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CHAPTER 1

Preface

First came the 32-bit SPARC Version 7 (V7) architecture, publicly released in 1987.
Shortly after, the SPARC V8 architecture was announced and published in book
form. The 64-bit SPARC V9 architecture was released in 1994. Now, the
UltraSPARC Architecture specification provides the first significant update in over
10 years to Sun’s SPARC processor architecture.

1.1 What’s New?
For the first time, UltraSPARC Architecture 2005 pulls together in one document all
parts of the architecture:

■ the nonprivilged (Level 1) architecture from SPARC V9

■ most of the privileged (Level 2) architecture from SPARC V9

■ more in-depth coverage of all SPARC V9 features

Plus, it includes all of Sun’s now-standard architectural extensions:

■ the VIS 1 and VIS 2 instruction sets and GSR register

■ multiple levels of global registers, controlled by the GL register

■ MMU architecture

■ the new Hyperprivileged mode

■ Chip-level Multithreading (CMT) architecture

Plus, now architectural features are tagged with Software Classes and
Implementation Classes1. Software Classes provide a new, high-level view of the
expected architectural longevity and portability of software that references those
1. although most features in this specification are already tagged with Software Classes, the full description of

those Classes does not appear in this version of the specification. Please check back
(http://opensparc.sunsource.net/nonav/opensparct1.html) for a later release of this
document, which will include that description
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features. Implementation Classes give an indication of how efficiently each feature
is likely to be implemented across current and future UltraSPARC Architecture
processor implementations. This information provides guidance that should be
particularly helpful to programmers who write in assembly language or those who
write tools that generate SPARC instructions. It also provides the infrastructure for
defining clear procedures for adding and removing features from the architecture
over time, with minimal software disruption.

1.2 Acknowledgements
This specification builds upon all previous SPARC specifications — SPARC V7, V8,
and especially, SPARC V9. It therefore owes a debt to all the pioneers who
developed those architectures.

SPARC V7 was developed by the SPARC (“Sunrise”) architecture team at Sun
Microsystems, with special assistance from Professor David Patterson of University
of California at Berkeley.

The enhancements present in SPARC V8 were developed by the nine member
companies of the SPARC International Architecture Committee: Amdahl
Corporation, Fujitsu Limited, ICL, LSI Logic, Matsushita, Philips International, Ross
Technology, Sun Microsystems, and Texas Instruments.

SPARC V9 was also developed by the SPARC International Architecture Committee,
with key contributions from the individuals named in the Editor’s Notes section of
The SPARC Architecture Manual-Version 9.

The voluminous enhancements and additions present in this UltraSPARC
Architecture 2005 specification are the result of years of deliberation, review, and
feedback from readers of earlier Sun-internal revisions. I would particularly like to
acknowledge the following people for their key contributions:

■ The UltraSPARC Architecture working group, who reviewed dozens of drafts of
this specification and strived for the highest standards of accuracy and
completeness; its active members included: Hendrik-Jan Agterkamp, Paul
Caprioli, Steve Chessin, Hunter Donahue, Greg Grohoski, John (JJ) Johnson, Paul
Jordan, Jim Laudon, Jim Lewis, Bob Maier, Wayne Mesard, Greg Onufer,
Seongbae Park, Joel Storm, David Weaver, and Tom Webber.

■ Robert (Bob) Maier, for expansion of exception descriptions in every page of the
Instructions chapter, major re-writes of 7 chapters and appendices (Memory,
Memory Management, Performance Instrumentation, Resets, and Interrupt Handling),
significant updates to 5 other chapters, and tireless efforts to infuse commonality
wherever possible across implementations.
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■ Steve Chessin and Joel Storm, “ace” reviewers — the two of them spotted more
typographical errors and small inconsistencies than all other reviewers combined

■ Jim Laudon (an UltraSPARC T1 architect and author of that processor’s
implementation specification), for numerous descriptions of new features which
were merged into this specicification

■ The working group responsible for developing the system of Software Classes
and Implementation Classes, comprising: Steve Chessin, Yuan Chou, Peter
Damron, Q. Jacobson, Nicolai Kosche, Bob Maier, Ashley Saulsbury, Lawrence
Spracklen, and David Weaver.

■ Lawrence Spracklen, for his advice and numerous contributions regarding
descriptions of VIS instructions

I hope you find the UltraSPARC Architecture 2005 specification more complete,
accurate, and readable than its predecessors.

— David Weaver
UltraSPARC Architecture coordinator and specification editor

Corrections and other comments regarding this specification can be emailed to:
UA-editor@sun.com
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CHAPTER 2

Document Overview

This chapter discusses:

■ Navigating UltraSPARC Architecture 2005 on page 1.
■ Fonts and Notational Conventions on page 2.
■ Reporting Errors in this Specification on page 5.

2.1 Navigating UltraSPARC Architecture
2005
If you are new to the SPARC architecture, read Chapter 4, Architecture Overview,
study the definitions in Chapter 3, Definitions, then look into the subsequent sections
and appendixes for more details in areas of interest to you.

If you are familiar with the SPARC V9 architecture but not UltraSPARC Architecture
2005, note that UltraSPARC Architecture 2005 conforms to the SPARC V9 Level 1
architecture (and most of Level 2), with numerous extensions — particularly with
respect to CMT features, VIS instructions, and support for hyperprivileged-mode
operation. For additional details, see the following:

■ Chapter 3, Definitions

■ Chapter 5, Data Formats, for a description of the supported data formats

■ Chapter 6, Registers, for a description of the register set

■ Chapter 6, Instruction Set Overview, for a description of the new instructions

■ Chapter 7, Instructions, for descriptions of instruction set extensions

■ Chapter 8, IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2005, for a
description of the trap model

■ Chapter 9, Memory

■ Chapter 10, Address Space Identifiers (ASIs), for a complete list of supported ASIs
1



■ Chapter 11, Performance Instrumentation

■ Chapter 12, Traps, for a description of the trap model

■ Chapter 13, Interrupt Handling, for information on how interrupts are handled

■ Chapter 14, Memory Management

■ Chapter 15, Chip-Level Multithreading (CMT), for a description of new CMT
features

■ Chapter 16, Resets, for a detailed description of resets, RED_state, and
error_state.

■ Appendix A, Opcode Maps, to see the overall pictures of how the instruction
opcodes are mapped

■ Appendix B, Implementation Dependencies, for descriptions of resolutions of all
implementation dependencies

■ Appendix C, Assembly Language Syntax, to see extensions to the assembly
language syntax; in particular, synthetic instructions are documented in this
appendix

■ Appendix D, Formal Specification of the Memory Models

2.2 Fonts and Notational Conventions
Fonts are used as follows:

■ Italic font is used for emphasis, book titles, and the first instance of a word that is
defined.

■ Italic font is also used for terms where substitution is expected, for example,
“fccn”, “virtual processor n”, or “reg_plus_imm”.

■ Italic sans serif font is used for exception and trap names. For example, “The
privileged_action exception....”

■ lowercase helvetica font is used for register field names (named bits) and
instruction field names, for example: “The rs1 field contains....”

■ UPPERCASE HELVETICA font is used for register names; for example, FSR.

■ TYPEWRITER (Courier) font is used for literal values, such as code (assembly
language, C language, ASI names) and for state names. For example: %f0,
ASI_PRIMARY, execute_state.

■ When a register field is shown along with its containing register name, they are
separated by a period (’.’), for example, “FSR.cexc”.

■ UPPERCASE words are acronyms or instruction names. Some common acronyms
appear in the glossary in Chapter 3, Definitions. Note: Names of some instructions
contain both upper- and lower-case letters.
2 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006



■ An underscore character joins words in register, register field, exception, and trap
names. Note: Such words may be split across lines at the underbar without an
intervening hyphen. For example: “This is true whenever the integer_condition_
code field....”

The following notational conventions are used:

■ The left arrow symbol ( ← ) is the assignment operator. For example, “PC ← PC +
1” means that the Program Counter (PC) is incremented by 1.

■ Square brackets ( [ ] ) are used in two different ways, distinguishable by the
context in which they are used:

■ Square brackets indicate indexing into an array. For example, TT[TL] means the
element of the Trap Type (TT) array, as indexed by the contents of the Trap
Level (TL) register.

■ Square brackets are also used to indicate optional additions/extensions to
symbol names. For example, “ST[D,Q]F” expands to all three of “STF”,
“STDF”, and “STQF”. Similarly, ASI_PRIMARY[_LITTLE] indicates two
related address space identifiers, ASI_PRIMARY and ASI_PRIMARY_LITTLE.
(Contrast with the use of angle brackets, below)

■ Angle brackets ( < > ) indicate mandatory additions/extensions to symbol names.
For example, “ST<D|Q>F” expands to mean “STDF” and “STQF”. (Contrast with
the second use of square brackets, above)

■ Curly braces ( { } ) indicate a bit field within a register or instruction. For example,
CCR{4} refers to bit 4 in the Condition Code Register.

■ A consecutive set of values is indicated by specifying the upper and lower limit of
the set separated by a colon ( : ), for example, CCR{3:0} refers to the set of four
least significant bits of register CCR. (Contrast with the use of double periods,
below)

■ A double period ( .. ) indicates any single intermediate value between two given
end values is possible. For example, NAME[2..0] indicates four forms of NAME
exist: NAME, NAME2, NAME1, and NAME0; whereas NAME<2..0> indicates
that three forms exist: NAME2, NAME1, and NAME0. (Contrast with the use of
the colon, above)

■ A vertical bar ( | ) separates mutually exclusive alternatives inside square
brackets ( [ ] ), angle brackets ( < > ), or curly braces ( { } ). For example,
“NAME[A|B]” expands to “NAME, NAMEA, NAMEB” and “NAME<A|B>”
expands to "NAMEA, NAMEB".

■ The asterisk ( * ) is used as a wild card, encompassing the full set of valid values.
For example, FCMP* refers to FCMP with all valid suffixes (in this case,
FCMP<s|d|q> and FCMPE<s|d|q>). An asterisk is typically used when the full
list of valid values either is not worth listing (because it has little or no relevance
in the given context) or the valid values are too numerous to list in the available
space.
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■ The slash ( / ) is used to separate paired or complementary values in a list, for
example, “the LDBLOCKF/STBLOCKF instruction pair ....”

■ The double colon (::) is an operator that indicates concatenation (typically, of bit
vectors). Concatenation strictly strings the specified component values into a
single longer string, in the order specified. The concatenation operator performs
no arithmetic operation on any of the component values.

2.2.1 Implementation Dependencies
Implementors of UltraSPARC Architecture 2005 processors are allowed to resolve
some aspects of the architecture in machine-dependent ways. Each possible
implementation dependency is indicated by the notation “IMPL. DEP. #nn: Some
descriptive text.” In this specification, the number nn enumerates the dependencies
in . References to implementation dependencies are indicated by the notation
“(impl. dep. #nn)”.

2.2.2 Notation for Numbers
Numbers throughout this specification are decimal (base-10) unless otherwise
indicated. Numbers in other bases are followed by a numeric subscript indicating
their base (for example, 10012, FFFF 000016). Long binary and hexadecimal numbers
within the text have spaces inserted every four characters to improve readability.
Within C language or assembly language examples, numbers may be preceded by
“0x” to indicate base-16 (hexadecimal) notation (for example, 0xFFFF0000).

2.2.3 Informational Notes
This guide provides several different types of information in notes, as follows:

Note General notes contain incidental information relevant to the
paragraph preceding the note.

Programming
Note

Programming notes contain incidental information about how
software can use an architectural feature.

Implementation
Note

An Implementation Note contains incidental information,
describing how an UltraSPARC Architecture 2005 processor
might implement an architectural feature.

V9 Compatibility
Note

Note containing information about possible differences between
UltraSPARC Architecture 2005 and SPARC V9 implementations.
Such information is relevant to UltraSPARC Architecture 2005
implementations and might not apply to other SPARC V9
implementations.
4 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006



2.3 Reporting Errors in this Specification
This specification has been reviewed for completeness and accuracy. Nonetheless, as
with any document this size, errors and omissions may occur, and reports of such
are welcome. Please send “bug reports” and other comments on this document to
email address: UA-editor@sun.com

Forward
Compatibility

Note

Note containing information about how the UltraSPARC
Architecture is expected to evolve in the future. Such notes are
not intended as a guarantee that the architecture will evolve as
indicated, but as a guide to features that should not be depended
upon to remain the same, by software intended to run on both
current and future implementations.
CHAPTER 2 • Document Overview 5
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CHAPTER 3

Definitions

This chapter defines concepts and terminology common to all implementations of
UltraSPARC Architecture 2005.

aliased Said of each of two virtual addresses that refer to the same underlying memory
location.

address space identifier
(ASI) An 8-bit value that identifies an address space. For each instruction or data

access, an ASI is associated withthe address. See also implicit ASI.

application program A program executed with the virtual processor in nonprivileged mode. Note:
Statements made in this specification regarding application programs may not
be applicable to programs (for example, debuggers) that have access to
privileged virtual processor state (for example, as stored in a memory-image
dump).

ASI Address space identifier.

ASR Ancillary State register.

available (virtual
processor) A virtual processor that is physically present and functional, that can be

enabled and used.

big-endian An addressing convention. Within a multiple-byte integer, the byte with the
smallest address is the most significant; a byte’s significance decreases as its
address increases.

BLD (Obsolete) abbreviation for Block Load instruction; replaced by LDBLOCKF.

BST (Obsolete) abbreviation for Block Store instruction; replaced by STBLOCKF.

Note: This chapter is undergoing final review; please check
back later for a copy of UltraSPARC Architecture
2005 containing the final version of this chapter.
7



bypass ASI An ASI that refers to memory space and for which the MMU does not perform
address translation (that is, memory is accessed using a direct physical
address).

byte Eight consecutive bits of data, aligned on an 8-bit boundary.

clean window A register window in which all of the registers contain 0, a valid address from
the current address space, or valid data from the current address space.

CMT Chip-level MultiThreading (or, as an adjective, Chip-level MultiThreaded).
Refers to a processor containing more than one virtual processor.

coherence A set of protocols guaranteeing that all memory accesses are globally visible to
all caches on a shared-memory bus.

completed (memory
operation) Said of a memory transaction when an idealized memory has executed the

transaction with respect to all processors. A load is considered completed
when no subsequent memory transaction can affect the value returned by the
load. A store is considered completed when no subsequent load can return the
value that was overwritten by the store.

consistency See coherence.

context A set of translations that defines a particular address space. See also Memory
Management Unit (MMU).

context ID A numeric value that uniquely identifies a particular context.

copyback The process of sending a copy of the data from a cache line owned by a
physical processor core, in response to a snoop request from another device.

CPI Cycles per instruction. The number of clock cycles it takes to execute an
instruction.

core In an UltraSPARC Architecture processor, may refer to either a virtual
processor or a physical processor core.

cross-call An interprocessor call in a system containting multiple virtual processors.

CTI Abbreviation for control-transfer instruction.

current window The block of 24 R registers that is presently in use. The Current Window
Pointer (CWP) register points to the current window.

data access
(instruction) A load, store, load-store, or FLUSH instruction.

DCTI Delayed control transfer instruction.

demap To invalidate a mapping in the MMU.
8 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006



denormalized
number A nonzero floating-point number, the exponent of which has a value of zero. A

more complete definition is provided in IEEE Standard 754-1985.

deprecated The term applied to an architectural feature (such as an instruction or register)
for which an UltraSPARC Architecture implementation provides support only
for compatibility with previous versions of the architecture. Use of a
deprecated feature must generate correct results but may compromise software
performance.

Deprecated features should not be used in new UltraSPARC Architecture
software and may not be supported in future versions of the architecture.

disable (core) The process of changing the state of a virtual processor to Disabled, during
which all other processor state (including cache coheriency) may be lost and all
interrupts to that virtual processor will be discarded. See also park and
enable.

disabled (core) A virtual processor that is out of operation (not executing instructions, not
participating in cache coherency, and discarding interrupts). See also parked
and enabled.

dispatch To send a previously fetched instruction to one or more functional units for
execution. Typically, the instruction is dispatched from a reservation station or
other buffer of instructions waiting to be executed. (Other conventions for this
term exist, but the this specification attempts to use dispatch consistently as
defined here). See also issued.

doublet Two bytes (16 bits) of data.

doubleword An 8-byte datum. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.

enable (core) The process of moving a virtual processor from Disabled to Enabled state
and preparing it for operation. See also disable and parked.

enabled (core) A virtual processor that is in operation (participating in cache coherency, but
not executing instructions unless it is also Running). See also disabled and
running.

even parity The mode of parity checking in which each combination of data bits plus a
parity bit contains an even number of ‘1’ bits.

exception A condition that makes it impossible for the processor to continue executing
the current instruction stream. Some exceptions may be masked (that is, trap
generation disabled — for example, floating-point exceptions masked by
FSR.tem) so that the decision on whether or not to apply special processing
can be deferred and made by software at a later time. See also trap.

explicit ASI An ASI that that is provided by a load, store, or load-store alternate instruction
(either from its imm_asi field or from the ASI register).
CHAPTER 3 • Definitions 9



extended word An 8-byte datum, nominally containing integer data. Note: The definition of
this term is architecture dependent and may differ from that used in other
processor architectures.

fccn One of the floating-point condition code fields fcc0, fcc1, fcc2, or fcc3.

floating-point
exception An exception that occurs during the execution of a floating-point operate

(FPop) instruction. The exceptions are unfinished_FPop, unimplemented_FPop,
sequence_error, hardware_error, invalid_fp_register, or IEEE_754_exception.

F register A floating-point register. The SPARC V9 architecture includes single-, double-,
and quad-precision F registers.

floating-point operate
(FPop) instructions Instructions that perform floating-point calculations, as defined in Floating-

Point Operate (FPop) Instructions on page 131. FPop instructions do not include
FBfcc instructions, loads and stores between memory and the F registers, or
non-floating-point operations that read or write F registers.

floating-point trap
type The specific type of a floating-point exception, encoded in the FSR.ftt field.

floating-point unit A processing unit that contains the floating-point registers and performs
floating-point operations, as defined by this specification.

FPop See floating-point operate (FPop) instructions.

FPRS Floating-Point Register State register.

FGU Floating-point and Graphics Unit (which, in most implementations, is a
synonym for FPU).

FPU Floating-Point Unit.

FSR Floating-Point Status register.

GL Global Level register.

GSR General Status register.

halfword A 2-byte datum. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.

hyperprivileged
(software) Software executing while the processor is in hyperprivileged state.

hyperprivileged
(state) The highest processor privilege state (defined by HPSTATE.hpriv = 1), in which

all processor features are accessible.
10 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006



hypervisor (software) A layer of software that executes in hyperprivileged processor state. One
purpose of hypervisor software (also referred to as “the hypervisor”) is to
provide greater isolation between operating system (“supervisor”) software
and the underlying processor implementation.

IEEE 754 IEEE Standard 754-1985, the IEEE Standard for Binary Floating-Point
Arithmetic.

IEEE-754 exception A floating-point exception, as specified by IEEE Std 754-1985. Listed within
this specification as IEEE_754_exception.

implementation Hardware or software that conforms to all of the specifications of an
instruction set architecture (ISA).

implementation
dependent An aspect of the UltraSPARC Architecture that can legitimately vary among

implementations. In many cases, the permitted range of variation is specified.
When a range is specified, compliant implementations must not deviate from
that range.

implicit ASI An address space identifier that is implicitly supplied by the virtual processor
on all instruction accesses and on data accesses that do not explicitly provide
an ASI value (from either an imm_asi instruction field or the ASI register).

initiated Synonym for issued.

instruction field A bit field within an instruction word.

instruction group One or more independent instructions that can be dispatched for simultaneous
execution.

instruction set
architecture A set that defines instructions, registers, instruction and data memory, the

effect of executed instructions on the registers and memory, and an algorithm
for controlling instruction execution. Does not define clock cycle times, cycles
per instruction, data paths, etc. This specification defines the UltraSPARC
Architecture 2005 instruction set architecture.

integer unit A processing unit that performs integer and control-flow operations and
contains general-purpose integer registers and virtual processor state registers,
as defined by this specification.

interrupt request A request for service presented to a virtual processor by an external device.

inter-strand Describes an operation that crosses virtual processor (strand) boundaries.

intra-strand Describes an operation that occurs entirely within one virtual processor
(strand).

invalid
(ASI or address) Undefined, reserved, or illegal.

ISA Instruction set architecture.
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issued (1) A memory transaction (load, store, or atomic load-store) is said to be
“issued” when a virtual processor has sent the transaction to the memory
subsystem and the completion of the request is out of the virtual processor’s
control. Synonym for initiated.

(2) An instruction (or sequence of instructions) is said to be issued when
released from the virtual processor's instruction fetch unit. Typically,
instructions are issued to a reservation station or other buffer of instructions
waiting to be executed. (Other conventions for this term exist, but this
specification attempts to use "issued" consistently as defined here.)
See also dispatched.

IU Integer Unit.

little-endian An addressing convention. Within a multiple-byte integer, the byte with the
smallest address is the least significant; a byte’s significance increases as its
address increases.

load An instruction that reads (but does not write) memory or reads (but does not
write) location(s) in an alternate address space. Some examples of Load
includes loads into integer or floating-point registers, block loads, and
alternate address space variants of those instructions. See also load-store and
store, the definitions of which are mutually exclusive with load.

load-store An instruction that explicitly both reads and writes memory or explicitly reads
and writes location(s) in an alternate address space. Load-store includes
instructions such as CASA, CASXA, LDSTUB, and the deprecated SWAP
instruction. See also load and store, the definitions of which are mutually
exclusive with load-store.

may A keyword indicating flexibility of choice with no implied preference. Note:
“May” indicates that an action or operation is allowed; “can” indicates that it is
possible.

Memory Management
Unit The address translation hardware in an UltraSPARC Architecture

implementation that translates 64-bit virtual address into physical addresses.
The MMU is composed of the TLBs, ASRs, and ASI registers used to manage
address translation. See also context, physical address, and virtual address.

MMU Memory Management Unit.

multiprocessor
system A system containing more than one processor.

must A keyword indicating a mandatory requirement. Designers must implement
all such mandatory requirements to ensure interoperability with other
UltraSPARC Architecture-compliant products. Synonym: shall.
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next program counter
(NPC) Conceptually, a register that contains the address of the instruction to be

executed next if a trap does not occur.

NFO Nonfault access only.

nonfaulting load A load operation that behaves identically to a normal load operation, except
when supplied an invalid effective address by software. In that case, a regular
load triggers an exception whereas a nonfaulting load appears to ignore the
exception and loads its destination register with a value of zero (on an
UltraSPARC Architecture processor, hardware treats regular and nonfaulting
loads identically; the distinction is made in trap handler software). Contrast
with speculative load.

nonprivileged An adjective that describes
(1) the state of the virtual processor when PSTATE.priv = 0, that is,
nonprivileged mode;
(2) virtual processor state information that is accessible to software while the
virtual processor is in either privileged mode or nonprivileged mode; for
example, nonprivileged registers, nonprivileged ASRs, or, in general,
nonprivileged state;
(3) an instruction that can be executed when the virtual processor is in either
privileged mode or nonprivileged mode.

nonprivileged mode The mode in which a virtual processor is operating when executing application
software (at the lowest privilege level). Nonprivileged mode is defined by
PSTATE.priv = 0 and HSTATE.hpriv = 0. See also privileged.

nontranslating ASI An ASI that does not refer to memory (for example, refers to control/status
register(s)) and for which the MMU does not perform address translation.

normal trap A trap processed in execute_state (or equivalently, a non-RED_state
trap). Contrast with RED_state trap.

NPC Next program counter.

npt Nonprivileged trap.

nucleus software Privileged software running at a trap level greater than 0 (TL> 0).

NUMA Nonuniform memory access.

N_REG_WINDOWS The number of register windows present in a particular implementation.

octlet Eight bytes (64 bits) of data. Not to be confused with “octet,” which has been
commonly used to describe eight bits of data. In this document, the term byte,
rather than octet, is used to describe eight bits of data.

odd parity The mode of parity checking in which each combination of data bits plus a
parity bit together contain an odd number of ‘1’ bits.

opcode A bit pattern that identifies a particular instruction.
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optional A feature not required for UltraSPARC Architecture 2005 compliance.

PA Physical address.

park The process of suspending a virtual processor from operation. There may be a
delay until the virtual processor is parked, but no heavyweight operation (such
as a reset) is required to complete the parking process. See also disable and
unpark.

parked A virtual processor suspended from operation. When parked, a virtual
processor does not issue instructions for execution but (if enabled) still
maintains cache coherency. See also disabled, enabled, and running.

PC Program counter.

PCR Performance Control register.

physical address An address that maps real physical memory or I/O device space. See also
virtual address.

physical core The term physical processor core, or just physical core, is similar to the term
pipeline but represents a broader collection of hardware. A physical core
includes an execution pipeline plus associated structures, such as caches, that
are required for performing the execution of instructions from one or more
software threads. A physical core contains one or more virtual processors
(strands). The physical core provides the necessary resources for the threads on
each strand to make forward progress at a reasonable rate. A multistranded
physical core can execute multiple software threads either by time
multiplexing or partitioning resources (or any combination thereof). See also
pipeline, processor, strand, thread, and virtual processor.

PIC Performance Instrumentation Counter.

PIL Processor Interrupt Level register.

pipeline Refers to an execution pipeline. It is a loose term for the basic collection of
hardware needed to execute instructions. A pipeline may be used by one or
more strands to execute instructions from one or more threads. Synonym for
microcore. See also physical core, processor, strand, thread, and virtual
processor.

PIPT Physically indexed, physically tagged (cache).

POR Power-on reset.
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prefetchable (1) An attribute of a memory location that indicates to an MMU that
PREFETCH operations to that location may be applied.
(2) A memory location condition for which the system designer has
determined that no undesirable effects will occur if a PREFETCH operation to
that location is allowed to succeed. Typically, normal memory is prefetchable.

Nonprefetchable locations include those that, when read, change state or cause
external events to occur. For example, some I/O devices are designed with
registers that clear on read; others have registers that initiate operations when
read. See side effect.

privileged An adjective that describes:
(1) the state of the processor when PSTATE.priv = 1 and HPSTATE.hpriv = 0,
that is, privileged mode;
(2) processor state that is only accessible to software while the processor is in
privileged mode; for example, privileged registers, privileged ASRs, or, in
general, privileged state;
(3) an instruction that can be executed only when the processor is in privileged
mode.

privileged mode The mode in which a processor is operating when PSTATE.priv = 1 and
HPSTATE.hpriv = 0. See also nonprivileged.

processor The unit on which a shared interface is provided to control the configuration
and execution of a collection of strands. A processor contains one or more
physical cores, each of which contains one or more strands. On a more physical
side, a processor is a physical module that plugs into a system. A processor is
expected to appear logically as a single agent on the system interconnect fabric.
Synonym for processor module. See also pipeline, physical core, strand, thread,
and virtual processor.

processor core See virtual processor.

processor module Synonym for processor.

program counter (PC) A register that contains the address of the instruction currently being executed.

quadword A 16-byte datum. Note: The definition of this term is architecture dependent
and may be different from that used in other processor architectures.

R register An integer register. Also called a general-purpose register or working register.

RA Real address.

RAS (1) Return Address Stack
(2) Reliability, Availability, and Serviceability

RAW Read After Write (hazard)

rd Rounding direction.

RDPR Read Privileged Register instruction.
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RED_state Reset, Error, and Debug state. The virtual processor state when
HPSTATE.red = 1. A restricted execution environment used to process resets
and traps that occur when TL = MAXTL – 1.

RED_state trap A trap processed in RED_state. Contrast with normal trap.

reserved Describing an instruction field, certain bit combinations within an instruction
field, or a register field that is reserved for definition by future versions of the
architecture.

A reserved instruction field must read as 0, unless the implementation supports
extended instructions within the field. The behavior of an UltraSPARC
Architecture 2005 virtual processor when it encounters a nonzero value in a
reserved instruction field is as defined in Reserved Opcodes and Instruction Fields
on page 132.

A reserved bit combination within an instruction field is defined in Chapter 7,
Instructions. In all cases, an UltraSPARC Architecture 2005 processor must
decode and trap on such reserved bit combinations.

A reserved field within a register reads as 0 in current implementations and, when
written by software, should always be written with values of that field
previously read from that register or with the value zero (as described in
Reserved Register Fields on page 48).

Throughout this specification, figures and tables illustrating registers and
instruction encodings indicate reserved fields and combinations with an em
dash (—).

reset trap A vectored transfer of control to privileged software through a fixed-address
reset trap table. Reset traps cause entry into RED_state.

restricted Describes an address space identifier (ASI) that may be accessed only while the
virtual processor is operating in a privileged mode or hyperprivileged mode.

retired An instruction is said to be “retired” when one of (instruction) the following
two events has occurred:
(1) A precise trap has been taken, with TPC containing the instruction's
address (the instruction has not changed architectural state in this case).
(2) The instruction's execution has progressed to a point at which architectural
state affected by the instruction has been updated such that all three of the
following are true:

■ The PC has advanced beyond the instruction.
■ Except for deferred trap handlers, no consumer in the same instruction

stream can see the old values and all consumers in the same instruction
stream will see the new values.

■ Stores are visible to all loads in the same instruction stream, including
stores to noncacheable locations.

RMO Relaxed memory order.
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rs1, rs2, rd The integer or floating-point register operands of an instruction. rs1 and rs2
are source registers; rd is the destination register.

RTO Read to Own (a type of transaction, used to request ownership of a cache line).

RTS Read to Share (a type of transaction, used to request read-only access to a
cache line).

running A state of a virtual processor in which it is in operation (maintaining cache
coherency and issuing instructions for execution) and not Parked.

service processor A device external to the processor that can examine and alter internal
processor state. A service processor may be used to control/coordinate a
multiprocessor system and aid in error recovery.

SFAR Synchronous Fault Address register.

SFSR Synchronous Fault Status register.

shall Synonym for must.

should A keyword indicating flexibility of choice with a strongly preferred
implementation. Synonym for it is recommended.

side effect The result of a memory location having additional actions beyond the reading
or writing of data. A side effect can occur when a memory operation on that
location is allowed to succeed. Locations with side effects include those that,
when accessed, change state or cause external events to occur. For example,
some I/O devices contain registers that clear on read; others have registers that
initiate operations when read. See also prefetchable.

SIMD Single Instruction/Multiple Data; a class of instructions that perform identical
operations on multiple data contained (or “packed”) in each source operand.

SIR Software-initiated reset.

snooping The process of maintaining coherency between caches in a shared-memory bus
architecture. All cache controllers monitor (snoop) the bus to determine
whether they have a copy of the shared cache block.

speculative load A load operation that is issued by a virtual processor speculatively, that is,
before it is known whether the load will be executed in the flow of the
program. Speculative accesses are used by hardware to speed program
execution and are transparent to code. An implementation, through a
combination of hardware and system software, must nullify speculative loads
on memory locations that have side effects; otherwise, such accesses produce
unpredictable results. Contrast with nonfaulting load.

store An instruction that writes (but does not explicitly read) memory or writes (but
does not explicitly read) location(s) in an alternate address space. Some
examples of Store includes stores from either integer or floating-point registers,
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block stores, Partial Store, and alternate address space variants of those
instructions. See also load and load-store, the definitions of which are mutually
exclusive with store.

strand Identifies the hardware state used to hold a software thread in order to execute
it. Strand is specifically the software-visible architected state (program counter
(PC), next program counter (NPC), general-purpose registers, floating-point
registers, condition codes, status registers, ASRs, etc.) of a thread and any
microarchitecture state required by hardware for its execution. See also
pipeline, physical core, processor, thread, and virtual processor.

subnormal number Synonym for denormalized number.

superscalar An implementation that allows several instructions to be issued, executed, and
committed in one clock cycle.

supervisor software Software that executes when the virtual processor is in privileged mode.

suspend See park.

synchronization An operation that causes the processor to wait until the effects of all previous
instructions are completely visible before any subsequent instructions are
executed.

system A set of virtual processors that share a physical address space.

taken A control-transfer instruction (CTI) is taken when the CTI alters the control
flow by writing a value into NPC other than the default value NPC = 4.

A trap is taken when the control flow changes in response to an exception,
reset, Tcc instruction, or interrupt. An exception must be detected and
recognized before it can cause a trap to be taken.

TBA Trap base address.

TEE Thread Execution Engine. Synonym for virtual processor and strand.

thread A software entity that can be run on hardware. A thread is scheduled, may or
may not be actively running on hardware at any given time, and may migrate
around the hardware of a system. See also pipeline, physical core, processor,
strand, and virtual processor.

TLB See Translation Lookaside Buffer (TLB).

TLB hit The desired translation is present in the TLB.

TLB miss The desired translation is not present in the TLB.

TPC Trap-saved program counter.

Translation Lookaside
Buffer (TLB) A cache within an MMU that contains recent partial translations. TLBs speed

up closely following translations by often eliminating the need to reread
Translation Table Entries from memory.
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trap The action taken by a virtual processor when it changes the instruction flow in
response to the presence of an exception, reset, a Tcc instruction, or an
interrupt. The action is a vectored transfer of control to supervisor software
through a table, the address of which is specified by the privileged Trap Base
Address (TBA) register. See also exception.

TSB Translation storage buffer. A table of the address translations that is
maintained by software in system memory and that serves as a cache of the
address translations.

TSO Total store order.

TTE Translation Table Entry. Describes the virtual-to-physical translation and page
attributes for a specific page in the page table. In some cases, the term is
explicitly used for the entries in the TSB.

UA-2005 UltraSPARC Architecture 2005

unassigned A value (for example, an ASI number), the semantics of which are not
architecturally mandated and which may be determined independently by
each implementation within any guidelines given.

undefined An aspect of the architecture that has deliberately been left unspecified.
Software should have no expectation of, nor make any assumptions about, an
undefined feature or behavior. Use of such a feature can deliver unexpected
results, may or may not cause a trap, can vary among implementations, and
can vary with time on a given implementation.

Notwithstanding any of the above, undefined aspects of the architecture shall
not cause security holes (such as changing the privilege state or allowing
circumvention of normal restrictions imposed by the privilege state), put a
virtual processor into privileged mode, or put the virtual processor into an
unrecoverable state.

unimplemented An architectural feature that is not directly executed in hardware because it is
optional or is emulated in software.

unpark The process of bringing a virtual processor out of suspension. There may be a
delay until the virtual processor is unparked, but no heavyweight operation
(such as a reset) is required to complete the unparking process. See also disable
and park.

unparked Synonym for running.

unpredictable Synonym for undefined.

uniprocessor system A system containing a single virtual processor.

unrestricted Describes an address space identifier (ASI) that can be used in all privileged
modes; that is, regardless of the value of PSTATE.priv and HPSTATE.hpriv.

user application
program Synonym for application program.
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VA Virtual address.

virtual address An address produced by a virtual processor that maps all systemwide,
program-visible memory. Virtual addresses usually are translated by a
combination of hardware and software to physical addresses, which can be
used to access physical memory.

virtual core,
virtual processor,

virtual processor core Synonyms: virtual processor.

virtual processor The term virtual processor, or virtual processor core, is used to identify each
strand in a processor. A CMT processor contains one or more physical cores,
each of which contains one or more virtual processors (strands). Each virtual
processor (strand) has its own interrupt ID. At any given time, an operating
system can have a different thread scheduled on each virtual processor. See also
pipeline, physical core, processor, strand, and thread.

VIS VIS™ Instruction Set.

Strand Abbreviation for Virtual Processor.

WDR Watchdog reset.

word A 4-byte datum. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.

WRPR Write Privileged Register instruction.

XIR Externally initiated reset.
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CHAPTER 4

Architecture Overview

The UltraSPARC Architecture supports 32- and 64-bit integer and 32- 64-, and 128-bit
floating-point as its principal data types. The 32- and 64-bit floating-point types
conform to IEEE Std 754-1985. The 128-bit floating-point type conforms to IEEE Std
1596.5-1992. The architecture defines general-purpose integer, floating-point, and
special state/status register instructions, all encoded in 32-bit-wide instruction
formats. The load/store instructions address a linear, 264-byte virtual address space.

The UltraSPARC Architecture 2005 specification describes a processor architecture to
which Sun Microsystem’s SPARC processor implementations (beginning with
UltraSPARC T1) comply. Future implementations are expected to comply with either
this document or a later revision of this document.

The UltraSPARC Architecture 2005 is a descendant of the SPARC V9 architecture and
complies fully with the “Level 1” (nonprivileged) SPARC V9 specification.

Nonprivileged (application) software that is intended to be portable across all
SPARC V9 processors should be written to adhere to The SPARC Architecture Manual-
Version 9.

Material in this document specific to UltraSPARC Architecture 2005 processors may
not apply to SPARC V9 processors produced by other vendors.

In this specification, the word architecture refers to the processor features that are
visible to an assembly language programmer or to a compiler code generator. It does
not include details of the implementation that are not visible or easily observable by
software, nor those that only affect timing (performance).
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4.1 The UltraSPARC Architecture 2005
This section briefly describes features, attributes, and components of the
UltraSPARC Architecture 2005 and, further, describes correct implementation of the
architecture specification and SPARC V9-compliance levels.

4.1.1 Features
The UltraSPARC Architecture 2005, like its ancestor SPARC V9, includes the
following principal features:

■ A linear 64-bit address space with 64-bit addressing.

■ 32-bit wide instructions — These are aligned on 32-bit boundaries in memory.
Only load and store instructions access memory and perform I/O.

■ Few addressing modes — A memory address is given as either “register +
register” or “register + immediate”.

■ Triadic register addresses — Most computational instructions operate on two
register operands or one register and a constant and place the result in a third
register.

■ A large windowed register file — At any one instant, a program sees 8 global
integer registers plus a 24-register window of a larger register file. The windowed
registers can be used as a cache of procedure arguments, local values, and return
addresses.

■ Floating point — The architecture provides an IEEE 754-compatible floating-
point instruction set, operating on a separate register file that provides 32 single-
precision (32-bit), 32 double-precision (64-bit), 16 quad-precision (128-bit)
registers, or a mixture thereof.

■ Fast trap handlers — Traps are vectored through a table.

■ Multiprocessor synchronization instructions — One instruction performs an
atomic read-then-set-memory operation; another performs an atomic exchange-
register-with-memory operation; another compares the contents of a register with
a value in memory and exchanges memory with the contents of another register if
the comparison was equal (compare and swap); two others synchronize the order
of shared memory operations as observed by virtual processors.

■ Predicted branches — The branch with prediction instructions allows the
compiler or assembly language programmer to give the hardware a hint about
whether a branch will be taken.

■ Branch elimination instructions — Several instructions can be used to eliminate
branches altogether (for example, Move on Condition). Eliminating branches
increases performance in superscalar and superpipelined implementations.
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■ Hardware trap stack — A hardware trap stack is provided to allow nested traps.
It contains all of the machine state necessary to return to the previous trap level.
The trap stack makes the handling of faults and error conditions simpler, faster,
and safer.

In addition, UltraSPARC Architecture 2005 includes the following features that were
not present in the SPARC V9 specification:

■ Hyperprivileged mode, which simplifies porting of operating systems, supports
far greater portability of operating system (privileged) software, supports the
ability to run multiple simultaneous guest operating systems, and provides more
robust handling of error conditions.

■ Multiple levels of global registers — Instead of the two 8-register sets of global
registers specified in the SPARC V9 architecture, UltraSPARC Architecture 2005
provides multiple sets; typically, one set is used at each trap level.

■ Extended instruction set — UltraSPARC Architecture 2005 provides many
instruction set extensions, including the VIS instruction set for "vector" (SIMD)
data operations.

■ More detailed, specific instruction descriptions — UltraSPARC Architecture
2005 provides many more details regarding what exceptions can be generated by
each instruction and the specific conditions under which those exceptions can
occur. Also, detailed lists of valid ASIs are provided for each load/store
instruction from/to alternate space.

■ Detailed MMU architecture — Although some details of the UltraSPARC MMU
architecture are necessarily implementation-specifc, UltraSPARC Architecture
2005 provides a blueprint for the UltraSPARC MMU, including software view
(TTEs and TSBs) and MMU hardware control registers.

■ Chip-Level Multithreading (CMT) — UltraSPARC Architecture 2005 provides a
control architecture for highly-threaded processor implementations.

4.1.2 Attributes
UltraSPARC Architecture 2005 is a processor instruction set architecture (ISA) derived
from SPARC V8 and SPARC V9, which in turn come from a reduced instruction set
computer (RISC) lineage. As an architecture, UltraSPARC Architecture 2005 allows
for a spectrum of processor and system implementations at a variety of price/
performance points for a range of applications, including scientific/engineering,
programming, real-time, and commercial applications.
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4.1.2.1 Design Goals

The UltraSPARC Architecture 2005 architecture is designed to be a target for
optimizing compilers and high-performance hardware implementations. This
specification documents the UltraSPARC Architecture 2005 and provides a design
spec against which an implementation can be verified, using appropriate verification
software.

4.1.2.2 Register Windows

The UltraSPARC Architecture 2005 architecture is derived from the SPARC
architecture, which was formulated at Sun Microsystems in 1984 through1987. The
SPARC architecture is, in turn, based on the RISC I and II designs engineered at the
University of California at Berkeley from 1980 through 1982. The SPARC “register
window” architecture, pioneered in the UC Berkeley designs, allows for
straightforward, high-performance compilers and a reduction in memory load/store
instructions.

Note that supervisor software, not user programs, manages the register windows.
The supervisor can save a minimum number of registers (approximately 24) during
a context switch, thereby optimizing context-switch latency.

4.1.3 System Components
The UltraSPARC Architecture 2005 allows for a spectrum of subarchitectures, such
as cache system, I/O, and memory management unit (MMU).

4.1.3.1 Binary Compatibility

The most important SPARC V9 architectural mandate is binary compatibility of
nonprivileged programs across implementations. Binaries executed in nonprivileged
mode should behave identically on all SPARC V9 systems when those systems are
running an operating system known to provide a standard execution environment.
One example of such a standard environment is the SPARC V9 Application Binary
Interface (ABI).

Although different SPARC V9 systems can execute nonprivileged programs at
different rates, they will generate the same results as long as they are run under the
same memory model. See Chapter 9, Memory, for more information.

Additionally, the SPARC V9 architecture is binary upward-compatible from SPARC
V8 for applications running in nonprivileged mode that conform to the SPARC V8
ABI.
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4.1.3.2 UltraSPARC Architecture 2005 MMU

Although the SPARC V9 architecture allows its implementations freedom in their
MMU designs, UltraSPARC Architecture 2005 defines a common MMU architecture
(see Chapter 14, Memory Management) with some specifics left to implementations
(see processor implementation documents).

4.1.3.3 Privileged Software

UltraSPARC Architecture 2005 does not assume that all implementations must
execute identical privileged software (operating systems) or hyperprivileged
software (hypervisors). Thus, certain traits that are visible to privileged software
may be tailored to the requirements of the system.

4.1.4 Architectural Definition
The UltraSPARC Architecture 2005 is defined by the chapters and normative
appendixes of this specification. A correct implementation of the architecture
interprets a program strictly according to the rules and algorithms specified in the
chapters and normative appendixes.

UltraSPARC Architecture 2005 defines a set of implementations that conform to the
SPARC V9 architecture, Level 1.

4.1.5 UltraSPARC Architecture 2005 Compliance with
SPARC V9 Architecture
UltraSPARC Architecture 2005 fully complies with SPARC V9 Level 1
(nonprivileged). It partially complies with SPARC V9 Level 2 (privileged).

4.1.6 Implementation Compliance with UltraSPARC
Architecture 2005
Compliant implementations must not add to or deviate from this standard except in
aspects described as implementation dependent. Appendix B, Implementation
Dependencies lists all UltraSPARC Architecture 2005, SPARC V8, and SPARC V9
implementation dependencies. Documents for specific UltraSPARC Architecture
2005 processor implementations describe the manner in which implementation
dependencies have been resolved in those implementations.
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IMPL. DEP. #1-V8: Whether an instruction complies with UltraSPARC Architecture
2005 by being implemented directly by hardware, simulated by software, or
emulated by firmware is implementation dependent.

4.2 Processor Architecture
An UltraSPARC Architecture processor logically consists of an integer unit (IU) and
a floating-point unit (FPU), each with its own registers. This organization allows for
implementations with concurrent integer and floating-point instruction execution.
Integer registers are 64 bits wide; floating-point registers are 32, 64, or 128 bits wide.
Instruction operands are single registers, register pairs, register quadruples, or
immediate constants.

An UltraSPARC Architecture virtual processor can run in nonprivileged mode,
privileged mode, or hyperprivileged mode. In hyperprivileged mode, the processor can
execute any instruction, including privileged instructions. In privileged mode, the
processor can execute nonprivileged and privileged instructions. In nonprivileged
mode, the processor can only execute nonprivileged instructions. In nonprivileged
or privileged mode, an attempt to execute an instruction requiring greater privilege
than the current mode causes a trap to hyperprivileged software.

4.2.1 Integer Unit (IU)
The integer unit contains the general-purpose registers and controls the overall
operation of the virtual processor. The IU executes the integer arithmetic
instructions and computes memory addresses for loads and stores. It also maintains
the program counters and controls instruction execution for the FPU.

IMPL. DEP. #2-V8: An UltraSPARC Architecture implementation may contain from
72 to 640 general-purpose 64-bit R registers. This corresponds to a grouping of the
registers into MAXPGL MAXGL + 1 sets of global R registers plus a circular stack of
N_REG_WINDOWS sets of 16 registers each, known as register windows. The number
of register windows present (N_REG_WINDOWS) is implementation dependent, within
the range of 3 to 32 (inclusive).
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4.2.2 Floating-Point Unit (FPU)
The FPU has thirty-two 32-bit (single-precision) floating-point registers, thirty-two
64-bit (double-precision) floating-point registers, and sixteen 128-bit (quad-
precision) floating-point registers, some of which overlap. Double-precision values
occupy an even-odd pair of single-precision registers , and quad-precision values
occupy a quad-aligned group of four single-precision registers.

If no FPU is present, then it appears to software as if the FPU is permanently
disabled.

If the FPU is not enabled, then an attempt to execute a floating-point instruction
generates an fp_disabled trap and the fp_disabled trap handler software must either

■ Enable the FPU (if present) and reexecute the trapping instruction, or
■ Emulate the trapping instruction in software.

4.3 Instructions
Instructions fall into the following basic categories:

■ Memory access
■ Integer arithmetic / logical / shift
■ Control transfer
■ State register access
■ Floating-point operate
■ Conditional move
■ Register window management

These classes are discussed in the following subsections.

4.3.1 Memory Access
Load, store, load-store, and PREFETCH instructions are the only instructions that
access memory. They use two R registers or an R register and a signed 13-bit
immediate value to calculate a 64-bit, byte-aligned memory address. The Integer
Unit appends an ASI to this address.

The destination field of the load/store instruction specifies either one or two R
registers or one, two, or four F registers that supply the data for a store or that
receive the data from a load.
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Integer load and store instructions support byte, halfword (16-bit), word (32-bit),
and doubleword (64-bit) accesses. Some versions of integer load instructions
perform sign extension on 8-, 16-, and 32-bit values as they are loaded into a 64-bit
destination register. Floating-point load and store instructions support word,
doubleword, and quadword1 memory accesses.

CASA, CASXA, SWAP, and LDSTUB are special atomic memory access instructions
that concurrent processes use for synchronization and memory updates.

The (nonportable) LDTXA instruction supplies an atomic 128-bit (16-byte) load that
is important in certain system software applications.

4.3.1.1 Memory Alignment Restrictions

A memory access on an UltraSPARC Architecture virtual processor must typically be
aligned on an address boundary greater than or equal to the size of the datum being
accessed. An improperly aligned address in a load, store, or load-store in instruction
may trigger an exception and cause a subsequent trap. For details, see Memory
Alignment Restrictions on page 114.

4.3.1.2 Addressing Conventions

The SPARC V9 architecture uses big-endian byte order by default: the address of a
quadword, doubleword, word, or halfword is the address of its most significant
byte. Increasing the address means decreasing the significance of the unit being
accessed. All instruction accesses are performed using big-endian byte order.

The SPARC V9 architecture also supports little-endian byte order for data accesses
only: the address of a quadword, doubleword, word, or halfword is the address of
its least significant byte. Increasing the address means increasing the significance of
the data unit being accessed. See Processor State (PSTATEP) Register (PR 6) on page 94
for information about changing the implicit byte order to little-endian.

Addressing conventions are illustrated in FIGURE 6-2 on page 117 and FIGURE 6-3 on
page 119.

4.3.1.3 Addressing Range

IMPL. DEP. #405-S10: An UltraSPARC Architecture implementation may support a
full 64-bit virtual address space or a more limited range of virtual addresses. In an
implementation that does support a full 64-bit virtual address space, the supported
range of virtual addresses is restricted to two equal-sized ranges at the extreme
upper and lower ends of 64-bit addresses; that is, for n-bit virtual addresses, the
valid address ranges are 0 to 2n−1 − 1 and 264 − 2n−1 to 264 − 1.

1. No UltraSPARC Architecture processor currently implements the LDQF instruction in hardware; it generates
an exception and is emulated in supervisor software.
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4.3.1.4 Load/Store Alternate

Versions of load/store instructions, the load/store alternate instructions, can specify an
arbitrary 8-bit address space identifier for the load/store data access. Access to
alternate spaces 0016–7F16 is restricted to privileged code, and access to alternate
spaces 8016–FF16 is unrestricted. Some of the ASIs are available for implementation-
dependent uses. Supervisor software can use the implementation-dependent ASIs to
access special protected registers, such as MMU, cache control, and virtual processor
state registers, and other processor- or system-dependent values. See Address Space
Identifiers (ASIs) on page 120 for more information.

Alternate space addressing is also provided for the atomic memory access
instructions LDSTUBA, CASA, and CASXA.

4.3.1.5 Separate I and D Memories

The interpretation of addresses can be unified, in which case the same translations
and caching are applied to both instructions and data. Alternatively, addresses can
be split, in which case instruction references use one translation mechanism and
cache and data references use another, although the same main memory is shared.

In such split-memory systems, the coherency mechanism may be split, so a write
into data memory is not immediately reflected in instruction memory. For this
reason, programs that modify their own code (self-modifying code) and that wish to
be portable across all SPARC V9 processors must issue FLUSH instructions, or a
system call with a similar effect, to bring the instruction and data caches into a
consistent state.

An UltraSPARC Architecture virtual processor may or may not have coherent
instruction and data caches. Even if it does, a FLUSH instruction is required for self-
modifying code — not for cache coherency, but to flush pipeline instruction buffers
that contain unmodified instructions which may have been subsequently modified.

4.3.1.6 Input/Output (I/O)

The UltraSPARC Architecture assumes that input/output registers are accessed
through load/store alternate instructions, normal load/store instructions, or read/
write Ancillary State Register instructions (RDasr, WRasr).

IMPL. DEP. #123-V9: The semantic effect of accessing input/output (I/O) locations
is implementation dependent.

IMPL. DEP. #6-V8: Whether the I/O registers can be accessed by nonprivileged code
is implementation dependent.

Note SWAPA is also available, but it is deprecated and should not be
used in newly developed software.
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IMPL. DEP. #7-V8: The addresses and contents of I/O registers are implementation
dependent.

4.3.1.7 Memory Synchronization

Two instructions are used for synchronization of memory operations: FLUSH and
MEMBAR. Their operation is explained in Flush Instruction Memory on page 186 and
Memory Barrier on page 271, respectively.

4.3.2 Arithmetic / Logical / Shift Instructions
The arithmetic/logical/shift instructions perform arithmetic, tagged arithmetic,
logical, and shift operations. With one exception, these instructions compute a result
that is a function of two source operands; the result is either written into a
destination register or discarded. The exception, SETHI, can be used in combination
with another arithmetic or logical instruction to create a 32-bit constant in an R
register.

Shift instructions shift the contents of an R register left or right by a given count. The
shift distance is specified by a constant in the instruction or by the contents of an R
register.

The integer multiply instruction performs a 64 × 64 → 64-bit operation. The integer
division instructions perform 64 ÷ 64 → 64-bit operations. Division by zero causes a
trap. Some versions of the 32-bit multiply and divide instructions set the condition
codes.

The tagged arithmetic instructions assume that the least-significant two bits of each
operand are a data-type tag. These instructions set the integer condition code (icc)
and extended integer condition code (xcc) overflow bits on 32-bit (icc) or 64-bit (xcc)
arithmetic overflow. In addition, if any of the operands’ tag bits are nonzero, icc is
set. The xcc overflow bit is not affected by the tag bits.

4.3.3 Control Transfer
Control-transfer instructions (CTIs) include PC-relative branches and calls, register-
indirect jumps, and conditional traps. Most of the control-transfer instructions are
delayed; that is, the instruction immediately following a control-transfer instruction
in logical sequence is dispatched before the control transfer to the target address is
completed. Note that the next instruction in logical sequence may not be the
instruction following the control-transfer instruction in memory.

Note STBAR is also available, but it is deprecated and should not be
used in newly developed software.
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The instruction following a delayed control-transfer instruction is called a delay
instruction. A bit in a delayed control-transfer instruction (the annul bit) can cause
the delay instruction to be annulled (that is, to have no effect) if the branch is not
taken (or in the “branch always” case if the branch is taken).

Branch and CALL instructions use PC-relative displacements. The jump and link
(JMPL) and return (RETURN) instructions use a register-indirect target address.
They compute their target addresses either as the sum of two R registers or as the
sum of an R register and a 13-bit signed immediate value. The “branch on condition
codes without prediction” instruction provides a displacement of ±8 Mbytes; the
“branch on condition codes with prediction” instruction provides a displacement of
±1 Mbyte; the “branch on register contents” instruction provides a displacement of
±128 Kbytes; and the CALL instruction’s 30-bit word displacement allows a control
transfer to any address within ± 2 gigabytes (± 231 bytes).

4.3.4 State Register Access
The read and write state register instructions read and write the contents of state
registers visible to nonprivileged software (Y, CCR, ASI, PC, TICK, and FPRS). The
read and write privileged register instructions read and write the contents of state
registers visible only to privileged software (TPC, TNPC, TSTATE, TT, TICK, TBA,
PSTATE, TL, PIL, CWP, CANSAVE, CANRESTORE, CLEANWIN, OTHERWIN,
WSTATE, and VER).

IMPL. DEP. #8-V8-Cs20: Ancillary state registers (ASRs) in the range 0–27 that are
not defined in UltraSPARC Architecture 2005 are reserved for future architectural
use. ASRs in the range 28–31 are available to be used for implementation-dependent
purposes.

IMPL. DEP. #9-V8-Cs20: Whether each of the implementation-dependent read/
write ancillary state register instructions (for ASRs 28–31) is privileged is
implementation dependent.

Note The SPARC V8 architecture specified that the delay instruction
was always fetched, even if annulled, and that an annulled
instruction could not cause any traps. The SPARC V9
architecture does not require the delay instruction to be fetched
if it is annulled.

Note The return from privileged trap instructions (DONE and
RETRY) get their target address from the appropriate TPC or
TNPC register.
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4.3.5 Floating-Point Operate
Floating-point operate (FPop) instructions perform all floating-point calculations;
they are register-to-register instructions that operate on the floating-point registers.
FPops compute a result that is a function of one or two source operands. The groups
of instructions that are considered FPops are listed in Floating-Point Operate (FPop)
Instructions on page 131.

4.3.6 Conditional Move
Conditional move instructions conditionally copy a value from a source register to a
destination register, depending on an integer or floating-point condition code or
upon the contents of an integer register. These instructions increase performance by
reducing the number of branches.

4.3.7 Register Window Management
Register window instructions manage the register windows. SAVE and RESTORE
are nonprivileged and cause a register window to be pushed or popped. FLUSHW is
nonprivileged and causes all of the windows except the current one to be flushed to
memory. SAVED and RESTORED are used by privileged software to end a window
spill or fill trap handler.

4.4 Traps
A trap is a vectored transfer of control to privileged software through a trap table
that may contain the first 8 instructions (32 for some frequently used traps) of each
trap handler. The base address of the table is established by software in a state
register (the Trap Base Address register, TBA, or the Hyperprivileged Trap Base
Register, HTBA). The displacement within the table is encoded in the type number of
each trap and the level of the trap. Part of the trap table is reserved for hardware
traps, and part of it is reserved for software traps generated by trap (Tcc)
instructions.

A trap causes the current PC and NPC to be saved in the TPC and TNPC registers.
It also causes the CCR, ASI, PSTATE, and CWP registers to be saved in TSTATE.
TPC, TNPC, and TSTATE are entries in a hardware trap stack, where the number of
entries in the trap stack is equal to the number of supported trap levels. A trap
causes hyperprivileged state to be saved in the HTSTATE trap stack. A trap also sets
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bits in the PSTATE register and typically increments the GL register. Normally, the
CWP is not changed by a trap; on a window spill or fill trap, however, the CWP is
changed to point to the register window to be saved or restored.

A trap can be caused by a Tcc instruction, an asynchronous exception, an instruction-
induced exception, or an interrupt request not directly related to a particular
instruction. Before executing each instruction, a virtual processor determines if there
are any pending exceptions or interrupt requests. If any are pending, the virtual
processor selects the highest-priority exception or interrupt request and causes a
trap.

See Chapter 12, Traps, for a complete description of traps.

4.5 Chip-Level Multithreading (CMT)
An UltraSPARC Architecture implementation may include multiple virtual processor
cores on the same processor module to provide a dense, high-throughput system.
This may be achieved by having a combination of multiple physical processor cores
and/or multiple strands (threads) per physical processor core. Chapter 15, Chip-Level
Multithreading (CMT), specifies a common interface between hardware and software
for such products, referred to here as chip-level multiprocessors (CMT processors).
Chapter 10 addresses issues common to CMT processors, regardless of the
microarchitecture of the individual physical processor cores.

The CMT Programming Model describes a set of privileged registers that are used
for identification and configuration of CMT processors. Equally important, the CMT
Programming Model describes certain behavior that must be common across all
UltraSPARC Architecture CMT processors. The set of registers and the common
behavior are covered in Chapter 15, Chip-Level Multithreading (CMT).
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CHAPTER 5

Data Formats

The UltraSPARC Architecture recognizes these fundamental data types:
■ Signed integer: 8, 16, 32, and 64 bits
■ Unsigned integer: 8, 16, 32, and 64 bits
■ SIMD data formats: Uint8 SIMD (32 bits), Int16 SIMD (64 bits), and Int32 SIMD

(64 bits)
■ Floating point: 32, 64, and 128 bits

The widths of the data types are as follows:
■ Byte: 8 bits
■ Halfword: 16 bits
■ Word: 32 bits
■ Tagged word: 32 bits (30-bit value plus 2-bit tag)
■ Doubleword/Extended-word: 64 bits
■ Quadword: 128 bits

The signed integer values are stored as two’s-complement numbers with a width
commensurate with their range. Unsigned integer values, bit vectors, Boolean
values, character strings, and other values representable in binary form are stored as
unsigned integers with a width commensurate with their range. The floating-point
formats conform to the IEEE Standard for Binary Floating-point Arithmetic, IEEE
Std 754-1985. In tagged words, the least significant two bits are treated as a tag; the
remaining 30 bits are treated as a signed integer.

Data formats are described in these sections:
■ Integer Data Formats on page 36.
■ Floating-Point Data Formats on page 40.
■ SIMD Data Formats on page 43.

Names are assigned to individual subwords of the multiword data formats as
described in these sections:
■ Signed Integer Doubleword (64 bits) on page 37.
■ Unsigned Integer Doubleword (64 bits) on page 39.
■ Floating Point, Double Precision (64 bits) on page 41.
■ Floating Point, Quad Precision (128 bits) on page 42.
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5.1 Integer Data Formats
TABLE 5-1 describes the width and ranges of the signed, unsigned, and tagged integer
data formats.

TABLE 5-2 describes the memory and register alignment for multiword integer data.
All registers in the integer register file are 64 bits wide, but can be used to contain
smaller (narrower) data sizes. Note that there is no difference between integer
extended-words and doublewords in memory; the only difference is how they are
represented in registers.

TABLE 5-1 Signed Integer, Unsigned Integer, and Tagged Format Ranges

Data Type
Width
(bits) Range

Signed integer byte 8 −27 to 27 − 1

Signed integer halfword 16 −215 to 215 − 1

Signed integer word 32 −231 to 231 − 1

Signed integer doubleword/extended-word 64 −263 to 263 − 1

Unsigned integer byte 8 0 to 28 − 1

Unsigned integer halfword 16 0 to 216 − 1

Unsigned integer word 32 0 to 232 − 1

Unsigned integer doubleword/extended-word 64 0 to 264 − 1

Integer tagged word 32 0 to 230 − 1

TABLE 5-2 Integer Doubleword/Extended-word Alignment

Subformat
Name Subformat Field

Memory Address Register Number

Required
Alignment

Address
(big-endian)1

1. The Memory Address in this table applies to big-endian memory accesses. Word and byte order are reversed when little-endian access-
es are used.

Required
Alignment

Register
Number

SD-0 signed_dbl_integer{63:32} n mod 8 = 0 n r mod 2 = 0 r

SD-1 signed_dbl_integer{31:0} (n + 4) mod 8 = 4 n + 4 (r + 1) mod 2 = 1 r + 1

SX signed_ext_integer{63:0} n mod 8 = 0 n — r

UD-0 unsigned_dbl_integer{63:32} n mod 8 = 0 n r mod 2 = 0 r

UD-1 unsigned_dbl_integer{31:0} (n + 4) mod 8 = 4 n + 4 (r + 1) mod 2 = 1 r + 1

UX unsigned_ext_integer{63:0} n mod 8 = 0 n — r
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The data types are illustrated in the following subsections.

5.1.1 Signed Integer Data Types
Figures in this section illustrate the following signed data types:

■ Signed integer byte
■ Signed integer halfword
■ Signed integer word
■ Signed integer doubleword
■ Signed integer extended-word

5.1.1.1 Signed Integer Byte, Halfword, and Word

FIGURE 5-1 illustrates the signed integer byte, halfword, and word data formats.

FIGURE 5-1 Signed Integer Byte, Halfword, and Word Data Formats

5.1.1.2 Signed Integer Doubleword (64 bits)

FIGURE 5-2 illustrates both components (SD-0 and SD-1) of the signed integer double
data format.

FIGURE 5-2 Signed Integer Double Data Format
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CHAPTER 5 • Data Formats 37



5.1.1.3 Signed Integer Extended-Word (64 bits)

FIGURE 5-3 illustrates the signed integer extended-word (SX) data format.

FIGURE 5-3 Signed Integer Extended-Word Data Format

5.1.2 Unsigned Integer Data Types
Figures in this section illustrate the following unsigned data types:

■ Unsigned integer byte
■ Unsigned integer halfword
■ Unsigned integer word
■ Unsigned integer doubleword
■ Unsigned integer extended-word

5.1.2.1 Unsigned Integer Byte, Halfword, and Word

FIGURE 5-4 illustrates the unsigned integer byte data format.

FIGURE 5-4 Unsigned Integer Byte, Halfword, and Word Data Formats
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5.1.2.2 Unsigned Integer Doubleword (64 bits)

FIGURE 5-5 illustrates both components (UD-0 and UD-1) of the unsigned integer
double data format.

FIGURE 5-5 Unsigned Integer Double Data Format

5.1.2.3 Unsigned Extended Integer (64 bits)

FIGURE 5-6 illustrates the unsigned extended integer (UX) data format.

FIGURE 5-6 Unsigned Extended Integer Data Format

5.1.3 Tagged Word (32 bits)
FIGURE 5-7 illustrates the tagged word data format.

FIGURE 5-7 Tagged Word Data Format
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5.2 Floating-Point Data Formats
Single-precision, double-precision, and quad-precision floating-point data types are
described below.

5.2.1 Floating Point, Single Precision (32 bits)
FIGURE 5-8 illustrates the floating-point single-precision data format, and TABLE 5-3
describes the formats.

FIGURE 5-8 Floating-Point Single-Precision Data Format

TABLE 5-3 Floating-Point Single-Precision Format Definition

s = sign (1 bit)
e = biased exponent (8 bits)
f = fraction (23 bits)
u = undefined

Normalized value (0 < e < 255): (−1)s × 2e−127 × 1.f

Subnormal value (e = 0): (−1)s × 2−126 × 0.f

Zero (e = 0, f = 0) (−1)s × 0

Signalling NaN s = u; e = 255 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s = u; e = 255 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 255 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 255 (max); f = .000--00

31 30 0

S

2223

FS exp{7:0} fraction{22:0}
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5.2.2 Floating Point, Double Precision (64 bits)
FIGURE 5-9 illustrates both components (FD-0 and FD-1) of the floating-point double-
precision data format, and TABLE 5-4 describes the formats.

FIGURE 5-9 Floating-Point Double-Precision Data Format

TABLE 5-4 Floating-Point Double-Precision Format Definition

s = sign (1 bit)
e = biased exponent (11 bits)
f = fraction (52 bits)
u = undefined

Normalized value (0 < e < 2047): (−1)s × 2e−1023 × 1.f

Subnormal value (e = 0): (−1)s × 2−1022 × 0.f

Zero (e = 0, f = 0) (−1)s × 0

Signalling NaN s = u; e = 2047 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s = u; e = 2047 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 2047 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 2047 (max); f = .000--00

31 30 0

S

1920

FD–0

FD–1

31 0

fraction{31:0}

fraction{51:32}exp{10:0}
CHAPTER 5 • Data Formats 41



5.2.3 Floating Point, Quad Precision (128 bits)
FIGURE 5-10 illustrates all four components (FQ-0 through FQ-3) of the floating-point
quad-precision data format, and TABLE 5-5 describes the formats.

FIGURE 5-10 Floating-Point Quad-Precision Data Format

TABLE 5-5 Floating-Point Quad-Precision Format Definition

s = sign (1 bit)
e = biased exponent (15 bits)
f = fraction (112 bits)
u = undefined

Normalized value (0 < e < 32767): (-1)s × 2e−16383 × 1.f

Subnormal value (e = 0): (-1)s × 2−16382 × 0.f

Zero (e = 0, f = 0) (-1)s × 0

Signalling NaN s = u; e = 32767 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s = u; e = 32767 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 32767 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 32767 (max); f = .000--00

31 30 0

S

1516

FQ–0

FQ–1

FQ–2

FQ–3

31 0

31 0

31 0

fraction{31:0}

fraction{63:32}

fraction{95:64}

fraction{111:96}exp{14:0}
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5.2.4 Floating-Point Data Alignment in Memory and
Registers
TABLE 5-6 describes the address and memory alignment for floating-point data.

5.3 SIMD Data Formats
SIMD (single instruction/multiple data) instructions perform identical operations on
multiple data contained (“packed”) in each source operand. This section describes
the data formats used by SIMD instructions.

Conversion between the different SIMD data formats can be achieved through SIMD
multiplication or by the use of the SIMD data formatting instructions.

TABLE 5-6 Floating-Point Doubleword and Quadword Alignment

Subformat
Name Subformat Field

Memory Address Register Number

Required
Alignment

Address
(big-endian)*

Required
Alignment

Register
Number

FD-0 s:exp{10:0}:fraction{51:32} 0 mod 4 † n 0 mod 2 f

FD-1 fraction{31:0} 0 mod 4 † n + 4 1 mod 2 f + 1◊

FQ-0 s:exp{14:0}:fraction{111:96} 0 mod 4 ‡ n 0 mod 4 f

FQ-1 fraction{95:64} 0 mod 4 ‡ n + 4 1 mod 4 f + 1◊

FQ-2 fraction{63:32} 0 mod 4 ‡ n + 8 2 mod 4 f + 2

FQ-3 fraction{31:0} 0 mod 4 ‡ n + 12 3 mod 4 f + 3◊

* The memory Address in this table applies to big-endian memory accesses. Word and byte order are reversed when little-endian
accesses are used.

† Although a floating-point doubleword is required only to be word-aligned in memory, it is recommended that it be double-
word-aligned (that is, the address of its FD-0 word should be 0 mod 8 so that it can be accessed with doubleword loads/stores
instead of multiple singleword loads/stores).

‡ Although a floating-point quadword is required only to be word-aligned in memory, it is recommended that it be quadword-
aligned (that is, the address of its FQ-0 word should be 0 mod 16).

◊ Note that this 32-bit floating-point register is only directly addressable in the lower half of the register file (that is, if its register
number is ≤ 31).
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5.3.1 Uint8 SIMD Data Format
The Uint8 SIMD data format consists of four unsigned 8-bit integers contained in a
32-bit word (see FIGURE 5-11).

FIGURE 5-11 Uint8 SIMD Data Format

5.3.2 Int16 SIMD Data Formats
The Int16 SIMD data format consists of four signed 16-bit integers contained in a 64-
bit word (see FIGURE 5-12).

FIGURE 5-12 Int16 SIMD Data Format

5.3.3 Int32 SIMD Data Format
The Int32 SIMD data format consists of two signed 32-bit integers contained in a 64-
bit word (see FIGURE 5-13).

FIGURE 5-13 Int32 SIMD Data Format

Programming
Note

The SIMD data formats can be used in graphics calculations to
represent intensity values for an image (e.g., α, B, G, R).

Intensity values are typically grouped in one of two ways, when
using SIMD data formats:

■ Band interleaved images, with the various color components
of a point in the image stored together, and

■ Band sequential images, with all of the values for one color
component stored together.
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Programming
Note

The integer SIMD data formats can be used to hold fixed-point
data. The position of the binary point in a SIMD datum is
implied by the programmer and does not influence the
computations performed by instructions that operate on that
SIMD data format.
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CHAPTER 6

Registers

The following registers are described in this chapter:
■ General-Purpose R Registers on page 49.
■ Floating-Point Registers on page 55.
■ Floating-Point State Register (FSR) on page 61.
■ Ancillary State Registers on page 70. The following registers are included in this

category:
■ 32-bit Multiply/Divide Register (Y) (ASR 0) on page 72.
■ Integer Condition Codes Register (CCR) (ASR 2) on page 72.
■ Address Space Identifier (ASI) Register (ASR 3) on page 74.
■ Tick (TICK) Register (ASR 4) on page 74.
■ Program Counters (PC, NPC) (ASR 5) on page 76.
■ Floating-Point Registers State (FPRS) Register (ASR 6) on page 76.
■ Performance Control Register (PCRP) (ASR 16) on page 78.
■ Performance Instrumentation Counter (PIC) Register (ASR 17) on page 79.
■ General Status Register (GSR) (ASR 19) on page 80.
■ SOFTINTP Register (ASRs 20, 21, 22) on page 80.
■ SOFTINT_SETP Pseudo-Register (ASR 20) on page 82.
■ SOFTINT_CLRP Pseudo-Register (ASR 21) on page 82.
■ Tick Compare (TICK_CMPRP) Register (ASR 23) on page 83.
■ System Tick (STICK) Register (ASR 24) on page 83.
■ System Tick Compare (STICK_CMPRP) Register (ASR 25) on page 84.

■ Register-Window PR State Registers on page 85. The following registers are
included in this subcategory:
■ Current Window Pointer (CWPP) Register (PR 9) on page 86.
■ Savable Windows (CANSAVEP) Register (PR 10) on page 86.
■ Restorable Windows (CANRESTOREP) Register (PR 11) on page 87.
■ Clean Windows (CLEANWINP) Register (PR 12) on page 87.
■ Other Windows (OTHERWINP) Register (PR 13) on page 87.
■ Window State (WSTATEP) Register (PR 14) on page 88.

■ Non-Register-Window PR State Registers on page 90. The following registers are
included in this subcategory:
■ Trap Program Counter (TPCP) Register (PR 0) on page 90.
■ Trap Next PC (TNPCP) Register (PR 1) on page 91.
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■ Trap State (TSTATEP) Register (PR 2) on page 92.
■ Trap Type (TTP) Register (PR 3) on page 93.
■ Trap Base Address (TBAP) Register (PR 5) on page 94.
■ Processor State (PSTATEP) Register (PR 6) on page 94.
■ Trap Level Register (TLP) (PR 7) on page 99.
■ Processor Interrupt Level (PILP) Register (PR 8) on page 101.
■ Global Level Register (GLP) (PR 16) on page 101.

■ HPR State Registers on page 103. The following registers are included in this
category.
■ Hyperprivileged State (HPSTATEH) Register (HPR 0) on page 104.
■ Hyperprivileged Trap State (HTSTATEH) Register (HPR 1) on page 105.
■ Hyperprivileged Interrupt Pending (HINTPH) Register (HPR 3) on page 106.
■ Hyperprivileged Trap Base Address (HTBAH) Register (HPR 5) on page 107.
■ Hyperprivileged Implementation Version (HVERH) Register (HPR 6) on page

107.
■ Hyperprivileged System Tick Compare (HSTICK_CMPRH) Register (HPR 31)

on page 109.

There are additional registers that may be accessed through ASIs; those registers are
described in Chapter 10, Address Space Identifiers (ASIs).

6.1 Reserved Register Fields
For convenience, some registers in this chapter are illustrated as fewer than 64 bits
wide. Any bits not shown (or explicitly marked as reserved) are reserved for future
extensions to the architecture.

Such a reserved field within a register reads as zero in current implementations and,
when written by software, should only be written with the value of that field
previously read from that register or with the value zero.

Programming
Note

Software intended to run on future versions of the UltraSPARC
Architecture should not assume that reserved register fields will
read as 0 or any other particular value.
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6.2 General-Purpose R Registers
An UltraSPARC Architecture virtual processor contains an array of general-purpose
64-bit R registers. The array is partitioned into MAXGL + 1 sets of eight global
registers, plus N_REG_WINDOWS groups of 16 registers each. The value of
N_REG_WINDOWS in an UltraSPARC Architecture implementation falls within the
range 3 to 32 (inclusive).

One set of 8 global registers is always visible. At any given time, a group of 24
registers, known as a register window, is also visible. A register window comprises
the 16 registers from the current 16-register group (referred to as 8 in registers and 8
local registers), plus half of the registers from the next 16-register group (referred to
as 8 out registers). See FIGURE 5-1.

SPARC instructions use 5-bit fields to reference R registers. That is, 32 R registers are
visible to software at any moment. Which 32 out of the full set of R registers are
visible is described in the following sections. The visible 32 R registers are named
R[0] through R[31], illustrated in FIGURE 6-1.

6.2.1 Global R Registers
Registers R[0]–R[7] refer to a set of eight registers called the global registers (labeled
g0 through g7). At any time, one of MAXGL +1 sets of eight registers is enabled and
can be accessed as the current set of global registers. The currently enabled set of
global registers is selected by the GL register. See Global Level Register (GLP) (PR 16)
on page 101.

Global register zero (G0) always reads as zero; writes to it have no software-visible
effect.

6.2.2 Windowed R Registers
A set of 24 R registers that is visible as R[8]–R[31] at any given time is called a
“register window”. The registers that become R[8]–R[15] in a register window are
called the out registers of the window. Note that the in registers of a register window
become the out registers of an adjacent register window. See TABLE 6-1 and
FIGURE 6-2.

A1

A1
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The names in, local, and out originate from the fact that the out registers are typically
used to pass parameters from (out of) a calling routine and that the called routine
receives those parameters as its in registers.

TABLE 6-1 Window Addressing

Windowed Register Address R Register Address

in[0] – in[7] R[24] – R[31]

i7R[31]

i6R[30]

i5R[29]

i4R[28]

i3R[27]

i2R[26]

i1R[25]

i0R[24]

R[23]

R[22]

R[21]

R[20]

R[19]

R[18]

R[17]

R[16]

R[15]

R[14]

R[13]

R[12]

R[11]

R[10]

R[9]

R[8]

R[7]

R[6]

R[5]

R[4]

R[3]

R[2]

R[1]

R[0]

l7

l6

l5

l4

l3

l2

l1

l0

o7

o6

o5

o4

o3

o2

o1

o0

g7

g6

g5

g4

g3

g2

g1

g0

FIGURE 6-1 General-Purpose Registers (as Visible at Any Given Time)

ins

locals

outs

globals
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local[0] – local[7] R[16] – R[23]

out[0] – out[7] R[ 8] – R[15]

global[0] – global[7] R[ 0] – R[ 7]

V9 Compatibility
Note

In the SPARC V9 architecture, the number of 16-register
windowed register sets, N_REG_WINDOWS, ranges from 3 to 32
(impl. dep. #2-V8). The maximum global register set index in the
UltraSPARC Architecture, MAXGL, ranges from 2 to 15. The
number of implemented global register sets is MAXGL + 1. The
total number of R registers in a given UltraSPARC Architecture
implementation is:

(N_REG_WINDOWS × 16) + (( MAXGL + 1) × 8)
Therefore, an UltraSPARC Architecture processor may contain

from 72 to 640 R registers.

TABLE 6-1 Window Addressing

Windowed Register Address R Register Address
CHAPTER 6 • Registers 51



The current window in the windowed portion of R registers is indicated by the
current window pointer (CWP) register. The CWP is decremented by the RESTORE
instruction and incremented by the SAVE instruction.

Overlapping Windows. Each window shares its ins with one adjacent window
and its outs with another. The outs of the CWP – 1 (modulo N_REG_WINDOWS)
window are addressable as the ins of the current window, and the outs in the current
window are the ins of the CWP + 1 (modulo N_REG_WINDOWS) window. The locals
are unique to each window.

Register address o, where 8 ≤ o ≤ 15, refers to exactly the same out register before the
register window is advanced by a SAVE instruction (CWP is incremented by 1
(modulo N_REG_WINDOWS)) as does register address o+16 after the register window
is advanced. Likewise, register address i, where 24 ≤ i ≤ 31, refers to exactly the same

Window (CWP – 1)

R[31]

R[24]

ins

R[23]

R[16]

locals

R[15]

R[ 8]

outs

Window (CWP)

R[31]

R[24]

ins

R[23]

R[16]

locals

R[15]

R[ 8]

outs

Window (CWP + 1)

R[31]

R[24]

ins

R[23]

R[16]

locals

R[15]

R[ 8]

outs

R[ 7]

R[ 1]

globals
.
.

R[ 0] 0

63 0

FIGURE 6-2 Three Overlapping Windows and Eight Global Registers
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in register before the register window is restored by a RESTORE instruction (CWP is
decremented by 1 (modulo N_REG_WINDOWS)) as does register address i−16 after the
window is restored. See FIGURE 6-2 on page 52 and FIGURE 6-3 on page 54.

To application software, the virtual processor appears to provide an infinitely-deep
stack of register windows.

Since CWP arithmetic is performed modulo N_REG_WINDOWS, the highest-numbered
implemented window overlaps with window 0. The outs of window
N_REG_WINDOWS − 1 are the ins of window 0. Implemented windows are numbered
contiguously from 0 through N_REG_WINDOWS −1.

Because the windows overlap, the number of windows available to software is 1 less
than the number of implemented windows; that is, N_REG_WINDOWS – 1. When the
register file is full, the outs of the newest window are the ins of the oldest window,
which still contains valid data.

Window overflow is detected by the CANSAVE register, and window underflow is
detected by the CANRESTORE register, both of which are controlled by privileged
software. A window overflow (underflow) condition causes a window spill (fill)
trap.

When a new register window is made visible through use of a SAVE instruction, the
local and out registers are guaranteed to contain either zeroes or valid data from the
current context. If software executes a RESTORE and later executes a SAVE, then the
contents of the resulting window’s local and out registers are not guaranteed to be
preserved between the RESTORE and the SAVE1. Those registers may even have
been written with “dirty” data, that is, data created by software running in a
different context. However, if the clean_window protocol is being used, system
software must guarantee that registers in the current window after a SAVE always
contains only zeroes or valid data from that context. See Clean Windows
(CLEANWINP) Register (PR 12) on page 87, Savable Windows (CANSAVEP) Register
(PR 10) on page 86, and Restorable Windows (CANRESTOREP) Register (PR 11) on
page 87.

Programming
Note

Since the procedure call instructions (CALL and JMPL) do not
change the CWP, a procedure can be called without changing
the window. See the section “Leaf-Procedure Optimization” in
Software Considerations, contained in the separate volume
UltraSPARC Architecture Application Notes

1. For example, any of those 16 registers might be altered due to the occurrence of a trap between the RESTORE
and the SAVE, or might be altered during the RESTORE operation due to the way that register windows are
implemented. After a RESTORE instruction executes, software must assume that the values of the affected 16
registers from before the RESTORE are unrecoverable.

Implementation
Note

An UltraSPARC Architecture virtual processor supports the
guarantee in the preceding paragraph of “either zeroes or valid
data from the current context”; it may do so either in hardware
or in a combination of hardware and system software.
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Register Window Management Instructions on page 129 describes how the windowed
integer registers are managed.

FIGURE 6-3 Windowed R Registers for N_REG_WINDOWS = 8

w4 outs

w5 outs

w6 outs

w0 outs

w7 locals

w0 ins

w1 locals

w1 ins

w6 locals w6 ins

w5 locals

OTHERWIN = 1

CANRESTORE = 1

CANSAVE + CANRESTORE + OTHERWIN = N_REG_WINDOWS – 2

The current window (window 0) and the overlap window (window 5) account for the
two windows in the right side of the equation. The “overlap window” is the window
that must remain unused because its ins and outs overlap two other valid windows.

SAVE RESTORE w5 ins

CANSAVE =4

(Overlap)

w0 locals

w7 outs

w7 ins

CWP = 0
(CURRENT WINDOW POINTER)
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In FIGURE 6-3, N_REG_WINDOWS = 8. The eight global registers are not illustrated.
CWP = 0, CANSAVE = 4, OTHERWIN = 1, and CANRESTORE = 1. If the procedure
using window w0 executes a RESTORE, then window w7 becomes the current
window. If the procedure using window w0 executes a SAVE, then window w1
becomes the current window.

6.2.3 Special R Registers
The use of two of the R registers is fixed, in whole or in part, by the architecture:

■ The value of R[0] is always zero; writes to it have no program-visible effect.

■ The CALL instruction writes its own address into register R[15] (out register 7).

Register-Pair Operands. LDTW, LDTWA, STTW, and STTWA instructions access
a pair of words (“twin words”) in adjacent R registers and require even-odd register
alignment. The least significant bit of an R register number in these instructions is
unused and must always be supplied as 0 by software.

When the R[0]–R[1] register pair is used as a destination in LDTW or LDTWA, only
R[1] is modified. When the R[0]–R[1] register pair is used as a source in STTW or
STTWA, 0 is read from R[0], so 0 is written to the 32-bit word at the lowest address,
and the least significant 32 bits of R[1] are written to the 32-bit word at the highest
address.

An attempt to execute anLDTW, LDTWA, STTW, or STTWA instruction that refers
to a misaligned (odd) destination register number causes an illegal_instruction trap.

6.3 Floating-Point Registers
The floating-point register set consists of sixty-four 32-bit registers, which may be
accessed as follows:

■ Sixteen 128-bit quad-precision registers, referenced as FQ[0], FQ[4], …, FQ[60]

■ Thirty-two 64-bit double-precision registers, referenced as FD[0], FD[2], …, FD[62]

■ Thirty-two 32-bit single-precision registers, referenced as FS[0], FS[1], …, FS[31]
(only the lower half of the floating-point register file can be accessed as single-
precision registers)

The floating-point registers are arranged so that some of them overlap, that is, are
aliased. The layout and numbering of the floating-point registers are shown in
TABLE 6-2. Unlike the windowed R registers, all of the floating-point registers are
accessible at any time. The floating-point registers can be read and written by

A2
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floating-point operate (FPop1/FPop2 format) instructions, by load/store single/
double/quad floating-point instructions, by VIS™ instructions, and by block load
and block store instructions.

TABLE 6-2 Floating-Point Registers, with Aliasing (1 of 3)

Single Precision
(32-bit)

Double Precision
(64-bit)

Quad Precision
(128-bit)

Register
Assembly
Language Bits Register

Assembly
Language Bits Register

Assembly
Language

FS[0] %f0 63:32
FD[0] %d0 127:64

FQ[0] %q0
FS[1] %f1 31:0

FS[2] %f2 63:32
FD[2] %d2 63:0

FS[3] %f3 31:0

FS[4] %f4 63:32
FD[4] %d4 127:64

FQ[4] %q4
FS[5] %f5 31:0

FS[6] %f6 63:32
FD[6] %d6 63:0

FS[7] %f7 31:0

FS[8]] %f8 63:32
FD[8] %d8 127:64

FQ[8] %q8
FS[9] %f9 31:0

FS[10] %f10 63:32
FD[10] %d10 63:0

FS[11] %f11 31:0

FS[12] %f12 63:32
FD[12] %d12 127:64

FQ[12] %q12
FS[13] %f13 31:0

FS[14] %f14 63:32
FD[14] %d14 63:0

FS[15] %f15 31:0

FS[16] %f16 63:32
FD[16] %d16 127:64

FQ[16] %q16
FS[17] %f17 31:0

FS[18] %f18 63:32
FD[18] %d18 63:0

FS[19] %f19 31:0

FS[20] %f20 63:32
FD[20] %d20 127:64

FQ[20] %q20
FS[21] %f21 31:0

FS[22] %f22 63:32
FD[22] %d22 63:0

FS[23] %f23 31:0
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FS[24] %f24 63:32
FD[24] %d24 127:64

FQ[24] %q24
FS[25] %f25 31:0

FS[26] %f26 63:32
FD[26] %d26 63:0

FS[27] %f27 31:0

FS[28] %f28 63:32
FD[28] %d28 127:64

FQ[28] %q28
FS[29] %f29 31:0

FS[30] %f30 63:32
FD[30] %d30 63:0

FS[31] %f31 31:0

63:32
FD[32] %d32 127:64

FQ[32] %q32
31:0

63:32
FD[34] %d34 63:0

31:0

63:32
FD[36] %d36 127:64

FQ[36] %q36
31:0

63:32
FD[38] %d38 63:0

31:0

63:32
FD[40] %d40 127:64

FQ[40] %q40
31:0

63:32
FD[42] %d42 63:0

31:0

63:32
FD[44] %d44 127:64

FQ[44] %q44
31:0

63:32
FD[46] %d46 63:0

31:0

63:32
FD[48] %d48 127:64

FQ[48] %q48
31:0

63:32
FD[50] %d50 63:0

31:0

TABLE 6-2 Floating-Point Registers, with Aliasing (2 of 3)

Single Precision
(32-bit)

Double Precision
(64-bit)

Quad Precision
(128-bit)

Register
Assembly
Language Bits Register

Assembly
Language Bits Register

Assembly
Language
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6.3.1 Floating-Point Register Number Encoding
Register numbers for single, double, and quad registers are encoded differently in
the 5-bit register number field of a floating-point instruction. If the bits in a register
number field are labeled b{4} … b{0} (where b{4} is the most significant bit of the
register number), the encoding of floating-point register numbers into 5-bit
instruction fields is as given in TABLE 6-3.

63:32
FD[52] %d52 127:64

FQ[52] %q52
31:0

63:32
FD[54] %d54 63:0

31:0

63:32
FD[56] %d56 127:64

FQ[56] %q56
31:0

63:32
FD[58] %d58 63:0

31:0

63:32
FD[60] %d60 127:64

FQ[60] %q60
31:0

63:32
FD[62] %d62 63:0

31:0

TABLE 6-3 Floating-Point Register Number Encoding

Register Operand
Type Full 6-bit Register Number

Encoding in a 5-bit Register Field in an
Instruction

Single 0 b{4} b{3} b{2} b{1} b{0} b{4} b{3} b{2} b{1} b{0}

Double b{5} b{4} b{3} b{2} b{1} 0 b{4} b{3} b{2} b{1} b{5}

Quad b{5} b{4} b{3} b{2} 0 0 b{4} b{3} b{2} 0 b{5}

TABLE 6-2 Floating-Point Registers, with Aliasing (3 of 3)

Single Precision
(32-bit)

Double Precision
(64-bit)

Quad Precision
(128-bit)

Register
Assembly
Language Bits Register

Assembly
Language Bits Register

Assembly
Language
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6.3.2 Double and Quad Floating-Point Operands
A single 32-bit F register can hold one single-precision operand; a double-precision
operand requires an aligned pair of F registers, and a quad-precision operand
requires an aligned quadruple of F registers. At a given time, the floating-point
registers can hold a maximum of 32 single-precision, 16 double-precision, or 8 quad-
precision values in the lower half of the floating-point register file, plus an
additional 16 double-precision or 8 quad-precision values in the upper half, or
mixtures of the three sizes.

SPARC V8
Compatibility

Note

In the SPARC V8 architecture, bit 0 of double and quad register
numbers encoded in instruction fields was required to be zero.
Therefore, all SPARC V8 floating-point instructions can run
unchanged on an UltraSPARC Architecture virtual processor,
using the encoding in TABLE 5-3.
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Programming
Note

The upper 16 double-precision (upper 8 quad-precision)
floating-point registers cannot be directly loaded by 32-bit load
instructions. Therefore, double- or quad-precision data that is
only word-aligned in memory cannot be directly loaded into the
upper registers with LDF[A] instructions. The following
guidelines are recommended:

1. Whenever possible, align floating-point data in memory on
proper address boundaries. If access to a datum is required to
be atomic, the datum must be properly aligned.

2. If a double- or quad-precision datum is not properly aligned
in memory or is still aligned on a 4-byte boundary, and access
to the datum in memory is not required to be atomic, then
software should attempt to allocate a register for it in the
lower half of the floating-point register file so that the datum
can be loaded with multiple LDF[A] instructions.

3. If the only available registers for such a datum are located in
the upper half of the floating-point register file and access to
the datum in memory is not required to be atomic, the word-
aligned datum can be loaded into them by one of two
methods:
■ Load the datum into an upper register by using multiple

LDF[A] instructions to first load it into a double- or quad-
precision register in the lower half of the floating-point
register file, then copy that register to the desired
destination register in the upper half

■ Use an LDDF[A] or LDQF[A] instruction to perform the
load directly into the upper floating-point register,
understanding that use of these instructions on poorly
aligned data can cause a trap (LDDF_mem_not_aligned) on
some implementations, possibly slowing down program
execution significantly.

Programming
Note

If an UltraSPARC Architecture 2005 implementation does not
implement a particular quad floating-point arithmetic operation
in hardware and an invalid quad register operand is specified,
per FSR.ftt priorities in TABLE 6-7, the fp_exception_other
exception occurs with FSR.ftt = 3 (unimplemented_FPop)
instead of with FSR.ftt = 6 (invalid_fp_register).

Implementation
Note

UltraSPARC Architecture 2005 implementations do not
implement any quad floating-point arithmetic operations in
hardware. Therefore, an attempt to execute any of them results
in a trap on the fp_exception_other exception with FSR.ftt = 3
(unimplemented_FPop).
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6.4 Floating-Point State Register (FSR)
The Floating-Point State register (FSR) fields, illustrated in FIGURE 6-4, contain FPU
mode and status information. The lower 32 bits of the FSR are read and written by
the STFSR and LDFSR instructions; all 64 bits of the FSR are read and written by the
STXFSR and LDXFSR instructions, respectively. FSR.ver, FSR.ftt, and the reserved
(“—”) fields of FSR are not modified by LDFSR or LDXFSR.

Bits 63–38, 29–28, 21–20, and 12 are reserved. When read by an STXFSR instruction,
these bits always read as zero.

The subsections on pages 61 through 70 describe the remaining fields in the FSR.

6.4.1 Floating-Point Condition Codes (fcc0, fcc1, fcc2,
fcc3)
The four sets of floating-point condition code fields are labeled fcc0, fcc1, fcc2, and
fcc3 (fccn refers to any of the floating-point condition code fields).

The fcc0 field consists of bits 11 and 10 of the FSR, fcc1 consists of bits 33 and 32,
fcc2 consists of bits 35 and 34, and fcc3 consists of bits 37 and 36. Execution of a
floating-point compare instruction (FCMP or FCMPE) updates one of the fccn fields
in the FSR, as selected by the compare instruction. The fccn fields are read and
written by STXFSR and LDXFSR instructions, respectively. The fcc0 field can also be
read and written by STFSR and LDFSR, respectively. FBfcc and FBPfcc instructions
base their control transfers on the content of these fields. The MOVcc and FMOVcc
instructions can conditionally copy a register, based on the contents of these fields.

Programming
Note

For future compatibility, software should issue LDXFSR
instructions only with zero values in these bits or values of these
bits exactly as read by a previous STXFSR.

RW RW RW

— fcc3 fcc2 fcc1

63 38 37 36 35 34 33 32

RW RW RW R R R RW RW RW

rd — tem ns — ver ftt qne — fcc0 aexc cexc

31 30 29 28 27 23 22 21 20 19 17 16 14 13 12 11 10 9 5 4 0

FIGURE 6-4 FSR Fields

FSR
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In TABLE 6-5, frs1 and frs2 correspond to the single, double, or quad values in the
floating-point registers specified by a floating-point compare instruction’s rs1 and
rs2 fields. The question mark (?) indicates an unordered relation, which is true if
either frs1 or frs2 is a signalling NaN or a quiet NaN. If FCMP or FCMPE generates
an fp_exception_ieee_754 exception, then fccn is unchanged.

6.4.2 Rounding Direction (rd)
Bits 31 and 30 select the rounding direction for floating-point results according to
IEEE Std 754-1985. TABLE 6-6 shows the encodings.

If the interval mode bit of the General Status register has a value of 1 (GSR.im = 1),
then the value of FSR.rd is ignored and floating-point results are instead rounded
according to GSR.irnd. See General Status Register (GSR) (ASR 19) on page 80 for
further details.

6.4.3 Trap Enable Mask (tem)
Bits 27 through 23 are enable bits for each of the five IEEE-754 floating-point
exceptions that can be indicated in the current_exception field (cexc). See FIGURE 6-5
on page 69. If a floating-point instruction generates one or more exceptions and the

TABLE 6-4 Floating-Point Condition Codes (fccn) Fields of FSR

Content of fccn Indicated Relation

0 F[rs1] = F[rs2]

1 F[rs1] < F[rs2]

2 F[rs1] > F[rs2]

3 F[rs1] ? F[rs2] (unordered)

TABLE 6-5 Floating-Point Condition Codes (fccn) Fields of FSR

Content of fccn

0 1 2 3

Indicated Relation
(FCMP*, FCMPE*)

F[rs1] = F[rs2] F[rs1] < F[rs2] F[rs1] > F[rs2] F[rs1] ? F[rs2]
(unordered)

TABLE 6-6 Rounding Direction (rd) Field of FSR

rd Round Toward

0 Nearest (even, if tie)

1 0

2 + ∞
3 − ∞

A1
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tem bit corresponding to any of the exceptions is 1, then this condition causes an
fp_exception_ieee_754 trap. A tem bit value of 0 prevents the corresponding IEEE
754 exception type from generating a trap.

6.4.4 Nonstandard Floating-Point (ns)
On an UltraSPARC Architecture 2005 processor, FSR.ns is a reserved bit; it always
reads as 0 and writes to it are ignored. (impl. dep. #18-V8)

6.4.5 FPU Version (ver)
IMPL. DEP. #19-V8: Bits 19 through 17 identify one or more particular
implementations of the FPU architecture.

For each SPARC V9 IU implementation (as identified by its VER.impl field), there
may be one or more FPU implementations, or none. This field identifies the
particular FPU implementation present. The value in FSR.ver for each
implementation is strictly implementation dependent. Consult the appropriate
document for each implementation for its setting of FSR.ver.

FSR.ver = 7 is reserved to indicate that no hardware floating-point controller is
present.

The ver field is read-only; it cannot be modified by the LDFSR and LDXFSR
instructions.

6.4.6 Floating-Point Trap Type (ftt)
Several conditions can cause a floating-point exception trap. When a floating-point
exception trap occurs, FSR.ftt (FSR{16:14}) identifies the cause of the exception, the
“floating-point trap type.” After a floating-point exception occurs, FSR.ftt encodes
the type of the floating-point exception until it is cleared (set to 0) by execution of an
STFSR, STXFSR, or FPop that does not cause a trap due to a floating-point exception.

The FSR.ftt field can be read by a STFSR or STXFSR instruction. The LDFSR and
LDXFSR instructions do not affect FSR.ftt.
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Privileged software that handles floating-point traps must execute an STFSR (or
STXFSR) to determine the floating-point trap type. STFSR and STXFSR shall zero ftt
after the store completes without error. If the store generates an error and does not
complete, ftt remains unchanged.

FSR.ftt encodes the primary condition (“floating-point trap type”) that caused the
generation of an fp_exception_other or fp_exception_ieee_754 exception. It is
possible for more than one such condition to occur simultaneously; in such a case,
only the highest-priority condition will be encoded in FSR.ftt. The conditions
leading to fp_exception_other and fp_exception_ieee_754 exceptions, their relative
priorities, and the corresponding FSR.ftt values are listed in TABLE 6-7. Note that the
FSR.ftt values 4 and 5 were defined in the SPARC V9 architecture but are not
currently in use, and that the value 7 is reserved for future architectural use.

IEEE_754_exception, unimplemented_FPop, and unfinished_FPop will likely arise
occasionally in the normal course of computation and must be recoverable by
system software.

When a floating-point trap occurs, the following results are observed by user
software:

1. The value of aexc is unchanged.

2. When an fp_exception_ieee_754 trap occurs, a bit corresponding to the trapping
exception is set in cexc. On other traps, the value of cexc is unchanged.

3. The source and destination registers are unchanged.

4. The value of fccn is unchanged.

Programming
Note

Neither LDFSR nor LDXFSR can be used for the purpose of
clearing the ftt field, since both leave ftt unchanged. However,
executing a nontrapping floating-point operate (FPop)
instruction such as “fmovs %f0,%f0” prior to returning to
nonprivileged mode will zero FSR.ftt. The ftt field remains zero
until the next FPop instruction completes execution.

TABLE 6-7 FSR Floating-Point Trap Type (ftt) Field

Condition Detected During
Execution of an FPop

Relative
Priority

(1 = highest)

Result

FSR.ftt Set
to Value Exception Generated

unimplemented_FPop 10 3 fp_exception_other

invalid_fp_register 20 6 fp_exception_other

unfinished _FPop 30 2 fp_exception_other

IEEE_754_exception 40 1 fp_exception_ieee_754

Reserved — 4, 5, 7 —

(none detected) — 0 —
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The foregoing describes the result seen by a user trap handler if an IEEE exception is
signalled, either immediately from an fp_exception_ieee_754 exception or after
recovery from an unfinished_FPop or unimplemented_FPop. In either case, cexc as
seen by the trap handler reflects the exception causing the trap.

In the cases of an fp_exception_other exception with a floating-point trap type of
unfinished_FPop or unimplemented_FPop that does not subsequently generate an
IEEE trap, the recovery software should set cexc, aexc, and the destination register
or fccn, as appropriate.

ftt = 1 (IEEE_754_exception). The IEEE_754_exception floating-point trap type
indicates the occurrence of a floating-point exception conforming to IEEE Std 754-
1985. The IEEE 754 exception type (overflow, inexact, etc.) is set in the cexc field. The
aexc and fccn fields and the destination F register are unchanged.

ftt = 2 (unfinished_FPop). The unfinished_FPop floating-point trap type indicates
that the virtual processor was unable to generate correct results or that exceptions as
defined by IEEE Std 754-1985 have occurred. In cases where exceptions have
occurred, the cexc field is unchanged.

IMPL. DEP. #248-U3: The conditions under which an fp_exception_other exception
with floating-point trap type of unfinished_FPop can occur are implementation
dependent. An implementation may cause fp_exception_other with
FSR.ftt = unfinished_FPop under a different (but specified) set of conditions.

ftt = 3 (unimplemented_FPop) . The unimplemented_FPop floating-point trap
type indicates that the virtual processor decoded an FPop that it does not implement
in hardware. In this case, the cexc field is unchanged.

For example, all quad-precision FPop variations in an UltraSPARC Architecture 2005
virtual processor cause an fp_exception_other exception, setting
FSR.ftt = unimplemented_FPop.

Forward
Compatibility

Note

The next revision of the UltraSPARC Architecture is expected to
eliminate “unimplemented_FPop”, to simplify handling of
unimplemented instructions. At that point, all conditions which
currently cause cause fp_exception_other with FSR.ftt = 3 will
cause an illegal_instruction exception, instead. FSR.ftt = 3 and
the trap type associated with fp_exception_other will become
reserved for other possible future uses.
CHAPTER 6 • Registers 65



ftt = 4 (Reserved).

ftt = 5 (Reserved).

ftt = 6 (invalid_fp_register). This trap type indicates that one or more F register
operands of an FPop are misaligned; that is, a quad-precision register number is not
0 mod 4. An implementation generates an fp_exception_other trap with FSR.ftt =
invalid_fp_register in this case.

6.4.7 FQ Not Empty (qne)
Since UltraSPARC Architecture virtual processors do not implement a floating-point
queue, FSR.qne always reads as zero and writes to FSR.qne are ignored.

6.4.8 Accrued Exceptions (aexc)
Bits 9 through 5 accumulate IEEE_754 floating-point exceptions as long as floating-
point exception traps are disabled through the tem field. See FIGURE 6-6 on page 69.

SPARC V9
Compatibility

Note

In the SPARC V9 architecture, FSR.ftt = 4 was defined to be
"sequence_error", for use with certain error conditions
associated with a floating-point queue (FQ). Since UltraSPARC
Architecture implementations generate precise (rather than
deferred) traps for floating-point operations, an FQ is not
needed; therefore sequence_error conditions cannot occur and
ftt =4 has been returned to the pool of reserved ftt values.

SPARC V9
Compatibility

Note

In the SPARC V9 architecture, FSR.ftt = 5 was defined to be
"hardware_error", for use with hardware error conditions
associated with an external floating-point unit (FPU) operating
asynchronously to the main processor (IU). Since UltraSPARC
Architecture processors are now implemented with an integral
FPU, a hardware error in the FPU can generate an exception
directly, rather than indirectly report the error through FSR.ftt
(as was required when FPUs were external to IUs). Therefore,
ftt = 5 has been returned to the pool of reserved ftt values.

Implementation
Note

Per FSR.ftt priorities in TABLE 6-7, if an UltraSPARC Architecture
2005 processor does not implement a particular quad FPop in
hardware, that FPop generates an fp_exception_other exception
with FSR.ftt = 3 (unimplemented_FPop) instead of
fp_exception_other with FSR.ftt = 6 (invalid_fp_register),
regardless of the specified F registers.

Y2
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After an FPop completes with ftt = 0, the tem and cexc fields are logically anded
together. If the result is nonzero, aexc is left unchanged and an
fp_exception_ieee_754 trap is generated; otherwise, the new cexc field is ored into
the aexc field and no trap is generated. Thus, while (and only while) traps are
masked, exceptions are accumulated in the aexc field.

FSR.aexc is written with the appropriate value when an LDFSR or LDXFSR
instruction is executed.

6.4.9 Current Exception (cexc)
FSR.cexc (FSR{4:0}) indicates whether one or more IEEE 754 floating-point
exceptions were generated by the most recently executed FPop instruction. The
absence of an exception causes the corresponding bit to be cleared (set to 0). See
FIGURE 6-5 on page 69.

The cexc bits are set as described in Floating-Point Exception Fields on page 68, by the
execution of an FPop that either does not cause a trap or causes an
fp_exception_ieee_754 exception with FSR.ftt = IEEE_754_exception. An IEEE 754
exception that traps shall cause exactly one bit in FSR.cexc to be set, corresponding
to the detected IEEE Std 754-1985 exception.

