e Image is deployed

e Lots of exciting changes coming...

£5 OPENSHIFT

30s Admin Experience

e Run OpenShiftin 30 seconds or less

o Download from Releases, install Docker
o openshift start’

e Reduce operational complexity for small deploys

o Vagrant environment for default network setup
o Deploy direct to laaS (OpenStack, GCE, AWS)

e Future work
o Run OpenShift/Kubernetes inside Docker

£5 OPENSHIFT

https://github.com/openshift/origin/releases
https://github.com/openshift/origin/releases

QUESTIONS?

GitHub http://github.com/openshift/origin

Clayton Coleman ccoleman@redhat.com

Dan McPherson dmphers@redhat.com

09/22/2014

£5 OPENSHIFT

http://github.com/openshift/origin
mailto:ccoleman@redhat.com
mailto:dmphers@redhat.com

TODO

Better pod -> service -> pod diagram
Storage diagram

Deployment flow diagram

Skill sets for ops

Integrating operational tools

£3 OPENSHIFT