Floating-point operations which cause an overflow or underflow condition may also
cause an “inexact” condition. For overflow and underflow conditions, FSR.cexc bits
are set and trapping occurs as follows:

■ If an IEEE 754 overflow condition occurs:

■ if FSR.tem.ofm = 0 and tem.nxm = 0, the FSR.cexc.ofc and FSR.cexc.nxc bits
are both set to 1, the other three bits of FSR.cexc are set to 0, and an
fp_exception_ieee_754 trap does not occur.

■ if FSR.tem.ofm = 0 and tem.nxm = 1, the FSR.cexc.nxc bit is set to 1, the other
four bits of FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does
occur.

■ if FSR.tem.ofm = 1, the FSR.cexc.ofc bit is set to 1, the other four bits of
FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does occur.

■ If an IEEE 754 underflow condition occurs:

■ if FSR.tem.ufm = 0 and FSR.tem.nxm = 0, the FSR.cexc.ufc and FSR.cexc.nxc
bits are both set to 1, the other three bits of FSR.cexc are set to 0, and an
fp_exception_ieee_754 trap does not occur.

Programming
Note

If the FPop traps and software emulate or finish the instruction,
the system software in the trap handler is responsible for
creating a correct FSR.cexc value before returning to a
nonprivileged program.
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■ if FSR.tem.ufm = 0 and FSR.tem.nxm = 1, the FSR.cexc.nxc bit is set to 1, the
other four bits of FSR.cexc are set to 0, and an fp_exception_ieee_754 trap
does occur.

■ if FSR.tem.ufm = 1, the FSR.cexc.ufc bit is set to 1, the other four bits of
FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does occur.

The above behavior is summarized in TABLE 6-8 (where “✔ ” indicates “exception was
detected” and “x” indicates “don’t care”):

If the execution of an FPop causes a trap other than fp_exception_ieee_754,
FSR.cexc is left unchanged.

6.4.10 Floating-Point Exception Fields
The current and accrued exception fields and the trap enable mask assume the
following definitions of the floating-point exception conditions (per IEEE Std 754-
1985):

TABLE 6-8 Setting of FSR.cexc Bits

Conditions Results

Exception(s)
Detected

in F.p.
operation

Trap Enable
Mask bits

(in FSR.tem) fp_exception_
ieee_754

Trap Occurs?

Current
Exception

bits (in
FSR.cexc)

of uf nx ofm ufm nxm ofc ufc nxc

- - - x x x no 0 0 0

- - ✔ x x 0 no 0 0 1

- ✔ 1 ✔ 1 x 0 0 no 0 1 1

✔ 2 - ✔ 2 0 x 0 no 1 0 1

- - ✔ x x 1 yes 0 0 1

- ✔ 1 ✔ 1 x 0 1 yes 0 0 1

- ✔ - x 1 x yes 0 1 0

- ✔ ✔ x 1 x yes 0 1 0

✔ 2 - ✔ 2 1 x x yes 1 0 0

✔ 2 - ✔ 2 0 x 1 yes 0 0 1

Notes: 1 When the underflow trap is disabled (FSR.tem.ufm = 0)
underflow is always accompanied by inexact.

2 Overflow is always accompanied by inexact.

A1
68 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006



Invalid (nvc, nva). An operand is improper for the operation to be performed.
For example, 0.0 ÷ 0.0 and ∞ – ∞ are invalid; 1 = invalid operand(s), 0 = valid
operand(s).

Overflow (ofc, ofa). The result, rounded as if the exponent range were
unbounded, would be larger in magnitude than the destination format’s largest
finite number; 1 = overflow, 0 = no overflow.

Underflow (ufc, ufa). The rounded result is inexact and would be smaller in
magnitude than the smallest normalized number in the indicated format;
1 = underflow, 0 = no underflow.

Underflow is never indicated when the correct unrounded result is 0.
Otherwise, when the correct unrounded result is not 0:

If FSR.tem.ufm = 0: Underflow occurs if a nonzero result is tiny and a loss of
accuracy occurs.

If FSR.tem.ufm = 1: Underflow occurs if a nonzero result is tiny.

The SPARC V9 architecture allows tininess to be detected either before or after
rounding. However, in all cases and regardless of the setting of FSR.tem.ufm, an
UltraSPARC Architecture strand detects tininess before rounding (impl. dep. #55-V8-
Cs10). See Trapped Underflow Definition (ufm = 1) on page 382 and Untrapped
Underflow Definition (ufm = 0) on page 383 for additional details.

Division by zero (dzc, dza). X ÷ 0.0, where X is subnormal or normalized;
1 = division by zero, 0 = no division by zero.

RW RW RW RW RW

FSR.tem nvm ofm ufm dzm nxm

27 26 25 24 23

FIGURE 6-5 Trap Enable Mask (tem) Fields of FSR

RW RW RW RW RW

FSR.aexc nva ofa ufa dza nxa

9 8 7 6 5

FIGURE 6-6 Accrued Exception Bits (aexc) Fields of FSR

RW RW RW RW RW

FSR.cexc nvc ofc ufc dzc nxc

4 3 2 1 0

FIGURE 6-7 Current Exception Bits (aexc) Fields of FSR
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Inexact (nxc, nxa). The rounded result of an operation differs from the infinitely
precise unrounded result; 1 = inexact result, 0 = exact result.

6.4.11 FSR Conformance
An UltraSPARC Architecture implementation implements the tem, cexc, and aexc
fields of FSR in hardware, conforming to IEEE Std 754-1985 (impl. dep. #22-V8).

6.5 Ancillary State Registers
The SPARC V9 architecture defines several optional ancillary state registers (ASRs)
and allows for additional ones. Access to a particular ASR may be privileged or
nonprivileged.

An ASR is read and written with the Read State Register and Write State Register
instructions, respectively. These instructions are privileged if the accessed register is
privileged.

The SPARC V9 architecture left ASRs numbered 16–31 available for implementation-
dependent uses. UltraSPARC Architecture virtual processors implement the ASRs
summarized in TABLE 6-9 and defined in the following subsections.

Each virtual processor contains its own set of ASRs; ASRs are not shared among
virtual processors.

Programming
Note

Privileged software (or a combination of privileged and
nonprivileged software) must be capable of simulating the
operation of the FPU in order to handle the fp_exception_other
(with FSR.ftt = unfinished_FPop or unimplemented_FPop) and
IEEE_754_exception floating-point trap types properly. Thus, a
user application program always sees an FSR that is fully
compliant with IEEE Std 754-1985.

TABLE 6-9 ASR Register Summary

ASR
number ASR name Register

Read by
Instruction(s)

Written by
Instruction(s)

0 YD Y register (deprecated) RDYD WRYD

1 — Reserved — —

2 CCR Condition Codes register RDCCR WRCCR

3 ASI ASI register RDASI WRASI
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4 TICKPnpt TICK register RDTICKPnpt,
RDPRP (TICK)

WRPRP (TICK)

5 PC Program Counter (PC) RDPC (all instructions)

6 FPRS Floating-Point Registers Status register RDFPRS WRFPRS

7–14 — Reserved — —

15 — Reserved — —

16–31 non-SPARC V9 ASRs — —

16 PCRP Performance Control registers (PCR) RDPCRP WRPCRP

17 PICP Performance Instrumentation Counters
(PIC)

RDPICPPIC WRPICPPIC

18 — Implementation dependent (impl. dep.
#8-V8-Cs20, 9-V8-Cs20)

— —

19 GSR General Status register (GSR) RDGSR,
FALIGNDATA,
many VIS and
floating-point
instructions

WRGSR,
BMASK, SIAM

20 SOFTINT_CLRP (pseudo-register, for "Write 1s Clear" to
SOFTINT register, ASR 22)

— WRSOFTINT_CLRP

21 SOFTINT_SETP (pseudo-register, for "Write 1s Set" to
SOFTINT register, ASR 22)

— WRSOFTINT_SETP

22 SOFTINTP per-virtual processor Soft Interrupt
register

RDSOFTINTP WRSOFTINTP

23 TICK_CMPRP Tick Compare register RDTICK_CMPRP WRTICK_CMPRP

24 STICKPnpt System Tick register RDSTICKPnpt WRSTICKH

25 STICK_CMPRP System Tick Compare register RDSTICK_CMPRP WRSTICK_CMPRP

26–31 — Implementation dependent (impl. dep.
#8-V8-Cs20, 9-V8-Cs20)

— —

TABLE 6-9 ASR Register Summary (Continued)

ASR
number ASR name Register

Read by
Instruction(s)

Written by
Instruction(s)
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6.5.1 32-bit Multiply/Divide Register (Y) (ASR 0)

The low-order 32 bits of the Y register, illustrated in FIGURE 6-8, contain the more
significant word of the 64-bit product of an integer multiplication, as a result of
either a 32-bit integer multiply (SMUL, SMULcc, UMUL, UMULcc) instruction or an
integer multiply step (MULScc) instruction. The Y register also holds the more
significant word of the 64-bit dividend for a 32-bit integer divide (SDIV, SDIVcc,
UDIV, UDIVcc) instruction.

Although Y is a 64-bit register, its high-order 32 bits always read as 0.

The Y register may be explicitly read and written by the RDY and WRY instructions,
respectively.

6.5.2 Integer Condition Codes Register (CCR)
(ASR 2)
The Condition Codes Register (CCR), shown in FIGURE 6-9, contains the integer
condition codes. The CCR register may be explicitly read and written by the RDCCR
and WRCCR instructions, respectively.

The Y register is deprecated; it is provided only for compatibility with previous
versions of the architecture. It should not be used in new SPARC V9 software.
It is recommended that all instructions that reference the Y register (that is,
SMUL, SMULcc, UMUL, UMULcc, MULScc, SDIV, SDIVcc, UDIV, UDIVcc,
RDY, and WRY) be avoided. For suitable substitute instructions, see the
following pages: for the multiply instructions, see page 367; for the multiply
step instruction, see page 281; for division instructions, see page 364; for the
read instruction, see page 300; and for the write instruction, see page 370.

R RW

Y 0 product{63:32} or dividend{63:32}

63 32 31 0

FIGURE 6-8 Y Register

RW RW

CCR xcc icc

7 4 3 0

FIGURE 6-9 Condition Codes Register

E3
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6.5.2.1 Condition Codes (CCR.xcc and CCR.icc)

All instructions that set integer condition codes set both the xcc and icc fields. The
xcc condition codes indicate the result of an operation when viewed as a 64-bit
operation. The icc condition codes indicate the result of an operation when viewed
as a 32-bit operation. For example, if an operation results in the 64-bit value
0000 0000 FFFF FFFF16, the 32-bit result is negative (icc.n is set to 1) but the 64-bit
result is nonnegative (xcc.n is set to 0).

Each of the 4-bit condition-code fields is composed of four 1-bit subfields, as shown
in FIGURE 6-10.

The n bits indicate whether the two’s-complement ALU result was negative for the
last instruction that modified the integer condition codes; 1 = negative, 0 = not
negative.

The z bits indicate whether the ALU result was zero for the last instruction that
modified the integer condition codes; 1 = zero, 0 = nonzero.

The v bits signify whether the ALU result was within the range of (was
representable in) 64-bit (xcc) or 32-bit (icc) two’s complement notation for the last
instruction that modified the integer condition codes; 1 = overflow, 0 = no overflow.

The c bits indicate whether a 2’s complement carry (or borrow) occurred during the
last instruction that modified the integer condition codes. Carry is set on addition if
there is a carry out of bit 63 (xcc) or bit 31 (icc). Carry is set on subtraction if there is
a borrow into bit 63 (xcc) or bit 31 (icc); 1 = borrow, 0 = no borrow (see TABLE 6-10).

Both fields of CCR (xcc and icc) are modified by arithmetic and logical instructions,
the names of which end with the letters “cc” (for example, ANDcc), and by the
WRCCR instruction. They can be modified by a DONE or RETRY instruction, which
replaces these bits with the contents of TSTATE.ccr. The behavior of the following
instructions are conditioned by the contents of CCR.icc or CCR.xcc:

■ BPcc and Tcc instructions (conditional transfer of control)

RW RW RW RW

n z v c

xcc: 7 6 5 4
icc: 3 2 1 0

FIGURE 6-10 Integer Condition Codes (CCR.icc and CCR.xcc)

TABLE 6-10 Setting of Carry (Borrow) bits for Subtraction That Sets CCs

Unsigned Comparison of Operand Values Setting of Carry bits in CCR

R[rs1]{31:0} ≥ R[rs2]{31:0} CCR.icc.c ← 0

R[rs1]{31:0} < R[rs2]{31:0} CCR.icc.c ← 1

R[rs1]{63:0} ≥ R[rs2]{63:0} CCR.xcc.c ← 0

R[rs1]{63:0} < R[rs2]{63:0} CCR.xcc.c ← 1
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■ Bicc (conditional transfer of control, based on CCR.icc only)

■ MOVcc instruction (conditionally move the contents of an integer register)

■ FMOVcc instruction (conditionally move the contents of a floating-point register)

Extended (64-bit) integer condition codes (xcc). Bits 7 through 4 are the IU
condition codes, which indicate the results of an integer operation, with both of the
operands and the result considered to be 64 bits wide.

32-bit Integer condition codes (icc). Bits 3 through 0 are the IU condition codes,
which indicate the results of an integer operation, with both of the operands and the
result considered to be 32 bits wide.

6.5.3 Address Space Identifier (ASI) Register
(ASR 3)
The Address Space Identifier register (FIGURE 6-11) specifies the address space
identifier to be used for load and store alternate instructions that use the “rs1 +
simm13” addressing form.

The ASI register may be explicitly read and written by the RDASI and WRASI
instructions, respectively.

Software (executing in any privilege mode) may write any value into the ASI
register. However, values in the range 0016 to 7F16 are “restricted” ASIs; an attempt
to perform an access using an ASI in that range is restricted to software executing in
a mode with sufficient privileges for the ASI. When an instruction executing in
nonprivileged mode attempts an access using an ASI in the range 0016 to 7F16 or an
instruction executing in privileged mode attempts an access using an ASI the range
3016 to 7F16, a privileged_action exception is generated. See Chapter 10, Address Space
Identifiers (ASIs) for details.

6.5.4 Tick (TICK) Register (ASR 4)
FIGURE 6-12 illustrates the TICK register.

RW

ASI
7 0

FIGURE 6-11 Address Space Identifier Register
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The counter field of the TICK register is a 63-bit counter that counts strand clock
cycles. Bit 63 of the TICK register is the nonprivileged trap (npt) bit, which controls
access to the TICK register by nonprivileged software.

Privileged and hyperprivileged software can always read the TICK register with
either the RDPR or RDTICK instruction.

Privileged software cannot write to the TICK register; an attempt to do so (with the
WRPR instruction) results in an illegal_instruction exception. Hyperprivileged
software can always write to the TICK register with the WRPR instruction (there is
no distinct WRTICK instruction).

Nonprivileged software can read the TICK register by using the RDTICK instruction,
but only when nonprivileged access to TICK is enabled (TICK.npt = 0) by
hyperprivileged software. If nonprivileged access is disabled (TICK.npt = 1), an
attempt by nonprivileged software to read the TICK register causes a
privileged_action exception. Nonprivileged software cannot write the TICK register.
An attempt by nonprivileged software to read the TICK register using the privileged
RDPR instruction causes a privileged_opcode exception.

TICK.npt is set to 1 by a power-on reset trap. The value of TICK.counter is reset to 0
after a power-on reset trap.

After the TICK register is written, reading the TICK register returns a value
incremented (by 1 or more) from the last value written, rather than from some
previous value of counter. The number of counts between a write and a subsequent
read does not accurately reflect the number of strand cycles between the write and
the read. Software may rely only on read-to-read counts of the TICK register for
accurate timing, not on write-to-read counts.

The difference between the values read from the TICK register on two reads is
intended to reflect the number of strand cycles executed between the reads.

IMPL. DEP. #105-V9: (a) If an accurate count cannot always be returned when TICK
is read, any inaccuracy should be small, bounded, and documented.
(b) An implementation may implement fewer than 63 bits in TICK.counter; however,
the counter as implemented must be able to count for at least 10 years without
overflowing. Any upper bits not implemented must read as zero.

R, WH R, WH

TICKPnpt npt counter

63 62 0

FIGURE 6-12 TICK Register

Programming
Note

If a single TICK register is shared among multiple virtual
processors, then the difference between subsequent reads of
TICK.counter reflects a shared cycle count, not a count specific to
the virtual processor reading the TICK register.
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6.5.5 Program Counters (PC, NPC) (ASR 5)
The PC contains the address of the instruction currently being executed. The least-
significant two bits of PC always contain zeroes.

The PC can be read directly with the RDPC instruction. PC cannot be explicitly
written by any instruction (including Write State Register), but is implicitly written
by control transfer instructions. A WRasr to ASR 5 causes an illegal_instruction
exception.

The Next Program Counter, NPC, is a pseudo-register that contains the address of
the next instruction to be executed if a trap does not occur. The least-significant two
bits of NPC always contain zeroes.

NPC is written implicitly by control transfer instructions. However, NPC cannot be
read or written explicitly by any instruction.

PC and NPC can be indirectly set by privileged software that writes to TPC[TL]
and/or TNPC[TL] and executes a RETRY instruction.

See Chapter 6, Instruction Set Overview, for details on how PC and NPC are used.

6.5.6 Floating-Point Registers State (FPRS) Register
(ASR 6)
The Floating-Point Registers State (FPRS) register, shown in FIGURE 6-13, contains
control information for the floating-point register file; this information is readable
and writable by nonprivileged software.

The FPRS register may be explicitly read and written by the RDFPRS and WRFPRS
instructions, respectively.

Programming
Note

TICK.npt may be used by a secure operating system to control
access by user software to high-accuracy timing information.
The operation of the timer might be emulated by the trap
handler, which could read TICK.counter and “fuzz” the value to
lower accuracy.

RW RW RW

FPRS fef du dl

2 1 0

FIGURE 6-13 Floating-Point Registers State Register
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Enable FPU (fef). Bit 2, fef, determines whether the FPU is enabled. If it is
disabled, executing a floating-point instruction causes an fp_disabled trap. If this bit
is set (FPRS.fef = 1) but the PSTATE.pef bit is not set (PSTATE.pef = 0), then
executing a floating-point instruction causes an fp_disabled exception; that is, both
FPRS.fef and PSTATE.pef must be set to 1 to enable floating-point operations.

Dirty Upper Registers (du). Bit 1 is the “dirty” bit for the upper half of the
floating-point registers; that is, F[32]–F[62]. It is set to 1 whenever any of the upper
floating-point registers is modified. The du bit is cleared only by software.

IMPL. DEP. #403-S10(a): An UltraSPARC Architecture 2005 virtual processor may
set FPRS.du pessimistically; that is, it may be set whenever an FPop is issued, even
though no destination F register is modified. The specific conditions under which a
dirty bit is set pessimistically are implementation dependent.

Dirty Lower Registers (dl). Bit 0 is the “dirty” bit for the lower 32 floating-point
registers; that is, F[0]–F[31]. It is set to 1 whenever any of the lower floating-point
registers is modified. The dl bit is cleared only by software.

IMPL. DEP. #403-S10(b): An UltraSPARC Architecture 2005 virtual processor may
set FPRS.dl pessimistically; that is, it may be set whenever an FPop is issued, even
though no destination F register is modified. The specific conditions under which a
dirty bit is set pessimistically are implementation dependent.

Programming
Note

FPRS.fef can be used by application software to notify system
software that the application does not require the contents of the
F registers to be preserved. Depending on system software, this
may provide some performance benefit, for example, the F
registers would not have to be saved or restored during context
switches to or from that application. Once an application sets
FPRS.fef to 0, it must assume that the values in all F registers
are volatile (may change at any time).

Implementation
Note

If an instruction that normally writes to the F registers is
executed and causes an fp_disabled exception, an UltraSPARC
Architecture 2005 implementation still sets the “dirty” bit
(FPRS.du or FPRS.dl) corresponding to the destination register
to ‘1’.

Forward
Compatibility

Note

It is expected that in future revisions to the UltraSPARC
Architecture, if an instruction that normally writes to the F
registers is executed and causes an fp_disabled exception the
“dirty” bit (FPRS.du or FPRS.dl) corresponding to the
destination register will be left unchanged.
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6.5.7 Performance Control Register (PCRP) (ASR 16)
The PCR is used to control performance monitoring events collected in counter
pairs, which are accessed via the Performance Instrumentation Counter (PIC)
register (ASR 17) (see page 79). Unused PCR bits read as zero; they should be
written only with zeroes or with values previously read from them.

When the virtual processor is operating in privileged mode (PSTATE.priv = 1 and
HPSTATE.hpriv = 0)or hyperprivileged mode (HPSTATE.hpriv = 1), PCR may be
freely read and written by software.

When the virtual processor is operating in nonprivileged mode (PSTATE.priv = 0),
an attempt to access PCR (using a RDPCR or WRPCR instruction) results in a
privileged_opcode exception (impl. dep. #250-U3-Cs10).

The PCR is illustrated in FIGURE 6-14 and described in TABLE 6-11.

IMPL. DEP. #207-U3: The values and semantics of bits 47:32, 26:17, and bit 3 of the
PCR are implementation dependent.

RW RW RW RW RW

PCRP — impl. dep — impl. dep. su — sl
impl.
dep.

ut st priv

63 48 47 32 31 27 26 17 16 11 10 9 4 3 2 1 0

FIGURE 6-14 Performance Control Register (PCR) (ASR 16)

TABLE 6-11 PCR Bit Description

Bit Field Description

47:32 — These bits are implementation dependent (impl. dep #207-U3).

26:17 — These bits are implementation dependent (impl. dep. #207-U3).

16:11 su Six-bit field selecting 1 of 64 event counts in the upper half (bits {63:32}) of the PIC.

9:4 sl Six-bit field selecting 1 of 64 event counts in the lower half (bits {31:0}) of the PIC.

3 — This bit is implementation dependent (impl. dep. #207-U3).

2 ut User Trace Enable. If set to 1, events in nonprivileged (user) mode are counted.

1 st System Trace Enable. If set to 1, events in privileged (system) mode are counted.
Notes:
If both PCR.ut and PCR.st are set to 1, all selected events are counted.
If both PCR.ut and PCR.st are zero, counting is disabled.
PCR.ut and PCR.st are global fields which apply to all PIC pairs.

0 priv Privileged. Controls access to the PIC register (via RDPIC or WRPIC instructions). If
PCR.priv = 0, an attempt to access PIC will succeed regardless of the privilege state
(PSTATE.priv). If PCR.priv = 1, access to PIC is restricted to privileged software; that is, an
attempt to access PIC while PSTATE.priv = 1 will succeed, but an attempt to access PIC while
PSTATE.priv = 0 will result in a privileged_action exception.
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6.5.8 Performance Instrumentation Counter (PIC)
Register (ASR 17)
PIC contains two 32-bit counters that count performance-related events (such as
instruction counts, cache misses, TLB misses, and pipeline stalls). Which events are
actively counted at any given time is selected by the PCR register.

The difference between the values read from the PIC register at two different times
reflects the number of events that occurred between register reads. Software can only
rely on the difference in counts between two PIC reads to get an accurate count, not
on the difference in counts between a PIC write and a PIC read.

PIC is normally a nonprivileged-access, read/write register. However, if the priv bit
of the PCR (ASR 16) is set, attempted access by nonprivileged (user) code causes a
privileged_action exception.

Multiple PICs may be implemented. Each is accessed through ASR 17, using an
implementation-dependent PIC pair selection field in PCR (ASR 16) (impl. dep.
#207-U3). Read/write access to the PIC will access the picu/picl counter pair selected
by PCR.

The PIC is described below and illustrated in FIGURE 6-15.

Counter Overflow. On overflow, the effective counter wraps to 0, SOFTINT
register bit 15 is set to 1, and an interrupt level 15 trap is generated if not masked by
PSTATE.ie and PIL. The counter overflow trap is triggered on the transition from
value FFFF FFFF16 to value 0.

Bit Field Description

63:32 picu 32-bit counter representing the count of an event selected by the su field of the
Performance Control Register (PCR) (ASR 16).

31:0 picl 32-bit counter representing the count of an event selected by the sl field of the Performance
Control Register (PCR) (ASR 16).

RW RW

PICP picu picl

63 32 31 0

FIGURE 6-15 Performance Instrumentation Counter (PIC) (ASR 17)
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6.5.9 General Status Register (GSR) (ASR 19)
The General Status Register1 (GSR) is a nonprivileged read/write register that is
implicitly referenced by many VIS instructions. The GSR can be read by the RDGSR
instruction (see Read Ancillary State Register on page 299) and written by the WRGSR
instruction (see Write Ancillary State Register on page 369).

If the FPU is disabled (PSTATE.pef = 0 or FPRS.fef = 0), an attempt to access this
register using an otherwise-valid RDGSR or WRGSR instruction causes an
fp_disabled trap.

The GSR is illustrated in FIGURE 6-16 and described in TABLE 6-12.

6.5.10 SOFTINTP Register (ASRs 20 , 21 , 22 )
Software uses the privileged, read/write SOFTINT register (ASR 22) to schedule
interrupts (via interrupt_level_n exceptions).

1. This register was (inaccurately) referred to as the "Graphics Status Register" in early UltraSPARC
implementations

RW RW RW RW RW

GSRP mask — im irnd — scale align

63 32 31 28 27 26 25 24 8 7 3 2 0

FIGURE 6-16 General Status Register (GSR) (ASR 19)

TABLE 6-12 GSR Bit Description

Bit Field Description

63:32 mask This 32-bit field specifies the mask used by the BSHUFFLE instruction. The field
contents are set by the BMASK instruction.

31:28 — Reserved.

27 im Interval Mode: If GSR.im = 0, rounding is performed according to FSR.rd; if
GSR.im = 1, rounding is performed according to GSR.irnd.

26:25 irnd IEEE Std 754-1985 rounding direction to use in Interval Mode (GSR.im = 1), as follows:

24:8 — Reserved.

7:3 scale 5-bit shift count in the range 0–31, used by the FPACK instructions for formatting.

2:0 align Least three significant bits of the address computed by the last-executed
ALIGNADDRESS or ALIGNADDRESS_LITTLE instruction.

A1

irnd Round toward …

0 Nearest (even, if tie)

1 0

2 + ∞
3 − ∞
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SOFTINT can be read with a RDSOFTINT instruction (see Read Ancillary State
Register on page 299) and written with a WRSOFTINT, WRSOFTINT_SET, or
WRSOFTINT_CLR instruction (see Write Ancillary State Register on page 369). An
attempt to access to this register in nonprivileged mode causes a privileged_opcode
exception.

The SOFTINT register is illustrated in FIGURE 6-17 and described in TABLE 6-13.

Setting any of SOFTINT.sm, SOFTINT.int_level{13} (SOFTINT{14}), or SOFTINT.tm
to 1 causes a level-14 interrupt (interrupt_level_14). However, those three bits are
independent; setting any one of them does not affect the other two.

See Software Interrupt Register (SOFTINT) on page 496 for additional information
regarding the SOFTINT register.

Programming
Note

To atomically modify the set of pending software interrupts, use
of the SOFTINT_SET and SOFTINT_CLR ASRs is
recommended.

RW RW RW

SOFTINTP — sm int_level tm

63 17 16 15 1 0

FIGURE 6-17 SOFTINT Register (ASR 22)

TABLE 6-13 SOFTINT Bit Description

Bit Field Description

16 sm When the STICK_CMPR (ASR 25) register’s int_dis (interrupt disable) field is 0 (that is,
System Tick Compare is enabled) and its stick_cmpr field matches the value in the
STICK register, then SOFTINT.sm (“STICK match”) is set to 1 and a level 14 interrupt
(interrupt_level_14) is generated. See System Tick Compare (STICK_CMPRP) Register (ASR
25) on page 84 for details. SOFTINT.sm can also be directly written to 1 by software.

15:1 int_level When SOFTINT.int_level{n−1} (SOFTINT{n}) is set to 1, an interrupt_level_n exception is
generated.

0 tm When the TICK_CMPR (ASR 23) register’s int_dis (interrupt disable) field is 0 (that is,
Tick Compare is enabled) and its tick_cmpr field matches the value in the TICK register,
then the tm (“TICK match”) field in SOFTINT is set to 1 and a level-14 interrupt
(interrupt_level_14) is generated. See Tick Compare (TICK_CMPRP) Register (ASR 23) on
page 83 for details. SOFTINT.tm can also be directly written to 1 by software.

Notes: A level-14 interrupt (interrupt_level_14) can be triggered by
SOFTINT.sm, SOFTINT.tm, or a write to SOFTINT.int_level{13}
(SOFTINT{14}).

A level-15 interrupt (interrupt_level_15) can be triggered by a write to
SOFTINT.int_level{14} (SOFTINT{15}), or possibly by other
implementation-dependent mechanisms.

An interrupt_level_n exception will only cause a trap if (PIL < n) and
(PSTATE.ie = 1 and (HPSTATE.hpriv = 0).
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6.5.10.1 SOFTINT_SETP Pseudo-Register (ASR 20)

A Write State register instruction to ASR 20 (WRSOFTINT_SET) atomically sets
selected bits in the privileged SOFTINT Register (ASR 22) (see page 80). That is, bits
16:0 of the write data are ored into SOFTINT; any ‘1’ bit in the write data causes the
corresponding bit of SOFTINT to be set to 1. Bits 63:17 of the write data are ignored.

Access to ASR 20 is privileged and write-only. There is no instruction to read this
pseudo-register. An attempt to write to ASR 20 in non-privileged mode, using the
WRasr instruction, causes a privileged_opcode exception.

FIGURE 6-18 illustrates the SOFTINT_SET pseudo-register.

6.5.10.2 SOFTINT_CLRP Pseudo-Register (ASR 21)

A Write State register instruction to ASR 21 (WRSOFTINT_CLR) atomically clears
selected bits in the privileged SOFTINT register (ASR 22) (see page 80). That is, bits
16:0 of the write data are inverted and anded into SOFTINT; any ‘1’ bit in the write
data causes the corresponding bit of SOFTINT to be set to 0. Bits 63:17 of the write
data are ignored.

Access to ASR 21 is privileged and write-only. There is no instruction to read this
pseudo-register. An attempt to write to ASR 21 in non-privileged mode, using the
WRasr instruction, causes a privileged_opcode exception.

FIGURE 6-19 illustrates the SOFTINT_CLR pseudo-register.

Programming
Note

There is no actual “register” (machine state) corresponding to
ASR 20; it is just a programming interface to conveniently set
selected bits to ‘1’ in the SOFTINT register, ASR 22.

W1S

SOFTINT_SETP — ASR 22 bits to be set

63 17 16 0

FIGURE 6-18 SOFTINT_SET Pseudo-Register (ASR 20)

Programming
Note

There is no actual “register” (machine state) corresponding to
ASR 21; it is just a programming interface to conveniently clear
(set to ‘0’) selected bits in the SOFTINT register, ASR 22.

W1C

SOFTINT_CLRP — ASR 22 bits to be cleared

63 17 16 0

FIGURE 6-19 SOFTINT_CLR Pseudo-Register (ASR 21))
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6.5.11 Tick Compare (TICK_CMPRP) Register (ASR
23)
The privileged TICK_CMPR register allows system software to cause a trap when
the TICK register reaches a specified value. Nonprivileged accesses to this register
cause a privileged_opcode exception (see Exception and Interrupt Descriptions on page
481).

After a power-on reset trap, the int_dis bit is set to 1 (disabling Tick Compare
interrupts) and the value of the tick_cmpr field is undefined.

The TICK_CMPR register is illustrated in FIGURE 6-20 and described in TABLE 6-14.

6.5.12 System Tick (STICK) Register (ASR 24)
The System Tick (STICK) register provides a counter that is synchronized across a
system, useful for timestamping. The counter field of the STICK register is a 63-bit
counter that increments at a rate determined by a clock signal external to the
processor.

Bit 63 of the STICK register is the nonprivileged trap (npt) bit, which controls access
to the STICK register by nonprivileged software.

The STICK register is illustrated in FIGURE 6-21 and described below.

RW RW

TICK_CMPRP int_dis tick_cmpr

63 62 0

FIGURE 6-20 TICK_CMPR Register

TABLE 6-14 TICK_CMPR Register Description

Bit Field Description

63 int_dis Interrupt Disable. If int_dis = 0, TICK compare interrupts are enabled
and if int_dis = 1, TICK compare interrupts are disabled.

62:0 tick_cmpr Tick Compare Field. When this field exactly matches the value in
TICK.counter and TICK_CMPR.int_dis = 0, SOFTINT.tm is set to 1.
This has the effect of posting a level-14 interrupt to the virtual
processor, which causes an interrupt_level_14 trap when (PIL < 14)
and (PSTATE.ie = 1 and HPSTATE.hpriv = 0). The level-14 interrupt
handler must check SOFTINT{14}, SOFTINT{0} (tm), and
SOFTINT{16} (sm) to determine the source of the level-14 interrupt.

D1
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Hyperprivileged software can always read the STICK register with the RDSTICK
instruction and write it with the WRSTICK instruction.

Privileged software can always read the STICK register with the RDSTICK
instruction. Privileged software cannot write the STICK register; an attempt to
execute the WRSTICK instruction in privileged mode results in an illegal_instruction
exception.

Nonprivileged software can read the STICK register by using the RDSTICK
instruction, but only when nonprivileged access to STICK is enabled (STICK.npt = 0)
by hyperprivileged software. If nonprivileged access is disabled (STICK.npt = 1), an
attempt by nonprivileged software to read the STICK register causes a
privileged_action exception. Nonprivileged software cannot write the STICK
register; an attempt to execute the WRSTICK instruction in nonprivileged mode
results in an illegal_instruction exception.

After the STICK register is written, reading the STICK register returns a value
incremented (by 1 or more) from the last value written, rather than from some
previous value of counter.

After a power-on reset trap, STICK.npt is set to 1 and the value of STICK.counter is
undefined.

6.5.13 System Tick Compare (STICK_CMPRP) Register
(ASR 25)
The privileged STICK_CMPR register allows system software to cause a trap when
the STICK register reaches a specified value. Nonprivileged accesses to this register
cause a privileged_opcode exception (see Exception and Interrupt Descriptions on page
481).

After a power-on reset trap, the int_dis bit is set to 1 (disabling System Tick Compare
interrupts), and the stick_cmpr field is undefined.

The System Tick Compare Register is illustrated in FIGURE 6-22 and described in
TABLE 6-15.

R, WH R, WH

STICKPnpt npt counter

63 62 0

FIGURE 6-21 STICK Register

Note The STICK register is unaffected by any reset other than a
power-on reset.
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6.6 Register-Window PR State Registers
The state of the register windows is determined by the contents of a set of privileged
registers. These state registers can be read/written by privileged software using the
RDPR/WRPR instructions. An attempt by nonprivileged software to execute a
RDPR or WRPR instruction causes a privileged_opcode exception. In addition, these
registers are modified by instructions related to register windows and are used to
generate traps that allow supervisor software to spill, fill, and clean register
windows.

IMPL. DEP. #126-V9-Ms10: Privileged registers CWP, CANSAVE, CANRESTORE,
OTHERWIN, and CLEANWIN contain values in the range 0 to N_REG_WINDOWS − 1.
An attempt to write a value greater than N_REG_WINDOWS − 1 to any of these
registers causes an implementation-dependent value between 0 and
N_REG_WINDOWS − 1 (inclusive) to be written to the register. Furthermore, an attempt
to write a value greater than N_REG_WINDOWS − 2 violates the register window state
definition in Register Window State Definition on page 88.
Although the width of each of these five registers is architecturally 5 bits, the width
is implementation dependent and shall be between  log2(N_REG_WINDOWS) and 5
bits, inclusive. If fewer than 5 bits are implemented, the unimplemented upper bits
shall read as 0 and writes to them shall have no effect. All five registers should have
the same width.
For UltraSPARC Architecture 2005 processors, N_REG_WINDOWS = 8. Therefore, each

RW RW

STICK_CMPRP int_dis stick_cmpr

63 62 0

FIGURE 6-22 STICK_CMPR Register

TABLE 6-15 STICK_CMPR Register Description

Bit Field Description

63 int_dis Interrupt Disable. If set to 1, STICK_CMPR interrupts are disabled.

62:0 stick_cmpr System Tick Compare Field. When this field exactly matches
STICK.counter and STICK_CMPR.int_dis = 0, SOFTINT.sm is set to
1. This has the effect of posting a level-14 interrupt to the virtual
processor, which causes an interrupt_level_14 trap when (PIL < 14)
and (PSTATE.ie = 1). The level-14 interrupt handler must check
SOFTINT{14}, SOFTINT{0} (tm), and SOFTINT{16} (sm) to
determine the source of the level-14 interrupt.
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register window state register is implemented with 3 bits, the maximum value for
CWP and CLEANWIN is 7, and the maximum value for CANSAVE, CANRESTORE,
and OTHERWIN is 6. When these registers are written by the WRPR instruction, bits
63:3 of the data written are ignored.

For details of how the window-management registers are used, see Register Window
Management Instructions on page 129.

6.6.1 Current Window Pointer (CWPP) Register (PR 9)

The privileged CWP register, shown in FIGURE 6-23, is a counter that identifies the
current window into the array of integer registers. See Register Window Management
Instructions on page 129 and Chapter 12, Traps, for information on how hardware
manipulates the CWP register.

6.6.2 Savable Windows (CANSAVEP) Register (PR 10)

The privileged CANSAVE register, shown in FIGURE 6-24, contains the number of
register windows following CWP that are not in use and are, hence, available to be
allocated by a SAVE instruction without generating a window spill exception.

Programming
Note

CANSAVE, CANRESTORE, OTHERWIN, and CLEANWIN must
never be set to a value greater than N_REG_WINDOWS − 2 on an
UltraSPARC Architecture virtual processor. Setting any of these
to a value greater than N_REG_WINDOWS − 2 violates the register
window state definition in Register Window State Definition on
page 88. Hardware is not required to enforce this restriction; it is
up to system software to keep the window state consistent.

Implementation
Note

A write to any privileged register, including PR state registers,
may drain the CPU pipeline.

RW RW

CWPP

4 3 2 0

FIGURE 6-23 Current Window Pointer Register

RW RW

CANSAVEP

4 3 2 0

FIGURE 6-24 CANSAVE Register, Figure 5-24, page 88
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6.6.3 Restorable Windows (CANRESTOREP) Register
(PR 11)
The privileged CANRESTORE register, shown in FIGURE 6-25, contains the number of
register windows preceding CWP that are in use by the current program and can be
restored (by the RESTORE instruction) without generating a window fill exception.

6.6.4 Clean Windows (CLEANWINP) Register (PR 12)

The privileged CLEANWIN register, shown in FIGURE 6-26, contains the number of
windows that can be used by the SAVE instruction without causing a clean_window
exception.

The CLEANWIN register counts the number of register windows that are “clean”
with respect to the current program; that is, register windows that contain only
zeroes, valid addresses, or valid data from that program. Registers in these windows
need not be cleaned before they can be used. The count includes the register
windows that can be restored (the value in the CANRESTORE register) and the
register windows following CWP that can be used without cleaning. When a clean
window is requested (by a SAVE instruction) and none is available, a clean_window
exception occurs to cause the next window to be cleaned.

6.6.5 Other Windows (OTHERWINP) Register (PR 13)

The privileged OTHERWIN register, shown in FIGURE 6-27, contains the count of
register windows that will be spilled/filled by a separate set of trap vectors based on
the contents of WSTATE.other. If OTHERWIN is zero, register windows are spilled/
filled by use of trap vectors based on the contents of WSTATE.normal.

RW RW

CANRESTOREP

4 3 2 0

FIGURE 6-25 CANRESTORE Register

RW RW

CLEANWINP

4 3 2 0

FIGURE 6-26 CLEANWIN Register
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The OTHERWIN register can be used to split the register windows among different
address spaces and handle spill/fill traps efficiently by use of separate spill/fill
vectors.

6.6.6 Window State (WSTATEP) Register (PR 14)
The privileged WSTATE register, shown in FIGURE 6-28, specifies bits that are
inserted into TT[TL]{4:2} on traps caused by window spill and fill exceptions. These
bits are used to select one of eight different window spill and fill handlers. If
OTHERWIN = 0 at the time a trap is taken because of a window spill or window fill
exception, then the WSTATE.normal bits are inserted into TT[TL]. Otherwise, the
WSTATE.other bits are inserted into TT[TL]. See Register Window State Definition,
below, for details of the semantics of OTHERWIN.

6.6.7 Register Window Management
The state of the register windows is determined by the contents of the set of
privileged registers described in Register-Window PR State Registers on page 85.
Those registers are affected by the instructions described in Register Window
Management Instructions on page 129. Privileged software can read/write these state
registers directly by using RDPR/WRPR instructions.

6.6.7.1 Register Window State Definition

For the state of the register windows to be consistent, the following must always be
true:

CANSAVE + CANRESTORE + OTHERWIN = N_REG_WINDOWS – 2

FIGURE 6-3 on page 54 shows how the register windows are partitioned to obtain the
above equation. The partitions are as follows:

■ The current window plus the window that must not be used because it overlaps
two other valid windows. In FIGURE 6-3, these are windows 0 and 5, respectively.
They are always present and account for the “2” subtracted from N_REG_WINDOWS

in the right-hand side of the above equation.

RW RW

OTHERWINP

4 3 2 0

FIGURE 6-27 OTHERWIN Register

RW RW

WSTATEP other normal

5 3 2 0

FIGURE 6-28 WSTATE Register
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■ Windows that do not have valid contents and that can be used (through a SAVE
instruction) without causing a spill trap. These windows (windows 1–4 in
FIGURE 6-3) are counted in CANSAVE.

■ Windows that have valid contents for the current address space and that can be
used (through the RESTORE instruction) without causing a fill trap. These
windows (window 7 in FIGURE 6-3) are counted in CANRESTORE.

■ Windows that have valid contents for an address space other than the current
address space. An attempt to use these windows through a SAVE (RESTORE)
instruction results in a spill (fill) trap to a separate set of trap vectors, as discussed
in the following subsection. These windows (window 6 in FIGURE 6-3) are counted
in OTHERWIN.

In addition,

CLEANWIN ≥ CANRESTORE

since CLEANWIN is the sum of CANRESTORE and the number of clean windows
following CWP.

For the window-management features of the architecture described in this section to
be used, the state of the register windows must be kept consistent at all times, except
within the trap handlers for window spilling, filling, and cleaning. While window
traps are being handled, the state may be inconsistent. Window spill/fill trap
handlers should be written so that a nested trap can be taken without destroying
state.

6.6.7.2 Register Window Traps
Window traps are used to manage overflow and underflow conditions in the register
windows, support clean windows, and implement the FLUSHW instruction.

See Register Window Traps on page 491 for a detailed description of how fill, spill, and
clean_window traps support register windowing.

Programming
Note

System software is responsible for keeping the state of the
register windows consistent at all times. Failure to do so will
cause undefined behavior. For example, CANSAVE,
CANRESTORE, and OTHERWIN must never be greater than or
equal to N_REG_WINDOWS – 1.
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6.7 Non-Register-Window PR State
Registers
The registers described in this section are visible only to software running in
privileged or hyperprivileged mode (that is, when PSTATE.priv = 1 or
HPSTATE.hpriv = 1), and may be accessed with the WRPR and RDPR instructions.
(An attempt to execute a WRPR or RDPR instruction in nonprivileged mode causes
a privileged_opcode exception.)

Each virtual processor provides a full set of these state registers.

6.7.1 Trap Program Counter (TPCP) Register (PR 0)
The privileged Trap Program Counter register (TPC; FIGURE 6-29) contains the
program counter (PC) from the previous trap level. There are MAXTL instances of the
TPC, but only one is accessible at any time. The current value in the TL register
determines which instance of the TPC[TL] register is accessible. An attempt to read
or write the TPC register when TL = 0 causes an illegal_instruction exception.

After a power-on reset, the contents of TPC[1] through TPC[MAXTL] are undefined.
During normal operation, the value of TPC[n], where n is greater than the current
trap level (n > TL), is undefined.

TABLE 6-16 lists the events that cause TPC to be read or written.

Implementation
Note

A write to any privileged register, including PR state registers,
may drain the CPU pipeline.

D1

TPC1
P

2

00

63 1 0

TPC2
P

00

TPC3
P 00

:

00

FIGURE 6-29 Trap Program Counter Register Stack

TPCMAXTL
P

pc_high62  (PC{63:2} from trap while TL = MAXTL − 1)

: :

pc_high62  (PC{63:2} from trap while TL = 0)

pc_high62  (PC{63:2} from trap while TL = 1)

pc_high62  (PC{63:2} from trap while TL = 2)

RW R
90 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006



TABLE 6-16 Events that involve TPC, when executing with TL = n.

6.7.2 Trap Next PC (TNPCP) Register (PR 1)
The privileged Trap Next Program Counter register (TNPC; FIGURE 6-29) is the next
program counter (NPC) from the previous trap level. There are MAXTL instances of
the TNPC, but only one is accessible at any time. The current value in the TL register
determines which instance of the TNPC register is accessible. An attempt to read or
write the TNPC register when TL = 0 causes an illegal_instruction exception.

After a power-on reset, the contents of TNPC[1] through TNPC[MAXTL] are
undefined. During normal operation, the value of TNPC[n], where n is greater than
the current trap level (n > TL), is undefined.

TABLE 6-17 lists the events that cause TNPC to be read or written.

Event Effect

Trap TPC[n + 1] ← PC

RETRY instruction PC ← TPC[n]

RDPR (TPC) R[rd] ← TPC[n]

WRPR (TPC) TPC[n] ← value

Power-on reset (POR) All TPC values are left undefined

TABLE 6-17 Events that involve TNPC, when executing with TL = n.

Event Effect

Trap TNPC[n + 1] ← NPC

DONE instruction PC ← TNPC[n]; NPC ← TNPC[n] + 4

RETRY instruction NPC ← TNPC[n]

RDPR (TNPC) R[rd] ← TNPC[n]

WRPR (TNPC) TNPC[n] ← value

Power-on reset (POR) All TNPC values are left undefined

D1

TNPC1
P

2

00

63 1 0

TNPC2
P

00

TNPC3
P 00

00

FIGURE 6-30 Trap Next Program Counter Register Stack

TNPCMAXTL
P

npc_high62  (NPC{63:2} from trap while TL = MAXTL − 1)

: : :

npc_high62  (NPC{63:2} from trap while TL = 0)

npc_high62  (NPC{63:2} from trap while TL = 1)

npc_high62  (NPC{63:2} from trap while TL = 2)

RW R
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6.7.3 Trap State (TSTATEP) Register (PR 2)
The privileged Trap State register (TSTATE; FIGURE 6-31) contains the state from the
previous trap level, comprising the contents of the GL, CCR, ASI, CWP, and
PSTATE registers from the previous trap level. There are MAXTL instances of the
TSTATE register, but only one is accessible at a time. The current value in the TL
register determines which instance of TSTATE is accessible. An attempt to read or
write the TSTATE register when TL = 0 causes an illegal_instruction exception.

FIGURE 6-31 Trap State (TSTATE) Register Stack

After a power-on reset the contents of TSTATE[1] through TSTATE[MAXTL] are
undefined. During normal operation the value of TSTATE[n], when n is greater than
the current trap level (n > TL), is undefined.

RW RW RW R RW R RW

TSTATE1
P gl

(GL from TL = 0)

ccl
(CCR from TL = 0)

asi
(ASI from TL = 0)

— pstate
(PSTATE from TL = 0)

— cwp
(CWP from TL = 0)

TSTATE2
P gl

(GL from TL = 1)

ccl
(CCR from TL = 1)

asi
(ASI from TL = 1

— pstate
(PSTATE from TL = 1)

— cwp
(CWP from TL = 1)

TSTATE3
P gl

(GL from TL = 2)

ccr
(CCR from TL = 2)

asi
(ASI from TL = 2

— pstate
(PSTATE from TL = 2)

— cwp
(CWP from TL = 2)

: P
: : : : : : :

TSTATEMAXPTL
P

gl
(GL from

TL = MAXPTL − 1)

ccr
(CCR from

TL = MAXPTL − 1)

asi
(ASI from

TL = MAXPTL − 1)

— pstate
(PSTATE from

TL = MAXPTL − 1)

— cwp
(CWP from

TL = MAXPTL − 1)

TSTATEMAXPTL+1
H

gl
(GL from

TL = MAXPTL)

ccr
(CCR from

TL = MAXPTL)

asi
(ASI from

TL = MAXPTL)

— pstate
(PSTATE from

TL = MAXPTL)

— cwp
(CWP from

TL = MAXPTL)
: H

: : : : : : :

TSTATEMAXTL
H gl

(GL from

TL = MAXTL − 1)

ccr
(CCR from

TL = MAXTL − 1)

asi
(ASI from

TL = MAXTL − 1)

— pstate
(PSTATE from

TL = MAXTL − 1)

— cwp
(CWP from

TL = MAXTL − 1)
42 40 39 32 31 24 23 21 20 8 7 5 4 0

TABLE 6-18

V9 Compatibility
Note

Because of the addition of additional bits in the PSTATE register
in the UltraSPARC Architecture, a 13-bit PSTATE value is stored
in TSTATE instead of the 10-bit value specified in the SPARC V9
architecture.
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TABLE 6-19 lists the events that cause TSTATE to be read or written.

6.7.4 Trap Type (TTP) Register (PR 3)
The privileged Trap Type register (TT; see FIGURE 6-32) contains the trap type of the
trap that caused entry to the current trap level. On a reset trap, the TT register
contains the trap type of the reset (see TABLE 12-2 on page 444). There are MAXTL

instances of the TT register, but only one is accessible at a time. The current value in
the TL register determines which instance of the TT register is accessible. An attempt
to read or write the TT register when TL = 0 causes an illegal_instruction exception.

After a power-on reset the contents of TT[1] through TT[MAXTL − 1] are undefined
and TT[MAXTL] = 00116. During normal operation, the value of TT[n], where n is
greater than the current trap level (n > TL), is undefined.

TABLE 6-20 lists the events that cause TT to be read or written.

TABLE 6-19 Events That Involve TSTATE, When Executing with TL = n

Event Effect

Trap TSTATE[n + 1] ← (registers)

DONE instruction (registers) ← TSTATE[n]

RETRY instruction (registers) ← TSTATE[n]

RDPR (TSTATE) R[rd] ← TSTATE[n]

WRPR (TSTATE) TSTATE[n] ← value

Power-on reset (POR) All TSTATE values are left undefined

RW

TT1
P Trap type from trap while TL = 0

TT2
P Trap type from trap while TL = 1

:P :

TTMAXPTL
P Trap type from trap while TL = MAXPTL − 1

TTMAXPTL + 1
H Trap type from trap while TL = MAXPTL

:H :

TTMAXTL
H Trap type from trap while TL = MAXTL − 1

8 0

FIGURE 6-32 Trap Type Register Stack
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TABLE 6-20 Events that involve TT, when executing with TL = n.

6.7.5 Trap Base Address (TBAP) Register (PR 5)
The privileged Trap Base Address register (TBA), shown in FIGURE 6-33, provides the
upper 49 bits (bits 63:15) of the virtual address used to select the trap vector for a
trap that is to be delivered to privileged mode. The lower 15 bits of the TBA always
read as zero, and writes to them are ignored.

Details on how the full address for a trap vector is generated, using TBA and other
state, are provided in Trap-Table Entry Address to Privileged Mode on page 453.

6.7.6 Processor State (PSTATEP) Register (PR 6)
The privileged Processor State register (PSTATE), shown in FIGURE 6-34, contains
control fields for the current state of the virtual processor. There is only one instance
of the PSTATE register per virtual processor.

Writes to PSTATE are nondelayed; that is, new machine state written to PSTATE is
visible to the next instruction executed. The privileged RDPR and WRPR
instructions are used to read and write PSTATE, respectively.

The following subsections describe the fields of the PSTATE register.

Event Effect

Trap TT[n + 1] ← (trap type)

RDPR (TT) R[rd] ← TT[n]

WRPR (TT) TT[n] ← value

Power-on reset (POR) TT values TT[1] through TT[MAXTL − 1] are left undefined;
TT[MAXTL] ← 00116.

RW R

TBAP tba_high49 000 0000 0000 0000

63 15 14 0

FIGURE 6-33 Trap Base Address Register

RW RW RW RW RW RW RW RW

PSTATEP — — cle tle mm — pef am priv ie —

12 11 10 9 8 7 6 5 4 3 2 1 0

FIGURE 6-34 PSTATE Field
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Current Little Endian (cle). This bit affects the endianness of data accesses
performed using an implicit ASI. When PSTATE.cle = 1, all data accesses using an
implicit ASI are performed in little-endian byte order. When PSTATE.cle = 0, all data
accesses using an implicit ASI are performed in big-endian byte order. Specific ASIs
used are shown in TABLE 6-3 on page 120. Note that the endianness of a data access
may be further affected by TTE.ie used by the MMU.

Instruction accesses are unaffected by PSTATE.cle and are always performed in big-
endian byte order.

Trap Little Endian (tle). When a trap is taken, the current PSTATE register is
pushed onto the trap stack.

During a virtual processor trap to privileged mode, the PSTATE.tle bit is copied into
PSTATE.cle in the new PSTATE register. This behavior allows system software to
have a different implicit byte ordering than the current process. Thus, if PSTATE.tle
is set to 1, data accesses using an implicit ASI in the trap handler are little-endian.

The original state of PSTATE.cle is restored when the original PSTATE register is
restored from the trap stack. During a virtual processor trap to hyperprivileged
mode, the PSTATE.tle bit is not copied into PSTATE.cle of the new PSTATE register
and is unused.

Memory Model (mm). This 2-bit field determines the memory model in use by
the virtual processor. The defined values for an UltraSPARC Architecture virtual
processor are listed in TABLE 6-21.

The current memory model is determined by the value of PSTATE.mm. Software
should refrain from writing the values 012, 102, or 112 to PSTATE.mm because they
are implementation-dependent or reserved for future extensions to the architecture,
and in any case not currently portable across implementations.

■ Total Store Order (TSO) — Loads are ordered with respect to earlier loads. Stores
are ordered with respect to earlier loads and stores. Thus, loads can bypass earlier
stores but cannot bypass earlier loads; stores cannot bypass earlier loads or stores.

IMPL. DEP. #113-V9-Ms10: Whether memory models represented by
PSTATE.mm = 102 or 112 are supported in an UltraSPARC Architecture processor is
implementation dependent. If the 102 model is supported, then when

TABLE 6-21 PSTATE.mm Encodings

mm Value Selected Memory Model

00 Total Store Order (TSO)

01 Reserved

10 Implementation dependent (impl. dep. #113-V9-Ms10)

11 Implementation dependent (impl. dep. #113-V9-Ms10)
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PSTATE.mm = 102 the implementation must correctly execute software that adheres
to the RMO model described in The SPARC Architecture Manual-Version 9. If the 112
model is supported, its definition is implementation dependent.

IMPL. DEP. #119-Ms10: The effect of writing an unimplemented memory model
designation into PSTATE.mm is implementation dependent.

Enable FPU (pef). When set to 1, the PSTATE.pef bit enables the floating-point
unit. This allows privileged software to manage the FPU. For the FPU to be usable,
both PSTATE.pef and FPRS.fef must be set to 1. Otherwise, any floating-point
instruction that tries to reference the FPU causes an fp_disabled trap.

If an implementation does not contain a hardware FPU, PSTATE.pef always reads as
0 and writes to it are ignored.

Address Mask (am). The PSTATE.am bit is provided to allow 32-bit SPARC
software to run correctly on a 64-bit SPARC V9 processor, by masking out (zeroing)
bits 63:32 of virtual addresses at appropriate times.

When PSTATE.am = 0, the full 64 bits of all instruction and data addresses are
preserved at all times.

When PSTATE.am = 1, bits 63:32 of instruction and data virtual addresses are
masked out (treated as 0).

SPARC V9
Compatibility

Notes

The PSO memory model described in SPARC V8 and SPARC V9
architecture specifications was never implemented in a SPARC
V9 implementation and is not included in the UltraSPARC
Architecture specification.

The RMO memory model described in the SPARC V9
specification was implemented in some non-Sun SPARC V9
implementations, but is not directly supported in UltraSPARC
Architecture 2005 implementations. All software written to run
correctly under RMO will run correctly under TSO on an
UltraSPARC Architecture 2005 implementation.

Programming
Note

It is the responsibility of privileged and hyperprivileged
software to manage the setting of the PSTATE.am bit, since
hardware masks virtual addresses when PSTATE.am = 1.

Misuse of the PSTATE.am bit can result in undesirable behavior.
PSTATE.am should not be set to 1 in privileged or
hyperprivileged mode.

The PSTATE.am bit should always be set to 1 when 32-bit
software is executed.
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Instances in which the more-significant 32 bits of a virtual address are masked
include:

■ Before any (virtual, real, or physical) data address is sent out of the virtual
processor (notably, to the memory system, which includes MMU, internal caches,
and external caches); this includes ASI accesses using ASI_AS_IF_USER* in
privileged or hyperprivileged mode.

■ Before any instruction virtual address is sent out of the virtual processor (notably,
to the memory system, which includes MMU, internal caches, and external
caches)

■ When the value of PC is stored to a general-purpose register by a CALL, JMPL, or
RDPC instruction (closed impl.dep. #125-V9-Cs10)

■ When the values of PC and NPC are written to TPC[TL] and TNPC[TL]
(respectively) during a trap (closed impl.dep. #125-V9-Cs10)

■ Before any virtual address is sent to a watchpoint comparator

■ When a bypassing ASI (ASI_*REAL_* or ASI_*PHYS_*) is used in a load or
store instruction (see ASI 1416, ASI_REAL, for an example).

■ When an exception occurs and any address (virtual, real, or physical) is written to
the Data Synchronous Fault Address register (DSFAR) (impl.dep. #241-U3)

When PSTATE.am = 1, the more-significant 32 bits of a virtual address are
explicitly preserved and not masked out in the following cases:

■ When a target address is written to NPC by a control transfer instruction

■ When NPC is incremented to NPC + 4 during execution of an instruction that is
not a taken control transfer

Programming
Note

A 64-bit comparison is always used when performing a masked
watchpoint address comparison with the Instruction or Data VA
watchpoint register. When PSTATE.am = 1, the more significant
32 bits of the VA watchpoint register must be zero for a match
(and resulting trap) to occur.

Programming
Note

If a memory access is initiated when PSTATE.am = 1, the
memory system will only see a 32-bit memory address.
Therefore, if such a memory access causes an exception or error,
the memory system will (is only able to) report a 32-bit address
in the DSFAR register (64-bit address with the more-significant
32 bits set to 0).

Forward
Compatibility

Note

This behavior is expected to change in the next revision of the
architecture, such that implementations will explicitly mask out
(not preserve) the more-significant 32 bits, in this case.

Forward
Compatibility

Note

This behavior is expected to change in the next revision of the
architecture, such that implementations will explicitly mask out
(not preserve) the more-significant 32 bits, in this case.
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■ When a WRPR instruction writes to TPC[TL] or TNPC[TL]

■ When a RDPR instruction reads from TPC[TL] or TNPC[TL]

If (1) TSTATE[TL].pstate.am = 1 and (2) a DONE or RETRY instruction is
executed1, it is implementation dependent whether the DONE or RETRY instruction
masks (zeroes) the more-significant 32 bits of the values it places into PC and NPC
(impl. dep. #417-S10).

Privileged Mode (priv). When PSTATE.priv = 1 and HPSTATE.hpriv = 0, the
virtual processor is operating in privileged mode.

When PSTATE.priv = 0 and HPSTATE.hpriv = 0, the processor is operating in
nonprivileged mode

When HPSTATE.hpriv = 1, the virtual processor is operating in hyperprivileged
mode, independent of the state of PSTATE.priv. Hyperprivileged mode provides a
superset of the capabilities of privileged mode.

PSTATE_interrupt_enable (ie). PSTATE.ie controls when the virtual processor
can take traps due to disrupting exceptions (such as interrupts or errors unrelated to
instruction processing).

Outstanding disrupting exceptions that are destined for privileged mode can only
cause a trap when the virtual processor is in nonprivileged or privileged mode and
PSTATE.ie = 1. At all other times, they are held pending. For more details, see
Conditioning of Disrupting Traps on page 448.

Programming
Note

Since writes to PSTATE are nondelayed (see page 94), a change
to PSTATE.am can affect the address of the next instruction
executed. Specifically, if a WRPR to the PSTATE register
changes the value of PSTATE.am from ’0’ to ’1’, and the more-
significant 32 bits of NPC when the WRPR began execution were
nonzero, then the next instruction that executes after the WRPR
will not be from the address in NPC when the WRPR began
execution but rather from that address truncated to a 32-bit
address (NPC with its more-significant 32 bits set to zero).

1. which sets PSTATE.am to ’1’, by restoring the value from TSTATE[TL].pstate.am to PSTATE.am

Programming
Note

Because of implementation dependency #417-S10, great care
must be taken in trap handler software if
TSTATE[TL].pstate.am = 1 and the trap handler wishes to write
a nonzero value to the more-significant 32 bits of TPC[TL] or
TNPC[TL].
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Outstanding disrupting exceptions that are destined for hyperprivileged mode can
only cause a trap when the virtual processor is not in hyperprivileged mode, or
when it is in hyperprivileged mode and PSTATE.ie = 1. At all other times, they are
held pending. For more details, see Conditioning of Disrupting Traps on page 448

6.7.7 Trap Level Register (TLP) (PR 7)
The privileged Trap Level register (TL; FIGURE 6-35) specifies the current trap level.
TL = 0 is the normal (nontrap) level of operation. TL > 0 implies that one or more
traps are being processed.

The maximum valid value that the TL register may contain is MAXTL, which is always
equal to the number of supported trap levels beyond level 0.

IMPL. DEP. #101-V9-CS10: The architectural parameter MAXPTL is a constant for
each implementation; its legal values are from 2 to 6 (supporting from 2 to 6 levels of
saved trap state visible to privileged software). In a typical implementation
MAXPTL = MAXPGL (see impl. dep. #401-S10). The architectural parameter MAXTL is a
constant for each implementation; its legal values are from 4 to 7 (supporting from 4
to 7 levels of saved trap state). Architecturally, MAXPTL must be ≥ 2, MAXTL must be ≥
4, and MAXTL must be > MAXPTL.

In an UltraSPARC Architecture 2005 implementation, MAXPTL = 2 and MAXTL = 6. See
Chapter 12, Traps, for more details regarding the TL register.

After a power-on rest (POR), TL is set to MAXTL.

SPARC V9
Compatibility

Note

Since the UltraSPARC Architecture provides a more general
“alternate globals” facility (through use of the GL register) than
does SPARC V9, an UltraSPARC Architecture processor does not
implement the SPARC V9 PSTATE.ag bit.

RW

TLP tl

2 0

FIGURE 6-35 Trap Level Register
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The effect of writing to TL with a WRPR instruction is summarized in TABLE 6-22.

Writing the TL register with a WRPR instruction does not alter any other machine
state; that is, it is not equivalent to taking a trap or returning from a trap.

TABLE 6-22 Effect of WRPR of Value x to Register TL

Value x Written with WRPR

Privilege Level when Executing WRPR

Nonprivileged Privileged Hyperprivileged

x ≤ MAXPTL

privileged_opcode
exception

TL ← x
TL ← x

MAXPTL < x ≤ MAXTL TL ← MAXPTL

(no exception generated)
x > MAXTL TL ← MAXTL

(no exception generated)

Programming
Note

An UltraSPARC Architecture implementation only needs to
implement sufficient bits in the TL register to encode the
maximum trap level value. In an implementation
whereMAXTL ≤ 7, bits 63:3 of data written to the TL register using
the WRPR instruction are ignored; only the least-significant
three bits (bits 2:0) of TL are actually written. For example, if
MAXTL = 6, writing a value of 0916 to the TL register causes a
value of 116 to actually be stored in TL.

Implementation
Note

MAXPTL =2 for all UltraSPARC Architecture 2005 processors.
Writing a value between 3 and 7 to the TL register in privileged
mode causes a 2 to be stored in TL.

Implementation
Note

MAXTL = 6 for all UltraSPARC Architecture 2005 processors.
Writing a value of 7 to the TL register in hyperprivileged mode
causes a 6 to be stored in TL.

Programming
Note

Although it is possible for hyperprivileged software to set
TL > MAXPTL for privileged or nonprivileged software†, an
UltraSPARC Architecture virtual processor’s behavior when
executing with TL > MAXPTL outside of hyperprivileged mode is
undefined.

Although it is possible for privileged or hyperprivileged
software to set TL > 0 for nonprivileged software†, an
UltraSPARC Architecture virtual processor’s behavior when
executing with TL > 0 in nonprivileged mode is undefined.
† by executing a WRPR to TSTATE followed by DONE instruction or RETRY

instruction or a JMPL/WRHPR instruction pair.
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6.7.8 Processor Interrupt Level (PILP) Register (PR 8)

The privileged Processor Interrupt Level register (PIL; see FIGURE 6-36) specifies the
interrupt level above which the virtual processor will accept an interrupt_level_n
interrupt. Interrupt priorities are mapped so that interrupt level 2 has greater
priority than interrupt level 1, and so on. See TABLE 12-4 on page 459 for a list of
exception and interrupt priorities.

6.7.9 Global Level Register (GLP) (PR 16)
The privileged Global Level (GL) register selects which set of global registers is
visible at any given time.

FIGURE 6-37 illustrates the Global Level register.

When a trap occurs, GL is stored in TSTATE[TL].gl, GL is incremented, and a new
set of global registers (R[1] through R[7]) becomes visible. A DONE or RETRY
instruction restores the value of GL from TSTATE[TL].

The valid range of values that the GL register may contain is MAXGL, where MAXGL is
one fewer than the number of global register sets available to the virtual processor.

IMPL. DEP. #401-S10: The architectural parameter MAXPGL is a constant for each
implementation; its legal values are from 2 to 7 (supporting from 3 to 8 sets of global
registers visible to privileged software). In a typical implementation
MAXPGL = MAXPTL (see impl. dep. #101-V9-CS10). The architectural parameter MAXGL

is a constant for each implementation; its legal values are from 3 to 7 (supporting
from 4 to 8 sets of global registers). Architecturally, MAXPGL must be ≥ 2 and MAXGL

must be > MAXPGL.

RW

PILP pil

3 0

FIGURE 6-36 Processor Interrupt Level Register

V9 Compatibility
Note

On SPARC V8 processors, the level 15 interrupt is considered to
be nonmaskable, so it has different semantics from other
interrupt levels. SPARC V9 processors do not treat a level 15
interrupt differently from other interrupt levels.

RW

GLP gl

2 0

FIGURE 6-37 Global Level Register, GL
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In all UltraSPARC Architecture 2005 implementations, MAXPGL = 2 and MAXGL = 3.
MAXGL (impl. dep. #401-S10).

IMPL. DEP. #400-S10: Although GL is defined as a 3-bit register, an implementation
may implement any subset of those bits sufficient to encode the values from 0 to
MAXGL for that implementation. If any bits of GL are not implemented, they read as
zero and writes to them are ignored.

GL operates similarly to TL, in that it increments during entry to a trap, but the
values of GL and TL are independent. That is, TL = n does not imply that GL = n,
and GL = n does not imply that TL = n. Furthermore, there may be a different total
number of global levels (register sets) than there are trap levels; that is, MAXTL and
MAXGL are not necessarily equal.

The GL register can be accessed directly with the RDPR and WRPR instructions (as
privileged register number 16). Writing the GL register directly with WRPR will
change the set of global registers visible to all instructions subsequent to the WRPR.

In privileged mode, attempting to write a value greater than MAXPGL to the GL
register causes MAXPGL to be written to GL.

In hyperprivileged mode, attempting to write a value greater than MAXGL to the GL
register causes MAXGL to be written to GL.

When a DONE or RETRY instruction is executed in privileged mode and
HTSTATE[TL].hpstate.hpriv = 0 (which will cause the DONE or RETRY to return the
virtual processor to nonprivileged or privileged mode), the value of GL restored
from TSTATE[TL] saturates at MAXPGL. That is, if the value in TSTATE[TL].gl is
greater than MAXPGL, then MAXPGL is substituted and written to GL. This protects
against non-hyperprivileged software executing with GL > MAXPGL.

Programming
Note

Although it is possible for hyperprivileged software to set
GL > MAXPGL for privileged or nonprivileged software†,
executing with GL > MAXPGL outside of hyperprivileged mode is
an illegal state and the behavior of a virtual processor in that
state is undefined.
† by executing a WRPR that modifies GL, followed by a JMPL/WRHPR instruction

pair (it is not possible to set GL > MAXPGL using DONE/RETRY)
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The effect of writing to GL with a WRPR instruction is summarized in TABLE 6-23.

If MAXGL < MAXTL, then there are fewer sets of global registers than trap levels. In this
case, if a trap occurs while GL = MAXGL, GL will have the same value before the trap
occurs and in the software that handles the trap. Trap handler software must detect
this case and safely save any global register before the trap handler writes to it. The
Hyperprivileged Scratchpad registers (see Privileged Scratchpad Registers
(ASI_SCRATCHPAD) on page 431) may be useful in such cases.

Since TSTATE itself is software-accessible, it is possible that when a DONE or
RETRY is executed to return from a trap handler, the value of GL restored from
TSTATE[TL] will be different from that which was saved into TSTATE[TL] when the
trap occurred.

During power-on reset (POR), the value of GL is set to MAXGL. During all other
resets, GL is incremented (the same behavior as TL).

6.8 HPR State Registers
The registers described in this section can be directly accessed with the
hyperprivileged WRHPR and RDHPR instructions.

TABLE 6-23 Effect of WRPR to Register GL

Value x Written with WRPR

Privilege Level when WRPR Is Executed

Nonprivileged Privileged Hyperprivileged

x ≤ MAXPGL

privileged_opcode
exception

GL ← x
GL ← x

MAXPGL < x ≤ MAXGL
GL ← MAXPGL

(no exception generated)x > MAXGL GL ← MAXGL

(no exception generated)

Programming
Note

An UltraSPARC Architecture implementation only needs to
implement sufficient bits in the GL register to encode the
maximum global level value. In an implementation where
MAXGL ≤ 7, bits 63:3 of data written to the GL register using the
WRPR instruction are ignored; only the least-significant three
bits (bits 2:0) are actually written to GL. For example, if
MAXGL = 7, writing a value of 916 to the TL register causes a
value of 116 to actually be stored in GL.
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An attempt to read or write any HPR state register (using RDHPR or WRHPR) in
privileged or nonprivileged modes (that is, when HPSTATE.hpriv = 0) causes an
illegal_instruction exception.

5.7.1 Hyperprivileged State (HPSTATEH) Register
(HPR 0)
The Hyperprivileged State register (HPSTATE), shown in FIGURE 5-37, contains
hyperprivileged control fields for the virtual processor. There is one instance of the
HPSTATE register per virtual processor.

Writing HPSTATE is nondelayed; that is, new machine state written to HPSTATE is
visible to the next instruction executed. The hyperprivileged RDHPR and WRHPR
instructions are used to read and write HPSTATE, respectively.

The following subsections describe the fields contained in the HPSTATE register.

IMPL. DEP. #408-S10: The contents and semantics of HPSTATE{11} are
implementation dependent.

Instruction Breakpoint Enable (ibe). When HPSTATE.ibe = 1, the Instruction
Breakpoint feature is enabled, allowing an instr_breakpoint exception to occur. When
an instr_breakpoint exception trap occurs, the virtual processor sets HPSTATE.ibe to
0 before entering trap handler software, to guarantee that no additional
instr_breakpoint exception can occur in the instruction breakpoint trap handler
unless the trap handler explicitly reenables instruction breakpointing by setting
HPSTATE.ibe to 1.

RED_state (red). When HPSTATE.red is set to 1, the virtual processor is
operating in RED_state (Reset, Error, and Debug state). See RED_state on page
441. The virtual processor sets HPSTATE.red when any hardware reset occurs.
HPSTATE.red is also set to 1 when a trap is taken while TL = (MAXTL − 1). Software
can reliably exit RED_state by one of two methods:

1. Execute a DONE or RETRY instruction, which restores the stacked copy of
HPSTATE and clears HPSTATE.red if it was 0 in the stacked copy.

RW RW RW RW

HPSTATEH — i.d. ibe — red — hpriv — tlz

63 12 11 10 9 6 5 4 3 2 1 0

FIGURE 5-37 HPSTATE Fields
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2. Write a 0 to HPSTATE.red with a WRHPR instruction.

Hyperprivileged mode (hpriv). When HPSTATE.hpriv = 1, the virtual processor
is operating in hyperprivileged mode and ignores PSTATE.priv.

When HPSTATE.hpriv = 0, the processor is operating in privileged or nonprivileged
mode, as determined by PSTATE.priv.

See the Programming Note on page 373, recommending that a WRHPR instruction
that changes HPSTATE.priv never be executed in the delay slot of a DCTI
instruction.

Trap Level Zero trap enable (tlz). When HPSTATE.tlz = 0, generation of
trap_level_zero exceptions is disabled. When all three of the following conditions
exist, a trap_level_zero exception is generated:
■ HPSTATE.tlz = 1 (generation of trap_level_zero is enabled)
■ the virtual processor is in nonprivileged or privileged mode (HPSTATE.hpriv = 0)
■ the trap level (TL) register’s value is zero (TL = 0)

5.7.2 Hyperprivileged Trap State (HTSTATEH) Register
(HPR 1)
The Hyperprivileged Trap State register (HTSTATE; FIGURE 5-38) contains the
hyperprivileged state from the previous trap level, comprising the contents of the
HPSTATE register from the previous trap level. There are MAXTL instances of the
HTSTATE register, but only one is accessible at a time. The current value in the TL
register determines which instance of HTSTATE is accessible.

Programming
Note

Software should not write 0 to HPSTATE.red in the delay slot of
a DCTI (e.g. JMPL instruction). Exiting RED_state using a
DONE or RETRY instruction avoids this problem entirely.

Programming
Note

HPSTATE.hpriv = 0 and HPSTATE.red = 1 is an undefined
operational state. Therefore, care should be taken never to write
that combination of values to HPSTATE.

Programming
Note

The purpose of trap_level_zero is to improve efficiency when
descheduling a virtual processor. When a descheduling event
occurs and the virtual processor is executing in privileged mode
at TL > 0, hyperprivileged software can choose to enable the
trap_level_zero exception (set HPSTATE.tlz ← 1) and return to
privileged mode, enabling privileged software to complete its
TL > 0 processing. When privileged code returns to TL = 0, this
exception enables the hyperprivileged code to regain control
and deschedule the virtual processor with low overhead.
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FIGURE 5-38 Hyperprivileged Trap State Register

An attempt to read or write the HTSTATE register when TL = 0 causes an
illegal_instruction exception.

After a power-on reset the contents of HTSTATE[1] through HTSTATE[MAXTL] are
undefined. During normal operation the value of HTSTATE[n], when n is greater
than the current trap level (n > TL), is undefined.

TABLE 5-24 lists the events that cause HTSTATE to be read or written.

5.7.3 Hyperprivileged Interrupt Pending (HINTPH)
Register (HPR 3)
The hyperprivileged HINTP register provides a mechanism for hyperprivileged
software to determine that an hstick_match interrupt is pending while PSTATE.ie = 0
and to clear the interrupt without having to first set PSTATE.ie = 1 and take a
disrupting trap.

When HINTP.hsp = 1, a match between STICK and HSTICK_CMPR has occurred
with the match enabled (see System Tick Compare (STICK_CMPRP) Register (ASR 25)
on page 84), causing an hstick_match exception to be generated.

TABLE 5-24 Events that involve HTSTATE, when executing with TL = n.

Event Effect

Trap HTSTATE[n + 1]{10:0} ← HPSTATE

DONE instruction HPSTATE ← HTSTATE[n]{10:0}

RETRY instruction HPSTATE ← HTSTATE[n]{10:0}

RDHPR (HTSTATE) R[rd] ← HTSTATE[n]

WRHPR (HTSTATE) HTSTATE[n] ← value

Power-on reset (POR) All HTSTATE values are left undefined

0

HTSTATE1
H HPSTATE from TL = 0—

11 10

HTSTATE2
H HPSTATE from TL = 1—

HTSTATE3
H HPSTATE from TL = 2—

—

::

63

HTSTATEMAXTL
H

HPSTATE from TL = MAXTL − 1
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When HINTP.hsp = 0, no interrupt is pending due to a match between STICK and
HSTICK_CMPR. An interrupt might have existed earlier but was cleared by
software.

The format of the HINTP register is illustrated in FIGURE 5-39.

5.7.4 Hyperprivileged Trap Base Address (HTBAH)
Register (HPR 5)
The Hyperprivileged Trap Base Address register (HTBA), shown in FIGURE 5-40,
provides the most significant 50 bits (bits 63:14) of the physical address used to
select the trap vector for a trap that is to be serviced in hyperprivileged mode. The
least significant 14 bits of HTBA always read as zero, and writes to them are ignored.

Details on how the full address for a trap vector is generated, using HTBA and other
state, are provided in Trap-Table Entry Address to Hyperprivileged Mode on page 454.

IMPL. DEP. #406-S10: It is implementation dependent whether all 50 bits of
HTBA{63:14} are implemented or if only bits n−1:14 are implemented. If the latter,
writes to bits 63:n are ignored and when HTBA is read, bits 63:n read as sign-
extended copies of the most significant implemented bit, HTBA{n − 1}.

See Chapter 12, Traps, for more details on trap vectors.

5.7.5 Hyperprivileged Implementation Version
(HVERH) Register (HPR 6)
The Hyperprivileged Implementation Version register, shown in FIGURE 5-41,
specifies the fixed parameters pertaining to a particular processor implementation
and mask set. The HVER register is read-only, readable by the RDHPR instruction in
hyperprivileged mode.

RW

HINTPH — hsp

63 1 0

FIGURE 5-39 Hyperprivileged Interrupt Pending (HINTP) Register Format

RW R

HTBAH htba_high50 00 0000 0000 0000

63 14 13 0

FIGURE 5-40 Hyperprivileged Trap Base Address Register
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IMPL. DEP. #104-V9: HVER.manuf contains a 16-bit manufacturer code. This field is
optional and if not present shall read as 0. HVER.manuf may indicate the original
supplier of a second-sourced processor. It is intended that the contents of
HVER.manuf track the JEDEC semiconductor manufacturer code as closely as
possible. If the manufacturer does not have a JEDEC semiconductor manufacturer
code, SPARC International will assign a value for HVER.manuf.

IMPL. DEP. #13-V8: HVER.impl uniquely identifies an implementation or class of
software-compatible implementations of the architecture. Values FFF016–FFFF16 are
reserved and are not available for assignment.

HVER.mask specifies the current mask set revision and is chosen by the
implementor. It generally increases numerically with successive releases of the
processor but does not necessarily increase by 1 for consecutive releases.

HVER.maxgl contains the maximum number of levels of global register sets
supported by an implementation (impl. dep. #401-S10), that is, MAXGL, the maximum
value that the GL register may contain.

HVER.maxtl contains the maximum number of trap levels supported by an
implementation (impl. dep. #101-V9-CS10), that is, MAXTL, the maximum value of the
contents of the TL register.

HVER.maxwin contains the maximum index number available for use as a valid
CWP value in an implementation; that is, HVER.maxwin contains the value
N_REG_WINDOWS − 1 (impl. dep. #2-V8).

R R R R R R

HVERH manuf impl mask — maxgl maxtl — maxwin

63 48 47 32 31 24 23 19 18 16 15 8 7 5 4 0

FIGURE 5-41 Hyperprivileged Implementation Version Register

Implementation
Note

Conventionally, this field is die-specific, with bits 31:28
indicating the major mask revision number and bits 27:24
indicating the minor mask revision number.

SPARC V9
Compatibility

Note

The SPARC V9 VER register was replaced in the UltraSPARC
Architecture by the hyperprivileged HVER register.
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5.7.6 Hyperprivileged System Tick Compare
(HSTICK_CMPRH) Register (HPR 31)
The Hyperprivileged System Tick Compare (HSTICK_CMPR) register allows
hyperprivileged software to cause an hstick_match interrupt when the STICK
register reaches a specified value while HSTICK_CMPR.int_dis = 0. While executing
in hyperprivileged mode and PSTATE.ie = 0, the interrupt is masked.

The Hyperprivileged System Tick Compare Register is illustrated in FIGURE 5-42.

The fields of HSTICK_CMPR are described in TABLE 5-25.

After a power-on reset trap, the int_dis bit is set to 1 (disabling Hyperprivileged
System Tick Compare interrupts), and the hstick_cmpr field is undefined.

RW RW

HSTICK_CMPRH int_dis hstick_cmpr

63 62 0

FIGURE 5-42 HSTICK_CMPR Register

TABLE 5-25 Bit Description of HSTICK_CMPR Register

Bit(s) Field Name Description

63 int_dis Interrupt Disable. If int_dis = 1, hstick_match interrupts are
disabled; if 0, they are enabled (may occur).

62:0 hstick_cmpr Hyperprivileged System Tick Compare Field. When
HSTICK_CMPR.int_dis = 0 and the value in
HSTICK_CMPR.hstick_cmpr exactly matches the value in
STICK.counter, HINTP.hsp is set to 1. After that, if HINTP.hsp
remains set to 1, the next time that hyperprivileged interrupts are
unmasked (HPSTATE.hpriv = 0 or PSTATE.ie = 1), an hstick_match
exception will occur.
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CHAPTER 6

Instruction Set Overview

Instructions are fetched by the virtual processor from memory and are executed,
annulled, or trapped. Instructions are encoded in 4 major formats and partitioned
into 11 general categories. Instructions are described in the following sections:

■ Instruction Execution on page 111.
■ Instruction Formats on page 112.
■ Instruction Categories on page 113.

6.1 Instruction Execution
The instruction at the memory location specified by the program counter is fetched
and then executed. Instruction execution may change program-visible virtual
processor and/or memory state. As a side effect of its execution, new values are
assigned to the program counter (PC) and the next program counter (NPC).

An instruction may generate an exception if it encounters some condition that makes
it impossible to complete normal execution. Such an exception may in turn generate
a precise trap. Other events may also cause traps: an exception caused by a previous
instruction (a deferred trap), an interrupt or asynchronous error (a disrupting trap),
or a reset request (a reset trap). If a trap occurs, control is vectored into a trap table.
See Chapter 12, Traps, for a detailed description of exception and trap processing.

If a trap does not occur and the instruction is not a control transfer, the next program
counter is copied into the PC, and the NPC is incremented by 4 (ignoring arithmetic
overflow if any). There are two types of control-transfer instructions (CTIs): delayed
and immediate. For a delayed CTI, at the end of the execution of the instruction,
NPC is copied to into the PC and the target address is copied into NPC. For an
immediate CTI, at the end of execution, the target is copied to PC and target + 4 is
copied to NPC. In the SPARC instruction set, many CTIs do not transfer control until
after a delay of one instruction, hence the term “delayed CTI” (DCTI). Thus, the two
program counters provide for a delayed-branch execution model.
111



For each instruction access and each normal data access, an 8-bit address space
identifier (ASI) is appended to the 64-bit memory address. Load/store alternate
instructions (see Address Space Identifiers (ASIs) on page 120) can provide an arbitrary
ASI with their data addresses or can use the ASI value currently contained in the
ASI register.

6.2 Instruction Formats
Instructions are encoded in four major 32-bit formats and several minor formats, as
shown in FIGURE 6-1. For detailed formats for specific instructions, see individual
instruction descriptions in the Instructions chapter.

FIGURE 6-1 Summary of Instruction Formats

op = 012: CALL

op = 002: SETHI and Branches

1x rd op3 rs1 i=0 imm_asi rs2

op3rd rs1 i=1 simm131x

31 24 02530 29 19 18 14 13 12 5 4

op = 102 or 112: Arithmetic, Logical, Moves, Tcc, Loads, Stores, Prefetch, and Misc

01 disp30

31 030 29 8

00 rcond op2 rs1 d16lo

31 24 02530 29 19 18 14 13

a 0

22

d16hi p

21 2028 27

00 cond op2 disp19a cc1 pcc0

00 cond op2 disp22a

00 rd op2 imm22
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6.3 Instruction Categories
UltraSPARC Architecture instructions can be grouped into the following categories:

■ Memory access
■ Memory synchronization
■ Integer arithmetic
■ Control transfer (CTI)
■ Conditional moves
■ Register window management
■ State register access
■ Privileged register access
■ Floating-point operate
■ Implementation dependent
■ Reserved

These categories are described in the following subsections.

6.3.1 Memory Access Instructions
Load, store, load-store, and PREFETCH instructions are the only instructions that
access memory. All of the memory access instructions except CASA, CASXA, and
Partial Store use either two R registers or an R register and simm13 to calculate a 64-
bit byte memory address. For example, Compare and Swap uses a single R register
to specify a 64-bit byte memory address. To this 64-bit address, an ASI is appended
that encodes address space information.

The destination field of a memory reference instruction specifies the R or F
register(s) that supply the data for a store or that receive the data from a load or
LDSTUB. For SWAP, the destination register identifies the R register to be
exchanged atomically with the calculated memory location. For Compare and Swap,
an R register is specified, the value of which is compared with the value in memory
at the computed address. If the values are equal, then the destination field specifies
the R register that is to be exchanged atomically with the addressed memory
location. If the values are unequal, then the destination field specifies the R register
that is to receive the value at the addressed memory location; in this case, the
addressed memory location remains unchanged. The LDFSR/LDXFSR and the
STFSR/STXFSR are special load and store instructions that load or store the floating-
point status instead of acting on an R or F register.

The destination field of a PREFETCH instruction (fcn) is used to encode the type of
the prefetch.
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Memory is byte (8-bit) addressable. Integer load and store instructions support byte,
halfword (2 bytes), word (4 bytes), and doubleword/extended-word (8 bytes)
accesses. Floating-point load and store instructions support word, doubleword, and
quadword memory accesses. LDSTUB accesses bytes, SWAP accesses words, CASA
accesses words, and CASXA accesses doublewords. The LDTXA (load twin-
extended-word) instruction accesses a quadword (16 bytes) in memory. Block loads
and stores access 64-byte aligned data. PREFETCH accesses at least 64 bytes.

6.3.1.1 Memory Alignment Restrictions
A halfword access must be aligned on a 2-byte boundary, a word access (including
an instruction fetch) must be aligned on a 4-byte boundary, an extended-word (LDX,
LDXA, STX, STXA) or integer twin word (LDTW, LDTWA, STTW, STTWA ) access
must be aligned on an 8-byte boundary,an integer twin-extended-word (LDTXA)
access must be aligned on a 16-byte boundary, and a Block Load (LDBLOCKF) or
Store (STBLOCKF) access must be aligned on a 64-byte boundary.

A floating-point doubleword access (LDDF, LDDFA, STDF, STDFA) should be
aligned on an 8-byte boundary, but is only required to be aligned on a word (4-byte)
boundary. A floating-point doubleword access to an address which is 4-byte aligned
but not 8-byte aligned may result in less efficient and nonatomic access (causes a
trap and is emulated in software (impl. dep. #109-V9-Cs10)), so 8-byte alignment is
recommended.

A floating-point quadword access (LDQF, LDQFA, STQF, STQFA) should be aligned
on a 16-byte boundary, but is only required to be aligned on a word (4-byte)
boundary. A floating-point quadword access to an address which is 4-byte or 8-byte
aligned but not 16-byte aligned may result in less efficient and nonatomic access
(causes a trap and is emulated in software (impl. dep. #111-V9-Cs10)), so 16-byte
alignment is recommended.

An improperly aligned address in a load, store, or load-store instruction causes a
mem_address_not_aligned exception to occur, with these exceptions:

■ An LDDF or LDDFA instruction accessing an address that is word aligned but not
doubleword aligned may cause an LDDF_mem_address_not_aligned exception
(impl. dep. #109-V9-Cs10).

■ An STDF or STDFA instruction accessing an address that is word aligned but not
doubleword aligned may cause an STDF_mem_address_not_aligned exception
(impl. dep. #110-V9-Cs10).

Programming
Note

For some instructions, by using simm13, any location in the
lowest or highest 4 Kbytes of an address space can be accessed
without using a register to hold part of the address.
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■ An LDQF or LDQFA instruction accessing an address that is word aligned but not
quadword aligned may cause an LDQF_mem_address_not_aligned exception
(impl. dep. #111-V9-Cs10a).

■ An STQF or STQFA instruction accessing an address that is word aligned but not
quadword aligned may cause an STQF_mem_address_not_aligned exception
(impl. dep. #112-V9-Cs10a).

6.3.1.2 Addressing Conventions

An UltraSPARC Architecture virtual processor uses big-endian byte order for all
instruction accesses and, by default, for data accesses. It is possible to access data in
little-endian format by using selected ASIs. It is also possible to change the default
byte order for implicit data accesses. See Processor State (PSTATEP) Register (PR 6) on
page 94 for more information.1

Big-endian Addressing Convention. Within a multiple-byte integer, the byte
with the smallest address is the most significant; a byte’s significance decreases as its
address increases. The big-endian addressing conventions are described in TABLE 6-1
and illustrated in FIGURE 6-2.

Implementation
Note

Although the architecture provides for the
LDQF_mem_address_not_aligned exception,UltraSPARC
Architecture 2005 implementations do not currently generate it.

Implementation
Note

Although the architecture provides for the
STQF_mem_address_not_aligned exception, UltraSPARC
Architecture 2005 implementations do not currently generate it.

1. Readers interested in more background information on big- vs. little-endian can also refer to Cohen, D., “On
Holy Wars and a Plea for Peace,” Computer 14:10 (October 1981), pp. 48-54.

TABLE 6-1 Big-endian Addressing Conventions

Term Definition

byte A load/store byte instruction accesses the addressed byte in both big- and
little-endian modes.

halfword For a load/store halfword instruction, two bytes are accessed. The most
significant byte (bits 15–8) is accessed at the address specified in the
instruction; the least significant byte (bits 7–0) is accessed at the
address + 1.
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word For a load/store word instruction, four bytes are accessed. The most
significant byte (bits 31–24) is accessed at the address specified in the
instruction; the least significant byte (bits 7–0) is accessed at the
address + 3.

doubleword or
extended word

For a load/store extended or floating-point load/store double instruction,
eight bytes are accessed. The most significant byte (bits 63:56) is accessed
at the address specified in the instruction; the least significant byte (bits
7:0) is accessed at the address + 7.
For the deprecated integer load/store twin word instructions (LDTW,
LDTWA†, STTW, STTWA), two big-endian words are accessed. The word
at the address specified in the instruction corresponds to the even register
specified in the instruction; the word at address + 4 corresponds to the
following odd-numbered register.
†Note that the LDTXA instruction, which is not an LDTWA operation but does share

LDTWA’s opcode, is not deprecated.

quadword For a load/store quadword instruction, 16 bytes are accessed. The most
significant byte (bits 127–120) is accessed at the address specified in the
instruction; the least significant byte (bits 7–0) is accessed at the
address + 15.

TABLE 6-1 Big-endian Addressing Conventions

Term Definition
116 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006



Byte
7 0

Halfword
15 0

Word
31 0

Doubleword /
63 32

31 0

78

15 78162324

47 3940485556

15 78162324

0 1

00 01 10 11

Address

000 001 010 011

100 101 110 111

Quadword
127 96

95 64

111 103104112119120

79 7172808788

0000 0001 0010 0011

0100 0101 0110 0111

63 32

31 0

47 3940485556

15 78162324

1000 1001 1010 1011

1100 1101 1110 1111

Extended word

FIGURE 6-2 Big-endian Addressing Conventions

Address{0} =

Address{1:0} =

Address{2:0} =

Address{2:0} =

Address{3:0} =

Address{3:0} =

Address{3:0} =

Address{3:0} =
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Little-endian Addressing Convention. Within a multiple-byte integer, the byte
with the smallest address is the least significant; a byte’s significance increases as its
address increases. The little-endian addressing conventions are defined in TABLE 6-2
and illustrated in FIGURE 6-3.

TABLE 6-2 Little-endian Addressing Convention

Term Definition

byte A load/store byte instruction accesses the addressed byte in both big-
and little-endian modes.

halfword For a load/store halfword instruction, two bytes are accessed. The least
significant byte (bits 7–0) is accessed at the address specified in the
instruction; the most significant byte (bits 15–8) is accessed at the
address + 1.

word For a load/store word instruction, four bytes are accessed. The least
significant byte (bits 7–0) is accessed at the address specified in the
instruction; the most significant byte (bits 31–24) is accessed at the
address + 3.

doubleword or
extended word

For a load/store extended or floating-point load/store double
instruction, eight bytes are accessed. The least significant byte (bits 7–0)
is accessed at the address specified in the instruction; the most significant
byte (bits 63–56) is accessed at the address + 7.
For the deprecated integer load/store twin word instructions (LDTW,
LDTWA†, STTW, STTWA), two little-endian words are accessed. The
word at the address specified in the instruction corresponds to the even
register in the instruction; the word at the address specified in the
instruction +4 corresponds to the following odd-numbered register. With
respect to little-endian memory, an LDTW/LDTWA (STTW/STTWA)
instruction behaves as if it is composed of two 32-bit loads (stores), each
of which is byte-swapped independently before being written into each
destination register (memory word).

†Note that the LDTXA instruction, which is not an LDTWA operation but does share
LDTWA’s opcode, is not deprecated.

quadword For a load/store quadword instruction, 16 bytes are accessed. The least
significant byte (bits 7–0) is accessed at the address specified in the
instruction; the most significant byte (bits 127–120) is accessed at the
address + 15.
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Byte
7 0

Halfword
7 8

Word
7 24

Doubleword /

150

23 31168150

0 1

00 01 10 11

Address

000 001 010 011

100 101 110 111

Quadword 0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

39 5655 6348404732

7 2423 31168150

39 5655 6348404732

7 2423 31168150

103 120119 12711210411196

71 8887 9580727964

Extended word

FIGURE 6-3 Little-endian Addressing Conventions

Address{0} =

Address{1:0} =

Address{2:0} =

Address{2:0} =

Address{3:0} =

Address{3:0} =

Address{3:0} =

Address{3:0} =
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6.3.1.3 Address Space Identifiers (ASIs)

Alternate-space load, store, and load-store instructions specify an explicit ASI to use
for their data access; when i = 0, the explicit ASI is provided in the instruction’s
imm_asi field, and when i = 1, it is provided in the ASI register.

Non-alternate-space load, store, and load-store instructions use an implicit ASI value
that depends on the current trap level (TL) and the value of PSTATE.cle. Instruction
fetches use an implicit ASI that depends only on the current trap level. The cases are
enumerated in TABLE 6-3. Note that in hyperprivileged mode, all accesses are performed
using physical addresses, so there is no implicit ASI in hyperprivileged mode.

*On some early SPARC V9 implementations, ASI_PRIMARY may have been used for this case.
**On some early SPARC V9 implementations, ASI_PRIMARY_LITTLE may have been used for this case.

TABLE 6-3 ASIs Used for Data Accesses and Instruction Fetches in Nonprivileged and
Privileged Modes

Access Type TL PSTATE.cle ASI Used

Instruction Fetch = 0 any ASI_PRIMARY

> 0 any ASI_NUCLEUS*

Non-alternate-space
Load, Store, or
Load-Store

= 0 0 ASI_PRIMARY

1 ASI_PRIMARY_LITTLE

> 0 0 ASI_NUCLEUS*

1 ASI_NUCLEUS_LITTLE**

Alternate-space Load,
Store, or Load-Store

any any ASI explicitly specified in the instruction
(subject to privilege-level restrictions)
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See also Memory Addressing and Alternate Address Spaces on page 389.

ASIs 0016 through 7F16 are restricted; only software with sufficient privilege is
allowed to access them. ASIs 0016-2F16 are accessible by both privileged and
hyperprivileged software, while ASIs 3016-7F16 are accessible only by
hyperprivileged software. An attempt to access a restricted ASI by insufficiently-
privileged software results in a privileged_action exception (impl. dep #103-V9-
Ms10(6)). ASIs 8016 through FF16 are unrestricted; software is allowed to access them
regardless of the virtual processor’s privilege mode, as summarized in TABLE 6-4.

IMPL. DEP. #29-V8: Some UltraSPARC Architecture 2005 ASIs are implementation
dependent. See TABLE 10-1 on page 409 for details.

An UltraSPARC Architecture implementation decodes all 8 bits of ASI specifiers
(impl. dep. #30-V8-Cu3).

6.3.1.4 Separate Instruction Memory

A SPARC V9 implementation may choose to access instruction and data through the
same address space and use hardware to keep data and instruction memory
consistent at all times. It may also choose to overload independent address spaces
for data and instructions and allow them to become inconsistent when data writes
are made to addresses shared with the instruction space.

TABLE 6-4 Allowed Accesses to ASIs

Value Access Type

Processor Mode
(HPSTATE.hpriv,
PSTATE.priv) Result of ASI Access

0016–2F16 Restricted
(Privileged)

Nonprivileged (0,0) privileged_action exception

Privileged (0,1) Valid access

Hyperprivileged (1,x) Valid access

3016–7F16 Restricted
(Hyperprivileged)

Nonprivileged (0,0) privileged_action exception

Privileged (0,1) data_access_exception exception

Hyperprivileged (1,x) Valid access

8016–FF16 Unrestricted Nonprivileged (0,0) Valid access

Privileged (0,1) Valid access

Hyperprivileged (1,x) Valid access

V9 Compatibility
Note

In SPARC V9, many ASIs were defined to be implementation
dependent.

V9 Compatibility
Note

In SPARC V9, an implementation could choose to decode only a
subset of the 8-bit ASI specifier.
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6.3.2 Memory Synchronization Instructions
Two forms of memory barrier (MEMBAR) instructions allow programs to manage
the order and completion of memory references. Ordering MEMBARs induce a
partial ordering between sets of loads and stores and future loads and stores.
Sequencing MEMBARs exert explicit control over completion of loads and stores (or
other instructions). Both barrier forms are encoded in a single instruction, with
subfunctions bit-encoded in cmask and mmask fields.

6.3.3 Integer Arithmetic and Logical Instructions
The integer arithmetic and logical instructions generally compute a result that is a
function of two source operands and either write the result in a third (destination)
register R[rd] or discard it. The first source operand is R[rs1]. The second source
operand depends on the i bit in the instruction; if i = 0, then the second operand is
R[rs2]; if i = 1, then the second operand is the constant simm10, simm11, or simm13
from the instruction itself, sign-extended to 64 bits.

6.3.3.1 Setting Condition Codes

Most integer arithmetic instructions have two versions: one sets the integer
condition codes (icc and xcc) as a side effect; the other does not affect the condition
codes. A special comparison instruction for integer values is not needed since it is
easily synthesized with the “subtract and set condition codes” (SUBcc) instruction.
See Synthetic Instructions on page 598 for details.

6.3.3.2 Shift Instructions

Shift instructions shift an R register left or right by a constant or variable amount.
None of the shift instructions change the condition codes.

Programming
Note

A SPARC V9 program containing self-modifying code should
use FLUSH instruction(s) after executing stores to modify
instruction memory and before executing the modified
instruction(s), to ensure the consistency of program execution.

Note The value of R[0] always reads as zero, and writes to it are
ignored.
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6.3.3.3 Set High 22 Bits of Low Word

The “set high 22 bits of low word of an R register” instruction (SETHI) writes a 22-
bit constant from the instruction into bits 31 through 10 of the destination register. It
clears the low-order 10 bits and high-order 32 bits, and it does not affect the
condition codes. Its primary use is to construct constants in registers.

6.3.3.4 Integer Multiply/Divide

The integer multiply instruction performs a 64 × 64 → 64-bit operation; the integer
divide instructions perform 64 ÷ 64 → 64-bit operations. For compatibility with
SPARC V8 processors, 32 × 32 → 64-bit multiply instructions, 64 ÷ 32 → 32-bit divide
instructions, and the Multiply Step instruction are provided. Division by zero causes
a division_by_zero exception.

6.3.3.5 Tagged Add/Subtract

The tagged add/subtract instructions assume tagged-format data, in which the tag is
the two low-order bits of each operand. If either of the two operands has a nonzero
tag or if 32-bit arithmetic overflow occurs, tag overflow is detected. If tag overflow
occurs, then TADDcc and TSUBcc set the CCR.icc.v bit; if 64-bit arithmetic overflow
occurs, then they set the CCR.xcc.v bit.

The trapping versions (TADDccTV, TSUBccTV) of these instructions are deprecated.
See Tagged Add on page 355 and Tagged Subtract on page 361 for details.

6.3.4 Control-Transfer Instructions (CTIs)
The basic control-transfer instruction types are as follows:

■ Conditional branch (Bicc, BPcc, BPr, FBfcc, FBPfcc)
■ Unconditional branch
■ Call and link (CALL)
■ Jump and link (JMPL, RETURN)
■ Return from trap (DONE, RETRY)
■ Trap (Tcc)

A control-transfer instruction functions by changing the value of the next program
counter (NPC) or by changing the value of both the program counter (PC) and the
next program counter (NPC). When only the next program counter, NPC, is changed,
the effect of the transfer of control is delayed by one instruction. Most control
transfers are of the delayed variety. The instruction following a delayed control-
transfer instruction is said to be in the delay slot of the control-transfer instruction.
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Some control transfer instructions (branches) can optionally annul, that is, not
execute, the instruction in the delay slot, depending upon whether the transfer is
taken or not taken. Annulled instructions have no effect upon the program-visible
state, nor can they cause a trap.

TABLE 6-5 defines the value of the program counter and the value of the next
program counter after execution of each instruction. Conditional branches have two
forms: branches that test a condition (including branch-on-register), represented in
the table by Bcc, and branches that are unconditional, that is, always or never taken,
represented in the table by BA and BN, respectively. The effect of an annulled branch
is shown in the table through explicit transfers of control, rather than by fetching
and annulling the instruction.

Programming
Note

The annul bit increases the likelihood that a compiler can find a
useful instruction to fill the delay slot after a branch, thereby
reducing the number of instructions executed by a program. For
example, the annul bit can be used to move an instruction from
within a loop to fill the delay slot of the branch that closes the
loop.

Likewise, the annul bit can be used to move an instruction from
either the “else” or “then” branch of an “if-then-else” program
block to the delay slot of the branch that selects between them.
Since a full set of conditions is provided, a compiler can arrange
the code (possibly reversing the sense of the condition) so that
an instruction from either the “else” branch or the “then” branch
can be moved to the delay slot. Use of annulled branches
provided some benefit in older, single-issue SPARC
implementations. On an UltraSPARC Architecture
implementation, the only benefit of annulled branches might be
a slight reduction in code size. Therefore, the use of annulled
branch instructions is no longer encouraged.

TABLE 6-5 Control-Transfer Characteristics

Instruction Group Address Form Delayed Taken Annul Bit New PC New NPC

Non-CTIs — — — — NPC NPC + 4

Bcc PC-relative Yes Yes 0 NPC EA

Bcc PC-relative Yes No 0 NPC NPC + 4

Bcc PC-relative Yes Yes 1 NPC EA

Bcc PC-relative Yes No 1 NPC + 4 NPC + 8

BA PC-relative Yes Yes 0 NPC EA

BA PC-relative No Yes 1 EA EA + 4

BN PC-relative Yes No 0 NPC NPC + 4

BN PC-relative Yes No 1 NPC + 4 NPC + 8
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The effective address, EA in TABLE 6-5, specifies the target of the control-transfer
instruction. The effective address is computed in different ways, depending on the
particular instruction.

■ PC-relative effective address — A PC-relative effective address is computed by
sign extending the instruction’s immediate field to 64-bits, left-shifting the word
displacement by two bits to create a byte displacement, and adding the result to
the contents of the PC.

■ Register-indirect effective address — A register-indirect effective address
computes its target address as either R[rs1] + R[rs2] if i = 0, or
R[rs1] + sign_ext(simm13) if i = 1.

■ Trap vector effective address — A trap vector effective address first computes the
software trap number as the least significant 7 or 8 bits of R[rs1] + R[rs2] if
i = 0, or as the least significant 7 or 8 bits of R[rs1] + imm_trap# if i = 1. Whether
7 or 8 bits is used depends on the privilege level — 7 bits are used in
nonprivileged mode and 8 bits are used in privileged and hyperprivileged modes.
The trap level, TL, is incremented. The hardware trap type is computed as 256 +
the software trap number and stored in TT[TL]. The effective address is generated
by combining the contents of the TBA register with the trap type and other data;
see Trap Processing on page 470 for details.

■ Trap state effective address — A trap state effective address is not computed but
is taken directly from either TPC[TL] or TNPC[TL].

6.3.4.1 Conditional Branches

A conditional branch transfers control if the specified condition is TRUE. If the annul
bit is 0, the instruction in the delay slot is always executed. If the annul bit is 1, the
instruction in the delay slot is executed only when the conditional branch is taken.

CALL PC-relative Yes — — NPC EA

JMPL, RETURN Register-indirect Yes — — NPC EA

DONE Trap state No — — TNPC[TL] TNPC[TL] + 4

RETRY Trap state No — — TPC[TL] TNPC[TL]

Tcc Trap vector No Yes — EA EA + 4

Tcc Trap vector No No — NPC NPC + 4

SPARC V8
Compatibility

Note

The SPARC V8 architecture specified that the delay instruction
was always fetched, even if annulled, and that an annulled
instruction could not cause any traps. The SPARC V9
architecture does not require the delay instruction to be fetched
if it is annulled.

TABLE 6-5 Control-Transfer Characteristics (Continued)

Instruction Group Address Form Delayed Taken Annul Bit New PC New NPC
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6.3.4.2 Unconditional Branches

An unconditional branch transfers control unconditionally if its specified condition
is “always”; it never transfers control if its specified condition is “never.” If the
annul bit is 0, then the instruction in the delay slot is always executed. If the annul
bit is 1, then the instruction in the delay slot is never executed.

6.3.4.3 CALL and JMPL Instructions

The CALL instruction writes the contents of the PC, which points to the CALL
instruction itself, into R[15] (out register 7) and then causes a delayed transfer of
control to a PC-relative effective address. The value written into R[15] is visible to
the instruction in the delay slot.

The JMPL instruction writes the contents of the PC, which points to the JMPL
instruction itself, into R[rd] and then causes a register-indirect delayed transfer of
control to the address given by “R[rs1] + R[rs2]” or “R[rs1] + a signed immediate
value.” The value written into R[rd] is visible to the instruction in the delay slot.

When PSTATE.am = 1, the value of the high-order 32 bits transmitted to R[15] by
the CALL instruction or to R[rd] by the JMPL instruction is zero.

6.3.4.4 RETURN Instruction

The RETURN instruction is used to return from a trap handler executing in
nonprivileged mode. RETURN combines the control-transfer characteristics of a
JMPL instruction with R[0] specified as the destination register and the register-
window semantics of a RESTORE instruction.

6.3.4.5 DONE and RETRY Instructions

The DONE and RETRY instructions are used by privileged software to return from a
trap. These instructions restore the machine state to values saved in the TSTATE
register stack.

RETRY returns to the instruction that caused the trap in order to reexecute it. DONE
returns to the instruction pointed to by the value of NPC associated with the
instruction that caused the trap, that is, the next logical instruction in the program.
DONE presumes that the trap handler did whatever was requested by the program
and that execution should continue.

Note The annuling behavior of a taken conditional branch is different
from that of an unconditional branch.

Note The annul behavior of an unconditional branch is different from
that of a taken conditional branch.
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6.3.4.6 Trap Instruction (Tcc)

The Tcc instruction initiates a trap if the condition specified by its cond field matches
the current state of the condition code register specified in its cc field; otherwise, it
executes as a NOP. If the trap is taken, it increments the TL register, computes a trap
type that is stored in TT[TL], and transfers to a computed address in a trap table
pointed to by a trap base address register.

A Tcc instruction can specify one of 256 software trap types (128 when in
nonprivileged mode). When a Tcc is taken, 256 plus the 7 (in nonprivileged mode) or
8 (in privileged or hyperprivileged mode) least significant bits of the Tcc’s second
source operand are written to TT[TL]. The only visible difference between a software
trap generated by a Tcc instruction and a hardware trap is the trap number in the TT
register. See Chapter 12, Traps, for more information.

6.3.4.7 DCTI Couples

A delayed control transfer instruction (DCTI) in the delay slot of another DCTI is
referred to as a “DCTI couple”. The use of DCTI couples is deprecated in the
UltraSPARC Architecture; no new software should place a DCTI in the delay slot of
another DCTI, as on future UltraSPARC Architecture implementations that construct
may execute either slowly or differently than the programmer assumes it will.

6.3.5 Conditional Move Instructions
This subsection describes two groups of instructions that copy or move the contents
of any integer or floating-point register.

MOVcc and FMOVcc Instructions. The MOVcc and FMOVcc instructions copy
the contents of any integer or floating-point register to a destination integer or
floating-point register if a condition is satisfied. The condition to test is specified in
the instruction and may be any of the conditions allowed in conditional delayed
control-transfer instructions. This condition is tested against one of the six sets of
condition codes (icc, xcc, fcc0, fcc1, fcc2, and fcc3), as specified by the instruction.
For example:

fmovdg %fcc2, %f20, %f22

Programming
Note

Tcc can be used to implement breakpointing, tracing, and calls
to privileged or hyperprivileged software. Tcc can also be used
for runtime checks, such as out-of-range array index checks or
integer overflow checks.

SPARC V8 and
SPARC V9

Compatibility
Note

The SPARC V8 architecture left behavior undefined for a DCTI
couple. The SPARC V9 architecture defined behavior in that
case, but as of UltraSPARC Architecture 2005, use of DCTI couples
is deprecated.

E2
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moves the contents of the double-precision floating-point register %f20 to register
%f22 if floating-point condition code number 2 (fcc2) indicates a greater-than
relation (FSR.fcc2 = 2). If fcc2 does not indicate a greater-than relation
(FSR.fcc2 ≠ 2), then the move is not performed.

The MOVcc and FMOVcc instructions can be used to eliminate some branches in
programs. In most implementations, branches will be more expensive than the
MOVcc or FMOVcc instructions. For example, the following C statement:

if (A > B) X = 1; else X = 0;

can be coded as
cmp %i0, %i2 ! (A > B)
or %g0, 0, %i3 ! set X = 0
movg %xcc, 1, %i3 ! overwrite X with 1 if A > B

which eliminates the need for a branch.

MOVr and FMOVr Instructions. The MOVr and FMOVr instructions allow the
contents of any integer or floating-point register to be moved to a destination integer
or floating-point register if the contents of a register satisfy a specified condition.
The conditions to test are enumerated in TABLE 6-6.

Any of the integer registers (treated as a signed value) may be tested for one of the
conditions, and the result used to control the move. For example,

movrnz %i2, %l4, %l6

moves integer register %l4 to integer register %l6 if integer register %i2 contains a
nonzero value.

MOVr and FMOVr can be used to eliminate some branches in programs or can
emulate multiple unsigned condition codes by using an integer register to hold the
result of a comparison.

TABLE 6-6 MOVr and FMOVr Test Conditions

Condition Description

NZ Nonzero

Z Zero

GEZ Greater than or equal to zero

LZ Less than zero

LEZ Less than or equal to zero

GZ Greater than zero
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6.3.6 Register Window Management Instructions
This subsection describes the instructions that manage register windows in the
UltraSPARC Architecture. The privileged registers affected by these instructions are
described in Register-Window PR State Registers on page 85.

6.3.6.1 SAVE Instruction

The SAVE instruction allocates a new register window and saves the caller’s register
window by incrementing the CWP register.

If CANSAVE = 0, then execution of a SAVE instruction causes a window spill
exception, that is, one of the spill_n_<normal|other> exceptions.

If CANSAVE ≠ 0 but the number of clean windows is zero, that is,
(CLEANWIN − CANRESTORE) = 0, then SAVE causes a clean_window exception.

If SAVE does not cause an exception, it performs an ADD operation, decrements
CANSAVE, and increments CANRESTORE. The source registers for the ADD
operation are from the old window (the one to which CWP pointed before the
SAVE), while the result is written into a register in the new window (the one to
which the incremented CWP points).

6.3.6.2 RESTORE Instruction

The RESTORE instruction restores the previous register window by decrementing
the CWP register.

If CANRESTORE = 0, execution of a RESTORE instruction causes a window fill
exception, that is, one of the fill_n_<normal|other> exceptions.

If RESTORE does not cause an exception, it performs an ADD operation, decrements
CANRESTORE, and increments CANSAVE. The source registers for the ADD are
from the old window (the one to which CWP pointed before the RESTORE), and the
result is written into a register in the new window (the one to which the
decremented CWP points).
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6.3.6.3 SAVED Instruction

SAVED is a privileged instruction used by a spill trap handler to indicate that a
window spill has completed successfully. It increments CANSAVE and decrements
either OTHERWIN or CANRESTORE, depending on the conditions at the time
SAVED is executed.

See SAVED on page 315 for details.

6.3.6.4 RESTORED Instruction

RESTORED is a privileged instruction, used by a fill trap handler to indicate that a
window has been filled successfully. It increments CANRESTORE and decrements
either OTHERWIN or CANSAVE, depending on the conditions at the time
RESTORED is executed. RESTORED also manipulates CLEANWIN, which is used to
ensure that no address space’s data become visible to another address space through
windowed registers.

See RESTORED on page 307 for details.

Programming
Note

This note describes a common convention for use of register
windows, SAVE, RESTORE, CALL, and JMPL instructions.

A procedure is invoked by executing a CALL (or a JMPL)
instruction. If the procedure requires a register window, it
executes a SAVE instruction in its prologue code. A routine that
does not allocate a register window of its own (possibly a leaf
procedure) should not modify any windowed registers except
out registers 0 through 6. This optimization, called “Leaf-
Procedure Optimization”, is routinely performed by SPARC
compilers.

A procedure that uses a register window returns by executing
both a RESTORE and a JMPL instruction. A procedure that has
not allocated a register window returns by executing a JMPL
only. The target address for the JMPL instruction is normally 8
plus the address saved by the calling instruction, that is, the
instruction after the instruction in the delay slot of the calling
instruction.

The SAVE and RESTORE instructions can be used to atomically
establish a new memory stack pointer in an R register and
switch to a new or previous register window.
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6.3.6.5 Flush Windows Instruction

The FLUSHW instruction flushes all of the register windows, except the current
window, by performing repetitive spill traps. The FLUSHW instruction causes a spill
trap if any register window (other than the current window) has valid contents. The
number of windows with valid contents is computed as:

N_REG_WINDOWS – 2 – CANSAVE

If this number is nonzero, the FLUSHW instruction causes a spill trap. Otherwise,
FLUSHW has no effect. If the spill trap handler exits with a RETRY instruction, the
FLUSHW instruction continues causing spill traps until all the register windows
except the current window have been flushed.

6.3.7 Ancillary State Register (ASR) Access
The read/write state register instructions access program-visible state and status
registers. These instructions read/write the state registers into/from R registers. A
read/write Ancillary State register instruction is privileged only if the accessed
register is privileged.

The supported RDasr and WRasr instructions are described in Ancillary State
Registers on page 70.

6.3.8 Privileged Register Access
The read/write privileged register instructions access state and status registers that
are visible only to privileged software. These instructions read/write privileged
registers into/from R registers. The read/write privileged register instructions are
privileged.

6.3.9 Floating-Point Operate (FPop) Instructions
Floating-point operate instructions (FPops) compute a result that is a function of one
or two source operands and place the result in one or more destination F registers,
with one exception: floating-point compare operations do not write to an F register
but update one of the fccn fields of the FSR instead.

The term “FPop” refers to instructions in the FPop1, and FPop2 opcode spaces. FPop
instructions do not include FBfcc instructions, loads and stores between memory
and the F registers, or non-floating-point operations that read or write F registers.

The FMOVcc instructions function for the floating-point registers as the MOVcc
instructions do for the integer registers. See MOVcc and FMOVcc Instructions on page
127.
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The FMOVr instructions function for the floating-point registers as the MOVr
instructions do for the integer registers. See MOVr and FMOVr Instructions on page
128.

If no floating-point unit is present or if PSTATE.pef = 0 or FPRS.fef = 0, then any
instruction, including an FPop instruction, that attempts to access an FPU register
generates an fp_disabled exception.

All FPop instructions clear the ftt field and set the cexc field unless they generate an
exception. Floating-point compare instructions also write one of the fccn fields. All
FPop instructions that can generate IEEE exceptions set the cexc and aexc fields
unless they generate an exception. FABS<s|d|q>, FMOV<s|d|q>,
FMOVcc<s|d|q>, FMOVr<s|d|q>, and FNEG<s|d|q> cannot generate IEEE
exceptions, so they clear cexc and leave aexc unchanged.

IMPL. DEP. #3-V8: An implementation may indicate that a floating-point instruction
did not produce a correct IEEE Std 754-1985 result by generating an
fp_exception_other exception with FSR.ftt = unfinished_FPop or
FSR.ftt = unimplemented FPop. In this case, software running in a mode with
greater privileges must emulate any functionality not present in the hardware.

See ftt = 2 (unfinished_FPop) on page 65 to see which instructions can produce an
fp_exception_other exception (with FSR.ftt = unfinished_FPop). See ftt = 3
(unimplemented_FPop) on page 65 to see which instructions can produce an
fp_exception_other exception (with FSR.ftt = unimplemented_FPop).

6.3.10 Implementation-Dependent Instructions
The SPARC V9 architecture provided two instruction spaces that are entirely
implementation dependent: IMPDEP1 and IMPDEP2.

In the UltraSPARC Architecture, the IMPDEP1 opcode space is used by VIS
instructions.

In the UltraSPARC Architecture, IMPDEP2 is subdivided into IMPDEP2A and
IMPDEP2B. IMPDEP2A remains implementation dependent. The IMPDEP2B opcode
space is reserved for implementation of floating-point multiply-add/multiply-
subtract instructions.

6.3.11 Reserved Opcodes and Instruction Fields
If a conforming UltraSPARC Architecture 2005 implementation attempts to execute
an instruction bit pattern that is not specifically defined in this specification, it
behaves as follows:

■ If the instruction bit pattern encodes an implementation-specific extension to the
instruction set, that extension is executed.
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■ {r=1} If the instruction bit pattern does not encode an extension to the instruction
set, but would decode as a valid instruction if nonzero bits in reserved instruction
field(s) were ignored (read as 0):

■ The recommended behavior is to generate an illegal_instruction exception (or,
for FPop, an fp_exception_other exception with FSR.ftt = 3
(unimplemented_FPop)).

■ Alternatively, the implementation can ignore the nonzero reserved field bits
and execute the instruction as if those bits had been zero.

■ {r=1} If the instruction bit pattern does not encode an extension to the instruction
set and would still not decode as a valid instruction if nonzero bits in reserved
instruction field(s) were ignored, then the instruction bit pattern is invalid and
causes an exception. Specifically, attempting to execute an FPop instruction (see
Floating-Point Operate on page 32) causes an fp_exception_other exception (with
FSR.ftt = unimplemented_FPop); attempting to execute any other invalid
instruction bit pattern causes an illegal_instruction exception.

{r>1} See Appendix A, Opcode Maps, for an enumeration of the reserved instruction
bit patterns (opcodes).

Forward
Compatibility

Note

To further enhance backward (and forward) binary
compatibility, the next revision of the UltraSPARC Architecture
is expected to require an illegal_instruction exception to be
generated by any instruction bit pattern that encodes neither a
known UltraSPARC Architecture instruction nor an
implementation-specific extension instruction (including those
with nonzero bits in reserved instruction fields).

Implementation
Note

As described above, implementations are strongly encouraged,
but not strictly required, to trap on nonzero values in reserved
instruction fields.

Programming
Note

For software portability, software (such as assemblers, static
compilers, and dynamic compilers) that generates SPARC
instructions must always generate zeroes in instruction fields
marked “reserved” (“—”).
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CHAPTER 7

Instructions

UltraSPARC Architecture 2005 extends the standard SPARC V9 instruction set with
additional classes of instructions:

■ Enhanced functionality:
■ Instructions for alignment (Align Address on page 147)
■ Array handling (Three-Dimensional Array Addressing on page 150)
■ Byte-permutation instructions ()
■ Edge handling (Edge Handling Instructions on pages 168 and 170)
■ Logical operations on floating-point registers (F Register Logical Operate (1

operand) on page 224)
■ Partitioned arithmetic (Fixed-point Partitioned Add on page 216 andFixed-point

Partitioned Subtract on page 221)
■ Pixel manipulation (FEXPAND on page 184, FPACK on page 210, and

FPMERGE on page 219)

■ Efficient memory access

■ Partial store (Store Partial Floating-Point on page 341)
■ Short floating-point loads and stores (Store Short Floating-Point on page 344)
■ Block load and store (Block Load on page 245 and Block Store on page 328)

■ Efficient interval arithmetic: SIAM (Set Interval Arithmetic Mode on page 319) and
all instructions that reference GSR.im

TABLE 7-2 provides a quick index of instructions, alphabetically by architectural
instruction name.

TABLE 7-3 summarizes the instruction set, listed within functional categories.

Note: This chapter is undergoing final review; please check
back later for a copy of UltraSPARC Architecture
2005 containing the final version of this chapter.
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Within these tables and throughout the rest of this chapter, and in Appendix A,
Opcode Maps, certain opcodes are marked with mnemonic superscripts. The
superscripts and their meanings are defined in TABLE 7-1.

TABLE 7-1 Instruction Superscripts

Superscript Meaning

D Deprecated instruction

H Hyperprivileged instruction

N Nonportable instruction

P Privileged instruction

PASI Privileged action if bit 7 of the referenced ASI is 0

PASR Privileged instruction if the referenced ASR register is privileged

Pnpt Privileged action if PSTATE.priv = 0 and (S)TICK.npt = 1

PPIC Privileged action if PCR.priv = 1
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TABLE 7-2 UltraSPARC Architecture 2005 Instruction Set - Alphabetical (1 of 2)

Page Instruction

146 ADD (ADDcc) 193 FMOV(s,d,q)cc 249 LDQF

146 ADDC (ADDCcc) 198 FMOV(s,d,q)R 252 LDQFAPASI

147 ALIGNADDRESS{_LITTLE} 207 FMUL(s,d,q) 240 LDSB

148 ALLCLEAN 201 FMUL8(SU,UL)x16 242 LDSBAPASI

149 AND (ANDcc) 201 FMUL8x16 240 LDSH

150 ARRAY(8,16,32) 201 FMUL8x16(AU,AL) 242 LDSHAPASI

154 Bicc 201 FMULD8(SU,UL)x16 258 LDSHORTF

156 BMASK 227 FNAND{s} 260 LDSTUB

157 BPcc 209 FNEG(s,d,q) 261 LDSTUBAPASI

160 BPr 227 FNOR{s} 240 LDSW

156 BSHUFFLE 225 FNOT(1,2){s} 242 LDSWAPASI

162 CALL 224 FONE{s} 263 LDTXAN

163 CASAPASI 227 FORNOT(1,2){s} 266 LDTWD

163 CASXAPASI 227 FOR{s} 268 LDTWAD, PASI

166 DONEP 210 FPACK(16,32, FIX) 260 LDUB

168 EDGE(8,16,32){L}cc 216 FPADD<16,32>[S] 242 LDUBAPASI

170 EDGE(8,16,32){L}N 219 FPMERGE 240 LDUH

231 F(s,d,q)TO(s,d,q) 221 FPSUB<16,32>[S] 242 LDUHAPASI

229 F(s,d,q)TOi 207 FsMULd 240 LDUW

229 F(s,d,q)TOx 228 FSQRT(s,d,q) 242 LDUWAPASI

171 FABS(s,d,q) 225 FSRC(1,2){s} 240 LDX

172 FADD(s,d,q) 233 FSUB(s,d,q) 242 LDXAPASI

173 FALIGNDATA 227 FXNOR{s} 249 LDXFSR

227 FANDNOT(1,2){s} 227 FXOR{s} 271 MEMBAR

227 FAND{s} 234 FxTO(s,d,q) 275 MOVcc

174 FBfccD 224 FZERO{s} 279 MOVr

176 FBPfcc 235 ILLTRAP 281 MULSccD

181 FCMP(s,d,q) 236 IMPDEP2A 283 MULX

178 FCMP*<16,32> 236 IMPDEP2B 284 NOP

181 FCMPE(s,d,q) 238 INVALW 285 NORMALW

183 FDIV(s,d,q) 239 JMPL 286 OR (ORcc)

207 FdMULq 245 LDBLOCKF 286 ORN (ORNcc)

184 FEXPAND 249 LDDF 287 OTHERW

185 FiTO(s,d,q) 252 LDDFAPASI 288 PDIST

186 FLUSH 249 LDF 289 POPC

190 FLUSHW 252 LDFAPASI 291 PREFETCH

191 FMOV(s,d,q) 256 LDFSRD 291 PREFETCHAPASI
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299 RDASI 332 STDF 372 WRPRP

299 RDasrPASR 335 STDFAPASI 369 WRSOFTINT_CLRP

299 RDCCR 332 STF 369 WRSOFTINT_SETP

299 RDFPRS 335 STFAPASI 369 WRSOFTINTP

299 RDGSR 339 STFSRD 369 WRSTICK_CMPRP

302 RDHPRH 323 STH 369 WRSTICKP

299 RDPC 324 STHAPASI 369 WRTICK_CMPRP

299 RDPCRP 341 STPARTIALF 369 WRYD

299 RDPICPPIC 332 STQF 377 XNOR (XNORcc)

303 RDPRP 335 STQFAPASI 377 XOR (XORcc)

299 RDSOFTINTP 344 STSHORTF

299 RDSTICK_CMPRP 346 STTWD

299 RDSTICKPnpt 348 STTWAD, PASI

299 RDTICK_CMPRP 323 STW

299 RDTICKPnpt 324 STWAPASI

307 RESTOREDP 323 STX

305 RESTOREP 324 STXAPASI

309 RETRYP 332 STXFSR

311 RETURN 351 SUB (SUBcc)

315 SAVEDP 351 SUBC (SUBCcc)

313 SAVEP 353 SWAPAD, PASI

364 SDIVD (SDIVccD) 352 SWAPD

283 SDIVX 355 TADDcc

317 SETHI 356 TADDccTVD

318 SHUTDOWND,P 358 Tcc

319 SIAM 361 TSUBcc

320 SIRH 362 TSUBccTVD

321 SLL 364 UDIVD (UDIVccD)

321 SLLX 283 UDIVX

367 SMULD (SMULccD) 367 UMULD (UMULccD)

321 SRA 369 WRASI

321 SRAX 369 WRasrPASR

321 SRL 369 WRCCR

321 SRLX 369 WRFPRS

323 STB 369 WRGSR

324 STBAPASI 372 WRHPRH

327 STBARD 369 WRPCRP

328 STBLOCKF 369 WRPICPPIC

TABLE 7-2 UltraSPARC Architecture 2005 Instruction Set - Alphabetical (2 of 2)

Page Instruction
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TABLE 7-3 Instruction Set - by Functional Category (1 of 6)

Instruction Category and Function Page
Ext. to
V9?

Data Movement Operations, Between R Registers

MOVcc Move integer register if condition is satisfied 275

MOVr Move integer register on contents of integer register 279
Data Movement Operations, Between F Registers

FMOV(s,d,q) Floating-point move 191

FMOV(s,d,q)cc Move floating-point register if condition is satisfied 193

FMOV(s,d,q)R Move f-p reg. if integer reg. contents satisfy condition 198

FSRC(1,2){s} Copy source 225 VIS 1

Data Conversion Instructions

FiTO(s,d,q) Convert 32-bit integer to floating-point 185

F(s,d,q)TOi Convert floating point to integer 229

F(s,d,q)TOx Convert floating point to 64-bit integer 229

F(s,d,q)TO(s,d,q) Convert between floating-point formats 231

FxTO(s,d,q) Convert 64-bit integer to floating-point 234
Logical Operations on R Registers

AND (ANDcc) Logical and (and modify condition codes) 149

OR (ORcc) Inclusive-or (and modify condition codes) 286

ORN (ORNcc) Inclusive-or not (and modify condition codes) 286

XNOR (XNORcc) Exclusive-nor (and modify condition codes) 377

XOR (XORcc) Exclusive-or (and modify condition codes) 377
Logical Operations on F Registers

FAND{s} Logical and operation 227 VIS 1

FANDNOT(1,2){s} Logical and operation with one inverted source 227 VIS 1

FNAND{s} Logical nand operation 227 VIS 1

FNOR{s} Logical nor operation 227 VIS 1

FNOT(1,2){s} Copy negated source 225 VIS 1

FONE{s} One fill 224 VIS 1

FOR{s} Logical or operation 227 VIS 1

FORNOT(1,2){s} Logical or operation with one inverted source 227 VIS 1

FXNOR{s} Logical xnor operation 227 VIS 1

FXOR{s} Logical xor operation 227 VIS 1

FZERO{s} Zero fill 224 VIS 1

Shift Operations on R Registers

SLL Shift left logical 321

SLLX Shift left logical, extended 321

SRA Shift right arithmetic 321

SRAX Shift right arithmetic, extended 321
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SRL Shift right logical 321

SRLX Shift right logical, extended 321
Special Addressing Operations

ALIGNADDRESS{_LITTLE} Calculate address for misaligned data 147 VIS 1

ARRAY(8,16,32) 3-D array addressing instructions 150 VIS 1

FALIGNDATA Perform data alignment for misaligned data 173 VIS 1

Control Transfers

Bicc Branch on integer condition codes 154

BPcc Branch on integer condition codes with prediction 157

BPr Branch on contents of integer register with prediction 160

CALL Call and link 162

DONEP Return from trap 166

FBfccD Branch on floating-point condition codes 174

FBPfcc Branch on floating-point condition codes with prediction 176

ILLTRAP Illegal instruction 235

JMPL Jump and link 239

RETRYP Return from trap and retry 309

RETURN Return 311

SIRH Software-initiated reset 320

Tcc Trap on integer condition codes 358
Byte Permutation

BMASK Set the GSR.mask field 156 VIS 2

BSHUFFLE Permute bytes as specified by GSR.mask 156 VIS 2

Data Formatting Operations on F Registers

FEXPAND Pixel expansion 184 VIS 1

FPACK(16,32, FIX) Pixel packing 210 VIS 1

FPMERGE Pixel merge 219 VIS 1

Memory Operations to/from F Registers

LDBLOCKF Block loads 245 VIS 1

STBLOCKF Block stores 328 VIS 1

LDDF Load double floating-point 249

LDDFAPASI Load double floating-point from alternate space 252

LDF Load floating-point 249

LDFAPASI Load floating-point from alternate space 252

LDQF Load quad floating-point 249

LDQFAPASI Load quad floating-point from alternate space 252

LDSHORTF Short floating-point loads 258 VIS 1

TABLE 7-3 Instruction Set - by Functional Category (2 of 6)

Instruction Category and Function Page
Ext. to
V9?
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STDF Store double floating-point 332

STDFAPASI Store double floating-point into alternate space 335

STF Store floating-point 332

STFAPASI Store floating-point into alternate space 335

STPARTIALF Partial Store instructions 341 VIS 1

STQF Store quad floating point 332

STQFAPASI Store quad floating-point into alternate space 335

STSHORTF Short floating-point stores 344 VIS 1

Memory Operations — Miscellaneous

LDFSRD Load floating-point state register lower 256

LDXFSR Load floating-point state register 249

MEMBAR Memory barrier 271

PREFETCH Prefetch data 291

PREFETCHAPASI Prefetch data from alternate space 291

STFSRD Store floating-point state register 339

STXFSR Store extended floating-point state register 332
Atomic (Load-Store) Memory Operations to/from R Registers

CASAPASI Compare and swap word in alternate space 163

CASXAPASI Compare and swap doubleword in alternate space 163

LDSTUB Load-store unsigned byte 260

LDSTUBAPASI Load-store unsigned byte in alternate space 261

SWAPD Swap integer register with memory 352

SWAPAD, PASI Swap integer register with memory in alternate space 353
Memory Operations to/from R Registers

LDSB Load signed byte 240

LDSBAPASI Load signed byte from alternate space 242

LDSH Load signed halfword 240

LDSHAPASI Load signed halfword from alternate space 242

LDSW Load signed word 240

LDSWAPASI Load signed word from alternate space 242

LDTXAN Load integer twin extended word from alternate space 263 VIS 2+

LDTWD, PASI Load integer twin word 266

LDTWAD, PASI Load integer twin word from alternate space 268

LDUB Load unsigned byte 260

LDUBAPASI Load unsigned byte from alternate space 242

LDUH Load unsigned halfword 240

LDUHAPASI Load unsigned halfword from alternate space 242

TABLE 7-3 Instruction Set - by Functional Category (3 of 6)

Instruction Category and Function Page
Ext. to
V9?
CHAPTER 7 • Instructions 141



LDUW Load unsigned word 240

LDUWAPASI Load unsigned word from alternate space 242

LDX Load extended 240

LDXAPASI Load extended from alternate space 242

STB Store byte 323

STBAPASI Store byte into alternate space 324

STBARD Store barrier 327

STTWD Store twin word 346

STTWAD, PASI Store twin word into alternate space 348

STH Store halfword 323

STHAPASI Store halfword into alternate space 324

STW Store word 323

STWAPASI Store word into alternate space 324

STX Store extended 323

STXAPASI Store extended into alternate space 324
Floating-Point Arithmetic Operations

FABS(s,d,q) Floating-point absolute value 171

FADD(s,d,q) Floating-point add 172

FDIV(s,d,q) Floating-point divide 183

FdMULq Floating-point multiply double to quad 207

FMUL(s,d,q) Floating-point multiply 207

FNEG(s,d,q) Floating-point negate 209

FsMULd Floating-point multiply single to double 207

FSQRT(s,d,q) Floating-point square root 228

FSUB(s,d,q) Floating-point subtract 233
Floating-Point Comparison Operations

FCMP*<16,32> Compare four 16-bit signed values or two 32-bit signed values 178 VIS 1

FCMP(s,d,q) Floating-point compare 181

FCMPE(s,d,q) Floating-point compare (exception if unordered) 181
Register-Window Control Operations

ALLCLEAN Mark all register window sets as “clean” 148

INVALW Mark all register window sets as “invalid” 238

FLUSHW Flush register windows 190

NORMALW “Other” register windows become “normal” register windows 285

OTHERW “Normal” register windows become “other” register windows 287

RESTOREP Restore caller’s window 305

RESTOREDP Window has been restored 307

TABLE 7-3 Instruction Set - by Functional Category (4 of 6)

Instruction Category and Function Page
Ext. to
V9?
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SAVEP Save caller’s window 313

SAVEDP Window has been saved 315
Miscellaneous Operations

FLUSH Flush instruction memory 186

IMPDEP2A Implementation-dependent instructions 236

IMPDEP2B Implementation-dependent instructions (reserved) 236

NOP No operation 284

SHUTDOWND,P Shut down the virtual processor 318 VIS 1

Integer SIMD Operations on F Registers

FPADD<16,32>[S] Fixed-point partitioned add 216 VIS 1

FPSUB<16,32>[S] Fixed-point partitioned subtract 221 VIS 1

Integer Arithmetic Operations on R Registers

ADD (ADDcc) Add (and modify condition codes) 146

ADDC (ADDCcc) Add with carry (and modify condition codes) 146

MULSccD Multiply step (and modify condition codes) 281

MULX Multiply 64-bit integers 283

SDIVD (SDIVccD) 32-bit signed integer divide (and modify condition codes) 364

SDIVX 64-bit signed integer divide 283

SMULD (SMULccD) Signed integer multiply (and modify condition codes) 367

SUB (SUBcc) Subtract (and modify condition codes) 351

SUBC (SUBCcc) Subtract with carry (and modify condition codes) 351

TADDcc Tagged add and modify condition codes (trap on overflow) 355

TADDccTVD Tagged add and modify condition codes (trap on overflow) 356

TSUBcc Tagged subtract and modify condition codes (trap on overflow) 361

TSUBccTVD Tagged subtract and modify condition codes (trap on overflow) 362

UDIVD (UDIVccD) Unsigned integer divide (and modify condition codes) 364

UDIVX 64-bit unsigned integer divide 283

UMULD (UMULccD) Unsigned integer multiply (and modify condition codes) 367
Integer Arithmetic Operations on F Registers

FMUL8x16 8x16 partitioned product 201 VIS 1

FMUL8x16(AU,AL) 8x16 upper/lower α partitioned product 201 VIS 1

FMUL8(SU,UL)x16 8x16 upper/lower partitioned product 201 VIS 1

FMULD8(SU,UL)x16 8x16 upper/lower partitioned product 201 VIS 1

Miscellaneous Operations on R Registers

POPC Population count 289

SETHI Set high 22 bits of low word of integer register 317
Miscellaneous Operations on F Registers

TABLE 7-3 Instruction Set - by Functional Category (5 of 6)

Instruction Category and Function Page
Ext. to
V9?
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EDGE(8,16,32){L}cc Edge handling instructions (and modify condition codes) 168 VIS 1

EDGE(8,16,32){L}N Edge handling instructions 170 VIS 2

PDIST Pixel component distance 288 VIS 1

Control and Status Register Access

RDASI Read ASI register 299

RDasrPASR Read ancillary state register 299

RDCCR Read Condition Codes register (CCR) 299

RDFPRS Read Floating-Point Registers State register (FPRS) 299

RDGSR Read General Status register (GSR) 299

RDPC Read Program Counter register (PC) 299

RDPCRP Read Performance Control register (PCR) 299

RDPICPPIC Read Performance Instrumentation Counters register (PIC) 299

RDHPRH Read hyperprivileged register 302

RDPRP Read privileged register 303

RDSOFTINTP Read per-virtual processor Soft Interrupt register (SOFTINT) 299

RDSTICKPnpt Read System Tick register (STICK) 299

RDSTICK_CMPRP Read System Tick Compare register (STICK_CMPR) 299

RDTICKPnpt Read Tick register (TICK) 299

RDTICK_CMPRP Read Tick Compare register (TICK_CMPR) 299

SIAM Set interval arithmetic mode 319 VIS 2

WRASI Write ASI register 369

WRasrPASR Write ancillary state register 369

WRCCR Write Condition Codes register (CCR) 369

WRFPRS Write Floating-Point Registers State register (FPRS) 369

WRGSR Write General Status register (GSR) 369

WRPCRP Write Performance Control register (PCR) 369

WRPICPPIC Write Performance Instrumentation Counters register (PIC) 369

WRHPRH Write hyperprivileged register 372

WRPRP Write privileged register 372

WRSOFTINTP Write per-virtual processor Soft Interrupt register (SOFTINT) 369

WRSOFTINT_CLRP Clear bits of per-virtual processor Soft Interrupt register
(SOFTINT)

369

WRSOFTINT_SETP Set bits of per-virtual processor Soft Interrupt register (SOFTINT) 369

WRTICK_CMPRP Write Tick Compare register (TICK_CMPR) 369

WRSTICKP Write System Tick register (STICK) 369

WRSTICK_CMPRP Write System Tick Compare register (STICK_CMPR) 369

WRYD Write Y register 369

TABLE 7-3 Instruction Set - by Functional Category (6 of 6)

Instruction Category and Function Page
Ext. to
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In the remainder of this chapter, related instructions are grouped into subsections.
Each subsection consists of the following sets of information:

(1) Instruction Table. This lists the instructions that are defined in the subsection,
including the values of the field(s) that uniquely identify the instruction(s), assembly
language syntax, and software and implementation classifications for the
instructions. (description of the Software Classes [letters] and Implementation Classes
[digits] will be provided in a later update to this specification)

(2) Illustration of Instruction Format(s). These illustrations show how the
instruction is encoded in a 32-bit word in memory. In them, a dash (—) indicates
that the field is reserved for future versions of the architecture and must be 0 in any
instance of the instruction. If a conforming UltraSPARC Architecture
implementation encounters nonzero values in these fields, its behavior is as defined
in Reserved Opcodes and Instruction Fields on page 132.

(3) Description. This subsection describes the operation of the instruction, its
features, restrictions, and exception-causing conditions.

(4) Exceptions. The exception that can occur as a consequence of attempting to
execute the instruction(s). Exceptions due to an instruction_access_exception,
fast_instruction_access_MMU_miss, WDR, and interrupts are not listed because they
can occur on any instruction. An FPop that is not implemented in hardware
generates an fp_exception_other exception with FSR.ftt = unimplemented_FPop
when executed. A non-FPop instruction not implemented in hardware generates an
illegal_instruction exception and therefore will not generate any of the other
exceptions listed. Exceptions are listed in order of trap priority (see Trap Priorities on
page 469), from highest to lowest priority.

(5) See Also. A list of related instructions (on selected pages).

Note Instruction classes are subject to change, and are not yet defined in
this document. The classes will be defined in a later draft of this
document and in the meantime are subject to change.

Note This specification does not contain any timing information (in
either cycles or elapsed time), since timing is always
implementation dependent.
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ADD
7.1 Add

Description If i = 0, ADD and ADDcc compute “R[rs1] + R[rs2]”. If i = 1, they compute
“R[rs1] + sign_ext(simm13)”. In either case, the sum is written to R[rd].

ADDC and ADDCcc (“ADD with carry”) also add the CCR register’s 32-bit carry
(icc.c) bit. That is, if i = 0, they compute “R[rs1] + R[rs2] + icc.c” and if i = 1, they
compute “R[rs1] + sign_ext(simm13) + icc.c”. In either case, the sum is written to
R[rd].

ADDcc and ADDCcc modify the integer condition codes (CCR.icc and CCR.xcc).
Overflow occurs on addition if both operands have the same sign and the sign of the
sum is different from that of the operands.

An attempt to execute an ADD, ADDcc, ADDC or ADDCcc instruction when i = 0
and reserved instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

Instruction op3 Operation Assembly Language Syntax Class

ADD 00 0000 Add add regrs1, reg_or_imm, regrd A1

ADDcc 01 0000 Add and modify cc’s addcc regrs1, reg_or_imm, regrd A1

ADDC 00 1000 Add with 32-bit Carry addc regrs1, reg_or_imm, regrd A1

ADDCcc 01 1000 Add with 32-bit Carry and modify cc’s addccc regrs1, reg_or_imm, regrd A1

Programming
Note

ADDC and ADDCcc read the 32-bit condition codes’ carry bit
(CCR.icc.c), not the 64-bit condition codes’ carry bit (CCR.xcc.c).

SPARC V8
Compatibility

Note

ADDC and ADDCcc were previously named ADDX and
ADDXcc, respectively, in SPARC V8.

rd10 op3 —rs1 rs2i=0

31 24 02530 29 19 18 14 13 12 5 4

rd10 op3 rs1 simm13i=1
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ALIGNADDRESS
7.2 Align Address

Description ALIGNADDRESS adds two integer values, R[rs1] and R[rs2], and stores the result
(with the least significant 3 bits forced to 0) in the integer register R[rd]. The least
significant 3 bits of the result are stored in the GSR.align field.

ALIGNADDRESS_LITTLE is the same as ALIGNADDRESS except that the two’s
complement of the least significant 3 bits of the result is stored in GSR.align.

A byte-aligned 64-bit load can be performed as shown below.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no
FPU is present, an attempt to execute an ALIGNADDRESS or
ALIGNADDRESS_LITTLE instruction causes an fp_disabled exception.

Exceptions fp_disabled

See Also Align Data on page 173

Instruction opf Operation Assembly Language Syntax Class

ALIGNADDRESS 0 0001 1000 Calculate address for misaligned
data access

alignaddr regrs1, regrs2, regrd A1

ALIGNADDRESS_
LITTLE

0 0001 1010 Calculate address for misaligned
data access little-endian

alignaddrl regrs1, regrs2, regrd A1

Note ALIGNADDRESS_LITTLE generates the opposite-endian byte
ordering for a subsequent FALIGNDATA operation.

alignaddr Address, Offset, Address !set GSR.align
ldd [Address], %d0
ldd [Address + 8], %d2
faligndata %d0, %d2, %d4 !use GSR.align to select bytes

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
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ALLCLEAN
7.3 Mark All Register Window Sets “Clean”

Description The ALLCLEAN instruction marks all register window sets as “clean”; specifically, it
performs the following operation:

CLEANWIN ← (N_REG_WINDOWS − 1)

Exceptions illegal_instruction (not implemented in hardware in UltraSPARC Architecture 2005)
privileged_opcode

See Also INVALW on page 238
NORMALW on page 285
OTHERW on page 287
RESTORED on page 307
SAVED on page 315

Instruction Operation Assembly Language Syntax Class

ALLCLEANP Mark all register window sets as “clean” allclean C1

Programming
Note

ALLCLEAN is used to indicate that all register windows are
“clean”; that is, do not contain data belonging to other address
spaces. It is needed because the value of N_REG_WINDOWS is not
known to privileged software.

This instruction allows window manipulations to be atomic,
without the value of N_REG_WINDOWS being visible to privileged
software and without an assumption that N_REG_WINDOWS is
constant (since hyperprivileged software can migrate a thread
among virtual processors, across which N_REG_WINDOWS may
vary).

31 1924 18 02530 29

10 fcn = 0 0010 11 0001 —
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AND, ANDN
7.4 AND Logical Operation

Description These instructions implement bitwise logical and operations. They compute “R[rs1]
op R[rs2]” if i = 0, or “R[rs1] op sign_ext(simm13)” if i = 1, and write the result into
R[rd].

ANDcc and ANDNcc modify the integer condition codes (icc and xcc). They set the
condition codes as follows:

■ icc.v, icc.c, xcc.v, and xcc.c are set to 0
■ icc.n is copied from bit 31 of the result
■ xcc.n is copied from bit 63 of the result
■ icc.z is set to 1 if bits 31:0 of the result are zero (otherwise to 0)
■ xcc.z is set to 1 if all 64 bits of the result are zero (otherwise to 0)

ANDN and ANDNcc logically negate their second operand before applying the
main (and) operation.

An attempt to execute an AND, ANDcc, ANDN or ANDNcc instruction when i = 0
and reserved instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

Instruction op3 Operation Assembly Language Syntax Class

AND 00 0001 and and regrs1, reg_or_imm, regrd A1

ANDcc 01 0001 and and modify cc’s andcc regrs1, reg_or_imm, regrd A1

ANDN 00 0101 and not andn regrs1, reg_or_imm, regrd A1

ANDNcc 01 0101 and not and modify cc’s andncc regrs1, reg_or_imm, regrd A1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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ARRAY<8|16|32>
7.5 Three-Dimensional Array Addressing

Description These instructions convert three-dimensional (3D) fixed-point addresses contained
in R[rs1] to a blocked-byte address; they store the result in R[rd]. Fixed-point
addresses typically are used for address interpolation for planar reformatting
operations. Blocking is performed at the 64-byte level to maximize external cache
block reuse, and at the 64-Kbyte level to maximize TLB entry reuse, regardless of the
orientation of the address interpolation. These instructions specify an element size of
8 bits (ARRAY8), 16 bits (ARRAY16), or 32 bits (ARRAY32).

The second operand, R[rs2], specifies the power-of-2 size of the X and Y dimensions
of a 3D image array. The legal values for R[rs2] and their meanings are shown in
TABLE 7-4. Illegal values produce undefined results in the destination register, R[rd].

The array instructions facilitate 3D texture mapping and volume rendering by
computing a memory address for data lookup based on fixed-point x, y, and z
coordinates. The data are laid out in a blocked fashion, so that points which are near
one another have their data stored in nearby memory locations.

Instruction opf Operation Assembly Language Syntax Class

ARRAY8 0 0001 0000 Convert 8-bit 3D address to blocked byte address array8 regrs1, regrs2, regrd C3

ARRAY16 0 0001 0010 Convert 16-bit 3D address to blocked byte address array16 regrs1, regrs2, regrd C3

ARRAY32 0 0001 0100 Convert 32-bit 3D address to blocked byte address array32 regrs1, regrs2, regrd C3

TABLE 7-4 3D R[rs2] Array X and Y Dimensions
R[rs2] Value (n) Number of Elements

0 64
1 128
2 256
3 512
4 1024
5 2048

Implementation
Note

Architecturally, an illegal R[rs2] value (>5) causes the array
instructions to produce undefined results. For historic reference,
past implementations of these instructions have ignored
R[rs2]{63:3} and have treated R[rs2] values of 6 and 7 as if they
were 5.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
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ARRAY<8|16|32>

If the texture data were laid out in the obvious fashion (the z = 0 plane, followed by
the z = 1 plane, etc.), then even small changes in z would result in references to
distant pages in memory. The resulting lack of locality would tend to result in TLB
misses and poor performance. The three versions of the array instruction, ARRAY8,
ARRAY16, and ARRAY32, differ only in the scaling of the computed memory offsets.
ARRAY16 shifts its result left by one position and ARRAY32 shifts left by two in
order to handle 16- and 32-bit texture data.

When using the array instructions, a “blocked-byte” data formatting structure is
imposed. The N × N × M volume, where N = 2n × 64, M = m × 32, 0 ≤ n ≤5, 1 ≤ m ≤ 16
should be composed of 64 × 64 × 32 smaller volumes, which in turn should be
composed of 4 × 4 × 2 volumes. This data structure is optimal for 16-bit data. For 16-
bit data, the 4 × 4 × 2 volume has 64 bytes of data, which is ideal for reducing cache-
line misses; the 64 × 64 × 32 volume will have 256 Kbytes of data, which is good for
improving the TLB hit rate. FIGURE 7-1 illustrates how the data has to be organized,
where the origin (0,0,0) is assumed to be at the lower-left front corner and the x
coordinate varies faster than y than z. That is, when traversing the volume from the
origin to the upper right back, you go from left to right, front to back, bottom to top.

FIGURE 7-1 Blocked-Byte Data Formatting Structure

The array instructions have 2 inputs:

0 4

4

2

Y

X

Z

16 × 4 = 64

M = m × 32

N = 2
n × 64

N = 2
n × 64

16 x 2 = 32
16 × 4 = 64
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ARRAY<8|16|32>

The (x,y,z) coordinates are input via a single 64-bit integer organized in R[rs1] as
shown in FIGURE 7-2.

FIGURE 7-2 Three-Dimensional Array Fixed-Point Address Format

Note that z has only 9 integer bits, as opposed to 11 for x and y. Also note that since
(x,y,z) are all contained in one 64-bit register, they can be incremented or
decremented simultaneously with a single add or subtract instruction (ADD or
SUB).

So for a 512 × 512 × 32 or a 512 × 512 × 256 volume, the size value is 3. Note that the
x and y size of the volume must be the same. The z size of the volume is a multiple
of 32, ranging between 32 and 512.

The array instructions generate an integer memory offset, that when added to the
base address of the volume, gives the address of the volume element (voxel) and can
be used by a load instruction. The offset is correct only if the data has been
reformatted as specified above.

The integer parts of x, y, and z are converted to the following blocked-address
formats as shown in FIGURE 7-3 for ARRAY8, FIGURE 7-4 for ARRAY16, and FIGURE 7-5
for ARRAY32.

FIGURE 7-3 Three-Dimensional Array Blocked-Address Format (ARRAY8)

FIGURE 7-4 Three-Dimensional Array Blocked-Address Format (ARRAY16)

0323363 55 54 44 43 22 21 11 10

X fractionX integerY fractionY integerZ fractionZ integer

04 2

XYZ

LOWER

513 9

XYZ

MIDDLE

1717 17

XYZ

UPPER

+ n+2n
20
+ 2n

15 3

XYZ

LOWER

614 10

XYZ

MIDDLE

1818 18

XYZ

UPPER

+n+2n
21

+2n

0

0
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ARRAY<8|16|32>
FIGURE 7-5 Three Dimensional Array Blocked-Address Format (ARRAY32)

The bits above Z upper are set to 0. The number of zeroes in the least significant bits
is determined by the element size. An element size of 8 bits has no zeroes, an
element size of 16 bits has one zero, and an element size of 32 bits has two zeroes.
Bits in X and Y above the size specified by R[rs2] are ignored.

In the above description, if n = 0, there are 64 elements, so X_integer{6} and
Y_integer{6} are not defined. That is, result{20:17} equals Z_integer{8:5}.

The code fragment below shows assembly of components along an interpolated line
at the rate of one component per clock.

Exceptions None

TABLE 7-5 ARRAY8 Description

Result (R[rd]) Bits Source (R[rs1] Bits Field Information

1:0 12:11 X_integer{1:0}

3:2 34:33 Y_integer{1:0}

4 55 Z_integer{0}

8:5 16:13 X_integer{5:2}

12:9 38:35 Y_integer{5:2}

16:13 59:56 Z_integer{4:1}

17+n-1:17 17+n-1:17 X_integer{6+n-1:6}

17+2n-1:17+n 39+n-1:39 Y_integer{6+n-1:6}

20+2n:17+2n 63:60 Z_integer{8:5}

63:20+2n+1 n/a 0

Note To maximize reuse of external cache and TLB data, software
should block array references of a large image to the 64-Kbyte
level. This means processing elements within a 32 × 32 × 64
block.

add Addr, DeltaAddr, Addr
array8 Addr, %g0, bAddr
ldda [bAddr] #ASI_FL8_PRIMARY, data
faligndata data, accum, accum

26 4

XYZ

LOWER

715 11

XYZ

MIDDLE

1919 19

XYZ

UPPER

+n+2n
22

+2n

00

0135
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Bicc Instructions
7.6 Branch on Integer Condition Codes
(Bicc)

† synonym: bnz ‡ synonym: bz ◊ synonym: bgeu ∇ synonym: blu

Unconditional branches and icc-conditional branches are described below:

■ Unconditional branches (BA, BN) — If its annul bit is 0 (a = 0), a BN (Branch
Never) instruction is treated as a NOP. If its annul bit is 1 (a = 1), the following
(delay) instruction is annulled (not executed). In neither case does a transfer of
control take place.

Opcode cond Operation icc Test
Assembly Language
Syntax Class

BA 1000 Branch Always 1 ba{,a} label A1

BN 0000 Branch Never 0 bn{,a} label A1

BNE 1001 Branch on Not Equal not Z bne†{,a} label A1

BE 0001 Branch on Equal Z be‡{,a} label A1

BG 1010 Branch on Greater not (Z or (N xor V)) bg{,a} label A1

BLE 0010 Branch on Less or Equal Z or (N xor V) ble{,a} label A1

BGE 1011 Branch on Greater or Equal not (N xor V) bge{,a} label A1

BL 0011 Branch on Less N xor V bl{,a} label A1

BGU 1100 Branch on Greater Unsigned not (C or Z) bgu{,a} label A1

BLEU 0100 Branch on Less or Equal Unsigned C or Z bleu{,a} label A1

BCC 1101 Branch on Carry Clear (Greater Than
or Equal, Unsigned)

not C bcc◊{,a} label A1

BCS 0101 Branch on Carry Set (Less Than, Unsigned) C bcs∇ {,a} label A1

BPOS 1110 Branch on Positive not N bpos{,a} label A1

BNEG 0110 Branch on Negative N bneg{,a} label A1

BVC 1111 Branch on Overflow Clear not V bvc{,a} label A1

BVS 0111 Branch on Overflow Set V bvs{,a} label A1

Programming
Note

To set the annul (a) bit for Bicc instructions, append “,a” to the
opcode mnemonic. For example, use “bgu,a label”. In the
preceding table, braces signify that the “,a” is optional.

31 24 02530 29 28 22 21

00 a cond 010 disp22
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BA (Branch Always) causes an unconditional PC-relative, delayed control transfer
to the address “PC + (4 × sign_ext(disp22))”. If the annul (a) bit of the branch
instruction is 1, the delay instruction is annulled (not executed). If the annul bit is
0 (a = 0), the delay instruction is executed.

■ icc-conditional branches — Conditional Bicc instructions (all except BA and BN)
evaluate the 32-bit integer condition codes (icc), according to the cond field of the
instruction, producing either a TRUE or FALSE result. If TRUE, the branch is taken,
that is, the instruction causes a PC-relative, delayed control transfer to the
address “PC + (4 × sign_ext(disp22))”. If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed
regardless of the value of the annul field. If a conditional branch is not taken and
the annul bit is 1 (a = 1), the delay instruction is annulled (not executed).

Annulment, delay instructions, and delayed control transfers are described further
in Chapter 6, Instruction Set Overview.

Exceptions None

Note The annul bit has a different effect on conditional branches than
it does on unconditional branches.
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BMASK / BSHUFFLE
7.7 Byte Mask and Shuffle

Description BMASK adds two integer registers, R[rs1] and R[rs2], and stores the result in the
integer register R[rd]. The least significant 32 bits of the result are stored in the
GSR.mask field.

BSHUFFLE concatenates the two 64-bit floating-point registers FD[rs1] (more
significant half) and FD[rs2] (less significant half) to form a 128-bit (16-byte) value.
Bytes in the concatenated value are numbered from most significant to least
significant, with the most significant byte being byte 0. BSHUFFLE extracts 8 of
those 16 bytes and stores the result in the 64-bit floating-point register FD[rd]. Bytes
in FD[rd] are also numbered from most to least significant, with the most significant
being byte 0. The following table indicates which source byte is extracted from the
concatenated value to generate each byte in the destination register, FD[rd].

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no
FPU is present, an attempt to execute a BMASK or BSHUFFLE instruction causes an
fp_disabled exception.

Exceptions fp_disabled

Instruction opf Operation Assembly Language Syntax Class

BMASK 0 0001 1001 Set the GSR.mask field in preparation
for a subsequent BSHUFFLE instruction

bmask regrs1, regrs2, regrd C3

BSHUFFLE 0 0100 1100 Permute 16 bytes as specified by GSR.mask bshuffle fregrs1, fregrs2, fregrd C3

Destination Byte (in F[rd]) Source Byte

0 (most significant) (FD[rs1] :: FD[[rs2]){GSR.mask{31:28}}

1 (FD[[rs1] :: FD[[rs2]){GSR.mask{27:24}}

2 (FD[[rs1] :: FD[[rs2]){GSR.mask{23:20}}

3 (FD[[rs1] :: FD[[rs2]){GSR.mask{19:16}}

4 (FD[[rs1] :: FD[[rs2]){GSR.mask{15:12}}

5 (FD[[rs1] :: FD[[rs2]){GSR.mask{11:8}}

6 (FD[[rs1] :: FD[[rs2]){GSR.mask{7:4}}

7 (least significant) (FD[[rs1] :: FD[[rs2]){GSR.mask{3:0}}

VIS 2
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BPcc
7.8 Branch on Integer Condition Codes with
Prediction (BPcc)

† synonym: bnz ‡ synonym: bz ◊ synonym: bgeu ∇ synonym: blu

Instruction cond Operation cc Test Assembly Language Syntax Class

BPA 1000 Branch Always 1 ba{,a}{,pt|,pn} i_or_x_cc, label A1

BPN 0000 Branch Never 0 bn{,a}{,pt|,pn} i_or_x_cc, label A1

BPNE 1001 Branch on Not Equal not Z bne†{,a}{,pt|,pn} i_or_x_cc, label A1

BPE 0001 Branch on Equal Z be‡{,a}{,pt|,pn} i_or_x_cc, label A1

BPG 1010 Branch on Greater not (Z or
(N xor V))

bg{,a}{,pt|,pn} i_or_x_cc, label A1

BPLE 0010 Branch on Less or Equal Z or (N xor V) ble{,a}{,pt|,pn} i_or_x_cc, label A1

BPGE 1011 Branch on Greater or Equal not (N xor V) bge{,a}{,pt|,pn} i_or_x_cc, label A1

BPL 0011 Branch on Less N xor V bl{,a}{,pt|,pn} i_or_x_cc, label A1

BPGU 1100 Branch on Greater Unsigned not (C or Z) bgu{,a}{,pt|,pn} i_or_x_cc, label A1

BPLEU 0100 Branch on Less or Equal Unsigned C or Z bleu{,a}{,pt|,pn} i_or_x_cc, label A1

BPCC 1101 Branch on Carry Clear
(Greater than or Equal, Unsigned)

not C bcc◊{,a}{,pt|,pn} i_or_x_cc, label A1

BPCS 0101 Branch on Carry Set
(Less than, Unsigned)

C bcs∇ {,a}{,pt|,pn} i_or_x_cc, label A1

BPPOS 1110 Branch on Positive not N bpos{,a}{,pt|,pn} i_or_x_cc, label A1

BPNEG 0110 Branch on Negative N bneg{,a}{,pt|,pn} i_or_x_cc, label A1

BPVC 1111 Branch on Overflow Clear not V bvc{,a}{,pt|,pn} i_or_x_cc, label A1

BPVS 0111 Branch on Overflow Set V bvs{,a}{,pt|,pn} i_or_x_cc, label A1

cc1 cc0 Condition Code

0 0 icc

0 1 —

1 0 xcc

1 1 —

00 a cond 001 cc1 p disp19cc0

31 1924 182530 29 28 22 21 20
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Description Unconditional branches and conditional branches are described below.

■ Unconditional branches (BPA, BPN) — A BPN (Branch Never with Prediction)
instruction for this branch type (op2 = 1) may be used in the SPARC V9
architecture as an instruction prefetch; that is, the effective address (PC + (4 ×
sign_ext(disp19))) specifies an address of an instruction that is expected to be
executed soon. If the Branch Never’s annul bit is 1 (a = 1), then the following
(delay) instruction is annulled (not executed). If the annul bit is 0 (a = 0), then the
following instruction is executed. In no case does a Branch Never cause a transfer
of control to take place.

BPA (Branch Always with Prediction) causes an unconditional PC-relative,
delayed control transfer to the address “PC + (4 × sign_ext(disp19))”. If the annul
bit of the branch instruction is 1 (a = 1), then the delay instruction is annulled (not
executed). If the annul bit is 0 (a = 0), then the delay instruction is executed.

■ Conditional branches — Conditional BPcc instructions (except BPA and BPN)
evaluate one of the two integer condition codes (icc or xcc), as selected by cc0
and cc1, according to the cond field of the instruction, producing either a TRUE or
FALSE result. If TRUE, the branch is taken; that is, the instruction causes a PC-
relative, delayed control transfer to the address “PC + (4 × sign_ext(disp19))”. If
FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed
regardless of the value of the annul (a) bit. If a conditional branch is not taken
and the annul bit is 1 (a = 1), the delay instruction is annulled (not executed).

The predict bit (p) is used to give the hardware a hint about whether the branch is
expected to be taken. A 1 in the p bit indicates that the branch is expected to be
taken; a 0 indicates that the branch is expected not to be taken.

Annulment, delay instructions, prediction, and delayed control transfers are
described further in Chapter 6, Instruction Set Overview.

An attempt to execute a BPcc instruction with cc0 = 1 (a reserved value) causes an
illegal_instruction exception.

Exceptions illegal_instruction

Programming
Note

To set the annul (a) bit for BPcc instructions, append “,a” to the
opcode mnemonic. For example, use bgu,a %icc, label. Braces in
the preceding table signify that the “,a” is optional. To set the
branch prediction bit, append to an opcode mnemonic either
“,pt” for predict taken or “,pn” for predict not taken. If neither
“,pt” nor “,pn” is specified, the assembler defaults to “,pt”. To
select the appropriate integer condition code, include “%icc” or
“%xcc” before the label.

Note The annul bit has a different effect on conditional branches than
it does on unconditional branches.
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See Also Branch on Integer Register with Prediction (BPr) on page 160
CHAPTER 7 • Instructions 159



BPr
7.9 Branch on Integer Register with
Prediction (BPr)

* Although SPARC V9 implementations should cause an illegal_instruction exception when bit 28 = 1, many
early implementations ignored the value of this bit and executed the opcode as a BPr instruction even if
bit 28 = 1.

Description These instructions branch based on the contents of R[rs1]. They treat the register
contents as a signed integer value.

A BPr instruction examines all 64 bits of R[rs1] according to the rcond field of the
instruction, producing either a TRUE or FALSE result. If TRUE, the branch is taken;
that is, the instruction causes a PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(d16hi :: d16lo))”. If FALSE, the branch is not taken.

If the branch is taken, the delay instruction is always executed, regardless of the
value of the annul (a) bit. If the branch is not taken and the annul bit is 1 (a = 1), the
delay instruction is annulled (not executed).

Instruction rcond Operation

Register
Contents
Test Assembly Language Syntax Class

— 000 Reserved — —

BRZ 001 Branch on Register Zero R[rs1] = 0 brz {,a}{,pt|,pn} regrs1, label A1

BRLEZ 010 Branch on Register Less Than or Equal
to Zero

R[rs1] ≤ 0 brlez {,a}{,pt|,pn} regrs1, label A1

BRLZ 011 Branch on Register Less Than Zero R[rs1] < 0 brlz {,a}{,pt|,pn} regrs1, label A1

— 100 Reserved — —

BRNZ 101 Branch on Register Not Zero R[rs1] ≠ 0 brnz {,a}{,pt|,pn} regrs1, label A1

BRGZ 110 Branch on Register Greater Than Zero R[rs1] > 0 brgz {,a}{,pt|,pn} regrs1, label A1

BRGEZ 111 Branch on Register Greater Than or
Equal to Zero

R[rs1] ≥ 0 brgez {,a}{,pt|,pn} regrs1, label A1

Programming
Note

To set the annul (a) bit for BPr instructions, append “,a” to the
opcode mnemonic. For example, use “brz,a %i3, label.” In the
preceding table, braces signify that the “,a” is optional. To set the
branch prediction bit p, append either “,pt” for predict taken or
“,pn” for predict not taken to the opcode mnemonic. If neither
“,pt” nor “,pn” is specified, the assembler defaults to “,pt”.

31 141924 18 13 027 2530 29 28 22 21 20

00 a 0* rcond 011 d16hi p rs1 d16lo
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The predict bit (p) gives the hardware a hint about whether the branch is expected to
be taken. If p = 1, the branch is expected to be taken; p = 0 indicates that the branch
is expected not to be taken.

An attempt to execute a BPr instruction when instruction bit 28 = 1 or rcond is a
reserved value (0002 or 1002) causes an illegal_instruction exception.

Annulment, delay instructions, prediction, and delayed control transfers are
described further in Chapter 6, Instruction Set Overview.

Exceptions illegal_instruction

See Also Branch on Integer Condition Codes with Prediction (BPcc) on page 157

Implementation
Note

If this instruction is implemented by tagging each register value
with an N (negative) bit and Z (zero) bit, the table below can be
used to determine if rcond is TRUE:

Branch Test
BRNZ not Z
BRZ Z
BRGEZ not N
BRLZ N
BRLEZ N or Z
BRGZ not (N or Z)
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CALL
7.10 Call and Link

Description The CALL instruction causes an unconditional, delayed, PC-relative control transfer
to address PC + (4 × sign_ext(disp30)). Since the word displacement (disp30) field is
30 bits wide, the target address lies within a range of –231 to +231 – 4 bytes. The PC-
relative displacement is formed by sign-extending the 30-bit word displacement field
to 62 bits and appending two low-order zeroes to obtain a 64-bit byte displacement.

The CALL instruction also writes the value of PC, which contains the address of the
CALL, into R[15] (out register 7).

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address
are masked out (set to 0) before being sent to the memory system and in the address
written into R[15]. (closed impl. dep. #125-V9-Cs10)

Exceptions None

See Also JMPL on page 239

Instruction op Operation Assembly Language Syntax Class

CALL 01 Call and Link call label A1

31 030 29

01 disp30
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CASA / CASXA
7.11 Compare and Swap

Description Concurrent processes use these instructions for synchronization and memory
updates. Uses of compare-and-swap include spin-lock operations, updates of shared
counters, and updates of linked-list pointers. The last two can use wait-free
(nonlocking) protocols.

The CASXA instruction compares the value in register R[rs2] with the doubleword
in memory pointed to by the doubleword address in R[rs1]. If the values are equal,
the value in R[rd] is swapped with the doubleword pointed to by the doubleword
address in R[rs1]. If the values are not equal, the contents of the doubleword
pointed to by R[rs1] replaces the value in R[rd], but the memory location remains
unchanged.

The CASA instruction compares the low-order 32 bits of register R[rs2] with a word
in memory pointed to by the word address in R[rs1]. If the values are equal, then the
low-order 32 bits of register R[rd] are swapped with the contents of the memory
word pointed to by the address in R[rs1] and the high-order 32 bits of register R[rd]
are set to 0. If the values are not equal, the memory location remains unchanged, but
the contents of the memory word pointed to by R[rs1] replace the low-order 32 bits
of R[rd] and the high-order 32 bits of register R[rd] are set to 0.

A compare-and-swap instruction comprises three operations: a load, a compare, and
a swap. The overall instruction is atomic; that is, no intervening interrupts or
deferred traps are recognized by the virtual processor and no intervening update
resulting from a compare-and-swap, swap, load, load-store unsigned byte, or store
instruction to the doubleword containing the addressed location, or any portion of it,
is performed by the memory system.

Instruction op3 Operation Assembly Language Syntax Class

CASAPASI 11 1100 Compare and Swap Word from
Alternate Space

casa
casa

[regrs1] imm_asi, regrs2, regrd
[regrs1] %asi, regrs2, regrd

A1

CASXAPASI 11 1110 Compare and Swap Extended from
Alternate Space

casxa
casxa

[regrs1] imm_asi, regrs2, regrd
[regrs1] %asi, regrs2, regrd

A1

11 rd op3 rs1 i=0 imm_asi rs2

11 rd op3 rs1 i=1 — rs2
31 141924 18 13 12 5 4 02530 29
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CASA / CASXA

A compare-and-swap operation does not imply any memory barrier semantics.
When compare-and-swap is used for synchronization, the same consideration
should be given to memory barriers as if a load, store, or swap instruction were
used.

A compare-and-swap operation behaves as if it performs a store, either of a new
value from R[rd] or of the previous value in memory. The addressed location must
be writable, even if the values in memory and R[rs2] are not equal.

If i = 0, the address space of the memory location is specified in the imm_asi field; if
i = 1, the address space is specified in the ASI register.

An attempt to execute a CASXA or CASA instruction when i = 1 and instruction bits
12:5 are nonzero causes an illegal_instruction exception.

A mem_address_not_aligned exception is generated if the address in R[rs1] is not
properly aligned.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI
is 0, CASXA and CASA cause a privileged_action exception. In privileged mode
(PSTATE.priv = 1 and HPSTATE.hpriv = 0), if the ASI is in the range 3016 to 7F16,
CASXA and CASA cause a privileged_action exception.

The compare-and-swap instructions do not affect the condition codes.

The compare-and-swap instructions can be used with any of the following ASIs,
subject to the privilege mode rules described for the privileged_action exception
above. Use of any other ASI with these instructions causes a data_access_exception
exception.

Compatibility
Note

An implementation might cause an exception because of an
error during the store memory access, even though there was no
error during the load memory access.

Programming
Note

Compare and Swap (CAS) and Compare and Swap Extended
(CASX) synthetic instructions are available for “big endian”
memory accesses. Compare and Swap Little (CASL) and Compare
and Swap Extended Little (CASXL) synthetic instructions are
available for “little endian” memory accesses. See Synthetic
Instructions on page 536 for the syntax of these synthetic
instructions.

ASIs valid for CASA and CASXA instructions

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE
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Exceptions illegal_instruction

mem_address_not_aligned
privileged_action
VA_watchpoint
data_access_exception
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
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DONE
7.12 DONE

Description The DONE instruction restores the saved state from TSTATE[TL] (GL, CCR, ASI,
PSTATE, and CWP), HTSTATE[TL] (HPSTATE), sets PC and NPC, and decrements
TL. DONE sets PC←TNPC[TL] and NPC←TNPC[TL]+4 (normally, the value of
NPC saved at the time of the original trap and address of the instruction
immediately after the one referenced by the NPC).

If the saved TNPC[TL] was not altered by trap handler software, DONE causes
execution to resume immediately after the instruction that originally caused the trap
(as if that instruction was “done” executing).

Execution of a DONE instruction in the delay slot of a control-transfer instruction
produces undefined results.

When a DONE instruction is executed in privileged mode and
HTSTATE[TL].hpstate.hpriv = 0 (which will cause the DONE to return the virtual
processor to nonprivileged or privileged mode), the value of GL restored from
TSTATE[TL] saturates at MAXPGL. That is, if the value in TSTATE[TL].gl is greater
than MAXPGL, then MAXPGL is substituted and written to GL. This protects against
non-hyperprivileged software executing with GL > MAXPGL.

If software writes invalid or inconsistent state to TSTATE or HTSTATE before
executing DONE, virtual processor behavior during and after execution of the
DONE instruction is undefined.

The DONE instruction does not provide an error barrier, as MEMBAR #Sync does
(impl. dep. #215-U3).

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address
are masked out (set to 0) before being sent to the memory system.

Instruction op3 Operation Assembly Language Syntax Class

DONEP 11 1110 Return from Trap (skip trapped instruction) done C1

Programming
Notes

The DONE and RETRY instructions are used to return from
privileged trap handlers.

Unlike RETRY, DONE ignores the contents of TPC[TL].

10 11 1110fcn =0 0000 —
31 1924 18 02530 29
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IMPL. DEP. #417-S10: If (1) TSTATE[TL].pstate.am = 1 and (2) a DONE instruction
is executed (which sets PSTATE.am to ’1’ by restoring the value from
TSTATE[TL].pstate.am to PSTATE.am), it is implementation dependent whether the
DONE instruction masks (zeroes) the more-significant 32 bits of the values it places
into PC and NPC.

Exceptions. In privileged mode (PSTATE.priv = 1 and HPSTATE.hpriv = 0) or
hyperprivileged mode (HPSTATE.hpriv = 1), an attempt to execute DONE while
TL = 0 causes an illegal_instruction exception. An attempt to execute DONE (in any
mode) with instruction bits 18:0 nonzero causes an illegal_instruction exception.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), an attempt to
execute DONE causes a privileged_opcode exception.

A trap_level_zero disrupting trap can occur upon the completion of a DONE
instruction, if the following three conditions are true after DONE has executed:

■ trap_level_zero exceptions are enabled (HPSTATE.tlz = 1),
■ the virtual processor is in nonprivileged or privileged mode

(HPSTATE.hpriv = 0), and
■ the trap level (TL) register’s value is zero (TL = 0)

Exceptions illegal_instruction
privileged_opcode

trap_level_zero

See Also RETRY on page 309

Implementation
Note

In nonprivileged mode, illegal_instruction exception due to TL = 0
does not occur. The privileged_opcode exception occurs instead,
regardless of the current trap level (TL).
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7.13 Edge Handling Instructions

Description These instructions handle the boundary conditions for parallel pixel scan line loops,
where R[rs1] is the address of the next pixel to render and R[rs2] is the address of
the last pixel in the scan line.

EDGE8Lcc, EDGE16Lcc, and EDGE32Lcc are little-endian versions of EDGE8cc,
EDGE16cc, and EDGE32cc. They produce an edge mask that is bit-reversed from
their big-endian counterparts but are otherwise identical. This makes the mask
consistent with the mask produced by the Partial Store instruction (see Partial Store
on page 298) on little-endian data.

A 2-bit (EDGE32cc), 4-bit (EDGE16cc), or 8-bit (EDGE8cc) pixel mask is stored in the
least significant bits of R[rd]. The mask is computed from left and right edge masks
as follows:

1. The left edge mask is computed from the 3 least significant bits of R[rs1] and the
right edge mask is computed from the 3 least significant bits of R[rs2], according
to TABLE 7-6.

2. If a 32-bit address masking is disabled (PSTATE.am = 0, 64-bit addressing) and
the upper 61 bits of R[rs1] are equal to the corresponding bits in R[rs2], R[rd] is
set to the right edge mask anded with the left edge mask.

Instruction opf Operation Assembly Language Syntax † Class

EDGE8cc 0 0000 0000 Eight 8-bit edge boundary processing edge8cc regrs1, regrs2, regrd C3

EDGE8Lcc 0 0000 0010 Eight 8-bit edge boundary processing,
little-endian

edge8lcc regrs1, regrs2, regrd C3

EDGE16cc 0 0000 0100 Four 16-bit edge boundary processing edge16cc regrs1, regrs2, regrd C3

EDGE16Lcc 0 0000 0110 Four 16-bit edge boundary processing,
little-endian

edge16lcc regrs1, regrs2, regrd C3

EDGE32cc 0 0000 1000 Two 32-bit edge boundary processing edge32cc regrs1, regrs2, regrd C3

EDGE32Lcc 0 0000 1010 Two 32-bit edge boundary processing,
little-endian

edge32lcc regrs1, regrs2, regrd C3

† The original assembly language mnemonics for these instructions did not include the “cc” suffix, as appears in the names of all other
instructions that set the integer condition codes.   The old, non-”cc” mnemonics are deprecated. Over time, assemblers will support
the new mnemonics for these instructions. In the meantime, some older assemblers may recognize only the mnemonics, without “cc”.

VIS 1
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168 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006



EDGE<8|16|32>{L}cc

3. If 32-bit address masking is enabled (PSTATE.am = 1, 32-bit addressing) and bits

31:3 of R[rs1] match bits 31:3 of R[rs2], R[rd] is set to the right edge mask anded
with the left edge mask.

4. Otherwise, R[rd] is set to the left edge mask.

The integer condition codes are set per the rules of the SUBcc instruction with the
same operands (see Subtract on page 303).

TABLE 7-6 lists edge mask specifications.

Exceptions illegal_instruction

See Also EDGE(8,16,32){L}N on page 170

TABLE 7-6 Edge Mask Specification

Edge
Size

R[rsn]
{2:0}

Big Endian Little Endian

Left Edge Right Edge Left Edge Right Edge

8 000 1111 1111 1000 0000 1111 1111 0000 0001

8 001 0111 1111 1100 0000 1111 1110 0000 0011

8 010 0011 1111 1110 0000 1111 1100 0000 0111

8 011 0001 1111 1111 0000 1111 1000 0000 1111

8 100 0000 1111 1111 1000 1111 0000 0001 1111

8 101 0000 0111 1111 1100 1110 0000 0011 1111

8 110 0000 0011 1111 1110 1100 0000 0111 1111

8 111 0000 0001 1111 1111 1000 0000 1111 1111

16 00x 1111 1000 1111 0001

16 01x 0111 1100 1110 0011

16 10x 0011 1110 1100 0111

16 11x 0001 1111 1000 1111

32 0xx 11 10 11 01

32 1xx 01 11 10 11
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EDGE<8|16|32>{L}N
7.14 Edge Handling Instructions (no CC)

Description EDGE8[L]N, EDGE16[L]N, and EDGE32[L]N operate identically to EDGE8[L]cc,
EDGE16[L]cc, and EDGE32[L]cc, respectively, but do not set the integer condition
codes.

See Edge Handling Instructions on page 168 for details.

Exceptions illegal_instruction

See Also EDGE<8,16,32>[L]cc on page 168

Instruction opf Operation Assembly Language Syntax Class

EDGE8N 0 0000 0001 Eight 8-bit edge boundary processing, no CC edge8n regrs1, regrs2, regrd C3

EDGE8LN 0 0000 0011 Eight 8-bit edge boundary processing,
little-endian, no CC

edge8ln regrs1, regrs2, regrd C3

EDGE16N 0 0000 0101 Four 16-bit edge boundary processing, no CC edge16n regrs1, regrs2, regrd C3

EDGE16LN 0 0000 0111 Four 16-bit edge boundary processing,
little-endian, no CC

edge16ln regrs1, regrs2, regrd C3

EDGE32N 0 0000 1001 Two 32-bit edge boundary processing, no CC edge32n regrs1, regrs2, regrd C3

EDGE32LN 0 0000 1011 Two 32-bit edge boundary processing,
little-endian, no CC

edge32ln regrs1, regrs2, regrd C3

VIS 2
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rd10 110110 opfrs1 rs2
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FABS
7.15 Floating-Point Absolute Value

Description FABS copies the source floating-point register(s) to the destination floating-point
register(s), with the sign bit cleared (set to 0).

FABSs operates on single-precision (32-bit) floating-point registers, FABSd operates on
double-precision (64-bit) floating-point register pairs, and FABSq operates on quad-
precision (128-bit) floating-point register quadruples.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do
not modify FSR.aexc, and do not treat floating-point NaN values differently from
other floating-point values.

An attempt to execute an FABS instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FABS instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FABSq))

Instruction op3 opf Operation Assembly Language Syntax Class

FABSs 11 0100 0 0000 1001 Absolute Value Single fabss fregrs2, fregrd A1

FABSd 11 0100 0 0000 1010 Absolute Value Double fabsd fregrs2, fregrd A1

FABSq 11 0100 0 0000 1011 Absolute Value Quad fabsq fregrs2, fregrd C3

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FABSq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —
31 141924 18 13 02530 29 4

opf
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FADD
7.16 Floating-Point Add

Description The floating-point add instructions add the floating-point register(s) specified by the
rs1 field and the floating-point register(s) specified by the rs2 field. The instructions
then write the sum into the floating-point register(s) specified by the rd field.

Rounding is performed as specified by FSR.rd.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FADD instruction causes an fp_disabled exception.

If the FPU is enabled, FADDq causes an fp_exception_other (with FSR.ftt =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FADDq))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (OF, UF, NX, NV)

Instruction op3 opf Operation Assembly Language Syntax Class

FADDs 11 0100 0 0100 0001 Add Single fadds fregrs1, fregrs2, fregrd A1

FADDd 11 0100 0 0100 0010 Add Double faddd fregrs1, fregrs2, fregrd A1

FADDq 11 0100 0 0100 0011 Add Quad faddq fregrs1, fregrs2, fregrd C3

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FADDq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

Note An fp_exception_other with FSR.ftt = unfinished_FPop can occur
if the operation detects unusual, implementation-specific
conditions.

10 op3 rs2rd rs1 opf
31 141924 18 13 02530 29 45
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FALIGNDATA
7.17 Align Data

Description FALIGNDATA concatenates the two 64-bit floating-point registers specified by rs1
and rs2 to form a 128-bit (16-byte) intermediate value. The contents of the first
source operand form the more-significant 8 bytes of the intermediate value, and the
contents of the second source operand form the less significant 8 bytes of the
intermediate value. Bytes in the intermediate value are numbered from most
significant (byte 0) to least significant (byte 15). Eight bytes are extracted from the
intermediate value and stored in the 64-bit floating-point destination register
specified by rd. GSR.align specifies the number of the most significant byte to extract
(and, therefore, the least significant byte extracted is numbered GSR.align+7).

GSR.align is normally set by a previous ALIGNADDRESS instruction.

FIGURE 7-6 FALIGNDATA

A byte-aligned 64-bit load can be performed as shown below.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FALIGNDATA instruction causes an fp_disabled exception.

Exceptions fp_disabled

See Also Align Address on page 147

Instruction opf Operation Assembly Language Syntax Class

FALIGNDATA 0 0100 1000 Perform data alignment for
misaligned data

faligndata fregrs1, fregrs2, fregrd A1

alignaddr Address, Offset, Address !set GSR.align
ldd [Address], %d0
ldd [Address + 8], %d2
faligndata %d0, %d2, %d4 !use GSR.align to select bytes

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

GSR.align

63 0

byte byte

101

FD[rs1] :: FD[rs2]

127 0
FD[rs1] FD[rs2]

FD[rd]
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FBfcc (Deprecated)
7.18 Branch on Floating-Point Condition
Codes (FBfcc)

† synonym: fbnz ‡ synonym: fbz

Description Unconditional and Fcc branches are described below:

The FBfcc instructions are deprecated and should not be used in new software.
The FBPfcc instructions should be used instead.

Opcode cond Operation fcc Test Assembly Language Syntax Class

FBAD 1000 Branch Always 1 fba{,a} label A1

FBND 0000 Branch Never 0 fbn{,a} label A1

FBUD 0111 Branch on Unordered U fbu{,a} label A1

FBGD 0110 Branch on Greater G fbg{,a} label A1

FBUGD 0101 Branch on Unordered or Greater G or U fbug{,a} label A1

FBLD 0100 Branch on Less L fbl{,a} label A1

FBULD 0011 Branch on Unordered or Less L or U fbul{,a} label A1

FBLGD 0010 Branch on Less or Greater L or G fblg{,a} label A1

FBNED 0001 Branch on Not Equal L or G or U fbne†{,a} label A1

FBED 1001 Branch on Equal E fbe‡{,a} label A1

FBUED 1010 Branch on Unordered or Equal E or U fbue{,a} label A1

FBGED 1011 Branch on Greater or Equal E or G fbge{,a} label A1

FBUGED 1100 Branch on Unordered or Greater or Equal E or G or U fbuge{,a} label A1

FBLED 1101 Branch on Less or Equal E or L fble{,a} label A1

FBULED 1110 Branch on Unordered or Less or Equal E or L or U fbule{,a} label A1

FBOD 1111 Branch on Ordered E or L or G fbo{,a} label A1

Programming
Note

To set the annul (a) bit for FBfcc instructions, append “,a” to
the opcode mnemonic. For example, use “fbl,a label”. In the
preceding table, braces around “,a” signify that “,a” is
optional.

31 24 02530 29 28 22 21

cond00 a 110 disp22
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FBfcc (Deprecated)

■ Unconditional branches (FBA, FBN) — If its annul field is 0, an FBN (Branch

Never) instruction acts like a NOP. If its annul field is 1, the following (delay)
instruction is annulled (not executed) when the FBN is executed. In neither case
does a transfer of control take place.

FBA (Branch Always) causes a PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp22))” regardless of the value of the floating-point
condition code bits. If the annul field of the branch instruction is 1, the delay
instruction is annulled (not executed). If the annul (a) bit is 0, the delay
instruction is executed.

■ Fcc-conditional branches — Conditional FBfcc instructions (except FBA and
FBN) evaluate floating-point condition code zero (fcc0) according to the cond
field of the instruction. Such evaluation produces either a TRUE or FALSE result.
If TRUE, the branch is taken, that is, the instruction causes a PC-relative, delayed
control transfer to the address “PC + (4 × sign_ext(disp22))”. If FALSE, the branch
is not taken.

If a conditional branch is taken, the delay instruction is always executed,
regardless of the value of the annul (a) bit. If a conditional branch is not taken
and the annul bit is 1 (a = 1), the delay instruction is annulled (not executed).

Annulment, delay instructions, and delayed control transfers are described
further in Chapter 6.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FBfcc instruction causes an fp_disabled exception.

Exceptions fp_disabled

Note The annul bit has a different effect on conditional branches than
it does on unconditional branches.
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FBPfcc
7.19 Branch on Floating-Point Condition
Codes with Prediction (FBPfcc)

† synonym: fbnz ‡ synonym: fbz

Instruction cond Operation fcc Test Assembly Language Syntax Class

FBPA 1000 Branch Always 1 fba {,a}{,pt|,pn} %fccn, label A1

FBPN 0000 Branch Never 0 fbn {,a}{,pt|,pn} %fccn, label A1

FBPU 0111 Branch on Unordered U fbu {,a}{,pt|,pn} %fccn, label A1

FBPG 0110 Branch on Greater G fbg {,a}{,pt|,pn} %fccn, label A1

FBPUG 0101 Branch on Unordered or Greater G or U fbug {,a}{,pt|,pn} %fccn, label A1

FBPL 0100 Branch on Less L fbl {,a}{,pt|,pn} %fccn, label A1

FBPUL 0011 Branch on Unordered or Less L or U fbul {,a}{,pt|,pn} %fccn, label A1

FBPLG 0010 Branch on Less or Greater L or G fblg {,a}{,pt|,pn} %fccn, label A1

FBPNE 0001 Branch on Not Equal L or G or U fbne†{,a}{,pt|,pn} %fccn, label A1

FBPE 1001 Branch on Equal E fbe‡{,a}{,pt|,pn} %fccn, label A1

FBPUE 1010 Branch on Unordered or Equal E or U fbue {,a}{,pt|,pn} %fccn, label A1

FBPGE 1011 Branch on Greater or Equal E or G fbge {,a}{,pt|,pn} %fccn, label A1

FBPUGE 1100 Branch on Unordered or Greater
or Equal

E or G or U fbuge {,a}{,pt|,pn} %fccn, label A1

FBPLE 1101 Branch on Less or Equal E or L fble {,a}{,pt|,pn} %fccn, label A1

FBPULE 1110 Branch on Unordered or Less or
Equal

E or L or U fbule {,a}{,pt|,pn} %fccn, label A1

FBPO 1111 Branch on Ordered E or L or G fbo {,a}{,pt|,pn} %fccn, label A1

cc1 cc0 Condition Code

0 0 fcc0

0 1 fcc1

1 0 fcc2

1 1 fcc3

31 1924 18 02530 29 28 22 21 20

00 a cond 101 cc1 p disp19cc0
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FBPfcc
Description Unconditional branches and Fcc-conditional branches are described below.

■ Unconditional branches (FBPA, FBPN) — If its annul field is 0, an FBPN
(Floating-Point Branch Never with Prediction) instruction acts like a NOP. If the
Branch Never’s annul field is 0, the following (delay) instruction is executed; if
the annul (a) bit is 1, the following instruction is annulled (not executed). In no
case does an FBPN cause a transfer of control to take place.

FBPA (Floating-Point Branch Always with Prediction) causes an unconditional
PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp19))”. If the annul field of the branch instruction is 1, the
delay instruction is annulled (not executed). If the annul (a) bit is 0, the delay
instruction is executed.

■ Fcc-conditional branches — Conditional FBPfcc instructions (except FBPA and
FBPN) evaluate one of the four floating-point condition codes (fcc0, fcc1, fcc2,
fcc3) as selected by cc0 and cc1, according to the cond field of the instruction,
producing either a TRUE or FALSE result. If TRUE, the branch is taken, that is, the
instruction causes a PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp19))”. If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed,
regardless of the value of the annul (a) bit. If a conditional branch is not taken
and the annul bit is 1 (a = 1), the delay instruction is annulled (not executed).

The predict bit (p) gives the hardware a hint about whether the branch is expected
to be taken. A 1 in the p bit indicates that the branch is expected to be taken. A 0
indicates that the branch is expected not to be taken.

Annulment, delay instructions, and delayed control transfers are described further
in Chapter 6, Instruction Set Overview.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FBPfcc instruction causes an fp_disabled exception.

Exceptions fp_disabled

Programming
Note

To set the annul (a) bit for FBPfcc instructions, append “,a” to the
opcode mnemonic. For example, use “fbl,a %fcc3, label”. In
the preceding table, braces signify that the “,a” is optional. To set
the branch prediction bit, append either “,pt” (for predict taken)
or “pn” (for predict not taken) to the opcode mnemonic. If neither
“,pt” nor “,pn” is specified, the assembler defaults to “,pt”. To
select the appropriate floating-point condition code, include
“%fcc0”, “%fcc1”, “%fcc2”, or “%fcc3” before the label.

Note The annul bit has a different effect on conditional branches than it
does on unconditional branches.
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FCMP*<16|32> (SIMD)
7.20 SIMD Signed Compare

Description Either four 16-bit signed values or two 32-bit signed values in FD[rs1] and FD[rs2]
are compared. The 4-bit or 2-bit condition-code results are stored in the least
significant bits of the integer register R[rd]. The least significant 16-bit or 32-bit
compare result corresponds to bit zero of R[rd].

For FCMPGT{16,32}, each bit in the result is set to 1 if the corresponding signed
value in FD[rs1] is greater than the signed value in FD[rs2]. Less-than comparisons
are made by swapping the operands.

For FCMPLE{16,32}, each bit in the result is set to 1 if the corresponding signed value
in FD[rs1] is less than or equal to the signed value in FD[rs2]. Greater-than-or-equal
comparisons are made by swapping the operands.

For FCMPEQ{16,32}, each bit in the result is set to 1 if the corresponding signed
value in FD[rs1] is equal to the signed value in FD[rs2].

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FCMPLE16 0 0010 0000 Four 16-bit compare;
set R[rd] if src1 ≤ src2

f64 f64 i64 fcmple16 fregrs1, fregrs2, regrd C3

FCMPNE16 0 0010 0010 Four 16-bit compare;
set R[rd] if src1 ≠ src2

f64 f64 i64 fcmpne16 fregrs1, fregrs2, regrd C3

FCMPLE32 0 0010 0100 Two 32-bit compare;
set R[rd] if src1 ≤ src2

f64 f64 i64 fcmple32 fregrs1, fregrs2, regrd C3

FCMPNE32 0 0010 0110 Two 32-bit compare;
set R[rd] if src1 ≠ src2

f64 f64 i64 fcmpne32 fregrs1, fregrs2, regrd C3

FCMPGT16 0 0010 1000 Four 16-bit compare;
set R[rd] if src1 > src2

f64 f64 i64 fcmpgt16 fregrs1, fregrs2, regrd C3

FCMPEQ16 0 0010 1010 Four 16-bit compare;
set R[rd] if src1 = src2

f64 f64 i64 fcmpeq16 fregrs1, fregrs2, regrd C3

FCMPGT32 0 0010 1100 Two 32-bit compare;
set R[rd] if src1 > src2

f64 f64 i64 fcmpgt32 fregrs1, fregrs2, regrd C3

FCMPEQ32 0 0010 1110 Two 32-bit compare;
set R[rd] if src1 = src2

f64 f64 i64 fcmpeq32 fregrs1, fregrs2, regrd C3

Note Bits 63:4 of the destination register R[rd] are set to zero for 16-bit
compares. Bits 63:2 of the destination register R[rd] are set to
zero for 32-bit compares.

VIS 1
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FCMP*<16|32> (SIMD)

For FCMPNE{16,32}, each bit in the result is set to 1 if the corresponding signed
value in FD[rs1] is not equal to the signed value in FD[rs2].

FIGURE 7-7 and FIGURE 7-8 illustrate 16-bit and 32-bit pixel comparison operations,
respectively.

FIGURE 7-7 Four 16-bit Signed Fixed-point SIMD Comparison Operations

FIGURE 7-8 Two 32-bit Signed Fixed-point SIMD Comparison Operation

In all comparisons, if a compare condition is not true, the corresponding bit in the
result is set to 0.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a SIMD signed compare instruction causes an fp_disabled
exception.

Programming
Note

The results of a SIMD signed compare operation can be used
directly by both integer operations (for example, partial stores)
and partitioned conditional moves.

63

fcmp[gt, le, eq, ne, lt, ge]16

03

63 015314748 32 16

63 015314748 32 16

4

0  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 0

FD[rs1]

FD[rs2]

R[rd]

63 0

63 031

fcmp[gt, le, eq, ne, lt ge]32

12

32

63 03132

0  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 0

FD[rs1]

FD[rs2]

R[rd]
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Exception fp_disabled

See Also STPARTIALF on page 341
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FCMP<s|d|q> / FCMPE<s|d|q>
7.21 Floating-Point Compare

Description These instructions compare the floating-point register(s) specified by the rs1 field
with the floating-point register(s) specified by the rs2 field, and set the selected
floating-point condition code (fccn) as shown below.

The “?” in the preceding table means that the comparison is unordered. The
unordered condition occurs when one or both of the operands to the compare is a
signalling or quiet NaN.

Instruction opf Operation Assembly Language Syntax Class

FCMPs 0 0101 0001 Compare Single fcmps %fccn, fregrs1, fregrs2 A1

FCMPd 0 0101 0010 Compare Double fcmpd %fccn, fregrs1, fregrs2 A1

FCMPq 0 0101 0011 Compare Quad fcmpq %fccn, fregrs1, fregrs2 C3

FCMPEs 0 0101 0101 Compare Single and Exception if
Unordered

fcmpes %fccn, fregrs1, fregrs2 A1

FCMPEd 0 0101 0110 Compare Double and Exception if
Unordered

fcmped %fccn, fregrs1, fregrs2 A1

FCMPEq 0 0101 0111 Compare Quad and Exception if
Unordered

fcmpeq %fccn, fregrs1, fregrs2 C3

cc1 cc0 Condition Code

0 0 fcc0

0 1 fcc1

1 0 fcc2

1 1 fcc3

fcc value Relation

0 fregrs1 = fregrs2

1 fregrs1 < fregrs2

2 fregrs1 > fregrs2

3 fregrs1 ? fregrs2 (unordered)

10 rs2— rs1
31 141924 18 13 02530 29 4
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FCMP<s|d|q> / FCMPE<s|d|q>

The “compare and cause exception if unordered” (FCMPEs, FCMPEd, and FCMPEq)
instructions cause an invalid (NV) exception if either operand is a NaN.

FCMP causes an invalid (NV) exception if either operand is a signalling NaN.

An attempt to execute an FCMP instruction when instruction bits 29:27 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FCMP or FCMPE instruction causes an fp_disabled exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_ieee_754 (NV)
fp_exception_other (FSR.ftt = unimplemented_FPop (FCMPq, FCMPEq only))

V8 Compatibility
Note

Unlike the SPARC V8 architecture, SPARC V9 and the
UltraSPARC Architecture do not require an instruction between a
floating-point compare operation and a floating-point branch
(FBfcc, FBPfcc).

SPARC V8 floating-point compare instructions are required to
have rd = 0. In SPARC V9 and the UltraSPARC Architecture, bits
26 and 25 of the instruction (rd{1:0}) specify the floating-point
condition code to be set. Legal SPARC V8 code will work on
SPARC V9 and the UltraSPARC Architecture because the zeroes
in the R[rd] field are interpreted as fcc0 and the FBfcc
instruction branches based on the value of fcc0.

Note UltraSPARC Architecture 2005 processors do not implement in
hardware the instructions that refer to quad-precision floating-
point registers. An attempt to execute FCMPq or FCMPEq
generates fp_exception_other (with
FSR.ftt = unimplemented_FPop), which causes a trap, allowing
privileged software to emulate the instruction.
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FDIV<s|d|q>
7.22 Floating-Point Divide

Description The floating-point divide instructions divide the contents of the floating-point
register(s) specified by the rs1 field by the contents of the floating-point register(s)
specified by the rs2 field. The instructions then write the quotient into the floating-
point register(s) specified by the rd field.

Rounding is performed as specified by FSR.rd.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FCMP or FCMPE instruction causes an fp_disabled exception.

If the FPU is enabled, FDIVq causes an fp_exception_other (with FSR.ftt =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FDIVq only))
fp_exception_other (FSR.ftt = unfinished_FPop (FDIVs, FDIV))
fp_exception_ieee_754 (OF, UF, DZ, NV, NX)

Instruction op3 opf Operation Assembly Language Syntax Class

FDIVs 11 0100 0 0100 1101 Divide Single fdivs fregrs1, fregrs2, fregrd A1

FDIVd 11 0100 0 0100 1110 Divide Double fdivd fregrs1, fregrs2, fregrd A1

FDIVq 11 0100 0 0100 1111 Divide Quad fdivq fregrs1, fregrs2, fregrd C3

Note For FDIVs and FDIVd, an fp_exception_other with
FSR.ftt = unfinished_FPop can occur if the divide unit detects
unusual, implementation-specific conditions.

10 op3 rs2rd rs1
31 141924 18 13 02530 29 4
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FEXPAND
7.23 FEXPAND

Description FEXPAND takes four 8-bit unsigned integers from FS[rs2], converts each integer to a
16-bit fixed-point value, and stores the four resulting 16-bit values in a 64-bit
floating-point register FD[rd]. FIGURE 7-10 illustrates the operation.

FIGURE 7-9 FEXPAND Operation

This operation is carried out as follows:

1. Left-shift each 8-bit value by 4 and zero-extend each result to a 16-bit fixed value.

2. Store the result in the destination register, FD[rd].

In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and is emulated in
software.

Exceptions illegal_instruction

See Also FPMERGE on page 219
FPACK on page 210

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FEXPAND 0 0100 1101 Four 16-bit expands — f32 f64 fexpand fregrs2, fregrd C3

Programming
Note

FEXPAND performs the inverse of the FPACK16 operation.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2

01516313263 4748

0151631 2324 78

5960 5152 4344 3536 2728 1920 1112 34

0000 0000 0000 0000 0000 0000 0000 0000

FS[rs2]

FD[rd]
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7.24 Convert 32-bit Integer to Floating Point

Description FiTOs, FiTOd, and FiTOq convert the 32-bit signed integer operand in floating-point
register FS[rs2] into a floating-point number in the destination format. All write
their result into the floating-point register(s) specified by rd.

The value of FSR.rd determines how rounding is performed by FiTOs.

An attempt to execute an FiTO(s,d,q) instruction when instruction bits 18:14 are
nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FiTO(s,d,q) instruction causes an fp_disabled exception.

If the FPU is enabled, FiTOq causes an fp_exception_other (with FSR.ftt =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FiTOq))
fp_exception_ieee_754 (NX (FiTOs only))

Instruction op3 opf Operation s1 s2 d
Assembly Language
Syntax Class

FiTOs 11 0100 0 1100 0100 Convert 32-bit Integer to
Single

— f32 f32 fitos fregrs2, fregrd A1

FiTOd 11 0100 0 1100 1000 Convert 32-bit Integer to
Double

— f32 f64 fitod fregrs2, fregrd A1

FiTOq 11 0100 0 1100 1100 Convert 32-bit Integer to
Quad

— f32 f128 fitoq fregrs2, fregrd C3

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FiTOq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —
31 141924 18 13 02530 29 4

opf
5

CHAPTER 7 • Instructions 185



FLUSH
7.25 Flush Instruction Memory

Description FLUSH ensures that the aligned doubleword specified by the effective address is
consistent across any local caches and, in a multiprocessor system, will eventually
(impl. dep. #122-V9) become consistent everywhere.

The SPARC V9 instruction set architecture does not guarantee consistency between
instruction memory and data memory. When software writes (stores) to a memory
location containing an instruction (self-modifying code1), a potential memory
consistency problem arises, which is addressed by the FLUSH instruction. Use of
FLUSH ensures that instruction and data memory are synchronized after instruction
memory has been modified.

The virtual processor waits until all previous (cacheable) stores have completed
before issuing a FLUSH instruction. For the purpose of memory ordering, a FLUSH
instruction behaves like a store instruction.

In the following discussion PFLUSH refers to the virtual processor that executed the
FLUSH instruction.

FLUSH causes a synchronization within a virtual processor which ensures that
instruction fetches from the specified effective address by PFLUSH appear to execute
after any loads, stores, and atomic load-stores to that address issued by PFLUSH prior
to the FLUSH. In a multiprocessor system, FLUSH also ensures that these values will
eventually become visible to the instruction fetches of all other virtual processors in
the system. With respect to MEMBAR-induced orderings, FLUSH behaves as if it
was a store operation (see Memory Barrier on page 271).

If i = 0, the effective address operand for the FLUSH instruction is “R[rs1] + R[rs2]”;
if i = 1, it is “R[rs1] + sign_ext (simm13)”. The three least-significant three bits of
the effective address are ignored; that is, the effective address always refers to an
aligned doubleword.

Instruction op3 Operation Assembly Language Syntax† Class

FLUSH 11 1011 Flush Instruction Memory flush [address] A1

† The original assembly language syntax for a FLUSH instruction (“flush address”) has been deprecated be-
cause of inconsistency with other SPARC assembly language syntax. Over time, assemblers will support the
new syntax for this instruction. In the meantime, some existing assemblers may only recognize the original syn-
tax.

1. practiced, for example, by software such as debuggers and dynamic linkers

31 24 02530 29 19 18

—10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1—
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See implementation-specific documentation for details on specific implementations
of the FLUSH instruction.

On an UltraSPARC Architecture processor:

■ A FLUSH instruction causes a synchronization within the virtual processor on
which the FLUSH is executed, which flushes its instruction pipeline to ensure that
no instruction already fetched has subsequently been modified in memory. Any
other virtual processors on the same physical processor are unaffected by a
FLUSH.

■ Coherency between instruction and data memories may or may not be
maintained by hardware.

IMPL. DEP. #409-S10-Cs20: The implementation of the FLUSH instruction is
implementation dependent. If the implementation automatically maintains
consistency between instruction and data memory,
(1) the FLUSH address is ignored and
(2) the FLUSH instruction cannot cause any data access exceptions, because

its effective address operand is not translated or used by the MMU.
On the other hand, if the implementation does not maintain consistency between
instruction and data memory, the FLUSH address is used to access the MMU and the
FLUSH instruction can cause data access exceptions.

■ If the implementation contains instruction prefetch buffers:

■ the instruction prefetch buffer(s) are invalidated

■ instruction prefetching is suspended, but may resume starting with the
instruction immediately following the FLUSH

Programming
Note

For portability across all SPARC V9 implementations, software
must always supply the target effective address in FLUSH
instructions.

Programming
Notes

1.Typically, FLUSH is used in self-modifying code.
The use of self-modifying code is discouraged.

2. If a program includes self-modifying code, to be portable it must
issue a FLUSH instruction for each modified doubleword of
instructions (or make a call to privileged software that has an
equivalent effect) after storing into the instruction stream.
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An attempt to execute a FLUSH instruction when instruction bits 29:25 are nonzero
causes an illegal_instruction exception.

Exceptions illegal_instruction
fast_data_access_MMU_miss (TLB miss with hardware tablewalk disabled)

(impl. dep. #409-S10-Cs20)

3. The order in which memory is modified can be controlled by
means of FLUSH and MEMBAR instructions interspersed
appropriately between stores and atomic load-stores. FLUSH is
needed only between a store and a subsequent instruction fetch
from the modified location. When multiple processes may
concurrently modify live (that is, potentially executing) code, the
programmer must ensure that the order of update maintains the
program in a semantically correct form at all times.

4. The memory model guarantees in a uniprocessor that data loads
observe the results of the most recent store, even if there is no
intervening FLUSH.

5. FLUSH may be a time-consuming operation.
(see the Implementation Note below)

6. In a multiprocessor system, the effects of a FLUSH operation
will be globally visible before any subsequent store becomes
globally visible.

7. FLUSH is designed to act on a doubleword. On some
implementations, FLUSH may trap to system software. For these
reasons, system software should provide a service routine,
callable by nonprivileged software, for flushing arbitrarily-sized
regions of memory. On some implementations, this routine
would issue a series of FLUSH instructions; on others, it might
issue a single trap to system software that would then flush the
entire region.

8. FLUSH operates using the current (implicit) context. Therefore,
a FLUSH executed in privileged or hyperprivileged mode will
use the nucleus context and will not necessarily affect instruction
cache lines containing data from a user (nonprivileged) context.

Implementation
Note

In a multiprocessor configuration, FLUSH requires all processors
that may be referencing the addressed doubleword to flush their
instruction caches, which is a potentially disruptive activity.

V9 Compatibility
Note

The effect of a FLUSH instruction as observed from the virtual
processor on which FLUSH executes is immediate. Other virtual
processors in a multiprocessor system eventually will see the
effect of the FLUSH, but the latency is implementation dependent.
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data_access_MMU_miss (TLB miss with hardware tablewalk enabled)

(impl. dep. #409-S10-Cs20)
fast_data_access_protection
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7.26 Flush Register Windows

Description FLUSHW causes all active register windows except the current window to be
flushed to memory at locations determined by privileged software. FLUSHW
behaves as a NOP if there are no active windows other than the current window. At
the completion of the FLUSHW instruction, the only active register window is the
current one.

FLUSHW acts as a NOP if CANSAVE = N_REG_WINDOWS – 2. Otherwise, there is
more than one active window, so FLUSHW causes a spill exception. The trap vector
for the spill exception is based on the contents of OTHERWIN and WSTATE. The spill
trap handler is invoked with the CWP set to the window to be spilled (that is,
(CWP + CANSAVE + 2) mod N_REG_WINDOWS). See Register Window Management
Instructions on page 129.

An attempt to execute a FLUSHW instruction when instruction bits 29:25, 18:14, or
12:0 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
spill_n_normal
spill_n_other

Instruction op3 Operation Assembly Language Syntax Class

FLUSHW 10 1011 Flush Register Windows flushw A1

Programming
Note

The FLUSHW instruction can be used by application software to
flush register windows to memory so that it can switch memory
stacks or examine register contents from previous stack frames.

Programming
Note

Typically, the spill handler saves a window on a memory stack
and returns to reexecute the FLUSHW instruction. Thus, FLUSHW
traps and reexecutes until all active windows other than the
current window have been spilled.

31 24 02530 29 19 18

—10 op3 —
14 13 12

— i=0
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7.27 Floating-Point Move

Description FMOV copies the source floating-point register(s) to the destination floating-point
register(s), unaltered.

FMOVs, FMOVd, and FMOVq perform 32-bit, 64-bit, and 128-bit operations,
respectively.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do
not modify FSR.aexc, and do not treat floating-point NaN values differently from
other floating-point values.

An attempt to execute an FMOV instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FMOV instruction causes an fp_disabled exception.

If the FPU is enabled, an attempt to execute an FMOVq instruction causes an
fp_exception_other (with FSR.ftt = unimplemented_FPop), since that instruction is
not implemented in hardware in UltraSPARC Architecture 2005 implementations.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FMOVq only))

Instruction op3 opf Operation Assembly Language Syntax Class

FMOVs 11 0100 0 0000 0001 Move (copy) Single fmovs fregrs2, fregrd A1

FMOVd 11 0100 0 0000 0010 Move (copy) Double fmovd fregrs2, fregrd A1

FMOVq 11 0100 0 0000 0011 Move (copy) Quad fmovq fregrs2, fregrd C3

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOVq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —
31 141924 18 13 02530 29 4

opf
5

CHAPTER 7 • Instructions 191



FMOV

See Also F Register Logical Operate (2 operand) on page 225
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7.28 Move Floating-Point Register on
Condition (FMOVcc)

Instruction opf_low Operation Assembly Language Syntax Class

FMOVSicc 00 0001 Move Floating-Point Single,
based on 32-bit integer condition codes

fmovsicc %icc, fregrs2, fregrd A1

FMOVDicc 00 0010 Move Floating-Point Double,
based on 32-bit integer condition codes

fmovdicc %icc, fregrs2, fregrd A1

FMOVQicc 00 0011 Move Floating-Point Quad,
based on 32-bit integer condition codes

fmovqicc %icc, fregrs2, fregrd C3

FMOVSxcc 00 0001 Move Floating-Point Single,
based on 64-bit integer condition codes

fmovsxcc %xcc, fregrs2, fregrd A1

FMOVDxcc 00 0010 Move Floating-Point Double,
based on 64-bit integer condition codes

fmovdxcc %xcc, fregrs2, fregrd A1

FMOVQxcc 00 0011 Move Floating-Point Quad,
based on 64-bit integer condition codes

fmovqxcc %xcc, fregrs2, fregrd C3

FMOVSfcc 00 0001 Move Floating-Point Single,
based on floating-point condition codes

fmovsfcc %fccn, fregrs2, fregrd A1

FMOVDfcc 00 0010 Move Floating-Point Double,
based on floating-point condition codes

fmovdfcc %fccn, fregrs2, fregrd A1

FMOVQfcc 00 0011 Move Floating-Point Quad,
based on floating-point condition codes

fmovqfcc %fccn, fregrs2, fregrd C3

10 rd 110101 cond opf_cc opf_low rs20
31 1924 18 1314 11 5 4 010172530 29
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Encoding of the cond Field for F.P. Moves Based on Integer Condition Codes (icc or xcc)

cond Operation icc / xcc Test

icc/xcc name(s) in
Assembly Language

Mnemonics

1000 Move Always 1 a

0000 Move Never 0 n

1001 Move if Not Equal not Z ne (or nz)

0001 Move if Equal Z e (or z)

1010 Move if Greater not (Z or (N xor V)) g

0010 Move if Less or Equal Z or (N xor V) le

1011 Move if Greater or Equal not (N xor V) ge

0011 Move if Less N xor V l

1100 Move if Greater Unsigned not (C or Z) gu

0100 Move if Less or Equal Unsigned (C or Z) leu

1101 Move if Carry Clear (Greater or Equal, Unsigned) not C cc (or geu)

0101 Move if Carry Set (Less than, Unsigned) C cs (or lu)

1110 Move if Positive not N pos

0110 Move if Negative N neg

1111 Move if Overflow Clear not V vc

0111 Move if Overflow Set V vs
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Encoding of the cond Field for F.P. Moves Based on Floating-Point Condition Codes (fccn)

Encoding of opf_cc Field (also see TABLE E-10 on page 484)

cond Operation fccn Test
fcc name(s) in Assembly

Language Mnemonics

1000 Move Always 1 a

0000 Move Never 0 n

0111 Move if Unordered U u

0110 Move if Greater G g

0101 Move if Unordered or Greater G or U ug

0100 Move if Less L l

0011 Move if Unordered or Less L or U ul

0010 Move if Less or Greater L or G lg

0001 Move if Not Equal L or G or U ne (or nz)

1001 Move if Equal E e (or z

1010 Move if Unordered or Equal E or U ue

1011 Move if Greater or Equal E or G ge

1100 Move if Unordered or Greater or Equal E or G or U uge

1101 Move if Less or Equal E or L le

1110 Move if Unordered or Less or Equal E or L or U ule

1111 Move if Ordered E or L or G o

opf_cc Instruction
Condition Code
to be Tested

1002 FMOV(S,D,Q)icc icc

1102 FMOV(S,D,Q)xcc xcc

0002
0012
0102
0112

FMOV(S,D,Q)fcc fcc0
fcc1
fcc2
fcc3

1012
1112

(illegal_instruction exception)
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Description The FMOVcc instructions copy the floating-point register(s) specified by rs2 to the

floating-point register(s) specified by rd if the condition indicated by the cond field is
satisfied by the selected floating-point condition code field in FSR. The condition
code used is specified by the opf_cc field of the instruction. If the condition is
FALSE, then the destination register(s) are not changed.

These instructions read, but do not modify, any condition codes.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do
not modify FSR.aexc, and do not treat floating-point NaN values differently from
other floating-point values.

An attempt to execute an FMOVcc instruction when instruction bit 18 is nonzero or
opf_cc = 1012 or 1112 causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FMOVQicc, FMOVQxcc, or FMOVQfcc instruction causes an
fp_disabled exception.

If the FPU is enabled, an attempt to execute an FMOVQicc, FMOVQxcc, or
FMOVQfcc instruction causes an fp_exception_other (with FSR.ftt =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOVQicc, FMOVQxcc, or
FMOVQfcc instruction causes an illegal_instruction exception,
allowing privileged software to emulate the instruction.
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Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (opf_cc = 1012 or 1112))
fp_exception_other (FSR.ftt = unimplemented_FPop (FMOVQ instructions only))

Programming
Note

Branches cause the performance of most implementations to
degrade significantly. Frequently, the MOVcc and FMOVcc
instructions can be used to avoid branches. For example, the
following C language segment:

double A, B, X;
if (A > B) then X = 1.03; else X = 0.0;

can be coded as

! assume A is in %f0; B is in %f2; %xx points to
! constant area

ldd [%xx+C_1.03],%f4 ! X = 1.03
fcmpd %fcc3,%f0,%f2 ! A > B
fble,a %fcc3,label
! following instructiononly executed if the
! preceding branch was taken
fsubd %f4,%f4,%f4 ! X = 0.0

label:...

This code takes four instructions including a branch.

With FMOVcc, this could be coded as

ldd [%xx+C_1.03],%f4 ! X = 1.03
fsubd %f4,%f4,%f6 ! X’ = 0.0
fcmpd %fcc3,%f0,%f2 ! A > B
fmovdle %fcc3,%f6,%f4 ! X = 0.0

This code also takes four instructions but requires no branches
and may boost performance significantly. Use MOVcc and
FMOVcc instead of branches wherever these instructions would
improve performance.
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7.29 Move Floating-Point Register on Integer
Register Condition (FMOVR)

Instruction rcond opf_low Operation Test Class

— 000 0 0101 Reserved — —

FMOVRsZ 001 0 0101 Move Single if Register = 0 R[rs1] = 0 A1

FMOVRsLEZ 010 0 0101 Move Single if Register ≤ 0 R[rs1] ≤ 0 A1

FMOVRsLZ 011 0 0101 Move Single if Register < 0 R[rs1] < 0 A1

— 100 0 0101 Reserved — —

FMOVRsNZ 101 0 0101 Move Single if Register ≠ 0 R[rs1] ≠ 0 A1

FMOVRsGZ 110 0 0101 Move Single if Register > 0 R[rs1] > 0 A1

FMOVRsGEZ 111 0 0101 Move Single if Register ≥ 0 R[rs1] ≥ 0 A1

— 000 0 0110 Reserved — —

FMOVRdZ 001 0 0110 Move Double if Register = 0 R[rs1] = 0 A1

FMOVRdLEZ 010 0 0110 Move Double if Register ≤ 0 R[rs1] ≤ 0 A1

FMOVRdLZ 011 0 0110 Move Double if Register < 0 R[rs1] < 0 A1

— 100 0 0110 Reserved — —

FMOVRdNZ 101 0 0110 Move Double if Register ≠ 0 R[rs1] ≠ 0 A1

FMOVRdGZ 110 0 0110 Move Double if Register > 0 R[rs1] > 0 A1

FMOVRdGEZ 111 0 0110 Move Double if Register ≥ 0 R[rs1] ≥ 0 A1

— 000 0 0111 Reserved — —

FMOVRqZ 001 0 0111 Move Quad if Register = 0 R[rs1] = 0 C3

FMOVRqLEZ 010 0 0111 Move Quad if Register ≤ 0 R[rs1] ≤ 0 C3

FMOVRqLZ 011 0 0111 Move Quad if Register < 0 R[rs1] < 0 C3

— 100 0 0111 Reserved — —

FMOVRqNZ 101 0 0111 Move Quad if Register ≠ 0 R[rs1] ≠ 0 C3

FMOVRqGZ 110 0 0111 Move Quad if Register > 0 R[rs1] > 0 C3

FMOVRqGEZ 111 0 0111 Move Quad if Register ≥ 0 R[rs1] ≥ 0 C3

31 141924 18 13 12 9 5 4 0102530 29

10 rd 0 rcond opf_low rs2rs1110101
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Description If the contents of integer register R[rs1] satisfy the condition specified in the rcond
field, these instructions copy the contents of the floating-point register(s) specified
by the rs2 field to the floating-point register(s) specified by the rd field. If the
contents of R[rs1] do not satisfy the condition, the floating-point register(s) specified
by the rd field are not modified.

These instructions treat the integer register contents as a signed integer value; they
do not modify any condition codes.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do
not modify FSR.aexc, and do not treat floating-point NaN values differently from
other floating-point values.

An attempt to execute an FMOVR instruction when instruction bit 13 is nonzero or
rcond = 0002 or 1002 causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FMOVR instruction causes an fp_disabled exception.

If the FPU is enabled, an attempt to execute an FMOVRq instruction causes an
fp_exception_other (with FSR.ftt = unimplemented_FPop), since that instruction is
not implemented in hardware in UltraSPARC Architecture 2005 implementations.

Assembly Language Syntax

fmovr{s,d,q}z regrs1, fregrs2, fregrd (synonym: fmovr{s,d,q}e)

fmovr{s,d,q}lez regrs1, fregrs2, fregrd

fmovr{s,d,q}lz regrs1, fregrs2, fregrd

fmovr{s,d,q}nz regrs1, fregrs2, fregrd (synonym: fmovr{s,d,q}ne)

fmovr{s,d,q}gz regrs1, fregrs2, fregrd

fmovr{s,d,q}gez regrs1, fregrs2, fregrd

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOVRq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.
CHAPTER 7 • Instructions 199



FMOVR
Exceptions fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (rcond = 0002 or 1002))
fp_exception_other (FSR.ftt = unimplemented_FPop (FMOVRq))

Implementation
Note

If this instruction is implemented by tagging each register value
with an N (negative) and a Z (zero) condition bit, use the
following table to determine whether rcond is TRUE:

Branch Test
FMOVRNZ not Z
FMOVRZ Z
FMOVRGEZ not N
FMOVRLZ N
FMOVRLEZ N or Z
FMOVRGZ N nor Z
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7.30 Partitioned Multiply Instructions

Description The following sections describe the versions of partitioned multiplies.

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an illegal_instruction exception, and are emulated
in software.

Exceptions illegal_instruction

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FMUL8x16 0 0011 0001 Unsigned 8-bit by signed 16-bit
partitioned product

f32 f64 f64 fmul8x16 fregrs1, fregrs2, fregrd C3

FMUL8x16AU 0 0011 0011 Unsigned 8-bit by signed 16-bit
upper α partitioned product

f32 f32 f64 fmul8x16au fregrs1, fregrs2, fregrd C3

FMUL8x16AL 0 0011 0101 Unsigned 8-bit by signed 16-bit
lower α partitioned product

f32 f32 f64 fmul8x16al fregrs1, fregrs2, fregrd C3

FMUL8SUx16 0 0011 0110 Signed upper 8-bit by signed
16-bit partitioned product

f32 f64 f64 fmul8sux16 fregrs1, fregrs2, fregrd C3

FMUL8ULx16 0 0011 0111 Unsigned lower 8-bit by signed
16-bit partitioned product

f32 f64 f64 fmul8ulx16 fregrs1, fregrs2, fregrd C3

FMULD8SUx16 0 0011 1000 Signed upper 8-bit by signed
16-bit partitioned product

f32 f32 f64 fmuld8sux16 fregrs1, fregrs2, fregrd C3

FMULD8ULx16 0 0011 1001 Unsigned lower 8-bit by signed
16-bit partitioned product

f32 f32 f64 fmuld8ulx16 fregrs1, fregrs2, fregrd C3

Programming
Note

When software emulates an 8-bit unsigned by 16-bit signed
multiply, the unsigned value must be zero-extended and the 16-bit
value sign-extended before the multiplication.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
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7.30.1 FMUL8x16 Instruction
FMUL8x16 multiplies each unsigned 8-bit value (for example, a pixel component) in
the 32-bit floating-point register FS[rs1] by the corresponding (signed) 16-bit fixed-
point integer in the 64-bit floating-point register FD[rs2]. It rounds the 24-bit product
(assuming binary point between bits 7 and 8) and stores the most significant 16 bits
of the result into the corresponding 16-bit field in the 64-bit floating-point
destination register FD[rd]. FIGURE 7-10 illustrates the operation.

FIGURE 7-10 FMUL8x16 Operation

Note This instruction treats the pixel component values as fixed-point
with the binary point to the left of the most significant bit.
Typically, this operation is used with filter coefficients as the fixed-
point rs2 value and image data as the rs1 pixel value. Appropriate
scaling of the coefficient allows various fixed-point scaling to be
realized.

0151631 24 23 8 7

015163132474863

015163132474863

×MS16b ×MS16b ×MS16b ×MS16b

F[rs1]

F[rs2]

F[rd]
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7.30.2 FMUL8x16AU Instruction
FMUL8x16AU is the same as FMUL8x16, except that one 16-bit fixed-point value is
used as the multiplier for all four multiplies. This multiplier is the most significant
(“upper”) 16 bits of the 32-bit register FS[rs2] (typically an α pixel component
value). FIGURE 7-11 illustrates the operation.

FIGURE 7-11 FMUL8x16AU Operation

7.30.3 FMUL8x16AL Instruction
FMUL8x16AL is the same as FMUL8x16AU, except that the least significant
(“lower”) 16 bits of the 32-bit register FS[rs2] register are used as a multiplier.
FIGURE 7-12 illustrates the operation.

FIGURE 7-12 FMUL8x16AL Operation

0151631 24 23 8 7

0151631

015163132474863

×MS16b ×MS16b ×MS16b ×MS16b

FS[rs1]

FS[rs2]

FD[rd]

0151631 24 23 8 7

0151631

015163132474863

×MS16b ×MS16b ×MS16b ×MS16b

FS[rs1]

FS[rs2]

FD[rd]
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7.30.4 FMUL8SUx16 Instruction
FMUL8SUx16 multiplies the most significant (“upper”) 8 bits of each 16-bit signed
value in the 64-bit floating-point register FD[rs1] by the corresponding signed, 16-bit,
fixed-point, signed integer in the 64-bit floating-point register FD[rs2]. It rounds the
24-bit product toward the nearest representable value and then stores the most
significant 16 bits of the result into the corresponding 16-bit field of the 64-bit
floating-point destination register FD[rd]. If the product is exactly halfway between
two integers, the result is rounded toward positive infinity. FIGURE 7-13 illustrates the
operation.

FIGURE 7-13 FMUL8SUx16 Operation

7.30.5 FMUL8ULx16 Instruction
FMUL8ULx16 multiplies the unsigned least significant (“lower”) 8 bits of each 16-bit
value in the 64-bit floating-point register FD[rs1] by the corresponding fixed-point
signed 16-bit integer in the 64-bit floating-point register FD[rs2]. Each 24-bit product
is sign-extended to 32 bits. The most significant (“upper”) 16 bits of the sign-
extended value are rounded to nearest and then stored in the corresponding 16-bit
field of the 64-bit floating-point destination register FD[rd]. If the result is exactly
halfway between two integers, the result is rounded toward positive infinity.
FIGURE 7-14 illustrates the operation; CODE EXAMPLE 7-1 exemplifies the operation.

015163132474863

015163132474863

015163132474863 56 55 40 39 24 23 8 7

×MS16b ×MS16b ×MS16b ×MS16b

FD[rs1]

FD[rs2]

FD[rd]
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FIGURE 7-14 FMUL8ULx16 Operation

7.30.6 FMULD8SUx16 Instruction
FMULD8SUx16 multiplies the most significant (“upper”) 8 bits of each 16-bit signed
value in F[rs1] by the corresponding signed 16-bit fixed-point value in F[rs2]. Each
24-bit product is shifted left by 8 bits to generate a 32-bit result, which is then stored
in the 64-bit floating-point register specified by rd. FIGURE 7-15 illustrates the
operation.

FIGURE 7-15 FMULD8SUx16 Operation

CODE EXAMPLE 7-1 16-bit × 16-bit 16-bit Multiply

fmul8sux16 %f0, %f1, %f2

fmul8ulx16 %f0, %f1, %f3

fpadd16 %f2, %f3, %f4

16

× sign-extended, × sign-extended, × sign-extended, × sign-extended,

015163132474863

015163132474863 56 55 40 39 24 23 8 7

MS16b MS16b MS16b MS16b

0153132474863

MS16b

FD[rd]

FD[rs2]

FD[rs1]

0783132394063

× ×

0000000000000000

0151631

0151631 24 23 8 7

FS[rs1]

FS[rs2]

FD[rd]
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7.30.7 FMULD8ULx16 Instruction
FMULD8ULx16 multiplies the unsigned least significant (“lower”) 8 bits of each 16-
bit value in F[rs1] by the corresponding 16-bit fixed-point signed integer in F[rs2].
Each 24-bit product is sign-extended to 32 bits and stored in the corresponding half
of the 64-bit floating-point register specified by rd. FIGURE 7-16 illustrates the
operation; CODE EXAMPLE 7-2 exemplifies the operation.

FIGURE 7-16 FMULD8ULx16 Operation

CODE EXAMPLE 7-2 16-bit x 16-bit 32-bit Multiply

fmuld8sux16 %f0, %f1, %f2

fmuld8ulx16 %f0, %f1, %f3

fpadd32 %f2, %f3, %f4

0151631 24 23 8 7

0313263

0151631

× sign-extended × sign-extended

FS[rs1]

FS[rs2]

FD[rd]
206 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006



FMUL<s|d|q>
7.31 Floating-Point Multiply

Description The floating-point multiply instructions multiply the contents of the floating-point
register(s) specified by the rs1 field by the contents of the floating-point register(s)
specified by the rs2 field. The instructions then write the product into the floating-
point register(s) specified by the rd field.

The FsMULd instruction provides the exact double-precision product of two single-
precision operands, without underflow, overflow, or rounding error. Similarly,
FdMULq provides the exact quad-precision product of two double-precision
operands.

Rounding is performed as specified by FSR.rd.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute any FMUL instruction causes an fp_disabled exception.

If the FPU is enabled, an attempt to execute an FMULq or FdMULq instruction
causes an fp_exception_other (with FSR.ftt = unimplemented_FPop), since that
instruction is not implemented in hardware in UltraSPARC Architecture 2005
implementations.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Instruction op3 opf Operation Assembly Language Syntax Class

FMULs 11 0100 0 0100 1001 Multiply Single fmuls fregrs1, fregrs2, fregrd A1

FMULd 11 0100 0 0100 1010 Multiply Double fmuld fregrs1, fregrs2, fregrd A1

FMULq 11 0100 0 0100 1011 Multiply Quad fmulq fregrs1, fregrs2, fregrd C3

FsMULd 11 0100 0 0110 1001 Multiply Single to Double fsmuld fregrs1, fregrs2, fregrd A1

FdMULq 11 0100 0 0110 1110 Multiply Double to Quad fdmulq fregrs1, fregrs2, fregrd C3

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMULq or FdMULq instruction
causes an illegal_instruction exception, allowing privileged
software to emulate the instruction.

10 op3 rs2rd rs1
31 141924 18 13 02530 29 4

opf
5
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Exceptions illegal_instruction

fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FMULq, FdMULq only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (any: NV; FMUL(s,d,q) only: OF, UF, NX)
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7.32 Floating-Point Negate

Description FNEG copies the source floating-point register(s) to the destination floating-point
register(s), with the sign bit complemented.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do
not modify FSR.aexc, and do not treat floating-point NaN values differently from
other floating-point values.

An attempt to execute an FNEG instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FNEG instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FNEGq only))

Instruction op3 opf Operation Assembly Language Syntax Class

FNEGs 11 0100 0 0000 0101 Negate Single fnegs fregrs2, fregrd A1

FNEGd 11 0100 0 0000 0110 Negate Double fnegd fregrs2, fregrd A1

FNEGq 11 0100 0 0000 0111 Negate Quad fnegq fregrs2, fregrd C3

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FNEGq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —
31 141924 18 13 02530 29 4

opf
5
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7.33 FPACK

Description The FPACK instructions convert multiple values in a source register to a lower-
precision fixed or pixel format and stores the resulting values in the destination
register. Input values are clipped to the dynamic range of the output format. Packing
applies a scale factor from GSR.scale to allow flexible positioning of the binary
point.

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an illegal_instruction exception, and are emulated
in software.

Exceptions illegal_instruction

See Also FEXPAND on page 184
FPMERGE on page 219

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FPACK16 0 0011 1011 Four 16-bit packs into 8
unsigned bits

— f64 f32 fpack16 fregrs2, fregrd C3

FPACK32 0 0011 1010 Two 32-bit packs into 8
unsigned bits

f64 f64 f64 fpack32 fregrs1, fregrs2, fregrd C3

FPACKFIX 0 0011 1101 Four 16-bit packs into 16
signed bits

— f64 f32 fpackfix fregrs2, fregrd C3

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
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7.33.1 FPACK16
FPACK16 takes four 16-bit fixed values from the 64-bit floating-point register
FD[rs2], scales, truncates, and clips them into four 8-bit unsigned integers, and stores
the results in the 32-bit destination register, FS[rd]. FIGURE 7-17 illustrates the
FPACK16 operation.

FIGURE 7-17 FPACK16 Operation

This operation is carried out as follows:

1. Left-shift the value from FD[rs2] by the number of bits specified in GSR.scale
while maintaining clipping information.

2. Truncate and clip to an 8-bit unsigned integer starting at the bit immediately to
the left of the implicit binary point (that is, between bits 7 and 6 for each 16-bit
word). Truncation converts the scaled value into a signed integer (that is, round
toward negative infinity). If the resulting value is negative (that is, its most
significant bit is set), 0 is returned as the clipped value. If the value is greater than
255, then 255 is delivered as the clipped value. Otherwise, the scaled value is
returned as the result.

3. Store the result in the corresponding byte in the 32-bit destination register, FS[rd].

For each 16-bit partition, the sequence of operations performed is shown in the
following example pseudo-code:
tmp ← source_operand{15:0} << GSR.scale;
// Pick off the bits from bit position 15+GSR.scale to

Note FPACK16 ignores the most significant bit of GSR.scale
(GSR.scale{4}).

0367

implicit binary pt

4 0

GSR.scale × 0100

19

723 15314763

31

0

0

15 14

48 32 16

(8 bits)

(16 bits)

00 00

FD[rs2]

FS[rd]

FS[rd]

FD[rs2]

16
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// bit position 7 from the shifted result
trunc_signed_value ← tmp{(15+GSR.scale):7};
If (trunc_signed_value < 0)

unsigned_8bit_result ← 0;
else if (trunc_signed_value > 255)

unsigned_8bit_result ← 255;
else

unsigned_8bit_result ← trunc_signed_value{14:7};

7.33.2 FPACK32
FPACK32 takes two 32-bit fixed values from the second source operand (64-bit
floating-point register FD[rs2]) and scales, truncates, and clips them into two 8-bit
unsigned integers. The two 8-bit integers are merged at the corresponding least
significant byte positions of each 32-bit word in the 64-bit floating-point register
FD[rs1], left-shifted by 8 bits. The 64-bit result is stored in FD[rd]. Thus, successive
FPACK32 instructions can assemble two pixels by using three or four pairs of 32-bit
fixed values. FIGURE 7-18 illustrates the FPACK32 operation.

FIGURE 7-18 FPACK32 Operation

This operation, illustrated in FIGURE 7-18, is carried out as follows:

1. Left-shift each 32-bit value in FD[rs2] by the number of bits specified in
GSR.scale, while maintaining clipping information.

015163132474863

04

GSR.scale

037 2223 5

implicit binary point

0 0 0 0 0 0

0 0 1 1 0

56 55 40 39 24 23 8 7

30 6

(8 bits)

(32 bits)

FD[rs2]

FD[rs1]

FD[rd]

FD[rd]

FD[rs2]

31
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2. For each 32-bit value, truncate and clip to an 8-bit unsigned integer starting at the

bit immediately to the left of the implicit binary point (that is, between bits 23 and
22 for each 32-bit word). Truncation is performed to convert the scaled value into
a signed integer (that is, round toward negative infinity). If the resulting value is
negative (that is, the most significant bit is 1), then 0 is returned as the clipped
value. If the value is greater than 255, then 255 is delivered as the clipped value.
Otherwise, the scaled value is returned as the result.

3. Left-shift each 32-bit value from FD[rs1] by 8 bits.

4. Merge the two clipped 8-bit unsigned values into the corresponding least
significant byte positions in the left-shifted FD[rs2] value.

5. Store the result in the 64-bit destination register FD[rd].

For each 32-bit partition, the sequence of operations performed is shown in the
following pseudo-code:
tmp ← source_operand2{31:0} << GSR.scale;
// Pick off the bits from bit position 31+GSR.scale to
// bit position 23 from the shifted result
trunc_signed_value ← tmp{(31+GSR.scale):23};
if (trunc_signed_value < 0)

unsigned_8bit_value ← 0;
else if (trunc_signed_value > 255)

unsigned_8bit_value ← 255;
else

unsigned_8bit_value ← trunc_signed_value{30:23};
Final_32bit_Result ← (source_operand1{31:0} << 8) |

(unsigned_8bit_value{7:0});
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7.33.3 FPACKFIX
FPACKFIX takes two 32-bit fixed values from the 64-bit floating-point register
FD[rs2], scales, truncates, and clips them into two 16-bit unsigned integers, and then
stores the result in the 32-bit destination register FS[rd]. FIGURE 7-19 illustrates the
FPACKFIX operation.

FIGURE 7-19 FPACKFIX Operation

This operation is carried out as follows:

1. Left-shift each 32-bit value from FD[rs2]) by the number of bits specified in
GSR.scale, while maintaining clipping information.

2. For each 32-bit value, truncate and clip to a 16-bit unsigned integer starting at the
bit immediately to the left of the implicit binary point (that is, between bits 16 and
15 for each 32-bit word). Truncation is performed to convert the scaled value into
a signed integer (that is, round toward negative infinity). If the resulting value is
less than −32768, then −32768 is returned as the clipped value. If the value is
greater than 32767, then 32767 is delivered as the clipped value. Otherwise, the
scaled value is returned as the result.

3. Store the result in the 32-bit destination register FS[rd].

For each 32-bit partition, the sequence of operations performed is shown in the
following pseudo-code:
tmp ← source_operand{31:0} << GSR.scale;
// Pick off the bits from bit position 31+GSR.scale to
// bit position 16 from the shifted result

0151631

3263

04

GSR.scale

037 1516 5

implicit binary point

0 0 0 0 0 0

0 0 1 1 0

31 632

(16 bits)

(32 bits)

31 0

FD[rs2]

FD[rs2]

FS[rd]

FSrd]
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trunc_signed_value ← tmp{(31+GSR.scale):16};
if (trunc_signed_value < -32768)

signed_16bit_result ← -32768;
else if (trunc_signed_value > 32767)

signed_16bit_result ← 32767;
else

signed_16bit_result ← trunc_signed_value{31:16};
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7.34 Fixed-point Partitioned Add

Description FPADD16 (FPADD32) performs four 16-bit (two 32-bit) partitioned additions
between the corresponding fixed-point values contained in the source operands
(FD[rs1], FD[rs2]). The result is placed in the destination register, FD[rd].

The 32-bit versions of these instructions (FPADD16S and FPADD32S) perform two
16-bit or one 32-bit partitioned additions.

Any carry out from each addition is discarded and a 2’s-complement arithmetic
result is produced.

FIGURE 7-20 FPADD16 Operation

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FPADD16 0 0101 0000 Four 16-bit adds f64 f64 f64 fpadd16 fregrs1, fregrs2, fregrd A1

FPADD16S 0 0101 0001 Two 16-bit adds f32 f32 f32 fpadd16s fregrs1, fregrs2, fregrd A1

FPADD32 0 0101 0010 Two 32-bit adds f64 f64 f64 fpadd32 fregrs1, fregrs2, fregrd A1

FPADD32S 0 0101 0011 One 32-bit add f32 f32 f32 fpadd32s fregrs1, fregrs2, fregrd A1

VIS 1

10 110110 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

63 0153147

+ + + +

48 32 16

63 015314748 32 16

63 015314748 32 16

FD[rs1]

FD[rs2]

FD[rd] (sum)
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FIGURE 7-21 FPADD32 Operation

FIGURE 7-22 FPADD16S Operation

FIGURE 7-23 FPADD32S Operation

63 031

+

+ +

32

63 03132

63 03132

FD[rs1]

FD[rs2]

FD[rd] (sum)

031 15

+ +

16

031 1516

031 1516

FS[rs1]

FS[rs2]

FS[rd] (sum)

031

031

031

+

FS[rs1]

FS[rs2]

FS[rd] (sum)
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If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FPADD instruction causes an fp_disabled exception.

Exceptions fp_disabled
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7.35 FPMERGE

Description FPMERGE interleaves eight 8-bit unsigned values in FS[rs1] and FS[rs2] to produce
a 64-bit value in the destination register FD[rd]. This instruction converts from
packed to planar representation when it is applied twice in succession; for example,
R1G1B1A1,R3G3B3A3 → R1R3G1G3A1A3 → R1R2R3R4G1G2G3G4.

FPMERGE also converts from planar to packed when it is applied twice in
succession; for example, R1R2R3R4,B1B2B3B4 → R1B1R2B2R3B3R4B4 →
R1G1B1A1R2G2B2A2.

FIGURE 7-24 illustrates the operation.

FIGURE 7-24 FPMERGE Operation

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FPMERGE 0 0100 1011 Two 32-bit merges f32 f32 f64 fpmerge fregrs1, fregrs2, fregrd C3

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2

015163132474863 56 55 40 39 24 23 8 7

0151631 24 23 8 7

0151631 24 23 8 7

FS[rs1]

FS[rs2]

FD[rd]

fpmerge %f0, %f2, %d4
fpmerge %f1, %f3, %d6

fpmerge %f4, %f6, %d0
fpmerge %f5, %f7, %d2

R1 G1 B1 A1 R2 G2 B2 A2
R3 G3 B3 A3 R4 G4 B4 A4

!r1 R3 G1 G3 B1 B3 A1 A3
!r2 R4 G2 G4 B2 B4 A2 A4

!r1 R2 R3 R4 G1 G2 G3 G4
!B1 B2 B3 B4 A1 A2 A3 A4

    %d0
 %d2

fpmerge %f0, %f2, %d4
fpmerge %f1, %f3, %d6
fpmerge %f4, %f6, %d0
fpmerge %f5, %f7, %d2

!r1 B1 R2 B2 R3 B3 R4 B4
!G1 A1 G2 A2 G3 A3 G4 A4
!R1 G1 B1 A1 R2 G2 B2 A2
!R3 G3 B3 A3 R4 G4 B4 A4

} packed representation

} intermediate

} planar representation

} intermediate

} packed representation
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CODE EXAMPLE 7-3 FPMERGE

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an illegal_instruction exception, and are emulated
in software.

Exceptions illegal_instruction

See Also FPACK on page 210
FEXPAND on page 184
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7.36 Fixed-point Partitioned Subtract

Description FPSUB16 (FPSUB32) performs four 16-bit (two 32-bit) partitioned subtractions
between the corresponding fixed-point values contained in the source operands
(FD[rs1], FD[rs2]). The values in FD[rs2] are subtracted from those in FD[rs1], and
the result is placed in the destination register, FD[rd].

The 32-bit versions of these instructions (FPSUB16S and FPSUB32S) perform two 16-
bit or one 32-bit partitioned subtractions.

Any carry out from each subtraction is discarded and a 2’s-complement arithmetic
result is produced.

FIGURE 7-25 FPSUB16 Operation

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FPSUB16 0 0101 0100 Four 16-bit subtracts f64 f64 f64 fpsub16 fregrs1, fregrs2, fregrd A1

FPSUB16S 0 0101 0101 Two 16-bit subtracts f32 f32 f32 fpsub16s fregrs1, fregrs2, fregrd A1

FPSUB32 0 0101 0110 Two 32-bit subtracts f64 f64 f64 fpsub32 fregrs1, fregrs2, fregrd A1

FPSUB32S 0 0101 0111 One 32-bit subtract f32 f32 f32 fpsub32s fregrs1, fregrs2, fregrd A1

VIS 1

10 110110 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

63 0153147

– – – –

48 32 16

63 015314748 32 16

63 015314748 32 16

FD[rs1]

FD[rs2]

FD[rd]
(difference)
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FIGURE 7-26 FPSUB32 Operation

FIGURE 7-27 FPSUB16S Operation

FIGURE 7-28 FPSUB32S Operation

63 031

– –

32

63 03132

63 03132

FD[rd]
(difference)

FD[rs2]

FD[rs1]

031 15

– –

16

031 1516

031 1516

FS[rs1]

FS[rs2]

FS[rd]
(difference)

031

031

031

–

FS[rs1]

FS[rs2]

FS[rd]
(difference)
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If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FPSUB instruction causes an fp_disabled exception.

Exceptions fp_disabled
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7.37 FRegister Logical Operate (1 operand)

Description FZERO and FONE fill the 64-bit destination register, FD[rd], with all ‘0’ bits or all ‘1’
bits (respectively).

FZEROs and FONEs fill the 32-bit destination register, FD[rd], with all ‘0’ bits or all
‘1’ bits (respectively.

An attempt to execute an FZERO or FONE instruction when instruction bits 18:14 or
bits 4:0 are nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FZERO[s] or FONE[s] instruction causes an fp_disabled
exception.

Exceptions illegal_instruction
fp_disabled

See Also F Register 2-operand Logical Operations on page 225
F Register 3-operand Logical Operations on page 227

Instruction opf Operation Assembly Language Syntax Class

FZERO 0 0110 0000 Zero fill fzero fregrd A1

FZEROs 0 0110 0001 Zero fill, 32-bit fzeros fregrd A1

FONE 0 0111 1110 One fill fone fregrd A1

FONEs 0 0111 1111 One fill, 32-bit fones fregrd A1

VIS 1

rd10 110110 opf— —

31 24 02530 29 19 18 14 13 5 4
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7.38 F Register Logical Operate (2 operand)

Description The standard 64-bit versions of these instructions perform one of four 64-bit logical
operations on the 64-bit floating-point register FD[rs1] (or FD[rs2]) and store the
result in the 64-bit floating-point destination register FD[rd].

The 32-bit (single-precision) versions of these instructions perform 32-bit logical
operations on FS[rs1] (or FS[rs2]) and store the result in FS[rd].

An attempt to execute an FSRC1(s) or FNOT1(s) instruction when instruction bits 4:0
are nonzero causes an illegal_instruction exception. An attempt to execute an
FSRC2(s) or FNOT2(s) instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FSRC1[s], FNOT1[s], FSRC1[s], or FNOT1[s] instruction causes
an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled

Instruction opf Operation Assembly Language Syntax Class

FSRC1 0 0111 0100 Copy FD[rs1] to FD[rd] fsrc1 fregrs1, fregrd A1

FSRC1s 0 0111 0101 Copy FS[rs1] to FS[rd], 32-bit fsrc1s fregrs1, fregrd A1

FSRC2 0 0111 1000 Copy FD[rs2] to FD[rd] fsrc2 fregrs2, fregrd A1

FSRC2s 0 0111 1001 Copy FS[rs2] to FS[rd], 32-bit fsrc2s fregrs2, fregrd A1

FNOT1 0 0110 1010 Negate (1’s complement) FD[rs1] fnot1 fregrs1, fregrd A1

FNOT1s 0 0110 1011 Negate (1’s complement) FS[rs1], 32-bit fnot1s fregrs1, fregrd A1

FNOT2 0 0110 0110 Negate (1’s complement) FD[rs2] fnot2 fregrs2, fregrd A1

FNOT2s 0 0110 0111 Negate (1’s complement) FS[rs2], 32-bit fnot2s fregrs2, fregrd A1

Programming
Note

FSRC1s (FSRC1) functions similarly to FMOVs (FMOVd), except
that FSRC1s (FSRC1) does not modify the FSR register while
FMOVs (FMOVd) update some fields of FSR (see Floating-Point
Move on page 191). Programmers are encouraged to use FMOVs
(FMOVd) instead of FSRC1s (FSRC1) whenever practical.

VIS 1

rd10 110110 opfrs1 —

rd10 110110 opf— rs2

31 24 02530 29 19 18 14 13 5 4
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See Also Floating-Point Move on page 191

F Register 1-operand Logical Operations on page 224
F Register 3-operand Logical Operations on page 227
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F Register 3-operand Logical Ops
7.39 F Register Logical Operate (3 operand)

Description The standard 64-bit versions of these instructions perform one of ten 64-bit logical
operations between the 64-bit floating-point registers FD[rs1] and FD[rs2]. The result
is stored in the 64-bit floating-point destination register FD[rd].

The 32-bit (single-precision) versions of these instructions perform 32-bit logical
operations between FS[rs1] and FS[rs2], storing the result in FS[rd].

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute any 3-operand F Register Logical Operate instruction causes an
fp_disabled exception.

Exceptions fp_disabled

See Also F Register 1-operand Logical Operations on page 224
F Register 2-operand Logical Operations on page 225

Instruction opf Operation Assembly Language Syntax Class

FOR 0 0111 1100 Logical or for fregrs1, fregrs2, fregrd A1
FORs 0 0111 1101 Logical or, 32-bit fors fregrs1, fregrs2, fregrd A1
FNOR 0 0110 0010 Logical nor fnor fregrs1, fregrs2, fregrd A1
FNORs 0 0110 0011 Logical nor, 32-bit fnors fregrs1, fregrs2, fregrd A1
FAND 0 0111 0000 Logical and fand fregrs1, fregrs2, fregrd A1
FANDs 0 0111 0001 Logical and, 32-bit fands fregrs1, fregrs2, fregrd A1
FNAND 0 0110 1110 Logical nand fnand fregrs1, fregrs2, fregrd A1
FNANDs 0 0110 1111 Logical nand, 32-bit fnands fregrs1, fregrs2, fregrd A1
FXOR 0 0110 1100 Logical xor fxor fregrs1, fregrs2, fregrd A1
FXORs 0 0110 1101 Logical xor, 32-bit fxors fregrs1, fregrs2, fregrd A1
FXNOR 0 0111 0010 Logical xnor fxnor fregrs1, fregrs2, fregrd A1
FXNORs 0 0111 0011 Logical xnor, 32-bit fxnors fregrs1, fregrs2, fregrd A1
FORNOT1 0 0111 1010 (not F[rs1]) or F[rs2] fornot1 fregrs1, fregrs2, fregrd A1
FORNOT1s 0 0111 1011 (not F[rs1]) or F[rs2], 32-bit fornot1s fregrs1, fregrs2, fregrd A1
FORNOT2 0 0111 0110 F[rs1] or (not F[rs2]) fornot2 fregrs1, fregrs2, fregrd A1
FORNOT2s 0 0111 0111 F[rs1] or (not F[rs2]), 32-bit fornot2s fregrs1, fregrs2, fregrd A1
FANDNOT1 0 0110 1000 (not F[rs1]) and F[rs2] fandnot1 fregrs1, fregrs2, fregrd A1
FANDNOT1s 0 0110 1001 (not F[rs1]) and F[rs2], 32-bit fandnot1s fregrs1, fregrs2, fregrd A1
FANDNOT2 0 0110 0100 F[rs1] and (not F[rs2]) fandnot2 fregrs1, fregrs2, fregrd A1
FANDNOT2s 0 0110 0101 F[rs1] and (not F[rs2]), 32-bit fandnot2s fregrs1, fregrs2, fregrd A1

VIS 1

rd10 110110 opfrs1 rs2
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FSQRT<s|d|q> Instructions
7.40 Floating-Point Square Root

Description These SPARC V9 instructions generate the square root of the floating-point operand
in the floating-point register(s) specified by the rs2 field and place the result in the
destination floating-point register(s) specified by the rd field. Rounding is performed
as specified by FSR.rd.

An attempt to execute an FSQRT instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FSQRT instruction causes an fp_disabled exception.

If the FPU is enabled, an fp_exception_other (with FSR.ftt = unimplemented_FPop)
exception occurs, since the FSQRT instructions are not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FSQRT is not implemented

in hardware))

Instruction op3 opf Operation Assembly Language Syntax Class

FSQRTs 11 0100 0 0010 1001 Square Root Single fsqrts fregrs2, fregrd A1

FSQRTd 11 0100 0 0010 1010 Square Root Double fsqrtd fregrs2, fregrd A1

FSQRTq 11 0100 0 0010 1011 Square Root Quad fsqrtq fregrs2, fregrd C3

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FSQRTq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —
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F<s|d|q>TOi
7.41 Convert Floating-Point to Integer

Description FsTOx, FdTOx, and FqTOx convert the floating-point operand in the floating-point
register(s) specified by rs2 to a 64-bit integer in the floating-point register FD[rd].

FsTOi, FdTOi, and FqTOi convert the floating-point operand in the floating-point
register(s) specified by rs2 to a 32-bit integer in the floating-point register FS[rd].

The result is always rounded toward zero; that is, the rounding direction (rd) field of
the FSR register is ignored.

An attempt to execute an F<s|d|q>TO<i|x> instruction when instruction bits 18:14
are nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an F<s|d|q>TO<i|x> instruction causes an fp_disabled
exception.

If the FPU is enabled, FqTOi and FqTOx cause fp_exception_other (with FSR.ftt =
unimplemented_FPop), since those instructions are not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

If the floating-point operand’s value is too large to be converted to an integer of the
specified size or is a NaN or infinity, then an fp_exception_ieee_754 “invalid”
exception occurs. The value written into the floating-point register(s) specified by rd
in these cases is as defined in Integer Overflow Definition on page 383.

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FsTOx 0 1000 0001 Convert Single to 64-bit Integer — f32 f64 fstox fregrs2, fregrd A1

FdTOx 0 1000 0010 Convert Double to 64-bit Integer — f64 f64 fdtox fregrs2, fregrd A1

FqTOx 0 1000 0011 Convert Quad to 64-bit Integer — f128 f64 fqtox fregrs2, fregrd C3

FsTOi 0 1101 0001 Convert Single to 32-bit Integer — f32 f32 fstoi fregrs2, fregrd A1

FdTOi 0 1101 0010 Convert Double to 32-bit Integer — f64 f32 fdtoi fregrs2, fregrd A1

FqTOi 0 1101 0011 Convert Quad to 32-bit Integer — f128 f32 fqtoi fregrs2, fregrd C3

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FqTOx or FqTOi instruction
causes an illegal_instruction exception, allowing privileged
software to emulate the instruction.

10 op3 = 11 0100 rs2rd — opf
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For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FqTOx, FqTOi only))
fp_exception_ieee_754 (NV, NX)
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F<s|d|q>TO<s|d|q>
7.42 Convert Between Floating-Point Formats

Description These instructions convert the floating-point operand in the floating-point register(s)
specified by rs2 to a floating-point number in the destination format. They write the
result into the floating-point register(s) specified by rd.

The value of FSR.rd determines how rounding is performed by these instructions.

An attempt to execute an F(s,d,q)TO(s,d,q) instruction when instruction bits 18:14
are nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an F<s|d|q>TO<s|d|q> instruction causes an fp_disabled
exception.

If the FPU is enabled, FsTOq, FdTOq, FqTOs, and FqTOd cause fp_exception_other
(with FSR.ftt = unimplemented_FPop), since those instructions are not implemented
in hardware in UltraSPARC Architecture 2005 implementations.

FqTOd, FqTOs, and FdTOs (the “narrowing” conversion instructions) can cause
fp_exception_ieee_754 OF, UF, and NX exceptions. FdTOq, FsTOq, and FsTOd (the
“widening” conversion instructions) cannot.

Any of these six instructions can trigger an fp_exception_ieee_754 NV exception if
the source operand is a signalling NaN.

Instruction op3 opf Operation s1 s2 d Assembly Language Syntax Class

FsTOd 11 0100 0 1100 1001 Convert Single to Double — f32 f64 fstod fregrs2, fregrd A1

FsTOq 11 0100 0 1100 1101 Convert Single to Quad — f32 f128 fstoq fregrs2, fregrd C3

FdTOs 11 0100 0 1100 0110 Convert Double to Single — f64 f32 fdtos fregrs2, fregrd A1

FdTOq 11 0100 0 1100 1110 Convert Double to Quad — f64 f128 fdtoq fregrs2, fregrd C3

FqTOs 11 0100 0 1100 0111 Convert Quad to Single — f128 f32 fqtos fregrs2, fregrd C3

FqTOd 11 0100 0 1100 1011 Convert Quad to Double — f128 f64 fqtod fregrs2, fregrd C3

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FsTOq, FdTOq, FqTOs, or
FqTOd instruction causes an illegal_instruction exception, allowing
privileged software to emulate the instruction.

10 op3 rs2rd — opf
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Untrapped Result in Different Format from Operands on page 380 defines the rules for
converting NaNs from one floating-point format to another.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FsTOq, FqTOs, FdTOq,

and FqTOd only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (NV)
fp_exception_ieee_754 (OF, UF, NX (FqTOd, FqTOs, and FdTOs))

Note For FdTOs and FsTOd, an fp_exception_other with
FSR.ftt = unfinished_FPop can occur if implementation-dependent
conditions are detected during the conversion operation.
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FSUB
7.43 Floating-Point Subtract

Description The floating-point subtract instructions subtract the floating-point register(s)
specified by the rs2 field from the floating-point register(s) specified by the rs1 field.
The instructions then write the difference into the floating-point register(s) specified
by the rd field.

Rounding is performed as specified by FSR.rd.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FSUB instruction causes an fp_disabled exception.

If the FPU is enabled, FSUBq causes an fp_exception_other (with FSR.ftt =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FSUBq))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (OF, UF, NX, NV)

Instruction op3 opf Operation Assembly Language Syntax Class

FSUBs 11 0100 0 0100 0101 Subtract Single fsubs fregrs1, fregrs2, fregrd A1

FSUBd 11 0100 0 0100 0110 Subtract Double fsubd fregrs1, fregrs2, fregrd A1

FSUBq 11 0100 0 0100 0111 Subtract Quad fsubq fregrs1, fregrs2, fregrd C3

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FSUBq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

Note An fp_exception_other with FSR.ftt = unfinished_FPop can occur
if the operation detects unusual, implementation-specific
conditions (for FSUBs or FSUBd).

10 op3 rs2rd rs1 opf
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7.44 Convert 64-bit Integer to Floating Point

Description FxTOs, FxTOd, and FxTOq convert the 64-bit signed integer operand in the floating-
point register FD[rs2] into a floating-point number in the destination format.

All write their result into the floating-point register(s) specified by rd.

The value of FSR.rd determines how rounding is performed by FxTOs and FxTOd.

An attempt to execute an FxTO(s,d,q) instruction when instruction bits 18:14 are
nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FxTO(s,d,q) instruction causes an fp_disabled exception.

If the FPU is enabled, FxTOq causes an fp_exception_other (with FSR.ftt =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FxTOq only))
fp_exception_ieee_754 (NX (FxTOs and FxTOd only))

Instruction op3 opf Operation s1 s2 d
Assembly Language
Syntax Class

FxTOs 11 0100 0 1000 0100 Convert 64-bit Integer to
Single

— i64 f32 fxtos fregrs2, fregrd A1

FxTOd 11 0100 0 1000 1000 Convert 64-bit Integer to
Double

— i64 f64 fxtod fregrs2, fregrd A1

FxTOq 11 0100 0 1000 1100 Convert 64-bit Integer to
Quad

— i64 f128 fxtoq fregrs2, fregrd C3

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FxTOq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —
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ILLTRAP
7.45 Illegal Instruction Trap

Description The ILLTRAP instruction causes an illegal_instruction exception. The const22 value
in the instruction is ignored by the virtual processor; specifically, this field is not
reserved by the architecture for any future use.

An attempt to execute an ILLTRAP instruction when reserved instruction bits 29:25
are nonzero (also) causes an illegal_instruction exception. However, software should
not rely on this behavior, because a future version of the architecture may use
nonzero values of bits 29:25 to encode other functions.

Exceptions illegal_instruction

Instruction op op2 Operation Assembly Language Syntax Class

ILLTRAP 00 000 illegal_instruction trap illtrap const22 A1

V9 Compatibility
Note

Except for its name, this instruction is identical to the SPARC V8
UNIMP instruction.

00 000 const22—

31 2124 02530 29 22
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7.46 Implementation-DependentInstructions

Description IMPL. DEP. #106-V9: The IMPDEP2A opcode space is completely implementation
dependent. Implementation-dependent aspects of IMPDEP2A instructions include
their operation, the interpretation of bits 29–25, 18–7, and 4–0 in their encodings,
and which (if any) exceptions they may cause.

IMPDEP2B opcodes are reserved; see IMDEP2B Opcodes on page 237.

See “Implementation-Dependent and Reserved Opcodes” in the "Extending the
UltraSPARC Architecture" section of the separate document UltraSPARC Architecture
Application Notes, for information about extending the instruction set by means of
implementation-dependent instructions.

Exceptions implementation-dependent (IMPDEP2A, IMPDEP2B)

7.46.1 IMPDEP1 Opcodes
All operands of instructions using IMPDEP1 opcodes are in floating-point registers,
unless otherwise specified. Pixel values are stored in single-precision floating point
registers and fixed values are stored in double-precision floating point registers,
unless otherwise specified.

Instruction op3 op4 Operation Class

IMPDEP1 11 0110 (any) Implementation-Dependent Instruction 1 N3

IMPDEP2A 11 0111 0 Implementation-Dependent Instruction 2A N3

IMPDEP2B 11 0111 1, 2, 3 Implementation-Dependent Instruction 2B N3

Compatibility
Note

IMPDEP2A and IMPDEP2B are subsets of the SPARC V9
IMPDEP2 opcode space. The IMPDEP1 opcode space from
SPARC V9 is occupied by various VIS instructions in the
UltraSPARC Architecture, so it should not be used for
implementation-dependent instructions.

Note All instructions, regardless of whether they use floating-point
registers or integer registers, leave FSR.cexc and FSR.aexc
unchanged.

10 op3 impl. dep.impl. dep.

31 1824 02530 29 19
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7.46.1.1 Opcode Formats
Most of the VIS instruction set maps to the opcode space reserved for the
Implementation-Dependent Instruction 1 (op3 = IMPDEP1 = 3616) instructions.

7.46.2 IMDEP2B Opcodes
No instructions are currently encoded in the IMPDEP2B opcode space; it is a
reserved opcode space.
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INVALW
7.47 Mark Register Window Sets as “Invalid”

Description The INVALW instruction marks all register window sets as “invalid”; specifically, it
atomically performs the following operations:

CANSAVE ← (N_REG_WINDOWS − 2)
CANRESTORE ← 0
OTHERWIN ← 0

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an illegal_instruction exception, and are emulated
in software.

Exceptions illegal_instruction (not implemented in hardware in UltraSPARC Architecture 2005)

See Also ALLCLEAN on page 148
NORMALW on page 285
OTHERW on page 287
RESTORED on page 307
SAVED on page 315

Instruction Operation Assembly Language Syntax Class

INVALWP Mark all register window sets as “invalid” invalw C1

Programming
Notes

INVALW marks all windows as invalid; after executing INVALW,
N_REG_WINDOWS-2 SAVEs can be performed without generating a
spill trap. This instruction allows window manipulations to be
atomic, without the value of N_REG_WINDOWS being visible to
privileged software and without an assumption that
N_REG_WINDOWS is constant (since hyperprivileged software can
migrate a thread among virtual processors, across which
N_REG_WINDOWS may vary).

31 1924 18 02530 29

10 fcn = 0 0101 11 0001 —
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JMPL
7.48 Jump and Link

Description The JMPL instruction causes a register-indirect delayed control transfer to the
address given by “R[rs1] + R[rs2]” if i field = 0, or “R[rs1] + sign_ext(simm13)” if
i = 1.

The JMPL instruction copies the PC, which contains the address of the JMPL
instruction, into register R[rd].

An attempt to execute a JMPL instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If either of the low-order two bits of the jump address is nonzero, a
mem_address_not_aligned exception occurs.

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address
are masked out (set to 0) before being sent to the memory system or being written
into R[rd]. (closed impl. dep. #125-V9-Cs10)

Exceptions illegal_instruction
mem_address_not_aligned

See Also CALL on page 162
Bicc on page 154
BPCC on page 160

Instruction op3 Operation Assembly Language Syntax Class

JMPL 11 1000 Jump and Link jmpl address, regrd A1

Programming
Notes

A JMPL instruction with rd = 15 functions as a register-indirect
call using the standard link register.

JMPL with rd = 0 can be used to return from a subroutine. The
typical return address is “r[31] + 8” if a nonleaf routine (one that
uses the SAVE instruction) is entered by a CALL instruction, or
“R[15] + 8” if a leaf routine (one that does not use the SAVE
instruction) is entered by a CALL instruction or by a JMPL
instruction with rd = 15.

31 24 02530 29 19 18

rd10 op3
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rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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LD
7.49 Load Integer

† synonym: ld

Description The load integer instructions copy a byte, a halfword, a word, or an extended word
from memory. All copy the fetched value into R[rd]. A fetched byte, halfword, or
word is right-justified in the destination register R[rd]; it is either sign-extended or
zero-filled on the left, depending on whether the opcode specifies a signed or
unsigned operation, respectively.

Load integer instructions access memory using the implicit ASI (see page 104). The
effective address is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

A successful load (notably, load extended) instruction operates atomically.

An attempt to execute a load integer instruction when i = 0 and instruction bits 12:5
are nonzero causes an illegal_instruction exception.

If the effective address is not halfword-aligned, an attempt to execute an LDUH or
LDSH causes a mem_address_not_aligned exception. If the effective address is not
word-aligned, an attempt to execute an LDUW or LDSW instruction causes a
mem_address_not_aligned exception. If the effective address is not doubleword-
aligned, an attempt to execute an LDX instruction causes a
mem_address_not_aligned exception.

A load integer twin word (LDTW) instruction exists, but is deprecated; see Load
Integer Twin Word on page 266 for details.

Instruction op3 Operation Assembly Language Syntax Class

LDSB 00 1001 Load Signed Byte ldsb [address], regrd A1

LDSH 00 1010 Load Signed Halfword ldsh [address], regrd A1

LDSW 00 1000 Load Signed Word ldsw [address], regrd A1

LDUB 00 0001 Load Unsigned Byte ldub [address], regrd A1

LDUH 00 0010 Load Unsigned Halfword lduh [address], regrd A1

LDUW 00 0000 Load Unsigned Word lduw† [address], regrd A1

LDX 00 1011 Load Extended Word ldx [address], regrd A1

V8 Compatibility
Note

The SPARC V8 LD instruction was renamed LDUW in the SPARC
V9 architecture. The LDSW instruction was new in the SPARC V9
architecture.

rd11 op3 rs1 simm13i=1
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Exceptions illegal_instruction

mem_address_not_aligned (all except LDSB, LDUB)
VA_watchpoint
data_access_exception
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
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7.50 Load Integer from Alternate Space

† synonym: lda

Description The load integer from alternate space instructions copy a byte, a halfword, a word,
or an extended word from memory. All copy the fetched value into R[rd]. A fetched
byte, halfword, or word is right-justified in the destination register R[rd]; it is either
sign-extended or zero-filled on the left, depending on whether the opcode specifies a
signed or unsigned operation, respectively.

The load integer from alternate space instructions contain the address space
identifier (ASI) to be used for the load in the imm_asi field if i = 0, or in the ASI
register if i = 1. The access is privileged if bit 7 of the ASI is 0; otherwise, it is not
privileged. The effective address for these instructions is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1] + sign_ext(simm13)” if i = 1.

A successful load (notably, load extended) instruction operates atomically.

A load integer twin word from alternate space (LDTWA) instruction exists, but is
deprecated; see Load Integer Twin Word from Alternate Space on page 268 for details.

An attempt to execute a load integer from alternate space instruction when i = 0 and
instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Instruction op3 Operation Assembly Language Syntax Class

LDSBAPASI 01 1001 Load Signed Byte from Alternate
Space

ldsba
ldsba

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDSHAPASI 01 1010 Load Signed Halfword from Alternate
Space

ldsha
ldsha

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDSWAPASI 01 1000 Load Signed Word from Alternate
Space

ldswa
ldswa

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDUBAPASI 01 0001 Load Unsigned Byte from Alternate
Space

lduba
lduba

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDUHAPASI 01 0010 Load Unsigned Halfword from
Alternate Space

lduha
lduha

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDUWAPASI 01 0000 Load Unsigned Word from Alternate
Space

lduwa†
lduwa

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDXAPASI 01 1011 Load Extended Word from Alternate
Space

ldxa
ldxa

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

31 24 02530 29 19 18
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If the effective address is not halfword-aligned, an attempt to execute an LDUHA or
LDSHA instruction causes a mem_address_not_aligned exception. If the effective
address is not word-aligned, an attempt to execute an LDUWA or LDSWA
instruction causes a mem_address_not_aligned exception. If the effective address is
not doubleword-aligned, an attempt to execute an LDXA instruction causes a
mem_address_not_aligned exception.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI
is 0, these instructions cause a privileged_action exception. In privileged mode
(PSTATE.priv = 1 and HPSTATE.hpriv = 0), if the ASI is in the range 3016 to 7F16,
these instructions cause a privileged_action exception.

LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, and LDUWA can be used with any
of the following ASIs, subject to the privilege mode rules described for the
privileged_action exception above. Use of any other ASI with these instructions
causes a data_access_exception xception.

LDXA can be used with any ASI (including, but not limited to, the above list), unless
it either (a) violates the privilege mode rules described for the privileged_action
exception above or (b) is used with any of the following ASIs, which causes a
data_access_exception exception.

ASIs valid for LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, and LDUWA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE

ASIs invalid for LDXA (cause data_access_exception exception)

2416 (aliased to 2716, ASI_LDTX_N) 2C16 (aliased to 2F16, ASI_LDTX_NL)
2216 (ASI_LDTX_AIUP) 2A16 (ASI_LDTD_AIUP_L)

2316 (ASI_LDTX_AIUS) 2B16 (ASI_LDTX_AIUS_L)

2616 (ASI_LDTX_REAL) 2E16 (ASI_LDTX_REAL_L)

2716 (ASI_LDTX_N) 2F16 (ASI_LDTX_NL)

ASI_BLOCK_AS_IF_USER_PRIMARY ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE

ASI_BLOCK_AS_IF_USER_SECONDARY ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE

ASI_PST8_PRIMARY ASI_PST8_PRIMARY_LITTLE

ASI_PST8_SECONDARY ASI_PST8_SECONDARY_LITTLE

ASI_PST16_PRIMARY ASI_PST16_PRIMARY_LITTLE

ASI_PST16_SECONDARY ASI_PST16_SECONDARY_LITTLE

ASI_PST32_PRIMARY ASI_PST32_PRIMARY_LITTLE

ASI_PST32_SECONDARY ASI_PST32_SECONDARY_LITTLE
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Exceptions mem_address_not_aligned (all except LDSBA and LDUBA)
privileged_action
VA_watchpoint
data_access_exception
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error

See Also LD on page 240
STA on page 324

ASI_FL8_PRIMARY ASI_FL8_PRIMARY_LITTLE

ASI_FL8_SECONDARY ASI_FL8_SECONDARY_LITTLE

ASI_FL16_PRIMARY ASI_FL16_PRIMARY_LITTLE

ASI_FL16_SECONDARY ASI_FL16_SECONDARY_LITTLE

ASI_BLOCK_COMMIT_PRIMARY ASI_BLOCK_COMMIT_SECONDARY

E216 (ASI_LDTX_P) EA16 (ASI_LDTX_PL)

E316 (ASI_LDTX_S) EB16 (ASI_LDTX_SL)

ASI_BLOCK_PRIMARY ASI_BLOCK_PRIMARY_LITTLE

ASI_BLOCK_SECONDARY ASI_BLOCK_SECONDARY_LITTLE

ASIs invalid for LDXA (cause data_access_exception exception)
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7.51 Block Load

Description A block load (LDBLOCKF) instruction uses one of several special block-transfer
ASIs. Block transfer ASIs allow block loads to be performed accessing the same
address space as normal loads. Little-endian ASIs (those with an ‘L’ suffix) access
data in little-endian format; otherwise, the access is assumed to be big-endian. Byte
swapping is performed separately for each of the eight 64-bit (double-precision) F
registers used by the instruction.

The LDBLOCKF instruction is intended to be a processor-specific instruction,
which may or may not be implemented in future UltraSPARC Architecture
implementations. Therefore, it should only be used in platform-specific
dynamically-linked libraries, in hyperprivileged software, or in software created
by a runtime code generator that is aware of the specific virtual processor
implementation on which it is executing.

Instruc-tion
ASI
Value Operation Assembly Language Syntax Class

LDBLOCKF 1616 64-byte block load from primary address
space, user privilege

ldda
ldda

[regaddr] #ASI_BLK_AIUP, fregrd
[reg_plus_imm] %asi, fregrd

B2

LDBLOCKF 1716 64-byte block load from secondary
address space, user privilege

ldda
ldda

[regaddr] #ASI_BLK_AIUS, fregrd
[reg_plus_imm] %asi, fregrd

B2

LDBLOCKF 1E16 64-byte block load from primary address
space, little-endian, user privilege

ldda
ldda

[regaddr] #ASI_BLK_AIUPL, fregrd
[reg_plus_imm] %asi, fregrd

B2

LDBLOCKF 1F16 64-byte block load from secondary
address space, little-endian, user privilege

ldda
ldda

[regaddr] #ASI_BLK_AIUSL, fregrd
[reg_plus_imm] %asi, fregrd

B2

LDBLOCKF F016 64-byte block load from primary address
space

ldda
ldda

[regaddr] #ASI_BLK_P, fregrd
[reg_plus_imm] %asi, fregrd

B2

LDBLOCKF F116 64-byte block load from secondary
address space

ldda
ldda

[regaddr] #ASI_BLK_S, fregrd
[reg_plus_imm] %asi, fregrd

B2

LDBLOCKF F816 64-byte block load from primary address
space, little-endian

ldda
ldda

[regaddr] #ASI_BLK_PL, fregrd
[reg_plus_imm] %asi, fregrd

B2

LDBLOCKF F916 64-byte block load from secondary
address space, little-endian

ldda
ldda

[regaddr] #ASI_BLK_SL, fregrd
[reg_plus_imm] %asi, fregrd

B2

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd11 110011 simm_13rs1 I=1

rd11 110011 imm_asirs1 rs2I=0
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A block load instruction loads 64 bytes of data from a 64-byte aligned memory area
into the eight double-precision floating-point registers specified by rd. The lowest-
addressed eight bytes in memory are loaded into the lowest-numbered 64-bit
(double-precision) destination F register.

A block load only guarantees atomicity for each 64-bit (8-byte) portion of the 64
bytes it accesses.

The block load instruction is intended to support fast block-copy operations.

IMPL. DEP. #410-S10: The following aspects of the behavior of block load
(LDBLOCKF) instructions are implementation dependent:
■ What memory ordering model is used by LDBLOCKF (LDBLOCKF is not

required to follow TSO memory ordering)
■ Whether LDBLOCKF follows memory ordering with respect to stores (including

block stores), including whether the virtual processor detects read-after-write and
write-after-read hazards to overlapping addresses

■ Whether LDBLOCKF appears to execute out of order, or follow LoadLoad
ordering (with respect to older loads, younger loads, and other LDBLOCKFs)

■ Whether LDBLOCKF follows register-dependency interlocks, as do ordinary load
instructions

■ Whether LDBLOCKFs to non-cacheable locations are (a) strictly ordered, (b) not
strictly ordered and cause an illegal_instruction exception, or (c) not strictly
ordered and silently execute without causing an exception (option (c) is strongly
discouraged)

■ Whether VA_watchpoint exceptions are recognized on accesses to all 64 bytes of a
LDBLOCKF (the recommended behavior), or only on the first eight bytes

■ Whether the MMU ignores the side-effect bit (TTE.e) for LDBLOCKF accesses

Programming
Note

LDBLOCKF is intended to be a processor-specific instruction
(see the warning at the top of page 245). If LDBLOCKF must be
used in software intended to be portable across current and
previous processor implementations, then it must be coded to
work in the face of any implementation variation that is
permitted by implementation dependency #410-S10, described
below.
246 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006



LDBLOCKF
For further restrictions on the behavior of the block load instruction, see
implementation-specific processor documentation.

Exceptions. An illegal_instruction exception occurs if LDBLOCKF’s floating-point
destination registers are not aligned on an eight-double-precision register boundary.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an LDBLOCKF instruction causes an fp_disabled exception.

If the least significant 6 bits of the effective memory address in an LDBLOCKF
instruction are nonzero, a mem_address_not_aligned exception occurs.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI
is 0 (ASIs 1616, 1716, 1E16, and 1F16), LDBLOCKF causes a privileged_action
exception.

An access caused by LDBLOCKF may trigger a VA_watchpoint exception (impl. dep.
#410-S10).

Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
privileged_action
VA_watchpoint (impl. dep. #410-S10)
data_access_exception
fast_data_access_MMU_miss

Programming
Note

If ordering with respect to earlier stores is important (for
example, a block load that overlaps a previous store) and read-
after-write hazards are not detected, there must be a MEMBAR
#StoreLoad instruction between earlier stores and a block
load.

If ordering with respect to later stores is important, there must
be a MEMBAR #LoadStore instruction between a block load
and subsequent stores.

If LoadLoad ordering with respect to older or younger loads or
other block load instructions is important and is not provided
by an implementation, an intervening MEMBAR #LoadLoad is
required.

Implementation
Note

In all UltraSPARC Architecture implementations, the MMU
ignores the side-effect bit (TTE.e) for LDBLOCKF accesses (impl.
dep. #410-S10).

Implementation
Note

LDBLOCKF shares an opcode with LDDFA and LDSHORTF; it
is distinguished by the ASI used.
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data_access_MMU_miss
data_access_MMU_error

See Also STBLOCKF on page 328
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7.52 Load Floating-Point

‡ Encoded floating-point register value, as described on page 51.

Description The load single floating-point instruction (LDF) copies a word from memory into 32-
bit floating-point destination register FS [rd].

The load doubleword floating-point instruction (LDDF) copies a word-aligned
doubleword from memory into a 64-bit floating-point destination register, FD [rd].
The unit of atomicity for LDDF is 4 bytes (one word).

The load quad floating-point instruction (LDQF) copies a word-aligned quadword
from memory into a 128-bit floating-point destination register, FQ [rd]. The unit of
atomicity for LDQF is 4 bytes (one word).

The load floating-point state register instruction (LDXFSR) waits for all FPop
instructions that have not finished execution to complete and then loads a
doubleword from memory into the FSR. LDXFSR does not alter the ver, ftt, qne, or
reserved fields of FSR (see page 61).

These load floating-point instructions access memory using the implicit ASI (see
page 104).

If i = 0, the effective address for these instructions is “R[rs1] + R[rs2]” and if i = 0,
the effective address is “R[rs1] + sign_ext(simm13)”.

Instruction op3 rd Operation Assembly Language Syntax Class

LDF 10 0000 0–31 Load Floating-Point Register ld [address], fregrd A1

LDDF 10 0011 ‡ Load Double Floating-Point Register ldd [address], fregrd A1

LDQF 10 0010 ‡ Load Quad Floating-Point Register ldq [address], fregrd C3

LDXFSR 10 0001 1 Load Floating-Point State Register ldx [address], %fsr A1

— 10 0001 2–31 Reserved

Programming
Note

For future compatibility, software should only issue an LDXFSR
instruction with a zero value (or a value previously read from
the same field) written into any reserved field of FSR.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
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Exceptions. An attempt to execute an LDF, LDDF, LDQF, or LDXFSR instruction
when i = 0 and instruction bits 12:5 are nonzero causes an illegal_instruction
exception. An attempt to execute an instruction encoded as op = 2, op3 = 2116, and
rd > 1 causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an LDF, LDDF, LDQF, or LDXFSR instruction causes an
fp_disabled exception.

If the effective address is not word-aligned, an attempt to execute an LDF instruction
causes a mem_address_not_aligned exception. If the effective address is not
doubleword-aligned, an attempt to execute an LDXFSR instruction causes a
mem_address_not_aligned exception.

LDDF requires only word alignment. However, if the effective address is word-
aligned but not doubleword-aligned, an attempt to execute an LDDF instruction
causes an LDDF_mem_address_not_aligned exception. In this case, trap handler
software must emulate the LDDF instruction and return (impl. dep. #109-V9-
Cs10(a)).

LDQF requires only word alignment. However, if the effective address is word-
aligned but not quadword-aligned, an attempt to execute an LDQF instruction
causes an LDQF_mem_address_not_aligned exception. In this case, trap handler
software must emulate the LDQF instruction and return (impl. dep. #111-V9-
Cs10(a)).

An attempt to execute an LDQF instruction when rd{1} ≠ 0 causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

Destination Register(s) when Exception Occurs. If aload floating-point
instruction generates an exception that causes a precise trap, the destination floating-
point register(s) remain unchanged.

Programming
Note

Some compilers issued sequences of single-precision loads for
SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9 processors, since emulation of
misaligned loads is expected to be fast, compilers should issue
sets of single-precision loads only when they can determine that
doubleword or quadword operands are not properly aligned.

Implementation
Note

Since UltraSPARC Architecture 2005 processors do not implement
in hardware instructions (including LDQF) that refer to quad-
precision floating-point registers, the
LDQF_mem_address_not_aligned and fp_exception_other (with
FSR.ftt = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.
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IMPL. DEP. #44-V8-Cs10(a): If a load floating-point instruction generates an
exception that causes a non-precise trap, the contents of the destination floating-point
register(s) remain unchanged or are undefined.

Exceptions illegal_instruction
fp_disabled
LDDF_mem_address_not_aligned
mem_address_not_aligned
fp_exception_other (FSR.ftt = invalid_fp_register (LDQF only))
VA_watchpoint
data_access_exception
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error

See Also Load Floating-Point from Alternate Space on page 252
Load Floating-Point State Register on page 256
Store Floating-Point on page 332

Implementation
Note

LDXFSR shares an opcode with the LDFSR instruction (and
possibly with other implementation-dependent instructions);
they are differentiated by the instruction rd field. An attempt to
execute the op = 112, op3 = 10 00012 opcode with an invalid rd
value (rd > 1) causes an illegal_instruction exception.
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7.53 Load Floating-Point from Alternate
Space

‡ Encoded floating-point register value, as described in Floating-Point Register Number Encoding on page 51.

Description The load single floating-point from alternate space instruction (LDFA) copies a word
from memory into 32-bit floating-point destination register FS [rd].

The load double floating-point from alternate space instruction (LDDFA) copies a
word-aligned doubleword from memory into a 64-bit floating-point destination
register, FD [rd]. The unit of atomicity for LDDFA is 4 bytes (one word).

The load quad floating-point from alternate space instruction (LDQFA) copies a
word-aligned quadword from memory into a 128-bit floating-point destination
register, FQ [rd]. The unit of atomicity for LDQFA is 4 bytes (one word).

If i = 0, these instructions contain the address space identifier (ASI) to be used for the
load in the imm_asi field and the effective address for the instruction is
“R[rs1] + R[rs2]”. If i = 1, the ASI to be used is contained in the ASI register and the
effective address for the instruction is “R[rs1] + sign_ext(simm13)”.

Exceptions. If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no
FPU is present, an attempt to execute an LDFA, LDDFA, or LDQFA instruction
causes an fp_disabled exception.

LDFA causes a mem_address_not_aligned exception if the effective memory address
is not word-aligned.

Instruction op3 rd Operation Assembly Language Syntax Class

LDFAPASI 11 0000 0–31 Load Floating-Point Register
from Alternate Space

lda
lda

[regaddr] imm_asi, fregrd
[reg_plus_imm] %asi, fregrd

A1

LDDFAPASI 11 0011 ‡ Load Double Floating-Point
Register from Alternate Space

ldda
ldda

[regaddr] imm_asi, fregrd
[reg_plus_imm] %asi, fregrd

A1

LDQFAPASI 11 0010 ‡ Load Quad Floating-Point
Register from Alternate Space

ldqa
ldqa

[regaddr] imm_asi, fregrd
[reg_plus_imm] %asi, fregrd

C3

V9 Compatibility
Note

LDFA, LDDFA, and LDQFA cause a privileged_action exception if
PSTATE.priv = 0 and bit 7 of the ASI is 0.

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
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LDDFA requires only word alignment. However, if the effective address is word-
aligned but not doubleword-aligned, LDDFA causes an
LDDF_mem_address_not_aligned exception. In this case, trap handler software
must emulate the LDDFA instruction and return (impl. dep. #109-V9-Cs10(b)).

LDQFA requires only word alignment. However, if the effective address is word-
aligned but not quadword-aligned, LDQFA causes an
LDQF_mem_address_not_aligned exception. In this case, trap handler software
must emulate the LDQFA instruction and return (impl. dep. #111-V9-Cs10(b)).

An attempt to execute an LDQFA instruction when rd{1} ≠ 0 causes an
fp_exception_other (with FSR.ftt = invalid_fp_register) exception.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI
is 0, this instruction causes a privileged_action exception. In privileged mode
(PSTATE.priv = 1 and HPSTATE.hpriv = 0), if the ASI is in the range 3016 to 7F16, this
instruction causes a privileged_action exception.

LDFA and LDQFA can be used with any of the following ASIs, subject to the
privilege mode rules described for the privileged_action exception above. Use of any
other ASI with these instructions causes a data_access_exception exception.

Implementation
Note

Since UltraSPARC Architecture 2005 processors do not implement
in hardware instructions (including LDQFA) that refer to quad-
precision floating-point registers, the
LDQF_mem_address_not_aligned and fp_exception_other (with
FSR.ftt = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.

Programming
Note

Some compilers issued sequences of single-precision loads for
SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9 processors, since emulation of
misaligned loads is expected to be fast, compilers should issue
sets of single-precision loads only when they can determine that
doubleword or quadword operands are not properly aligned.

ASIs valid for LDFA and LDQFA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE
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LDDFA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
the LDDFA instruction causes a data_access_exception exception.

Behavior with Partial Store ASIs. ASIs C016–C516 and C816–CD16 are only
defined for use in Partial Store operations (see page 341). None of them should be
used with LDDFA; however, if any of those ASIs is used with LDDFA, the LDDFA
behaves as follows:

1. IMPL. DEP. #257-U3: If an LDDFA opcode is used with an ASI of C016–C516 or
C816–CD16 (Partial Store ASIs, which are an illegal combination with LDDFA) and
a memory address is specified with less than 8-byte alignment, the virtual
processor generates an exceptoin. It is implementation dependent whether the
generated exception is a data_access_exception, mem_address_not_aligned, or
LDDF_mem_address_not_aligned exception.

2. If the memory address is correctly aligned, the virtual processor generates a
data_access_exception.

Destination Register(s) when Exception Occurs. If a load floating-point
alternate instruction generates an exception that causes a precise trap, the
destination floating-point register(s) remain unchanged.

IMPL. DEP. #44-V8-Cs10(b): If a load floating-point alternate instruction generates
an exception that causes a non-precise trap, it is implementation dependent whether
the contents of the destination floating-point register(s) are undefined or are
guaranteed to remain unchanged.

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE

ASIs valid for LDDFA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE

Implementation
Note

LDDFA shares an opcode with the LDBLOCKF and LDSHORTF
instructions; it is distinguished by the ASI used.

ASIs valid for LDFA and LDQFA
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Exceptions illegal_instruction

fp_disabled
LDDF_mem_address_not_aligned
mem_address_not_aligned
fp_exception_other (FSR.ftt = invalid_fp_register (LDQFA only))
privileged_action
VA_watchpoint
fast_data_access_MMU_miss

data_access_MMU_miss
data_access_MMU_error

See Also Load Floating-Point on page 249
Block Load on page 245
Store Short Floating-Point on page 344
Store Floating-Point into Alternate Space on page 335
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7.54 Load Floating-Point State Register

Description The load floating-point state register lower instruction (LDFSR) waits for all FPop
instructions that have not finished execution to complete and then loads a word
from memory into the less significant 32 bits of the FSR. The upper 32 bits of FSR
are unaffected by LDFSR. LDFSR does not alter the ver, ftt, qne, or reserved fields of
FSR (see page 61).

LDFSR accesses memory using the implicit ASI (see page 120).

An attempt to execute an LDFSR instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an LDFSR instruction causes an fp_disabled exception.

LDFSR causes a mem_address_not_aligned exception if the effective memory
address is not word-aligned.

The LDFSR instruction is deprecated and should not be used in new software.
The LDXFSR instruction should be used instead.

Opcode op3 rd Operation Assembly Language Syntax Class

LDFSRD 10 0001 0 Load Floating-Point State Register Lower ld [address], %fsr C2

Programming
Note

For future compatibility, software should only issue an LDFSR
instruction with a zero value (or a value previously read from
the same field) in any reserved field of FSR.

V8 Compatibility
Note

The SPARC V9 architecture supports two different instructions
to load the FSR: the SPARC V8 LDFSR instruction is defined to
load only the less significant 32 bits of the FSR, whereas
LDXFSR allows SPARC V9 programs to load all 64 bits of the
FSR.w

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
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Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
VA_watchpoint
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error

Implementation
Note

LDFSR shares an opcode with the LDXFSR instruction (and
possibly with other implementation-dependent instructions);
they are differentiated by the instruction rd field. An attempt to
execute the op = 112, op3 = 10 00012 opcode with an invalid rd
value (rd > 1) causes an illegal_instruction exception.
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7.55 Short Floating-Point Load

Description Short floating-point load instructions allow an 8- or 16-bit value to be loaded from
memory into a 64-bit floating-point register.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an LDSHORTF instruction causes an fp_disabled exception.

An 8-bit load places the loaded value in the least significant byte of FD[rd] and
zeroes in the most-significant three bytes of FD[rd]. An 8-bit LDSHORTF can be
performed from an arbitrary byte address.

A 16-bit load places the loaded value in the least significant halfword of FD[rd] and
zeroes in the more-significant halfword of FD[rd]. A 16-bit LDSHORTF from an
address that is not halfword-aligned (an odd address) causes a
mem_address_not_aligned exception.

Instruction
ASI

Value Operation Assembly Language Syntax Class

LDSHORTF D016 8-bit load from primary address space ldda
ldda

[regaddr] #ASI_FL8_P, fregrd
[reg_plus_imm] %asi, fregrd

C3

LDSHORTF D116 8-bit load from secondary address
space

ldda
ldda

[regaddr] #ASI_FL8_S, fregrd
[reg_plus_imm] %asi, fregrd

C3

LDSHORTF D816 8-bit load from primary address space,
little-endian

ldda
ldda

[regaddr] #ASI_FL8_PL, fregrd
[reg_plus_imm] %asi, fregrd

C3

LDSHORTF D916 8-bit load from secondary address space,
little-endian

ldda
ldda

[regaddr] #ASI_FL8_SL, fregrd
[reg_plus_imm] %asi, fregrd

C3

LDSHORTF D216 16-bit load from primary address space ldda
ldda

[regaddr] #ASI_FL16_P, fregrd
[reg_plus_imm] %asi, fregrd

C3

LDSHORTF D316 16-bit load from secondary address
space

ldda
ldda

[regaddr] #ASI_FL16_S, fregrd
[reg_plus_imm] %asi, fregrd

C3

LDSHORTF DA16 16-bit load from primary address space,
little-endian

ldda
ldda

[regaddr] #ASI_FL16_PL, fregrd
[reg_plus_imm] %asi, fregrd

C3

LDSHORTF DB16 16-bit load from secondary address
space, little-endian

ldda
ldda

[regaddr] #ASI_FL16_SL, fregrd
[reg_plus_imm] %asi, fregrd

C3

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd11 110011 simm_13rs1 i=1

rd11 110011 imm_asirs1 rs2i=0
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Little-endian ASIs transfer data in little-endian format from memory; otherwise,
memory is assumed to be in big-endian byte order.

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause a data_access_exception exception, and are
emulated in software.

Exceptions VA_watchpoint
data_access_exception
fast_data_access_MMU_miss
data_access_MMU_miss

Programming
Note

LDSHORTF is typically used with the FALIGNDATA instruction
(see Align Address on page 147) to assemble or store 64 bits from
noncontiguous components.

Implementation
Note

LDSHORTF shares an opcode with the LDBLOCKF and LDDFA
instructions; it is distinguished by the ASI used.
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7.56 Load-Store Unsigned Byte

Description The load-store unsigned byte instruction copies a byte from memory into R[rd], then
rewrites the addressed byte in memory to all 1’s. The fetched byte is right-justified in
the destination register R[rd] and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening
interrupts or deferred traps. In a multiprocessor system, two or more virtual
processors executing LDSTUB, LDSTUBA, CASA, CASXA, SWAP, or SWAPA
instructions addressing all or parts of the same doubleword simultaneously are
guaranteed to execute them in an undefined, but serial, order.

LDSTUB accesses memory using the implicit ASI (see page 104). The effective
address for this instruction is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1] + sign_ext(simm13)” if i = 1.

The coherence and atomicity of memory operations between virtual processors and
I/O DMA memory accesses are implementation dependent (impl. dep. #120-V9).

An attempt to execute an LDSTUB instruction when i = 0 and instruction bits 12:5
are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
VA_watchpoint
data_access_exception
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection

Instruction op3 Operation Assembly Language Syntax Class

LDSTUB 00 1101 Load-Store Unsigned Byte ldstub [address], regrd A1

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

25
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7.57 Load-Store Unsigned Byte to Alternate
Space

Description The load-store unsigned byte into alternate space instruction copies a byte from
memory into R[rd], then rewrites the addressed byte in memory to all 1’s. The
fetched byte is right-justified in the destination register R[rd] and zero-filled on the
left.

The operation is performed atomically, that is, without allowing intervening
interrupts or deferred traps. In a multiprocessor system, two or more virtual
processors executing LDSTUB, LDSTUBA, CASA, CASXA, SWAP, or SWAPA
instructions addressing all or parts of the same doubleword simultaneously are
guaranteed to execute them in an undefined, but serial, order.

If i = 0, LDSTUBA contains the address space identifier (ASI) to be used for the load
in the imm_asi field. If i = 1, the ASI is found in the ASI register. In nonprivileged
mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI is 0, this
instruction causes a privileged_action exception. In privileged mode
(PSTATE.priv = 1 and HPSTATE.hpriv = 0), if the ASI is in the range 3016 to 7F16, this
instruction causes a privileged_action exception.

LDSTUBA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
this instruction causes a data_access_exception exception.

Instruction op3 Operation Assembly Language Syntax Class

LDSTUBAPASI 01 1101 Load-Store Unsigned Byte into
Alternate Space

ldstuba
ldstuba

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

ASIs valid for LDSTUBA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
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Exceptions privileged_action

VA_watchpoint
data_access_exception
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
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7.58 Load Integer Twin Extended Word from
Alternate Space

The LDTXA instructions are not guaranteed to be implemented on all
UltraSPARC Architecture implementations. Therefore, they should only be
used in platform-specific dynamically-linked libraries, in hyperprivileged
software, or in software created by a runtime code generator that is aware of the
specific virtual processor implementation on which it is executing.

Instruction
ASI
Value Operation Assembly Language Syntax † Class

LDTXAN 2216 Load Integer Twin Extended Word,
as if user (nonprivileged), Primary
address space

ldtxa [regaddr] #ASI_LDTX_AIUP, regrd N1

2316 Load Integer Twin Extended Word,
as if user (nonprivileged), Secondary
address space

ldtxa [regaddr] #ASI_LDTX_AIUS, regrd N1

2616 Load Integer Twin Extended Word,
real address

ldtxa [regaddr] #ASI_LDTX_REAL, regrd N1

2716 Load Integer Twin Extended Word,
nucleus context

ldtxa [regaddr] #ASI_LDTX_N, regrd N1

2A16 Load Integer Twin Extended Word,
as if user (nonprivileged), Primary
address space, little endian

ldtxa [regaddr] #ASI_LDTX_AIUP_L, regrd N1

2B16 Load Integer Twin Extended Word,
as if user (nonprivileged), Secondary
address space, little endian

ldtxa [regaddr] #ASI_LDTX_AIUS_L, regrd N1

2E16 Load Integer Twin Extended Word,
real address, little endian

ldtxa [regaddr] #ASI_LDTX_REAL_L, regrd N1

2F16 Load Integer Twin Extended Word,
nucleus context, little-endian

ldtxa [regaddr] #ASI_LDTX_NL, regrd N1

LDTXAN E216 Load Integer Twin Extended Word,
Primary address space

ldtxa [regaddr] #ASI_LDTX_P, regrd N1

E316 Load Integer Twin Extended Word,
Secondary address space

ldtxa [regaddr] #ASI_LDTX_S, regrd N1

EA16 Load Integer Twin Extended Word,
Primary address space, little endian

ldtxa [regaddr] #ASI_LDTX_PL, regrd N1

EB16 Load Integer Twin Extended Word,
Secondary address space, little-endian

ldtxa [regaddr] #ASI_LDTX_SL, regrd N1

† The original assembly language syntax for these instructions used the “ldda” instruction mnemonic. That syntax is now deprecated.
Over time, assemblers will support the new “ldtxa” mnemonic for this instruction. In the meantime, some existing assemblers may
only recognize the original “ldda” mnemonic.

VIS 2+
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Description ASIs 2616, 2E16, E216, E316, F016, and F116 are used with the LDTXA instruction to
atomically read a 128-bit data item into a pair of 64-bit R registers (a “twin extended
word”). The data are placed in an even/odd pair of 64-bit registers. The lowest-
address 64 bits are placed in the even-numbered register; the highest-address 64 bits
are placed in the odd-numbered register.

ASIs E216, E316, F016, and F116 perform an access using a virtual address, while ASIs
2616 and 2E16 use a real address.

An LDTXA instruction that performs a little-endian access behaves as if it comprises
two 64-bit loads (performed atomically), each of which is byte-swapped
independently before being written into its respective destination register.

Exceptions. An attempt to execute an LDTXA instruction with an odd-numbered
destination register (rd{0} = 1) causes an illegal_instruction exception.

An attempt to execute an LDTXA instruction with an effective memory address that
is not aligned on a 16-byte boundary causes a mem_address_not_aligned exception.

IMPL. DEP. #413-S10: It is implementation dependent whether VA_watchpoint and
PA_watchpoint exceptions are recognized on accesses to all 16 bytes of a LDTXA
instruction (the recommended behavior) or only on accesses to the first 8 bytes.

An attempted access by an LDTXA instruction to noncacheable memory causes an a
data_access_exception exception (impl. dep. #306-U4-Cs10).

The virtual processor MMU does not provide virtual-to-real translation for ASIs 2616
and 2E16; the effective address provided with either of those ASIs is interpreted
directly as a real address.

Note Execution of an LDTXA instruction with rd = 0 modifies only
R[1].

Programming
Note

A key use for this instruction is to read a full TTE entry (128 bits,
tag and data) in a TSB directly, without using software
interlocks. The “real address” variants can perform the access
using a real address, bypassing the VA-to-RA translation.

Programming
Note

In hyperprivileged mode, an access to ASI E216, E316, F016, or
F116 is performed using physical (not virtual) addressing.

Compatibility
Note

ASIs 2716, 2F16, 2616, and 2E16 are now standard ASIs that
replace (respectively) ASIs 2416, 2C16, 3416, and 3C16 that were
supported in some previous UltraSPARC implementations.

rd11 01 0011 imm_asirs1 rs2i=0

31 24 02530 29 19 18 14 13 12 5 4
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A mem_address_not_aligned trap is taken if the access is not aligned on a 128-byte
boundary.

Exceptions illegal_instruction
mem_address_not_aligned
privileged_action
VA_watchpoint (impl. dep. #413-S10)
data_access_exception
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
PA_watchpoint (impl. dep. #413-S10)
data_access_error

Implementation
Note

LDTXA shares an opcode with the “i = 0” variant of the
(deprecated) LDTWA instruction. See Load Integer Twin Word
from Alternate Space on page 268.
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7.59 Load Integer Twin Word

Description The load integer twin word instruction (LDTW) copies two words (with doubleword
alignment) from memory into a pair of R registers. The word at the effective
memory address is copied into the least significant 32 bits of the even-numbered R
register. The word at the effective memory address + 4 is copied into the least
significant 32 bits of the following odd-numbered R register. The most significant 32
bits of both the even-numbered and odd-numbered R registers are zero-filled.

Load integer twin word instructions access memory using the implicit ASI (see
page 104). If i = 0, the effective address for these instructions is “R[rs1] + R[rs2]” and
if i = 0, the effective address is “R[rs1] + sign_ext(simm13)”.

With respect to little endian memory, an LDTW instruction behaves as if it comprises
two 32-bit loads, each of which is byte-swapped independently before being written
into its respective destination register.

IMPL. DEP. #107-V9a: It is implementation dependent whether LDTW is
implemented in hardware. If not, an attempt to execute an LDTW instruction will
cause an unimplemented_LDTW exception.

The LDTW instruction is deprecated and should not be used in new software. It
is provided only for compatibility with previous versions of the architecture.The
LDX instruction should be used instead.

Instruction op3 Operation Assembly Language Syntax † Class

LDTWD 00 0011 Load Integer Twin Word ldtw [address], regrd D2

† The original assembly language syntax for this instruction used an “ldd” instruction mnemonic, which is now
deprecated. Over time, assemblers will support the new “ldtw” mnemonic for this instruction.  In the mean-
time, some existing assemblers may only recognize the original “ldd” mnemonic.

Note Execution of an LDTW instruction with rd = 0 modifies only
R[1].

Programming
Note

LDTW is provided for compatibility with existing SPARC V8
software. It may execute slowly on SPARC V9 machines because
of data path and register-access difficulties.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
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The least significant bit of the rd field in an LDTW instruction is unused and should
always be set to 0 by software. An attempt to execute an LDTW instruction that
refers to a misaligned (odd-numbered) destination register causes an
illegal_instruction exception.

An attempt to execute an LDTW instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If the effective address is not doubleword-aligned, an attempt to execute an LDTW
instruction causes a mem_address_not_aligned exception.

A successful LDTW instruction operates atomically.

Exceptions unimplemented_LDTW
illegal_instruction
mem_address_not_aligned
VA_watchpoint
data_access_exception
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error

See Also LDW/LDX on page 240
STTW on page 346

SPARC V9
Compatibility

Note

LDTW was (inaccurately) named LDD in the SPARC V8 and
SPARC V9 specifications. It does not load a doubleword; it
loads two words (into two registers), and has been renamed
accordingly.
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7.60 Load Integer Twin Word from Alternate
Space

Description The load integer twin word from alternate space instruction (LDTWA) copies two
words (with doubleword alignment) from memory into a pair of R registers. The
word at the effective memory address is copied into the least significant 32 bits of
the even-numbered R register. The word at the effective memory address + 4 is
copied into the least significant 32 bits of the following odd-numbered R register.
The most significant 32 bits of both the even-numbered and odd-numbered R
registers are zero-filled.

If i = 0, the LDTWA instruction contains the address space identifier (ASI) to be used
for the load in its imm_asi field and the effective address for the instruction is
“R[rs1] + R[rs2]”. If i = 1, the ASI to be used is contained in the ASI register and the
effective address for the instruction is “R[rs1] + sign_ext(simm13)”.

With respect to little endian memory, an LDTWA instruction behaves as if it is
composed of two 32-bit loads, each of which is byte-swapped independently before
being written into its respective destination register.

The LDTWA instruction is deprecated and should not be used in new software.
The LDXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

LDTWAD, PASI 01 0011 Load Integer Twin Word from Alternate
Space

ldtwa
ldtwa

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

‡

† The original assembly language syntax for this instruction used an “ldda” instruction mnemonic, which is now deprecated. Over time,
assemblers will support the new “ldtwa” mnemonic for this instruction.  In the meantime, some assemblers may only recognize the
original “ldda” mnemonic.

  ‡ Y3 for restricted ASIs (0016-7F16); D2 for unrestricted ASIs   (8016-FF16)

Note Execution of an LDTWA instruction with rd = 0 modifies only
R[1].

31 24 02530 29 19 18

rd11 op3 imm_asi
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rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
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IMPL. DEP. #107-V9b: It is implementation dependent whether LDTWA is
implemented in hardware. If not, an attempt to execute an LDTWA instruction will
cause an unimplemented_LDTW exception so that it can be emulated.

The least significant bit of the rd field in an LDTWA instruction is unused and
should always be set to 0 by software. An attempt to execute an LDTWA instruction
that refers to a misaligned (odd-numbered) destination register causes an
illegal_instruction exception.

If the effective address is not doubleword-aligned, an attempt to execute an LDTWA
instruction causes a mem_address_not_aligned exception.

A successful LDTWA instruction operates atomically.

LDTWA causes a mem_address_not_aligned exception if the address is not
doubleword-aligned.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI
is 0, these instructions cause a privileged_action exception. In privileged mode
(PSTATE.priv = 1 and HPSTATE.hpriv = 0), if the ASI is in the range 3016 to 7F16,
these instructions cause a privileged_action exception.

LDTWA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
this instruction causes a data_access_exception exception (impl. dep. #300-U4-
Cs10).

Programming
Note

LDTWA is provided for compatibility with existing SPARC V8
software. It may execute slowly on SPARC V9 machines because
of data path and register-access difficulties.

If LDTWA is emulated in software, an LDXA instruction
instruction should be used for the memory access in the
emulation code in order to preserve atomicity.

SPARC V9
Compatibility

Note

LDTWA was (inaccurately) named LDDA in the SPARC V8 and
SPARC V9 specifications.

ASIs valid for LDTWA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

2216‡ (ASI_LDTX_AIUP) 2A16‡ (ASI_LDTD_AIUP_L)

2316‡ (ASI_LDTX_AIUS) 2B16‡ (ASI_LDTX_AIUS_L)

2416‡ (aliased to 2716, ASI_LDTX_N) 2C16‡ (aliased to 2F16, ASI_LDTX_NL)
2616‡ (ASI_LDTX_REAL) 2E16‡ (ASI_LDTX_REAL_L)

2716‡ (ASI_LDTX_N) 2F16‡ (ASI_LDTX_NL)
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Exceptions unimplemented_LDTW illegal_instruction
mem_address_not_aligned
privileged_action
VA_watchpoint
data_access_exception
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error

See Also LDWA/LDXA on page 242
STTWA on page 348

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE

E216‡ (ASI_LDTX_P) EA16‡ (ASI_LDTX_PL)

E316‡ (ASI_LDTX_S) EB16‡ (ASI_LDTX_SL)

‡ If this ASI is used with the opcode for LDTWA and i = 0, the LDTXA
instruction is executed instead of LDTWA. For behavior of
LDTXA, see Load Integer Twin Extended Word from Alternate Space on page

263.
If this ASI is used with the opcode for LDTWA and i = 1, behavior is

undefined.

Programming
Note

Nontranslating ASIs (see page 407) should only be accessed
using LDXA (not LDTWA) instructions. If an LDTWA
referencing a nontranslating ASI is executed, per the above
table, it generates a data_access_exceptionexception (impl. dep.
#300-U4-Cs10).

Implementation
Note

The deprecated instruction LDTWA shares an opcode with
LDTXA. LDTXA is not deprecated and has different address
alignment requirements than LDTWA. See Load Integer Twin
Extended Word from Alternate Space on page 263.

ASIs valid for LDTWA
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7.61 Memory Barrier

Description The memory barrier instruction, MEMBAR, has two complementary functions: to
express order constraints between memory references and to provide explicit control
of memory-reference completion. The membar_mask field in the suggested assembly
language is the concatenation of the cmask and mmask instruction fields.

MEMBAR introduces an order constraint between classes of memory references
appearing before the MEMBAR and memory references following it in a program.
The particular classes of memory references are specified by the mmask field.
Memory references are classified as loads (including load instructions LDSTUB[A],
SWAP[A], CASA, and CASX[A] and stores (including store instructions LDSTUB[A],
SWAP[A], CASA, CASXA, and FLUSH). The mmask field specifies the classes of
memory references subject to ordering, as described below. MEMBAR applies to all
memory operations in all address spaces referenced by the issuing virtual processor,
but it has no effect on memory references by other virtual processors. When the
cmask field is nonzero, completion as well as order constraints are imposed, and the
order imposed can be more stringent than that specifiable by the mmask field alone.

A load has been performed when the value loaded has been transmitted from
memory and cannot be modified by another virtual processor. A store has been
performed when the value stored has become visible, that is, when the previous
value can no longer be read by any virtual processor. In specifying the effect of
MEMBAR, instructions are considered to be executed as if they were processed in a
strictly sequential fashion, with each instruction completed before the next has
begun.

The mmask field is encoded in bits 3 through 0 of the instruction. TABLE 7-7 specifies
the order constraint that each bit of mmask (selected when set to 1) imposes on
memory references appearing before and after the MEMBAR. From zero to four
mask bits may be selected in the mmask field.

Instruction op3 Operation Assembly Language Syntax Class

MEMBAR 10 1000 Memory Barrier membar membar_mask A1

31 141924 18 13 12 02530 29

10 0 op3 0 1111 i=1 —

4 3

mmask

67

cmask
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The cmask field is encoded in bits 6 through 4 of the instruction. Bits in the cmask
field, described in TABLE 7-8, specify additional constraints on the order of memory
references and the processing of instructions. If cmask is zero, then MEMBAR
enforces the partial ordering specified by the mmask field; if cmask is nonzero, then
completion and partial order constraints are applied.

A MEMBAR instruction with both mmask = 0 and cmask = 0 is functionally a NOP.

For information on the use of MEMBAR, see Memory Ordering and Synchronization on
page 401 and Programming with the Memory Models contained in the separate volume
UltraSPARC Architecture Application Notes. For additional information about the
memory models themselves, see Chapter 9, Memory.

TABLE 7-7 MEMBAR mmask Encodings

Mask Bit
Assembly
Language Name Description

mmask{3} #StoreStore The effects of all stores appearing prior to the MEMBAR
instruction must be visible to all virtual processors before the
effect of any stores following the MEMBAR. Equivalent to the
deprecated STBAR instruction.

mmask{2} #LoadStore All loads appearing prior to the MEMBAR instruction must
have been performed before the effects of any stores following
the MEMBAR are visible to any other virtual processor.

mmask{1} #StoreLoad The effects of all stores appearing prior to the MEMBAR
instruction must be visible to all virtual processors before loads
following the MEMBAR may be performed.

mmask{0} #LoadLoad All loads appearing prior to the MEMBAR instruction must
have been performed before any loads following the MEMBAR
may be performed.

TABLE 7-8 MEMBAR cmask Encodings

Mask Bit Function
Assembly
Language Name Description

cmask{2} Synchronization
barrier

#Sync All operations (including nonmemory
reference operations) appearing prior to the
MEMBAR must have been performed and
the effects of any exceptions be visible before
any instruction after the MEMBAR may be
initiated.

cmask{1} Memory issue
barrier

#MemIssue All memory reference operations appearing
prior to the MEMBAR must have been
performed before any memory operation
after the MEMBAR may be initiated.

cmask{0} Lookaside barrier #Lookaside A store appearing prior to the MEMBAR
must complete before any load following the
MEMBAR referencing the same address can
be initiated.
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The coherence and atomicity of memory operations between virtual processors and
I/O DMA memory accesses are implementation dependent (impl. dep. #120-V9).

An attempt to execute a MEMBAR instruction when instruction bits 12:7 are nonzero
causes an illegal_instruction exception.

7.61.1 Memory Synchronization
The UltraSPARC Architecture provides some level of software control over memory
synchronization, through use of the MEMBAR and FLUSH instructions for explicit
control of memory ordering in program execution.

IMPL. DEP. #412-S10: An UltraSPARC Architecture implementation may define the
operation of each MEMBAR variant in any manner that provides the required
semantics.

V9 Compatibility
Note

MEMBAR with mmask = 816 and cmask = 016 (MEMBAR
#StoreStore) is identical in function to the SPARC V8 STBAR
instruction, which is deprecated.

Implementation
Note

MEMBAR shares an opcode withRDasr and STBARD; it is
distinguished by rs1 = 15, rd = 0, i = 1, and bit 12 = 0.

Implementation
Note

For an UltraSPARC Architecture virtual processor that only
provides TSO memory ordering semantics, three of the ordering
MEMBARs would normally be implemented as NOPs. TABLE 7-9
shows an acceptable implementation of MEMBAR for a TSO-
only UltraSPARC Architecture implementation.

If an UltraSPARC Architecture implementation provides a less
restrictive memory model than TSO (for example, RMO), the
implementation of the MEMBAR variants may be different. See
implementation-specific documentation for details.

TABLE 7-9 MEMBAR Semantics for TSO-only implementation

MEMBAR variant Preferred Implementation

#StoreStore, STBAR NOP

#LoadStore NOP

#StoreLoad #Sync

#LoadLoad NOP

#Sync #Sync

#MemIssue #Sync

#Lookaside #Sync
CHAPTER 7 • Instructions 273



MEMBAR
7.61.2 Synchronization of the Virtual Processor
Synchronization of a virtual processor forces all outstanding instructions to be
completed and any associated hardware errors to be detected and reported before
any instruction after the synchronizing instruction is issued.

Synchronization can be explicitly caused by executing a synchronizing MEMBAR
instruction (MEMBAR #Sync) or by executing an LDXA/STXA/LDDFA/STDFA
instruction with an ASI that forces synchronization.

During synchronization, if a disrupting trap condition due to a hardware error is
detected and external interrupts are enabled, the disrupting trap will occur before
the instruction after the synchronizing instruction is executed. In this case, the PC
value saved in TPC during trap entry will be the address of the instruction after the
synchronizing instruction.

7.61.3 TSO Ordering Rules affecting Use of MEMBAR
For detailed rules on use of MEMBAR to enable software to adhere to the ordering
rules on a virtual processor running with the TSO memory model, refer to TSO
Ordering Rules on page 398.

Exceptions illegal_instruction

Programming
Note

Completion of a MEMBAR #Sync instruction does not
guarantee that data previously stored has been written all the
way out to external memory (that is, that cache writebacks to
external memory have completed). Software cannot rely on
that behavior. There is no mechanism in the UltraSPARC
Architecture that allows software to wait for all previous stores
to be written to external memory (that is, for cache writebacks to
completely drain).
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7.62 Move Integer Register on Condition
(MOVcc)

For Integer Condition Codes

† synonym: movnz ‡ synonym: movz ◊ synonym: movgeu ∇ synonym: movlu

Instruction op3 cond Operation icc / xcc Test Assembly Language Syntax Class

MOVA 10 1100 1000 Move Always 1 mova i_or_x_cc, reg_or_imm11, regrd A1

MOVN 10 1100 0000 Move Never 0 movn i_or_x_cc, reg_or_imm11, regrd A1

MOVNE 10 1100 1001 Move if Not Equal not Z movne† i_or_x_cc, reg_or_imm11, regrd A1

MOVE 10 1100 0001 Move if Equal Z move‡ i_or_x_cc, reg_or_imm11, regrd A1

MOVG 10 1100 1010 Move if Greater not (Z or
N xor V))

movg i_or_x_cc, reg_or_imm11, regrd A1

MOVLE 10 1100 0010 Move if Less or
Equal

Z or (N xor V) movle i_or_x_cc, reg_or_imm11, regrd A1

MOVGE 10 1100 1011 Move if Greater
or Equal

not (N xor V) movge i_or_x_cc, reg_or_imm11, regrd A1

MOVL 10 1100 0011 Move if Less N xor V movl i_or_x_cc, reg_or_imm11, regrd A1

MOVGU 10 1100 1100 Move if Greater,
Unsigned

not (C or Z) movgu i_or_x_cc, reg_or_imm11, regrd A1

MOVLEU 10 1100 0100 Move if Less or
Equal, Unsigned

(C or Z) movleu i_or_x_cc, reg_or_imm11, regrd A1

MOVCC 10 1100 1101 Move if Carry
Clear (Greater or
Equal, Unsigned)

not C movcc◊ i_or_x_cc, reg_or_imm11, regrd A1

MOVCS 10 1100 0101 Move if Carry Set
(Less than,
Unsigned)

C movcs∇ i_or_x_cc, reg_or_imm11, regrd A1

MOVPOS 10 1100 1110 Move if Positive not N movpos i_or_x_cc, reg_or_imm11, regrd A1

MOVNEG 10 1100 0110 Move if Negative N movneg i_or_x_cc, reg_or_imm11, regrd A1

MOVVC 10 1100 1111 Move if Overflow
Clear

not V movvc i_or_x_cc, reg_or_imm11, regrd A1

MOVVS 10 1100 0111 Move if Overflow
Set

V movvs i_or_x_cc, reg_or_imm11, regrd A1

Programming
Note

In assembly language, to select the appropriate condition code,
include %icc or %xcc before the reg_or_imm11 field.
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For Floating-Point Condition Codes

† synonym: movnz ‡ synonym: movz

Instruction op3 cond Operation fcc Test Assembly Language Syntax Class

MOVFA 10 1100 1000 Move Always 1 mova %fccn, reg_or_imm11, regrd A1

MOVFN 10 1100 0000 Move Never 0 movn %fccn, reg_or_imm11, regrd A1

MOVFU 10 1100 0111 Move if Unordered U movu %fccn, reg_or_imm11, regrd A1

MOVFG 10 1100 0110 Move if Greater G movg %fccn, reg_or_imm11, regrd A1

MOVFUG 10 1100 0101 Move if Unordered
or Greater

G or U movug %fccn, reg_or_imm11, regrd A1

MOVFL 10 1100 0100 Move if Less L movl %fccn, reg_or_imm11, regrd A1

MOVFUL 10 1100 0011 Move if Unordered
or Less

L or U movul %fccn, reg_or_imm11, regrd A1

MOVFLG 10 1100 0010 Move if Less or
Greater

L or G movlg %fccn, reg_or_imm11, regrd A1

MOVFNE 10 1100 0001 Move if Not Equal L or G or U movne† %fccn, reg_or_imm11, regrd A1

MOVFE 10 1100 1001 Move if Equal E move‡ %fccn, reg_or_imm11, regrd A1

MOVFUE 10 1100 1010 Move if Unordered
or Equal

E or U movue %fccn, reg_or_imm11, regrd A1

MOVFGE 10 1100 1011 Move if Greater or
Equal

E or G movge %fccn, reg_or_imm11, regrd A1

MOVFUGE 10 1100 1100 Move if Unordered
or Greater or Equal

E or G or U movuge %fccn, reg_or_imm11, regrd A1

MOVFLE 10 1100 1101 Move if Less or
Equal

E or L movle %fccn, reg_or_imm11, regrd A1

MOVFULE 10 1100 1110 Move if Unordered
or Less or Equal

E or L or U movule %fccn, reg_or_imm11, regrd A1

MOVFO 10 1100 1111 Move if Ordered E or L or G movo %fccn, reg_or_imm11, regrd A1

Programming
Note

In assembly language, to select the appropriate condition code,
include %fcc0, %fcc1, %fcc2, or %fcc3 before the reg_or_imm11
field.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

cond rs2i=0

rd10 op3 cond simm11i=1

17

cc2

cc2

11

cc1

cc1

10

cc0

cc0
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Description These instructions test to see if cond is TRUE for the selected condition codes. If so,
they copy the value in R[rs2] if i field = 0, or “sign_ext(simm11)” if i = 1 into R[rd].
The condition code used is specified by the cc2, cc1, and cc0 fields of the
instruction. If the condition is FALSE, then R[rd] is not changed.

These instructions copy an integer register to another integer register if the condition
is TRUE. The condition code that is used to determine whether the move will occur
can be either integer condition code (icc or xcc) or any floating-point condition code
(fcc0, fcc1, fcc2, or fcc3).

These instructions do not modify any condition codes.

An attempt to execute a MOVcc instruction when either instruction bits 10:5 are
nonzero or (cc2 :: cc1 :: cc0) = 1012 or 1112 causes an illegal_instruction exception.

cc2 cc1 cc0 Condition Code

0 0 0 fcc0

0 0 1 fcc1

0 1 0 fcc2

0 1 1 fcc3

1 0 0 icc

1 0 1 Reserved (illegal_instruction)
1 1 0 xcc

1 1 1 Reserved (illegal_instruction)

Programming
Note

Branches cause the performance of many implementations to
degrade significantly. Frequently, the MOVcc and FMOVcc
instructions can be used to avoid branches. For example, the C
language if-then-else statement

if (A > B) then X = 1; else X = 0;

can be coded as

cmp %i0,%i2
bg,a %xcc,label
or %g0,1,%i3! X = 1
or %g0,0,%i3! X = 0

label:...

The above sequence requires four instructions, including a branch.
With MOVcc this could be coded as:

cmp %i0,%i2
or %g0,1,%i3! assume X = 1
movle %xcc,0,%i3! overwrite with X = 0

This approach takes only three instructions and no branches and
may boost performance significantly. Use MOVcc and FMOVcc
instead of branches wherever these instructions would increase
performance.
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If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a MOVcc instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled
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7.63 Move Integer Register on Register
Condition (MOVr)

† synonym: movre ‡ synonym: movrne

Description If the contents of integer register R[rs1] satisfy the condition specified in the rcond
field, these instructions copy their second operand (if i = 0, R[rs2]; if i = 1,
sign_ext(simm10)) into R[rd]. If the contents of R[rs1] do not satisfy the condition,
then R[rd] is not modified.

These instructions treat the register contents as a signed integer value; they do not
modify any condition codes.

Instruction op3 rcond Operation Test Assembly Language Syntax Class

— 10 1111 000 Reserved (illegal_instruction) —

MOVRZ 10 1111 001 Move if Register Zero R[rs1] = 0 movrz† regrs1, reg_or_imm10, regrd A1

MOVRLEZ 10 1111 010 Move if Register Less
Than or Equal to Zero

R[rs1] ≤ 0 movrlez regrs1, reg_or_imm10, regrd A1

MOVRLZ 10 1111 011 Move if Register Less
Than Zero

R[rs1] < 0 movrlz regrs1, reg_or_imm10, regrd A1

— 10 1111 100 Reserved (illegal_instruction) —

MOVRNZ 10 1111 101 Move if Register Not
Zero

R[rs1] ≠ 0 movrnz‡ regrs1, reg_or_imm10, regrd A1

MOVRGZ 10 1111 110 Move if Register
Greater Than Zero

R[rs1] > 0 movrgz regrs1, reg_or_imm10, regrd A1

MOVRGEZ 10 1111 111 Move if Register
Greater Than or Equal
to Zero

R[rs1] ≥ 0 movrgez regrs1, reg_or_imm10, regrd A1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm10i=1

rcond

rcond

10 9
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An attempt to execute a MOVr instruction when either instruction bits 9:5 are
nonzero or rcond = 0002 or 1002 causes an illegal_instruction exception.

Exceptions illegal_instruction

Implementation
Note

If this instruction is implemented by tagging each register value
with an n (negative) and a z (zero) bit, use the table below to
determine if rcond is TRUE.

Move Test
MOVRNZ not Z
MOVRZ Z
MOVRGEZ not N
MOVRLZ N
MOVRLEZ N or Z
MOVRGZ N nor Z
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7.64 Multiply Step

Description MULScc treats the less-significant 32 bits of R[rs1] and the less-significant 32 bits of
the Y register as a single 64-bit, right-shiftable doubleword register. The least
significant bit of R[rs1] is treated as if it were adjacent to bit 31 of the Y register. The
MULScc instruction performs an addition operation, based on the least significant
bit of Y.

Multiplication assumes that the Y register initially contains the multiplier, R[rs1]
contains the most significant bits of the product, and R[rs2] contains the
multiplicand. Upon completion of the multiplication, the Y register contains the least
significant bits of the product.

MULScc operates as follows:

1. If i = 0, the multiplicand is R[rs2]; if i = 1, the multiplicand is sign_ext(simm13).

2. A 32-bit value is computed by shifting the value from R[rs1] right by one bit with
“CCR.icc.n xor CCR.icc.v” replacing bit 31 of R[rs1]. (This is the proper sign for
the previous partial product.)

3. If the least significant bit of Y = 1, the shifted value from step (2) and the
multiplicand are added. If the least significant bit of the Y = 0, then 0 is added to
the shifted value from step (2).

The MULScc instruction is deprecated and should not be used in new software.
The MULX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

MULSccD 10 0100 Multiply Step and modify cc’s mulscc regrs1, reg_or_imm, regrd Y3

Note In a standard MULScc instruction, rs1 = rd.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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4. MULScc writes the following result values:

5. The Y register is shifted right by one bit, with the least significant bit of the
unshifted R[rs1] replacing bit 31 of Y.

An attempt to execute a MULScc instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

Register field Value written by MULScc

CCR.icc updated according to the result of the addition in step (3)
above

R[rd]{63:32} undefined

R[rd]{31:0} the least-significant 32 bits of the sum from step (3) above

Y the previous value of the Y register, shifted right by one
bit, with Y{31} replaced by the value of R[rs1]{0} prior to
shifting in step (2)

CCR.xcc undefined
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MULX / SDIVX / UDIVX
7.65 Multiply and Divide (64-bit)

Description MULX computes “R[rs1] × R[rs2]” if i = 0 or “R[rs1] × sign_ext(simm13)” if i = 1,
and writes the 64-bit product into R[rd]. MULX can be used to calculate the 64-bit
product for signed or unsigned operands (the product is the same).

SDIVX and UDIVX compute “R[rs1] ÷ R[rs2]” if i = 0 or
“R[rs1] ÷ sign_ext(simm13)” if i = 1, and write the 64-bit result into R[rd]. SDIVX
operates on the operands as signed integers and produces a corresponding signed
result. UDIVX operates on the operands as unsigned integers and produces a
corresponding unsigned result.

For SDIVX, if the largest negative number is divided by –1, the result should be the
largest negative number. That is:

8000 0000 0000 000016 ÷ FFFF FFFF FFFF FFFF16 = 8000 0000 0000 000016.

These instructions do not modify any condition codes.

An attempt to execute a MULX, SDIVX, or UDIVX instruction when i = 0 and
instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
division_by_zero

Instruction op3 Operation Assembly Language Class

MULX 00 1001 Multiply (signed or unsigned) mulx regrs1, reg_or_imm, regrd A1

SDIVX 10 1101 Signed Divide sdivx regrs1, reg_or_imm, regrd A1

UDIVX 00 1101 Unsigned Divide udivx regrs1, reg_or_imm, regrd A1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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7.66 No Operation

Description The NOP instruction changes no program-visible state (except that of the PC
register).

NOP is a special case of the SETHI instruction, with imm22 = 0 and rd = 0.

Exceptions None

Instruction op2 Operation Assembly Language Syntax Class

NOP 100 No Operation nop A1

Programming
Note

There are many other opcodes that may execute as NOPs;
however, this dedicated NOP instruction is only one guaranteed
to implemented efficiently across all implementations.

00 op2 imm22 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0rd = 0 0 0 0 0

31 24 02530 29 22 21
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7.67 NORMALW

Description NORMALWP is a privileged instruction that copies the value of the OTHERWIN
register to the CANRESTORE register, then sets the OTHERWIN register to zero.

In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and is emulated in
software.

Exceptions illegal_instruction (not implemented in hardware in UltraSPARC Architecture 2005)

See Also ALLCLEAN on page 148
INVALW on page 238
OTHERW on page 287
RESTORED on page 307
SAVED on page 315

Instruction Operation Assembly Language Syntax Class

NORMALWP “Other” register windows become “normal” register windows normalw C1

Programming
Notes

The NORMALW instruction is used when changing address
spaces. NORMALW indicates the current "other" windows are
now "normal" windows and should use the spill_n_normal and
fill_n_normal traps when they generate a trap due to window spill
or fill exceptions. The window state may become inconsistent if
NORMALW is used when CANRESTORE is nonzero.

This instruction allows window manipulations to be atomic,
without the value of N_REG_WINDOWS being visible to privileged
software and without an assumption that N_REG_WINDOWS is
constant (since hyperprivileged software can migrate a thread
among virtual processors, across which N_REG_WINDOWS may
vary).

31 1924 18 02530 29

10 fcn = 0 0100 11 0001 —
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7.68 OR Logical Operation

Description These instructions implement bitwise logical or operations. They compute “R[rs1]
op R[rs2]” if i = 0, or “R[rs1] op sign_ext(simm13)” if i = 1, and write the result into
R[rd].

ORcc and ORNcc modify the integer condition codes (icc and xcc). They set the
condition codes as follows:

■ icc.v, icc.c, xcc.v, and xcc.c are set to 0
■ icc.n is copied from bit 31 of the result
■ xcc.n is copied from bit 63 of the result
■ icc.z is set to 1 if bits 31:0 of the result are zero (otherwise to 0)
■ xcc.z is set to 1 if all 64 bits of the result are zero (otherwise to 0)

ORN and ORNcc logically negate their second operand before applying the main
(or) operation.

An attempt to execute an OR[N][cc] instruction when i = 0 and instruction bits 12:5
are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

Instruction op3 Operation Assembly Language Syntax Class

OR 00 0010 Inclusive or or regrs1, reg_or_imm, regrd A1

ORcc 01 0010 Inclusive or and modify cc’s orcc regrs1, reg_or_imm, regrd A1

ORN 00 0110 Inclusive or not orn regrs1, reg_or_imm, regrd A1

ORNcc 01 0110 Inclusive or not and modify cc’s orncc regrs1, reg_or_imm, regrd A1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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7.69 OTHERW

Description OTHERWP is a privileged instruction that copies the value of the CANRESTORE
register to the OTHERWIN register, then sets the CANRESTORE register to zero.

In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and is emulated in
software.

Exceptions illegal_instruction (not implemented in hardware in UltraSPARC Architecture 2005)

See Also ALLCLEAN on page 148
INVALW on page 238
NORMALW on page 285
RESTORED on page 307
SAVED on page 315

Instruction Operation Assembly Language Syntax Class

OTHERWP “Normal” register windows become “other”
register windows

otherw C1

Programming
Notes

The OTHERW instruction is used when changing address spaces.
OTHERW indicates the current "normal" register windows are
now "other" register windows and should use the spill_n_other
and fill_n_other traps when they generate a trap due to window
spill or fill exceptions. The window state may become inconsistent
if OTHERW is used when OTHERWIN is nonzero.

This instruction allows window manipulations to be atomic,
without the value of N_REG_WINDOWS being visible to privileged
software and without an assumption that N_REG_WINDOWS is
constant (since hyperprivileged software can migrate a thread
among virtual processors, across which N_REG_WINDOWS may
vary).

31 1924 18 02530 29

10 fcn = 0 0011 11 0001 —
CHAPTER 7 • Instructions 287



PDIST
7.70 Pixel Component Distance

Description Eight unsigned 8-bit values are contained in the 64-bit floating-point source registers
FD[rs1] and FD[rs2]. The corresponding 8-bit values in the source registers are
subtracted (that is, each byte in FD[rs2] is subtracted from the corresponding byte in
FD[rs1]). The sum of the absolute value of each difference is added to the integer in
FD[rd] and the resulting integer sum is stored in the destination register, FD[rd].

In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and is emulated in
software.

Exceptions illegal_instruction

Instruction opf Operation Assembly Language Syntax Class

PDIST 0 0011 1110 Distance between eight 8-bit components,
with accumulation

pdist fregrs1, fregrs2, fregrd C3

Programming
Notes

PDIST uses FD[rd] as both a source and a destination register.

Typically, PDIST is used for motion estimation in video
compression algorithms.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
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POPC
7.71 Population Count

Description POPC counts the number of one bits in R[rs2] if i = 0, or the number of one bits in
sign_ext(simm13) if i = 1, and stores the count in R[rd]. This instruction does not
modify the condition codes.

Instruction op3 Operation Assembly Language Syntax Class

POPC 10 1110 Population Count popc reg_or_imm, regrd D3

V9 Compatibility
Note

Instruction bits 18 through 14 must be zero for POPC. Other
encodings of this field (rs1) may be used in future versions of the
SPARC architecture for other instructions.

Programming
Note

POPC can be used to “find first bit set” in a register. A ‘C’-
language program illustrating how POPC can be used for this
purpose follows:

int ffs(zz)/* finds first 1 bit, counting from the LSB */
unsigned zz;
{

return popc ( zz ^ (∼  (–zz)));/* for nonzero zz */
}

Inline assembly language code for ffs() is:

neg %IN, %M_IN ! –zz(2’s complement)
xnor %IN, %M_IN, %TEMP ! ^ ∼  –zz (exclusive nor)
popc %TEMP,%RESULT ! result = popc(zz ^ ∼  –zz)
movrz %IN,%g0,%RESULT ! %RESULT should be 0 for %IN=0

where IN, M_IN, TEMP, and RESULT are integer registers.

Example computation:
             IN = ...00101000 !1st ‘1’ bit from right is
            –IN = ...11011000 !          bit 3 (4th bit)
          ~ –IN = ...00100111
     IN ^ ~ –IN = ...00001111
popc(IN ^ ~ –IN = 4

rd10 op3 0 0000 simm13i=1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

0 0000 rs2i=0
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In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and is emulated in
software.

An attempt to execute a POPC instruction when either instruction bits 18:14 are
nonzero, or i = 0 and instruction bits 12:5 are nonzero causes an illegal_instruction
exception.

Exceptions illegal_instruction

Programming
Note

POPC can be used to “centrifuge” all the ‘1’ bits in a register to the
least significant end of a destination register. Assembly-language
code illustrating how POPC can be used for this purpose follows:

popc %IN, %DEST
cmp %IN, -1 ! Test for pattern of all 1’s
mov -1, %TEMP ! Constant -1 -> temp register
sllx %TEMP,%DEST,%DEST ! (shift count of 64 same as 0)
not %DEST !
movcc %xcc, -1, %DEST ! If src was -1, result is -1

where IN, TEMP, and DEST are integer registers.
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PREFETCH
7.72 Prefetch

PREFETCH

PREFETCHA

Instruction op3 Operation Assembly Language Syntax Class

PREFETCH 10 1101 Prefetch Data prefetch [address],prefetch_fcn A1

PREFETCHAPASI 11 1101 Prefetch Data from
Alternate Space

prefetcha
prefetcha

[regaddr] imm_asi, prefetch_fcn
[reg_plus_imm] %asi,prefetch_fcn

A1

TABLE 7-10 Prefetch Variants, by Function Code

fcn Prefetch Variant

0 (Weak) Prefetch for several reads

1 (Weak) Prefetch for one read

2 (Weak) Prefetch for several writes and possibly reads

3 (Weak) Prefetch for one write

4 Prefetch page

5–15 (0516–0F16) Reserved (illegal_instruction)

16 (1016) Implementation dependent (NOP if not implemented)

17 (1116) Prefetch to nearest unified cache

18–19 (1216–1316) Implementation dependent (NOP if not implemented)

20 (1416) Strong Prefetch for several reads

21 (1516) Strong Prefetch for one read

22 (1616) Strong Prefetch for several writes and possibly reads

23 (1716) Strong Prefetch for one write

24-31 (1816–1F16) Implementation dependent (NOP if not implemented)

31 24 02530 29 19 18 14 13 12 5 4

fcn11 op3 rs1 simm13i=1

fcn11 op3 rs1 i=0 — rs2

fcn11 op3 imm_asirs1 rs2i=0

31 24 02530 29 19 18 14 13 12 5 4

fcn11 op3 rs1 simm13i=1
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Description A PREFETCH[A] instruction provides a hint to the virtual processor that software

expects to access a particular address in memory in the near future, so that the
virtual processor may take action to reduce the latency of accesses near that address.
Typically, execution of a prefetch instruction initiates movement of a block of data
containing the addressed byte from memory toward the virtual processor or creates
an address mapping.

If i = 0, the effective address operand for the PREFETCH instruction is
“R[rs1] + R[rs2]”; if i = 1, it is “R[rs1] + sign_ext (simm13)”.

PREFETCH instructions access the primary address space
(ASI_PRIMARY[_LITTLE]).

PREFETCHA instructions access an alternate address space. If i = 0, the address
space identifier (ASI) to be used for the instruction is in the imm_asi field. If i = 1, the
ASI is found in the ASI register.

A prefetch operates much the same as a regular load operation (including a possible
hardware tablewalk to load a TLB entry), but with certain important differences. In
particular, a PREFETCH[A] instruction is non-blocking; subsequent instructions can
continue to execute while the prefetch is in progress.

When executed in nonprivileged or privileged mode, PREFETCH[A] has the same
observable effect as a NOP. A prefetch instruction will not cause a trap if applied to
an illegal or nonexistent memory address. (impl. dep. #103-V9-Ms10(e))

IMPL. DEP. #103-V9-Ms10(a): The size and alignment in memory of the data block
prefetched is implementation dependent; the minimum size is 64 bytes and the
minimum alignment is a 64-byte boundary.

Variants of the prefetch instruction can be used to prepare the memory system for
different types of accesses.

IMPL. DEP. #103-V9-Ms10(b): An implementation may implement none, some, or
all of the defined PREFETCH[A] variants. It is implementation-dependent whether
each variant is (1) not implemented and executes as a NOP, (2) is implemented and
supports the full semantics for that variant, or (3) is implemented and only supports
the simple common-case prefetching semantics for that variant.

Implementation
Note

A PREFETCH[A] instruction may be used by software to:

• prefetch a cache line into a cache
• prefetch a valid address translation into a TLB
• invalidate a cache line that may have caused a correctable error during

a load instruction.

Programming
Note

Software may prefetch 64 bytes beginning at an arbitrary address
address by issuing the instructions

prefetch [address], prefetch_fcn
prefetch [address + 63], prefetch_fcn
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7.72.1 Exceptions
Prefetch instructions PREFETCH and PREFETCHA generate exceptions under the
conditions detailed in TABLE 7-11. Only the implementation-dependent prefetch
variants (see TABLE 7-10) may generate an exception under conditions not listed in
this table; the predefined variants only generate the exceptions listed here.

TABLE 7-11 Behavior of PREFETCH[A] Instructions Under Exceptional Conditions (1 of 2)

fcn Instruction Condition Result

any PREFETCH i = 0 and instruction bits 12:5 are
nonzero

illegal_instruction

any PREFETCHA reference to an ASI in the range
016-7F16, while in nonprivileged
mode (privileged_action condition)

executes as NOP

any PREFETCHA reference to an ASI in range
3016..7F16, while in privileged
mode (privileged_action condition)

executes as NOP

0-3
(weak)

PREFETCH[A] condition detected for MMU miss
(data_access_MMU_miss or
fast_data_access_MMU_miss )

executes as NOP

0-3
(weak)

PREFETCH[A] condition detected for
data_access_MMU_error

executes as NOP

0-4 PREFETCH[A] variant unimplemented executes as NOP

0-4 PREFETCHA reference to an invalid ASI
(ASI not listed in following table)

executes as NOP

0-4, 17,
20-23

PREFETCH[A] condition detected for ((TTE.cp = 0)
or ((fcn = 0) and TTE.cv = 0)), or
(TTE.e = 1)

executes as NOP

4, 20-23
(strong)

PREFETCH[A] prefetching the requested data
would be a very time-consuming
operation (condition detected for
data_access_MMU_miss )

executes as NOP

4, 20-23
(strong)

PREFETCH[A] prefetching the requested data
would be a time-consuming
operation (condition detected for
fast_data_access_MMU_miss )

executes as NOP

4, 20-23
(strong)

PREFETCH[A] condition detected for
data_access_MMU_error,
hw_corrected_error, or
sw_recoverable_error
(impl. dep. #_?_)

data_access_MMU_error,
hw_corrected_error, or
sw_recoverable_error
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7.72.2 Weak versus Strong Prefetches
Some prefetch variants are available in two versions, “Weak” and “Strong”.

From software’s perspective, the difference between the two is the degree of
certainty that the data being prefetched will subsequently be accessed. That, in
turn, affects the amount of effort (time) it’s willing for the underlying hardware to
invest to perform the prefetch. If the prefetch is speculative (software believes the
data will probably be needed, but isn’t sure), a Weak prefetch will initiate data
movement if the operation can be performed quickly, but abort the prefetch and
behave like a NOP if it turns out that performing the full prefetch will be time-
consuming. If software has very high confidence that data being prefetched will
subsequently be accessed, then a Strong prefetch requests that the prefetch operation
will continue, even if the prefetch operation does become time-consuming.

From the virtual processor’s perspective, the difference between a Weak and a
Strong prefetch is whether the prefetch is allowed to perform a time-consuming
operation1 in order to complete. If a time-consuming operation is required, a Weak
prefetch will abandon the operation and behave like a NOP while a Strong prefetch

5–15
(0516–0F16)

PREFETCH[A] (always) illegal_instruction

16-31
(1816–1F16)

PREFETCH[A] variant unimplemented executes as NOP

ASIs valid for PREFETCHA (all others are invalid)

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE

ASI_REAL ASI_REAL_LITTLE

1. such as a fast_data_access_MMU_miss trap, plus subsequently filling the cache line at the requested address

TABLE 7-11 Behavior of PREFETCH[A] Instructions Under Exceptional Conditions (2 of 2)

fcn Instruction Condition Result
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may pay the cost of performing the time-consuming operation so it can finish
initiating the requested data movement. Behavioral differences among loads and
prefetches are compared in TABLE 7-12.

7.72.3 Prefetch Variants
The prefetch variant is selected by the fcn field of the instruction. fcn values 5–15 are
reserved for future extensions of the architecture, and PREFETCH fcn values of 16–
19 and 24–31 are implementation dependent in UltraSPARC Architecture 2005.

Each prefetch variant reflects an intent on the part of the compiler or programmer, a
“hint” to the underlying virtual processor. This is different from other instructions
(except BPN), all of which cause specific actions to occur. An UltraSPARC
Architecture implementation may implement a prefetch variant by any technique, as
long as the intent of the variant is achieved (impl. dep. #103-V9-Ms10(b)).

The prefetch instruction is designed to treat common cases well. The variants are
intended to provide scalability for future improvements in both hardware and
compilers. If a variant is implemented, it should have the effects described below. In
case some of the variants listed below are implemented and some are not, a
recommended overloading of the unimplemented variants is provided in the SPARC
V9 specification. An implementation must treat any unimplemented prefetch fcn
values as NOPs (impl. dep. #103-V9-Ms10).

7.72.3.1 Prefetch for Several Reads (fcn = 0, 20(1416))

The intent of these variants is to cause movement of data into the cache nearest the
virtual processor.

TABLE 7-12 Comparative Behavior of Load and Weak Prefetch Operations

Condition

Behavior

Load Prefetch

On a µTLB miss, is an MMU access performed? Yes Yes

Upon detection of fast_data_access_MMU_miss exception... Traps NOP‡

Upon detection of privileged_action, data_access_exception,
data_access_protection, PA_watchpoint, or VA_watchpoint
exception…

Traps NOP‡

If page table entry has cp = 0, e = 1, and cv = 0 for Prefetch for
Several Reads

Traps NOP‡

If page table entry has nfo = 1 for a non-NoFault access… Traps NOP‡

If page table entry has w = 0 for any prefetch for write access
(fcn = 2, 3, 22, or 23)…

Traps NOP‡

Upon detection of fatal error or disrupting error conditions… Traps Traps

Instruction blocks until cache line filled? Yes No
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There are Weak and Strong versions of this prefetch variant; fcn = 0 is Weak and
fcn = 20 is Strong. The choice of Weak or Strong variant controls the degree of effort
that the virtual processor may expend to obtain the data.

7.72.3.2 Prefetch for One Read (fcn = 1, 21(1516))

The data to be read from the given address are expected to be read once and not
reused (read or written) soon after that. Use of this PREFETCH variant indicates
that, if possible, the data cache should be minimally disturbed by the data read from
the given address.

There are Weak and Strong versions of this prefetch variant; fcn = 1 is Weak and
fcn = 21 is Strong. The choice of Weak or Strong variant controls the degree of effort
that the virtual processor may expend to obtain the data.

7.72.3.3 Prefetch for Several Writes (and Possibly Reads)
(fcn = 2, 22(1616))

The intent of this variant is to cause movement of data in preparation for multiple
writes.

There are Weak and Strong versions of this prefetch variant; fcn = 2 is Weak and
fcn = 22 is Strong. The choice of Weak or Strong variant controls the degree of effort
that the virtual processor may expend to obtain the data.

Programming
Note

The intended use of this variant is for streaming relatively small
amounts of data into the primary data cache of the virtual
processor.

Programming
Note

The intended use of this variant is in streaming medium amounts
of data into the virtual processor without disturbing the data in
the primary data cache memory.

Programming
Note

An example use of this variant is to initialize a cache line, in
preparation for a partial write.

Implementation
Note

On a multiprocessor system, this variant indicates that exclusive
ownership of the addressed data is needed. Therefore, it may
have the additional effect of obtaining exclusive ownership of the
addressed cache line.
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7.72.3.4 Prefetch for One Write (fcn = 3, 23(1716))

The intent of this variant is to initiate movement of data in preparation for a single
write. This variant indicates that, if possible, the data cache should be minimally
disturbed by the data written to this address, because those data are not expected to
be reused (read or written) soon after they have been written once.

There are Weak and Strong versions of this prefetch variant; fcn = 3 is Weak and
fcn = 23 is Strong. The choice of Weak or Strong variant controls the degree of effort
that the virtual processor may expend to obtain the data.

7.72.3.5 Prefetch Page (fcn = 4)

In a virtual memory system, the intended action of this variant is for hardware (or
privileged or hyperprivileged software) to initiate asynchronous mapping of the
referenced virtual address (assuming that it is legal to do so).

In a non-virtual-memory system or if the addressed page is already mapped, this
variant has no effect.

7.72.4 Implementation-Dependent Prefetch Variants
(fcn = 16, 18, 19, and 24–31)
IMPL. DEP. #103-V9-Ms10(c): Whether and how PREFETCH fcns 16, 18, 19 and 24-
31 are implemented are implementation dependent. If a variant is not implemented,
it must execute as a NOP.

7.72.5 Additional Notes

Programming
Note

Prefetch Page is used is to avoid a later page fault for the given
address, or at least to shorten the latency of a page fault.

Implementation
Note

The mapping required by Prefetch Page may be performed by
privileged software, hyperprivileged software, or hardware.

Programming
Note

Prefetch instructions do have some “cost to execute”. As long as
the cost of executing a prefetch instruction is well less than the
cost of a cache miss, use of prefetching provides a net gain in
performance.

It does not appear that prefetching causes a significant number of
useless fetches from memory, though it may increase the rate of
useful fetches (and hence the bandwidth), because it more
efficiently overlaps computing with fetching.
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Exceptions illegal_instruction
data_access_MMU_error

Programming
Note

A compiler that generates PREFETCH instructions should
generate each of the variants where its use is most appropriate.
That will help portable software be reasonably efficient across a
range of hardware configurations.

Implementation
Note

Any effects of a data prefetch operation in privileged or
hyperprivileged code should be reasonable (for example, in
handling ECC errors, no page prefetching is allowed within code
that handles page faults). The benefits of prefetching should be
available to most privileged code.

Implementation
Note

A prefetch from a nonprefetchable location has no effect. It is up
to memory management hardware to determine how locations
are identified as not prefetchable.
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7.73 Read Ancillary State Register
Instruction rs1 Operation Assembly Language Syntax Class

RDYD 0 Read Y register (deprecated) rd %y, regrd C2

— 1 Reserved

RDCCR 2 Read Condition Codes register (CCR) rd %ccr, regrd A1

RDASI 3 Read ASI register rd %asi, regrd A1

RDTICKPnpt 4 Read TICK register rd %tick, regrd A1

RDPC 5 Read Program Counter (PC) rd %pc, regrd B2

RDFPRS 6 Read Floating-Point Registers Status (FPRS)
register

rd %fprs, regrd A1

— 7−14 Reserved

See text 15 STBAR, MEMBAR or Reserved; see text

RDPCRP 16 Read Performance Control registers (PCR) rd %pcr, regrd A1

RDPICPPIC 17 Read Performance Instrumentation Counters
register (PIC)

rd %pic, regrd A1

— 18 Reserved (impl. dep. #8-V8-Cs20, 9-V8-Cs20)

RDGSR 19 Read General Status register (GSR) rd %gsr, regrd A1

— 20–21 Reserved (impl. dep. #8-V8-Cs20, 9-V8-Cs20)

RDSOFTINTP 22 Read per-virtual processor Soft Interrupt register
(SOFTINT)

rd %softint, regrd N2

RDTICK_CMPRP 23 Read Tick Compare register (TICK_CMPR) rd %tick_cmpr, regrd N2

RDSTICKPnpt 24 Read System Tick Register (STICK) rd %sys_tick, regrd N2

RDSTICK_CMPRP 25 Read System Tick Compare register
(STICK_CMPR)

rd %sys_tick_cmpr, regrd N2

— 26-27 Reserved (impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 28-31 Implementation dependent
(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

31 141924 18 13 02530 29

10 rd 10 1000 rs1 —
12

i=0
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Description The Read Ancillary State Register (RDasr) instructions copy the contents of the state

register specified by rs1 into R[rd].

An RDasr instruction with rs1 = 0 is a (deprecated) RDY instruction (which should
not be used in new software).

RDPC copies the contents of the PC register into R[rd]. If PSTATE.am = 0, the full
64-bit address is copied into R[rd]. If PSTATE.am = 1, only a 32-bit address is saved;
PC{31:0} is copied to R[rd]{31:0} and R[rd]{63:32} is set to 0. (closed impl. dep. #125-
V9-Cs10)

RDFPRS waits for all pending FPops and loads of floating-point registers to
complete before reading the FPRS register.

The following values of rs1 are reserved for future versions of the architecture: 1, 7–
14, 18, 20-21, and 26-27.

IMPL. DEP. #47-V8-Cs20: RDasr instructions with rd in the range 28–31 are
available for implementation-dependent uses (impl. dep. #8-V8-Cs20). For an RDasr
instruction with rs1 in the range 28–31, the following are implementation
dependent:
■ the interpretation of bits 13:0 and 29:25 in the instruction
■ whether the instruction is nonprivileged or privileged or hyperprivileged (impl.

dep. #9-V8-Cs20), and
■ whether an attempt to execute the instruction causes an illegal_instruction

exception.

See Ancillary State Registers on page 70 for more detailed information regarding ASR
registers.

The RDY instruction is deprecated. It is recommended that all instructions that
reference the Y register be avoided.

Implementation
Note

See the section “Read/Write Ancillary State Registers (ASRs)” in
Extending the UltraSPARC Architecture, contained in the separate
volume UltraSPARC Architecture Application Notes, for a
discussion of extending the SPARC V9 instruction set using read/
write ASR instructions.

Note Ancillary state registers may include (for example) timer, counter,
diagnostic, self-test, and trap-control registers.

SPARC V8
Compatibility

Note

The SPARC V8 RDPSR, RDWIM, and RDTBR instructions do not
exist in the UltraSPARC Architecture, since the PSR, WIM, and
TBR registers do not exist.
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Exceptions. An attempt to execute a RDasr instruction when any of the following
conditions are true causes an illegal_instruction exception:

■ rs1 = 15 and rd ≠ 0 (reserved for future versions of the architecture)
■ rs1 = 1, 7–14, 18, 20-21, or 26-27 (reserved for future versions of the architecture)
■ instruction bits 13:0 are nonzero

An attempt to execute a RDPCR (impl. dep. #250-U3-Cs10), RDSOFTINT,
RDTICK_CMPR, RDSTICK, or RDSTICK_CMPR instruction in nonprivileged mode
(PSTATE.priv = 0 and HPSTATE.hpriv = 0) causes a privileged_opcode exception
(impl. dep. #250-U3-Cs10).

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a RDGSR instruction causes an fp_disabled exception.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), the following
cause a privileged_action exception:

■ execution of RDTICK when TICK.npt = 1
■ execution of RDSTICK when STICK.npt = 1
■ execution of RDPIC when nonprivileged access to PIC is disabled (PCR.priv = 1)

Exceptions illegal_instruction
privileged_opcode
fp_disabled
privileged_action

See Also RDHPR on page 302
RDPR on page 303
WRasr on page 369

Implementation
Note

RDasr shares an opcode withMEMBAR and STBARD; it is
distinguished by rs1 = 15 or rd = 0 or (i = 0, and bit 12 = 0).
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7.74 Read Hyperprivileged Register

Description This instruction reads the contents of the specified hyperprivileged state register into
the destination register, R[rd]. The rs1 field in the RDHPR instruction determines
which hyperprivileged register is read.

There are MAXTL copies of the HTSTATE register. A read from HTSTATE returns the
value in the copy of HTSTATE indexed by the current value in the trap level register
(TL).

An attempt to execute a RDHPR instruction when any of the following conditions
exist causes an illegal_instruction exception:
■ instruction bits 13:0 are nonzero
■ rs1 = 2, rs1 = 4, or 7 ≤ rs1 ≤ 30 (reserved rs1 values)
■ HPSTATE.hpriv = 0 (the processor is not in hyperprivileged mode)
■ rs1 = 1 (attempt to read the HTSTATE register) while TL = 0 (current trap level is

zero)

Exceptions illegal_instruction

See Also RDasr on page 299
RDPR on page 303
WRHPR on page 372

Instruction op3 Operation rs1 Assembly Language Syntax Class

RDHPRH 10 1001 Read hyperprivileged register
HPSTATE
HTSTATE
Reserved
HINTP
Reserved
HTBA
HVER
Reserved
HSTICK_CMPR

0
1
2
3
4
5
6
7–30
31

rdhpr
rdhpr

rdhpr

rdhpr
rdhpr

rdhpr

%hpstate, regrd
%htstate, regrd

%hintp, regrd

%htba, regrd
%hver, regrd

%hsys_tick_cmpr, regrd

C2

31 141924 18 13 02530 29

10 rd op3 rs1 —
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7.75 Read Privileged Register

Description The rs1 field in the instruction determines the privileged register that is read. There
are MAXTL copies of the TPC, TNPC, TT, and TSTATE registers. A read from one of
these registers returns the value in the register indexed by the current value in the
trap level register (TL). A read of TPC, TNPC, TT, or TSTATE when the trap level is
zero (TL = 0) causes an illegal_instruction exception.

An attempt to execute a RDPR instruction when any of the following conditions
exist causes an illegal_instruction exception:
■ instruction bits 13:0 are nonzero
■ rs1 = 15, or 17 ≤ rs1 ≤ 31 (reserved rs1 values)
■ 0 ≤ rs1 ≤ 3 (attempt to read TPC, TNPC,TSTATE, or TT register) while TL = 0

(current trap level is zero) and the virtual processor is in privileged or
hyperprivileged mode.

Instruction op3 Operation rs1 Assembly Language Syntax Class

RDPRP 10 1010 Read Privileged register
TPC
TNPC
TSTATE
TT
TICK
TBA
PSTATE
TL
PIL
CWP
CANSAVE
CANRESTORE
CLEANWIN
OTHERWIN
WSTATE
Reserved
GL
Reserved

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17–31

rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr

rdpr

%tpc, regrd
%tnpc, regrd
%tstate, regrd
%tt, regrd
%tick, regrd
%tba, regrd
%pstate, regrd
%tl, regrd
%pil, regrd
%cwp, regrd
%cansave, regrd
%canrestore, regrd
%cleanwin, regrd
%otherwin, regrd
%wstate, regrd

%gl, regrd

C2

Implementation
Note

In nonprivileged mode, illegal_instruction exception due to
0 ≤ rs1 ≤ 3 and TL = 0 does not occur; the privileged_opcode
exception occurs instead.

31 141924 18 13 02530 29

10 rd op3 rs1 —
CHAPTER 7 • Instructions 303



RDPR

An attempt to execute a RDPR instruction in nonprivileged mode (PSTATE.priv = 0
and HSTATE.hpriv = 0) causes a privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

See Also RDasr on page 299
RDHPR on page 302
WRPR on page 374

Historical Note On some early SPARC implementations, floating-point exceptions
could cause deferred traps. To ensure that execution could be
correctly resumed after handling a deferred trap, hardware
provided a floating-point queue (FQ), from which the address of
the trapping instruction could be obtained by the trap handler.
The front of the FQ was accessed by executing a RDPR instruction
with rs1 = 15.

On UltraSPARC Architecture implementations, all floating-point
traps are precise. When one occurs, the address of a trapping
instruction can be found by the trap handler in the TPC[TL], so no
floating-point queue (FQ) is needed or implemented (impl. dep.
#25-V8) and RDPR with rs1 = 15 generates an illegal_instruction
exception.
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7.76 RESTORE

Description The RESTORE instruction restores the register window saved by the last SAVE
instruction executed by the current process. The in registers of the old window
become the out registers of the new window. The in and local registers in the new
window contain the previous values.

Furthermore, if and only if a fill trap is not generated, RESTORE behaves like a
normal ADD instruction, except that the source operands R[rs1] or R[rs2] are read
from the old window (that is, the window addressed by the original CWP) and the
sum is written into R[rd] of the new window (that is, the window addressed by the
new CWP).

Description (Effect on Privileged State)
If a RESTORE instruction does not trap, it decrements the CWP (mod
N_REG_WINDOWS) to restore the register window that was in use prior to the last
SAVE instruction executed by the current process. It also updates the state of the
register windows by decrementing CANRESTORE and incrementing CANSAVE.

Instruction op3 Operation Assembly Language Syntax Class

RESTORE 11 1101 Restore Caller’s Window restore regrs1, reg_or_imm, regrd A1

Note CWP arithmetic is performed modulo the number of implemented
windows, N_REG_WINDOWS.

Programming
Notes

Typically, if a RESTORE instruction traps, the fill trap handler
returns to the trapped instruction to reexecute it. So, although the
ADD operation is not performed the first time (when the
instruction traps), it is performed the second time the instruction
executes. The same applies to changing the CWP.

There is a performance trade-off to consider between using SAVE/
RESTORE and saving and restoring selected registers explicitly.

31 24 02530 29 19 18

rd10 11 1101 —

14 13 12 5 4

rs1 rs2i=0

10 11 1101 rs1 simm13i=1rd
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If the register window to be restored has been spilled (CANRESTORE = 0), then a
fill trap is generated. The trap vector for the fill trap is based on the values of
OTHERWIN and WSTATE, as described in Trap Type for Spi ll/Fill Traps on page 469.
The fill trap handler is invoked with CWP set to point to the window to be filled,
that is, old CWP – 1.

An attempt to execute a RESTORE instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
fill_n_normal (n = 0–7)
fill_n_other (n = 0–7)

See Also SAVE on page 313

Programming
Note

The vectoring of fill traps can be controlled by setting the value of
the OTHERWIN and WSTATE registers appropriately. For details,
see the section “Splitting the Register Windows” in Software
Considerations, contained in the separate volume UltraSPARC
Architecture Application Notes.

The fill handler normally will end with a RESTORED instruction
followed by a RETRY instruction.
306 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006



RESTORED
7.77 RESTORED

Description RESTORED adjusts the state of the register-windows control registers.

RESTORED increments CANRESTORE.

If CLEANWIN < (N_REG_WINDOWS−1), then RESTORED increments CLEANWIN.

If OTHERWIN = 0, RESTORED decrements CANSAVE. If OTHERWIN ≠ 0, it
decrements OTHERWIN.

If CANSAVE = 0 or CANRESTORE ≥ (N_REG_WINDOWS − 2) just prior to execution of
a RESTORED instruction, the subsequent behavior of the processor is undefined. In
neither of these cases can RESTORED generate a register window state that is both
valid (see Register Window State Definition on page 88) and consistent with the state
prior to the RESTORED.

An attempt to execute a RESTORED instruction when instruction bits 18:0 are
nonzero causes an illegal_instruction exception.

An attempt to execute a RESTORED instruction in nonprivileged mode (PSTATE.priv
= 0 and HSTATE.hpriv = 0) causes a privileged_opcode exception.

Instruction Operation Assembly Language Syntax Class

RESTOREDP Window has been restored restored C1

Programming
Notes

Trap handler software for register window fills use the
RESTORED instruction to indicate that a window has been filled
successfully. For details, see the section “Example Code for Spill
Handler” in Software Considerations, contained in the separate
volume UltraSPARC Architecture Application Notes.

Normal privileged software would probably not execute a
RESTORED instruction from trap level zero (TL = 0). However, it
is not illegal to do so and doing so does not cause a trap.

Executing a RESTORED instruction outside of a window fill trap
handler is likely to create an inconsistent window state. Hardware
will not signal an exception, however, since maintaining a
consistent window state is the responsibility of privileged
software.

31 1924 18 02530 29

10 fcn = 0 0001 11 0001 —
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Exceptions illegal_instruction

privileged_opcode

See Also ALLCLEAN on page 148
INVALW on page 238
NORMALW on page 285
OTHERW on page 287
SAVED on page 315
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7.78 RETRY

Description The RETRY instruction restores the saved state from TSTATE[TL] (GL, CCR, ASI,
PSTATE, and CWP), HTSTATE[TL] (HPSTATE), sets PC and NPC, and decrements
TL. RETRY sets PC←TPC[TL] and NPC←TNPC[TL] (normally, the values of PC and
NPC saved at the time of the original trap).

If the saved TPC[TL] and TNPC[TL] were not altered by trap handler software,
RETRY causes execution to resume at the instruction that originally caused the trap
(“retrying” it).

Execution of a RETRY instruction in the delay slot of a control-transfer instruction
produces undefined results.

When a RETRY instruction is executed in privileged mode and
HTSTATE[TL].hpstate.hpriv = 0 (which will cause the RETRY to return the virtual
processor to nonprivileged or privileged mode), the value of GL restored from
TSTATE[TL] saturates at MAXPGL. That is, if the value in TSTATE[TL].gl is greater
than MAXPGL, then MAXPGL is substituted and written to GL. This protects against
non-hyperprivileged software executing with GL > MAXPGL.

If software writes invalid or inconsistent state to TSTATE or HTSTATE before
executing RETRY, virtual processor behavior during and after execution of the
RETRY instruction is undefined.

The RETRY instruction does not provide an error barrier, as MEMBAR #Sync does
(impl. dep. #215-U3).

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address
are masked out (set to 0) before being sent to the memory system.

IMPL. DEP. #417-S10: If (1) TSTATE[TL].pstate.am = 1 and (2) a RETRY
instruction is executed (which sets PSTATE.am to ’1’ by restoring the value from
TSTATE[TL].pstate.am to PSTATE.am), it is implementation dependent whether the
RETRY instruction masks (zeroes) the more-significant 32 bits of the values it places
into PC and NPC.

Instruction op3 Operation Assembly Language Syntax Class

RETRYP 11 1110 Return from Trap (retry trapped instruction) retry C1

Programming
Note

The DONE and RETRY instructions are used to return from
privileged trap handlers.

10 11 1110fcn =0 0001 —
31 1924 18 02530 29
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Exceptions. An attempt to execute the RETRY instruction when the following
condition is true causes an illegal_instruction exception:
■ TL = 0 and the virtual processor is in privileged mode or hyperprivileged mode

(PSTATE.priv = 1 or HPSTATE.hpriv = 1)

An attempt to execute a RETRY instruction in nonprivileged mode (PSTATE.priv = 0
and HPSTATE.hpriv = 0) causes a privileged_opcode exception.

A trap_level_zero disrupting trap can occur upon the completion of a RETRY
instruction, if the following three conditions are true after RETRY has executed:

■ trap_level_zero exceptions are enabled (HPSTATE.tlz = 1),
■ the virtual processor is in nonprivileged or privileged mode

(HPSTATE.hpriv = 0), and
■ the trap level (TL) register’s value is zero (TL = 0)

Exceptions illegal_instruction
privileged_opcode

trap_level_zero

See Also DONE on page 166

Implementation
Note

In nonprivileged mode, illegal_instruction exception due to TL = 0
does not occur. The privileged_opcode exception occurs instead,
regardless of the current trap level (TL).
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RETURN
7.79 RETURN

Description The RETURN instruction causes a delayed transfer of control to the target address
and has the window semantics of a RESTORE instruction; that is, it restores the
register window prior to the last SAVE instruction. The target address is
“R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1. Registers R[rs1]
and R[rs2] come from the old window.

Like other DCTIs, all effects of RETURN (including modification of CWP) are visible
prior to execution of the delay slot instruction.

An attempt to execute a RETURN instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

A RETURN instruction may cause a window_fill exception as part of its RESTORE
semantics.

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address
are masked out (set to 0) before being sent to the memory system.

Instruction op3 Operation Assembly Language Syntax Class

RETURN 11 1001 Return return address A1

Programming
Note

To reexecute the trapped instruction when returning from a user trap
handler, use the RETURN instruction in the delay slot of a JMPL
instruction, for example:

 jmpl%l6,%g0 !Trapped PC supplied to user trap handler
 return%l7 !Trapped NPC supplied to user trap handler

Programming
Note

A routine that uses a register window may be structured either as:
save %sp,-framesize, %sp
. . .
ret ! Same as jmpl %i7 + 8, %g0
restore ! Something useful like “restore

! %o2,%l2,%o0”
or as:

save %sp, -framesize, %sp
. . .
return %i7 + 8
nop ! Could do some useful work in the

! caller’s window, e.g., “or %o1, %o2,%o0”

31 24 02530 29 19 18

—10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1—
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A RETURN instruction causes a mem_address_not_aligned exception if either of the
two least-significant bits of the target address is nonzero.

Exceptions illegal_instruction
fill_n_normal (n = 0–7)
fill_n_other (n = 0–7)
mem_address_not_aligned
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SAVE
7.80 SAVE

Description The SAVE instruction provides the routine executing it with a new register window.
The out registers from the old window become the in registers of the new window.
The contents of the out and the local registers in the new window are zero or contain
values from the executing process; that is, the process sees a clean window.

Furthermore, if and only if a spill trap is not generated, SAVE behaves like a normal
ADD instruction, except that the source operands R[rs1] or R[rs2] are read from the
old window (that is, the window addressed by the original CWP) and the sum is
written into R[rd] of the new window (that is, the window addressed by the new
CWP).

Description (Effect on Privileged State)
If a SAVE instruction does not trap, it increments the CWP (mod N_REG_WINDOWS)
to provide a new register window and updates the state of the register windows by
decrementing CANSAVE and incrementing CANRESTORE.

Instruction op3 Operation Assembly Language Syntax Class

SAVE 11 1100 Save Caller’s Window save regrs1, reg_or_imm, regrd A1

Note CWP arithmetic is performed modulo the number of implemented
windows, N_REG_WINDOWS.

Programming
Notes

Typically, if a SAVE instruction traps, the spill trap handler returns
to the trapped instruction to reexecute it. So, although the ADD
operation is not performed the first time (when the instruction
traps), it is performed the second time the instruction executes.
The same applies to changing the CWP.

The SAVE instruction can be used to atomically allocate a new
window in the register file and a new software stack frame in
memory. For details, see the section “Leaf-Procedure
Optimization” in Software Considerations, contained in the
separate volume UltraSPARC Architecture Application Notes.

There is a performance trade-off to consider between using SAVE/
RESTORE and saving and restoring selected registers explicitly.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1rd
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If the new register window is occupied (that is, CANSAVE = 0), a spill trap is
generated. The trap vector for the spill trap is based on the value of OTHERWIN and
WSTATE. The spill trap handler is invoked with the CWP set to point to the window
to be spilled (that is, old CWP + 2).

An attempt to execute a SAVE instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If CANSAVE ≠ 0, the SAVE instruction checks whether the new window needs to be
cleaned. It causes a clean_window trap if the number of unused clean windows is
zero, that is, (CLEANWIN – CANRESTORE) = 0. The clean_window trap handler is
invoked with the CWP set to point to the window to be cleaned (that is, old
CWP + 1).

Exceptions illegal_instruction
spill_n_normal (n = 0–7)
spill_n_other (n = 0–7)
clean_window

See Also RESTORE on page 305

Programming
Note

The vectoring of spill traps can be controlled by setting the value
of the OTHERWIN and WSTATE registers appropriately. For
details, see the section “Splitting the Register Windows” in
Software Considerations, contained in the separate volume
UltraSPARC Architecture Application Notes.

The spill handler normally will end with a SAVED instruction
followed by a RETRY instruction.
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7.81 SAVED

Description SAVED adjusts the state of the register-windows control registers.

SAVED increments CANSAVE. If OTHERWIN = 0, SAVED decrements
CANRESTORE. If OTHERWIN ≠ 0, it decrements OTHERWIN.

If CANSAVE ≥ (N_REG_WINDOWS − 2) or CANRESTORE = 0 just prior to execution of
a SAVED instruction, the subsequent behavior of the processor is undefined. In
neither of these cases can SAVED generate a register window state that is both valid
(see Register Window State Definition on page 88) and consistent with the state prior to
the SAVED.

An attempt to execute a SAVED instruction when instruction bits 18:0 are nonzero
causes an illegal_instruction exception.

An attempt to execute a SAVED instruction in nonprivileged mode (PSTATE.priv = 0
and HSTATE.hpriv = 0) causes a privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

Instruction Operation Assembly Language Syntax Class

SAVEDP Window has been saved saved C1

Programming
Notes

Trap handler software for register window spills uses the SAVED
instruction to indicate that a window has been spilled
successfully. For details, see the section “Example Code for Spill
Handler” in Software Considerations, contained in the separate
volume UltraSPARC Architecture Application Notes.

Normal privileged software would probably not execute a SAVED
instruction from trap level zero (TL = 0). However, it is not illegal
to do so and doing so does not cause a trap.

Executing a SAVED instruction outside of a window spill trap
handler is likely to create an inconsistent window state. Hardware
will not signal an exception, however, since maintaining a
consistent window state is the responsibility of privileged
software.

31 1924 18 02530 29

10 fcn = 0 0000 11 0001 —
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See Also ALLCLEAN on page 148

INVALW on page 238
NORMALW on page 285
OTHERW on page 287
RESTORED on page 307
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7.82 SETHI

Description SETHI zeroes the least significant 10 bits and the most significant 32 bits of R[rd] and
replaces bits 31 through 10 of R[rd] with the value from its imm22 field.

SETHI does not affect the condition codes.

Some SETHI instructions with rd = 0 have special uses:

■ rd = 0 and imm22 = 0: defined to be a NOP instruction (described in No Operation)

■ rd = 0 and imm22 ≠ 0 may be used to trigger hardware performance counters in
some UltraSPARC Architecture implementations (for details, see implementation-
specific documentation).

Exceptions None

Instruction op2 Operation Assembly Language Syntax Class

SETHI 100 Set High 22 Bits of Low Word sethi
sethi

const22, regrd
%hi (value), regrd

A1

Programming
Note

The most common form of 64-bit constant generation is creating
stack offsets whose magnitude is less than 232. The code below can
be used to create the constant 0000 0000 ABCD 123416:

sethi %hi(0xabcd1234),%o0
or %o0, 0x234, %o0

The following code shows how to create a negative constant. Note:
The immediate field of the xor instruction is sign extended and can
be used to place 1’s in all of the upper 32 bits. For example, to set the
negative constant FFFF FFFF ABCD 123416:

sethi %hi(0x5432edcb),%o0! note 0x5432EDCB, not 0xABCD1234
xor %o0, 0x1e34, %o0! part of imm. overlaps upper bits

31 2224 21 02530 29

00 rd op2 imm22
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SHUTDOWN  (Deprecated)
7.83 SHUTDOWN

Description SHUTDOWN is a deprecated, privileged instruction that was used in early
UltraSPARC implementations to bring the virtual processor or its containing system
into a low-power state in an orderly manner. It had no effect on software-visible
virtual processor state.

On an UltraSPARC Architecture implementation operating in privileged or
hyperprivileged mode, SHUTDOWN behaves like a NOP (impl. dep. #206-U3-Cs10).

In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and its effect is
emulated in software.

Exceptions illegal_instruction (instruction not implemented in hardware)

The SHUTDOWN instruction is deprecated and should not be used in new
software.

Instruction opf Operation Assembly Language Syntax Class

SHUTDOWND,P 0 1000 0000 Enter low-power mode shutdown D3

VIS 1

31 24 02530 29 19 18 14 13 5 4

—10 110110 opf— —
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SIAM
7.84 Set Interval Arithmetic Mode

Description The SIAM instruction sets the GSR.im and GSR.irnd fields as follows:

GSR.im ← mode{2}

GSR.irnd ← mode{1:0}

An attempt to execute a SIAM instruction when instruction bits 29:25, 18:14, or 4:3
are nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a SIAM instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled

Instruction opf Operation Assembly Language Syntax Class

SIAM 0 1000 0001 Set the interval arithmetic mode fields in the GSR siam siam_mode B1

Note When GSR.im is set to 1, all subsequent floating-point
instructions requiring round mode settings derive rounding-
mode information from the General Status Register (GSR.irnd)
instead of the Floating-Point State Register (FSR.rd).

Note When GSR.im = 1, the processor operates in standard floating-
point mode regardless of the setting of FSR.ns.

VIS 2

31 24 02530 29 19 18 14 13 5 4

—10 110110 opf— — mode
3 2
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7.85 Software-Initiated Reset

Description SIR is a hyperprivileged instruction, used to generate a software-initiated reset (SIR).
As with other traps, a software-initiated reset performs different actions when
TL = MAXTL than it does when TL< MAXTL.

See Software-Initiated Reset (SIR) Traps on page 479 and Software-Initiated Reset (SIR)
on page 548 for more information about software-initiated resets.

When executed in nonprivileged or privileged mode (HPSTATE.hpriv = 0), SIR
causes an illegal_instruction exception (impl. dep. #116-V9).

Exceptions software_initiated_reset
illegal_instruction

See Also WRasr on page 369

Instruction op3 rd Operation Assembly Language Syntax Class

SIRH 11 0000 15 Software-Initiated Reset sir simm13 A2

Implementation
Notes

The SIR instruction shares an opcode with WRasr; they are
distinguished by the rd, rs1, and i fields (rd = 15,rs1 = 0, and i = 1
for SIR).

An instruction that uses the WRasr opcode (op1 = 102,
op3 = 11 00002) with i = 1 is not an SIR instruction; see Write
Ancillary State Register on page 369 for specification of its
behavior.

31 1924 18 02530 29

10 0 1111 op3
14 13

0 0000 simm13
12

i=1
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SLL / SRL / SRA
7.86 Shift

Description These instructions perform logical or arithmetic shift operations.

When i = 0 and x = 0, the shift count is the least significant five bits of R[rs2].
When i = 0 and x = 1, the shift count is the least significant six bits of R[rs2]. When
i = 1 and x = 0, the shift count is the immediate value specified in bits 0 through 4 of
the instruction.
When i = 1 and x = 1, the shift count is the immediate value specified in bits 0
through 5 of the instruction.

TABLE 7-13 shows the shift count encodings for all values of i and x.

SLL and SLLX shift all 64 bits of the value in R[rs1] left by the number of bits
specified by the shift count, replacing the vacated positions with zeroes, and write
the shifted result to R[rd].

Instruction op3 x Operation Assembly Language Syntax Class

SLL 10 0101 0 Shift Left Logical – 32 bits sll regrs1, reg_or_shcnt, regrd A1

SRL 10 0110 0 Shift Right Logical – 32 bits srl regrs1, reg_or_shcnt, regrd A1

SRA 10 0111 0 Shift Right Arithmetic– 32 bits sra regrs1, reg_or_shcnt, regrd A1

SLLX 10 0101 1 Shift Left Logical – 64 bits sllx regrs1, reg_or_shcnt, regrd A1

SRLX 10 0110 1 Shift Right Logical – 64 bits srlx regrs1, reg_or_shcnt, regrd A1

SRAX 10 0111 1 Shift Right Arithmetic – 64 bits srax regrs1, reg_or_shcnt, regrd A1

TABLE 7-13 Shift Count Encodings

i x Shift Count

0 0 bits 4–0 of R[rs2]

0 1 bits 5–0 of R[rs2]

1 0 bits 4–0 of instruction

1 1 bits 5–0 of instruction

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0 x

rd10 op3 —rs1 shcnt32i=1x=0

rd10 op3 —rs1 shcnt64i=1x=1

6
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SRL shifts the low 32 bits of the value in R[rs1] right by the number of bits specified
by the shift count. Zeroes are shifted into bit 31. The upper 32 bits are set to zero,
and the result is written to R[rd].

SRLX shifts all 64 bits of the value in R[rs1] right by the number of bits specified by
the shift count. Zeroes are shifted into the vacated high-order bit positions, and the
shifted result is written to R[rd].

SRA shifts the low 32 bits of the value in R[rs1] right by the number of bits specified
by the shift count and replaces the vacated positions with bit 31 of R[rs1]. The high-
order 32 bits of the result are all set with bit 31 of R[rs1], and the result is written to
R[rd].

SRAX shifts all 64 bits of the value in R[rs1] right by the number of bits specified by
the shift count and replaces the vacated positions with bit 63 of R[rs1]. The shifted
result is written to R[rd].

No shift occurs when the shift count is 0, but the high-order bits are affected by the
32-bit shifts as noted above.

These instructions do not modify the condition codes.

An attempt to execute a SLL, SRL, or SRA instruction when instruction bits 11:5 are
nonzero causes an illegal_instruction exception.

An attempt to execute a SLLX, SRLX, or SRAX instruction when either of the
following conditions exist causes an illegal_instruction exception:

■ i = 0 or x = 0 and instruction bits 11:5 are nonzero
■ x = 1 and instruction bits 11:6 are nonzero

Exceptions illegal_instruction

Programming
Notes

“Arithmetic left shift by 1 (and calculate overflow)” can be
effected with the ADDcc instruction.

The instruction “sra regrs1,0,regrd” can be used to convert a 32-
bit value to 64 bits, with sign extension into the upper word. “srl
regrs1,0,regrd” can be used to clear the upper 32 bits of R[rd].
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STB / STH / STW / STX
7.87 Store Integer

† synonyms: stub, stsb ‡ synonyms: stuh, stsh ◊ synonyms: st, stuw, stsw

Description The store integer instructions (except store doubleword) copy the whole extended
(64-bit) integer, the less significant word, the least significant halfword, or the least
significant byte of R[rd] into memory.

These instructions access memory using the implicit ASI (see page 104). The effective
address for these instructions is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1] + sign_ext(simm13)” if i = 1.

A successful store (notably, STX) integer instruction operates atomically.

An attempt to execute a store integer instruction when i = 0 and instruction bits 12:5
are nonzero causes an illegal_instruction exception.

STH causes a mem_address_not_aligned exception if the effective address is not
halfword-aligned. STW causes a mem_address_not_aligned exception if the effective
address is not word-aligned. STX causes a mem_address_not_aligned exception if
the effective address is not doubleword-aligned.

Exceptions illegal_instruction
mem_address_not_aligned
VA_watchpoint
data_access_MMU_error

See Also STTW on page 346

Instruction op3 Operation Assembly Language Syntax Class

STB 00 0101 Store Byte stb† regrd, [address] A1

STH 00 0110 Store Halfword sth‡ regrd, [address] A1

STW 00 0100 Store Word stw◊ regrd, [address] A1

STX 00 1110 Store Extended Word stx regrd, [address] A1

rd11 op3 rs1 simm13i=1

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 i=0 — rs2
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STBA / STHA / STWA / STXA
7.88 Store Integer into Alternate Space

† synonyms: stuba, stsba ‡ synonyms: stuha, stsha ◊ synonyms: sta, stuwa, stswa

Description The store integer into alternate space instructions copy the whole extended (64-bit)
integer, the less significant word, the least significant halfword, or the least
significant byte of R[rd] into memory.

Store integer to alternate space instructions contain the address space identifier (ASI)
to be used for the store in the imm_asi field if i = 0, or in the ASI register if i = 1. The
access is privileged if bit 7 of the ASI is 0; otherwise, it is not privileged. The
effective address for these instructions is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1]+sign_ext(simm13)” if i = 1.

A successful store (notably, STXA) instruction operates atomically.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI
is 0, these instructions cause a privileged_action exception. In privileged mode
(PSTATE.priv = 1 and HPSTATE.hpriv = 0), if the ASI is in the range 3016 to 7F16,
these instructions cause a privileged_action exception.

STHA causes a mem_address_not_aligned exception if the effective address is not
halfword-aligned. STWA causes a mem_address_not_aligned exception if the
effective address is not word-aligned. STXA causes a mem_address_not_aligned
exception if the effective address is not doubleword-aligned.

Instruction op3 Operation Assembly Language Syntax Class

STBAPASI 01 0101 Store Byte into Alternate Space stba†

stba
regrd, [regaddr] imm_asi
regrd, [reg_plus_imm] %asi

A1

STHAPASI 01 0110 Store Halfword into Alternate Space stha‡

stha
regrd, [regaddr] imm_asi
regrd, [reg_plus_imm] %asi

A1

STWAPASI 01 0100 Store Word into Alternate Space stwa◊

stwa
regrd, [regaddr] imm_asi
regrd, [reg_plus_imm] %asi

A1

STXAPASI 01 1110 Store Extended Word into Alternate
Space

stxa
stxa

regrd, [regaddr] imm_asi
regrd, [reg_plus_imm] %asi

A1

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
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STBA, STHA, and STWA can be used with any of the following ASIs, subject to the
privilege mode rules described for the privileged_action exception above. Use of any
other ASI with these instructions causes a data_access_exception exception.

STXA can be used with any ASI (including, but not limited to, the above list), unless
it either (a) violates the privilege mode rules described for the privileged_action
exception above or (b) is used with any of the following ASIs, which causes a
data_access_exception exception.

ASIs valid for STBA, STHA, and STWA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASIs invalid for STXA (cause data_access_exception exception)

2416 (aliased to 2716, ASI_LDTX_N) 2C16 (aliased to 2F16, ASI_LDTX_NL)
ASI_BLOCK_AS_IF_USER_PRIMARY ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE

ASI_BLOCK_AS_IF_USER_SECONDARY ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE

2416 (deprecated ASI_QUAD_LDD) 2C16 (deprecated ASI_QUAD_LDD_L)

ASI_PST8_PRIMARY ASI_PST8_PRIMARY_LITTLE

ASI_PST8_SECONDARY ASI_PST8_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE

ASI_PST16_PRIMARY ASI_PST16_PRIMARY_LITTLE

ASI_PST16_SECONDARY ASI_PST16_SECONDARY_LITTLE

ASI_PST32_PRIMARY ASI_PST32_PRIMARY_LITTLE

ASI_PST32_SECONDARY ASI_PST32_SECONDARY_LITTLE

ASI_FL8_PRIMARY ASI_FL8_PRIMARY_LITTLE

ASI_FL8_SECONDARY ASI_FL8_SECONDARY_LITTLE

ASI_FL16_PRIMARY ASI_FL16_PRIMARY_LITTLE

ASI_FL16_SECONDARY ASI_FL16_SECONDARY_LITTLE

ASI_BLOCK_COMMIT_PRIMARY ASI_BLOCK_COMMIT_SECONDARY

ASI_BLOCK_PRIMARY ASI_BLOCK_PRIMARY_LITTLE

ASI_BLOCK_SECONDARY ASI_BLOCK_SECONDARY_LITTLE

V8 Compatibility
Note

The SPARC V8 STA instruction was renamed STWA in the
SPARC V9 architecture.
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Exceptions mem_address_not_aligned (all except STBA)

privileged_action
VA_watchpoint

See Also LDA on page 242
STTWA on page 348
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STBAR - Deprecated
7.89 Store Barrier

Description The store barrier instruction (STBAR) forces all store and atomic load-store
operations issued by a virtual processor prior to the STBAR to complete their effects
on memory before any store or atomic load-store operations issued by that virtual
processor subsequent to the STBAR are executed by memory.

An attempt to execute a STBAR instruction when instruction bits 12:0 are nonzero
causes an illegal_instruction exception.

Exceptions illegal_instruction

The STBAR instruction is deprecated. Use the MEMBAR instruction instead.

Opcode op3 Operation Assembly Language Syntax Class

STBARD 10 1000 Store Barrier stbar Y2

V8 Compatibility
Notes

STBAR is identical in function to a MEMBAR instruction with
mmask = 816. STBAR is retained for compatibility with existing
SPARC V8 software.

For correctness, it is sufficient for a virtual processor to stop
issuing new store and atomic load-store operations when an
STBAR is encountered and to resume after all stores have
completed and are observed in memory by all virtual
processors. More efficient implementations may take advantage
of the fact that the virtual processor is allowed to issue store and
load-store operations after the STBAR, as long as those
operations are guaranteed not to become visible before all the
earlier stores and atomic load-stores have become visible to all
virtual processors.

Implementation
Note

STBAR shares an opcode with MEMBAR, and RDasr; it is
distinguished by rs1 = 15, rd = 0, i = 0, and bit 12 = 0.

31 141924 18 13 02530 29

10 0 op3 0 1111 —
12

0
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STBLOCKF
7.90 Block Store

Description A block store instruction references one of several special block-transfer ASIs. Block-
transfer ASIs allow block stores to be performed accessing the same address space as
normal stores. Little-endian ASIs (those with an ‘L’ suffix) access data in little-endian

The STBLOCKF instruction is intended to be a processor-specific instruction,
which may or may not be implemented in future UltraSPARC Architecture
implementations. Therefore, it should only be used in platform-specific
dynamically-linked libraries, in hyperprivileged software, or in software created
by a runtime code generator that is aware of the specific virtual processor
implementation on which it is executing.

Instruction
ASI
Value Operation Assembly Language Syntax Class

STBLOCKF 1616 64-byte block store to primary address
space, user privilege

stda
stda

fregrd, [regaddr] #ASI_BLK_AIUP
fregrd, [reg_plus_imm] %asi

A2

STBLOCKF 1716 64-byte block store to secondary address
space, user privilege

stda
stda

fregrd, [regaddr] #ASI_BLK_AIUS
fregrd, [reg_plus_imm] %asi

A2

STBLOCKF 1E16 64-byte block store to primary address
space, little-endian, user privilege

stda
stda

fregrd, [regaddr] #ASI_BLK_AIUPL
fregrd, [reg_plus_imm] %asi

A2

STBLOCKF 1F16 64-byte block store to secondary address
space, little-endian, user privilege

stda
stda

fregrd, [regaddr] #ASI_BLK_AIUSL
fregrd, [reg_plus_imm] %asi

A2

STBLOCKF F016 64-byte block store to primary address
space

stda
stda

fregrd, [regaddr] #ASI_BLK_P
fregrd, [reg_plus_imm] %asi

A2

STBLOCKF F116 64-byte block store to secondary address
space

stda
stda

fregrd, [regaddr] #ASI_BLK_S
fregrd, [reg_plus_imm] %asi

A2

STBLOCKF F816 64-byte block store to primary address
space, little-endian

stda
stda

fregrd, [regaddr] #ASI_BLK_PL
fregrd, [reg_plus_imm] %asi

A2

STBLOCKF F916 64-byte block store to secondary address
space, little-endian

stda
stda

fregrd, [regaddr] #ASI_BLK_SL
fregrd, [reg_plus_imm] %asi

A2

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd11 110111 simm_13rs1 I=1

rd11 110111 imm_asirs1 rs2I=0
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format; otherwise, the access is assumed to be big-endian. Byte swapping is
performed separately for each of the eight double-precision registers accessed by the
instruction.

STBLOCKF stores data from the eight double-precision floating-point registers
specified by rd to a 64-byte-aligned memory area. The lowest-addressed eight bytes
in memory are stored from the lowest-numbered double-precision rd.

While a STBLOCKF operation is in progress, any of the following values may be
observed in a destination doubleword memory locations: (1) the old data value, (2)
zero, or (3) the new data value. When the operation is complete, only the new data
values will be seen.

A Block Store only guarantees atomicity for each 64-bit (8-byte) portion of the 64
bytes that it stores.

Software should assume the following (where “load operation” includes load, load-
store, and LDBLOCKF instructions and “store operation” includes store, load-store,
and STBLOCKF instructions):

■ A STBLOCKF does not follow memory ordering with respect to earlier or later
load operations. If there is overlap between the addresses of destination memory
locations of a STBLOCKF and the source address of a later load operation, the
load operation may receive incorrect data. Therefore, if ordering with respect to
later load operations is important, a MEMBAR #StoreLoad instruction must be
executed between the STBLOCKF and subsequent load operations.

■ A STBLOCKF does not follow memory ordering with respect to earlier or later
store operations. Those instructions’ data may commit to memory in a different
order from the one in which those instructions were issued. Therefore, if ordering
with respect to later store operations is important, a MEMBAR #StoreStore
instruction must be executed between the STBLOCKF and subsequent store
operations.

■ STBLOCKFs do not follow register dependency interlocks, as do ordinary stores.

Programming
Note

The block store instruction, STBLOCKF, and its companion,
LDBLOCKF, were originally defined to provide a fast
mechanism for block-copy operations.

Compatibility
Note

Software written for older UltraSPARC implementations
that reads data being written by STBLOCKF instructions
may or may not allow for case (2) above. Such software
should be checked to verify that either it always waits
for STBLOCKF to complete before reading the values
written, or that it will operate correctly if an intermediate
value of zero (not the “old” or “new” data values) is
observed while the STBLOCKF operation is in progress.
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IMPL. DEP. #411-S10: The following aspects of the behavior of the block store
(STBLOCKF) instruction are implementation dependent:
■ The memory ordering model that STBLOCKF follows (other than as constrained

by the rules outlined above).
■ Whether VA_watchpoint exceptions are recognized on accesses to all 64 bytes of

the STBLOCKF (the recommended behavior), or only on accesses to the first eight
bytes.

■ Whether STBLOCKFs to non-cacheable (TTE.cp = 0) pages execute in strict
program order or not. If not, a STBLOCKF to a non-cacheable page causes an
illegal_instruction exception.

■ Whether STBLOCKF follows register dependency interlocks (as ordinary stores
do).

■ Whether a STBLOCKF forces the data to be written to memory and invalidates
copies in all caches present.

■ Any other restrictions on the behavior of STBLOCKF, as described in
implementation-specific documentation.

Exceptions. An illegal_instruction exception occurs if the source floating-point
registers are not aligned on an eight-register boundary.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a STBLOCKF instruction causes an fp_disabled exception.

If the least significant 6 bits of the memory address are not all zero, a
mem_address_not_aligned exception occurs.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI
is 0 (ASIs 1616, 1716, 1E16, and 1F16), STBLOCKF causes a privileged_action
exception.

An access caused by STBLOCKF may trigger a VA_watchpoint exception (impl. dep.
#411-S10).

Programming
Note

STBLOCKF is intended to be a processor-specific instruction (see
the warning at the top of page 328). If STBLOCKF must be used
in software intended to be portable across current and previous
processor implementations, then it must be coded to work in the
face of any implementation variation that is permitted by
implementation dependency #411-S10, described below.

Implementation
Note

STBLOCKF shares an opcode with the STDFA, STPARTIALF,
and STSHORTF instructions; it is distinguished by the ASI used.
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Exceptions illegal_instruction

mem_address_not_aligned
privileged_action
VA_watchpoint (impl. dep. #411-S10)

See Also LDBLOCKF on page 245
CHAPTER 7 • Instructions 331



STF / STDF / STQF / STXFSR
7.91 Store Floating-Point

† Encoded floating-point register value, as described on page 51.

Description The store single floating-point instruction (STF) copies the contents of the 32-bit
floating-point register FS [rd] into memory.

The store double floating-point instruction (STDF) copies the contents of 64-bit
floating-point register FD[rd] into a word-aligned doubleword in memory. The unit
of atomicity for STDF is 4 bytes (one word).

The store quad floating-point instruction (STQF) copies the contents of 128-bit
floating-point register FQ[rd] into a word-aligned quadword in memory. The unit of
atomicity for STQF is 4 bytes (one word).

The store floating-point state register instruction (STXFSR) waits for any currently
executing FPop instructions to complete, and then it writes all 64 bits of the FSR into
memory.

STXFSR zeroes FSR.ftt after writing the FSR to memory.

These instruction access memory using the implicit ASI (see page 104). The effective
address for these instructions is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1] + sign_ext(simm13)” if i = 1.

Exceptions. An attempt to execute a STF, STDF, or STXFSR instruction when i = 0
and instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Instruction op3 rd Operation Assembly Language Class

STF 10 0100 0–31 Store Floating-Point register st fregrd, [address] A1

STDF 10 0111 † Store Double Floating-Point register std fregrd, [address] A1

STQF 10 0110 † Store Quad Floating-Point register stq fregrd, [address] C3

STXFSR 10 0101 1 Store Floating-Point State register stx %fsr, [address] A1

— 10 0101 2–31 Reserved

Implementation
Note

FSR.ftt should not be zeroed by STXFSR until it is known that the
store will not cause a precise trap.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
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If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the
FPU is not present, then an attempt to execute a STF, STDF, or STXFSR instruction
causes an fp_disabled exception.

STF causes a mem_address_not_aligned exception if the effective memory address is
not word-aligned. STXFSR causes a mem_address_not_aligned exception if the
address is not doubleword-aligned.

STDF requires only word alignment in memory. However, if the effective address is
word-aligned but not doubleword-aligned, an attempt to execute an STDF
instruction causes an STDF_mem_address_not_aligned exception. In this case, trap
handler software must emulate the STDF instruction and return (impl. dep. #110-V9-
Cs10(a)).

STQF requires only word alignment in memory. If the effective address is word-
aligned but not quadword-aligned, an attempt to execute an STQF instruction causes
an STQF_mem_address_not_aligned exception. In this case, trap handler software
must emulate the STQF instruction and return (impl. dep. #112-V9-Cs10(a)).

An attempt to execute an STQF instruction when rd{1} ≠ 0 causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

Exceptions illegal_instruction
fp_disabled
STDF_mem_address_not_aligned
STQF_mem_address_not_aligned (not used in UltraSPARC Architecture 2005)
mem_address_not_aligned
fp_exception_other (FSR.ftt = invalid_fp_register (STQF only))
VA_watchpoint

Programming
Note

Some compilers issued sequences of single-precision stores for
SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9, since emulation of misaligned
stores is expected to be fast, compilers should issue sets of single-
precision stores only when they can determine that double- or
quadword operands are not properly aligned.

Implementation
Note

Since UltraSPARC Architecture 2005 processors do not implement
in hardware instructions (including STQF) that refer to quad-
precision floating-point registers, the
STQF_mem_address_not_aligned and fp_exception_other (with
FSR.ftt = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.
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See Also Load Floating-Point on page 249

Block Store on page 328
Store Floating-Point into Alternate Space on page 335
Store (Lower) Floating-Point Status Register on page 339
Store Short Floating-Point on page 344
Store Partial Floating-Point on page 341
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7.92 Store Floating-Point into Alternate Space

† Encoded floating-point register value, as described on page 51.

Description The store single floating-point into alternate space instruction (STFA) copies the
contents of the 32-bit floating-point register FS [rd] into memory.

The store double floating-point into alternate space instruction (STDFA) copies the
contents of 64-bit floating-point register FD[rd] into a word-aligned doubleword in
memory. The unit of atomicity for STDFA is 4 bytes (one word).

The store quad floating-point into alternate space instruction (STQFA) copies the
contents of 128-bit floating-point register FQ[rd] into a word-aligned quadword in
memory. The unit of atomicity for STQFA is 4 bytes (one word).

Store floating-point into alternate space instructions contain the address space
identifier (ASI) to be used for the load in the imm_asi field if i = 0 or in the ASI
register if i = 1. The access is privileged if bit 7 of the ASI is 0; otherwise, it is not
privileged. The effective address for these instructions is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1] + sign_ext(simm13)” if i = 1.

Exceptions. STFA causes a mem_address_not_aligned exception if the effective
memory address is not word-aligned.

Instruction op3 rd Operation Assembly Language Syntax Class

STFAPASI 11 0100 0–31 Store Floating-Point Register
to Alternate Space

sta
sta

fregrd, [regaddr] imm_asi
fregrd, [reg_plus_imm] %asi

A1

STDFAPASI 11 0111 † Store Double Floating-Point
Register to Alternate Space

stda
stda

fregrd, [regaddr] imm_asi
fregrd, [reg_plus_imm] %asi

A1

STQFAPASI 11 0110 † Store Quad Floating-Point
Register to Alternate Space

stqa
stqa

fregrd, [regaddr] imm_asi
fregrd, [reg_plus_imm] %asi

C3

Programming
Note

Some compilers issued sequences of single-precision stores for
SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9, since emulation of misaligned
stores is expected to be fast, compilers should issue sets of single-
precision stores only when they can determine that double- or
quadword operands are not properly aligned.

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
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STDFA requires only word alignment in memory. However, if the effective address is
word-aligned but not doubleword-aligned, an attempt to execute an STDFA
instruction causes an STDF_mem_address_not_aligned exception. In this case, trap
handler software must emulate the STDFA instruction and return (impl. dep. #110-
V9-Cs10(b)).

STQFA requires only word alignment in memory. However, if the effective address is
word-aligned but not quadword-aligned, an attempt to execute an STQFA
instruction may cause an STQF_mem_address_not_aligned exception. In this case,
the trap handler software must emulate the STQFA instruction and return (impl.
dep. #112-V9-Cs10(b)).

An attempt to execute an STQFA instruction when rd{1} ≠ 0 causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI
is 0, this instruction causes a privileged_action exception. In privileged mode
(PSTATE.priv = 1 and HPSTATE.hpriv = 0), if the ASI is in the range 3016 to 7F16, this
instruction causes a privileged_action exception.

STFA and STQFA can be used with any of the following ASIs, subject to the privilege
mode rules described for the privileged_action exception above. Use of any other ASI
with these instructions causes a data_access_exception exception.

Implementation
Note

STDFA shares an opcode with the STBLOCKF, STPARTIALF,
and STSHORTF instructions; it is distinguished by the ASI used.

Implementation
Note

Since UltraSPARC Architecture 2005 processors do not implement
in hardware instructions (including STQFA) that refer to quad-
precision floating-point registers, the
STQF_mem_address_not_aligned and fp_exception_other (with
FSR.ftt = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.

ASIs valid for STFA and STQFA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE
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STDFA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
the STDFA instruction causes a data_access_exception exception.

Exceptions illegal_instruction
fp_disabled
STDF_mem_address_not_aligned
STQF_mem_address_not_aligned (STQFA only) (not used in UA-2005)
mem_address_not_aligned
fp_exception_other (FSR.ftt = invalid_fp_register (STQFA only))

ASIs valid for STDFA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_BLOCK_AS_IF_USER_PRIMARY † ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE †
ASI_BLOCK_AS_IF_USER_SECONDARY † ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE †
ASI_BLOCK_PRIMARY † ASI_BLOCK_PRIMARY_LITTLE †
ASI_BLOCK_SECONDARY † ASI_BLOCK_SECONDARY_LITTLE †
ASI_BLOCK_COMMIT_PRIMARY †
ASI_BLOCK_COMMIT_SECONDARY †

ASI_FL8_PRIMARY ‡ ASI_FL8_PRIMARY_LITTLE ‡
ASI_FL8_SECONDARY ‡ ASI_FL8_SECONDARY_LITTLE ‡
ASI_FL16_PRIMARY ‡ ASI_FL16_PRIMARY_LITTLE ‡
ASI_FL16_SECONDARY ‡ ASI_FL16_SECONDARY_LITTLE ‡

ASI_PST8_PRIMARY * ASI_PST8_PRIMARY_LITTLE *
ASI_PST8_SECONDARY * ASI_PST8_SECONDARY_LITTLE *
ASI_PST16_PRIMARY * ASI_PST16_PRIMARY_LITTLE *
ASI_PST16_SECONDARY * ASI_PST16_SECONDARY_LITTLE *
ASI_PST32_PRIMARY * ASI_PST32_PRIMARY_LITTLE *
ASI_PST32_SECONDARY * ASI_PST32_SECONDARY_LITTLE *

† If this ASI is used with the opcode for STDFA, the STBLOCKF instruction is
executed instead of STFA. For behavior of STBLOCKF, see Block Store on page 328.

‡ If this ASI is used with the opcode for STDFA, the STSHORTF instruction
is executed instead of STDFA. For behavior of STSHORTF, see
Store Short Floating-Point on page 344.

* If this ASI is used with the opcode for STDFA, the STPARTIALF instruction
is executed instead of STDFA. For behavior of STPARTIALF, see
Store Partial Floating-Point on page 341.
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privileged_action
VA_watchpoint

See Also Load Floating-Point from Alternate Space on page 252
Block Store on page 328
Store Floating-Point on page 332
Store Short Floating-Point on page 344
Store Partial Floating-Point on page 341
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7.93 Store (Lower) Floating-Point Status
Register

Description The Store Floating-point State register lower instruction (STFSR) waits for any
currently executing FPop instructions to complete, and then it writes the less
significant 32 bits of the FSR into memory.

STFSR zeroes FSR.ftt after writing the FSR to memory.

STFSR accesses memory using the implicit ASI (see page 104). The effective address
for this instruction is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if
i = 1.

An attempt to execute a STFSR instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the
FPU is not present, then an attempt to execute a STFSR instruction causes an
fp_disabled exception.

STFSR causes a mem_address_not_aligned exception if the effective memory
address is not word-aligned.

The STFSR instruction is deprecated and should not be used in new software.
The STXFSR instruction should be used instead.

Opcode op3 rd Operation Assembly Language Syntax Class

STFSRD 10 0101 0 Store Floating-Point State Register Lower st %fsr, [address] D2

V9 Compatibility
Note

FSR.ftt should not be zeroed until it is known that the store will
not cause a precise trap.

V9 Compatibility
Note

Although STFSR is deprecated, UltraSPARC Architecture
implementations continue to support it for compatibility with
existing SPARC V8 software. The STFSR instruction is defined
to store only 32 bits of the FSR into memory, while STXFSR
allows SPARC V9 software to store all 64 bits of the FSR.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
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Exceptions illegal_instruction

fp_disabled
mem_address_not_aligned
VA_watchpoint

See Also Store Floating-Point on page 332
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7.94 Store Partial Floating-Point

Description The partial store instructions are selected by one of the partial store ASIs with the
STDFA instruction.

Instruction
ASI

Value Operation Assembly Language Syntax † Class

STPARTIALF C016 Eight 8-bit conditional stores to
primary address space

stda fregrd, regrs2, [regrs1] #ASI_PST8_P C3

STPARTIALF C116 Eight 8-bit conditional stores to
secondary address space

stda fregrd, regrs2, [regrs1] #ASI_PST8_S C3

STPARTIALF C816 Eight 8-bit conditional stores to
primary address space, little-endian

stda fregrd, regrs2, [regrs1] #ASI_PST8_PL C3

STPARTIALF C916 Eight 8-bit conditional stores to
secondary address space, little-
endian

stda fregrd, regrs2, [regrs1] #ASI_PST8_SL C3

STPARTIALF C216 Four 16-bit conditional stores to
primary address space

stda fregrd, regrs2, [regrs1] #ASI_PST16_P C3

STPARTIALF C316 Four 16-bit conditional stores to
secondary address space

stda fregrd, regrs2, [regrs1] #ASI_PST16_S C3

STPARTIALF CA16 Four 16-bit conditional stores to
primary address space, little-endian

stda fregrd, regrs2, [regrs1] #ASI_PST16_PL C3

STPARTIALF CB16 Four 16-bit conditional stores to
secondary address space, little-
endian

stda fregrd, regrs2, [regrs1] #ASI_PST16_SL C3

STPARTIALF C416 Two 32-bit conditional stores to
primary address space

stda fregrd, regrs2, [regrs1] #ASI_PST32_P C3

STPARTIALF C516 Two 32-bit conditional stores to
secondary address space

stda fregrd, regrs2, [regrs1] #ASI_PST32_S C3

STPARTIALF CC16 Two 32-bit conditional stores to
primary address space, little-endian

stda fregrd, regrs2, [regrs1] #ASI_PST32_PL C3

STPARTIALF CD16 Two 32-bit conditional stores to
secondary address space, little-
endian

stda fregrd, regrs2, [regrs1] #ASI_PST32_SL C3

† The original assembly language syntax for a Partial Store instruction (“stda fregrd, [regrs1] regrs2, imm_asi”) has been dep-
recated because of inconsistency with the rest of the SPARC assembly language. Over time, assemblers will support the new syntax
for this instruction. In the meantime, some existing  assemblers may only recognize the original syntax.

VIS 1
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rd11 110111 imm_asirs1 rs2i=0
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Two 32-bit, four 16-bit, or eight 8-bit values from the 64-bit floating-point register
FD[rd] are conditionally stored at the address specified by R[rs1], using the mask
specified in R[rs2]. STPARTIALF has the effect of merging selected data from its
source register, FD[rd], into the existing data at the corresponding destination
locations.

The mask value in R[rs2] has the same format as the result specified by the pixel
compare instructions (see SIMD Signed Compare on page 178). The most significant
bit of the mask (not of the entire register) corresponds to the most significant part of
FD[rd]. The data is stored in little-endian form in memory if the ASI name has an “L”
(or “_LITTLE”) suffix; otherwise, it is stored in big-endian format.

FIGURE 7-29 Mask Format for Partial Store

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an data_access_exception exception, and are
emulated in software.

Exceptions. An attempt to execute a STPARTIALF instruction when i = 1 causes an
illegal_instruction exception.

32-bit partial store mask
 01

mask for bits 63:32
mask for bits 31:0

16-bit partial store mask
01

mask for bits 63:48
mask for bits 47:32

23

mask for bits 31:16
mask for bits 15:0

8-bit partial store mask

mask for bits 63:56

mask for bits   7:0

01234567

mask for bits 55:48

mask for bits 15:8

.  .  .

for ASI_PST8_*

for ASI_PST16_*

for ASI_PST32_*

R[rs2]

R[rs2]

R[rs2]

..

.
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If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the
FPU is not present, then an attempt to execute a STPARTIALF instruction causes an
fp_disabled exception.

STPARTIALF causes a mem_address_not_aligned exception if the effective memory
address is not word-aligned.

STPARTIALF requires only word alignment in memory for eight byte stores. If the
effective address is word-aligned but not doubleword-aligned, it generates an
STDF_mem_address_not_aligned exception. In this case, the trap handler software
shall emulate the STDFA instruction and return.

IMPL. DEP. #249-U3-Cs10: For an STPARTIAL instruction, the following aspects of
data watchpoints are implementation dependent: (a) whether data watchpoint logic
examines the byte store mask in R[rs2] or it conservatively behaves as if every
Partial Store always stores all 8 bytes, and (b) whether data watchpoint logic
examines individual bits in the Virtual (Physical) Data Watchpoint Mask in the LSU
Control register DCUCR to determine which bytes are being watched or (when the
Watchpoint Mask is nonzero) it conservatively behaves as if all 8 bytes are being
watched.

ASIs C016–C516 and C816–CD16 are only used for partial store operations. In
particular, they should not be used with the LDDFA instruction; however, if any of
them is used, the resulting behavior is specified in the LDDFA instruction
description on page 254.

Exceptions illegal_instruction
fp_disabled
data_access_exception (not implemented in hardware in UA-2005)
data_access_MMU_error

Implementation
Note

STPARTIALF shares an opcode with the STBLOCKF, STDFA,
and STSHORTF instructions; it is distinguished by the ASI used.
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7.95 Store Short Floating-Point

Description The short floating-point store instruction allows 8- and 16-bit stores to be performed
from the floating-point registers. Short stores access the low-order 8 or 16 bits of the
register.

Little-endian ASIs transfer data in little-endian format from memory; otherwise,
memory is assumed to be big-endian. Short stores are typically used with the
FALIGNDATA instruction (see Align Data on page 173) to assemble or store 64 bits
on noncontiguous components.

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an data_access_exception exception, and are
emulated in software.

Instruction
ASI

Value Operation Assembly Language Syntax Class

STSHORTF D016 8-bit store to primary address space stda
stda

fregrd, [regaddr] #ASI_FL8_P
fregrd, [reg_plus_imm] %asi

C3

STSHORTF D116 8-bit store to secondary address space stda
stda

fregrd, [regaddr] #ASI_FL8_S
fregrd, [reg_plus_imm] %asi

C3

STSHORTF D816 8-bit store to primary address space,
little-endian

stda
stda

fregrd, [regaddr] #ASI_FL8_PL
fregrd, [reg_plus_imm] %asi

C3

STSHORTF D916 8-bit store to secondary address space,
little-endian

stda
stda

fregrd, [regaddr] #ASI_FL8_SL
fregrd, [reg_plus_imm] %asi

C3

STSHORTF D216 16-bit store to primary address space stda
stda

fregrd, [regaddr] #ASI_FL16_P
fregrd, [reg_plus_imm] %asi

C3

STSHORTF D316 16-bit store to secondary address space stda
stda

fregrd, [regaddr] #ASI_FL16_S
fregrd, [reg_plus_imm] %asi

C3

STSHORTF DA16 16-bit store to primary address space,
little-endian

stda
stda

fregrd, [regaddr] #ASI_FL16_PL
fregrd, [reg_plus_imm] %asi

C3

STSHORTF DB16 16-bit store to secondary address space,
little-endian

stda
stda

fregrd, [regaddr] #ASI_FL16_SL
fregrd, [reg_plus_imm] %asi

C3

Implementation
Note

STSHORTF shares an opcode with the STBLOCKF, STDFA, and
STPARTIALF instructions; it is distinguished by the ASI used.

VIS 1
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rd11 110111 simm_13rs1 i=1

rd11 110111 imm_asirs1 rs2i=0
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STSHORTF

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the
FPU is not present, then an attempt to execute a STSHORTF instruction causes an
fp_disabled exception.

STSHORTF causes a mem_address_not_aligned exception if the effective memory
address is not halfword-aligned.

An 8-bit STSHORTF (using ASI D016, D116, D816, or D916) can be performed to an
arbitrary memory address (no alignment requirement).

A 16-bit STSHORTF (using ASI D216, D316, DA16, or DB16) to an address that is not
halfword-aligned (an odd address) causes a mem_address_not_aligned exception.

Exceptions VA_watchpoint
data_access_exception
data_access_MMU_error
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STTW  (Deprecated)
7.96 Store Integer Twin Word

Description The store integer twin word instruction (STTW) copies two words from an R register
pair into memory. The least significant 32 bits of the even-numbered R register are
written into memory at the effective address, and the least significant 32 bits of the
following odd-numbered R register are written into memory at the “effective
address + 4”.

The least significant bit of the rd field of a store twin word instruction is unused and
should always be set to 0 by software.

STTW accesses memory using the implicit ASI (see page 104). The effective address
for this instruction is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if
i = 1.

A successful store twin word instruction operates atomically.

IMPL. DEP. #108-V9a: It is implementation dependent whether STTW is
implemented in hardware. If not, an attempt to execute it will cause an
unimplemented_STTW exception. (STTW is implemented in hardware in all
UltraSPARC Architecture 2005 implementations.)

An attempt to execute an STTW instruction when either of the following conditions
exist causes an illegal_instruction exception:

■ destination register number rd is an odd number (is misaligned)
■ i = 0 and instruction bits 12:5 are nonzero

The STTW instruction is deprecated and should not be used in new software.
The STX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax † Class

STTWD 00 0111 Store Integer Twin Word sttw regrd, [address] D2

  † The original assembly language syntax for this  instruction used an “std” instruction mnemonic, which is now
deprecated. Over time, assemblers will support the new “sttw” mnemonic for this instruction. In the meantime,
some existing assemblers may only recognize the original “std” mnemonic.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
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STTW  (Deprecated)

STTW causes a mem_address_not_aligned exception if the effective address is not
doubleword-aligned.

With respect to little-endian memory, an STTW instruction behaves as if it is
composed of two 32-bit stores, each of which is byte-swapped independently before
being written into its respective destination memory word.

Exceptions unimplemented_STTW
illegal_instruction
mem_address_not_aligned
VA_watchpoint
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection

See Also STW/STX on page 323
STTWA on page 348

Programming
Notes

STTW is provided for compatibility with SPARC V8. It may
execute slowly on SPARC V9 machines because of data path and
register-access difficulties. Therefore, software should avoid
using STTW.

If STTW is emulated in software, STX instruction should be
used for the memory access in the emulation code to preserve
atomicity.
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STTWA  (Deprecated)
7.97 Store Integer Twin Word into Alternate
Space

Description The store twin word integer into alternate space instruction (STTWA) copies two
words from an R register pair into memory. The least significant 32 bits of the even-
numbered R register are written into memory at the effective address, and the least
significant 32 bits of the following odd-numbered R register are written into memory
at the “effective address + 4”.

The least significant bit of the rd field of an STTWA instruction is unused and should
always be set to 0 by software.

Store integer twin word to alternate space instructions contain the address space
identifier (ASI) to be used for the store in the imm_asi field if i = 0, or in the ASI
register if i = 1. The access is privileged if bit 7 of the ASI is 0; otherwise, it is not
privileged. The effective address for these instructions is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1]+sign_ext(simm13)” if i = 1.

A successful store twin word instruction operates atomically.

With respect to little-endian memory, an STTWA instruction behaves as if it is
composed of two 32-bit stores, each of which is byte-swapped independently before
being written into its respective destination memory word.

The STTWA instruction is deprecated and should not be used in new software.
The STXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

STTWAD, PASI 01 0111 Store Twin Word into Alternate Space sttwa
sttwa

regrd [regaddr] imm_asi
regrd [reg_plus_imm] %asi

‡

† The original assembly language syntax for this instruction used an “stda” instruction mnemonic, which is now deprecated. Over time,
assemblers will support the new “sttwa” mnemonic for this instruction. In the meantime, some existing assemblers may only recog-
nize the original “stda” mnemonic.

  ‡ Y3 for restricted ASIs (0016-7F16); D2 for unrestricted ASIs   (8016-FF16)

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
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STTWA  (Deprecated)

IMPL. DEP. #108-V9b: It is implementation dependent whether STTWA is
implemented in hardware. If not, an attempt to execute it will cause an
unimplemented_STTW exception. (STTWA is implemented in hardware in all
UltraSPARC Architecture 2005 implementations.)

An attempt to execute an STTWA instruction with a misaligned (odd) destination
register number rd causes an illegal_instruction exception.

STTWA causes a mem_address_not_aligned exception if the effective address is not
doubleword-aligned.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI
is 0, this instruction causes a privileged_action exception. In privileged mode
(PSTATE.priv = 1 and HPSTATE.hpriv = 0), if the ASI is in the range 3016 to 7F16, this
instruction causes a privileged_action exception.

STTWA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
this instruction causes a data_access_exception exception (impl. dep. #300-U4-
Cs10).

Exceptions unimplemented_STTW
illegal_instruction
mem_address_not_aligned

ASIs valid for STTWA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

Programming
Note

Nontranslating ASIs (see page 407) may only be accessed using
STXA (not STTWA) instructions. If an STTWA referencing a
nontranslating ASI is executed, per the above table, it generates
a data_access_exception exception (impl. dep. #300-U4-Cs10).

Programming
Note

STTWA is provided for compatibility with existing SPARC V8
software. It may execute slowly on SPARC V9 machines because
of data path and register-access difficulties. Therefore, software
should avoid using STTWA.

If STTWA is emulated in software, the STXA instruction should
be used for the memory access in the emulation code to preserve
atomicity.
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STTWA  (Deprecated)

privileged_action
VA_watchpoint
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection

See Also STWA/STXA on page 324
STTW on page 346
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SUB
7.98 Subtract

Description These instructions compute “R[rs1] – R[rs2]” if i = 0, or
“R[rs1] – sign_ext(simm13)” if i = 1, and write the difference into R[rd].

SUBC and SUBCcc (“SUBtract with carry”) also subtract the CCR register’s 32-bit
carry (icc.c) bit; that is, they compute “R[rs1] – R[rs2] – icc.c” or
“R[rs1] – sign_ext(simm13) – icc.c” and write the difference into R[rd].

SUBcc and SUBCcc modify the integer condition codes (CCR.icc and CCR.xcc). A 32-
bit overflow (CCR.icc.v) occurs on subtraction if bit 31 (the sign) of the operands
differs and bit 31 (the sign) of the difference differs from R[rs1]{31}. A 64-bit
overflow (CCR.xcc.v) occurs on subtraction if bit 63 (the sign) of the operands differs
and bit 63 (the sign) of the difference differs from R[rs1]{63}.

An attempt to execute a SUB instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

Instruction op3 Operation Assembly Language Syntax Class

SUB 00 0100 Subtract sub regrs1, reg_or_imm, regrd A1

SUBcc 01 0100 Subtract and modify cc’s subcc regrs1, reg_or_imm, regrd A1

SUBC 00 1100 Subtract with Carry subc regrs1, reg_or_imm, regrd A1

SUBCcc 01 1100 Subtract with Carry and modify cc’s subccc regrs1, reg_or_imm, regrd A1

Programming
Notes

A SUBcc instruction with rd = 0 can be used to effect a signed or
unsigned integer comparison. See the cmp synthetic instruction in
Appendix C, Assembly Language Syntax.

SUBC and SUBCcc read the 32-bit condition codes’ carry bit
(CCR.icc.c), not the 64-bit condition codes’ carry bit (CCR.xcc.c).

rd10 op3 —rs1 rs2i=0

31 24 02530 29 19 18 14 13 12 5 4

rd10 op3 rs1 simm13i=1
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SWAP  (Deprecated)
7.99 Swap Register with Memory

Description SWAP exchanges the less significant 32 bits of R[rd] with the contents of the word at
the addressed memory location. The upper 32 bits of R[rd] are set to 0. The operation
is performed atomically, that is, without allowing intervening interrupts or deferred
traps. In a multiprocessor system, two or more virtual processors executing CASA,
CASXA, SWAP, SWAPA, LDSTUB, or LDSTUBA instructions addressing any or all of
the same doubleword simultaneously are guaranteed to execute them in an
undefined, but serial, order.

SWAP accesses memory using the implicit ASI (see page 104). The effective address
for these instructions is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if
i = 1.

An attempt to execute a SWAP instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If the effective address is not word-aligned, an attempt to execute a SWAP instruction
causes a mem_address_not_aligned exception.

The coherence and atomicity of memory operations between virtual processors and
I/O DMA memory accesses are implementation dependent (impl. dep. #120-V9).

Exceptions illegal_instruction
mem_address_not_aligned
VA_watchpoint
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection

The SWAP instruction is deprecated and should not be used in new software.
The CASA or CASXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

SWAPD 00 1111 Swap Register with Memory swap [address], regrd D2

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
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SWAPA  (Deprecated)
7.100 Swap Register with Alternate Space
Memory

Description SWAPA exchanges the less significant 32 bits of R[rd] with the contents of the word
at the addressed memory location. The upper 32 bits of R[rd] are set to 0. The
operation is performed atomically, that is, without allowing intervening interrupts
or deferred traps. In a multiprocessor system, two or more virtual processors
executing CASA, CASXA, SWAP, SWAPA, LDSTUB, or LDSTUBA instructions
addressing any or all of the same doubleword simultaneously are guaranteed to
execute them in an undefined, but serial, order.

The SWAPA instruction contains the address space identifier (ASI) to be used for the
load in the imm_asi field if i = 0, or in the ASI register if i = 1. The access is
privileged if bit 7 of the ASI is 0; otherwise, it is not privileged. The effective address
for this instruction is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if
i = 1.

This instruction causes a mem_address_not_aligned exception if the effective
address is not word-aligned. It causes a privileged_action exception if
PSTATE.priv = 0 and bit 7 of the ASI is 0.

The coherence and atomicity of memory operations between virtual processors and
I/O DMA memory accesses are implementation dependent (impl. dep #120-V9).

If the effective address is not word-aligned, an attempt to execute a SWAPA
instruction causes a mem_address_not_aligned exception.

The SWAPA instruction is deprecated and should not be used in new software.
The CASXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

SWAPAD, PASI 01 1111 Swap register with Alternate Space
Memory

swapa
swapa

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

‡

  ‡ Y3 for restricted ASIs (0016-7F16); D2 for unrestricted ASIs   (8016-FF16)

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
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SWAPA  (Deprecated)

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI
is 0, this instruction causes a privileged_action exception. In privileged mode
(PSTATE.priv = 1 and HPSTATE.hpriv = 0), if the ASI is in the range 3016 to 7F16, this
instruction causes a privileged_action exception.

SWAPA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
this instruction causes a data_access_exception exception.

Exceptions mem_address_not_aligned
privileged_action
VA_watchpoint
data_access_exception
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection

ASIs valid for SWAPA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE
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TADDcc
7.101 Tagged Add

Description This instruction computes a sum that is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1] + sign_ext(simm13)” if i = 1.

TADDcc modifies the integer condition codes (icc and xcc).

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the
addition generates 32-bit arithmetic overflow (that is, both operands have the same
value in bit 31 and bit 31 of the sum is different).

If a TADDcc causes a tag overflow, the 32-bit overflow bit (CCR.icc.v) is set to 1; if
TADDcc does not cause a tag overflow, CCR.icc.v is set to 0.

In either case, the remaining integer condition codes (both the other CCR.icc bits and
all the CCR.xcc bits) are also updated as they would be for a normal ADD
instruction. In particular, the setting of the CCR.xcc.v bit is not determined by the
tag overflow condition (tag overflow is used only to set the 32-bit overflow bit).
CCR.xcc.v is set based on the 64-bit arithmetic overflow condition, like a normal 64-
bit add.

An attempt to execute a TADDcc instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

See Also TADDccTVD on page 356
TSUBcc on page 361

Instruction op3 Operation Assembly Language Syntax Class

TADDcc 10 0000 Tagged Add and modify cc’s taddcc regrs1, reg_or_imm, regrd A1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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TADDccTV  (Deprecated)
7.102 Tagged Add and Trap on Overflow

Description This instruction computes a sum that is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1] + sign_ext(simm13)” if i = 1.

TADDccTV modifies the integer condition codes if it does not trap.

An attempt to execute a TADDccTV instruction when i = 0 and instruction bits 12:5
are nonzero causes an illegal_instruction exception.

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the
addition generates 32-bit arithmetic overflow (that is, both operands have the same
value in bit 31 and bit 31 of the sum is different).

If TADDccTV causes a tag overflow, a tag_overflow exception is generated and R[rd]
and the integer condition codes remain unchanged. If a TADDccTV does not cause a
tag overflow, the sum is written into R[rd] and the integer condition codes are
updated. CCR.icc.v is set to 0 to indicate no 32-bit overflow.

In either case, the remaining integer condition codes (both the other CCR.icc bits and
all the CCR.xcc bits) are also updated as they would be for a normal ADD
instruction. In particular, the setting of the CCR.xcc.v bit is not determined by the
tag overflow condition (tag overflow is used only to set the 32-bit overflow bit).
CCR.xcc.v is set only on the basis of the normal 64-bit arithmetic overflow condition,
like a normal 64-bit add.

The TADDccTV instruction is deprecated and should not be used in new
software. The TADDcc instruction followed by the BPVS instruction (with
instructions to save the pre-TADDcc integer condition codes if necessary) should
be used instead.

Opcode op3 Operation Assembly Language Syntax Class

TADDccTVD 10 0010 Tagged Add and modify cc’s,
or Trap on Overflow

taddcctv regrs1, reg_or_imm, regrd D2

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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TADDccTV  (Deprecated)
Exceptions illegal_instruction
tag_overflow

See Also TADDcc on page 355
TSUBccTVD on page 362

SPARC V8
Compatibility

Note

TADDccTV traps based on the 32-bit overflow condition, just as
in the SPARC V8 architecture. Although the tagged add
instructions set the 64-bit condition codes CCR.xcc, there is no
form of the instruction that traps on the 64-bit overflow
condition.
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Tcc
7.103 Trap on Integer Condition Codes (Tcc)

† synonym: tnz ‡ synonym: tz ◊ synonym: tgeu ∇ synonym: tlu

Instruction op3 cond Operation cc Test Assembly Language Syntax Class

TA 11 1010 1000 Trap Always 1 ta i_or_x_cc, software_trap_number A1

TN 11 1010 0000 Trap Never 0 tn i_or_x_cc, software_trap_number A1

TNE 11 1010 1001 Trap on Not Equal not Z tne† i_or_x_cc, software_trap_number A1

TE 11 1010 0001 Trap on Equal Z te‡ i_or_x_cc, software_trap_number A1

TG 11 1010 1010 Trap on Greater not (Z or (N
xor V))

tg i_or_x_cc, software_trap_number A1

TLE 11 1010 0010 Trap on Less or Equal Z or (N xor V) tle i_or_x_cc, software_trap_number A1

TGE 11 1010 1011 Trap on Greater or
Equal

not (N xor V) tge i_or_x_cc, software_trap_number A1

TL 11 1010 0011 Trap on Less N xor V tl i_or_x_cc, software_trap_number A1

TGU 11 1010 1100 Trap on Greater,
Unsigned

not (C or Z) tgu i_or_x_cc, software_trap_number A1

TLEU 11 1010 0100 Trap on Less or
Equal, Unsigned

(C or Z) tleu i_or_x_cc, software_trap_number A1

TCC 11 1010 1101 Trap on Carry Clear
(Greater than or
Equal, Unsigned)

not C tcc◊ i_or_x_cc, software_trap_number A1

TCS 11 1010 0101 Trap on Carry Set
(Less Than, Unsigned)

C tcs∇ i_or_x_cc, software_trap_number A1

TPOS 11 1010 1110 Trap on Positive or
zero

not N tpos i_or_x_cc, software_trap_number A1

TNEG 11 1010 0110 Trap on Negative N tneg i_or_x_cc, software_trap_number A1

TVC 11 1010 1111 Trap on Overflow
Clear

not V tvc i_or_x_cc, software_trap_number A1

TVS 11 1010 0111 Trap on Overflow Set V tvs i_or_x_cc, software_trap_number A1

5 4

10 cond op3 rs1 i=0 — rs2

31 141924 18 13 12 02530 29

—

28 8 7

cc1cc0

11 10

10 cond op3 rs1 i=1 —— cc1cc0 imm_trap_#
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Tcc
Description The Tcc instruction evaluates the selected integer condition codes (icc or xcc)
according to the cond field of the instruction, producing either a TRUE or FALSE
result. If TRUE and no higher-priority exceptions or interrupt requests are pending,
then a trap_instruction or htrap_instruction exception is generated. If FALSE, the
trap_instruction (or htrap_instruction) exception does not occur and the instruction
behaves like a NOP.

For brevity, in the remainder of this section the value of the “software trap number”
used by Tcc will be referred to as “SWTN”.

In nonprivileged mode, if i = 0 the SWTN is specified by the least significant seven
bits of “R[rs1] + R[rs2]”. If i = 1, the SWTN is provided by the least significant seven
bits of “R[rs1] + imm_trap_#”. Therefore, the valid range of values for SWTN in
nonprivileged mode is 0 to 127. The most significant 57 bits of SWTN are unused
and should be supplied as zeroes by software.

In privileged and hyperprivileged modes, if i = 0 the SWTN is specified by the least
significant eight bits of “R[rs1] + R[rs2]”. If i = 1, the SWTN is provided by the least
significant eight bits of “R[rs1] + imm_trap_#”. Therefore, the valid range of values
for SWTN in privileged and hyperprivileged modes is 0 to 255. The most significant
56 bits of SWTN are unused an should be supplied as zeroes by software.

Generally, values of 0 ≤ SWTN ≤ 127 are used to trap to privileged-mode software
and values of 128 ≤ SWTN ≤ 255 are used to trap to hyperprivileged-mode software.
The behavior of Tcc, based on the privilege mode in effect when it is executed and
the value of the supplied SWTN, is as follows:

cc1 :: cc0 Condition Codes Evaluated

00 CCR.icc

01 — (illegal_instruction)

10 CCR.xcc

11 — (illegal_instruction)
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Tcc
Exceptions. An attempt to execute a Tcc instruction when any of the following
conditions exist causes an illegal_instruction exception:

■ instruction bit 29 is nonzero
■ i = 0 and instruction bits 12:5 are nonzero
■ i = 1 and instruction bits 10:8 are nonzero
■ cc0 = 1

If a Tcc instruction causes a trap_instruction or htrap_instruction trap, 256 plus the
SWTN value is written into TT[TL]. Then the trap is taken and the virtual processor
performs the normal trap entry procedure, as described in Trap Processing on page
470.

Exceptions illegal_instruction
trap_instruction (0 ≤ SWTN ≤ 127)
htrap_instruction (128 ≤ SWTN ≤ 255)

Behavior of Tcc instruction

Privilege Mode in effect when Tcc is executed 0 ≤ SWTN ≤ 127 128 ≤ SWTN ≤ 255

Nonprivileged
(PSTATE.priv = 0 and HSTATE.hpriv = 0)

trap_instruction exception
(to privileged mode)
(256 ≤ TT ≤ 383)

—
(not possible)

Privileged
(PSTATE.priv = 1 and HSTATE.hpriv = 0)

trap_instruction exception
(to privileged mode)
(256 ≤ TT ≤ 383)

htrap_instruction exception
(to hyperprivileged mode)
(384 ≤ TT ≤ 511)

Hyperprivileged
(and HSTATE.hpriv = 1)

htrap_instruction exception
(to hyperprivileged mode)
(256 ≤ TT ≤ 383)

htrap_instruction exception
(to hyperprivileged mode)
(384 ≤ TT ≤ 511)

Programming
Note

Tcc can be used to implement breakpointing, tracing, and calls to
privileged and hyperprivileged software. It can also be used for
runtime checks, such as for out-of-range array indexes and integer
overflow.
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TSUBcc
7.104 Tagged Subtract

Description This instruction computes “R[rs1] – R[rs2]” if i = 0, or
“R[rs1] – sign_ext(simm13)” if i = 1.

TSUBcc modifies the integer condition codes (icc and xcc).

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the
subtraction generates 32-bit arithmetic overflow; that is, the operands have different
values in bit 31 (the 32-bit sign bit) and the sign of the 32-bit difference in bit 31
differs from bit 31 of R[rs1].

If a TSUBcc causes a tag overflow, the 32-bit overflow bit (CCR.icc.v) is set to 1; if
TSUBcc does not cause a tag overflow, CCR.icc.v is set to 0.

In either case, the remaining integer condition codes (both the other CCR.icc bits and
all the CCR.xcc bits) are also updated as they would be for a normal subtract
instruction. In particular, the setting of the CCR.xcc.v bit is not determined by the
tag overflow condition (tag overflow is used only to set the 32-bit overflow bit).
ccr.xcc.v is set based on the 64-bit arithmetic overflow condition, like a normal 64-bit
subtract.

An attempt to execute a TSUBcc instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

See Also TADDcc on page 355
TSUBccTVD on page 362

Instruction op3 Operation Assembly Language Syntax Class

TSUBcc 10 0001 Tagged Subtract and modify cc’s tsubcc regrs1, reg_or_imm, regrd A1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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TSUBccTV  (Deprecated)
7.105 Tagged Subtract and Trap on Overflow

Description This instruction computes “R[rs1] – R[rs2]” if i = 0, or “R[rs1] – sign_ext(simm13)”
if i = 1.

TSUBccTV modifies the integer condition codes (icc and xcc) if it does not trap.

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the
subtraction generates 32-bit arithmetic overflow; that is, the operands have different
values in bit 31 (the 32-bit sign bit) and the sign of the 32-bit difference in bit 31
differs from bit 31 of R[rs1].

An attempt to execute a TSUBccTV instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If TSUBccTV causes a tag overflow, then a tag_overflow exception is generated and
R[rd] and the integer condition codes remain unchanged. If a TSUBccTV does not
cause a tag overflow condition, the difference is written into R[rd] and the integer
condition codes are updated. CCR.icc.v is set to 0 to indicate no 32-bit overflow.

In either case, the remaining integer condition codes (both the other CCR.icc bits and
all the CCR.xcc bits) are also updated as they would be for a normal subtract
instruction. In particular, the setting of the CCR.xcc.v bit is not determined by the
tag overflow condition (tag overflow is used only to set the 32-bit overflow bit).
CCR.xcc.v is set only on the basis of the normal 64-bit arithmetic overflow condition,
like a normal 64-bit subtract.

The TSUBccTV instruction is deprecated and should not be used in new
software. The TSUBcc instruction followed by BPVS instead (with instructions to
save the pre-TSUBcc integer condition codes if necessary) should be used
instead.

Opcode op3 Operation Assembly Language Syntax Class

TSUBccTVD 10 0011 Tagged Subtract and modify cc’s, or
Trap on Overflow

tsubcctv regrs1, reg_or_imm, regrd D2

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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Exceptions illegal_instruction
tag_overflow

See Also TADDccTVD on page 356
TSUBcc on page 361

SPARC V8
Compatibility

Note

TSUBccTV traps based on the 32-bit overflow condition, just as
in the SPARC V8 architecture. Although the tagged add
instructions set the 64-bit condition codes CCR.xcc, there is no
form of the instruction that traps on the 64-bit overflow
condition.
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7.106 Divide (64-bit ÷ 32-bit)

Description The divide instructions perform 64-bit by 32-bit division, producing a 32-bit result. If
i = 0, they compute “(Y :: R[rs1]{31:0}) ÷ R[rs2]{31:0}”. Otherwise (that is, if i = 1), the
divide instructions compute “(Y :: R[rs1]{31:0}) ÷ (sign_ext(simm13){31:0})”. In either
case, if overflow does not occur, the less significant 32 bits of the integer quotient are
sign- or zero-extended to 64 bits and are written into R[rd].

The contents of the Y register are undefined after any 64-bit by 32-bit integer divide
operation.

Unsigned Divide
Unsigned divide (UDIV, UDIVcc) assumes an unsigned integer doubleword
dividend (Y :: R[rs1]{31:0}) and an unsigned integer word divisor R[rs2{31:0}] or
(sign_ext(simm13){31:0}) and computes an unsigned integer word quotient (R[rd]).
Immediate values in simm13 are in the ranges 0 to 212 – 1 and 232 – 212 to 232 – 1 for
unsigned divide instructions.

Unsigned division rounds an inexact rational quotient toward zero.

The UDIV, UDIVcc, SDIV, and SDIVcc instructions are deprecated and should not
be used in new software. The UDIVX and SDIVX instructions should be used
instead.

Opcode op3 Operation Assembly Language Syntax Class

UDIVD 00 1110 Unsigned Integer Divide udiv regrs1, reg_or_imm, regrd C2

SDIVD 00 1111 Signed Integer Divide sdiv regrs1, reg_or_imm, regrd C2

UDIVccD 01 1110 Unsigned Integer Divide and modify cc’s udivcc regrs1, reg_or_imm, regrd C2

SDIVccD 01 1111 Signed Integer Divide and modify cc’s sdivcc regrs1, reg_or_imm, regrd C2

Programming
Note

The rational quotient is the infinitely precise result quotient. It
includes both the integer part and the fractional part of the
result. For example, the rational quotient of 11/4 = 2.75 (integer
part = 2, fractional part = .75).

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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The result of an unsigned divide instruction can overflow the less significant 32 bits
of the destination register R[rd] under certain conditions. When overflow occurs, the
largest appropriate unsigned integer is returned as the quotient in R[rd]. The
condition under which overflow occurs and the value returned in R[rd] under this
condition are specified in TABLE 7-14.

When no overflow occurs, the 32-bit result is zero-extended to 64 bits and written
into register R[rd].

UDIV does not affect the condition code bits. UDIVcc writes the integer condition
code bits as shown in the following table. Note that negative (N) and zero (Z) are set
according to the value of R[rd] after it has been set to reflect overflow, if any.

Signed Divide Signed divide (SDIV, SDIVcc) assumes a signed integer doubleword dividend
(Y :: lower 32 bits of R[rs1]) and a signed integer word divisor (lower 32 bits of
R[rs2] or lower 32 bits of sign_ext(simm13)) and computes a signed integer word
quotient (R[rd]).

Signed division rounds an inexact quotient toward zero. For example, –7 ÷ 4 equals
the rational quotient of –1.75, which rounds to –1 (not –2) when rounding toward
zero.

The result of a signed divide can overflow the low-order 32 bits of the destination
register R[rd] under certain conditions. When overflow occurs, the largest
appropriate signed integer is returned as the quotient in R[rd]. The conditions under
which overflow occurs and the value returned in R[rd] under those conditions are
specified in TABLE 7-15.

TABLE 7-14 UDIV / UDIVCC Overflow Detection and Value Returned

Condition Under Which Overflow Occurs Value Returned in R[rd]

Rational quotient ≥ 232 232 − 1
(0000 0000 FFFF FFFF16)

Bit UDIVcc

icc.n Set if R[rd]{31} = 1

icc.z Set if R[rd]{31:0} = 0

icc.v Set if overflow (per TABLE 7-14)

icc.c Zero

xcc.n Set if R[rd]{63} = 1

xcc.z Set if R[rd]{63:0} = 0

xcc.v Zero

xcc.c Zero
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When no overflow occurs, the 32-bit result is sign-extended to 64 bits and written
into register R[rd].

SDIV does not affect the condition code bits. SDIVcc writes the integer condition
code bits as shown in the following table. Note that negative (N) and zero (Z) are set
according to the value of R[rd] after it has been set to reflect overflow, if any.

An attempt to execute a UDIV, UDIVcc, SDIV, or SDIVcc instruction when i = 0 and
instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
division_by_zero

TABLE 7-15 SDIV / SDIVCC Overflow Detection and Value Returned

Condition Under Which Overflow Occurs Value Returned in R[rd]

Rational quotient ≥ 231 231 −1 (0000 0000 7FFF FFFF16)

Rational quotient ≤ −231 − 1 −231 (FFFF FFFF 8000 000016)

Bit SDIVcc

icc.n Set to 1 if R[rd]{31} = 1; otherwise, set to 0

icc.z Set to 1 if R[rd]{31:0} = 0; otherwise, set to 0

icc.v Set to 1 if overflow (per TABLE 7-12); otherwise set to 0

icc.c Set to 0

xcc.n Set to 1 if R[rd]{63} = 1; otherwise, set to 0

xcc.z Set to 1 if R[rd]{63:0} = 0; otherwise, set to 0

xcc.v Set to 0

xcc.c Set to 0
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7.107 Multiply (32-bit)

Description The multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit
results. They compute “R[rs1]{31:0} × R[rs2]{31:0}” if i = 0, or “R[rs1]{31:0} ×
sign_ext(simm13){31:0}” if i = 1. They write the 32 most significant bits of the
product into the Y register and all 64 bits of the product into R[rd].

Unsigned multiply instructions (UMUL, UMULcc) operate on unsigned integer
word operands and compute an unsigned integer doubleword product. Signed
multiply instructions (SMUL, SMULcc) operate on signed integer word operands
and compute a signed integer doubleword product.

UMUL and SMUL do not affect the condition code bits. UMULcc and SMULcc write
the integer condition code bits, icc and xcc, as shown below.

The UMUL, UMULcc, SMUL, and SMULcc instructions are deprecated and
should not be used in new software. The MULX instruction should be used
instead.

Opcode op3 Operation Assembly Language Syntax Class

UMULD 00 1010 Unsigned Integer Multiply umul regrs1, reg_or_imm, regrd C2

SMULD 00 1011 Signed Integer Multiply smul regrs1, reg_or_imm, regrd C2

UMULccD 01 1010 Unsigned Integer Multiply and modify cc’s umulcc regrs1, reg_or_imm, regrd C2

SMULccD 01 1011 Signed Integer Multiply and modify cc’s smulcc regrs1, reg_or_imm, regrd C2

Bit UMULcc / SMULcc

icc.n Set to 1 if product{31} = 1; otherwise, set to 0
icc.z Set to 1 if product{31:0}= 0; otherwise, set to 0
icc.v Set to 0
icc.c Set to 0
xcc.n Set to 1 if product{63} = 1; otherwise, set to 0
xcc.z Set to 1 if product{63:0} = 0; otherwise, set to 0
xcc.v Set to 0
xcc.c Set to 0

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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An attempt to execute a UMUL, UMULcc, SMUL, or SMULcc instruction when i = 0
and instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

Note 32-bit negative (icc.n) and zero (icc.z) condition codes are set
according to the less significant word of the product, not
according to the full 64-bit result.

Programming
Notes

32-bit overflow after UMUL/UMULcc is indicated by Y ≠ 0.

32-bit overflow after SMUL/SMULcc is indicated by
Y ≠ (R[rd] >> 31), where “>>” indicates 32-bit arithmetic right-
shift.
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WRasr
7.108 Write Ancillary State Register
Instruction rd Operation Assembly Language Syntax Class

WRYD 0 Write Y register (deprecated) wr regrs1, reg_or_imm,%y C1

— 1 Reserved

WRCCR 2 Write Condition Codes
register

wr regrs1, reg_or_imm,%ccr A1

WRASI 3 Write ASI register wr regrs1, reg_or_imm,%asi A1

— 4 Reserved (read-only ASR (TICK))

— 5 Reserved (read-only ASR (PC))

WRFPRS 6 Write Floating-Point Registers Status
register

wr regrs1, reg_or_imm,%fprs A1

— 7–14 Reserved

— 15 Software-initiated reset (see Software-
Initiated Reset on page 320)

WRPCRP 16 Write Performance Control register
(PCR)

wr regrs1, reg_or_imm,%pcr A1

WRPICPPIC 17 Write Performance Instrumentation
Counters (PIC)

wr regrs1, reg_or_imm,%pic A1

— 18 Reserved (impl. dep. #8-V8-Cs20, #9-
V8-Cs20)

WRGSR 19 Write General Status register (GSR) wr regrs1, reg_or_imm,%gsr A1

WRSOFTINT_SETP 20 Set bits of per-virtual processor Soft
Interrupt register

wr regrs1, reg_or_imm, %softint_set N1

WRSOFTINT_CLRP 21 Clear bits of per-virtual processor Soft
Interrupt register

wr regrs1, reg_or_imm, %softint_clr N1

WRSOFTINTP 22 Write per-virtual processor Soft
Interrupt register

wr regrs1, reg_or_imm,%softint N1

WRTICK_CMPRP 23 Write Tick Compare register wr regrs1, reg_or_imm,%tick_cmpr N1

WRSTICKH 24 Write System Tick register wr regrs1, reg_or_imm,%sys_tick N1

WRSTICK_CMPRP 25 Write System Tick Compare register wr regrs1, reg_or_imm,%sys_tick_cmpr N1

— 26-27 Reserved (impl. dep. #8-V8-Cs20, 9-V8-
Cs20)

— 28–31 Implementation dependent (impl.
dep. #8-V8-Cs20, 9-V8-Cs20)
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Description The WRasr instructions each store a value to the writable fields of the ancillary state
register (ASR) specified by rd.

The value stored by these instructions (other than the implementation-dependent
variants) is as follows: if i = 0, store the value “R[rs1] xor R[rs2]”; if i = 1, store
“R[rs1] xor sign_ext(simm13)”.

The WRasr instruction with rs1 = 0 is a (deprecated) WRY instruction (which should
not be used in new software). WRY is not a delayed-write instruction; the instruction
immediately following a WRY observes the new value of the Y register.

WRCCR, WRFPRS, and WRASI are not delayed-write instructions. The instruction
immediately following a WRCCR, WRFPRS, or WRASI observes the new value of
the CCR, FPRS, or ASI register.

WRFPRS waits for any pending floating-point operations to complete before writing
the FPRS register.

IMPL. DEP. #48-V8-Cs20: WRasr instructions with rd in the range 26–31 are
available for implementation-dependent uses (impl. dep. #8-V8-Cs20). For a WRasr
instruction with rd in the range 26–31, the following are implementation dependent:
■ the interpretation of bits 18:0 in the instruction
■ the operation(s) performed (for example, xor) to generate the value written to the

ASR
■ whether the instruction is nonprivileged or privileged or hyperprivileged (impl.

dep. #9-V8-Cs20), and
■ whether an attempt to execute the instruction causes an illegal_instruction

exception.

Note The operation is exclusive-or.

The WRY instruction is deprecated. It is recommended that all instructions that
reference the Y register be avoided.

Note See the section “Read/Write Ancillary State Registers (ASRs)” in
Extending the UltraSPARC Architecture, contained in the separate
volume UltraSPARC Architecture Application Notes, for a
discussion of extending the SPARC V9 instruction set by means of
read/write ASR instructions.

rd10 op3 = 11 0000 —rs1 rs2i=0

31 24 02530 29 19 18 14 13 12 5 4

rd10 op3 = 11 0000 rs1 simm13i=1
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See Ancillary State Registers on page 70 for more detailed information regarding ASR
registers.

Exceptions. An attempt to execute a WRasr instruction when any of the following
conditions exist causes an illegal_instruction exception:
■ i = 0 and instruction bits 12:5 are nonzero
■ rd = 1, 4, 5, 7–14, 18, or 26-31
■ rd = 15 and ((rs1 ≠ 0) or (i = 0))
■ the instruction is WRSTICK and the virtual processor is not in hyperprivileged

mode (HPSTATE.hpriv = 0)

An attempt to execute a WRPCR (impl. dep. #250-U3-Cs10), WRSOFTINT_SET,
WRSOFTINT_CLR, WRSOFTINT, WRTICK_CMPR, or WRSTICK_CMPR instruction
in nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0) causes a
privileged_opcode exception.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the
FPU is not present, then an attempt to execute a WRGSR instruction causes an
fp_disabled exception.

An attempt to execute a WRPIC instruction in nonprivileged mode (PSTATE.priv = 0
and HPSTATE.hpriv = 0) when PCR.priv = 1 causes a privileged_action exception.

Exceptions illegal_instruction
privileged_opcode
fp_disabled
privileged_action

See Also RDasr on page 299
WRHPR on page 372
WRPR on page 374

V9
Compatibility

Notes

Ancillary state registers may include (for example) timer, counter,
diagnostic, self-test, and trap-control registers.

The SPARC V8 WRIER, WRPSR, WRWIM, and WRTBR
instructions do not exist in the UltraSPARC Architecture because
the IER, PSR, TBR, and WIM registers do not exist in the
UltraSPARC Architecture.

Implementation
Note

The SIR instruction shares an opcode with WRasr; they are
distinguished by the rd, rs1, and i fields (rd = 15,rs1 = 0, and i = 1
for SIR). See Software-Initiated Reset on page 320.
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7.109 Write Hyperprivileged Register

Description A WRHPR instruction stores the value “R[rs1] xor R[rs2]” if i = 0, or “R[rs1] xor
sign_ext(simm13)” if i = 1 to the writable fields of the specified hyperprivileged
state register.

The rd field in the instruction determines the hyperprivileged register that is written.
There are MAXTL copies of the HTSTATE register, one for each trap level. A write to
one of these registers sets the copy of HTSTATE indexed by the current value in the
trap-level register (TL).

The WRHPR instruction is a non-delayed-write instruction. The instruction
immediately following the WRHPR observes any changes made to virtual processor
state made by the WRHPR.

An attempt to execute a WRHPR instruction when any of the following conditions
exist causes an illegal_instruction exception:
■ i = 0 and instruction bits 12:5 are nonzero
■ rd = 2, 4, or 6-30 (reserved for future versions of the architecture)
■ rd = 1 and TL = 0 (write to HTSTATE when the trap level is zero)
■ virtual processor is in nonprivileged or privileged mode (HPSTATE.hpriv = 0)

A trap_level_zero disrupting trap can occur upon the completion of a WRHPR
instruction to HPSTATE, if the following three conditions are true after WRHPR has
executed:

■ trap_level_zero exceptions are enabled (HPSTATE.tlz = 1),

Instruction op3 Operation rd Assembly Language Syntax Class

WRHPRH 11 0011 Write hyperprivileged register
HPSTATE
HTSTATE
Reserved
HINTP
Reserved
HTBA
Reserved
HSTICK_CMPR

0
1
2
3
4
5
6–30
31

wrhpr
wrhpr

wrhpr

wrhpr

wrhpr

regrs1, reg_or_imm, %hpstate
regrs1, reg_or_imm, %htstate

regrs1, reg_or_imm, %hintp

regrs1, reg_or_imm, %htba

regrs1, reg_or_imm, %hsys_tick_cmpr

C1

Note The operation is exclusive-or.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
372 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006



WRHPR

■ the virtual processor is in nonprivileged or privileged mode

(HPSTATE.hpriv = 0), and
■ the trap level (TL) register’s value is zero (TL = 0)

Exceptions illegal_instruction
trap_level_zero

See Also RDHPR on page 302
WRasr on page 369
WRPR on page 374

Programming
Note

Execution of a WRHPR instruction that causes the value of
HPSTATE.hpriv to change from 1 to 0 is not guaranteed to work
if the WRHPR is in the delay slot of a DCTI instruction.
Therefore, it is recommended that WRHPR not be executed in a
delay slot, especially if it will toggle the value of HPSTATE.hpriv
to 0.

Programming
Note

For historical reasons, the WRPR instruction, not WRHPR, is used
to write to the hyperprivileged TICK register. See Write Privileged
Register on page 374.
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7.110 Write Privileged Register

Description This instruction stores the value “R[rs1] xor R[rs2]” if i = 0, or “R[rs1] xor
sign_ext(simm13)” if i = 1 to the writable fields of the specified privileged state
register.

The rd field in the instruction determines the privileged register that is written.
There are MAXTL copies of the TPC, TNPC, TT, and TSTATE registers, one for each
trap level. A write to one of these registers sets the register, indexed by the current
value in the trap-level register (TL).

Instruction op3 Operation rd Assembly Language Syntax Class

WRPRP 11 0010 Write Privileged register
TPC
TNPC
TSTATE
TT
TICK
TBA
PSTATE
TL
PIL
CWP
CANSAVE
CANRESTORE
CLEANWIN
OTHERWIN
WSTATE
Reserved
GL
Reserved

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17–31

wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr

wrpr

regrs1, reg_or_imm, %tpc
regrs1, reg_or_imm, %tnpc
regrs1, reg_or_imm, %tstate
regrs1, reg_or_imm, %tt
regrs1, reg_or_imm, %tick
regrs1, reg_or_imm, %tba
regrs1, reg_or_imm, %pstate
regrs1, reg_or_imm, %tl
regrs1, reg_or_imm, %pil
regrs1, reg_or_imm, %cwp
regrs1, reg_or_imm, %cansave
regrs1, reg_or_imm, %canrestore
regrs1, reg_or_imm, %cleanwin
regrs1, reg_or_imm, %otherwin
regrs1, reg_or_imm, %wstate

regrs1, reg_or_imm, %gl

C1

Note The operation is exclusive-or.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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A WRPR to TL only stores a value to TL; it does not cause a trap, cause a return from
a trap, or alter any machine state other than TL and state (such as PC, NPC, TICK,
etc.) that is indirectly modified by every instruction.

The WRPR instruction is a non-delayed-write instruction. The instruction
immediately following the WRPR observes any changes made to virtual processor
state made by the WRPR.

In privileged mode, MAXPTL is the maximum value that may be written by a WRPR to
TL; an attempt to write a larger value results in MAXPTL being written to TL. In
hyperprivileged mode, MAXTL is the maximum value that may be written by a WRPR
to TL; an attempt to write a larger value results in MAXTL being written to TL. For
details, see TABLE 6-22 on page 100.

In privileged mode, MAXPGL is the maximum value that may be written by a WRPR to
GL; an attempt to write a larger value results in MAXPGL being written to GL. In
hyperprivileged mode, MAXGL is the maximum value that may be written by a WRPR
to GL; an attempt to write a larger value results in MAXGL being written to GL. For
details, see TABLE 6-23 on page 103.

Exceptions. An attempt to execute a WRPR instruction in nonprivileged mode
(PSTATE.priv = 0 and HSTATE.hpriv = 0) causes a privileged_opcode exception.

An attempt to execute a WRPR instruction when any of the following conditions
exist causes an illegal_instruction exception:
■ i = 0 and instruction bits 12:5 are nonzero
■ (rd = 4) and (PSTATE.priv = 1 and HSTATE.hpriv = 0)

(an attempt to write to hyperprivileged register TICK while in privileged mode)
■ rd = 15, or 17-31 (reserved for future versions of the architecture)
■ 0 ≤ rd ≤ 3 (attempt to write TPC, TNPC,TSTATE, or TT register) while TL = 0

(current trap level is zero) and the virtual processor is in privileged or
hyperprivileged mode.

A trap_level_zero disrupting trap can occur upon the completion of a WRPR
instruction to TL, if the following three conditions are true after WRPR has executed:

■ trap_level_zero exceptions are enabled (HPSTATE.tlz = 1)
■ the virtual processor is in nonprivileged or privileged mode

(HPSTATE.hpriv = 0), and

Programming
Note

A WRPR of TL can be used to read the values of TPC, TNPC, and
TSTATE for any trap level; however, software must take care that
traps do not occur while the TL register is modified.

Programming
Note

For historical reasons, the WRPR instruction, not WRHPR, is used
to write to the hyperprivileged TICK register.

Implementation
Note

In nonprivileged mode, illegal_instruction exception due to
0 ≤ rd ≤ 3 and TL = 0 does not occur; the privileged_opcode
exception occurs instead.
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■ the trap level (TL) register’s value is zero (TL = 0)

Exceptions privileged_opcode
illegal_instruction
trap_level_zero

See Also RDPR on page 303
WRasr on page 369
WRHPR on page 372
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XOR / XNOR
7.111 XOR Logical Operation

Description These instructions implement bitwise logical xor operations. They compute “R[rs1]
op R[rs2]” if i = 0, or “R[rs1] op sign_ext(simm13)” if i = 1, and write the result into
R[rd].

XORcc and XNORcc modify the integer condition codes (icc and xcc). They set the
condition codes as follows:

■ icc.v, icc.c, xcc.v, and xcc.c are set to 0
■ icc.n is copied from bit 31 of the result
■ xcc.n is copied from bit 63 of the result
■ icc.z is set to 1 if bits 31:0 of the result are zero (otherwise to 0)
■ xcc.z is set to 1 if all 64 bits of the result are zero (otherwise to 0)

An attempt to execute an XOR, XORcc, XNOR, or XNORcc instruction when i = 0 and
instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

Instruction op3 Operation Assembly Language Syntax Class

XOR 00 0011 Exclusive or xor regrs1, reg_or_imm, regrd A1

XORcc 01 0011 Exclusive or and modify cc’s xorcc regrs1, reg_or_imm, regrd A1

XNOR 00 0111 Exclusive nor xnor regrs1, reg_or_imm, regrd A1

XNORcc 01 0111 Exclusive nor and modify cc’s xnorcc regrs1, reg_or_imm, regrd A1

Programming
Note

XNOR (and XNORcc) is identical to the xor_not (and set condition
codes) xor_not_cc logical operation, respectively.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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CHAPTER 8

IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2005

The IEEE Std 754-1985 floating-point standard contains a number of implementation
dependencies. This chapter specifies choices for these implementation dependencies,
to ensure that SPARC V9 implementations are as consistent as possible.

The chapter contains these major sections:

■ Traps Inhibiting Results on page 379.
■ NaN Operand and Result Definitions on page 380.
■ Trapped Underflow Definition (ufm = 1) on page 382.
■ Untrapped Underflow Definition (ufm = 0) on page 383.
■ Integer Overflow Definition on page 383.
■ Floating-Point Nonstandard Mode on page 384.

Exceptions are discussed in this chapter on the assumption that instructions are
implemented in hardware. If an instruction is implemented in software, it may not
trigger hardware exceptions but its behavior as observed by nonprivileged software
(other than timing) must be the same as if it was implemented in hardware.

8.1 Traps Inhibiting Results
As described in Floating-Point State Register (FSR) on page 61 and elsewhere, when a
floating-point trap occurs, the following conditions are true:

■ The destination floating-point register(s) (the F registers) are unchanged.

Note: This chapter is undergoing final review; please check
back later for a copy of UltraSPARC Architecture
2005 containing the final version of this chapter.
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■ The floating-point condition codes (fcc0, fcc1, fcc2, and fcc3) are unchanged.

■ The FSR.aexc (accrued exceptions) field is unchanged.

■ The FSR.cexc (current exceptions) field is unchanged except for
IEEE_754_exceptions; in that case, cexc contains a bit set to 1, corresponding to
the exception that caused the trap. Only one bit shall be set in cexc.

Instructions causing an fp_exception_other trap because of unfinished or
unimplemented FPops execute as if by hardware; that is, such a trap is undetectable
by application software, except that timing may be affected.

8.2 NaN Operand and Result Definitions
An untrapped floating-point result can be in a format that is either the same as, or
different from, the format of the source operands. These two cases are described
separately below.

8.2.1 Untrapped Result in Different Format from
Operands
■ F<sdq>TO<sdq> or F<sd>MUL<dq> with a quiet NaN operand — No

exception caused; result is a quiet NaN. The operand is transformed as follows:

Programming
Note

A user-mode trap handler invoked for an IEEE_754_exception,
whether as a direct result of a hardware fp_exception_ieee_754
trap or as an indirect result of privileged software handling of
an fp_exception_other trap with FSR.ftt = unfinished_FPop or
FSR.ftt = unimplemented_FPop, can rely on the following
behavior:

■ The address of the instruction that caused the exception will
be available.

■ The destination floating-point register(s) are unchanged from
their state prior to that instruction’s execution.

■ The floating-point condition codes (fcc0, fcc1, fcc2, and
fcc3) are unchanged.

■ The FSR.aexc field is unchanged.

■ The FSR.cexc field contains exactly one bit set to 1,
corresponding to the exception that caused the trap.

■ The FSR.ftt, FSR.qne, and reserved fields of FSR are zero.
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NaN transformation: The most significant bits of the operand fraction are copied
to the most significant bits of the result fraction. In conversion to a narrower
format, excess low-order bits of the operand fraction are discarded (which is not
considered a "rounding" operation). In conversion to a wider format, excess low-
order bits of the result fraction are set to 0. The quiet bit (the most significant bit
of the result fraction) is always set to 1, so the NaN transformation always
produces a quiet NaN. The sign bit is copied from the operand to the result
without modification.

■ F<sdq>TO<sdq> or F<sd>MUL<dq> with a signalling NaN operand — Invalid
exception; result is the signalling NaN operand processed by the NaN
transformation above to produce a quiet NaN.

■ FCMPE<sdq> with any NaN operand — Invalid exception; the selected floating-
point condition code is set to unordered.

■ FCMP<sdq> with any signalling NaN operand — Invalid exception; the selected
floating-point condition code is set to unordered.

■ FCMP<sdq> with any quiet NaN operand but no signalling NaN operand —
No exception; the selected floating-point condition code is set to unordered.

8.2.2 Untrapped Result in Same Format as Operands
■ No NaN operand — For an invalid operation such as sqrt(–1.0) or 0.0 ÷ 0.0, the

result is the quiet NaN with sign = zero, exponent = all 1’s, and fraction = all ones.
The sign is zero to distinguish such results from storage initialized to all ones.

■ One operand, a quiet NaN — No exception; result is the quiet NaN operand.

■ One operand, a signalling NaN — Invalid exception; result is the signalling NaN
with its quiet bit (most significant bit of fraction field) set to 1.

■ Two operands, both quiet NaNs — No exception; result is the rs2 (second source)
operand.

■ Two operands, both signalling NaNs — Invalid exception; result is the rs2
operand with the quiet bit set to 1.

■ Two operands, only one is a signalling NaN — Invalid exception; result is the
signalling NaN operand with the quiet bit set to 1.

■ Two operands, neither is a signalling NaN, only one is a quiet NaN — No
exception; result is the quiet NaN operand.

In TABLE 8-1, NaNn means that the NaN is in rsn, Q means quiet, S signalling.
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QSNaNn means a quiet NaN produced by the NaN transformation on a signalling
NaN from rsn; the invalid exception is always indicated. The QNaNn results in the
table never generate an exception, but IEEE 754 specifies several cases of invalid
exceptions, and QNaN results from operands that are both numbers.

8.3 Trapped Underflow Definition (ufm = 1)
An UltraSPARC Architecture virtual processor detects tininess before rounding
occurs. (impl. dep. #55-V8-Cs10)

Since tininess is detected before rounding, trapped underflow occurs when the exact
unrounded result has magnitude between zero and the smallest normalized number
in the destination format.

TABLE 8-1 Untrapped Floating-Point Results

rs2 Operand

Number QNaN2 SNaN2

rs1
operand

None IEEE 754 QNaN2 QSNaN2

Number IEEE 754 QNaN2 QSNaN2

QNaN1 QNaN1 QNaN2 QSNaN2

SNaN1 QSNaN1 QSNaN1 QSNaN2

Note The wrapped exponent results intended to be delivered on
trapped underflows and overflows in IEEE 754 are irrelevant to
the SPARC V9 architecture at the hardware, hyperprivileged,
and privileged software levels. If they are created at all, it
would be by user software in a nonprivileged-mode trap
handler.
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8.4 Untrapped Underflow Definition
(ufm = 0)
On an implementation that detects tininess before rounding, untrapped underflow
occurs when the exact unrounded result has magnitude between zero and the
smallest normalized number in the destination format and the correctly rounded
result in the destination format is inexact.

TABLE 8-2 summarizes what happens on an implementation that detects tininess
before rounding, when an exact unrounded value u satisfying

0 ≤ |u| ≤ smallest normalized number

would round, if no trap intervened, to a rounded value r which might be zero,
subnormal, or the smallest normalized value.

8.5 Integer Overflow Definition
■ F<sdq>TOi — When a NaN, infinity, large positive argument ≥ 231 or large

negative argument ≤ –(231 + 1) is converted to an integer, the invalid_current
(nvc) bit of FSR.cexc should be set and fp_exception_IEEE_754 should be raised.
If the floating-point invalid trap is disabled (FSR.tem.nvm = 0), no trap occurs
and a numerical result is generated: if the sign bit of the operand is 0, the result is
231 – 1; if the sign bit of the operand is 1, the result is –231.

TABLE 8-2 Untrapped Floating-Point Underflow (Tininess Detected Before Rounding)

Underflow trap:
Inexact trap:

ufm = 1
nxm = x

ufm = 0
nxm = 1

ufm = 0
nxm = 0

u = r

r is minimum normal None None None

r is subnormal UF None None

r is zero None None None

u ≠ r

r is minimum normal UF NX uf nx

r is subnormal UF NX uf nx

r is zero UF NX uf nx

UF = fp_exception_ieee_754 trap with cexc.ufc = 1
NX = fp_exception_ieee_754 trap with cexc.nxc = 1

uf = cexc.ufc = 1, aexc.ufa = 1, no fp_exception_ieee_754 trap
nx = cexc.nxc = 1, aexc.nxa = 1, no fp_exception_ieee_754 trap
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■ F<sdq>TOx — When a NaN, infinity, large positive argument ≥ 263, or large
negative argument ≤ –(263 + 1) is converted to an extended integer, the
invalid_current (nvc) bit of FSR.cexc should be set and fp_exception_IEEE_754
should be raised. If the floating-point invalid trap is disabled (FSR.tem.nvm = 0),
no trap occurs and a numerical result is generated: if the sign bit of the operand is
0, the result is 263 – 1; if the sign bit of the operand is 1, the result is –263.

8.6 Floating-Point Nonstandard Mode
Please refer to Nonstandard Floating-Point (ns) on page 63 for information.
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CHAPTER 9

Memory

The UltraSPARC Architecture memory models define the semantics of memory
operations. The instruction set semantics require that loads and stores behave as if
they are performed in the order in which they appear in the dynamic control flow of
the program. The actual order in which they are processed by the memory may be
different. The purpose of the memory models is to specify what constraints, if any,
are placed on the order of memory operations.

The memory models apply both to uniprocessor and to shared memory
multiprocessors. Formal memory models are necessary for precise definitions of the
interactions between multiple virtual processors and input/output devices in a
shared memory configuration. Programming shared memory multiprocessors
requires a detailed understanding of the operative memory model and the ability to
specify memory operations at a low level in order to build programs that can safely
and reliably coordinate their activities. For additional information on the use of the
models in programming real systems, see Programming with the Memory Models,
contained in the separate volume UltraSPARC Architecture Application Notes.

This chapter contains a great deal of theoretical information so that the discussion of
the UltraSPARC Architecture TSO memory model has sufficient background.

This chapter describes memory models in these sections:

■ Memory Location Identification on page 386.
■ Memory Accesses and Cacheability on page 386.
■ Memory Addressing and Alternate Address Spaces on page 389.
■ SPARC V9 Memory Model on page 393.
■ The UltraSPARC Architecture Memory Model — TSO on page 396.
■ Nonfaulting Load on page 405.
■ Store Coalescing on page 405.
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9.1 Memory Location Identification
A memory location is identified by an 8-bit address space identifier (ASI) and a 64-
bit memory address. The 8-bit ASI can be obtained from an ASI register or included
in a memory access instruction. The ASI used for an access can distinguish among
different 64-bit address spaces, such as Primary memory space, Secondary memory
space, and internal control registers. It can also apply attributes to the access, such as
whether the access should be performed in big- or little-endian byte order, or
whether the address should be taken as a virtual, real, or physical address.

9.2 Memory Accesses and Cacheability
Memory is logically divided into real memory (cached) and I/O memory
(noncached with and without side effects) spaces.

Real memory stores information without side effects. A load operation returns the
value most recently stored. Operations are side-effect-free in the sense that a load,
store, or atomic load-store to a location in real memory has no program-observable
effect, except upon that location (or, in the case of a load or load-store, on the
destination register).

I/O locations may not behave like memory and may have side effects. Load, store,
and atomic load-store operations performed on I/O locations may have observable
side effects, and loads may not return the value most recently stored. The value
semantics of operations on I/O locations are not defined by the memory models, but
the constraints on the order in which operations are performed is the same as it
would be if the I/O locations were real memory. The storage properties, contents,
semantics, ASI assignments, and addresses of I/O registers are implementation
dependent.

9.2.1 Coherence Domains
Two types of memory operations are supported in the UltraSPARC Architecture:
cacheable and noncacheable accesses. The manner in which addresses are
differentiated is implementation dependent. In some implementations, it is indicated
by the page translation (TTE.cp), while in other implementations, it is physical
address bit specific.
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Although SPARC V9 does not specify memory ordering between cacheable and
noncacheable accesses, the UltraSPARC Architecture maintains TSO ordering
between memory references regardless of their cacheability.

The UltraSPARC Architecture obeys the Sun-5 Ordering rules as documented in the
“Sun-4u/Sun-5 Ordering with TSO” specification.

9.2.1.1 Cacheable Accesses
Accesses within the coherence domain are called cacheable accesses. They have these
properties:

■ Data reside in real memory locations.
■ Accesses observe supported cache coherency protocol(s).
■ The cache line size is 2n bytes (where n ≥ 4), and can be different for each cache.

9.2.1.2 Noncacheable Accesses
Noncacheable accesses are outside of the coherence domain. They have the
following properties:

■ Data might not reside in real memory locations. Accesses may result in
programmer-visible side effects. An example is memory-mapped I/O control
registers.

■ Accesses do not observe supported cache coherency protocol(s).
■ The smallest unit in each transaction is a single byte.

The UltraSPARC Architecture MMU optionally includes an attribute bit in each page
translation, TTE.e, which when set signifies that this page has side effects.

Noncacheable accesses without side effects (TTE.e = 0) are processor consistent and
obey TSO memory ordering. In particular, processor consistency ensures that a
noncacheable load that references the same location as a previous noncacheable store
will load the data of the previous store.

Noncacheable accesses with side effects (TTE.e = 1) are processor consistent and are
strongly ordered. These accesses are described in more detail in the following
section.

9.2.1.3 Noncacheable Accesses with Side-Effect

Loads, stores, and load-stores to I/O locations might not behave with memory
semantics. Loads and stores could have side effects; for example, a read access could
clear a register or pop an entry off a FIFO. A write access could set a register address
port so that the next access to that address will read or write a particular internal
register. Such devices are considered order sensitive. Also, such devices may only
allow accesses of a fixed size, so store merging of adjacent stores or stores within a
16-byte region would cause an error (see Store Coalescing on page 405).
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Noncacheable accesses (other than block loads and block stores) to pages with side
effects (TTE.e = 1) exhibit the following behavior:

■ Noncacheable accesses are strongly ordered with respect to each other. Bus
protocol should guarantee that IO transactions to the same device are delivered in
the order that they are received.

■ Noncacheable loads with the TTE.e bit = 1 will not be issued to the system until
all previous instructions have completed, and the store queue is empty.

■ Noncacheable store coalescing is disabled for accesses with TTE.e = 1.

■ A MEMBAR may be needed between side-effect and non-side-effect accesses. See
TABLE 9-3 on page 402.

Whether block loads and block stores adhere to the above behavior or ignore TTE.e
and always behave as if TTE.e = 0 is implementation-dependent (impl. dep. #410-
S10, #411-S10).

On UltraSPARC Architecture virtual processors, noncacheable and side-effect
accesses do not observe supported cache coherency protocols (impl. dep. #120).

Non-faulting loads (using ASI_PRIMARY_NO_FAULT[_LITTLE] or
ASI_SECONDARY_NO_FAULT[_LITTLE]) with the TTE.e bit = 1 cause a trap.

Prefetches to noncacheable addresses result in nops.

The processor does speculative instruction memory accesses and follows branches
that it predicts are taken. Instruction addresses mapped by the MMU can be
accessed even though they are not actually executed by the program. Normally,
locations with side effects or that generate timeouts or bus errors are not mapped as
instruction addresses by the MMU, so these speculative accesses will not cause
problems.

IMPL. DEP. #118-V9: The manner in which I/O locations are identified is
implementation dependent.

IMPL. DEP. #120-V9: The coherence and atomicity of memory operations between
virtual processors and I/O DMA memory accesses are implementation dependent.

Systems supporting SPARC V8 applications that use memory-mapped I/O locations
must ensure that SPARC V8 sequential consistency of I/O locations can be
maintained when those locations are referenced by a SPARC V8 application. The
MMU either must enforce such consistency or cooperate with system software or the
virtual processor to provide it.

IMPL. DEP. #121-V9: An implementation may choose to identify certain addresses
and use an implementation-dependent memory model for references to them.

V9 Compatibility
Note

Operations to I/O locations are not guaranteed to be
sequentially consistent among themselves, as they are in SPARC
V8.
388 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006



9.3 Memory Addressing and Alternate
Address Spaces
An address in SPARC V9 is a tuple consisting of an 8-bit address space identifier
(ASI) and a 64-bit byte-address offset within the specified address space. Memory is
byte-addressed, with halfword accesses aligned on 2-byte boundaries, word accesses
(which include instruction fetches) aligned on 4-byte boundaries, extended-word
and doubleword accesses aligned on 8-byte boundaries, and quadword quantities
aligned on 16-byte boundaries. With the possible exception of the cases described in
Memory Alignment Restrictions on page 114, an improperly aligned address in a load,
store, or load-store instruction always causes a trap to occur. The largest datum that
is guaranteed to be atomically read or written is an aligned doubleword1. Also,
memory references to different bytes, halfwords, and words in a given doubleword
are treated for ordering purposes as references to the same location. Thus, the unit of
ordering for memory is a doubleword.

9.3.1 Memory Addressing Types
The UltraSPARC Architecture supports the following types of memory addressing:

Virtual Addresses (VA). Virtual addresses are addresses produced by a virtual
processor that maps all systemwide, program-visible memory. Virtual addresses are
translated by the MMU in order to locate data in physical memory. Virtual addresses
can be presented in nonprivileged mode and privileged mode, or in hyperprivileged
mode using the ASI_AS_IF_USER* ASI variants.

1. Two exceptions to this are the special ASI_TWIN_DW_NUCLEUS[_L] and ASI_LD_TWINX_REAL[_L]which
provide hardware support for an atomic quad load to be used for TTE loads from TSBs.

Notes The doubleword is the coherency unit for update, but
programmers should not assume that doubleword floating-point
values are updated as a unit unless they are doubleword-aligned
and always updated with double-precision loads and stores.
Some programs use pairs of single-precision operations to load
and store double-precision floating-point values when the
compiler cannot determine that they are doubleword aligned.

Also, although quad-precision operations are defined in the
SPARC V9 architecture, the granularity of loads and stores for
quad-precision floating-point values may be word or
doubleword.
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Real addresses (RA). A real address is provided to privileged software to
describe the underlying physical memory allocated to it. Translation storage buffers
(TSBs) maintained by privileged software are used to translate privileged or
nonprivileged mode virtual addresses into real addresses. MMU bypass addresses in
privileged mode are also real addresses.

Physical addresses (PA). A physical address is one that appears on the system
bus and is the same as the physical addresses in legacy architectures.
Hyperprivileged software is responsible for managing the translation of real
addresses into physical addresses.

Nonprivileged software only uses virtual addresses. Privileged software uses virtual
and real addresses. Hyperprivileged software uses physical addresses, except when
the explicit ASI_AS_IF_USER* or ASI_*REAL* ASI variants are used for load and
store alternate instructions.

9.3.2 Memory Address Spaces
The UltraSPARC Architecture supports accessing memory using virtual, real, or
physical addresses. Multiple virtual address spaces within the same real address
space are distinguished by a context identifier (context ID). Multiple real address
spaces within the same physical address space are distinguished by a partition
identifier (partition ID).

Privileged software can create multiple virtual address spaces, using the primary
and secondary context registers to associate a context ID with every virtual address.
Privileged software manages the allocation of context IDs.

Hyperprivileged software can create multiple real address spaces, using the partition
register to associate a partition ID with every real address. Hyperprivileged software
manages the allocation of partition IDs.

IMPL. DEP. #___ The number of bits in the partition register is implementation
dependent.

The full representation of each type of address is as follows:

real_address = context_ID :: virtual_address

physical_address = partition ID :: real_address
or
physical_address = partition ID :: context ID :: virtual_address
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9.3.3 Address Space Identifiers
The virtual processor provides an address space identifier with every address. This
ASI may serve several purposes:

■ To identify which of several distinguished address spaces the 64-bit address offset
is addressing

■ To provide additional access control and attribute information, for example, to
specify the endianness of the reference

■ To specify the address of an internal control register in the virtual processor,
cache, or memory management hardware

Memory management hardware can associate an independent 264-byte memory
address space with each ASI. In practice, the three independent memory address
spaces (contexts) created by the MMU are Primary, Secondary, and Nucleus.

Alternate-space load, store, load-store and prefetch instructions specify an explicit
ASI to use for their data access. The behavior of the access depends on the current
privilege mode.

Non-alternate space load, store, load-store, and prefetch instructions use an implicit
ASI value that is determined by current virtual processor state (the current privilege
mode, trap level (TL), and the value of the PSTATE.cle). Instruction fetches use an
implicit ASI that depends only on the current mode and trap level.

The architecturally specified ASIs are listed in Chapter 10, Address Space Identifiers
(ASIs). The operation of each ASI in nonprivileged, privileged and hyperprivileged
modes is indicated in TABLE 10-1 on page 409.

Attempts by nonprivileged software (PSTATE.priv = 0 and HPSTATE.hpriv = 0) to
access restricted ASIs (ASI bit 7 = 0) cause a privileged_action exception. Attempts by
privileged software (PSTATE.priv = 1 and HPSTATE.hpriv = 0) to access ASIs 3016–
7F16 cause a privileged_action exception.

When TL = 0, normal accesses by the virtual processor to memory when fetching
instructions and performing loads and stores implicitly specify ASI_PRIMARY or
ASI_PRIMARY_LITTLE, depending on the setting of PSTATE.cle.

When TL = 1 or 2 (> 0 but ≤ MAXPTL), the implicit ASI in privileged mode is:

■ for instruction fetches, ASI_NUCLEUS

■ for loads and stores, ASI_NUCLEUS if PSTATE.cle = 0 or ASI_NUCLEUS_LITTLE
if PSTATE.cle = 1 (impl. dep. #124-V9).

Programming
Note

Independent address spaces, accessible through ASIs, make it
possible for system software to easily access the address space of
faulting software when processing exceptions or to implement
access to a client program’s memory space by a server program.
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In hyperprivileged mode, all instruction fetches and loads and stores with implicit
ASIs use a physical address, regardless of the value of TL.

SPARC V9 supports the PRIMARY[_LITTLE], SECONDARY[_LITTLE], and
NUCLEUS[_LITTLE] address spaces.

Accesses to other address spaces use the load/store alternate instructions. For these
accesses, the ASI is either contained in the instruction (for the register+register
addressing mode) or taken from the ASI register (for register+immediate
addressing).

ASIs are either nonrestricted, restricted-to-privileged, or restricted-to-
hyperprivileged:

■ A nonrestricted ASI (ASI range 8016 – FF16) is one that may be used
independently of the privilege level (PSTATE.privand HPSTATE.hpriv) at which
the virtual processor is running.

■ A restricted-to-privileged ASI (ASI range 0016 – 2F16) requires that the virtual
processor be in privileged or hyperprivileged mode for a legal access to occur.

■ A restricted-to-hyperprivileged ASI (ASI range 3016 – 7F16) requires that the
virtual processor be in hyperprivileged mode for a legal access to occur.

The relationship between virtual processor state and ASI restriction is shown in
TABLE 9-1.

Some restricted ASIs are provided as mandated by SPARC V9:
ASI_AS_IF_USER_PRIMARY[_LITTLE] and
ASI_AS_IF_USER_SECONDARY[_LITTLE]. The intent of these ASIs is to give
privileged software efficient, yet secure access to the memory space of nonprivileged
software.

The normal address space is primary address space, which is accessed by the
unrestricted ASI_PRIMARY[_LITTLE] ASIs. The secondary address space, which is
accessed by the unrestricted ASI_SECONDARY[_LITTLE] ASIs, is provided to allow
server software to access client software’s address space.

TABLE 9-1 Allowed Accesses to ASIs

ASI Value Type
Result of ASI
Access in NP Mode

Result of ASI
Access in P Mode

Result of ASI
Access in HP Mode

0016 –-
2F16

Restricted-to-
privileged

privileged_action
exception

Valid Access Valid Access

3016 – 7F16 Restricted-to-
hyperprivileged

privileged_action
exception

privileged_action
exception

Valid Access

8016 –
FF16

Nonrestricted Valid Access Valid Access Valid Access
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ASI_PRIMARY_NOFAULT[_LITTLE] and ASI_SECONDARY_NOFAULT[_LITTLE]
support nonfaulting loads. These ASIs may be used to color (that is, distinguish into
classes) loads in the instruction stream so that, in combination with a judicious
mapping of low memory and a specialized trap handler, an optimizing compiler can
move loads outside of conditional control structures.

9.4 SPARC V9 Memory Model
The SPARC V9 processor architecture specified the organization and structure of a
central processing unit but did not specify a memory system architecture. This
section summarizes the MMU support required by an UltraSPARC Architecture
processor.

The memory models specify the possible order relationships between memory-
reference instructions issued by a virtual processor and the order and visibility of
those instructions as seen by other virtual processors. The memory model is
intimately intertwined with the program execution model for instructions.

9.4.1 SPARC V9 Program Execution Model
The SPARC V9 strand model of a virtual processor consists of three units: an Issue
Unit, a Reorder Unit, and an Execute Unit, as shown in FIGURE 9-1.

The Issue Unit reads instructions over the instruction path from memory and issues
them in program order to the Reorder Unit. Program order is precisely the order
determined by the control flow of the program and the instruction semantics, under
the assumption that each instruction is performed independently and sequentially.

Memory

Data Path

Instruction Path
Issue Reorder Execute

FIGURE 9-1 Processor Model: Uniprocessor System

Unit Unit Unit
Reorder

Unit

Processor
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Issued instructions are collected and potentially reordered in the Reorder Unit, and
then dispatched to the Execute Unit. Instruction reordering allows an
implementation to perform some operations in parallel and to better allocate
resources. The reordering of instructions is constrained to ensure that the results of
program execution are the same as they would be if the instructions were performed
in program order. This property is called processor self-consistency.

Processor self-consistency requires that the result of execution, in the absence of any
shared memory interaction with another virtual processor, be identical to the result
that would be observed if the instructions were performed in program order. In the
model in FIGURE 9-1, instructions are issued in program order and placed in the
reorder buffer. The virtual processor is allowed to reorder instructions, provided it
does not violate any of the data-flow constraints for registers or for memory.

The data-flow order constraints for register reference instructions are these:

1. An instruction that reads from or writes to a register cannot be performed until all
earlier instructions that write to that register have been performed (read-after-
write hazard; write-after-write hazard).

2. An instruction cannot be performed that writes to a register until all earlier
instructions that read that register have been performed (write-after-read hazard).

The data-flow order constraints for memory-reference instructions are those for
register reference instructions, plus the following additional constraints:

1. A memory-reference instruction that uses (loads or stores) the value at a location
cannot be performed until all earlier memory-reference instructions that set (store
to) that location have been performed (read-after-write hazard, write-after-write
hazard).

2. A memory-reference instruction that writes (stores to) a location cannot be
performed until all previous instructions that read (load from) that location have
been performed (write-after-read hazard).

Memory-barrier instruction (MEMBAR) and the TSO memory model also constrain
the issue of memory-reference instructions. See Memory Ordering and Synchronization
on page 401 and The UltraSPARC Architecture Memory Model — TSO on page 396 for
a detailed description.

The constraints on instruction execution assert a partial ordering on the instructions
in the reorder buffer. Every one of the several possible orderings is a legal execution
ordering for the program. See Appendix D, Formal Specification of the Memory Models,
for more information.

V9 Compatibility
Note

An implementation can avoid blocking instruction execution in
case 2 and the write-after-write hazard in case 1 by using a
renaming mechanism that provides the old value of the register
to earlier instructions and the new value to later uses.
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9.4.2 Virtual Processor/Memory Interface Model
Each UltraSPARC Architecture virtual processor in a multiprocessor system is
modeled as shown in FIGURE 9-2; that is, having two independent paths to memory:
one for instructions and one for data.

FIGURE 9-2 Data Memory Paths: Multiprocessor System

Data caches are maintained by hardware to be consistent (coherent). Instruction
caches need not be kept consistent with data caches and therefore require explicit
program action to ensure consistency when a program modifies an executing
instruction stream. See Synchronizing Instruction and Data Memory on page 403 for
details. Memory is shared in terms of address space, but it may be nonhomogeneous
and distributed in an implementation. Mapping and caches are ignored in the
model, since their functions are transparent to the memory model1.

In real systems, addresses may have attributes that the virtual processor must
respect. The virtual processor executes loads, stores, and atomic load-stores in
whatever order it chooses, as constrained by program order and the memory model.
The ASI-address couples it generates are translated by a memory management unit
(MMU), which associates attributes with the address and may, in some instances,
abort the memory transaction and signal an exception to the virtual processor.

For example, a region of memory may be marked as nonprefetchable, noncacheable,
read-only, or restricted. It is the MMU’s responsibility, working in conjunction with
system software, to ensure that memory attribute constraints are not violated. See
implementation-specific MMU documentation for detailed information about how
this is accomplished in each UltraSPARC Architecture implementation.

Instructions are performed in an order constrained by local dependencies. Using this
dependency ordering, an execution unit submits one or more pending memory
transactions to the memory. The memory performs transactions in memory order. The
1. The model described here is only a model; implementations of UltraSPARC Architecture systems are

unconstrained as long as their observable behaviors match those of the model.

Memory Transactions
in Memory Order

Memory

Instructions
Data

Virtual Processors

Instructions
Data

Instructions
Data
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memory unit may perform transactions submitted to it out of order; hence, the
execution unit must not concurrently submit two or more transactions that are
required to be ordered, unless the memory unit can still guarantee in-order
semantics.

The memory accepts transactions, performs them, and then acknowledges their
completion. Multiple memory operations may be in progress at any time and may be
initiated in a nondeterministic fashion in any order, provided that all transactions to
a location preserve the per-virtual processor partial orderings. Memory transactions
may complete in any order. Once initiated, all memory operations are performed
atomically: loads from one location all see the same value, and the result of stores is
visible to all potential requestors at the same instant.

The order of memory operations observed at a single location is a total order that
preserves the partial orderings of each virtual processor’s transactions to this
address. There may be many legal total orders for a given program’s execution.

9.5 The UltraSPARC Architecture Memory
Model — TSO
The UltraSPARC Architecture is a model that specifies the behavior observable by
software on UltraSPARC Architecture systems. Therefore, access to memory can be
implemented in any manner, as long as the behavior observed by software conforms
to that of the models described here.

The SPARC V9 architecture defines three different memory models: Total Store Order
(TSO), Partial Store Order (PSO), and Relaxed Memory Order (RMO).

All SPARC V9 processors must provide Total Store Order (or a more strongly
ordered model, for example, Sequential Consistency) to ensure compatibility for
SPARC V8 application software.

All UltraSPARC Architecture virtual processors implement TSO ordering. The PSO
and RMO models from SPARC V9 are not described in this UltraSPARC Architecture
specification. UltraSPARC Architecture 2005 processors do not implement the PSO
memory model directly, but all software written to run under PSO will execute
correctly on an UltraSPARC Architecture 2005 processor (using the TSO model).

Whether memory models represented by PSTATE.mm = 102 or 112 are supported in
an UltraSPARC Architecture processor is implementation dependent (impl. dep.
#113-V9-Ms10). If the 102 model is supported, then when PSTATE.mm = 102 the
implementation must correctly execute software that adheres to the RMO model
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described in The SPARC Architecture Manual-Version 9. If the 112 model is supported,
its definition is implementation dependent and will be described in implementation-
specific documentation.

Programs written for Relaxed Memory Order will work in both Partial Store Order
and Total Store Order. Programs written for Partial Store Order will work in Total
Store Order. Programs written for a weak model, such as RMO, may execute more
quickly when run on hardware directly supporting that model, since the model
exposes more scheduling opportunities, but use of that model may also require extra
instructions to ensure synchronization. Multiprocessor programs written for a
stronger model will behave unpredictably if run in a weaker model.

Machines that implement sequential consistency (also called strong ordering or strong
consistency) automatically support programs written for TSO. Sequential
consistency is not a SPARC V9 memory model. In sequential consistency, the loads,
stores, and atomic load-stores of all virtual processors are performed by memory in
a serial order that conforms to the order in which these instructions are issued by
individual virtual processors. A machine that implements sequential consistency
may deliver lower performance than an equivalent machine that implements TSO
order. Although particular SPARC V9 implementations may support sequential
consistency, portable software must not rely on having this model available.

9.5.1 Memory Model Selection
The active memory model is specified by the 2-bit value in PSTATE.mm,. The value
002 represents the TSO memory model; increasing values of PSTATE.mm indicate
increasingly weaker (less strongly ordered) memory models.

Writing a new value into PSTATE.mm causes subsequent memory reference
instructions to be performed with the order constraints of the specified memory
model.

IMPL. DEP. #119-Ms10: The effect of an attempt to write an unsupported memory
model designation into PSTATE.mm is implementation dependent; however, it
should never result in a value of PSTATE.mm value greater than the one that was
written. In the case of an UltraSPARC Architecture implementation that only
supports the TSO memory model, PSTATE.mm always reads as zero and attempts to
write to it are ignored.

9.5.2 Programmer-Visible Properties of the UltraSPARC
Architecture TSO Model
Total Store Order must be provided for compatibility with existing SPARC V8
programs. Programs that execute correctly in either RMO or PSO will execute
correctly in the TSO model.
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The rules for TSO, in addition to those required for self-consistency (see page 394),
are:

■ Loads are blocking and ordered with respect to earlier loads

■ Stores are ordered with respect to stores.

■ Atomic load-stores are ordered with respect to loads and stores.

■ Stores cannot bypass earlier loads.

Atomic load-stores are treated as both a load and a store and can only be applied to
cacheable address spaces.

Thus, TSO ensures the following behavior:

■ Each load instruction behaves as if it were followed by a MEMBAR #LoadLoad
and #LoadStore.

■ Each store instruction behaves as if it were followed by a MEMBAR
#StoreStore.

■ Each atomic load-store behaves as if it were followed by a MEMBAR #LoadLoad,
#LoadStore, and #StoreStore.

In addition to the above TSO rules, the following rules apply to UltraSPARC
Architecture memory models:

■ A MEMBAR #StoreLoad must be used to prevent a load from bypassing a prior
store, if Strong Sequential Order (as defined in The UltraSPARC Architecture
Memory Model — TSO on page 396) is desired.

■ Accesses that have side effects are all strongly ordered with respect to each other.

■ A MEMBAR #Lookaside is not needed between a store and a subsequent load to
the same noncacheable address.

■ Load (LDXA) and store (STXA) instructions that reference certain internal ASIs
perform both an intra-virtual processor synchronization (i.e. an implicit
MEMBAR #Sync operation before the load or store is executed) and an inter-
virtual processor synchronization (that is, all active virtual processors are brought
to a point where synchronization is possible, the load or store is executed, and all
virtual processors then resume instruction fetch and execution). The model-
specific PRM should indicate which ASIs require intra-virtual processor
synchronization, inter-virtual processor synchronization, or both.

9.5.3 TSO Ordering Rules
TABLE 9-2 summarizes the cases where a MEMBAR must be inserted between two
memory operations on an UltraSPARC Architecture virtual processor running in
TSO mode, to ensure that the operations appear to complete in a particular order.

Programming
Note

Loads can bypass earlier stores to other addresses, which
maintains processor self-consistency.
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Memory operation ordering is not to be confused with processor consistency or
deterministic operation; MEMBARs are required for deterministic operation of
certain ASI register updates.

TABLE 9-2 is to be read as follows: Reading from row to column, the first memory
operation in program order in a row is followed by the memory operation found in
the column. Symbols used as table entries:

■ # — No intervening operation is required.

■ M — an intervening MEMBAR #StoreLoad or MEMBAR #Sync or
MEMBAR #MemIssue is required

■ S — an intervening MEMBAR #Sync or MEMBAR #MemIssue is required

■ nc — Noncacheable

■ e — Side effect

■ ne — No side effect

Programming
Note

To ensure software portability across systems, the MEMBAR
rules in this section should be followed (which may be stronger
than the rules in SPARC V9).

TABLE 9-2 Summary of UltraSPARC Architecture Ordering Rules (TSO Memory Model)
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load # # # S S # # # # S S

store M2 # # M S M # M # M S

atomic # # # M S # # # # M S

bload S S S S S S S S S S S

bstore M S M M S M S M S M S

load_nc_e # # # S S #1 #1 #1 #1 S S

store_nc_e S # # S S #1 #1 M2 #1 M S

load_nc_ne # # # S S #1 #1 #1 #1 S S

store_nc_ne S # # S S M2 #1 M2 #1 M S

bload_nc S S S S S S S S S S S

bstore_nc S S S S S M S M S M S

1. This table assumes that both noncacheable operations access the same device.

2. When the store and subsequent load access the same location, no intervening MEMBAR is required.
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9.5.4 Hardware Primitives for Mutual Exclusion
In addition to providing memory-ordering primitives that allow programmers to
construct mutual-exclusion mechanisms in software, the UltraSPARC Architecture
provides three hardware primitives for mutual exclusion:

■ Compare and Swap (CASA and CASXA)
■ Load Store Unsigned Byte (LDSTUB and LDSTUBA)
■ Swap (SWAP and SWAPA)

Each of these instructions has the semantics of both a load and a store in all three
memory models. They are all atomic, in the sense that no other store to the same
location can be performed between the load and store elements of the instruction.
All of the hardware mutual-exclusion operations conform to the TSO memory model
and may require barrier instructions to ensure proper data visibility.

Atomic load-store instructions can be used only in the cacheable domains (not in
noncacheable I/O addresses). An attempt to use an atomic load-store instruction to
access a noncacheable page results in a data_access_exception exception.

The atomic load-store alternate instructions can use a limited set of the ASIs. See the
specific instruction descriptions for a list of the valid ASIs. An attempt to execute an
atomic load-store alternate instruction with an invalid ASI results in a
data_access_exception exception.

9.5.4.1 Compare-and-Swap (CASA, CASXA)

Compare-and-swap is an atomic operation that compares a value in a virtual
processor register to a value in memory and, if and only if they are equal, swaps the
value in memory with the value in a second virtual processor register. Both 32-bit
(CASA) and 64-bit (CASXA) operations are provided. The compare-and-swap
operation is atomic in the sense that once it begins, no other virtual processor can
access the memory location specified until the compare has completed and the swap
(if any) has also completed and is potentially visible to all other virtual processors in
the system.

Compare-and-swap is substantially more powerful than the other hardware
synchronization primitives. It has an infinite consensus number; that is, it can
resolve, in a wait-free fashion, an infinite number of contending processes. Because
of this property, compare-and-swap can be used to construct wait-free algorithms
that do not require the use of locks. For examples, see Programming with the Memory
Models, contained in the separate volume UltraSPARC Architecture Application Notes.
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9.5.4.2 Swap (SWAP)

SWAP atomically exchanges the lower 32 bits in a virtual processor register with a
word in memory. SWAP has a consensus number of two; that is, it cannot resolve
more than two contending processes in a wait-free fashion.

9.5.4.3 Load Store Unsigned Byte (LDSTUB)

LDSTUB loads a byte value from memory to a register and writes the value FF16 into
the addressed byte atomically. LDSTUB is the classic test-and-set instruction. Like
SWAP, it has a consensus number of two and so cannot resolve more than two
contending processes in a wait-free fashion.

9.5.5 Memory Ordering and Synchronization
The UltraSPARC Architecture provides some level of programmer control over
memory ordering and synchronization through the MEMBAR and FLUSH
instructions.

MEMBAR serves two distinct functions in SPARC V9. One variant of the MEMBAR,
the ordering MEMBAR, provides a way for the programmer to control the order of
loads and stores issued by a virtual processor. The other variant of MEMBAR, the
sequencing MEMBAR, enables the programmer to explicitly control order and
completion for memory operations. Sequencing MEMBARs are needed only when a
program requires that the effect of an operation becomes globally visible rather than
simply being scheduled.1 Because both forms are bit-encoded into the instruction, a
single MEMBAR can function both as an ordering MEMBAR and as a sequencing
MEMBAR.

The SPARCV9 instruction set architecture does not guarantee consistency between
instruction and data spaces. A problem arises when instruction space is dynamically
modified by a program writing to memory locations containing instructions (Self-
Modifying Code). Examples are Lisp, debuggers, and dynamic linking. The FLUSH
instruction synchronizes instruction and data memory after instruction space has
been modified.

9.5.5.1 Ordering MEMBAR Instructions

Ordering MEMBAR instructions induce an ordering in the instruction stream of a
single virtual processor. Sets of loads and stores that appear before the MEMBAR in
program order are ordered with respect to sets of loads and stores that follow the

1.Sequencing MEMBARs are needed for some input/output operations, forcing stores into specialized stable
storage, context switching, and occasional other system functions. Using a sequencing MEMBAR when one is
not needed may cause a degradation of performance. See Programming with the Memory Models, contained in
the separate volume UltraSPARC Architecture Application Notes, for examples of the use of sequencing
MEMBARs.
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MEMBAR in program order. Atomic operations (LDSTUB(A), SWAP(A), CASA, and
CASXA) are ordered by MEMBAR as if they were both a load and a store, since they
share the semantics of both. An STBAR instruction, with semantics that are a subset
of MEMBAR, is provided for SPARC V8 compatibility. MEMBAR and STBAR
operate on all pending memory operations in the reorder buffer, independently of
their address or ASI, ordering them with respect to all future memory operations.
This ordering applies only to memory-reference instructions issued by the virtual
processor issuing the MEMBAR. Memory-reference instructions issued by other
virtual processors are unaffected.

The ordering relationships are bit-encoded as shown in TABLE 9-3. For example,
MEMBAR 0116, written as “membar #LoadLoad” in assembly language, requires
that all load operations appearing before the MEMBAR in program order complete
before any of the load operations following the MEMBAR in program order
complete. Store operations are unconstrained in this case. MEMBAR 0816
(#StoreStore) is equivalent to the STBAR instruction; it requires that the values
stored by store instructions appearing in program order prior to the STBAR
instruction be visible to other virtual processors before issuing any store operations
that appear in program order following the STBAR.

In TABLE 9-3 these ordering relationships are specified by the “<m” symbol, which
signifies memory order. See Appendix D, Formal Specification of the Memory Models,
for a formal description of the <m relationship.

9.5.5.2 Sequencing MEMBAR Instructions

A sequencing MEMBAR exerts explicit control over the completion of operations.
The three sequencing MEMBAR options each have a different degree of control and
a different application.

TABLE 9-3 Ordering Relationships Selected by Mask

Ordering Relation,
Earlier <m Later

Assembly Language
Constant Mnemonic

Effective Behavior
in TSO model

Mask
Value

nmask
Bit #

Load <m Load #LoadLoad nop 0116 0

Store <m Load #StoreLoad #StoreLoad 0216 1

Load <m Store #LoadStore nop 0416 2

Store <m Store #StoreStore nop 0816 3

Implementation
Note

An UltraSPARC Architecture 2005 implementation that only
implements the TSO memory model may implement
MEMBAR #LoadLoad, MEMBAR #LoadStore, and
MEMBAR #StoreStore as nops and MEMBAR #Storeload
as a MEMBAR #Sync.
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■ Lookaside Barrier — Ensures that loads following this MEMBAR are from
memory and not from a lookaside into a write buffer. Lookaside Barrier requires
that pending stores issued prior to the MEMBAR be completed before any load
from that address following the MEMBAR may be issued. A Lookaside Barrier
MEMBAR may be needed to provide lock fairness and to support some plausible
I/O location semantics. See the example in “Control and Status Registers” in
Programming with the Memory Models, contained in the separate volume
UltraSPARC Architecture Application Notes.

■ Memory Issue Barrier — Ensures that all memory operations appearing in
program order before the sequencing MEMBAR complete before any new
memory operation may be initiated. See the example in “I/O Registers with Side
Effects” in Programming with the Memory Models, contained in the separate volume
UltraSPARC Architecture Application Notes.

■ Synchronization Barrier — Ensures that all instructions (memory reference and
others) preceding the MEMBAR complete and that the effects of any fault or error
have become visible before any instruction following the MEMBAR in program
order is initiated. A Synchronization Barrier MEMBAR fully synchronizes the
virtual processor that issues it.

TABLE 9-4 shows the encoding of these functions in the MEMBAR instruction.

For more details, see the MEMBAR instruction on page 271 of Chapter 7, Instructions.

9.5.5.3 Synchronizing Instruction and Data Memory

The SPARC V9 memory models do not require that instruction and data memory
images be consistent at all times. The instruction and data memory images may
become inconsistent if a program writes into the instruction stream. As a result,
whenever instructions are modified by a program in a context where the data (that
is, the instructions) in the memory and the data cache hierarchy may be inconsistent
with instructions in the instruction cache hierarchy, some special programmatic
action must be taken.

TABLE 9-4 Sequencing Barrier Selected by Mask

Sequencing Function Assembler Tag Mask Value cmask Bit #

Lookaside Barrier #Lookaside 1016 0

Memory Issue Barrier #MemIssue 2016 1

Synchronization Barrier #Sync 4016 2

Implementation
Note

In UltraSPARC Architecture 2005 implementations,
MEMBAR #Lookaside and MEMBAR #MemIssue are
typically implemented as a MEMBAR #Sync.
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The FLUSH instruction will ensure consistency between the in-flight instruction
stream and the data references in the virtual processor executing FLUSH. The
programmer must ensure that the modification sequence is robust under multiple
updates and concurrent execution. Since, in general, loads and stores may be
performed out of order, appropriate MEMBAR and FLUSH instructions must be
interspersed as needed to control the order in which the instruction data are
modified.

The FLUSH instruction ensures that subsequent instruction fetches from the
doubleword target of the FLUSH by the virtual processor executing the FLUSH
appear to execute after any loads, stores, and atomic load-stores issued by the virtual
processor to that address prior to the FLUSH. FLUSH acts as a barrier for instruction
fetches in the virtual processor on which it executes and has the properties of a store
with respect to MEMBAR operations.

IMPL. DEP. #122-V9: The latency between the execution of FLUSH on one virtual
processor and the point at which the modified instructions have replaced outdated
instructions in a multiprocessor is implementation dependent.

On an UltraSPARC Architecture virtual processor:

■ A FLUSH instruction causes a synchronization with the virtual processor, which
flushes the instruction pipeline in the virtual processor on which the FLUSH
instruction is executed.

■ Coherency between instruction and data memories may or may not be
maintained by hardware. If it is, an UltraSPARC Architecture implementation
may ignore the address in the operands of a FLUSH instruction.

For more details, see the FLUSH instruction on page 186 of Chapter 7, Instructions.

Programming
Note

Because FLUSH is designed to act on a doubleword and
because, on some implementations, FLUSH may trap to system
software, it is recommended that system software provide a
user-callable service routine for flushing arbitrarily sized regions
of memory. On some implementations, this routine would issue
a series of FLUSH instructions; on others, it might issue a single
trap to system software that would then flush the entire region.

Programming
Note

UltraSPARC Architecture virtual processors are not required to
maintain coherency between instruction and data caches in
hardware. Therefore, portable software must do the following:

(1) must always assume that store instructions (except Block
Store with Commit) do not coherently update instruction
cache(s);

(2) must, in every FLUSH instruction, supply the address of the
instruction or instructions that were modified.
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9.6 Nonfaulting Load
A nonfaulting load behaves like a normal load, with the following exceptions:

■ A nonfaulting load from a location with side effects (TTE.e = 1) causes a
data_access_exception exception.

■ A nonfaulting load from a page marked for nonfault access only (TTE.nfo = 1) is
allowed; other types of accesses to such a page cause a data_access_exception
exception.

■ These loads are issued with ASI_PRIMARY_NO_FAULT[_LITTLE] or
ASI_SECONDARY_NO_FAULT[_LITTLE]. A store with a NO_FAULT ASI causes a
data_access_exception exception.

Typically, optimizers use nonfaulting loads to move loads across conditional control
structures that guard their use. This technique potentially increases the distance
between a load of data and the first use of that data, in order to hide latency. The
technique allows more flexibility in instruction scheduling and improves
performance in certain algorithms by removing address checking from the critical
code path.

For example, when following a linked list, nonfaulting loads allow the null pointer
to be accessed safely in a speculative, read-ahead fashion; the page at virtual address
016 can safely be accessed with no penalty1. The TTE.nfo bit marks pages that are
mapped for safe access by nonfaulting loads but that can still cause a trap by other,
normal accesses.

Thus, programmers can trap on “wild” pointer references—many programmers
count on an exception being generated when accessing address 016 to debug
software—while benefiting from the acceleration of nonfaulting access in debugged
library routines.

9.7 Store Coalescing
Cacheable stores may be coalesced with adjacent cacheable stores within an 8 byte
boundary offset in the store buffer to improve store bandwidth. Similarly non-side-
effect-noncacheable stores may be coalesced with adjacent non-side-effect
noncacheable stores within an 8-byte boundary offset in the store buffer.

In order to maintain strong ordering for I/O accesses, stores with side-effect
attribute (e bit set) will not be combined with any other stores.

1.Other than the impact of occupying TLB entries.
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Stores that are separated by an intervening MEMBAR #Sync will not be coalesced.
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CHAPTER 10

Address Space Identifiers (ASIs)

This appendix describes address space identifiers (ASIs) in the following sections:

■ Address Space Identifiers and Address Spaces on page 407.
■ ASI Values on page 407.
■ ASI Assignments on page 408.
■ Special Memory Access ASIs on page 422.

10.1 Address Space Identifiers and Address
Spaces
An UltraSPARC Architecture processor provides an address space identifier (ASI)
with every address sent to memory. The ASI does the following:

■ Distinguishes between different address spaces
■ Provides an attribute that is unique to an address space
■ Maps internal control and diagnostics registers within a virtual processor

The memory management unit uses a 64-bit virtual address and an 8-bit ASI to
generate a memory, I/O, or internal register address. This physical address space
can be accessed through virtual-to-physical address mapping or through the MMU
bypass mode.

10.2 ASI Values
The range of address space identifiers (ASIs) is 0016-FF16. That range is divided into
restricted and unrestricted portions. ASIs in the range 8016–FF16 are unrestricted;
they may be accessed by software running in any privilege mode.
407



ASIs in the range 0016–7F16 are restricted; they may only be accessed by software
running in a mode with sufficient privilege for the particular ASI. ASIs in the range
0016–2F16 may only be accessed by software running in privileged or
hyperprivileged mode and ASIs in the range 3016–7F16 may only be accessed by
software running in hyperprivileged mode.

An attempt by nonprivileged software to access a restricted (privileged or
hyperprivileged) ASI (0016–7F16) causes a privileged_action trap.

An attempt by privileged software to access a hyperprivileged ASI (3016–7F16) also
causes a privileged_action trap.

An ASI can be categorized based on how it affects the MMU’s treatment of the
accompanying address, into one of three categories:

■ A Normal or Translating ASI is translated by the MMU.

■ A Nontranslating ASI is not translated by the MMU; instead the address is passed
through unchanged. Nontranslating ASIs are typically used for accessing internal
registers.

■ A Bypass ASI, like a nontranslating ASI, is not translated by the MMU and the
address is passed through unchanged. However, unlike a nontranslating ASI, an
access using a bypass ASI can cause exception(s) only visible in hyperprivileged
mode (such as a PA_watchpoint exception). Bypass ASIs are typically used by
privileged or hyperprivileged software for directly accessing memory using real
or physical (as opposed to virtual) addresses.

Implementation-dependent ASIs may or may not be translated by the MMU. See
implementation-specific documentation for detailed information about
implementation-dependent ASIs.

10.3 ASI Assignments
Every load or store address in an UltraSPARC Architecture processor has an 8-bit
Address Space Identifier (ASI) appended to the virtual address (VA). The VA plus
the ASI fully specify the address.

For instruction fetches and for data loads, stores, and load-stores that do not use the
load or store alternate instructions, the ASI is an implicit ASI generated by the
virtual processor.

SPARC V9
Compatibility

Note

In SPARC V9, the range of ASIs was evenly divided into
restricted (0016-7F16) and unrestricted (8016-FF16) halves.
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If a load alternate, store alternate, or load-store alternate instruction is used, the
value of the ASI (an "explicit ASI") can be specified in the ASI register or as an
immediate value in the instruction.

In practice, ASIs are not only used to differentiate address spaces but are also used
for other functions like referencing registers in the MMU unit.

10.3.1 Supported ASIs
TABLE 10-1 lists architecturally-defined ASIs; some are in all UltraSPARC Architecture
implementations and some are only present in some implementations.

An ASI marked with a closed bullet (● ) is required to be implemented on all
UltraSPARC Architecture 2005 processors.

An ASI marked with an open bullet (❍ ) is defined by the UltraSPARC Architecture
2005 but is not necessarily implemented in all UltraSPARC Architecture 2005
processors; its implemention is optional. Across all implementations on which it is
implemented, it appears to software to behave identically.

Some ASIs may only be used with certain load or store instructions; see table
footnotes for details.

The word “decoded” in the Virtual Address column of TABLE 10-1 indicates that the
the supplied virtual address is decoded by the virtual processor.

ASIs marked "Reserved" are set aside for use in future revisions to the architecture
and are not to be used by implemenations. ASIs marked "implementation
dependent" may be used for implementation-specific purposes.

Attempting to access an address space described as “Implementation dependent” in
TABLE 10-1 produces implementation-dependent results.

TABLE 10-1 UltraSPARC Architecture ASIs (1 of 13)

ASI
Value

req’d(● )
opt’l (❍ ) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

T/
Non-T/
Bypass

Shared
/per
strand Description

0016–
0316

❍ — —2,12 — — — Implementation dependent1

0416 ● ASI_NUCLEUS (ASI_N) RW2,4 (decoded) T — Implicit address space,
nucleus context, TL > 0

0516–
0B16

❍ — —2,12 — — — Implementation dependent1

0C16 ● ASI_NUCLEUS_LITTLE (ASI_NL) RW2,4 (decoded) T — Implicit address space,
nucleus context, TL > 0,
little-endian
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-

0D16–
0F16

❍ — —2,12 — — — Implementation dependent1

1016 ● ASI_AS_IF_USER_PRIMARY
(ASI_AIUP)

RW2,4,18 (decoded) T — Primary address space, as if
user (nonprivileged)

1116 ● ASI_AS_IF_USER_SECONDARY
(ASI_AIUS)

RW2,4,18 (decoded) T — Secondary address space, as
if user (nonprivileged)

1216–
1316

❍ — —2,12 — — — Implementation dependent1

1416 ❍ ASI_REAL RW2,4 (decoded) B — Real address

1516 ❍ ASI_REAL_IOD RW2,5 (decoded) B — Real address, noncacheable,
with side effect (deprecated)

1616 ❍ ASI_BLOCK_AS_IF_USER_PRIMARY
(ASI_BLK_AIUP)

RW2,8,14,18(decoded) T — Primary address space,
block load/store, as if user
(nonprivileged)

1716 ❍ ASI_BLOCK_AS_IF_USER_SECONDAR
Y
(ASI_BLK_AIUS)

RW2,8,14,18(decoded) T — Secondary address space,
block load/store, as if user
(nonprivileged)

1816 ● ASI_AS_IF_USER_PRIMARY_LITTLE
(ASI_AIUPL)

RW2,4,18 (decoded) T — Primary address space, as if
user (nonprivileged), little-
endian

1916 ● ASI_AS_IF_USER_SECONDARY_
LITTLE (ASI_AIUSL)

RW2,4,18 (decoded) T — Secondary address space, as
if user (nonprivileged), little
endian

1A16–
1B16

❍ — —2,12 — — — Implementation dependent1

1C16 ❍ ASI_REAL_LITTLE
(ASI_REAL_L)

RW 2,4 (decoded) B — Real address, little-endian

1D16 ❍ ASI_REAL_IO_LITTLED

(ASI_REAL_IO_LD)
RW 2,5 (decoded) B — Physical address,

noncacheable, with side
effect, little-endian
(deprecated)

1E16 ❍ ASI_BLOCK_AS_IF_USER_PRIMARY_
LITTLE
(ASI_BLK_AIUPL)

RW2,8,14,18(decoded) T — Primary address space,
block load/store, as if user
(nonprivileged), little-endian

1F16 ❍ ASI_BLOCK_AS_IF_USER_
SECONDARY_LITTLE
(ASI_BLK_AIUS_L)

RW2,8,14,18(decoded) T — Secondary address space,
block load/store, as if user
(nonprivileged), little-endian
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2016 ❍ ASI_SCRATCHPAD RW2,6 (decoded;
see below)

N per
strand

Privileged Scratchpad
registers; implementation
dependent1

❍
" 016 " " Scratchpad Register 01

❍
" 816 " " Scratchpad Register 11

❍
" 1016 " " Scratchpad Register 21

❍
" 1816 " " Scratchpad Register 31

❍ 2016 " " Scratchpad Register 41

❍
" 2816 " " Scratchpad Register 51

❍
" 3016 " " Scratchpad Register 61

❍
" 3816 " " Scratchpad Register 71

2116 ❍ ASI_MMU_CONTEXTID RW2,6 (decoded;
see below)

N per
strand

MMU context registers

❍ " 816 " " I/D MMU Primary
Context ID register

❍ " 1016 " " I/D MMU Secondary
Context ID register

2216 ❍ ASI_LD_TWINX_AS_IF_USER_
PRIMARY
(ASI_LDTX_AIUP)

R2,7,11 (decoded) T — Primary address space, 128-
bit atomic load twin
extended word, as if user
(nonprivileged)

2316 ❍ ASI_LD_TWINX_AS_IF_USER_
SECONDARY
(ASI_LDTX_AIUS)

R2,7,11 (decoded) T — Secondary address space,
128-bit atomic load twin
extended word, as if user
(nonprivileged)

2416 ❍ — — — — — Implementation dependent1
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2516 ❍ ASI_QUEUE (see
below)

(decoded;
see below)

N per
strand

❍ RW2,6
3C016

" " CPU Mondo Queue Head
Pointer

❍ RW2,6,17
3C816

" " CPU Mondo Queue Tail
Pointer

❍ RW2,6
3D016

" " Device Mondo Queue Head
Pointer

❍ RW2,6,17
3D816

" " Device Mondo Queue Tail
Pointer

❍ RW2,6
3E016

" " Resumable Error Queue
Head Pointer

❍ RW2,6,17
3E816

" " Resumable Error Queue Tail
Pointer

❍ RW2,6
3F016

" " Nonresumable Error Queue
Head Pointer

❍ RW2,6,17
3F816

" " Nonresumable Error Queue
Tail Pointer

2616 ❍ ASI_LD_TWINX_REAL
(ASI_LDTX_REAL)
ASI_QUAD_LDD_REALD†

R2,7,11 (decoded) B — 128-bit atomic twin
extended-word load from
real address

2716 ❍ ASI_LD_TWINX_NUCLEUS
(ASI_LDTX_N)

R2,7,11 (decoded) T — Nucleus context, 128-bit
atomic load twin extended-
word

2816–
2916

❍ — —2,12
— — — Implementation dependent1

2A16 ❍ ASI_LD_TWINX_AS_IF_USER_
PRIMARY_LITTLE
(ASI_LDTX_AIUPL)

R2,7,11 (decoded) T — Primary address space, 128-
bit atomic load twin
extended-word, as if user
(nonprivileged), little-endian

2B16 ❍ ASI_LD_TWINX_AS_IF_USER_
SECONDARY_LITTLE
(ASI_LDTX_AIUS_L)

R2,7,11 (decoded) T — Secondary address space,
128-bit atomic load twin
extended-word, as if user
(nonprivileged), little-endian

2C16 ❍ — —2 — — — Implementation dependent1

2D16 ❍ — —2,12 — — — Implementation dependent1

2E16 ❍ ASI_LD_TWINX_REAL_LITTLE
(ASI_LDTX_REAL_L)
ASI_QUAD_LDD_REAL_LITTLED†

R2,7,11 (decoded) B — 128-bit atomic twin-
extended-word load from
real address, little-endian
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2F16 ❍ ASI_LD_TWINX_NUCLEUS_LITTLE
(ASI_LDTX_NL)

R2,7,11 (decoded) T — Nucleus context, 128-bit
atomic load twin extended-
word, little-endian

3016–
4016

❍ — —3,13 — — — Implementation dependent1

3D16 ❍ — —3,13 — — — Implementation dependent1

3E16 ● — —3 — — — Reserved

3F16–
4016

❍ — —3,13 — — — Implementation dependent1

4116 ❍ ASI_CMT_SHARED (see
below)

(decoded;
see below)

N shared CMT control/status (shared

❍ R3,6,11 0016 " " Virtual Processor (strand)
Available Register

❍ R3,6,11 1016 " " Virtual Processor (strand)
Enable Status Register

❍ RW3,6 2016 " " Virtual Processor (strand)
Enable Register

❍ RW1,3,6 3016 " " XIR Steering Register
Implementation dependent1

(impl. dep. #1105)

❍ RW3,6 5016 " " Virtual Processor (strand)
Running Register, general
access

❍ R3,6,11 5816 " " Virtual Processor (strand)
Running Status Register

❍ W3,6,10 6016 " " Virtual Processor (strand)
Running Register, general
access. Write ’1’ to set bit

❍ W3,6,10 6816 " " Virtual Processor (strand)
Running Register, general
access. Write ’1’ to clear bit

4216–
4416

❍ — —3,13 — — — Implementation dependent1

4516 ❍ — —3,13 — — — Implementation dependent1

4616–
4816

❍ — —3,13 — — — Implementation dependent1

4916 ❍ — —3,13 — — — Implementation dependent1

TABLE 10-1 UltraSPARC Architecture ASIs (5 of 13)

ASI
Value

req’d(● )
opt’l (❍ ) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

T/
Non-T/
Bypass

Shared
/per
strand Description
CHAPTER 10 • Address Space Identifiers (ASIs) 413



4A16–
4B16

❍ — —3,13 — — — Implementation dependent1

4C16 ❍ Error Status and Enable Registers Implementation dependent1

4D16–
4E16

❍ — —3,13 — Implementation dependent1

4F16 ❍ ASI_HYP_SCRATCHPAD RW3,6 (decoded;
see below)

N per
strand

Hyperprivileged Scratchpad
registers; implementation
dependent1

❍ 016 Hyperprivileged Scratchpad
Register 01

❍ 816 Hyperprivileged Scratchpad
Register 11

❍ 1016 Hyperprivileged Scratchpad
Register 21

❍ 1816 Hyperprivileged Scratchpad
Register 31

❍ 2016 Hyperprivileged Scratchpad
Register 41

❍ 2816 Hyperprivileged Scratchpad
Register 51

❍ 3016 Hyperprivileged Scratchpad
Register 61

❍ 3816 Hyperprivileged Scratchpad
Register 71

5016 ❍ ASI_IMMU — (decoded;
see below)

N per
strand

IMMU registers

❍ R3,6,11 016 N per
strand

IMMU tag target register

❍ RW3,6 1816 N per
strand

Instruction fault status
register (SFSR)

❍ RW3,6 3016 N per
strand

I TLB tag access register

5216 ❍ ASI_MMU_REAL RW3,6 (see below) N per
strand

MMU registers

❍ 10816 " " MMU Real Range

❍ 11016 " " MMU Real Range

❍ 11816 " " MMU Real Range

❍ 12016 " " MMU Real Range
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❍ 20816 " " MMU Physical Address
Offset Registers

❍ 21016 " " MMU Physical Address
Offset Registers

❍ 21816 " " MMU Physical Address
Offset Registers

❍ 22016 " " MMU Physical Address
Offset Registers

5316 ❍ — —3,13 — — — Implementation dependent1
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5416 ❍ ASI_MMU (see
below)

(decoded;
see below)

N per
strand

(more) MMU registers

❍ W3,6,10 016 " " I TLB data in register

❍ RW3,6 1016 " " Context Zero TSB
Configuration register 0

❍ RW3,6 1816 " " Context Zero TSB
Configuration register 1

❍ RW3,6 2016 " " Context Zero TSB
Configuration register 2

❍ RW3,6 2816 " " Context Zero TSB
Configuration register 3

❍ RW3,6 3016 " " Context Nonzero TSB
Configuration register 0

❍ RW3,6 3816 " " Context Nonzero TSB
Configuration register 1

❍ RW3,6 4016 " " Context Nonzero TSB
Configuration register 2

❍ RW3,6 4816 " " Context Nonzero TSB
Configuration register 3

❍ RW3,6 5016 " " Instruction TSB Pointer
register 0

❍ RW3,6 5816 " " Instruction TSB Pointer
register 1

❍ RW3,6 6016 " " Instruction TSB Pointer
register 2

❍ RW3,6 6816 " " Instruction TSB Pointer
register 3

❍ RW3,6 7016 " " Data/Unified TSB Pointer
register 0

❍ RW3,6 7816 " " Data/Unified TSB Pointer
register 1

❍ RW3,6 8016 " " Data/Unified TSB Pointer
register 2

❍ RW3,6 8816 " " Data/Unified TSB Pointer
register 3

❍ RW3,6 9016 " " Tablewalk Pending Control
register

❍ RW3,6 9816 " " Tablewalk Pending Status
register
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5516 ❍ ASI_ITLB_DATA_ACCESS_REG RW3,6 016–3F816,
80016–
7FFF816

N per
strand

IMMU TLB data access
register

5616 ❍ ASI_ITLB_TAG_READ_REG R3,6,11 016–
FFFF816

N per
strand

IMMU TLB tag read register

5716 ❍ ASI_IMMU_DEMAP W3,6,10 016 N per
strand

IMMU TLB demap

5816 ❍ ASI_DMMU /ASI_UMMU (see
below)

(decoded;
see below)

N — Data or Unified MMU
registers

❍ R3,6,11 016 " per
strand

D/U TSB tag target register

❍ RW3,6 1816 " per
strand

Data error status register
(DSFSR)

❍ R3,6,11 2016 " /core Data error address register
(DSFAR)

❍ RW3,6 3016 " /core D/U TLB tag access register

❍ RW3,6 3816 " per
strand

VA instruction, and PA/VA
data watchpoint register

❍ RW3,6 4016 " per
strand

I/D/U MMU hardware
tablewalk configuration
register

❍ RW3,6 8016 " per
strand

I/D/U MMU partition ID
register

5916-
5B16

❍ — —3,13 — — — Reserved

5C16 ❍ ASI_DTLB_DATA_IN_REG W3,6,10 016 N per
strand

D/U TLB data in register

5D16 ❍ ASI_DTLB_DATA_ACCESS_REG RW3,6 016–3F816,
80016–
7FFF816

N per
strand

D/U TLB data access
register

5E16 ❍ ASI_DTLB_TAG_READ_REG R3,6,11 016–
FFFF816

N per
strand

D/U TLB tag read register

5F16 ❍ ASI_DMMU_DEMAP W3,6,10 016 N per
strand

D/U TLB demap

6016–
6216

❍ — —3,13 — — — Implementation dependent1

6116–
6216

❍ — —3,13 — — — Implementation dependent1
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6316 ❍ ASI_CMT_PER_STRAND,
ASI_CMT_PER_CORE†

(see
below)

(decoded;
see below)

N per
strand

CMT control/status
(per strand)

❍ RW3,6 0016 " " Virtual Processor (strand)
Interrupt ID

❍ R3,6,11 1016 " " Virtual Processor (strand) ID

6416–
6716

❍ — —3,13 — — — Implementation dependent1

6816–
7F16

● — —3,13 — — — Reserved

8016 ● ASI_PRIMARY (ASI_P) RW4 (decoded) T — Implicit primary address
space

8116 ● ASI_SECONDARY (ASI_S) RW4 (decoded) T — Secondary address space

8216 ● ASI_PRIMARY_NO_FAULT (ASI_PNF) R9,11 (decoded) T — Primary address space, no
fault

8316 ● ASI_SECONDARY_NO_FAULT
(ASI_SNF)

R9,11 (decoded) T — Secondary address space, no
fault

8416–
8716

● — —16 — — — Reserved

8816 ● ASI_PRIMARY_LITTLE (ASI_PL) RW4 (decoded) T — Implicit primary address
space, little-endian

8916 ● ASI_SECONDARY_LITTLE (ASI_SL) RW4 (decoded) T — Secondary address space,
little-endian

8A16 ● ASI_PRIMARY_NO_FAULT_LITTLE
(ASI_PNFL)

R9,11 (decoded) T — Primary address space, no
fault, little-endian

8B16 ● ASI_SECONDARY_NO_FAULT_LITTLE
(ASI_SNFL)

R9,11 (decoded) T — Physical address,
noncacheable, with side
effect, little-endian

8C16–
BF16

● — —16 — — — Reserved

C016 ❍ ASI_PST8_PRIMARY (ASI_PST8_P) W8,10,14 (decoded) T — Primary address space, 8×8-
bit partial store

C116 ❍ ASI_PST8_SECONDARY
(ASI_PST8_S)

W8,10,14 (decoded) T — Secondary address space,
8x8-bit partial store

C216 ❍ ASI_PST16_PRIMARY
(ASI_PST16_P)

W8,10,14 (decoded) T — Primary address space,
4×16-bit partial store

C316 ❍ ASI_PST16_SECONDARY
(ASI_PST16_S)

W8,10,14 (decoded) T — Secondary address space,
4×16-bit partial store

C416 ❍ ASI_PST32_PRIMARY
(ASI_PST32_P)

W8,10,14 (decoded) T — Primary address space, 2x32
bit partial store
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C516 ❍ ASI_PST32_SECONDARY
(ASI_PST32_S)

W8,10,14 (decoded) T — Secondary address space,
2×32-bit partial store

C616–
C716

● — —15 — — — Implementation dependent1

C816 ❍ ASI_PST8_PRIMARY_LITTLE
(ASI_PST8_PL)

W8,10,14 (decoded) T — Primary address space, 8x8-
bit partial store, little-endian

C916 ❍ ASI_PST8_SECONDARY_LITTLE
(ASI_PST8_SL)

W8,10,14 (decoded) T — Secondary address space,
8×8-bit partial store, little-
endian

CA16 ❍ ASI_PST16_PRIMARY_LITTLE
(ASI_PST16_PL)

W8,10,14 (decoded) T — Primary address space, 4x16
bit partial store, little-endian

CB16 ❍ ASI_PST16_SECONDARY_LITTLE
(ASI_PST16_SL)

W8,10,14 (decoded) T — Secondary address space,
4×16-bit partial store, little-
endian

CC16 ❍ ASI_PST32_PRIMARY_LITTLE
(ASI_PST32_PL)

W8,10,14 (decoded) T — Primary address space,
2×32-bit partial store, little-
endian

CD16 ❍ ASI_PST32_SECONDARY_LITTLE
(ASI_PST32_SL)

W8,10,14 (decoded) T — Second address space, 2×32-
bit partial store, little-endian

CE16–
CF16

● — —15 — — — Implementation dependent1

D016 ❍ ASI_FL8_PRIMARY (ASI_FL8_P) RW8,14 (decoded) T — Primary address space, one
8-bit floating-point load/
store

D116 ❍ ASI_FL8_SECONDARY (ASI_FL8_S) RW8,14 (decoded) T — Second address space, one 8
bit floating-point load/store

D216 ❍ ASI_FL16_PRIMARY (ASI_FL16_P) RW8,14 (decoded) T — Primary address space, one
16-bit floating-point load/
store

D316 ❍ ASI_FL16_SECONDARY
(ASI_FL16_S)

RW8,14 (decoded) T — Second address space, one
16-bit floating-point load/
store

D416–
D716

● — —15 — — — Implementation dependent1

D816 ❍ ASI_FL8_PRIMARY_LITTLE
(ASI_FL8_PL)

RW8,14 (decoded) T — Primary address space, one
8-bit floating point load/
store, little-endian

D916 ❍ ASI_FL8_SECONDARY_LITTLE
(ASI_FL8_SL)

RW8,14 (decoded) T — Second address space, one 8
bit floating point load/store,
little-endian
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DA16 ❍ ASI_FL16_PRIMARY_LITTLE
(ASI_FL16_PL)

RW8,14 (decoded) T — Primary address space, one
16-bit floating-point load/
store, little-endian

DB16 ❍ ASI_FL16_SECONDARY_LITTLE
(ASI_FL16_SL)

RW8,14 (decoded) T — Second address space, one
16-bit floating point load/
store, little-endian

DC16
–DF16

● — —15 — — — Implementation dependent1

E016–
E116

● — —15 — — — Reserved

E216 ❍ ASI_LD_TWINX_PRIMARY
(ASI_LDTX_P)

R19 (decoded) T — Primary address space, 128-
bit atomic load twin
extended word

E316 ❍ ASI_LD_TWINX_SECONDARY
(ASI_LDTX_S)

R19 (decoded) T — Secondary address space,
128-bit atomic load twin
extended-word

E416–
E916

● — —15 — — — Implementation dependent1

EA16 ❍ ASI_LD_TWINX_PRIMARY_LITTLE
(ASI_LDTX_PL)

R19 (decoded) T — Primary address space, 128-
bit atomic load twin
extended word, little endian

EB16 ❍ ASI_LD_TWINX_SECONDARY_LITTLE

(ASI_LDTX_SL)
R19 (decoded) T — Secondary address space,

128-bit atomic load twin
extended word, little endian

EC16–
EF16

❍ — —15 — — — Implementation dependent1

F016 ❍ ASI_BLOCK_PRIMARY
(ASI_BLK_P)

RW8,14 (decoded) T — Primary address space, 8x8-
byte block load/store

F116 ❍ ASI_BLOCK_SECONDARY
(ASI_BLK_S)

RW8,14 (decoded) T — Secondary address space,
8x8- byte block load/store

F216–
F516

● — —15 — — — Implementation dependent1

F616–
F716

● — — — — — Implementation dependent1

F816 ❍ ASI_BLOCK_PRIMARY_LITTLE
(ASI_BLK_PL)

RW8,14 (decoded) T — Primary address space, 8x8-
byte block load/store, little
endian
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F916 ❍ ASI_BLOCK_SECONDARY_LITTLE
(ASI_BLK_SL)

RW8,14 (decoded) T — Secondary address space,
8x8- byte block load/store,
little endian

FA16–
FD16

● — —15 — — — Implementation dependent1

FE16–
FF16

● — —15 — — — Implementation dependent1

† This ASI name has been changed, for consistency; although use of this name is
deprecated and software should use the new name, the old name is listed here for
compatibility.

‡ This ASI was named ASI_DEVICE_ID+SERIAL_ID in older documents.

1 Implementation dependent ASI (impl. dep. #29); available for use by implementors.
Software that references this ASI may not be portable.

2 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in nonprivileged mode causes a privileged_action exception.

3 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in nonprivileged mode or privileged mode causes a
privileged_action exception.

4 May be used with all load alternate, store alternate, atomic alternate and prefetch
alternate instructions (CASA, CASXA, LDSTUBA, LDTWA, LDDFA, LDFA, LDSBA,
LDSHA, LDSWA, LDUBA, LDUHA, LDUWA, LDXA, PREFETCHA, STBA, STTWA,
STDFA, STFA, STHA, STWA, STXA, SWAPA).

5 May be used with all of the following load alternate and store alternate instructions:
LDTWA, LDDFA, LDFA, LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, LDUWA, LDXA,
STBA, STTWA, STDFA, STFA, STHA, STWA, STXA. Use with an atomic alternate or
prefetch alternate instruction (CASA, CASXA, LDSTUBA, SWAPA or PREFETCHA)
causes a data_access_exception exception.

6 May only be used in a LDXA or STXA instruction for RW ASIs, LDXA for read-only ASIs
and STXA for write-only ASIs. Use of LDXA for write-only ASIs, STXA for read-only
ASIs, or any other load alternate, store alternate, atomic alternate or prefetch alternate
instruction causes a data_access_exception exception.

7 May only be used in an LDTXA instruction. Use of this ASI in any other load alternate,
store alternate, atomic alternate or prefetch alternate instruction causes a
data_access_exception exception.

8 May only be used in a LDDFA or STDFA instruction for RW ASIs, LDDFA for read-only
ASIs and STDFA for write-only ASIs. Use of LDDFA for write-only ASIs, STDFA for
read-only ASIs, or any other load alternate, store alternate, atomic alternate or prefetch
alternate instruction causes a data_access_exception exception.
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10.4 Special Memory Access ASIs
This section describes special memory access ASIs that are not described in other
sections.

10.4.1 ASIs 1016, 1116, 1616, 1716 and 1816
(ASI_*AS_IF_USER_*)
These ASI are intended to be used in accesses from privileged and hyperprivileged
mode, but are processed as if they were issued from nonprivileged mode. Therefore,
they are subject to privilege-related exceptions. They are distinguished from each
other by the context from which the access is made, as described in TABLE 10-2.

9 May be used with all of the following load and prefetch alternate instructions: LDTWA,
LDDFA, LDFA, LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, LDUWA, LDXA,
PREFETCHA. Use with an atomic alternate or store alternate instruction causes a
data_access_exception exception.

10 Write(store)-only ASI; an attempted load alternate, atomic alternate, or prefetch alternate
instruction to this ASI causes a data_access_exception exception.

11 Read(load)-only ASI; an attempted store alternate or atomic alternate instruction to this
ASI causes a data_access_exception exception.

12 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in privileged mode or hyperprivileged mode causes a
data_access_exception exception.

13 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in hyperprivileged mode causes a data_access_exception
exception if this ASI is not implemented by the specific implementation.

14 An attempted access to this ASI may cause an exception (see Special Memory Access ASIs
on page 422 for details).

15 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in any mode causes a data_access_exception exception if this ASI
is not implemented by the model dependent implementation.

16 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to a reserved ASI in any mode causes a data_access_exception exception.

17 The Queue Tail Registers (ASI 2516) are read-only by privileged software and read-write
by hyperprivileged software. An attempted write to the Queue Tail Registers by
privileged software causes a data_access_exception exception

18 An access to a privileged page (TTE.p = 1) using an ASI_*AS_IF_USER* ASI causes a
data_access_exception exception.
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When one of these ASIs is specified in a load alternate or store alternate instruction,
the virtual processor behaves as follows:

■ In nonprivileged mode, a privileged_action exception occurs

■ In any other privilege mode:

■ If U/DMMU TTE.p = 1, a data_access_exception (privilege violation)
exception occurs

■ Otherwise, the access occurs and its endianness is determined by the current
privileged mode and the U/DMMU TTE.ie bit. In hyperprivileged mode, the
access is always made in big-endian byte order. In privileged mode, if U/
DMMU TTE.ie = 0, the access is big-endian; otherwise, it is little-endian.

10.4.2 ASIs 1816, 1916, 1E16, and 1F16
(ASI_*AS_IF_USER_*_LITTLE)
These ASIs are little-endian versions of ASIs 1016, 1116, 1616, and 1716
(ASI_AS_IF_USER_*), described in section 10.4.1. Each operates identically to the
corresponding non-little-endian ASI, except that if an access occurs its endianness is
the opposite of that for the corresponding non-little-endian ASI.

These ASI are intended to be used in accesses from privileged and hyperprivileged
mode, but are processed as if they were issued from nonprivileged mode. Therefore,
they are subject to privilege-related exceptions. They are distinguished from each
other by the context from which the access is made, as described in TABLE 10-3.

When one of these ASIs is specified in a load alternate or store alternate instruction,
the virtual processor behaves as follows:

■ In nonprivileged mode, a privileged_action exception occurs

TABLE 10-2 Privileged ASI_*AS_IF_USER_* ASIs

ASI Names
Addressing

(Context) Endianness of Access

1016 ASI_AS_IF_USER_PRIMARY (ASI_AIUP) Virtual
(Primary) In nonprivileged or

privileged mode:
Big-endian when
U/DMMU
TTE.ie = 0;
little-endian when
U/DMMU
TTE.ie = 1

In nyperprivileged
mode: always big-
endian.

1116 ASI_AS_IF_USER_SECONDARY (ASI_AIUS) Virtual
(Secondary)

1616 ASI_BLOCK_AS_IF_USER_PRIMARY
(ASI_BLK_AIUP)

Virtual
(Primary)

1716 ASI_BLOCK_AS_IF_USER_SECONDARY
(ASI_BLK_AIUS)

Virtual
(Secondary)
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■ In any other privilege mode:

■ If U/DMMU TTE.p = 1, a data_access_exception (privilege violation)
exception occurs

■ Otherwise, the access occurs and its endianness is determined by the U/
DMMU TTE.ie bit. If U/DMMU TTE.ie = 0, the access is little-endian;
otherwise, it is big-endian.

10.4.3 ASI 1416 (ASI_REAL)
When ASI_REAL is specified in any load alternate, store alternate or prefetch
alternate instruction, the virtual processor behaves as follows:

■ In nonprivileged mode, a privileged_action exception occurs

■ In any other privilege mode:

■ VA is passed through to RA

■ During the address translation, context values are disregarded.

■ The endianness of the access is dertermined by the U/DMMU TTE.ie bit; if U/
DMMU TTE.ie = 0, the access is big-endian, otherwise it is little-endian.

Even if data address translation is disabled, an access with this ASI is still a
cacheable access.

10.4.4 ASI 1516 (ASI_REAL_IO)
Accesses with ASI_REAL_IO bypass the external cache and behave as if the side
effect bit (TTE.e bit) is set. When this ASI is specified in any load alternate or store
alternate instruction, the virtual processor behaves as follows:

■ In nonprivileged mode, a privileged_action exception occurs

■ If used with a CASA, CASXA, LDSTUBA, SWAPA, or PREFETCHA instruction, a
data_access_exception exception occurs

TABLE 10-3 Privileged ASI_*AS_IF_USER_*_LITTLE ASIs

ASI Names
Addressing

(Context)
Endianness of

Access

1816 ASI_AS_IF_USER_PRIMARY_LITTLE
(ASI_AIUPL)

Virtual
(Primary) Little-endian

when U/
DMMU
TTE.ie = 0;
big-endian
when U/
DMMU
TTE.ie = 1

1916 ASI_AS_IF_USER_SECONDARY_LITTLE
(ASI_AIUSL)

Virtual
(Secondary)

1E16 ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE
(ASI_BLK_AIUP)

Virtual
(Primary)

1F16 ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE
(ASI_BLK_AIUSL)

Virtual
(Secondary)
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■ Used with any other load alternate or store alternate instuction, in privileged
mode or hyperprivileged mode:

■ VA is passed through to RA

■ During the address translation, context values are disregarded.

■ The endianness of the access is dertermined by the U/DMMU TTE.ie bit; if U/
DMMU TTE.ie = 0, the access is big-endian, otherwise it is little-endian.

10.4.5 ASI 1C16 (ASI_REAL_LITTLE)
ASI_REAL_LITTLE is a little-endian version of ASI 1416 (ASI_REAL). It operates
identically to ASI_REAL, except if an access occurs, its endianness the opposite of
that for ASI_REAL.

10.4.6 ASI 1D16 (ASI_REAL_IO_LITTLE)
ASI_REAL_IO_LITTLE is a little-endian version of ASI 1516 (ASI_REAL_IO). It
operates identically to ASI_REAL_IO, except if an access occurs, its endianness the
opposite of that for ASI_REAL_IO.

10.4.7 ASIs 2216, 2316, 2716, 2A16, 2B16, 2F16
(Privileged Load Integer Twin Extended
Word)
ASIs 2216, 2316, 2716, 2A16, 2B16 and 2F16 exist for use with the (nonportable)
LDTXA instruction as atomic Load Integer Twin Extended Word operations (see Load
Integer Twin Extended Word from Alternate Space on page 263). These ASIs are
distinguished by the context from which the access is made and the endianness of
the access, as described in TABLE 10-4.
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When these ASIs are used with LDTXA, a mem_address_not_aligned exception is
generated if the operand address is not 16-byte aligned.

If these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-
Store Alternate, or PREFETCHA instruction, a data_access_exception exception is
always generated and mem_address_not_aligned is not generated.

10.4.8 ASIs 2616 and 2E16 (Privileged Load Integer Twin
Extended Word, Real Addressing)
ASIs 2616 and 2E16 exist for use with the LDTXA instruction as atomic Load Integer
Twin Extended Word operations using Real addressing (see Load Integer Twin
Extended Word from Alternate Space on page 263). These two ASIs are distinguished by
the endianness of the access, as described in TABLE 10-5.

TABLE 10-4 Privileged Load Integer Twin Extended Word / Block Store Init ASIs

ASI Names
Addressing

(Context)
Endianness of

Access

2216 ASI_LD_TWINX_AS_IF_USER_PRIMARY
(ASI_LDTX_AIUP)

Virtual
(Primary)

Big-endian
when U/
DMMU
TTE.ie = 0;
little-endian
when U/
DMMU
TTE.ie = 1

2316 ASI_LD_TWINX_AS_IF_USER_SECONDARY
(ASI_LDTX_AIUS)

Virtual
(Secondary)

2716 ASI_LD_TWINX_NUCLEUS (ASI_LDTX_N) Virtual‡
(Nucleus)

2A16 ASI_LD_TWINX_AS_IF_USER_PRIMARY_LITTL
E (ASI_LDTX_AIUP_L)

Virtual
(Primary)

Little-endian
when U/
DMMU
TTE.ie = 0;
big-endian
when U/
DMMU
TTE.ie = 1

2B16 ASI_LD_TWINX_AS_IF_USER_SECONDARY_
LITTLE (ASI_LDTX_AIUS_L)

Virtual
(Secondary)

2F16 ASI_LD_TWINX_NUCLEUS_LITTLE
(ASI_LDTX_NL)

Virtual‡
(Nucleus)

‡ In hyperprivileged mode, this ASI uses Physical addressing

Compatibility
Note

These ASIs replaced ASIs 2416 and 2C16 used in earlier
UltraSPARC implementations; see the detailed Compatibility Note
on page 433 for details.
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When these ASIs are used with LDTXA, a mem_address_not_aligned exception is
generated if the operand address is not 16-byte aligned.

If these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-
Store Alternate, or PREFETCHA instruction, a data_access_exception exception is
always generated and mem_address_not_aligned is not generated.

10.4.9 ASIs 3016, 3116, 3616, 3816, 3916, 3E16
(ASI_AS_IF_PRIV_*)
These ASI are intended to be used in accesses from hyperprivileged mode, but are
processed as if they were issued from privileged mode These ASIs are distinguished
by the context from which the access is made and the endianness of the access, as
described in TABLE 10-6.

When one of these ASIs is specified in a load alternate or store alternate instruction,
the virtual processor behaves as follows:

■ In nonprivileged or privileged mode, a privileged_action exception occurs

■ In hyperprivileged mode:

■ The endianness of the access is determined by the U/DMMU TTE.ie bit; if U/
DMMU TTE.ie = 0, the access is big-endian; otherwise, it is little-endian.

TABLE 10-5 Load Integer Twin Extended Word (Real) ASIs

ASI Name
Addressing

(Context) Endianness of Access

2616 ASI_LD_TWINX_REAL
(ASI_LDTX_REAL)

Real
(—)

Big-endian when U/DMMU
TTE.ie = 0; little-endian when U/
DMMU TTE.ie = 1

2E16 ASI_LD_TWINX_REAL_LITTLE
(ASI_LDTX_REAL_L)

Real
(—)

Little-endian when U/DMMU
TTE.ie = 0; big-endian when U/
DMMU TTE.ie = 1

Compatibility
Note

These ASIs replaced ASIs 3416 and 3C16 used in earlier
UltraSPARC implementations; see the Compatibility Note on
page 433 for details.
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10.4.10 ASIs E216, E316, EA16, EB16
(Nonprivileged Load Integer Twin Extended
Word)
ASIs E216, E316, EA16, and EB16 exist for use with the (nonportable) LDTXA
instruction as atomic Load Integer Twin Extended Word operations (see Load Integer
Twin Extended Word from Alternate Space on page 263). These ASIs are distinguished
by the address space accessed (Primary or Secondary) and the endianness of the
access, as described in TABLE 10-7.

TABLE 10-6 Hyperprivileged AS_IF_PRIV_* ASIs

ASI Names
Addressing

(Context)
Endianness of

Access

3016 ASI_AS_IF_PRIV_PRIMARY (ASI_AIPP) Virtual
(Primary)

Big-endian
when U/
DMMU
TTE.ie = 0;
little-endian
when U/
DMMU
TTE.ie = 1

3116 ASI_AS_IF_PRIV_SECONDARY
(ASI_AIPS)

Virtual
(Secondary)

3616 ASI_AS_IF_PRIV_NUCLEUS (ASI_AIPN)
Virtual

(Nucleus)

3816 ASI_AS_IF_PRIV_PRIMARY_LITTLE
(ASI_AIPP_L)

Virtual
(Primary)

Little-endian
when U/
DMMU
TTE.ie = 0; big-
endian when
U/DMMU
TTE.ie = 1

3916 ASI_AS_IF_PRIV_SECONDARY_LITTLE
(ASI_AIPS_L)

Virtual
(Secondary)

3E16 ASI_AS_IF_PRIV_NUCLEUS_LITTLE
(ASI_AIPN_L)

Virtual
(Nucleus)
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When these ASIs are used with LDTXA, a mem_address_not_aligned exception is
generated if the operand address is not 16-byte aligned.

If these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-
Store Alternate, or PREFETCHA instruction, a data_access_exception exception is
always generated and mem_address_not_aligned is not generated.

10.4.11 Block Load and Store ASIs
ASIs 1616, 1716, 1E16, 1F16, F016, F116, F816, and F916 exist for use with LDDFA and
STDFA instructions as Block Load (LDBLOCKF) and Block Store (STBLOCKF)
operations (see Block Load on page 245 and Block Store on page 328).

When these ASIs are used with the LDDFA (STDFA) opcode for Block Load (Store),
a mem_address_not_aligned exception is generated if the operand address is not 64-
byte aligned.

If a Block Load or Block Store ASI is used with any other Load Alternate, Store
Alternate, Atomic Load-Store Alternate, or PREFETCHA instruction, a
data_access_exception exception is always generated and
mem_address_not_aligned is not generated.

TABLE 10-7 Load Integer Twin Extended Word ASIs

ASI Names
Addressing
(Context)

Endianness of
Access

E216 ASI_LD_TWINX_PRIMARY (ASI_LDTX_P) Virtual
(Primary)

Big-endian
when U/
DMMU
TTE.ie = 0,
little-endian
when U/
DMMU
TTE.ie = 1

E316 ASI_LD_TWINX_SECONDARY
(ASI_LDTX_S)

Virtual
(Secondary)

EA16 ASI_LD_TWINX_PRIMARY_LITTLE
(ASI_LDTX_PL)

Virtual
(Primary)

Little-endian
when U/
DMMU
TTE.ie = 0,
big-endian
when U/
DMMU
TTE.ie = 1

EB16 ASI_LD_TWINX_SECONDARY_LITTLE
(ASI_LDTX_SL)

Virtual
(Secondary)
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10.4.12 Partial Store ASIs
ASIs C016–C516 and C816–CD16 exist for use with the STDFA instruction as Partial
Store (STPARTIALF) operations (see Store Partial Floating-Point on page 341).

When these ASIs are used with STDFA for Partial Store, a
mem_address_not_aligned exception is generated if the operand address is not 8-
byte aligned and an illegal_instruction exception is generated if i = 1 in the
instruction and the ASI register contains one of the Partial Store ASIs.

If one of these ASIs is used with a Store Alternate instruction other than STDFA, a
Load Alternate, Store Alternate, Atomic Load-Store Alternate, or PREFETCHA
instruction, a data_access_exception exception is generated and
mem_address_not_aligned, LDDF_mem_address_not_aligned, and
illegal_instruction (for i = 1) are not generated.

ASIs C016–C516 and C816–CD16 are only defined for use in Partial Store operations
(see page 341). None of them should be used with LDDFA; however, if any of those
ASIs is used with LDDFA, the resulting behavior is specified in the LDDFA
instruction description on page 254.

10.4.13 Short Floating-Point Load and Store ASIs
ASIs D016–D316 and D816–DB16 exist for use with the LDDFA and STDFA
instructions as Short Floating-point Load and Store operations (see Load Floating-
Point on page 249 and Store Floating-Point on page 332).

When ASI D216, D316, DA16, or DB16 is used with LDDFA (STDFA) for a 16-bit Short
Floating-point Load (Store), a mem_address_not_aligned exception is generated if
the operand address is not halfword-aligned.

If any of these ASIs are used with any other Load Alternate, Store Alternate, Atomic
Load-Store Alternate, or PREFETCHA instruction, a data_access_exception
exception is always generated and mem_address_not_aligned is not generated.

10.5 ASI-Accessible Registers
In this section the Data Watchpoint registers, scratchpad registers, and CMT registers
are described.

A list of UltraSPARC Architecture 2005 ASIs is shown in TABLE 10-1 on page 409.
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10.5.1 Privileged Scratchpad Registers
(ASI_SCRATCHPAD)
An UltraSPARC Architecture virtual processor includes eight Scratchpad registers
(64 bits each, read/write accessible) (impl.dep. #302-U4-Cs10). The use of the
Scratchpad registers is completely defined by software.

For conventional uses of Scratchpad registers, see “Scratchpad Register Usage” in
Software Considerations, contained in the separate volume UltraSPARC Architecture
Application Notes.

The Scratchpad registers are intended to be used by performance-critical trap
handler code.

The addresses of the privileged scratchpad registers are defined in TABLE 10-8.

IMPL. DEP. #404-S10: The degree to which Scratchpad registers 4–7 are accessible to
privileged software is implementation dependent. Each may be
(1) fully accessible,
(2) accessible, with access much slower than to scratchpad registers 0–3 (emulated
by data_access_exceptiontrap to hyperprivileged software), or
(3) inaccessible (cause a data_access_exception).

TABLE 10-8 Scratchpad Registers

Assembly Language ASI Name ASI # Virtual Address
Privileged Scratchpad

Register #

ASI_SCRATCHPAD 2016

0016 0

0816 1

1016 2

1816 3

2016 4

2816 5

3016 6

3816 7

V9 Compatibility
Note

Privileged scratchpad registers are an UltraSPARC Architecture
extension to SPARC V9.

D1
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10.5.2 Hyperprivileged Scratchpad Registers
(ASI_HYP_SCRATCHPAD)
An UltraSPARC Architecture virtual processor includes eight hyperprivileged
Scratchpad registers (64 bits each, read/write accessible). The use of the
hyperprivileged Scratchpad registers is completely defined by software.

The hyperprivileged Scratchpad registers are intended to be used in hyperprivileged
trap handler code.

The hyperprivileged Scratchpad registers are accessed with Load Alternate and
Store Alternate instructions, using the ASIs and addresses listed in TABLE 10-9.

IMPL. DEP. #407-S10: It is implementation dependent whether any of the
hyperprivileged Scratchpad registers are aliased to the corresponding privileged
Scratchpad register or is an independent register.

10.5.3 CMT Registers Accessed Through ASIs
All chip-level multithreading (CMT) registers are accessed through ASIs. See
Accessing CMT Registers on page 515, for descriptions of ASI registers used to control
CMT functions.

10.5.4 ASI Changes in the UltraSPARC Architecture
The following Compatibility Notes summarize the UltraSPARC ASI changes in
UltraSPARC Architecture.

TABLE 10-9 Hyperprivileged Scratchpad Registers

Assembly Language ASI Name ASI # Virtual Address
Hyperprivileged

Scratchpad Register #

ASI_HYP_SCRATCHPAD 4F16

0016 0

0816 1

1016 2

1816 3

2016 4

2816 5

3016 6

3816 7

V9 Compatibility
Note

Hyperprivileged Scratchpad registers are an UltraSPARC
Architecture extension to SPARC V9.

D2

D2
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Compatibility
Note

The names of several ASIs used in earlier UltraSPARC
implementations have changed in UltraSPARC Architecture. Their
functions have not changed; just their names have changed.

ASI# Previous UltraSPARC UltraSPARC Architecture

1416 ASI_PHYS_USE_EC ASI_REAL

1516 ASI_PHYS_BYPASS_EC_WITH_EBIT ASI_REAL_IO

1C16 ASI_PHYS_USE_EC_LITTLE ASI_REAL_LITTLE
(ASI_PHYS_USE_EC_L)

1D16 ASI_PHYS_BYPASS_EC_WITH_ ASI_REAL_IO_LITTLE
EBIT_LITTLE
(ASI_PHY_BYPASS_EC_WITH_EBIT_L)

Compatibility
Note

The names and ASI assignments (but not functions) changed
between earlier UltraSPARC implementations and UltraSPARC
Architecture, for the following ASIs:

Previous UltraSPARC UltraSPARC Architecture
ASI# Name ASI# Name

2416 ASI_NUCLEUS_QUAD_LDD 2716 ASI_LD_TWINX_NUCLEUS
(ASI_LDTX_N)

2C16 ASI_NUCLEUS_QUAD_LDD_ 2F16 ASI_LD_TWINX_NUCLEUS_
LITTLE LITTLE
(ASI_NUCLEUS_QUAD_LDD_L) (ASI_LDTX_NL)

3416 ASI_QUAD_LDD_PHYS 2616 ASI_LD_TWINX_REAL
(ASI_LDTX_REAL)

3C16 ASI_QUAD_LDD_LITTLE 2E16 ASI_LD_TWINX_
REAL_LITTLE

(ASI_QUAD_LDD_L) (ASI_LDTX_REAL_L)
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CHAPTER 11

Performance Instrumentation

(contents to be supplied in a later revision)
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CHAPTER 12

Traps

A trap is a vectored transfer of control to software running in a privilege mode (see
page 438) with (typically) greater privileges. A trap in nonprivileged mode can be
delivered to privileged mode or hyperprivileged mode. A trap that occurs while
executing in privileged mode can be delivered to privileged mode or
hyperprivileged mode. A trap that occurs while executing in hyperprivileged mode
can only be delivered to hyperprivileged mode.

The actual transfer of control occurs through a trap table that contains the first eight
instructions (32 instructions for clean_window, fast_instruction_access_MMU_miss,
fast_data_access_MMU_miss, fast_data_access_protection, window spill, and
window fill, traps) of each trap handler. The virtual base address of the trap table for
traps to be delivered in privileged mode is specified in the Trap Base Address (TBA)
register. The physical base address of the trap table for traps to be delivered in
hyperprivileged mode is specified in the Hyperprivileged Trap Base Address
(HTBA) register. The displacement within either table is determined by the trap type
and the current trap level (TL). One-half of each table is reserved for hardware traps;
the other half is reserved for software traps generated by Tcc instructions.

A trap behaves like an unexpected procedure call. It causes the hardware to do the
following:

1. Save certain virtual processor state (such as program counters, CWP, ASI, CCR,
PSTATE, and the trap type) on a hardware register stack.

2. Enter privileged execution mode with a predefined PSTATE, or enter
hyperprivileged mode with a predefined PSTATE and HPSTATE.

3. Begin executing trap handler code in the trap vector.

When the trap handler has finished, it uses either a DONE or RETRY instruction to
return.

A trap may be caused by a Tcc instruction, an instruction-induced exception, a reset,
an asynchronous error, or an interrupt request not directly related to a particular
instruction. The virtual processor must appear to behave as though, before executing
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each instruction, it determines if there are any pending exceptions or interrupt
requests. If there are pending exceptions or interrupt requests, the virtual processor
selects the highest-priority exception or interrupt request and causes a trap.

Thus, an exception is a condition that makes it impossible for the virtual processor to
continue executing the current instruction stream without software intervention. A
trap is the action taken by the virtual processor when it changes the instruction flow
in response to the presence of an exception, interrupt, reset, or Tcc instruction.

An interrupt is a request for service presented to a virtual processor by an external
device.

Traps are described in these sections:

■ Virtual Processor Privilege Modes on page 438.
■ Virtual Processor States, Normal Traps, and RED_state Traps on page 440.
■ Trap Categories on page 445.
■ Trap Control on page 451.
■ Trap-Table Entry Addresses on page 452.
■ Trap Processing on page 470.
■ Exception and Interrupt Descriptions on page 481.
■ Register Window Traps on page 491.

12.1 Virtual Processor Privilege Modes
An UltraSPARC Architecture virtual processor is always operating in a discrete
privilege mode. The privilege modes are listed below in order of increasing
privilege:

■ Nonprivileged mode (also known as “user mode”)

■ Privileged mode, in which supervisor (operating system) software primarily
operates

■ Hyperprivileged mode, in which hypervisor software operates, serving as a layer
between the supervisor software and the underlying virtual processor

V9 Compatibility
Note

Exceptions referred to as “catastrophic error exceptions” in the
SPARC V9 specification do not exist in the UltraSPARC
Architecture; they are handled using normal error-reporting
exceptions. (impl. dep. #31-V8-Cs10)
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The virtual processor’s operating mode is determined by the state of two mode bits,
as shown in TABLE 12-1.

A trap is delivered to the virtual processor in either privileged mode or
hyperprivileged mode; in which mode the trap is delivered depends on:

■ Its trap type
■ The trap level (TL) at the time the trap is taken
■ The privilege mode at the time the trap is taken

Traps detected in nonprivileged and privileged mode can be delivered to the virtual
processor in privileged mode or hyperprivileged mode. Traps detected in
hyperprivileged mode are either delivered to the virtual processor in
hyperprivileged mode or may be masked. If masked, they are held pending.

TABLE 12-4 on page 459 indicates in which mode each trap is processed, based on the
privilege mode at which it was detected.

A trap delivered to privileged mode uses the privileged-mode trap vector, based
upon the TBA register. See Trap-Table Entry Address to Privileged Mode on page 453 for
details. A trap delivered to hyperprivileged mode uses the hyperprivileged mode
trap vector address, based upon the HTBA register. See Trap-Table Entry Address to
Hyperprivileged Mode on page 454 for details.

The maximum trap level at which privileged software may execute is MAXPTL

(which, on an virtual processor, is 2). Therefore, if TL ≥ MAXPTL and a trap occurs that
would normally be delivered in privileged mode, it is instead delivered in
hyperprivileged mode; the trap table offset for watchdog_reset (4016) is used, and
the priority and trap type of the original exception is retained. This is referred to as
a “guest_watchdog” trap (so named because it uses watchdog_reset’s trap table
offset).

TABLE 12-1 Virtual Processor Privilege Modes

HPSTATE.hpriv PSTATE.priv Virtual Processor Privilege Mode

0 0 Nonprivileged

0 1 Privileged

1 — Hyperprivileged

Notes Execution in nonprivileged or privileged mode with
TL > MAXPTL is an invalid condition that hyperprivileged
software should never allow to occur.

Execution in nonprivileged mode with TL > 0 is an invalid
condition that privileged and hyperprivileged software should
never allow to occur.
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FIGURE 12-1 shows how a virtual processor transitions between privilege modes,
excluding transitions that can occur due to direct software writes to PSTATE.priv or
HPSTATE.hpriv. In this figure, indicates a “trap destined for privileged mode”
and indicates a “trap destined for hyperprivileged mode”.

FIGURE 12-1 Virtual Processor Privilege Mode Transition Diagram

12.2 Virtual Processor States, Normal Traps,
and RED_state Traps
An UltraSPARC Architecture virtual processor is always in one of three discrete
states:

■ execute_state, which is the normal execution state of the virtual processor

■ RED_state (Reset, Error, and Debug state), which is a restricted execution state
reserved for processing traps that occur when TL = MAXTL – 1, and for processing
hardware- and software-initiated resets

■ error_state, which is a transient state that is entered as a result of a non-reset
trap, SIR, or XIR when TL = MAXTL

The values of TL and HPSTATE.red affect the generated trap vector address. TL also
determines where (that is, into which element of the TSTATE and HTSTATE arrays)
the states are saved..
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Traps processed in execute_state are called normal traps. Traps processed in
RED_state are called RED_state traps.

FIGURE 12-2 shows the virtual processor state transition diagram.

FIGURE 12-2 Virtual Processor State Diagram (“ ” = “non-reset trap”)

12.2.1 RED_state

RED_state is an acronym for Reset, Error, and Debug state. The virtual processor
enters RED_state under any one of the following conditions:

■ A non-reset trap is taken when TL = MAXTL –1.
■ A POR or WDR reset occurs.
■ An SIR reset occurs when TL < MAXTL.
■ An XIR reset occurs when TL < MAXTL.
■ System software sets HPSTATE.red = 1. For this condition, no other machine state

or operation is modified as a side-effect of the write to HPSTATE; software must
set the appropriate machine state.

RED_state serves two purposes:

■ During trap processing, it indicates that no more trap levels are available; that is,
while executing in RED_state with TL = MAXTL, if another nested non-reset trap,
SIR, or XIR is taken, the virtual processor will enter error_state. RED_state
provides system software with a restricted execution environment.

V9 Compatibility
Note

RED_state traps were called “special traps” in the SPARC V9
specification. The name was changed to clarify the terminology.
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■ It provides the execution environment for all reset processing.

RED_state is indicated by HPSTATE.red. When this bit is set to 1, the virtual
processor is in RED_state; when this bit is zero, the virtual processor is not in
RED_state, independent of the value of TL. Executing a DONE or RETRY
instruction in RED_state restores the stacked copy of the HPSTATE register, which
zeroes the HPSTATE.red flag if it was zero in the stacked copy. System software can
also directly write 1 or 0 to HPSTATE.red with a WRHPR instruction, which forces
the virtual processor to enter or exit RED_state, respectively. In this case, the
WRHPR instruction should be placed in the delay slot of a jump instruction so that
the PC can be changed in concert with the state change.

When RED_state is entered due to a reset or a trap, the execution environment is
altered in four ways:

■ Address translation is disabled in the MMU, for both instruction and data
references.

■ Watchpoints are disabled.

■ The trap vector for the traps occurring in RED_state is based on the RED_state
Trap Table.

■ The virtual processor enters hyperprivileged mode (HPSTATE.hpriv ← 1).

The trap table organization for RED_state traps is described in RED_state Trap
Table Organization on page 456.

12.2.1.1 RED_state Execution Environment

In RED_state, the virtual processor is forced to execute in a restricted environment
by overriding the values of some virtual processor control and state registers.

The values are overridden, not set, allowing them to be switched atomically.

Some of the characteristics of RED_state include:

■ Memory accesses in RED_state are by default noncacheable, so there must be
noncacheable scratch memory somewhere in the system.

■ The D-cache watchpoints and DMMU/UMMU can be enabled by software in
RED_state, but any trap will disable them again.

Programming
Note

Setting TL ← MAXTL with a WRHPR instruction does not also set
HPSTATE.red ← 1, nor does it alter any other machine state.
The values of HPSTATE.red and TL are independent.

Setting HPSTATE.red with a WRHPR instruction causes the
virtual processor to execute in RED_state. This results in the
execution environment defined in RED_state Execution
Environment on page 442. However, it is different from a
RED_state trap in the sense that there are no trap-related
changes in the machine state (for example, TL does not change).
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■ The caches continue to snoop and maintain coherence in RED_state if DMA or
other virtual processors are still issuing cacheable accesses.

IMPL. DEP. #115-V9: A processor’s behavior in RED_state is implementation
dependent.

12.2.1.2 RED_state Entry Traps

The following reset traps are processed in RED_state:

■ Power-on reset (POR) — POR causes the virtual processor to start execution at
this trap table entry.

■ Watchdog reset (WDR) — While in error_state, the virtual processor
automatically invokes a watchdog reset to enter RED_state (impl. dep. #254-U3-
Cs10).

■ Externally initiated reset (XIR) — This trap is typically used as a nonmaskable
interrupt for debugging purposes. If TL < MAXTL when an XIR occurs, the reset
trap is processed in RED_state ; if TL = MAXTL when an XIR occurs, the virtual
processor transitions directly to error_state.

■ Software-initiated reset (SIR) If TL < MAXTL when an SIR occurs, the reset trap
is processed in RED_state; if TL = MAXTL when an SIR occurs, the virtual
processor transitions directly to error_state.

Non-reset traps that occur when TL = MAXTL – 1 also set HPSTATE.red = 1; that is,
any non-reset trap handler entered with TL = MAXTL runs in RED_state.

Any non-reset trap that sets HPSTATE.red = 1 or that occurs when HPSTATE.red = 1
branches to a special entry in the RED_state trap vector at RSTVADDR + A016. Reset
traps are described in Reset Traps on page 449.

Programming
Note

When RED_state is entered because of component failures,
trap handler software should attempt to recover from
potentially fatal error conditions or to disable the failing
components. When RED_state is entered after a reset, the
software should create the environment necessary to restore the
system to a running state.
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12.2.1.3 RED_state Software Considerations

In effect, RED_state reserves one level of the trap stack for recovery and reset
processing. Hyperprivileged software should be designed to require only MAXTL – 1
trap levels for normal processing. That is, any trap that causes TL = MAXTL is an
exceptional condition that should cause entry to RED_state.

12.2.1.4 Usage of Trap Levels

If MAXPTL = 2 and MAXTL = 5 in an UltraSPARC Architecture implementation, the trap
levels might be used as shown in TABLE 12-2.

12.2.2 error_state

The virtual processor enters error_state when a trap occurs while the virtual
processor is already at its maximum supported trap level — that is, it enters
error_state when a trap occurs while TL = MAXTL. No other conditions cause
entry into error_state on an UltraSPARC Architecture virtual processor. (impl.
dep. #39-V8-Cs10)

IMPL. DEP. #40-V8: Effects when error_state is entered are implementation-
dependent, but it is recommended that as much processor state as possible be
preserved upon entry to error_state. In addition, an UltraSPARC Architecture
virtual processor may have other error_state entry traps that are implementation
dependent.

Upon entering error_state, a virtual processor automatically generates a
watchdog_reset (WDR) (impl. dep. #254-U3-Cs10), which causes entry into
RED_state.

Programming
Note

To log the state of the virtual processor, RED_state-handler
software needs either a spare register or a preloaded pointer to a
save area. To support recovery, the operating system might
reserve one of the hyperprivileged scratchpad registers for use
in RED_state.

TABLE 12-2 Typical Usage for Trap Levels

TL
Corresponding

Execution Mode Usage

0 Nonprivileged Normal execution

1 Privileged System calls; interrupt handlers; instruction emulation

2 Privileged Window spill/fill handler

3 Hyperprivileged Real address TLB miss handler

4 Hyperprivileged Reserved for error handling

5 Hyperprivileged RED_state handler
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12.3 Trap Categories
An exception, error, or interrupt request can cause any of the following trap types:

■ Precise trap
■ Deferred trap
■ Disrupting trap
■ Reset trap

12.3.1 Precise Traps
A precise trap is induced by a particular instruction and occurs before any program-
visible state has been changed by the trap-inducing instructions. When a precise trap
occurs, several conditions must be true:

■ The PC saved in TPC[TL] points to the instruction that induced the trap and the
NPC saved in TNPC[TL] points to the instruction that was to be executed next.

■ All instructions issued before the one that induced the trap have completed
execution.

■ Any instructions issued after the one that induced the trap remain unexecuted.

Among the actions that trap handler software might take when processing a precise
trap are:

■ Return to the instruction that caused the trap and reexecute it by executing a
RETRY instruction (PC ← old PC, NPC ← old NPC).

■ Emulate the instruction that caused the trap and return to the succeeding
instruction by executing a DONE instruction (PC ← old NPC,
NPC ← old NPC + 4).

■ Terminate the program or process associated with the trap.

12.3.2 Deferred Traps
A deferred trap is also induced by a particular instruction, but unlike a precise trap, a
deferred trap may occur after program-visible state has been changed. Such state
may have been changed by the execution of either the trap-inducing instruction
itself or by one or more other instructions.

There are two classes of deferred traps:

■ Termination deferred traps — The instruction (usually a store) that caused the trap
has passed the retirement point of execution (the TPC has been updated to point
to an instruction beyond the one that caused the trap). The trap condition is an
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error that prevents the instruction from completing and its results becoming
globally visible. A termination deferred trap has high trap priority, second only to
the priority of resets.

■ Restartable deferred traps — The program-visible state has been changed by the
trap-inducing instruction or by one or more other instructions after the trap-
inducing instruction.

The fundamental characteristic of a restartable deferred trap is that the state of the
virtual processor on which the trap occurred may not be consistent with any precise
point in the instruction sequence being executed on that virtual processor. When a
restartable deferred trap occurs, TPC[TL] and TNPC[TL] contain a PC value and an
NPC value, respectively, corresponding to a point in the instruction sequence being
executed on the virtual processor. This PC may correspond to the trap-inducing
instruction or it may correspond to an instruction following the trap-inducing
instruction. With a restartable deferred trap, program-visible updates may be
missing from instructions prior to the instruction to which TPC[TL] refers. The
missing updates are limited to instructions in the range from (and including) the
actual trap-inducing instruction up to (but not including) the instruction to which
TPC[TL] refers. By definition, the instruction to which TPC[TL] refers has not yet
executed, therefore it cannot have any updates, missing or otherwise.

With a restartable deferred trap there must exist sufficient information to report the
error that caused the deferred trap. If system software can recover from the error
that caused the deferred trap, then there must be sufficient information to generate a
consistent state within the processor so that execution can resume. Included in that
information must be an indication of the mode (nonprivileged, privileged, or
hyperprivileged) in which the trap-inducing instruction was issued.

How the information necessary for repairing the state to make it consistent state is
maintained and how the state is repaired to a consistent state are implementation
dependent. It is also implementation dependent whether execution resumes at the
point of the trap-inducing instruction or at an arbitrary point between the trap-
inducing instruction and the instruction pointed to by the TPC[TL], inclusively.

Associated with a particular restartable deferred trap implementation, the following
must exist:

■ An instruction that causes a potentially outstanding restartable deferred trap
exception to be taken as a trap

Programming
Note

Not enough state is saved for execution of the instruction stream
to resume with the instruction that caused the trap. Therefore,
the trap handler must terminate the process containing the
instruction that caused the trap.

SPARC V9
Compatibility

Note

A restartable deferred trap is the “deferred trap” defined in the
SPARC V9 specification.
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■ Instructions with sufficient privilege to access the state information needed by
software to emulate the restartable deferred trap-inducing instruction and to
resume execution of the trapped instruction stream.

Software should resume execution with the instruction starting at the instruction to
which TPC[TL] refers. Hardware should provide enough information for software to
recreate virtual processor state and update it to the point just before execution of the
instruction to which TPC[TL] refers. After software has updated virtual processor
state up to that point, it can then resume execution by issuing a RETRY instruction.

IMPL. DEP. #32-V8-Ms10: Whether any restartable deferred traps (and, possibly,
associated deferred-trap queues) are present is implementation dependent.

Among the actions software can take after a restartable deferred trap are these:

■ Emulate the instruction that caused the exception, emulate or cause to execute
any other execution-deferred instructions that were in an associated restartable
deferred trap state queue, and use RETRY to return control to the instruction at
which the deferred trap was invoked.

■ Terminate the program or process associated with the restartable deferred trap.

A deferred trap (of either of the two classes) is always delivered to the virtual
processor in hyperprivileged mode.

12.3.3 Disrupting Traps

12.3.3.1 Disrupting versus Precise and Deferred Traps

A disrupting trap is caused by a condition (for example, an interrupt) rather than
directly by a particular instruction. This distinguishes it from precise and deferred
traps.

When a disrupting trap has been serviced, trap handler software normally arranges
for program execution to resume where it left off. This distinguishes disrupting traps
from reset traps, since a reset trap vectors to a unique reset address and execution of
the program that was running when the reset occurred is generally not expected to
resume.

When a disrupting trap occurs, the following conditions are true:

1. The PC saved in TPC[TL] points to an instruction in the disrupted program
stream and the NPC value saved in TNPC[TL] points to the instruction that was
to be executed after that one.

Programming
Note

Resuming execution may require the emulation of instructions
that had not completed execution at the time of the restartable
deferred trap, that is, those instructions in the deferred-trap
queue.
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2. All instructions issued before the instruction indicated by TPC[TL] have
retired.

3. The instruction to which TPC[TL] refers and any instruction(s) that were
issued after it remain unexecuted.

A disrupting trap may be due to an interrupt request directly related to a
previously-executed instruction; for example, when a previous instruction sets a bit
in the SOFTINT register.

12.3.3.2 Causes of Disrupting Traps

A disrupting trap may occur due to either an interrupt request or an error not
directly related to instruction processing. The source of an interrupt request may be
either internal or external. An interrupt request can be induced by the assertion of a
signal not directly related to any particular virtual processor or memory state, for
example, the assertion of an “I/O done” signal.

A condition that causes a disrupting trap persists until the condition is cleared.

12.3.3.3 Conditioning of Disrupting Traps

How disrupting traps are conditioned is affected by:

■ The privilege mode in effect when the trap is outstanding, just before the trap is
actually taken (regardless of the privilege mode that was in effect when the
exception was detected).

■ The privilege mode for which delivery of the trap is destined

Outstanding in Nonprivileged or Privileged mode, destined for delivery in
Privileged mode. An outstanding disrupting trap condition in either
nonprivileged mode or privileged mode and destined for delivery to privileged
mode is held pending while the Interrupt Enable (ie) field of PSTATE is zero
(PSTATE.ie = 0). interrupt_level_n interrupts are further conditioned by the Processor
Interrupt Level (PIL) register. An interrupt is held pending while either
PSTATE.ie = 0 or the condition’s interrupt level is less than or equal to the level
specified in PIL. When delivery of this disrupting trap is enabled by PSTATE.ie = 1,
it is delivered to the virtual processor in privileged mode if TL < MAXPTL (2, in
UltraSPARC Architecture 2005 implementations) or in hyperprivileged mode if
TL ≥ MAXPTL.

Outstanding in Hyperprivileged mode, destined for delivery in Privileged
mode. An outstanding disrupting trap condition detected while in
hyperprivileged mode and destined for delivery in privileged mode is held pending
while in hyperprivileged mode (HPSTATE.priv = 1), regardless of the values of TL
and PSTATE.ie.
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Outstanding in Nonprivileged or Privileged mode, destined for delivery in
Hyperprivileged mode. An outstanding disrupting trap condition detected while
in either nonprivileged mode or privileged mode and destined for delivery in
hyperprivileged mode is never masked; it is delivered immediately.

Outstanding in Hyperprivileged mode, destined for delivery in
Hyperprivileged mode. An outstanding disrupting trap condition detected in
hyperprivileged mode and destined to be delivered in hyperprivileged mode is
masked and held pending while PSTATE.ie = 0.

The above is summarized in TABLE 12-3.

12.3.3.4 Trap Handler Actions for Disrupting Traps

Among the actions that trap-handler software might take to process a disrupting
trap are:

■ Use RETRY to return to the instruction at which the trap was invoked
(PC ← old PC, NPC ← old NPC).

■ Terminate the program or process associated with the trap.

12.3.4 Reset Traps
A reset trap occurs when hyperprivileged software or the implementation’s hardware
determines that the machine must be reset to a known state. Reset traps differ from
disrupting traps in that:

■ They are not maskable.

TABLE 12-3 Conditioning of Disrupting Traps

Type of Disrupting
Trap Condition

Current Virtual Processor
Privilege Mode

Disposition of Disrupting Traps, based on privilege
mode in which the trap is destined to be delivered

Privileged Hyperprivileged

Interrupt_level_n

Nonprivileged or
Privileged

Held pending while
PSTATE.ie = 0 or
interrupt level ≤ PIL

—

Hyperprivileged Held pending while
HPSTATE.hpriv = 1

—

All other disrupting
traps

Nonprivileged or
Privileged

Held pending while
PSTATE.ie = 0

Delivered
immediately

Hyperprivileged Held pending while
HPSTATE.hpriv = 1

Held pending while
PSTATE.ie = 0
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■ Trap handler software for resets is generally not expected to resume execution of
the program that was running when the reset trap occurred. After an SIR or XIR,
execution of the interrupted program may resume.

All reset traps are delivered to the virtual processor in hyperprivileged mode.

IMPL. DEP. #37-V8: Some of a virtual processor’s behavior during a reset trap is
implementation dependent. See RED_state Trap Processing on page 474 for details.

The following reset traps are defined by the SPARC V9 architecture:

■ Power-on reset (POR) — Used for initialization purposes (for example, when
power is applied or reapplied to the virtual processor).

■ Watchdog reset (WDR) — Initiated when the virtual processor enters
error_state (impl. dep. #254-U3-Cs10). The WDR reset trap is taken instead of
the trap request that caused entry to error_state at TL = MAXTL.
TSTATE[MAXTL], TPC[MAXTL], TNPC[MAXTL] and TT[MAXTL] observed after a WDR
reset trap are those associated with the trap request that caused entry to
error_state. The value of TT[MAXTL] indicates the trap type of this trap.
Machine state is consistent; however, software should not resume normal
instruction processing at the address in TPC[TL] after the WDR reset trap. The
values in TSTATE[MAXTL], TPC[MAXTL], TNPC[MAXTL] and TT[MAXTL] are accurate
and are intended for debug purposes.

■ Externally initiated reset (XIR) — Initiated in response to a signal or event that is
external to the virtual processor. This reset trap is normally used for critical
system events, such as power failure. The XIR reset trap is treated as an interrupt
and processed similarly to a disrupting trap (but without masking). Software can
resume the interrupted program at the conclusion of trap handler
execution.triggers

■ Software-initiated reset (SIR) — Initiated by software by executing the SIR
instruction in hyperprivileged mode. In nonprivileged and privileged mode, the
SIR instruction causes an illegal_instruction exception (which results in a trap to
hyperprivileged mode). The SIR reset trap is processed similar to a precise trap.
The PC saved in TPC[TL] points to the SIR instruction. If the SIR reset is detected
when TL = , the enters error_state and triggers a WDR reset.

12.3.5 Uses of the Trap Categories
The SPARC V9 trap model stipulates the following:

1. Reset traps (except software_initiated_reset traps) occur asynchronously to
program execution.

2. When recovery from an exception can affect the interpretation of subsequent
instructions, such exceptions shall be precise. See TABLE 12-4, TABLE 12-5, and
Exception and Interrupt Descriptions on page 481 for identification of which traps
are precise.
450 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006



3. In an UltraSPARC Architecture implementation, all exceptions that occur as the
result of program execution, except for errors on store instructions that occur after
the store instruction that has passed the retirement point, are precise (impl. dep.
#33-V8-Cs10).

4. An error detected after the initial access of a multiple-access load instruction (for
example, LDTX or LDBLOCKF) should be precise. Thus, a trap due to the second
memory access can occur. However, the processor state should not have been
modified by the first access.

5. Exceptions caused by external events unrelated to the instruction stream, such as
interrupts, are disrupting.

A deferred trap may occur one or more instructions after the trap-inducing
instruction is dispatched.

12.4 Trap Control
Several registers control how any given exception is processed, for example:

■ The interrupt enable (ie) field in PSTATE and the Processor Interrupt Level (PIL)
register control interrupt processing. See Disrupting Traps on page 447 for details.

■ The enable floating-point unit (fef) field in FPRS, the floating-point unit enable
(pef) field in PSTATE, and the trap enable mask (tem) in the FSR control floating-
point traps.

■ The hyperprivileged mode bit (hpriv) field in the HPSTATE register, which can
affect how a trap is delivered. See Conditioning of Disrupting Traps on page 448 for
details.

■ The TL register, which contains the current level of trap nesting, controls whether
a trap causes entry to execute_state, RED_state, or error_state. It also
affects whether the trap is processed in privileged mode or hyperprivileged
mode.

■ For a trap delivered to the virtual processor in privileged mode, PSTATE.tle
determines whether implicit data accesses in the trap handler routine will be
performed using big-endian or little-endian byte order. A trap delivered to the
virtual processor in hyperprivileged mode always uses a default byte order of
big-endian.

Between the execution of instructions, the virtual processor prioritizes the
outstanding exceptions, errors, and interrupt requests. At any given time, only the
highest-priority exception, error, or interrupt request is taken as a trap. When there
are multiple interrupts outstanding, the interrupt with the highest interrupt level is
selected. When there are multiple outstanding exceptions, errors, and/or interrupt
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requests, a trap occurs based on the exception, error, or interrupt with the highest
priority (numerically lowest priority number in TABLE 12-5). See Trap Priorities on
page 469.

12.4.1 PIL Control
When an interrupt request occurs, the virtual processor compares its interrupt
request level against the value in the Processor Interrupt Level (PIL) register. If the
interrupt request level is greater than PIL and no higher-priority exception is
outstanding, then the virtual processor takes a trap using the appropriate
interrupt_level_n trap vector.

12.4.2 FSR.tem Control
The occurrence of floating-point traps of type IEEE_754_exception can be controlled
with the user-accessible trap enable mask (tem) field of the FSR. If a particular bit of
FSR.tem is 1, the associated IEEE_754_exception can cause an
fp_exception_ieee_754 trap.

If a particular bit of FSR.tem is 0, the associated IEEE_754_exception does not cause
an fp_exception_ieee_754 trap. Instead, the occurrence of the exception is recorded
in the FSR ’s accrued exception field (aexc).

If an IEEE_754_exception results in an fp_exception_ieee_754 trap, then the
destination F register, FSR.fccn, and FSR.aexc fields remain unchanged. However,
if an IEEE_754_exception does not result in a trap, then the F register, FSR.fccn, and
FSR.aexc fields are updated to their new values.

12.5 Trap-Table Entry Addresses
Traps are delivered to the virtual processor in either privileged mode or
hyperprivileged mode, depending on the trap type, the value of TL at the time the
trap is taken, and the privilege mode at the time the exception was detected. See
TABLE 12-4 on page 459 and TABLE 12-5 on page 465 for details.

Unique trap table base addresses are provided for traps being delivered in
privileged mode and in hyperprivileged mode.
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12.5.1 Trap-Table Entry Address to Privileged Mode
Privileged software initializes bits 63:15 of the Trap Base Address (TBA) register (its
most significant 49 bits) with bits 63:15 of the desired 64-bit privileged trap-table
base address.

At the time a trap to privileged mode is taken:
■ Bits 63:15 of the trap vector address are taken from TBA{63:15}.
■ Bit 14 of the trap vector address (the “TL>0” field) is set based on the value of TL

just before the trap is taken; that is, if TL = 0 then bit 14 is set to 0 and if TL > 0
then bit 14 is set to 1.

■ Bits 13:5 of the trap vector address contain a copy of the contents of the TT
register (TT[TL]).

■ Bits 4:0 of the trap vector address are always 0; hence, each trap table entry is at
least 25 or 32 bytes long. Each entry in the trap table may contain the first eight
instructions of the corresponding trap handler.

FIGURE 12-3 illustrates the trap vector address for a trap delivered to privileged
mode. In FIGURE 12-3, the “TL>0” bit is 0 if TL = 0 when the trap was taken, and 1 if
TL > 0 when the trap was taken. This implies, as detailed in the following section,
that there are two trap tables for traps to privileged mode: one for traps from TL = 0
and one for traps from TL > 0.

FIGURE 12-3 Privileged Mode Trap Vector Address

63 15 14 013 45

TL>0 0 0000from TBA{63:15} (TBA.tba_high49) TT[TL]
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12.5.2 Privileged Trap Table Organization
The layout of the privileged-mode trap table (which is accessed using virtual
addresses) is illustrated in FIGURE 12-4.

FIGURE 12-4 Privileged-mode Trap Table Layout

The trap table for TL = 0 comprises 512 thirty-two-byte entries; the trap table for
TL > 0 comprises 512 more thirty-two-byte entries. Therefore, the total size of a full
privileged trap table is 2 × 512 × 32 bytes (32 Kbytes). However, if privileged
software does not use software traps (Tcc instructions) at TL > 0, the table can be
made 24 Kbytes long.

12.5.3 Trap-Table Entry Address to Hyperprivileged
Mode
Hyperprivileged software initializes bits 63:14 of the Hyperprivileged Trap Base
Address (HTBA) register (its most significant 50 bits) with bits 63:14 of the desired
64-bit hyperprivileged trap table base address.

At the time a trap to hyperprivileged mode is taken:
■ Bits 63:14 of the trap vector address are taken from HTBA{63:14}.
■ Bits 13:5 of the trap vector address contain a copy of the contents of the TT

register (TT[TL]).
■ Bits 4:0 of the trap vector address are always 0; hence, each trap table entry is at

least 25 or 32 bytes long. Each entry in the trap table may contain the first eight
instructions of the corresponding trap handler.

Trap Table
Offsetof TL

(before Contents of Trap Table
Trap Type

Hardware traps

Spill / fill traps

Software traps to Privileged level

00016–07F16

08016–0FF16

10016–17F16

18016–1FF16

Hardware traps

Spill / fill traps

Software traps to Privileged level

unassigned

unassigned

016– FE016

100016–1FE016

200016–2FE016

300016–3FE016

400016–4FE016

500016–5FE016

600016–6FE016

700016–7FE016

00016–07F16

08016–0FF16

10016–17F16

18016–1FF16

(from TBA)

Value Hardware

Type

—

—

016– 7F16

—

Trap

—

—

016– 7F16

—

trap)

Software

TL = 0

TL = 1
(TL =
MAXPTL−1)

(TT[TL])
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FIGURE 12-5 illustrates the trap vector address used for a trap delivered to
hyperprivileged mode.

FIGURE 12-5 Hyperprivileged Mode Trap Vector Address

12.5.4 Hyperprivileged Trap Table Organization
The layout of the hyperprivileged-mode trap table (which is accessed using physical
addresses) is illustrated in FIGURE 12-6.

FIGURE 12-6 Hyperprivileged-mode Trap Table Layout

The hyperprivileged trap table comprises 512 thirty-two-byte entries. Therefore, the
total size of a full hyperprivileged trap table is 512 × 32 bytes (16 Kbytes).

12.5.5 Trap Table Entry Address to RED_state

Traps occurring in RED_state or traps that cause the virtual processor to enter
RED_state use an abbreviated trap vector, called the RED_state trap vector.

The RED_state trap vector is located at the following address, referred to as
RSTVADDR (impl. dep. #114-V9-Cs10):

In an implementation that implements fewer than 64 bits of physical addressing,
unimplemented high-order bits of the above RSTVADDR are ignored.

Physical Address RSTVADDR = FFFF FFFF F000 000016
(highest 256 MB of physical address space)

14 013 45

0 0000

63

from TBA{63:14} (TBA.tba_high50) TT[TL]

Trap Table
OffsetTrap Type

00016–07F16

08016–0FF16

10016–17F16

18016–1FF16

016– FE016

100016–1FE016

200016–2FE016

300016–3FE016

(from HTBA)

Hardware

Type

—

—

016– 7F16

8016– FF16

Trap
Software

Contents of Trap Table

Hardware traps

Spill / fill traps

Software traps from hyperprivileged
level to hyperprivileged level

Software traps to hyperprivileged level

(TT[TL])
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FIGURE 12-7 illustrates the trap vector address used for a trap delivered to
RED_state (in hyperprivileged mode).

FIGURE 12-7 RED_state Trap Vector Address

12.5.6 RED_state Trap Table Organization
The RED_state trap table is constructed so that it can overlay the hyperprivileged
trap table (see FIGURE 12-6) if necessary. For a trap to RED_state, the trap table
offset is added to the base address contained in RSTVADDR to yield the RED_state
trap vector. FIGURE 12-8 illustrates the layout of the RED_state trap table.

FIGURE 12-8 RED_state Trap Table Layout

12.5.7 Trap Type (TT)
When a normal trap occurs, a value that uniquely identifies the type of the trap is
written into the current 9-bit TT register (TT[TL]) by hardware. Control is then
transferred into the trap table to an address formed by one of the following,
depending on the trap’s destination privilege mode:
■ The TBA register, (TL > 0), and TT[TL] (see Trap-Table Entry Address to Privileged

Mode on page 453)
■ The HTBA register and TT[TL] (see Trap-Table Entry Address to Hyperprivileged

Mode on page 454)

14 0

FFFF16

13 45

TT[TL] 0 0000

63 48

FFFF16 FFFF16

15

00

47 31 1632

0016

2016

4016

8016

6016

A016

Trap Type

0

1

TT†

Hardware

Contents of Trap Table

Reserved

Power-on reset (POR)

Watchdog reset (WDR)

Externally initiated reset (XIR)

Software-initiated reset (SIR)

All other exceptions in RED_state

4

TT*

Trap Table
Offset (from
RSTVADDR)

† TT = trap type of the exception that caused entry into error_state

TT = 3 if an externally_initiated_reset (XIR) occurs while the virtual processor is not in
error_state; TT = trap type of the exception that caused entry into error_state if the
externally initiated reset occurs in error_state.

* TT = trap type of the exception. See TABLE 12-4 on page 459.

(TT[TL])

3 or TT‡
456 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006



When a RED_state trap occurs, the TT register is set as described in RED_state on
page 441. Control is then transferred into the RED_state trap table at an address
formed by RSTVADDR and an offset depending on the condition.

TT values 00016–0FF16 are reserved for hardware traps. TT values 10016–17F16 are
reserved for software traps (caused by execution of a Tcc instruction) to privileged-
mode trap handlers. TT values 18016–1FF16 are used for software traps to trap
handlers operating in hyperprivileged mode.

IMPL. DEP. #35-V8-Cs20: TT values 06016 to 07F16 were reserved for
implementation_dependent_exception_n exceptions in the SPARC V9 specification,
but are now all defined as standard UltraSPARC Architecture exceptions. See
TABLE 12-4 for details.

Programming
Note

The spill_n_*, fill_n_*, clean_window, and MMU-related traps
(fast_instruction_access_MMU_miss,
fast_data_access_MMU_miss, and
fast_data_access_protection) are spaced such that their trap-
table entries are 128 bytes (32 instructions) long in the
UltraSPARC Architecture. This length allows the complete code
for one spill/fill routine, a clean_window routine, or a normal
MMU miss handling routine to reside in one trap-table entry.
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The assignment of TT values to traps is shown in TABLE 12-4; TABLE 12-5 provides the
same list, but sorted in order of trap priority. The key to both tables follows:

Symbol Meaning

● This trap type is associated with a feature that is architecturally required in an
implementation of UltraSPARC Architecture 2005. Hardware must detect this
exception or interrupt, trap on it (if not masked), and set the specified trap type
value in the TT register.

❍ This trap type is associated with a feature that is architecturally defined in
UltraSPARC Architecture 2005, but its implementation is optional.

P Trap is taken via the Privileged trap table, in Privileged mode (PSTATE.priv = 1)

H Trap is taken via the Hyperprivileged trap table, in Hyperprivileged mode
(HSTATE.hpriv = 1)

HU Trap is taken via the Hyperprivileged trap table, in Hyperprivileged mode
(HSTATE.hpriv = 1). However, the trap is unexpected. While hardware can
legitimately generate this trap, it should not do so unless there is a programming
error or some other error. Therefore, occurrence of this trap indicates an actual
error to hyperprivileged software.

-x- Not possible. Hardware cannot generate this trap in the indicated running mode.
For example, all privileged instructions can be executed in both privileged and
hyperprivileged modes, therefore a privileged_opcode trap cannot occur in
privileged or hyperprivileged mode.

— This trap is reserved for future use.

(am) Always Masked — when the condition occurs in this privilege mode, it is always
masked out (but remains pending).

(ie) When the outstanding disrupting trap condition occurs in this privilege mode, it
may be conditioned (masked out) by PSTATE.ie = 0 (but remains pending).

(nm) Never Masked — when the condition occurs in this running mode, it is never
masked out and the trap is always taken.

(pend) Held Pending — the condition can occur in this running mode, but can’t be
serviced in this mode. Therefore, it is held pending until the mode changes to
one in which the exception can be serviced.
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TABLE 12-4 Exception and Interrupt Requests, by TT Value (1 of 6)

UA-2005
● =Req’d.
❍ =Opt’l Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv HP

— Reserved 00016 — — — — —

● power_on_reset 00116 reset 0 H
(nm)

H
(nm)

H
(nm)

● watchdog_reset TT♠ reset 1.2 H
(nm)

H
(nm)

H
(nm)

● externally_initiated_reset 00316 reset 1.1 H
(nm)

H
(nm)

H
(nm)

● software_initiated_reset 00416 reset 1.3 -x- -x- H
(nm)

— Reserved 00516 — — — — —

● RED_state_exception TT♣ precise ♣ H
(nm)

H
(nm)

H
(nm)

— implementation-dependent 00616 — — — — —

❍ store_error 00716 deferred 2.01 H
(nm)

H
(nm)

H
(nm)

● instruction_access_exception 00816 precise 3 H
(nm)

H
(nm)

HU

(nm)

● instruction_access_MMU_miss† 00916 precise 2.08 H
(nm)

H
(nm)

-x-

● instruction_access_error 00A16 precise 4 H
(nm)

H
(nm)

H
(nm)

— Reserved 00B16–
00D16

— — — — —

— Reserved 00D16–
00E16

— — — — —

— Reserved 00F16 — — — — —

● illegal_instruction 01016 precise 6.2 H
(nm)

H
(nm)

H
(nm)

● privileged_opcode 01116 precise 7 P
(nm)

-x- -x-

— Reserved 01216–
01316

— — — — —
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— Reserved 014B16–
01716

— — — — —

— Reserved 01816–
01F16

— — — — —

● fp_disabled 02016 precise 8 P
(nm)

P
(nm)

HU

(nm)

❍ fp_exception_ieee_754 02116 precise 11.1 P
(nm)

P
(nm)

HU

(nm)

❍ fp_exception_other 02216 precise 11.1 P
(nm)

P
(nm)

HU

(nm)

● tag_overflowD 02316 precise 14 P
(nm)

P
(nm)

HU

(nm)

● clean_window 02416
‡ precise 10.1 P

(nm)
P

(nm)
HU

(nm)

— Reserved 02516–
02716

— — — — —

● division_by_zero 02816 precise 15 P
(nm)

P
(nm)

HU

(nm)

❍ internal_processor_error 02916 precise ♦ H
(nm)

H
(nm)

H
(nm)

❍ instruction_invalid_TSB_entry 02A16 precise 2.10 H
(nm)

H
(nm)

-x-

❍ data_invalid_TSB_entry 02B16 precise 12.03 H
(nm)

H
(nm)

H
(nm)

— Reserved 02C16 — — — — —

— Reserved 02D16–
02F16

— — — — —

● data_access_exception 03016 precise 12.01 H
(nm)

H
(nm)

HU

(nm)

● data_access_MMU_miss† 03116 precise 12.03 H
(nm)

H
(nm)

H
(nm)

❍ data_access_error 03216 precise 12.10 H
(nm)

H
(nm)

H
(nm)

TABLE 12-4 Exception and Interrupt Requests, by TT Value (2 of 6)

UA-2005
● =Req’d.
❍ =Opt’l Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv HP
460 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006



— data_access_protection 03316 precise 12.07 H
(nm)

H
(nm)

H
(nm)

● mem_address_not_aligned 03416 precise 10.2 H
(nm)

H
(nm)

HU

(nm)

● LDDF_mem_address_not_aligned 03516 precise 10.1 H
(nm)

H
(nm)

HU

(nm)

● STDF_mem_address_not_aligned 03616 precise 10.1 H
(nm)

H
(nm)

HU

(nm)

● privileged_action 03716 precise 11.1 H
(nm)

H
(nm)

-x-

❍ LDQF_mem_address_not_aligned 03816 precise 10.1 H
(nm)

H
(nm)

HU

(nm)

❍ STQF_mem_address_not_aligned 03916 precise 10.1 H
(nm)

H
(nm)

HU

(nm)

— Reserved 03A16 — — — — —

— Reserved 03B16 — — — — —

— Reserved 03B16–
03D16

— — — — —

● instruction_real_translation_miss 03E16 precise 2.08 H
(nm)

H
(nm)

-x-

● data_real_translation_miss 03F16 precise 12.03 H
(nm)

H
(nm)

H
(nm)

— Reserved 04016 — — — — —

● interrupt_level_n (n = 1–15) 04116 –
04F16

disrupting 32-n
(31 to

17)

P
(ie)

P
(ie)

(pend)

— Reserved 05016–
05D16

— — — — —

● hstick_match 05E16 disrupting 16.01 H
(nm)

H
(nm)

H
(ie)

● trap_level_zero 05F16 disrupting 2.02 H H -x-

— Reserved 06016 — — — — —

TABLE 12-4 Exception and Interrupt Requests, by TT Value (3 of 6)

UA-2005
● =Req’d.
❍ =Opt’l Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv HP
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❍ PA_watchpoint (RA_watchpoint) 06116 precise 12.09 H
(nm)

H
(nm)

H
(nm)

— Reserved 06216 — — — — —

❍ VA_watchpoint 06216 precise 11.2 P
(nm)

P
(nm)

-x-

● fast_instruction_access_MMU_miss 06416
‡ precise 2.08 H

(nm)
H

(nm)
-x-

— Reserved 06516–
06716

— — — — —

● fast_data_access_MMU_miss 06816
‡ precise 12.03 H

(nm)
H

(nm)
H

(nm)

— Reserved 06916–
06B16

— — — — —

● fast_data_access_protection 06C16
‡ precise 12.07 H

(nm)
H

(nm)
H

(nm)

— Reserved 06D16–
06F16

— — — — —

❍ implementation_dependent_exception_n
(impl. dep. #35-V8-Cs20)

07016–
07516

— ∇ — — —

● instruction_breakpoint 07616 precise 6.1 H H H

❏ implementation_dependent_exception_n
(impl. dep. #35-V8-Cs20)

077 — ∇ — — —

❏ implementation_dependent_exception_n
(impl. dep. #35-V8-Cs20)

07916–
07B16

— ∇ — — —

— Reserved 07916 — — — — —

● cpu_mondo 07C16 disrupting 16.08 P
(ie)

P
(ie)

(pend)

● dev_mondo 07D16 disrupting 16.11 P
(ie)

P
(ie)

(pend)

● resumable_error 07E16 disrupting 33.3 P
(ie)

P
(ie)

(pend)

❏ implementation_dependent_exception_15
(impl. dep. #35-V8-Cs20)

07F16 — ∇ — — —

TABLE 12-4 Exception and Interrupt Requests, by TT Value (4 of 6)

UA-2005
● =Req’d.
❍ =Opt’l Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv HP
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— nonresumable_error
(generated by hyperprivileged software,
not by hardware)

07F16 — — — — —

● spill_n_normal (n = 0–7) 08016
‡–

09C16
‡

precise 9 P
(nm)

P
(nm)

HU

(nm)

● (reserved for use by spill_7_normal;
see footnote for trap type 09C16)

09D16–
09F16

— — — — —

● spill_n_other (n = 0–7) 0A016
‡–

0BC16
‡

precise 9 P
(nm)

P
(nm)

HU

(nm)

● (reserved for use by spill_7_other
see footnote for trap type 0BC16)

0BD16–
0BF16

— — — — —

● fill_n_normal (n = 0–7) 0C016
‡–

0DC16
‡

precise 9 P
(nm)

P
(nm)

HU

(nm)

● (reserved for use by fill_7_normal;
see footnote for trap type 0DC16)

0DD16–
0DF16

— — — — —

● fill_n_other (n = 0–7) 0E016
‡–

0FC16
‡

precise 9 P
(nm)

P
(nm)

HU

(nm)

● (reserved for use by fill_7_other
see footnote for trap type 0FC16)

0FD16–
0FF16

— — — — —

● trap_instruction 10016–
17F16

precise 16.02 P
(nm)

P
(nm)

HU

(nm)

TABLE 12-4 Exception and Interrupt Requests, by TT Value (5 of 6)

UA-2005
● =Req’d.
❍ =Opt’l Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv HP
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● htrap_instruction 18016–
1FF16

precise 16.02 -x- H
(nm)

HU

(nm)

● guest_watchdog ◊
TT◊ precise or

disrupting◊
◊ H

(nm)
H

(nm)
-x-

* Although these trap priorities are recommended, all trap priorities are implementation dependent (impl. dep. #36-V8 on page
469), including relative priorities within a given priority level.

† This exception type is only used in UltraSPARC Architecture 2005 implementations that support hardware MMU table walking.
See description of this exception in Exception and Interrupt Descriptions on page 481.

‡ The trap vector entry (32 bytes) for this trap type plus the next three trap types (total of 128 bytes) are permanently reserved for
this exception.

◊ The guest_watchdog trap is caused when TL ≥ MAXPTL and any precise or disrupting trap occurs that is destined for privileged
mode. guest_watchdog shares a trap table offset with watchdog_reset (4016), but retains the trap type (TT) value and priority
of the exception that caused the trap.

♠ watchdog_reset uses the trap vector entry for trap type 00216 (trap table offset 4016), but retains the trap type (TT) value of the
exception that caused entry into error_state .

♣ RED_state_exception uses the trap vector entry for trap type 00516 (trap table offset A016), but retains the trap type (TT) value
and priority of the exception that caused the trap.

♦  The priority of internal_processor_error is implementation dependent (impl. dep. # 402-S10)

∇  The priority of an implementation_dependent_exception_n trap is implementation dependent (impl. dep. # 35-V8-Cs20)
D This exception is deprecated, because the only instructions that can generate it have been deprecated.

TABLE 12-4 Exception and Interrupt Requests, by TT Value (6 of 6)

UA-2005
● =Req’d.
❍ =Opt’l Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv HP
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TABLE 12-5 Exception and Interrupt Requests, by Priority (1 of 4)

UA-2005
● =Req’d.
❍ =Opt’l
❏ .=Impl-
Specific Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered and (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv HP

● power_on_reset 00116 reset 0 H
(nm)

H
(nm)

H
(nm)

● externally_initiated_reset 00316 reset 1.1 H
(nm)

H
(nm)

H
(nm)

● watchdog_reset TT♠ reset 1.2 H
(nm)

H
(nm)

H
(nm)

● software_initiated_reset 00416 reset 1.3 -x- -x- H
(nm)

❍ store_error 00716 deferred 2.01 H
(nm)

H
(nm)

H
(nm)

● trap_level_zero 05F16 disrupting 2.02 H H -x-

● instruction_real_translation_miss 03E16 precise

2.08

H
(nm)

H
(nm)

-x-

● instruction_access_MMU_miss† 00916 precise H
(nm)

H
(nm)

-x-

● fast_instruction_access_MMU_miss 06416
‡ precise H

(nm)
H

(nm)
-x-

❍ instruction_invalid_TSB_entry 02A16 precise 2.10 H
(nm)

H
(nm)

-x-

● instruction_access_exception 00816 precise 3 H
(nm)

H
(nm)

HU

(nm)

● instruction_access_error 00A16 precise 4 H
(nm)

H
(nm)

H
(nm)

● instruction_breakpoint 07616 precise 6.1 H H H

● illegal_instruction 01016 precise 6.2 H
(nm)

H
(nm)

H
(nm)

● privileged_opcode 01116 precise
7

P
(nm)

-x- -x-

● fp_disabled 02016 precise 8 P
(nm)

P
(nm)

HU

(nm)
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● spill_n_normal (n = 0–7) 08016
‡–

09C16
‡

precise

9

P
(nm)

P
(nm)

HU

(nm)

● spill_n_other (n = 0–7) 0A016
‡–

0BC16
‡

precise P
(nm)

P
(nm)

HU

(nm)

● fill_n_normal (n = 0–7) 0C016
‡–

0DC16
‡

precise P
(nm)

P
(nm)

HU

(nm)

● fill_n_other (n = 0–7) 0E016
‡–

0FC16
‡

precise P
(nm)

P
(nm)

HU

(nm)

● clean_window 02416
‡ precise

10.1

P
(nm)

P
(nm)

HU

(nm)

● LDDF_mem_address_not_aligned 03516 precise H
(nm)

H
(nm)

HU

(nm)

● STDF_mem_address_not_aligned 03616 precise H
(nm)

H
(nm)

HU

(nm)

❍ LDQF_mem_address_not_aligned 03816 precise H
(nm)

H
(nm)

HU

(nm)

❍ STQF_mem_address_not_aligned 03916 precise H
(nm)

H
(nm)

HU

(nm)

● mem_address_not_aligned 03416 precise 10.2 H
(nm)

H
(nm)

HU

(nm)

❍ fp_exception_other 02216 precise

11.1

P
(nm)

P
(nm)

HU

(nm)

❍ fp_exception_ieee_754 02116 precise P
(nm)

P
(nm)

HU

(nm)

● privileged_action 03716 precise H
(nm)

H
(nm)

-x-

❍ VA_watchpoint 06216 precise 11.2 P
(nm)

P
(nm)

-x-

● data_access_exception 03016 precise 12.01 H
(nm)

H
(nm)

HU

(nm)

TABLE 12-5 Exception and Interrupt Requests, by Priority (2 of 4)

UA-2005
● =Req’d.
❍ =Opt’l
❏ .=Impl-
Specific Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered and (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv HP
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● data_real_translation_miss 03F16 precise

12.03

H
(nm)

H
(nm)

H
(nm)

● data_access_MMU_miss† 03116 precise H
(nm)

H
(nm)

H
(nm)

● fast_data_access_MMU_miss 06816
‡ precise H

(nm)
H

(nm)
H

(nm)

❍ data_invalid_TSB_entry 02B16 precise H
(nm)

H
(nm)

H
(nm)

● fast_data_access_protection 06C16
‡ precise

12.07

H
(nm)

H
(nm)

H
(nm)

— data_access_protection 03316 precise H
(nm)

H
(nm)

H
(nm)

❍ PA_watchpoint (RA_watchpoint) 06116 precise 12.09 H
(nm)

H
(nm)

H
(nm)

❍ data_access_error 03216 precise 12.10 H
(nm)

H
(nm)

H
(nm)

● tag_overflowD 02316 precise 14 P
(nm)

P
(nm)

HU

(nm)

● division_by_zero 02816 precise 15 P
(nm)

P
(nm)

HU

(nm)

● hstick_match 05E16 disrupting 16.01 H
(nm)

H
(nm)

H
(ie)

● trap_instruction 10016–
17F16

precise

16.02

P
(nm)

P
(nm)

H
(nm)

● htrap_instruction 18016–
1FF16

precise -x- H
(nm)

HU

(nm)

● cpu_mondo 07C16 disrupting 16.08 P
(ie)

P
(ie)

(pend)

● dev_mondo 07D16 disrupting 16.11 P
(ie)

P
(ie)

(pend)

TABLE 12-5 Exception and Interrupt Requests, by Priority (3 of 4)

UA-2005
● =Req’d.
❍ =Opt’l
❏ .=Impl-
Specific Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered and (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv HP
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● interrupt_level_n (n = 1–15) 04116–
04F16

disrupting 32-n
(31 to

17)

P
(ie)

P
(ie)

(pend)

● resumable_error 07E16 disrupting 33.3 P
(ie)

P
(ie)

(pend)

● guest_watchdog ◊
TT◊ precise or

disrupting◊
◊ H

(nm)
H

(nm)
-x-

● RED_state_exception TT♣ precise ♣ H
(nm)

H
(nm)

H
(nm)

❍ internal_processor_error 02916 precise ♦ H
(nm)

H
(nm)

H
(nm)

❍ implementation_dependent_exception_n
(impl. dep. #35-V8-Cs20)

07016 –
07516,
07716,
07916 –
07B16,
07F16

— ∇ — — —

— nonresumable_error
(generated by hyperprivileged software,
not by hardware)

07F16 — — — — —

* Although these trap priorities are recommended, all trap priorities are implementation dependent (impl. dep. #36-V8 on
page 469), including relative priorities within a given priority level.

† This exception type is only used in UltraSPARC Architecture 2005 implementations that support hardware MMU table
walking. See description of this exception in Exception and Interrupt Descriptions on page 481.

‡ The trap vector entry (32 bytes) for this trap type plus the next three trap types (total of 128 bytes) are permanently reserved
for this exception.

◊ The guest_watchdog trap is caused when TL ≥ MAXPTL and any precise or disrupting trap occurs that is destined for privi-
leged mode. guest_watchdog shares a trap table offset with watchdog_reset (4016), but retains the trap type (TT) value
and priority of the exception that caused the trap.

♠ watchdog_reset uses the trap vector entry for trap type 00216 (trap table offset 4016), but retains the trap type (TT) value of
the exception that caused entry into error_state .

♣ RED_state_exception uses the trap vector entry for trap type 00516 (trap table offset A016), but retains the trap type (TT)
value and priority of the exception that caused the trap.

♦  The priority of internal_processor_error is implementation dependent (impl. dep. # 402-S10)

∇  The priority of an implementation_dependent_exception_n trap is implementation dependent (impl. dep. # 35-V8-Cs20)
D This exception is deprecated, because the only instructions that can generate it have been deprecated.

TABLE 12-5 Exception and Interrupt Requests, by Priority (4 of 4)

UA-2005
● =Req’d.
❍ =Opt’l
❏ .=Impl-
Specific Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered and (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv HP
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12.5.7.1 Trap Type for Spi ll/Fill Traps

The trap type for window spill/fill traps is determined on the basis of the contents of
the OTHERWIN and WSTATE registers as described below and shown in
FIGURE 12-9.

FIGURE 12-9 Trap Type Encoding for Spill/Fill Traps

12.5.8 Trap Priorities
TABLE 12-4 on page 459 and TABLE 12-5 on page 465 show the assignment of traps to
TT values and the relative priority of traps and interrupt requests. A trap priority is
an ordinal number, with 0 indicating the highest priority and greater priority
numbers indicating decreasing priority; that is, if x < y, a pending exception or
interrupt request with priority x is taken instead of a pending exception or interrupt
request with priority y. Traps within the same priority class (0 to 33) are listed in
priority order in TABLE 12-5 (impl. dep. #36-V8).

IMPL. DEP. #36-V8: The relative priorities of traps defined in the UltraSPARC
Architecture are fixed. However, the absolute priorities of those traps are
implementation dependent (because a future version of the architecture may define
new traps). The priorities (both absolute and relative) of any new traps are
implementation dependent.

However, the TT values for the exceptions and interrupt requests shown in
TABLE 12-4 and TABLE 12-5 must remain the same for every implementation.

The trap priorities given above always need to be considered within the context of
how the virtual processor actually issues and executes instructions. For example, if
an instruction_access_error occurs (priority 3), it will be taken even if the instruction
is an SIR (priority 1). This situation occurs because the virtual processor detects
instruction_access_error during instruction fetch and never actually issues or
executes the instruction, so the SIR instruction is never seen by the execution units of
the virtual processor. This is an obvious case, but there are other more subtle cases.

Bit Field Description

8:6 spill_or_fill 0102 for spill traps; 0112 for fill traps

5 other (OTHERWIN ≠ 0)
4:2 wtype If (other) then WSTATE.other; else WSTATE.normal

Trap Type

05 2

0spill_or_fill

1468

0wtypeother
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12.6 Trap Processing
The virtual processor’s action during trap processing depends on various virtual
processor states, including the trap type, the current level of trap nesting (given in
the TL register), HPSTATE, and PSTATE. When a trap occurs, the GL register is
normally incremented by one (described later in this section), which replaces the set
of eight global registers with the next consecutive set.

The following traps are processed in RED_state:

■ POR, XIR, and WDR reset requests

■ SIR reset request when TL < MAXTL

■ Non-reset traps taken when TL = MAXTL – 1

■ Traps taken when the virtual processor is in RED_state

All other traps are handled in execute_state using normal trap processing.

During normal operation, the virtual processor is in execute_state. It processes
traps in execute_state and continues.

When a nonreset trap or software-initiated reset (SIR) occurs with TL = MAXTL, there
are no more levels on the trap stack, so the virtual processor enters the transitory
state error_state. The virtual processor remains in error_state for an
implementation-dependent duration, then generates a WDR reset (impl. dep. #254-
U3-Cs10) to effect a change from error_state to RED_state.

Traps processed in RED_state use a special trap vector and a special trap-vectoring
algorithm. RED_state vectoring and the setting of the TT value for RED_state
traps are described in RED_state Trap Table Organization on page 456.

Traps that occur with TL = MAXTL – 1 are processed in RED_state. In addition, reset
traps are also processed in RED_state. Reset trap processing is described in
RED_state Trap Processing on page 474. Finally, software can force the processor
into RED_state by setting the HPSTATE.red bit to 1.

Once the virtual processor has entered RED_state, no matter how it got there, all
subsequent traps are processed in RED_state until software returns the virtual
processor to execute_state or a normal or SIRtrap is taken with TL = MAXTL,
which puts the virtual processor in error_state.
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TABLE 12-6, TABLE 12-7, and TABLE 12-8 describe the virtual processor mode and trap-
level transitions involved in handling traps.

The virtual processor does not recognize interrupts while it is in error_state.

A non-reset trap causes the following state changes to occur:

TABLE 12-6 Trap Received While in execute_state

New State, After Receiving Trap Type

Original State
Nonreset Trap

or Interrupt
POR XIR WDR ‡ SIR

execute_state
TL < MAXTL – 1

execute_state
TL ← TL + 1

RED_state
TL = MAXTL

RED_state
TL ← TL + 1

‡ RED_state
TL ← TL + 1

execute_state
TL = MAXTL – 1

RED_state
TL = MAXTL

RED_state
TL = MAXTL

RED_state
TL = MAXTL

‡ RED_state
TL = MAXTL

execute_state†

TL = MAXTL

error_state
TL = MAXTL

RED_state
TL = MAXTL

RED_state
TL = MAXTL

‡ error_state
TL = MAXTL

† This state occurs when software changes TL to MAXTL and leaves HPSTATE.red = 0, or if software sets HPSTATE.red ← 0 while
TL = MAXTL.

‡ WDR can only be generated from error_state.

TABLE 12-7 Trap Received While in RED_state

New State, After Receiving Trap Type

Original State
Nonreset Trap

or Interrupt
POR XIR WDR ‡ SIR

RED_state
TL < MAXTL – 1

RED_state
TL ← TL + 1

RED_state
TL = MAXTL

RED_state
TL ← TL + 1

‡ RED_state
TL ← TL + 1

RED_state
TL = MAXTL – 1

RED_state
TL = MAXTL

RED_state
TL = MAXTL

RED_state
TL = MAXTL

‡ RED_state
TL = MAXTL

RED_state
TL = MAXTL

error_state
TL = MAXTL

RED_state
TL = MAXTL

RED_state
TL = MAXTL

‡ error_state
TL = MAXTL

‡ WDR can only be generated from error_state.

TABLE 12-8 Reset Received While in error_state

New State, After Receiving Trap Type

Original State
Nonreset Trap

or Interrupt
POR XIR WDR SIR

error_state
TL = MAXTL

— RED_state
TL = MAXTL

RED_state
TL = MAXTL

RED_state
TL = MAXTL

—
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■ If the virtual processor is already in RED_state, the new trap is processed in
RED_state unless TL = MAXTL. See Nonreset Traps When the Virtual Processor Is in
RED_state on page 480.

■ If the virtual processor is in execute_state and the trap level is one less than
its maximum value, that is, TL = MAXTL–1, then the virtual processor enters
RED_state. See RED_state on page 441 and Nonreset Traps with TL = MAXTL – 1
on page 474.

■ If the virtual processor is in either execute_state or RED_state and the trap
level is already at its maximum value, that is, TL = MAXTL, then the virtual
processor enters error_state. See error_state on page 444.

Otherwise, the trap uses normal trap processing, described in the following section
on Normal Trap Processing.

12.6.1 Normal Trap Processing
Normal traps comprise all traps processed in execute_state; that is, all non-
RED_state and non-error_state traps.

A trap is delivered in either privileged mode or hyperprivileged mode, depending
on the type of trap, the trap level (TL), and the privilege mode in effect when the
exception was detected.

During normal trap processing, the following state changes occur (conceptually, in
this order):

■ The trap level is updated. This provides access to a fresh set of privileged trap-
state registers used to save the current state, in effect, pushing a frame on the trap
stack.

TL ← TL + 1 // note that if TL = MAXTL − 1 before this trap,
// trap would have been processed in
// RED_state, not here using normal trap
// processing.

■ Existing state is preserved.
TSTATE[TL].gl ← GL
TSTATE[TL].ccr ← CCR
TSTATE[TL].asi ← ASI
TSTATE[TL].pstate ← PSTATE
TSTATE[TL].cwp ← CWP
TPC[TL] ← PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPC[TL] ← NPC // (upper 32 bits zeroed if PSTATE.am = 1)
HTSTATE[TL].hpstate ← HPSTATE //even for traps to privileged mode

■ The trap type is preserved.
TT[TL] ← the trap type

■ The Global Level register (GL) is updated. This normally provides access to a
fresh set of global registers:
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if (the trap is being delivered in privileged mode)
then GL ← min (GL + 1, MAXPGL)
else (trap is being delivered in hyperprivileged mode)

GL ← min (GL + 1, MAXGL)
endif

■ The PSTATE register is updated to a predefined state (even for traps to
hyperprivileged mode):

PSTATE.mm is unchanged
PSTATE.pef ← 1 // if an FPU is present, it is enabled
PSTATE.am ← 0 // address masking is turned off
if (the trap is being delivered in privileged mode)
then PSTATE.priv ← 1 // the virtual processor enters privileged mode

PSTATE.cle ← PSTATE.tle //set endian mode for traps
else // trap is being delivered in hyperprivileged mode

PSTATE.priv ← 0
PSTATE.cle ← 0

endif
PSTATE.ie ← 0 // interrupts are disabled
PSTATE.tle is unchanged
PSTATE.tct ← 0 // trap on CTI disabled

■ The HPSTATE register is updated:
if (the trap is to hyperprivileged mode)
then HPSTATE.red ← 0

HPSTATE.hpriv ← 1 // enter hyperprivileged mode
HPSTATE.ibe ← 0 disable instruction breakpoints
HPSTATE.tlz is unchanged

endif

■ For a register-window trap (clean_window, window spill, or window fill) only,
CWP is set to point to the register window that must be accessed by the trap-
handler software, that is:

if TT[TL] = 02416 // a clean_window trap
then CWP ← CWP + 1
endif

if (08016 ≤ TT[TL] ≤ 0BF16) // window spill trap
then CWP ← CWP + CANSAVE + 2
endif

if (0C016 ≤ TT[TL] ≤ 0FF16) // window fill trap
then CWP ← CWP – 1
endif

For non-register-window traps, CWP is not changed.
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■ Control is transferred into the trap table:
// Note that at this point, TL has already been incremented (above)
if ( (trap is to privileged mode) and (TL ≤ MAXPTL) )
then

//the trap is handled in privileged mode
//Note: The expression “(TL > 1)” below evaluates to the
//value 02 if TL was 0 just before the trap (in which
//case, TL = 1 now, since it was incremented above,
//during trap entry). “(TL > 1)” evaluates to 12 if
//TL was > 0 before the trap.

PC ← TBA{63:15} :: (TL > 1) :: TT[TL] :: 0 00002
NPC ← TBA{63:15} :: (TL > 1) :: TT[TL] :: 0 01002

else if ( (trap is to privileged mode) and (TL > MAXPTL) )
then // this is the guest_watchdog case; the trap is handled in

// hyperprivileged mode using trap table offset 4016.
PC ← HTBA{63:14} :: 002 :: 04016
NPC ← HTBA{63:14} :: 002 :: 04416

else { trap is handled in hyperprivileged mode }
PC ← HTBA{63:14} :: TT[TL] :: 0 00002
NPC ← HTBA{63:14} :: TT[TL] :: 0 01002

endif

Interrupts are ignored as long as PSTATE.ie = 0.

12.6.2 RED_state Trap Processing
The following conditions invoke RED_state trap processing, and cause the trap to
be delivered in hyperprivileged mode:

■ Traps taken with TL = MAXTL – 1
■ Power-on reset traps
■ Watchdog reset traps
■ Externally initiated reset traps
■ Software-initiated reset traps
■ Traps taken when the virtual processor is already in RED_state

IMPL. DEP. #38-V8: Implementation-dependent registers may or may not be
affected by the various reset traps.

12.6.2.1 Nonreset Traps with TL = MAXTL – 1
Nonreset traps that occur when TL = MAXTL – 1 are processed in RED_state.

Programming
Note

State in TPC[n], TNPC[n], TSTATE[n], and TT[n] is only
changed autonomously by the processor when a trap is taken
while TL = n –1; however, software can change any of these
values with a WRPR instruction when TL = n.
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The following state changes occur (conceptually, in this order) during a nonreset
trap that occurs when TL = MAXTL – 1:

■ The trap level is advanced.
TL ← MAXTL

■ Existing state is preserved.
TSTATE[TL].gl ← GL
TSTATE[TL].ccr ← CCR
TSTATE[TL].asi ← ASI
TSTATE[TL].pstate ← PSTATE
TSTATE[TL].cwp ← CWP
TPC[TL] ← PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPC[TL] ← NPC // (upper 32 bits zeroed if PSTATE.am = 1)

HTSTATE[TL].hpstate ← HPSTATE

■ The trap type is preserved.
TT[TL] ← the trap type

■ The Global Level register is updated.
GL ← min (GL + 1, MAXGL)

■ The PSTATE register is set as follows:
PSTATE.mm ← 002 // TSO
PSTATE.pef ← 1 // if an FPU is present, it is enabled
PSTATE.am ← 0 // address masking is turned off
PSTATE.priv ← 0 // entering hyperprivileged mode
PSTATE.ie ← 0 // interrupts are disabled
PSTATE.cle ← 0 // big-endian is default for hyperprivileged mode
PSTATE.tle is unchanged // (was unspecified in SPARC V9 specification)
PSTATE.tct ← 0 // trap on CTI disabled

■ The HPSTATE register is updated:
HPSTATE.red ← 1 // enter RED_state
HPSTATE.hpriv ← 1 // enter hyperprivileged mode
HPSTATE.ibe ← 0 // disable instruction breakpoints
HPSTATE.tlz ← 0 // disable trap_level_zero exceptions

■ For a register-window trap only, CWP is set to point to the register window that
must be accessed by the trap-handler software, that is:

If TT[TL] = 02416 // a clean_window trap
then CWP ← CWP + 1
endif

If (08016 ≤ TT[TL] ≤ 0BF16) // window spill trap
then CWP ← CWP + CANSAVE + 2
endif
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If (0C016 ≤ TT[TL] ≤ 0FF16) // window fill trap
then CWP ← CWP – 1
endif

For non-register-window traps, CWP is not changed.

■ Implementation-specific state changes; for example, disabling an MMU.

■ Control is transferred into the RED_state trap table. See Trap Table Entry Address
to RED_state on page 455 for further details of RSTVADDR.

PC ← RSTVADDR{63:8} :: 1010 00002
NPC ← RSTVADDR{63:8} :: 1010 01002

12.6.2.2 Power-On Reset (POR) Traps

A POR trap occurs when power is applied to the virtual processor. If the virtual
processor is in error_state, a POR brings the virtual processor out of
error_state and places it in RED_state. See Chapter 16, Resets for further
details.

Virtual processor state is undefined after POR, except for the following:

■ The trap level is set.
TL ← MAXTL

■ The trap type is set.
TT[TL] ← 00116

■ The Global Level register is updated.
GL ← MAXGL

■ The PSTATE register is set as follows:
PSTATE.mm ← 002 // TSO
PSTATE.pef ← 1 // if an FPU is present, it is enabled
PSTATE.am ← 0 // address masking is turned off
PSTATE.priv ← 0 // entering hyperprivileged mode
PSTATE.ie ← 0 // interrupts are disabled
PSTATE.cle ← 0 // big-endian is default for hyperprivileged mode
PSTATE.tle ← 0 // big-endian mode for traps
PSTATE.tct ← 0 // trap on CTI disabled

■ The HPSTATE register is updated:
HPSTATE.red ← 1 // enter RED_state
HPSTATE.hpriv ← 1 // enter hyperprivileged mode
HPSTATE.ibe ← 0 // disable instruction breakpoints
HPSTATE.tlz ← 0 // disable trap_level_zero exceptions

■ The TICK register is protected.
TICK.npt ← 1 // TICK is unreadable by nonprivileged software

■ Implementation-specific state changes; for example, disabling an MMU.
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■ Control is transferred into the RED_state trap table.
PC ← RSTVADDR{63:8} :: 0010 00002
NPC ← RSTVADDR{63:8} :: 0010 01002

12.6.2.3 Watchdog Reset (WDR) Traps

Entry to error_state is caused by occurrence of a trap when TL = MAXTL (impl.
dep. #39-V8-Cs10). See error_state on page 444.

To recover from error_state, the UltraSPARC Architecture provides
watchdog_reset (WDR), which causes a transition from error_state to
RED_state (impl. dep. #254-U3-Cs10).

The following virtual processor state changes occur during WDR (conceptually, in
this order):

■ The trap level is updated.
TL ← min (TL + 1, MAXTL)

■ Existing state is preserved.
TSTATE[TL].gl ← GL
TSTATE[TL].ccr ← CCR
TSTATE[TL].asi ← ASI
TSTATE[TL].pstate ← PSTATE
TSTATE[TL].cwp ← CWP
TPC[TL] ← PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPC[TL] ← NPC // (upper 32 bits zeroed if PSTATE.am = 1)
HTSTATE[TL].hpstate ← HPSTATE

■ The trap type is set.
TT[TL] ← the trap type that caused the WDR

■ The Global Level register is updated.
GL ← min (GL + 1, MAXGL)

■ The PSTATE register is set as follows:
PSTATE.mm ← 002 // TSO
PSTATE.pef ← 1 // if an FPU is present, it is enabled
PSTATE.am ← 0 // address masking is turned off
PSTATE.priv ← 0 // entering hyperprivileged mode
PSTATE.ie ← 0 // interrupts are disabled
PSTATE.cle ← 0 // big-endian is default for hyperprivileged mode
PSTATE.tle is unchanged // (was unspecified in SPARC V9 specification)
PSTATE.tct ← 0 // trap on CTI disabled

■ The HPSTATE register is updated:
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HPSTATE.red ← 1 // enter RED_state
HPSTATE.hpriv ← 1 // enter hyperprivileged mode
HPSTATE.ibe ← 0 // disable instruction breakpoints
HPSTATE.tlz ← 0 // disable trap_level_zero exceptions

■ Implementation-specific state changes; for example, disabling an MMU.

■ Control is transferred into the RED_state trap table.
PC ← RSTVADDR{63:8} :: 0100 00002
NPC ← RSTVADDR{63:8} :: 0100 01002

12.6.2.4 Externally Initiated Reset (XIR) Traps

XIR traps are initiated by an external signal. They behave like an interrupt that
cannot be masked by PSTATE.ie = 0 or PIL. Typically, XIR is used for critical system
events such as power failure, reset button pressed, failure of external components
that does not require a WDR (which aborts operations), or systemwide reset in a
multiprocessor. See Chapter 16, Resets for further details.

If TL = MAXTL, then the virtual processor enters error_state. The following
virtual processor state changes occur during XIR (conceptually, in this order):

■ The trap level is updated:
TL ← min (TL + 1, MAXTL)

■ Existing state is preserved.
TSTATE[TL].gl ← GL
TSTATE[TL].ccr ← CCR
TSTATE[TL].asi ← ASI
TSTATE[TL].pstate ← PSTATE
TSTATE[TL].cwp ← CWP
TPC[TL] ← PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPC[TL] ← NPC // (upper 32 bits zeroed if PSTATE.am = 1)
HTSTATE[TL].hpstate ← HPSTATE

■ The trap type is set.
TT[TL] ← 00316

■ The Global Level register is updated.
GL ← min (GL + 1, MAXGL)

■ The PSTATE register is set as follows:
PSTATE.mm ← 002 // TSO
PSTATE.pef ← 1 // if an FPU is present, it is enabled
PSTATE.am ← 0 // address masking is turned off
PSTATE.priv ← 0 // entering hyperprivileged mode
PSTATE.ie ← 0 // interrupts are disabled
PSTATE.cle ← 0 // big-endian is default for hyperprivileged mode
PSTATE.tle is unchanged // (was unspecified in SPARC V9 specification)
PSTATE.tct ← 0 // trap on CTI disabled
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■ The HPSTATE register is updated:
HPSTATE.red ← 1 // enter RED_state
HPSTATE.hpriv ← 1 // enter hyperprivileged mode
HPSTATE.ibe ← 0 // disable instruction breakpoints
HPSTATE.tlz ← 0 // disable trap_level_zero exceptions

■ Implementation-specific state changes; for example, disabling an MMU.

■ Control is transferred into the RED_state trap table.
PC ← RSTVADDR{63:8} :: 0110 00002
NPC ← RSTVADDR{63:8} :: 0110 01002

See Externally Initiated Reset (XIR) on page 547 and the documentation for specific
processor implementations for more information.

12.6.2.5 Software-Initiated Reset (SIR) Traps

A software-initiated reset trap is initiated by execution of an SIR instruction in
hyperprivileged mode. Hyperprivileged software uses the SIR trap as a panic
operation or a metahypervisor trap. See Chapter 16, Resets for further details.

If TL = MAXTL, then the virtual processor enters error_state.

Otherwise, TL < MAXTL as trap processing begins and the following virtual processor
state changes occur (conceptually, in this order):

■ The trap level is updated.
TL ← TL + 1

■ Existing state is preserved.
TSTATE[TL].gl ← GL
TSTATE[TL].ccr ← CCR
TSTATE[TL].asi ← ASI
TSTATE[TL].pstate ← PSTATE
TSTATE[TL].cwp ← CWP
TPC[TL] ← PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPC[TL] ← NPC // (upper 32 bits zeroed if PSTATE.am = 1)
HTSTATE[TL].hpstate ← HPSTATE

■ The trap type is set.
TT[TL] ← 0416

■ The Global Level register is updated.
GL ← min (GL + 1, MAXGL)

■ The PSTATE register is set as follows:
PSTATE.mm ← 002 // TSO
PSTATE.pef ← 1 // if an FPU is present, it is enabled
PSTATE.am ← 0 // address masking is turned off
PSTATE.priv ← 0 // entering hyperprivileged mode
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PSTATE.ie ← 0 // interrupts are disabled
PSTATE.cle ← 0 // big-endian is default for hyperprivileged mode
PSTATE.tle is unchanged // (was unspecified in SPARC V9 specification)
PSTATE.tct ← 0 // trap on CTI disabled

■ The HPSTATE register is updated:
HPSTATE.red ← 1 // enter RED_state
HPSTATE.hpriv ← 1 // enter hyperprivileged mode
HPSTATE.ibe ← 0 // disable instruction breakpoints
HPSTATE.tlz ← 0 // disable trap_level_zero exceptions

■ Implementation-specific state changes; for example, disabling an MMU.

■ Control is transferred into the RED_state trap table.
PC ← RSTVADDR{63:8} :: 1000 00002
NPC ← RSTVADDR{63:8} :: 1000 01002

See Software-Initiated Reset (SIR) on page 548 and the documentation for specific
processor implementations for more information.

12.6.2.6 Nonreset Traps When the Virtual Processor Is in
RED_state

When a nonreset trap occurs while the virtual processor is in RED_state, if
TL = MAXTL, then the virtual processor enters error_state.

Otherwise, TL < MAXTL as trap processing begins, the virtual processor remains in
RED_state, and the following virtual processor state changes occur (conceptually,
in this order):

■ The trap level is updated.
TL ← TL + 1

■ Existing state is preserved.
TSTATE[TL].gl ← GL
TSTATE[TL].ccr ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].pstate ← PSTATE
TSTATE[TL].cwp ← CWP
TPC[TL] ← PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPC[TL] ← NPC // (upper 32 bits zeroed if PSTATE.am = 1)
HTSTATE[TL].hpstate ← HPSTATE

■ The trap type is preserved.
TT[TL] ← trap type

■ The Global Level register is updated.
GL ← min (GL + 1, MAXGL)
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■ The PSTATE register is set as follows:
PSTATE.mm ← 002 // TSO
PSTATE.pef ← 1 // if an FPU is present, it is enabled
PSTATE.am ← 0 // address masking is turned off
PSTATE.priv ← 0 // entering hyperprivileged mode
PSTATE.ie ← 0 // interrupts are disabled
PSTATE.cle ← 0 // big-endian is default for hyperprivileged mode
PSTATE.tle ← unchanged // (was unspecified in SPARC V9 specification)
PSTATE.tct ← 0 // trap on CTI disabled

■ The HPSTATE register is updated:
HPSTATE.red ← 1 // enter RED_state
HPSTATE.hpriv ← 1 // enter hyperprivileged mode
HPSTATE.ibe ← 0 // disable instruction breakpoints
HPSTATE.tlz is unchanged

■ For a register-window trap only, CWP is set to point to the register window that
must be accessed by the trap-handler software, that is:

If TT[TL] = 02416 // a clean_window trap
then CWP ← CWP + 1
endif
If (08016 ≤ TT[TL] ≤ 0BF16) // window spill trap
then CWP ← CWP + CANSAVE + 2
endif
If (0C016 ≤ TT[TL] ≤ 0FF16) // window fill trap
then CWP ← CWP – 1
endif

■ For non-register-window traps, CWP is not changed.

■ Implementation-specific state changes; for example, disabling an MMU.

■ Control is transferred into the RED_state trap table.
PC ← RSTVADDR{63:8} :: 1010 00002
NPC ← RSTVADDR{63:8} :: 1010 01002

12.7 Exception and Interrupt Descriptions
The following sections describe the various exceptions and interrupt requests and
the conditions that cause them. Each exception and interrupt request describes the
corresponding trap type as defined by the trap model.
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All other trap types are reserved.

The following traps are generally expected to be supported in all UltraSPARC
Architecture 2005 implementations. A given trap is not required to be supported in
an implementation in which the conditions that cause the trap can never occur.

■ clean_window [TT = 02416–02716] (Precise) — A SAVE instruction discovered
that the window about to be used contains data from another address space; the
window must be cleaned before it can be used.

IMPL. DEP. #102-V9: An implementation may choose either to implement
automatic cleaning of register windows in hardware or to generate a
clean_window trap, when needed, so that window(s) can be cleaned by software.
If an implementation chooses the latter option, then support for this trap type is
mandatory.

■ cpu_mondo [TT = 07C16] (Disrupting) — This interrupt is generated when
another virtual processor has enqueued a message for this virtual processor. It is
used to deliver a trap in privileged mode, to inform privileged software that an
interrupt report has been appended to the virtual processor’s CPU mondo queue.
A direct message between virtual processors is sent via a CPU mondo interrupt,
which is generated through software calls to hyperprivileged software. The
standard software interface (API) to hyperprivileged software allows 64 bytes of
data to be sent to one or more target virtual processors. When the CPU mondo
queue has a valid entry, a cpu_mondo exception is sent to the target virtual
processor.

■ data_access_error [TT = 03216] (Precise) — A hardware error occurred during a
data access.

■ data_access_exception [TT = 03016] (Precise) — An exception occurred on an
attempted data access. Detailed information regarding the error is logged into the
ft field of the DSFSR (Data Synchronous Fault Status register, ASI 5816,
VA = 1816).

The conditions that may cause a data_access_exception exception are:

■ Privilege Violation — An attempt to access a privileged page (TTE.p = 1) by
any type of load, store, or load-store instruction when executing in
nonprivileged mode (PSTATE.priv = 0). This includes the special case of an
access by privileged software using one of the
ASI_AS_IF_USER_PRIMARY[_LITTLE] or
ASI_AS_IF_USER_SECONDARY[_LITTLE] ASIs.

Note The encoding of trap types in the UltraSPARC Architecture
differs from that shown in The SPARC Architecture Manual-
Version 9. Each trap is marked as precise, deferred, disrupting, or
reset. Example exception conditions are included for each
exception type. Chapter 7, Instructions, enumerates which traps
can be generated by each instruction.
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■ Illegal Access to Noncacheable Page — An access to a noncacheable page
(TTE.cp = 0) (including cases with the TLB disabled) was attempted by an
atomic load-store instruction (CASA, CASXA, SWAP, SWAPA, LDSTUB, or
LDSTUBA) or an LDTXA instruction.

■ Illegal Access to Page That May Cause Side Effects — An attempt was made
to access a page which may cause side effects (TTE.e = 1) (including cases with
the TLB disabled) by any type of load instruction with nonfaulting ASI.

■ Invalid ASI — An attempt was made to execute an invalid combination of
instruction and ASI. See the instruction descriptions in Chapter 7 for a detailed
list of valid ASIs for each instruction that can access alternate address spaces.
The following invalid combinations of instruction, ASI, and virtual address
cause a data_access_exception exception:

■ A load, store, load-store, or PREFETCHA instruction with either an invalid
ASI or an invalid virtual address for a valid ASI.

■ A disallowed combination of instruction and ASI (see Block Load and Store
ASIs on page 429 and Partial Store ASIs on page 430). This includes the
following:

■ An attempt to use a Load Twin Extended Word (LDTXA) ASI (see ASIs 1016,
1116, 1616, 1716 and 1816 (ASI_*AS_IF_USER_*) on page 422) with any load
alternate opcode other than LDTXA’s (which is shared by LDTWA)

■ An attempt to use a nontranslating ASI value with any load or store alternate
instruction other than LDXA, LDDFA, STXA, or STDFA

■ An attempt to read from a write-only ASI-accessible register

■ An attempt to write to a read-only ASI-accessible register

■ Illegal Access to Non-Faulting-Only Page — An attempt was made to access a
non-faulting-only page (TTE.nfo = 1) by any type of load, store, or load-store
instruction with an ASI other than a nonfaulting ASI
(PRIMARY_NO_FAULT[_LITTLE] or SECONDARY_NO_FAULT[_LITTLE]).

■ data_access_MMU_miss [TT = 03116] (Precise) — During an attempted data
access to memory,
(1) hardware tablewalk is enabled,
(2) the MMU detects that a translation lookaside buffer did not contain a

translation for the data’s virtual address, and
(3) the required TTE was not found in the configured TSBs.

Forward
Compatibility

Note

The next revision of the UltraSPARC Architecture is expected to
replace data_access_exception with several more specific
exceptions — one for each condition that currently can cause a
data_access_exception. This will support slightly faster trap
handling for these exceptions and allow elimination of the D-
SFSR register.
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■ data_invalid_TSB _entry [TT = 02B16] (Precise) — During an attempted data
access,
(1) hardware tablewalk was enabled,
(2) the MMU detected that a translation lookaside buffer did not contain a

translation for the virtual address, and
(3) the required TTE was found in the configured TSBs to be a real address,

requiring real-to-physical address translation, and
(4) the real address cannot be translated to a physical address by hardware.

■ data_real_translation_miss [TT = 03F16] (Precise) — During an attempted real
address data access, the MMU detected that a translation lookaside buffer (TLB)
did not contain a translation for the real address (that is, a TLB miss occurred).

■ dev_mondo [TT = 07D16] (Disrupting) — This interrupt causes a trap to be
delivered in privileged mode, to inform privileged software that an interrupt
report has been appended to its device mondo queue. When a virtual processor
has appended a valid entry to a target virtual processor’s device mondo queue, it
sends a dev_mondo exception to the target virtual processor. The interrupt report
contents are device specific.

■ division_by_zero [TT = 02816] (Precise) — An integer divide instruction
attempted to divide by zero.

■ externally_initiated_reset (XIR) [TT = 00316] (Reset) — An external signal was
asserted. This trap is used for catastrophic events such as power failure, reset
button pressed, and system-wide reset in multiprocessor systems.

■ fast_data_access_MMU_miss [TT = 06816] (Precise) — During an attempted
data access to memory,
(1) hardware tablewalk was disabled (or is not implemented) and
(2) the MMU detected that a translation lookaside buffer did not contain a
translation for the virtual address.
Four trap vectors are allocated for this trap, allowing a TLB miss handler of up to
32 instructions to fit within the trap vector area.

■ fast_data_access_protection [TT = 06C16] (Precise) — During an attempted
data write access (by a store or load-store instruction), the instruction had
appropriate access privilege but the MMU signalled that the location was write-
protected (write to a read-only location (TTE.w = 0)). Four trap vectors are
allocated for this trap, allowing a trap handler of up to 32 instructions to fit
within the trap vector area.

Note that on an UltraSPARC Architecture virtual processor, an attempt to read or
write to a privileged location while in nonprivileged mode causes the higher-
priority instead of this exception.

■ fast_instruction_access_MMU_miss [TT = 06416] (Precise) — During an
attempted instruction virtual address access,
(1) hardware tablewalk was disabled (or is not implemented) and
(2) the MMU detected a TLB miss.
Four trap vectors are allocated for this trap, allowing a trap handler of up to 32
instructions to fit within the trap vector area.
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■ fill_n_normal [TT = 0C016–0DF16] (Precise)
■ fill_n_other [TT = 0E016–0FF16] (Precise)

A RESTORE or RETURN instruction has determined that the contents of a
register window must be restored from memory.

■ fp_disabled [TT = 02016] (Precise) — An attempt was made to execute an FPop, a
floating-point branch, or a floating-point load/store instruction while an FPU was
disabled (PSTATE.pef = 0 or FPRS.fef = 0).

■ fp_exception_ieee_754 [TT = 02116] (Precise) — An FPop instruction generated
an IEEE_754_exception and its corresponding trap enable mask (FSR.tem) bit was
1. The floating-point exception type, IEEE_754_exception, is encoded in the
FSR.ftt, and specific IEEE_754_exception information is encoded in FSR.cexc.

■ fp_exception_other [TT = 02216] (Precise) — An FPop instruction generated an
exception other than an IEEE_754_exception. Examples: the FPop is
unimplemented or execution of an FPop requires software assistance to complete.
The floating-point exception type is encoded in FSR.ftt.

■ guest_watchdog [TT = (see text)] (Precise, Disrupting) — The virtual processor
was in nonprivileged or privileged mode, TL was ≥ MAXPTL, and a precise or
disrupting exception to privileged mode occurred. guest_watchdog uses the same
trap table entry (table offset 04016) as watchdog_reset. When a guest_watchdog
trap occurs, the trap type (TT) value and priority of the exception that caused the
trap are retained.

■ hstick_match [TT = 05E16] (Disrupting) —This interrupt indicates that a match
between the System Tick (STICK) and the Hypervisor System Tick Compare
(HSTICK_CMPR) register has occurred. The event is recorded in the
hstick_match_pending (hsp) bit of the Hypervisor Interrupt Pending (HINTP)
register. The hstick_match disrupting trap is recognized when HINTP.hsp = 1 and
PSTATE.ie = 1 or HPSTATE.hpriv = 0; otherwise, it remains pending. HINTP.hsp
provides a mechanism for hyperprivileged software to determine that an
hstick_match trap is pending while PSTATE.ie = 0 and to clear the condition
without actually having to take the hstick_match trap.

■ htrap_instruction [TT = 18016–1FF16] (Precise) — A Tcc instruction was executed
in privileged or hyperprivileged mode, the trap condition evaluated to TRUE, and
the software trap number was greater than 127. The trap is delivered in
hyperprivileged mode, using the hyperprivileged mode trap base address
(HTBA). See also trap_instruction on page 489.

■ illegal_instruction [TT = 01016] (Precise) — An attempt was made to execute an
ILLTRAP instruction, an instruction with an unimplemented opcode, an
instruction with invalid field usage, or an instruction that would result in illegal
processor state.

Examples of cases in which illegal_instruction is generated include the following:

Note An unimplemented FPop instruction generates an
fp_exception_other exception with ftt = 3, instead of an
illegal_instruction exception.
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■ An instruction encoding does not match any of the opcode map definitions (see
Appendix A, Opcode Maps).

■ A non-FPop instruction is not implemented in hardware.

■ A reserved instruction field in Tcc instruction is nonzero.

If a reserved instruction field in an instruction other than Tcc is nonzero, an
illegal_instruction exception should be, but is not required to be, generated.
(See Reserved Opcodes and Instruction Fields on page 132.)

■ An illegal value is present in an instruction i field.

■ An illegal value is present in a field that is explicitly defined for an instruction,
such as cc2, cc1, cc0, fcn, impl, op2 (IMPDEP2A, IMPDEP2B), rcond, or opf_cc.

■ Illegal register alignment (such as odd rd value in a doubleword load
instruction).

■ Illegal rd value for LDXFSR, STXFSR, or the deprecated instructions LDFSR or
STFSR.

■ ILLTRAP instruction.

■ DONE or RETRY when TL = 0.

All causes of an illegal_instruction exception are described in individual
instruction descriptions in Chapter 7, Instructions.

■ instruction_access_error [TT = 00A16] (Precise) — A hardware error occurred
during an instruction access.

■ instruction_access_MMU_miss [TT = 00916] (Precise) — During an attempted
instruction access (instruction fetch) from memory,
(1) hardware tablewalk was enabled,
(2) the MMU detected that a translation lookaside buffer did not contain a

translation for the virtual address (that is, a TLB miss occurred), and
(3) the required TTE was not found in the configured TSBs.

■ instruction_access_exception [TT = 00816] (Precise) — An exception occurred
on an instruction access. The conditions that may cause an
instruction_access_exception exception are:
■ Privilege Violation — An attempt to fetch an instruction from a privileged

memory page (TTE.p = 1) while the virtual processor was executing in
nonprivileged mode.

■ Unauthorized Access — An attempt to fetch an instruction from a memory
page which was missing “execute” permission (TTE.ep = 0).

■ No-Fault Only Access — An attempt to fetch an instruction from a memory
page which was marked for access only by nonfaulting loads (TTE.nfo = 1).

■ instruction_breakpoint [TT = 07616] (Precise) — This exception is generated if
HPSTATE.ibe = 1 and the processor has detected a breakpoint condition based on
the values in the Instruction Breakpoint Control register for the current
instruction. As part of the trap, the HPSTATE.ibe bit is cleared (set to 0).
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■ instruction_invalid_TSB_entry [TT = 02A16] (Precise) — During an attempted
instruction access (instruction fetch), (1) hardware tablewalk was enabled, (2) the
MMU detected that a translation lookaside buffer did not contain a translation for
the virtual address, (3) the required TTE was found in the configured TSBs to be a
real address, requiring real-to-physical address translation, and (4) the real
address cannot be translated to a physical address by hardware.

■ instruction_real_translation_miss [TT = 03E16] (Precise) — During an
attempted real address instruction access (instruction fetch), the MMU detected a
TLB miss.

■ internal_processor_error [TT = 02916] (Precise) — A serious internal error
occurred in the virtual processor.

IMPL. DEP. #402-S10: The trap priority of the internal_processor_error exception
is implementation dependent. Furthermore, its priority may vary within an
implementation, based on the cause of the error being reported.

■ interrupt_level_n [TT = 04116–04F16] (Disrupting) — SOFTINT{n} was set to 1 or
an external interrupt request of level n was presented to the virtual processor and
n > PIL.

■ LDDF_mem_address_not_aligned [TT = 03516] (Precise) — An attempt was
made to execute an LDDF or LDDFA instruction and the effective address was not
doubleword aligned. (impl. dep. #109)

■ mem_address_not_aligned [TT = 03416] (Precise) — A load/store instruction
generated a memory address that was not properly aligned according to the
instruction, or a JMPL or RETURN instruction generated a non-word-aligned
address. (See also Special Memory Access ASIs on page 422.)

■ nonresumable_error [TT = 07F16] (Disrupting) — There is a valid entry in the
nonresumable error queue. This interrupt is not generated by hardware, but is
used by hyperprivileged software to inform privileged software that an error
report has been appended to the nonresumable error queue.

■ PA_watchpoint [TT = 06116] (Precise) — The virtual processor has detected a load
or store to a physical address specified by the PA Watchpoint register while PA
watchpoints are enabled. Hyperprivileged software may reflect this trap back to
privileged software as a synthetic RA_watchpoint exception.

■ pic_overflow [TT = 04F16] (Disrupting) — A performance counter has overflowed
and PIL < 15. Note that this exception shares a trap type, 04F16, with
interrupt_level_15. The disrupting trap caused by pic_overflow is conditioned by
PSTATE.ie.
If PSTATE.ie = 1 and PIL < 15 when the possible counter overflow is detected and
depending on the event being monitored by the counter, the disrupting trap may
be reported prior to retirement of the instruction that incremented the counter to

Implementation
Note

interrupt_level_14 can be caused by (1) setting SOFTINT{14}
to 1, (2) occurrence of a "TICK match", or (3) occurrence of a
"STICK match" (see SOFTINTP Register (ASRs 20, 21, 22) on
page 80).
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cause the possible counter overflow. Upon entry to the trap handler, TPC points
to an instruction that increments the performance counter and the counter is
within some epsilon of overflow.
If PSTATE.ie = 0 or PIL = 15 when the possible overflow is detected, the trap
remains pending and will be taken on the first instruction for which
PSTATE.ie = 1 and PIL < 15. In this case, TPC may not point to an instruction that
increments the counter.

■ power_on_reset (POR) [TT = 00116] (Reset) — An external signal was asserted.
This trap is issued to bring a system reliably from the power-off to the power-on
state.

■ privileged_action [TT = 03716] (Precise) — An action defined to be privileged has
been attempted while in nonprivileged mode (PSTATE.priv = 0 and
HPSTATE.hpriv = 0), or an action defined to be hyperprivileged has been
attempted while in nonprivileged or privileged mode (HPSTATE.hpriv = 0).
Examples:
■ A data access by nonprivileged software using a restricted (privileged or

hyperprivileged) ASI, that is, an ASI in the range 0016 to 7F16 (inclusively)
■ A data access by nonprivileged or privileged software using a hyperprivileged

ASI, that is, an ASI in the range 3016 to 7F16 (inclusively)
■ Execution by nonprivileged software of an instruction with a privileged

operand value
■ An attempt to read the TICK register by nonprivileged software when

TICK.npt = 1
■ An attempt to access the PIC register (using RDPIC or WRPIC) while

PSTATE.priv = 0 and PCR.priv = 1
■ An attempt to execute a nonprivileged instruction with an operand value

requiring more privilege than available in the current privilege mode.

■ privileged_opcode [TT = 01116] (Precise) — An attempt was made to execute a
privileged instruction while PSTATE.priv = 0.

■ RED_state_exception [TT = (see text)] (Precise) — Caused when TL = MAXTL − 1
and a trap occurs, an event that brings the virtual processor into RED_state.
Uses the trap vector entry reserved for trap type 00516, but the trap type recorded
in TT is the trap type of the original exception that triggered
RED_state_exception.

■ resumable_error [TT = 07E16] (Disrupting) — There is a valid entry in the
resumable error queue. This interrupt is used to inform privileged software that
an error report has been appended to the resumable error queue, and the current
instruction stream is in a consistent state so that execution can be resumed after
the error is handled.

■ software_initiated_reset (SIR) [TT = 00416] (Precise) — Caused by the execution
of the SIR instruction. It allows system software to reset the virtual processor.

■ spill_n_normal [TT = 08016–09F16] (Precise)
■ spill_n_other [TT = 0A016–0BF16] (Precise)
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A SAVE or FLUSHW instruction has determined that the contents of a register
window must be saved to memory.

■ STDF_mem_address_not_aligned [TT = 03616] (Precise) — An attempt was
made to execute an STDF or STDFA instruction and the effective address was not
doubleword aligned. (impl. dep. #110)

■ store_error [TT = 00716] (Deferred) — An error has been detected on a store
instruction that prevents it from completing, but the error was detected after the
store had passed its instruction retirement point. Since the store cannot be made
globally visible, the software thread that issued the store must be terminated.
Therefore, this is a termination deferred trap.

■ sw_recoverable_error [TT = 04016] (Disrupting) — Indicates that one or more
potentially recoverable errors have been detected in the virtual processor. A
single sw_recoverable_error exception may indicate multiple errors and may
occur asynchronously to instruction execution. When sw_recoverable_error
causes a trap, the TPC and TNPC stacked by the trap do not necessarily indicate
the instruction or data access that caused the error. (impl. dep. #31-V8-Cs10, #218-
U3-Cs10)

IMPL. DEP. #218-U3-Cs10: Whether sw_recoverable_error exception is
implemented is implementation dependent. If it does exist, it indicates that an
error is detected in a processor core and its trap type is 4016.

■ tag_overflow [TT = 02316] (Precise) (deprecated ) — A TADDccTV or
TSUBccTV instruction was executed, and either 32-bit arithmetic overflow
occurred or at least one of the tag bits of the operands was nonzero.

■ trap_instruction [TT = 10016–17F16] (Precise) — A Tcc instruction was executed
and the trap condition evaluated to TRUE, and the software trap number operand
of the instruction is 127 or less.

■ trap_level_zero [TT = 05F16] (Disrupting) — This exception indicates a
simultaneous existence of three conditions:
■ trap_level_zero exceptions are enabled (HPSTATE.tlz = 1),
■ the virtual processor is in nonprivileged or privileged mode

(HPSTATE.hpriv = 0), and
■ the trap level (TL) register’s value is zero (TL = 0)

SPARC V9
Compatibility

Note

The sw_recoverable_error exception was called
async_data_error in the SPARC V9 specification, which in turn
superseded the less general SPARC V8 data_store_error
exception.

C2
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Upon entry to the trap handler for trap_level_zero, TPC points to the instruction
that was about to be executed when all three of these conditions were met.

■ unimplemented_LDTW [TT = 01216] (Precise) — An attempt was made to execute
an LDTW instruction that is not implemented in hardware on this
implementation (impl. dep. #107-V9).

■ unimplemented_STTW [TT = 01316] (Precise) — An attempt was made to execute
an STTW instruction that is not implemented in hardware on this implementation
(impl. dep. #108-V9).

■ watchdog_reset (WDR) [TT = 00216] (Reset) — This trap occurs in error_state
and causes a transition to RED_state (impl. dep. #254-U3-Cs10).

■ VA_watchpoint [TT = 06216] (Precise) — The virtual processor has detected an
attempt to access a virtual address specified by the VA Watchpoint register, while
VA watchpoints are enabled and the address is being translated from a virtual
address to a physical address. If the load or store address is not being translated
from a virtual address (for example, the address is being treated as a real
address), then a VA_watchpoint exception will not be generated even if a match is
detected between the VA Watchpoint register and a load or store address. This
exception is always masked in hyperprivileged mode; therefore, a VA_watchpoint
trap cannot occur in hyperprivileged mode (even if memory is accessed using
ASI_AS_IF_USER_PRIMARY or ASI_AS_IF_USER_SECONDARY).

12.7.1 SPARC V9 Traps Not Used in UltraSPARC
Architecture 2005
The following traps were optional in the SPARC V9 specification and are not used in
UltraSPARC Architecture 2005:

■ async_data_error [TT = 04016] (Disrupting) — This exception was superseded by
the sw_recoverable_error exception.

■ data_access_protection [TT = 03316] (Precise or Deferred) — This exception is
generally superseded by fast_data_access_protection (see page 484).

Programming
Note

The purpose of this trap is to improve efficiency when de-
scheduling a virtual processor. When a descheduling event
occurs and the virtual processor is executing in privileged mode
at TL > 0, hyperprivileged software can choose to enable the
trap_level_zero exception (set HPSTATE.tlz ← 1) and return to
privileged mode, enabling privileged software to complete its
TL > 0 processing. When privileged code returns to TL = 0, this
exception enables the hyperprivileged code to regain control
and deschedule the virtual processor with low overhead.
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IMPL. DEP. #fast_ECC_error [TT = 07016] (Precise) — A single-bit or multiple-bit
ECC error was detected. 202-U3: Whether or not a fast_ECC_error trap exists is
implementation dependent. If it does exist, it indicates that an ECC error was
detected in an external cache and its trap type is 07016.

■ implementation_dependent_exception_n [TT = 07716 - 07A16] This range of
implementation-dependent exceptions has been replaced by a set of
architecturally-defined exceptions. (impl.dep. #35-V8-Cs20)

■ LDQF_mem_address_not_aligned [TT = 03816] (Precise) — An attempt was
made to execute an LDQF instruction and the effective address was word aligned
but not quadword aligned. Use of this exception is implementation dependent
(impl. dep. #111-V9-Cs10). A separate trap entry for this exception supports fast
software emulation of the LDQF instruction when the effective address is word
aligned but not quadword aligned. See Load Floating-Point on page 249. (impl. dep.
#111)

■ STQF_mem_address_not_aligned [TT = 03916] (Precise) — An attempt was
made to execute an STQF instruction and the effective address was word aligned
but not quadword aligned. Use of this exception is implementation dependent
(impl. dep. #112-V9-Cs10). A separate trap entry for the exception supports fast
software emulation of the STQF instruction when the effective address is word
aligned but not quadword aligned. See Store Floating-Point on page 332. (impl. dep.
#112)

12.8 Register Window Traps
Window traps are used to manage overflow and underflow conditions in the register
windows, support clean windows, and implement the FLUSHW instruction.

12.8.1 Window Spill and Fill Traps
A window overflow occurs when a SAVE instruction is executed and the next
register window is occupied (CANSAVE = 0). An overflow causes a spill trap that
allows privileged software to save the occupied register window in memory, thereby
making it available for use.

A window underflow occurs when a RESTORE instruction is executed and the
previous register window is not valid (CANRESTORE = 0). An underflow causes a
fill trap that allows privileged software to load the registers from memory.
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12.8.2 clean_window Trap
The virtual processor provides the clean_window trap so that system software can
create a secure environment in which it is guaranteed that data cannot inadvertently
leak through register windows from one software program to another.

A clean register window is one in which all of the registers, including uninitialized
registers, contain either 0 or data assigned by software executing in the address
space to which the window belongs. A clean window cannot contain register values
from another process, that is, from software operating in a different address space.

Supervisor software specifies the number of windows that are clean with respect to
the current address space in the CLEANWIN register. This number includes register
windows that can be restored (the value in the CANRESTORE register) and the
register windows following CWP that can be used without cleaning. Therefore, the
number of clean windows available to be used by the SAVE instruction is

CLEANWIN − CANRESTORE

The SAVE instruction causes a clean_window exception if this value is 0. This
behavior allows supervisor software to clean a register window before it is accessed
by a user.

12.8.3 Vectoring of Fill/Spill Traps
To make handling of fill and spill traps efficient, the SPARC V9 architecture provides
multiple trap vectors for the fill and spill traps. These trap vectors are determined as
follows:

■ Supervisor software can mark a set of contiguous register windows as belonging
to an address space different from the current one. The count of these register
windows is kept in the OTHERWIN register. A separate set of trap vectors
(fill_n_other and spill_n_other) is provided for spill and fill traps for these register
windows (as opposed to register windows that belong to the current address
space).

■ Supervisor software can specify the trap vectors for fill and spill traps by
presetting the fields in the WSTATE register. This register contains two subfields,
each three bits wide. The WSTATE.normal field determines one of eight spill (fill)
vectors to be used when the register window to be spilled (filled) belongs to the
current address space (OTHERWIN = 0). If the OTHERWIN register is nonzero, the
WSTATE.other field selects one of eight fill_n_other (spill_n_other) trap vectors.

See Trap-Table Entry Addresses on page 452, for more details on how the trap address
is determined.
492 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006



12.8.4 CWP on Window Traps
On a window trap, the CWP is set to point to the window that must be accessed by
the trap handler, as follows.

■ If the spill trap occurs because of a SAVE instruction (when CANSAVE = 0), there
is an overlap window between the CWP and the next register window to be
spilled:

CWP ← (CWP + 2) mod N_REG_WINDOWS

If the spill trap occurs because of a FLUSHW instruction, there can be unused
windows (CANSAVE) in addition to the overlap window between the CWP and
the window to be spilled:

CWP ← (CWP + CANSAVE + 2) mod N_REG_WINDOWS

■ On a fill trap, the window preceding CWP must be filled:

CWP ← (CWP – 1) mod N_REG_WINDOWS

■ On a clean_window trap, the window following CWP must be cleaned. Then

CWP ← (CWP + 1) mod N_REG_WINDOWS

12.8.5 Window Trap Handlers
The trap handlers for fill, spill, and clean_window traps must handle the trap
appropriately and return, by using the RETRY instruction, to reexecute the trapped
instruction. The state of the register windows must be updated by the trap handler,
and the relationships among CLEANWIN, CANSAVE, CANRESTORE, and
OTHERWIN must remain consistent. Follow these recommendations:

■ A spill trap handler should execute the SAVED instruction for each window that
it spills.

■ A fill trap handler should execute the RESTORED instruction for each window
that it fills.

■ A clean_window trap handler should increment CLEANWIN for each window that
it cleans:

CLEANWIN ← (CLEANWIN + 1)

Note All arithmetic on CWP is done modulo N_REG_WINDOWS.

Implementation
Note

All spill traps can set CWP by using the calculation:
CWP ← (CWP + CANSAVE + 2) mod N_REG_WINDOWS

since CANSAVE is 0 whenever a trap occurs because of a SAVE
instruction.
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CHAPTER 13

Interrupt Handling

Virtual processors and I/O devices can interrupt a selected virtual processor by
assembling and sending an interrupt packet. The contents of the interrupt packet are
defined by software convention. Thus, hardware interrupts and cross-calls can have
the same hardware mechanism for interrupt delivery and share a common software
interface for processing.

The interrupt mechanism is a two-step process:

■ sending of an interrupt request (through an implemenation-specific hardware
mechanism) to an interrupt queue of the target virtual processor

■ receipt of the interrupt request on the target virtual processor and scheduling
software handling of the interrupt request

Privileged software running on a virtual processor can schedule interrupts to itself
(typically, to process queued interrupts at a later time) by setting bits in the
privileged SOFTINT register (see Software Interrupt Register (SOFTINT) on page 496).

In the following sections, the following aspects of interrupt handling are described:

■ Interrupt Packets on page 496.

■ Software Interrupt Register (SOFTINT) on page 496.

Programming
Note

An interrupt request packet is sent by an interrupt source
(through an implementation-specific mechanism) and is
received by the specified target in an interrupt queue. Upon
receipt of an interrupt request packet, a special trap is invoked
on the target virtual processor. The trap handler software
invoked in the target virtual processor then schedules itself to
later handle the interrupt request by posting an interrupt in the
SOFTINT register at the desired interrupt level.

Note: This chapter is undergoing final review; please check
back later for a copy of UltraSPARC Architecture
2005 containing the final version of this chapter.
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■ Interrupt Queues on page 497.

■ Interrupt Traps on page 500.

■ Strand Interrupt ID Register (STRAND_INTR_ID) on page 501.

13.1 Interrupt Packets
Each interrupt is accompanied by data, referred to as an “interrupt packet”. An
interrupt packet is 64 bytes long, consisting of eight 64-bit doublewords. The
contents of these data are defined by software convention.

13.2 Software Interrupt Register (SOFTINT)
To schedule interrupt vectors for processing at a later time, privileged software
running on a virtual processor can send itself signals (interrupts) by setting bits in
the privileged SOFTINT register. Similarly, hyperprivileged software can schedule
interrupt vectors for privileged software running on the same virtual processorby
setting bits in SOFTINT.

See SOFTINTP Register (ASRs 20, 21, 22) on page 80 for a detailed description of the
SOFTINT register.

Programming
Note

The SOFTINT register (ASR 1616) is used for communication
from nucleus (privileged, TL > 0) software to privileged software
running with TL = 0. Interrupt packets and other service
requests can be scheduled in queues or mailboxes in memory by
the nucleus, which then sets SOFTINT{n} to cause an interrupt
at level n.

Programming
Note

The SOFTINT mechanism is independent of the “mondo”
interrupt mechanism mentioned in Interrupt Queues on page 497.
The two mechanisms do not interact.
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13.2.1 Setting the Software Interrupt Register
SOFTINT{n} is set to 1 by executing a WRSOFTINT_SETP instruction (WRasr using
ASR 20) with a ‘1’ in bit n of the value written (bit n corresponds to interrupt level
n). The value written to the SOFTINT_SET register is effectively ored into the
SOFTINT register. This approach allows the interrupt handler to set one or more
bits in the SOFTINT register with a single instruction.

See SOFTINT_SETP Pseudo-Register (ASR 20) on page 82 for a detailed description of
the SOFTINT_SET pseudo-register.

13.2.2 Clearing the Software Interrupt Register
When all interrupts scheduled for service at level n have been serviced, kernel
software executes a WRSOFTINT_CLRP instruction (WRasr using ASR 21) with a ‘1’
in bit n of the value written, to clear interrupt level n (impl. dep. 34-V8a). The
complement of the value written to the SOFTINT_CLR register is effectively anded
with the SOFTINT register. This approach allows the interrupt handler to clear one
or more bits in the SOFTINT register with a single instruction.

See SOFTINT_CLRP Pseudo-Register (ASR 21) on page 82 for a detailed description of
the SOFTINT_CLR pseudo-register.

13.3 Interrupt Queues
Interrupts are indicated to privileged mode via circular interrupt queues, each with
an associated trap vector. There are 4 interrupt queues, one for each of the following
types of interrupts:

■ Device mondos1

■ CPU mondos

■ Resumable errors

■ Nonresumable errors

Programming
Note

To avoid a race condition between operating system kernel
software clearing an interrupt bit and nucleus software setting
it, software should (again) examine the queue for any valid
entries after clearing the interrupt bit.

1. “mondo” is a historical term, referring to the name of the original UltraSPARC 1 bus transaction in which
these interrupts were introduced
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New interrupt entries are appended to the tail of a queue (by hardware or by
hyperprivileged software) and privileged software reads them from the head of the
queue.

13.3.1 Interrupt Queue Registers
The active contents of each queue are delineated by a 64-bit head register and a 64-
bit tail register.

IMPL. DEP. #421-S10: It is implementation dependent whether interrupt queue
head and tail registers (a) are datatype-agnostic “scratch registers” used for
communication between privileged and hyperprivileged software, in which case
their contents are defined purely by software convention, or (b) are maintained to
some degree by virtual processor hardware, imposing a fixed meaning on their
contents.

The interrupt queue registers are accessed through ASI ASI_QUEUE (2516). The ASI
and address assignments for the interrupt queue registers are provided in TABLE 13-1.

Programming
Note

Software conventions for cooperative management of interrupt
queues and the format of queue entries are specified in the
separate Hypervisor API Specification document.

Programming
Note

If the contents of Queue Head and Tail registers are set only by
software convention in a given implementation, software could
place any type of data in them (such as addresses, address
offsets, or index values).

It is expected that Queue Head and Tail registers will typically
contain a byte offset from the base of an appropriately-aligned
queue region in memory.
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IMPL. DEP. #422-S10: It is implementation dependent whether tail registers are
writable in privileged mode. If a tail register is read-only in privileged mode, an
attempt to write to it causes a data_access_exception exception. If a tail register is
writable in privileged mode, an attempt to write to it results in undefined behavior.

The status of each queue is reflected by its head and tail registers:

■ A Queue Head Register indicates the location of the oldest interrupt packet in the
queue

■ A Queue Tail Register indicates the location where the next interrupt packet will
be stored

An event that results in the insertion of a queue entry causes the tail register for that
queue to refer to the following entry in the circular queue. Privileged code is
responsible for updating the head register appropriately when it removes an entry
from the queue.

A queue is empty when the contents of its head and tail registers are equal. A queue
is full when the insertion of one more entry would cause the contents of its head and
tail registers to become equal.

TABLE 13-1 Interrupt Queue Register ASI Assignments

Register

ASI
Virtual

Address

Privileged
mode

Access

Hyper-
privileged

mode
Access

CPU Mondo Queue Head 2516 (ASI_QUEUE) 3C016 RW R/W

CPU Mondo Queue Tail 2516 (ASI_QUEUE) 3C816 R or RW† R/W

Device Mondo Queue Head 2516 (ASI_QUEUE) 3D016 RW R/W

Device Mondo Queue Tail 2516 (ASI_QUEUE) 3D816 R or RW† R/W

Resumable Error Queue Head 2516 (ASI_QUEUE) 3E016 RW R/W

Resumable Error Queue Tail 2516 (ASI_QUEUE) 3E816 R or RW† R/W

Nonresumable Error Queue Head 2516 (ASI_QUEUE) 3F016 RW R/W

Nonresumable Error Queue Tail 2516 (ASI_QUEUE) 3F816 R or RW† R/W

† see IMPL. DEP.#422-S10

Implementation
Note

Although Queue Head and Tail registers behave as registers,
they may or may not be implemented using actual hardware
registers. For example, they may reside in memory, mapped by
a mechanism visible only to hyperprivileged software. In any
case, the means by which Queue Head and Tail registers are
implemented is not visible to privileged software.
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13.4 Interrupt Traps
The following interrupt traps are defined in the UltraSPARC Architecture 2005:
cpu_mondo, dev_mondo, resumable_error, and nonresumable_error. The first three
(cpu_mondo, dev_mondo, and resumable_error) are all generated by hardware,
while nonresumable_error is generated by hyperprivileged software. See
Chapter 12, Traps, for details.

UltraSPARC Architecture 2005 also supports the interrupt_level_n traps defined in
the SPARC V9 specification.

How interrupts are delivered is implementation-specific; see the relevant
implementation-specific Supplement to this specification for details.

Programming
Note

By current convention, the format of a Queue Head or Tail
register is as follows:

Under this convention:

■ updating a Queue Head register involves incrementing it by
64 (size of a queue entry, in bytes)

■ Queue Head and Tail registers are updated using modular
arithmetic (modulo the size of the circular queue, in bytes)

■ bits 5:0 always read as zeros, and attempts to write to them are
ignored

■ the maximum queue offset for an interrupt queue is
implementation dependent

■ behavior when a queue register is written with a value larger
than the maximum queue offset (queue length minus the
length of the last entry) is undefined

This is merely a convention and is subject to change.

63 6   5            0

                  head/tail offset  000000
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13.5 Strand Interrupt ID Register
(STRAND_INTR_ID)
The STRAND_INTR_ID per-virtual-processor register allows software to assign a 16-
bit interrupt ID to a virtual processor that is unique within the system. This is
important, to enable virtual processors to receive interrupts. See Strand Interrupt ID
Register (STRAND_INTR_ID) on page 520 for details.
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CHAPTER 14

Memory Management

An UltraSPARC Architecture Memory Management Unit (MMU) conforms to the
requirements set forth in the SPARC V9 Architecture Manual. In particular, it supports
a 64-bit virtual address space, simplified protection encoding, and multiple page
sizes.

In UltraSPARC Architecture 2005, memory management is implementation-specific.
Basic concepts are described in this chapter, but see the relevant processor-specific
Supplement to this specification for a detailed description of a particular processor’s
memory management facilities.

This appendix describes the Memory Management Unit, as observed by
hyperprivileged software, in these sections:

■ Virtual Address Translation on page 503.
■ TSB Translation Table Entry (TTE) on page 505.
■ Translation Storage Buffer (TSB) on page 508.
■ Faults and Traps on page 509.

14.1 Virtual Address Translation
The MMUs may support up to four page sizes: 8 KBytes, 64 KBytes, 4 MBytes, and
256 MBytes 8-KByte, 64-KByte and 4- MByte page sizes must be supported; other
page sizes are optional.

Each MMU consists of one or more Translation Lookaside Buffers (TLBs), and may
include micro-TLB structures. Separate Instruction and Data MMUs (IMMU and
DMMU, respectively) may be provided to enable concurrent virtual-to-physical
address translations for instruction and data.

IMPL. DEP. #222-U3: TLB organization is implementation dependent.

Privileged software manages virtual-to-real address translations. Hyperprivileged
software manages real-to-physical address translations.
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Privileged software maintains translation information in an arbitrary data structure,
called the software translation table.

The Translation Storage Buffer (TSB) is an array of Translation Table Entries which
serves as a cache of the software translation table, used to quickly reload the TLB in
the event of a TLB miss.

The MMU TLBs act as independent caches of the software translation table,
providing appropriate concurrency for virtual-to-physical address translation.

Hyperprivileged software maintains translation information for real-to-physical
translations.

During a memory access, one or more TLBs are searched for a VA (or RA)
translation. A TLB hit is indicated when the virtual address, context ID, and
partition ID (or real address and partition ID) match an entry in the TLB.

A TLB miss is indicated when no such match occurs, and the MMU immediately
traps to hyperprivileged software for TLB miss processing. The TLB miss handler can
fill the TLB by any available means, but it is likely to take advantage of the TLB miss
support features provided by the MMU, since the TLB miss handler is time-critical
code.

A conceptual view of privileged-mode memory management the MMU is shown in
FIGURE 14-1. The TLBs, which are part of the MMU hardware, are small and fast. The
software translation table is likely to be large and complex. The translation storage
buffer (TSB), which acts like a direct-mapped cache, is the interface between the
software translation table and the underlying memory management hardware. The
TSB can be shared by all processes running on a virtual processor or can be process
specific; the hardware does not require any particular scheme. There can be several
TSBs.

The UltraSPARC Architecture provides a memory partitioning mechanism that
allows for multiple partitions, each containing its own real address space.
Hyperprivileged software provides real address to physical address translations.
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FIGURE 14-1 Conceptual View of the MMU

Aliasing of multiple virtual addresses to the same physical address is supported.
However, the reverse case of multiple mappings from one virtual address to
multiple physical addresses producing a multiple TLB match is detected in hardware
as a multiple tag hit TLB error.

14.2 TSB Translation Table Entry (TTE)
The Translation Storage Buffer (TSB) Translation Table Entry (TTE) is the equivalent
of a page table entry as defined in the Sun4v Architecture Specification; it holds
information for a single page mapping. The TTE is divided into two 64-bit words
representing the tag and data of the translation. Just as in a hardware cache, the tag
is used to determine whether there is a hit in the TSB; if there is a hit, the data are
used by either the hardware tablewalker or privileged software.

The TTE configuration is illustrated in FIGURE 14-2 and described in TABLE 14-1.

FIGURE 14-2 Translation Storage Buffer (TSB) Translation Table Entry (TTE)
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TABLE 14-1 TSB TTE Bit Description (1 of 3)

Bit Field Description

Tag– 63:48 context_id The 16-bit context ID associated with the TTE.

Tag– 47:42 — These bits must be zero for a tag match.

Tag– 41:0 va Bits 63:22 of the Virtual Address (the virtual page number). Bits 21:13 of the VA
are not maintained because these bits index the minimally sized, direct-mapped
TSBs.

Data – 63 v Valid. If v = 1, then the remaining fields of the TTE are meaningful, and the TTE
can be used; otherwise, the TTE cannot be used to translate a virtual address.

Data – 62 nfo No Fault Only. If nfo = 1, loads with ASI_PRIMARY_NO_FAULT{_LITTLE} or
ASI_SECONDARY_NO_FAULT{_LITTLE} are translated. Any other data access
with the D/UMMU TTE.nfo = 1 will trap with a data_access_exception (with
SFSR.ft = 1016). An instruction fetch access to a page with the IMMU TTE.nfo = 1
results in an instruction_access_exception exception.

Data – 61:56 soft2 Software-defined field, provided for use by the operating system. The soft2 field
can be written with any value in the TSB. Hardware is not required to maintain
this field in any TLB (or uTLB), so when it is read from the TLB (uTLB), it may
read as zero.

Data – 55:13 t_addr Target address from TSB (Real Address {55:13} or Physical Address {55:13}).
UltraSPARC Architecture TLBs store physical addresses, not real addresses.
Hyperprivileged code is responsible for translation between real and physical
addresses. Whether this field contains a Real or Physical address is determined
by the bit in the corresponding MMU TSB Configuration register.

IMPL. DEP. #224-U3: Physical address width support by the MMU is
implementation dependent in the UltraSPARC Architecture; minimum PA width
is 40 bits.
IMPL. DEP. #238-U3: When page offset bits for larger page sizes are stored in
the TLB, it is implementation dependent whether the data returned from those
fields by a Data Access read is zero or the data previously written to them.

Data – 12 ie Invert Endianness. If ie = 1 for a page, accesses to the page are processed with
inverse endianness from that specified by the instruction (big for little, little for
big).
Note: This bit is intended to be set to 1 primarily for noncacheable accesses. The
performance of cacheable accesses may be degraded as if the access missed the
D-cache.
IMPL. DEP. #__: The ie bit in the IMMU is ignored during ITLB operation. It is
implementation dependent if it is implemented and how it is read and written.

Programming
Note

The explicit Valid bit is (intentionally) redundant with the
software convention of encoding an invalid TTE with an unused
context ID. The encoding of the context_id field is necessary to
cause a failure in the TTE tag comparison, while the explicit
Valid bit in the TTE data simplifies the TTE miss handler.
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Data – 11 e Side effect. If the side-effect bit is set to 1, loads with ASI_PRIMARY_NO_FAULT,
ASI_SECONDARY_NO_FAULT, and their *_LITTLE variations will trap for
addresses within the page, noncacheable memory accesses other than block
loads and stores are strongly ordered against other e-bit accesses, and
noncacheable stores are not merged. This bit should be set to 1 for pages that
map I/O devices having side effects. Note, also, that the e bit causes the prefetch
instruction to be treated as a nop, but does not prevent normal (hardware)
instruction prefetching.
Note: The e bit does not force a noncacheable access. It is expected, but not
required, that the cp and cv bits will be set to 0 when the e bit is set to 1. If both
the cp and cv bits are set to 1 along with the e bit, the result is undefined.
Note: The e bit and the nfo bit are mutually exclusive; both bits should never be
set to 1 in any TTE.

Data – 10
Data – 9

cp,
cv

The cacheable-in-physically-indexed-cache bit and cacheable-in-virtually-
indexed-cache bit determine the cacheability of the page. Given an
implementation with a physically indexed instruction cache, a virtually indexed
data cache, and a physically indexed unified second-level cache, the following
table illustrates how the cp and cv bits could be used:

The MMU does not operate on the cacheable bits but merely passes them
through to the cache subsystem. The cv bit in the IMMU is read as zero and
ignored when written.
IMPL. DEP. #226-U3: Whether the cv bit is supported in hardware is
implementation dependent in the UltraSPARC Architecture. The cv bit in
hardware should be provided if the implementation has virtually indexed
caches, and the implementation should support hardware unaliasing for the
caches.

Data – 8 p Privileged. If p = 1, only privileged software can access the page mapped by the
TTE. If p = 1 and an access to the page is attempted by nonprivileged mode
(PSTATE.priv = 0), then the MMU signals aninstruction_access_exception
exception ordata_access_exception exception.

Data – 7 ep Executable. If ep = 1, the page mapped by this TTE has execute permission
granted. Instructions may be fetched and executed from this page. If ep = 0, an
attempt to execute an instruction from this page results in an
instruction_access_exception exception.
IMPL. DEP. #___: Some UltraSPARC Architecture ITLB implementations may
not implement the ep bit, and present the instruction_access_exception
exception if there is an attempt to load an ITLB entry with ep = 0 during a
hardware tablewalk. In this case, the MMU miss trap handler software must also
detect the ep = 0 case when the IMMU miss is handled by software.

TABLE 14-1 TSB TTE Bit Description (2 of 3)

Bit Field Description

Cacheable
(cp, cv)

Meaning of TTE when placed in:

I-TLB (Instruction Cache PA-indexed) D-TLB (Data Cache VA-indexed)

00, 01 Noncacheable Noncacheable
10 Cacheable L2-cache, I-cache Cacheable L2-cache
11 Cacheable L2-cache, I-cache Cacheable L2-cache, D-cache
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14.3 Translation Storage Buffer (TSB)
The Translation Storage Buffer (TSB) is an array of Translation Table Entries
managed entirely by privileged software. It serves as a cache of the software
translation table, used to quickly reload the TLB in the event of a TLB miss.

Inclusion of the TLB entries in the TSB is not required; that is, translation
information that is not present in the TSB can exist in the TLB.

14.3.1 TSB Indexing Support
Hardware TSB indexing support via TSB pointers should be provided for the TTEs.
Hardware tablewalk uses the TSB pointers. If the hardware tablewalk is disabled,
the TLB miss handler software can use the TSB pointers.

Data – 6 w Writable. If w = 1, the page mapped by this TTE has write permission granted.
Otherwise, write permission is not granted, and the MMU causes a
fast_data_access_protection trap if a write is attempted.
IMPL. DEP. #___: The w bit in the IMMU is ignored during ITLB operation. It is
model dependent if the bit is implemented and how it is written and read.

Data – 5:4 soft Software-defined field, provided for use by the operating system. The soft field
can be written with any value in the TSB. Hardware is not required to maintain
this field in any TLB (or uTLB), so when it is read from the TLB (or uTLB), it may
read as zero.

Data – 3:0 sz The page size of this entry, encoded as shown below.
sz Page Size
0000 8 Kbyte
0001 64 Kbyte
0010 Reserved
0011 4 Mbyte
0100 Reserved
0101 256 Mbyte
0110 Reserved
0111 Reserved
1000-1111 Reserved

TABLE 14-1 TSB TTE Bit Description (3 of 3)

Bit Field Description
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14.3.2 TSB Cacheability
The TSB exists as a data structure in memory and therefore can be cached. Indeed,
the speed of the TLB miss handler relies on the TSB accesses hitting the level-2 cache
at a substantial rate. This policy may result in some conflicts with normal instruction
and data accesses, but the dynamic sharing of the level-2 cache resource will provide
a better overall solution than that provided by a fixed partitioning.

14.3.3 TSB Organization
The TSB is arranged as a direct-mapped cache of TTEs.

In each case, n least significant bits of the respective virtual page number are used as
the offset from the TSB base address, with n equal to log base 2 of the number of
TTEs in the TSB.

The TSB organization is illustrated in FIGURE 14-3. The constant n is determined by
the size field in the TSB register; it can range from 512 to an implementation-
dependent number.

FIGURE 14-3 TSB Organization

14.4 Faults and Traps
The traps recorded by the MMU are listed in TABLE 14-2. For a detailed description of
each trap, see Chapter 12, Traps. All listed traps are precise traps.

Tag1 (8 bytes) Data1 (8 bytes)

Tag2n (8 bytes) Data2n (8 bytes)

2n Lines in TSB
:
:

:
:
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† The contents of the context_id field of the DMMU Tag Access register are undefined after a data_access_exception.

TABLE 14-2 MMU Trap Types, Causes, and Stored State Register Update Policy

Trap Cause

Registers Updated
(Stored State in MMU)

Ref # Trap Name

IMMU
Tag

Access D-SFAR

D/
UMMU

Tag
Access

Trap
Type

# of Trap
Vectors

Used

1. fast_instruction_access_MMU_miss I-TLB miss X 6416 4

2. instruction_access_exception Several (see below) X 0816 1

3. fast_data_access_MMU_miss D-TLB miss X X 6816 4

4. data_access_exception Several (see below) X X† 3016 1

5. fast_data_access_protection Protection violation X X 6C16 4

6. privileged_action Use of privileged ASI X 3716 1

7. PA_watchpoint Watchpoint hit X 6116 1

7b. VA_watchpoint Watchpoint hit X 6216 1

8. mem_address_not_aligned,
*_mem_address_not_aligned

Misaligned memory
operation

impl. dep.
#237-U3

3516,
3616,
3816,
3916

1
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CHAPTER 15

Chip-Level Multithreading (CMT)

An UltraSPARC Architecture 2005 processor may include multiple virtual processors
on the same processor module to provide a dense, high-throughput system. This
may be achieved by having a combination of multiple physical processor cores and/
or multiple strands (threads) per physical processor core.

This chapter specifies a common interface between hardware and software for such
products, referred to here as chip-level multithreaded processors (CMTs). It
addresses issues common to CMT processors, regardless of the microarchitecture of
the individual physical processor cores, in the following sections:

■ Overview of CMT on page 511.
■ Accessing CMT Registers on page 515.
■ CMT Registers on page 518.
■ Disabling and Parking Virtual Processors on page 522.
■ Reset and Trap Handling on page 532.
■ Error Handling in CMT Processors on page 535.
■ Additional CMT Software Interfaces on page 540.
■ Performance Issues for CMT Processors on page 541.
■ Recommended Subset for Single-Strand Processors on page 541.
■ Machine State Summary on page 543.

15.1 Overview of CMT
A broad range of designs may fall under the definition of CMT. The interface
specified here is intended to provide a set of common behaviors to enable operating
system software and other privileged software to be common across UltraSPARC
Architecture 2005 processors. This interface is not complete, as a range of
implementation dependent features will exist to configure and control these
processors.
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The CMT Programming Model describes a set of privileged registers that are used
for identification and configuration of CMT processors. Equally important, the CMT
Programming Model describes certain behavior that is common across CMT
implementations. The set of registers and the common behavior are covered in the
following sections, grouped by topic.

UltraSPARC Architecture 2005 processors that are not CMT processors (are single-
threaded) should implement a subset of the CMT interface. This enables those
virtual processors to be more easily integrated into products that may also contain
CMT processors and also enables more consistent software to be deployed across
future products. See Recommended Subset for Single-Strand Processors on page 541 for
additional information on non-CMT processor implementations.

15.1.1 CMT Definition
An UltraSPARC Architecture 2005 CMT processor is defined by its externally-visible
nature and not by its internal organization. Note that this definition is not fully
consistent with the common hardware definition of CMT. The following section
gives some background terminology, followed by a description of the CMT
definition.

15.1.1.1 Background Terminology

Thread. Historically, the term thread is overused and ambiguous; software and
hardware have used it differently. From a software (operating system) perspective,
the term “thread” refers to an entity that:

■ Can be executed on underlying hardware
■ Is scheduled
■ May or may not be actively running on hardware at any given time
■ May migrate around the hardware of a system.

From the hardware perspective, the term “multithreaded processor” refers to a
processor that can run multiple software threads simultaneously.

To avoid confusion, the term “thread” in UltraSPARC Architecture 2005 is used
exclusively in the manner that it is used by software (specifically, the operating
system). A thread can be viewed in a practical sense as a Solaris™ process or
lightweight process (LWP).

Strand. The term strand is used to identify the state that hardware must maintain
in order to execute a software thread. Specifically, a “strand” is the software-visible
architected state (PC, NPC, general-purpose registers, floating-point registers,
condition codes, status registers, ASRs, etc.) of a thread plus any microarchitecture
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state required by hardware for its execution. “Strand” replaces the ambiguous term
“hardware thread.” The number of strands in a processor defines the number of
threads that an operating system can schedule on that processor at any given time.

Pipeline. The term pipeline refers to an execution pipeline. It is a loose term for the
basic collection of hardware needed to execute instructions. A pipeline may be used
by one or more strands, in order to execute instruction from one or more
threads.Synonym: microcore.

Physical Core. The term physical processor core, or just physical core, is similar to the
term “pipeline” but represents a broader collection of hardware. A physical core
includes one or more execution pipelines and associated structures, such as caches,
that are required for executing instructions from one or more software threads. A
physical core contains one or more strands. The physical core provides the necessary
resources for the threads on each strand to make forward progress at a reasonable
rate. A multistranded physical core can execute multiple software threads by time-
multiplexing resources, partitioning resources, or any combination thereof.

The delineations among the terms strand, pipeline, and physical core are not precise.
Among different microarchitecture organizations the scope of the terms may vary. In
general, in a specific microarchitecture it will be apparent what constitutes a physical
core. A physical core will be a highly integrated unit with a clearly defined interface
to more distant levels of the memory hierarchy and the system interface unit. A
physical core will contain a defined number of strands, that is, a maximum number
of software threads that may be scheduled on it at any given time.

Processor. A processor is the unit on which a shared interface is provided to control
the configuration and execution of a collection of strands. A processor contains one
or more physical cores, each of which contains one or more strands. Physically, a
processor is a physical module that plugs into a system. A processor is expected to
appear logically as a single agent on the system interconnect fabric.

Therefore, a simple processor that can only execute one thread at a time (for
example, an UltraSPARC I processor) would contain a single physical core which is
single-stranded. A processor that follows the academic model of simultaneous
multithreading (SMT) would contain a single physical core, where that physical core
supports multiple strands in order to execute multiple simultaneous threads (multi-
stranded physical core). A processor that follows the academic model of a chip
multi-processor (CMP) would be a processor with multiple physical cores, each
supporting only a single strand. A processor may also contain multiple physical
cores, where each physical core is multi-stranded.

Virtual Processor. The term virtual processor is used to identify each strand in a
processor. Each virtual processor corresponds to a specific strand on a specific
physical core, where multiple physical cores, each with multiple strands, may exist.
In most respects a virtual processor appears to the system and to operating system
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software as a processing unit equivalent to a traditional single-stranded processor
(as in UltraSPARC I). Each virtual processor is capable of having interrupts directed
specifically to it. At any given time, an operating system can have a different thread
scheduled on each virtual processor.

The UltraSPARC Architecture 2005 CMT architecture (software interface) described
in this chapter is independent of the specific method by which multiple virtual
processors are implemented. The term “virtual processor” is generally used instead
of “strand” because “strand” is commonly associated with multistranded physical
cores.

CPU. The term CPU is ambiguous in reference to processors with multiple virtual
processors. The term could potentially refer to a virtual processor or to an entire
processor. Therefore, the term “CPU” is considered ambiguous and will not be used
in this document.

CMT. CMT is an abbreviation for “Chip MultiThreaded” or “Chip
MultiThreading” (depending on context). A CMT processor is one containing one or
more virtual processors.

15.1.1.2 CMT Definition

CMT, as defined in UltraSPARC Architecture 2005, applies to all SPARC virtual
processors. A processor containing a single virtual processor (strand) is a special
case, covered in Recommended Subset for Single-Strand Processors on page 541. The
CMT interface is the same whether multiple strands are provided by multiple
physical cores, a single physical core with multiple strands, or multiple physical
cores each with multiple strands.

A virtual processor is a processing entity that can execute a software thread. A virtual
processor has a number of key characteristics and includes all the architecturally
visible state, as defined elsewhere in this specification, to execute a thread (general
purpose registers, floating-point registers, process state, status registers, condition
codes, etc.). A virtual processor is the smallest unit to which an interrupt can be
delivered. The addressability of interrupts to individual virtual processors is a very
important aspect of the CMT programming interface. An UltraSPARC Architecture
2005 implementation must provide sufficient resources so that every virtual
processor within the processor makes forward progress at a reasonable rate.

Each virtual processor contains a separate instance of all user-visible architected
state; that is, nonprivileged architected state is per-virtual processor.

The privileged and hyperprivileged architected state of a processor falls into four
classes (described in Classes of CMT Registers on page 516), based on the degree of
sharing among virtual processors.
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15.1.2 General CMT Behavior
In general, each virtual processor of a CMT processor behaves functionally as if it
was an independent processor. This is an important aspect of CMT processors
because user code running on a virtual processor does not need to know whether or
not that virtual processor is part of a CMT processor. At a high level, most
privileged code in an operating system can treat virtual processors of a CMT
processor as if each was an independent processor. Some software (for example,
boot, error, and diagnostic) must be aware that it is executing on a CMT processor.
This chapter deals chiefly with the interface between this software and a CMT
processor.

Each virtual processor of a CMT processor obeys the same memory model semantics
as if it was an independent processor. All software designed to run in a
multiprocessing environment, including thread libraries, must be able to operate on
a CMT processor without modification.

There are significant performance implications of CMT processors, especially when
shared resources (such as caches) exist within a CMT processor. The virtual
processors’ proximity will potentially mean drastically different costs for
communicating between two virtual processors on the same CMT processor
compared to communicating between two virtual processors on different CMT
processors. This adds another degree of non-uniform memory access (NUMA) to a
system. For high performance, the operating system, and even some user
applications, will want to program specifically for the NUMA nature of CMT
processors. There may also be resource contention issues between virtual processors
on the same CMT processor. Performance Issues for CMT Processors on page 541
discusses some key performance issues related to CMT processors.

15.2 Accessing CMT Registers
A key part of the CMT Programming Model is a set of privileged registers. This
section covers how these registers are organized and accessed. The registers can be
accessed by software running on a virtual processor of the CMT processor.

Implementation
Note

The UltraSPARC Architecture 2005 applies to a single physical
processor chip. In a multiple-chip system, the UltraSPARC
Architecture 2005 applies to each processor chip.
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CMT-specific registers can be accessed by privileged software running on a virtual
processor, using Load and Store Alternate (notably, LDXAs and STXAs) instructions
that provide an address space identifier value and a (virtual) address. The CMT
Programming Model defines address space identifiers and associated virtual
addresses (VAs) for accessing the CMT-specific registers.

15.2.1 Classes of CMT Registers
Nonprivileged architected state, including registers visible to nonprivileged
software, is (or at least appears to be) per-virtual-processor.

Privileged architected state, including registers visible to privileged software, is (or
at least appears to be) per-virtual-processor.

The hyperprivileged architected state of a processor falls into four categories:

■ Per-virtual-processor (per-strand) registers, of which each virtual processor has a
private (not shared) copy

■ Subset-shared registers, where a copy of each register is shared by a non-
overlapping subset of virtual processors1.

■ Per-physical-core shared registers (a special case of subset-shared registers),
where a copy of each register is shared by all virtual processors contained within
a physical core.

■ Processor-shared CMT registers, in which a single copy of each register is shared
by all virtual processors in the processor

Registers that are read-only in privileged mode (for example, TICK) need not be
strictly implemented as per-virtual-processor registers; they may be implemented in
one of the “shared” categories above, such that their shared nature is not visible to
privileged software.

CMT-specific registers of all classes can be accessed as ASI-mapped registers
through hyperprivileged software running on a virtual processor. Software running
on a given virtual processor can access:

■ all the per-virtual processor registers belonging to the virtual processor on which
it is running

■ the per-physical-core shared registers belonging to the physical core on which it is
running

■ subset-shared registers for any group of virtual processors to which the virtual
processor on which it is running belongs

■ all processor-shared registers

1. Currently, no architectural CMT registers fall into this category. It is defined here for completeness, because
registers in this category may need to exist as implementation-specific registers
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In nonprivileged or privileged mode, it is normally not possible for a virtual
processor on one physical core to address (much less, read) the per-physical-core
registers of another physical core. On some implementations it may be possible for
a virtual processor on one physical core to address the per-physical-core registers of
another physical core, but only in hyperprivileged mode or if hyperprivileged
software grants such privileges to software running at a lower privilege level.

The semantics for accessing the CMT registers through the ASI interface are
described in Accessing CMT Registers Through ASIs on page 517.

15.2.2 Accessing CMT Registers Through ASIs
Each CMT-specific register is accessible through a restricted ASI (accessible only in
hyperprivileged software). The ASI number and virtual address corresponding to
each CMT register are described later in this chapter.

Each virtual processor can access the per-physical-core CMT registers associated
with that virtual processor. The implementation must guarantee that accesses to per-
physical-core registers follow sequential semantics on the virtual processor with
which they are associated.

Each virtual processor can access all the per-processor shared CMT registers on its
processor. An update to a per-processor shared register from one virtual processor
will be visible to all other virtual processors that share that register. The ordering of
accesses to per-processor shared registers from different virtual processors is not
defined, but an implementation must guarantee that:

■ Accesses to a shared register from the same virtual processor follow sequential
semantics.

■ If multiple virtual processors attempt to store to a shared CMT register at the
same time, the value observed in (readable from) the register will always be that
written by one of those stores. That is, a store to a CMT register must be
performed atomically on all bits of the register. In the case of the
STRAND_RUNNING register, there is a third option — a write to the register may
be dropped (ignored) entirely in certain situations (for details, see Simultaneous
Updates to the STRAND_RUNNING Register on page 528).

There may be additional implementation-enforced restrictions on updates to some
CMT registers.

All CMT registers are 64-bit registers, although some of the bits of individual
registers can be reserved or defined to contain a fixed value in a given
implementation. Reserved register fields should always be written by software with
values of those fields previously read from that register or with zeroes and they
should read as zero in hardware (see Reserved Opcodes and Instruction Fields on page
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132). Software intended to run on future versions of CMTs should not assume that
these fields will read as 0 or any other particular value. This convention simplifies
future expansion of the CMT interface.

A CMT register is accessed through load and store instructions, using a defined ASI
number and virtual address. CMT registers can only be accessed in hyperprivileged
mode. An attempt to access a CMT register in nonprivileged or privileged mode
results in a privileged_action exception.

Only the LDXA or LDDFA instruction can be used to read a CMT register. Only the
STXA or STDFA instruction can be used to store to a CMT register. An attempt to
access a CMT register with any other instruction results in a data_access_exception
exception. An attempt to write to a read-only CMT register with a STXA instruction
results in a data_access_exception (invalid ASI) exception.

15.3 CMT Registers
In this section, the registers used to control operation of a processor in a CMT
implementation are described. For each register defined in this document, a six-
column quick-reference table is provided that specifies the key attributes of the
register, as follows:

Column Heading Meaning of collumn contents

Register Name The name of the CMT register

ASI # (Name) The address space identifier number used for accessing the register
from software running on the CMT processor (and the recommended
ASI name for use in assembly-language hyperprivileged software)

VA The virtual address used for accessing the register from software
running on the CMT processor

Scope The scope of sharing for the register — whether the register is a “per-
virtual processor” (per-strand) register, or a single instance of a
register that is “shared” among the virtual processors within a
physical core (per-core), “shared” among a subset of virtual processors
within a physical core (per-subset), or “shared” among all the virtual
processors within a processor (per-proc).

Access Whether software access to the register is read/write (RW), read-only
(R only), write-only (W only), Write-1-to-Set (W1S), or Write-1-to-Clear
(W1C)

Note Any additional information
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15.3.1 Strand ID Register (STRAND_ID)

FIGURE 15-1 STRAND_ID Register

STRAND_ID is a read-only, per-virtual processor register that holds the ID value
assigned by hardware to each implemented virtual processor. The ID value is unique
within the CMT processor.

As shown above, the STRAND_ID register has three fields:

1. strand_id, which represents this virtual processor’s number, as assigned by
hardware. The strand ID is encoded in 6 bits.

2. max_strand_id, which is the bit-position index (bit number) of the most
significant ‘1’ bit in the STRAND_AVAILABLE register. This is the Strand ID of the
highest-numbered implemented virtual processor in this CMT processor.

3. max_strand_id_per_core, which specifies the number of strands minus one that
are implemented on each physical core. For a single-stranded processor,
max_strand_id_per_core will be 0.

Many other CMT-specific registers provide a bit mask in which each bit corresponds
to an individual virtual processor. For these registers, the strand_id field indicates
which bit of a bit mask corresponds to this specific virtual processor.

Strand Numbering Convention. The numbering of virtual processors (strands)
may or may not be contiguous; system software may only assume that each strand
ID is unique within a CMT processor. In general, virtual processors should be
numbered in a sequential, contiguous series starting with strand number 0. When
numbering the virtual processors within a CMT processor, this convention appears
straightforward. There are cases, however, where this might not be so simple. This
numbering convention is recommended but not required.

In a CMT processor designed with many virtual processors, some physical cores in a
manufactured CMT processor may fail to function correctly. It is likely that there
would be a desire to salvage a partially good CMT processor (one where a subset of
the virtual processors and all the common area function correctly) and use it as a
CMT processor with fewer than the maximum number of functional virtual
processors. In such a case, it would be possible that the functional strands be

Register Name ASI # (Name) VA Scope Access Note

STRAND_ID 6316
(ASI_CMT_PER_STRAND)

1016 per-
strand

R only

— max_strand_id strand_id

63 32 31

—

22 21 6 5 0

max_strand_id_per_coreSTRAND_ID —

16 1538 37
CHAPTER 15 • Chip-Level Multithreading (CMT) 519



numbered contiguously, starting from 0, and that the STRAND_ID.max_strand_id
field be set to the highest-numbered functional virtual processor. This requires some
way to reassign the identity of individual virtual processors after manufacturing. If
this is not practical, the functioning virtual processors may not be contiguously
numbered.

15.3.1.1 Exposing Stranding

If a processor implements multiple strands per physical core, the stranding is
exposed in STRAND_ID.max_strand_id_per_core. This field encodes one less than
the number of strands that are implemented on the physical processor core; for
example, on a physical core with 4 strands,
STRAND_ID.max_strand_id_per_core = 3. Every virtual processor within the
physical core must observe the same value of max_strand_id_per_core. An
implementation defines and count strands and physical processor cores as
appropriate for that implementation.

When STRAND_ID.max_strand_id_per_core is nonzero, there are additional
constraints on the numbering of virtual processors. virtual processors that
correspond to strands on the same physical processor core must have contiguous
STRAND_ID.strand_id values, with the lowest numbered virtual processor on a
physical core having a strand_id value that is a multiple of the number of strands on
each physical core.

It is important to expose stranding to software. From a performance standpoint,
stranding must be exposed for the operating system to understand resource sharing
and contention issues and to optimally schedule software threads on the processor.
From a power management perspective, knowledge of stranding enables the facility
to park or disable all strands on a physical core to obtain significant power savings.

15.3.2 Strand Interrupt ID Register (STRAND_INTR_ID)

FIGURE 15-2 STRAND_INTR_ID Register

The STRAND_INTR_ID register allows software to assign a 16-bit interrupt ID,
unique within a system, to each virtual processor. This is necessary in order to
enable virtual processors to receive interrupts. The identifier in this register is used

Register Name ASI # (Name) VA Scope Access Note

STRAND_INTR_ID 6316
(ASI_CMT_PER_STRAND)

0016 per-
strand

RW

Reserved int_id

63 16 15 0

STRAND_INTR_ID
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by other virtual processors (on the same and different CMT processors) and other
bus agents to address interrupts to this specific virtual processor. It can also be used
by this virtual processor to identify itself as the source of an interrupt it sends to
other virtual processors and bus agents.

This register is Read/Write, accessible only in hyperprivileged mode
(HPSTATE.hpriv = 1). It is expected that it will be modified only at boot or
reconfiguration time. An attempt to access this register in privileged mode or
nonprivileged mode results in a privileged_action exception.

The STRAND_INTR_ID register has only one field, a 16-bit interrupt ID field, named
int_id.

If an implementation uses fewer than 16 bits for its interrupt ID, the unused bits
read as zero and writes to them are ignored.

IMPL. DEP. #: It is implementation dependent whether any portion of the int_id field
of the STRAND_INTR_ID register is read-only (see following subsection, Assigning an
Interrupt ID).

15.3.2.1 Assigning an Interrupt ID

When assigning the interrupt ID to a virtual processor, software must be aware of
interrupt routing conventions used in the system. Some portion of the interrupt ID
might be required to follow a hardware convention to enable the interrupt to be
correctly routed through the system interconnect. In some implementations, a part of
the interrupt ID can be fixed by the processor to correspond to the strand ID. This
portion of the interrupt ID can be read-only in the STRAND_INTR_ID register. Such
requirements are both processor- and system-platform-specific.

Each virtual processor in the CMT processor must have an interrupt ID that is
unique within the system. If the interrupt ID of multiple virtual processors in the
same system are set to the same value, the behavior of the processor is undefined
when an interrupt specifying that ID is sent or received.

15.3.2.2 Dispatching and Receiving Interrupts

The mechanisms used to dispatch and receive interrupts must work with the
interrupt ID register. A processor’s interrupt dispatch mechanism must be able to
specify the interrupt ID of the destination virtual processor to which the interrupt is
to be delivered. When a destination interrupt ID is specified, the interrupt must be
delivered to the virtual processor that has the matching ID in its STRAND_INTR_ID
register.
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15.3.2.3 Updating the Strand Interrupt ID Register

It is expected that the interrupt ID register of a virtual processor will be written once
by software, when a virtual processor is initially booted. It is assumed that while a
virtual processor is being booted, there will be no interrupt traffic in the system.

The latency from when software writes to STRAND_INTR_ID to when the write takes
effect is implementation dependent. Use of a MEMBAR #Sync instruction after a
write to STRAND_INTR_ID will cause the write to become visible before any
instructions after the MEMBAR are executed on the virtual processor.

Updates to STRAND_INTR_ID are atomic: if STRAND_INTR_ID is written, the value
observed at any time will be either the old value or the new value; no transient value
will be observed. If an interrupt is issued to a virtual processor while its interrupt ID
register is being updated (addressed either to its old or new interrupt ID), the
interrupt may or may not be received by the virtual processor. Once a virtual
processor acknowledges an interrupt using its new interrupt ID, it will not
acknowledge any interrupts addressed to the old interrupt ID.

If an interrupt is issued to a system, addressed to an interrupt ID that does not
match any virtual processors or other system agents, the interrupt will not be
acknowledged and will be dropped.

15.4 Disabling and Parking Virtual
Processors
The CMT programming model provides the ability to disable virtual processors and
temporarily suspend (park) virtual processors. This section describes the interface
for probing what virtual processors are available, enabled, and running (not parked).
This section also describes the interface for enabling/disabling virtual processors
and parking/unparking virtual processors.
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15.4.1 Strand Available Register (STRAND_AVAILABLE)

FIGURE 15-3 STRAND_AVAILABLE Register

The STRAND_AVAILABLE register is a shared (one per processor) register that
indicates which virtual processors are available for use (that is, are present and
functional) in a CMT implementation.

The STRAND_AVAILABLE register is read-only, comprising a single 64-bit field. As
illustrated in FIGURE 15-3, bit n corresponds to virtual processor n; therefore up to 64
virtual processors are supported per CMT. If a bit in the register is 1, the
corresponding virtual processor is available for use in the CMT. If a bit in the
register is 0, the corresponding virtual processor is not available for use. An
“available” virtual processor is one that is present and functional, therefore can be
enabled and used.

15.4.2 Enabling and Disabling Virtual Processors
The CMT programming model allows virtual processors to be enabled and disabled.
Enabling or disabling a virtual processors is a heavyweight operation that in most
cases requires either a power_on_reset (POR) or a warm_reset. (WRM) for updates.
A disabled virtual processor produces no architectural effects observable by other
virtual processors, and does not participate in cache coherency. The behavior of any
transaction (such as an interrupt) issued to a disabled virtual processor is undefined.

IMPL. DEP. #322-U4: Whether disabling a virtual processor reduces the power used
by a CMT is implementation dependent. It is recommended that a disabled virtual
processor consume a minimal amount of power.

IMPL. DEP. #423-S10: Whether disabling a virtual processor increases the
performance of other virtual processors in the CMT is implementation dependent.

Register Name ASI # (Name) VA Scope Access Note

STRAND_AVAILABLE 4116 (ASI_CMT_SHARED) 0016 per-proc R only

Strand-Available bits

63 0

STRAND_AVAILABLE
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15.4.2.1 Strand Enable Status Register
(STRAND_ENABLE_STATUS)

FIGURE 15-4 STRAND_ENABLE_STATUS Register

The STRAND_ENABLE_STATUS register is a shared (one per processor) register
that indicates which virtual processors are currently enabled. The register is a read-
only register, in which each bit corresponds to a virtual processor.

As shown in FIGURE 15-4, bit n corresponds to virtual processor n. If a bit in the
STRAND_ENABLE_STATUS register is 1, the corresponding virtual processor is
available and enabled. A virtual processor indicated as “not available” in the
STRAND_AVAILABLE register cannot be enabled, and its corresponding enabled bit
in this register will be 0. An available, enabled virtual processor that is parked is still
considered enabled.

State After Reset. The STRAND_ENABLE_STATUS register changes due to a
power_on_reset. (POR) or a warm_reset. (WRM). During a power_on_reset, the
contents of its STRAND_AVAILABLE register are copied to the
STRAND_ENABLE_STATUS register. During a warm_reset reset, the contents of
the STRAND_ENABLE register are copied to the STRAND_ENABLE_STATUS
register.

15.4.2.2 Strand Enable Register (STRAND_ENABLE)

FIGURE 15-5 STRAND_ENABLE Register

Register Name ASI # (Name) VA Scope Access Note

STRAND_ENABLE_STATUS 4116 (ASI_CMT_SHARED) 1016 per-proc R only

Programming
Note

Hyperprivileged software should never set bit
STRAND_ENABLE{n} to 1 if STRAND_AVAILABLE{n} = 0.

Register Name ASI # (Name) VA Scope Access Note

STRAND_ENABLE 4116
(ASI_CMT_SHARED)

2016 per-proc RW Changes take effect during reset

Strand Enable Status bits

63 0

STRAND_ENABLE_STATUS

Strand Enable bits

63 0

STRAND_ENABLE
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The STRAND_ENABLE register is a shared (one per processor) register, used by
software to enable and disable a CMT’s virtual processors. When disabled, a virtual
processor and any structures private to that virtual processor behave as though they
were not present.

Changing a bit in the STRAND_ENABLE register does not take effect (cause a virtual
processor to be enabled/disabled) immediately. Instead, it indicates a pending
change to the STRAND_ENABLE_STATUS register, which will not take effect until
the next warm_reset. (WRM) reset — at which time, the contents of the
STRAND_ENABLE register are copied to the STRAND_ENABLE_STATUS register.
A change in the STRAND_ENABLE register may also take place at some other
implementation-dependent time (see Dynamically Enabling/Disabling Virtual
Processors on page 526 (impl. dep. #___).

As shown in FIGURE 15-5, the STRAND_ENABLE register contains one bit per
possible virtual processor, with bit n corresponding to virtual processor n. If bit n is
1, then virtual processor n should be enabled after the next warm reset (if that
virtual processor is available). If bit n is 0, then virtual processor n should be
disabled after the next warm reset.

When bit n in the STRAND_AVAILABLE register is 0 (the virtual processor is
unavailable), the corresponding bit (bit n) in the STRAND_ENABLE register is
forced to 0 and attempts to write “1” to bit n in the STRAND_ENABLE register are
ignored.

Restrictions on Updating the STRAND_ENABLE Register.

IMPL. DEP. #323-U4: Whether an implementation provides a restriction that
prevents software from writing a value of all zeroes (or zeroes corresponding to all
available virtual processors) to the STRAND_ENABLE register is implementation
dependent. This restriction avoids the dangerous case where all virtual processors
become disabled and the only way to enable any virtual processor is a hard
power_on_reset (a warm reset would not suffice). If such a restriction is
implemented and software running on any virtual processor attempts to write a
value of all zeroes (or zeroes corresponding to all available virtual processors) to the
STRAND_ENABLE register, hardware forces the STRAND_ENABLE register to an
implementation-dependent value which enables at least one of the available virtual
processors.

Programming
Note

When re-enabled, per-strand architectural state that existed
when the virtual processor was previously enabled should be
assumed to be lost. Therefore, hyperprivileged software must
initialize any needed per-strand architectural state each time a
virtual processor is enabled.
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State After Reset. Upon assertion of power_on_reset, the value of the
STRAND_AVAILABLE register is copied to the STRAND_ENABLE register. The
STRAND_ENABLE register does not change during any other reset, including
system (or equivalent) resets.

15.4.2.3 Dynamically Enabling/Disabling Virtual Processors

IMPL. DEP. #424-S10: Whether a CMT implementation provides the ability to
dynamically enable and disable virtual processors is implementation dependent. It is
tightly coupled to the underlying microarchitecture of a specific CMT
implementation. This feature is implementation dependent because any
implementation-independent interface would be too inefficient on some
implementations.

15.4.3 Parking and Unparking Virtual Processors
Parking is a way to temporarily suspend the operation of a virtual processor,
intended for use by critical diagnostic and recovery code. A parked virtual processor
can be later unparked to allow it to resume running. A virtual processor can be
parked or unparked at arbitrary times using the STRAND_RUNNING register and a
WMR or POR reset is not required for parking/unparking to become effective. The
STRAND_RUNNING_STATUS register can be used to determine whether a virtual
processor that has been directed to park has completed the process of parking.

A parked virtual processor does not execute instructions and does not initiate any
transactions on its own. If any portion of the memory system resides in a parked
virtual processor, it will continue to be updated as necessary for it to remain
coherent with the rest of the memory system while the virtual processor is parked.

When a virtual processor is unparked, it continues execution with the instruction
that was next to be executed when the virtual processor was parked. It is transparent
to software running on a virtual processor that it was ever parked (except for
observable timing considerations).

While a virtual processor is parked, the STICK register continues to count.

IMPL. DEP. #425-S10: It is implementation dependent whether the TICK register
continues to count while a virtual processor is parked.

Using the TICK or STICK counter to detect the parking of a virtual processor is not
recommended.

An interrupt to a parked virtual processor behaves the same as if the virtual
processor was too busy to accept the interrupt.
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IMPL. DEP. #324-U4: It is implementation dependent whether parking a virtual
processor reduces the power used by a CMT. It is recommended that a parked
virtual processor use a reduced amount of power.

Parking a virtual processor should, when appropriate, reduce the contention for
shared resources and enable other virtual processors to potentially run faster.

IMPL. DEP. #426-S10: The degree to which parking a virtual processor impacts the
performance of other virtual processors is implementation dependent.

15.4.3.1 Strand Running Register (STRAND_RUNNING)

FIGURE 15-6 STRAND_RUNNING Register

STRAND_RUNNING is a shared (one per processor) register, used by software to
park and unpark selected virtual processors in a CMT implementation. When a
virtual processor is parked, the virtual processor stops executing new instructions
and will not initiate new transactions except in response to a coherency transaction
initiated by another virtual processor.

IMPL. DEP. #427-S10: There may be an arbitrarily long, but bounded, delay (“skid”)
from the time when a virtual processor is directed to park or unpark (via an update
to the STRAND_RUNNING register) until the corresponding virtual processor(s)
actually park or unpark.

Multiple access methods are provided for writing bits in the STRAND_RUNNING
register, distinguished by the virtual address used (listed above):

■ STRAND_RUNNING_RW, for normal reading and writing of the entire register

■ STRAND_RUNNING_W1S (“Write 1 to Set”), where writing ‘1’ to a bit sets the
destination bit to ‘1’ and writing ‘0’ to a bit leaves the destination bit unchanged

Implementation
Note

One possible way to implement virtual processor parking is to
disable instruction fetching in a parked virtual processor. In
such an implementation, after a virtual processor is parked, it
will execute the instructions currently in its pipeline, complete
pending transactions (such as draining the store queue), and
then become idle.

Register Name ASI # (Name) VA Scope Access Note

STRAND_RUNNING_RW 4116 (ASI_CMT_SHARED) 5016 per-proc RW General RW access

STRAND_RUNNING_W1S 4116 (ASI_CMT_SHARED) 6016 per-proc W1S Write 1s to set bits

STRAND_RUNNING_W1C 4116 (ASI_CMT_SHARED) 6816 per-proc W1C Write 1s to clear bits

Strand Running bits

63 0

STRAND_RUNNING
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■ STRAND_RUNNING_W1C (“Write 1 to Clear”), where writing ‘1’ to a bit sets the
destination bit to ‘0’ (clears it) and writing ‘0’ to a bit leaves the destination bit
unchanged

A specific value can be atomically written to all bits of the STRAND_RUNNING
register, using STRAND_RUNNING_RW, or bits can be individually modified, using
STRAND_RUNNING_W1S or STRAND_RUNNING_W1C. When a virtual processor
parks itself, software should write to STRAND_RUNNING_W1C. When a virtual
processor wants to become the only active virtual processor (parking all other
virtual processors in the CMT), it is more appropriate to write the desired value
directly to STRAND_RUNNING_RW. A direct write eliminates the need to perform
separate set and clear operations to write a specific value to the register.

As shown in FIGURE 15-6, the STRAND_RUNNING register contains one bit per
possible virtual processor, with bit n corresponding to virtual processor n. Writing a
value of 1 to bit position n activates (unparks) virtual processor n for normal
execution, while writing a value of 0 to bit n parks virtual processor n. If bit n in the
STRAND_ENABLE_STATUS register is 0 (not enabled), hardware forces the
corresponding bit in the STRAND_RUNNING register to 0 and attempts to write to
that bit are ignored.

Updating the STRAND_RUNNING Register. When a virtual processor parks
itself by updating the STRAND_RUNNING register and follows the update with a
FLUSH instruction, no instruction after the FLUSH instruction will be executed until
the virtual processor is unparked. The virtual address specified in the FLUSH
instruction is not important. The FLUSH instruction may be executed either before
parking takes effect or after the virtual processor is unparked. The FLUSH can,
therefore, enable software to bound when parking takes effect, in the case when a
virtual processor parks itself.

IMPL. DEP. #428-S10: When a virtual processor writes to the STRAND_RUNNING
register to park itself, the method by which completion of parking is assured
(instructions stop being issued) is implementation dependent.

Simultaneous Updates to the STRAND_RUNNING Register. Hardware is not
required to provide a mechanism for handling simultaneous updates from different
strands to the STRAND_RUNNING register.
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At Least One Virtual Processor Must Remain Unparked. Hardware enforces
the restriction that an update to the STRAND_RUNNING register by software
running on one of the virtual processors cannot cause all of the enabled virtual
processors to become parked. This restriction is important to avoid the dangerous
situation where all virtual processors become parked and there is no way to
reactivate any of the virtual processors (without a warm reset or power-on reset).

IMPL. DEP. #429-S10: If an update to the STRAND_RUNNING register would cause
all enabled virtual processors to become parked, it is implementation dependent
which virtual processor is automatically unparked by hardware. The preferred
implementation is that when an update to the STRAND_RUNNING register (STXA
instruction) would cause all virtual processors to become parked, hardware silently
ignores (discards) that STXA instruction.

At Least One Virtual Processor Must Remain Unparked — Multiprocessor
Configuration. When there are multiple processors (chips) in the configuration,
there is still a requirement to have at least one virtual processor unparked on each
processor. However, from a testing point of view, it is desirable to be able to unpark
all but one virtual processor in the entire multiprocessor configuration.

Programming
Note

It is the responsibility of hyperprivileged software to insure that
a livelock condition, resulting from simultaneous updates from
different strands to the STRAND_RUNNING register, does not
occur.

After writing to STRAND_RUNNING with a STXA instruction,
hyperprivileged software should check the
STRAND_RUNNING_STATUS register to verify when the
attempted parking/unparking of virtual processor(s) actually
completed.

Implementation
Note

It is important that when a virtual processor attempts to issue an
update to the STRAND_RUNNING register that would cause all
virtual processors to become parked, that virtual processor is not
parked. A virtual processor updating the STRAND_RUNNING
register will be executing a section of software (error diagnostic
or other special code) that is aware of the behavior and
implications of parking. When an attempt is made to park all
virtual processors, automatically unparking an arbitrary virtual
processor would be problematic, because a virtual processor in
the midst of running nonprivileged code could become the only
unparked virtual processor. If this were to happen, the only
active virtual processor in the CMT would be unaware of the
state of the CMT and would not know to check the running
status of other virtual processors.
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IMPL. DEP. #430-S10: In a multiprocessor configuration, whether all but one virtual
processor can be parked is implementation dependent.

State After Reset. Upon power-on reset or warm reset, the STRAND_RUNNING
register by default is initialized such that all the virtual processors are parked except
for the lowest-numbered enabled virtual processor. This provides a default on-chip
“boot master” virtual processor, reducing BootBus contention.

15.4.3.2 Strand Running Status Register
(STRAND_RUNNING_STATUS)

FIGURE 15-7 STRAND_RUNNING_STATUS Register

STRAND_RUNNING_STATUS is a shared (one per processor) register. It indicates
whether a virtual processor is still active (running) or has actually become parked. It
is needed because there may be a delay between the time when a virtual processor is
directed to park (via the STRAND_RUNNING register) and the time when it actually
becomes parked. The STRAND_RUNNING_STATUS register is a shared, read-only
register in which bit n indicates if strand n is active.

There is an implementation-dependent delay from the time virtual processor n is
directed to park by writing 0 to bit n of the STRAND_RUNNING register until it
actually becomes parked (impl. dep. #427-S10).

As shown in FIGURE 15-7, the STRAND_RUNNING_STATUS register has one 64-bit
field (one bit per possible virtual processor), with bit n corresponding to virtual
processor n.

■ If virtual processor n is enabled (STRAND_ENABLE_STATUS{n} = 1):

■ a value of 0 in bit n of the STRAND_RUNNING_STATUS register indicates that
virtual processor n is truly parked and will not execute any additional
instructions or initiate new transactions until it is unparked.

Note For systems that use a system reset pin, the value of the
STRAND_RUNNING register is updated upon assertion of the
warm reset signal.

Register Name ASI # (Name) VA Scope Access Note

STRAND_RUNNING_STATUS 4116
(ASI_CMT_SHARED)

5816 per-proc R only

Strand Running Status bits

63 0

STRAND_RUNNING_STATUS
530 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006



■ A value of 1 in bit n of the STRAND_RUNNING_STATUS register indicates that
a virtual processor is active and can execute instructions and initiate
transactions. All virtual processors that have a 1 in the STRAND_RUNNING
register must have a 1 in the STRAND_RUNNING_STATUS register.

■ If virtual processor n is disabled (STRAND_ENABLE_STATUS{n} = 0), bit n of the
STRAND_RUNNING_STATUS register must be 0.

The STRAND_RUNNING_STATUS register indicates when a virtual processor that has
been directed to park has actually parked, that is, is no longer executing instructions
or initiating any transactions (except in response to coherency transactions generated
by other virtual processors).

IMPL. DEP. #431-S10: The criteria used for determining whether a virtual processor
is fully parked (corresponding bit set to ‘1’ in the STRAND_RUNNING_STATUS
register) are implementation dependent.

After bit n in the STRAND_RUNNING register has been changed from 1 to 0,
hardware must guarantee that only a single transition from 1 to 0 in bit n of the
STRAND_RUNNING_STATUS register will be observed.

State After Reset. The value of the STRAND_RUNNING_STATUS register is the
same as the value of the STRAND_RUNNING register at the end of a system reset.

15.4.4 Virtual Processor Standby (or Wait) State
IMPL. DEP. #432-S10: Whether an implementation implements a Standby (or
Wait) state for virtual processors, how that state is controlled, and how that state is
observed are implementation-dependent.

In a Standby state, the virtual processor is suspended for a predetermined period of
time and/or until an external interrupt is received. A Standby state may appear
similar to a Parked state, but virtual processor Standby state (if implemented)
must be completely orthogonal to parking. The details of the software interface to
and implementation of Standby/Wait state is beyond the scope of this
specification.

With respect to parking, the virtual processor is either Running or not running
(Parked), as indicated in the STRAND_RUNNING_STATUS register. With respect to
standby, the virtual processor is either in Standby or Normal state. Since these
features are independent, the virtual processor can be in any of the four possible
combinations of these states. A virtual processor is still considered running if it is in
a Standby mode but is not Parked. If a virtual processor is in a Standby mode
and becomes Parked, it will remain Parked even if an event causes it to change
from Standby to Normal mode; it will not execute instructions until it is later
unparked.
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Implementing a Standby mode may provide performance and/or power-
consumption benefits. A virtual processor in Standby mode may cause less
resource contention with other running virtual processors and may consume less
power.

15.5 Reset and Trap Handling
In a CMT, some resets apply globally to all virtual processors, some apply to an
individual virtual processor, and some apply to an arbitrary subset of virtual
processors. The following sections address how each type of reset affects the virtual
processors in a CMT.

The reset nomenclature used in this section is generally consistent with that used for
UltraSPARC Architecture 2005 processors. If future processors classify resets
differently, this model should be extended appropriately to the new classifications.

Traps (as opposed to resets) apply to individual virtual processors and are discussed
in Traps on page 437.

15.5.1 Per-Strand Resets (SIR and WDR Resets)
The only resets that affect only a single virtual processor are those that are internally
generated by a virtual processor, such as software initiated reset (SIR) and watchdog
reset (WDR). These resets are generated by an individual virtual processor and are
not propagated to the other virtual processors in a CMT.

15.5.2 Full-Processor Resets (POR and WRM Resets)
There is a class of resets that are generated by an external agent and apply to all the
virtual processors within a processor. This class includes all resets associated with
fundamental CMT reconfigurations.

power_on_reset (POR) is one case of full-processor reset. Warm reset is another
example of such a reset (warm reset may be either processor or physical strand-
specific, depending on the implementation). Full-processor reset is required for
certain reconfigurations of the processor.

Power-on reset and warm reset (or their equivalents in future processors) are global
resets, sent to all strands in a CMT processor.
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15.5.2.1 Boot Sequence

As discussed in Strand Running Register (STRAND_RUNNING) on page 527, the
default boot sequence is for all virtual processors except one (nominally, the lowest-
numbered enabled virtual processor) to be set to Parked state at the beginning of
full-processor reset. The single unparked virtual processor is the master virtual
processor, which should arbitrate for the BootBus (if multiple CMT processors share
the same BootBus). The master virtual processor (or service processor) should
unpark the other virtual processors in the processor at the appropriate time in the
booting process.

15.5.3 Partial Processor Resets (XIR Reset)
There is a class of resets, referred to here as “partial-processor resets,” that are
generated by an external agent and affect an arbitrary subset of virtual processors
within a processor. The subset may be anything from all virtual processors to no
virtual processors (impl. dep. #433-S10).

Externally-initiated reset (XIR) is a partial-processor reset. XIR is intended to reset a
specific virtual processor in a system, primarily for diagnostic and recovery
purposes.

IMPL. DEP. #433-S10: A mechanism must exist to specify which subset of virtual
processors in a processor should be reset when a partial-processor reset (for
example, XIR) occurs. The specific mechanism is implementation-dependent.

Possible methods of specifying the subset include the following:

1. Before the partial-processor reset occurs, set up a steering register that specifies
the subset of virtual processors that should be affected. For systems using an XIR
reset, the XIR Steering register described in XIR Steering Register
(XIR_STEERING) on page 534 should be used.

2. Specify the subset of virtual processors concurrently with the reset request, across
the same interface used for communicating the reset. This method would require
that the interface used for communicating resets supports sending packets of
information along with the resets.

In an implementation that replaces the XIR reset with a different set of resets, the
following rules apply for extending this CMT programming interface:

■ Each partial-processor reset may use an interface where the set of virtual
processors to reset is communicated along with the reset request.

■ For partial-processor resets for which the set of virtual processors to be reset is not
communicated along with the reset request:

■ The highest priority virtual processor will use the XIR_STEERING register to
determine the subset of virtual processors to be reset.
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■ Each subsequent lower-priority virtual processor can either use the
XIR_STEERING register or use an additional steering register (comparable to
XIR_STEERING), specifically associated with that reset. Each additional
steering register will be accessed using the same ASI number (4116) as the
XIR_STEERING register but with a distinct virtual address.

15.5.3.1 XIR Steering Register (XIR_STEERING)

FIGURE 15-8 XIR_STEERING Register

An externally initiated reset (XIR) can be steered to an arbitrary subset of virtual
processors, using the XIR_STEERING register. The XIR_STEERING register is
shared across virtual processors and is used by software to control which virtual
processor(s) within a processor will receive the XIR reset signal when XIR is asserted
for the processor module.

As shown in FIGURE 15-8, the XIR_STEERING register has one 64-bit field (one bit
per possible virtual processor), in which bit n corresponds to virtual processor n.

When an external reset is asserted for the CMT, if bit n in the XIR_STEERING
register is 1, virtual processor n receives an XIR reset; if bit n in the XIR_STEERING
register is 0, virtual processor n continues execution, unaware of the external reset
asserted for the CMT.

A virtual processor that is parked when it receives an XIR reset remains parked and
will handle the XIR reset immediately after being unparked.

IMPL. DEP. #325-U4a: Whether XIR_STEERING{n} is a read-only bit or a read/
write bit is implementation dependent. If XIR_STEERING{n} is read-only, then (1)
writes to XIR_STEERING{n} are ignored and (2) XIR_STEERING{n} is set to 1 if
virtual processor n is available and to 0 if it is not available (that is,
XIR_STEERING{n} reads the same as STRAND_AVAILABLE{n}.

It may be desirable for an XIR to effectively unpark and reset all virtual processors
in a CMT. If so, that effect can be generated by having the first action of software on
virtual processor receiving an XIR to unpark all other virtual processors in the CMT.

Register Name ASI # (Name) VA Scope Access Note

XIR_STEERING 4116 (ASI_CMT_SHARED) 3016 per-proc RW General access

XIR Steering bits

63 0

XIR_STEERING
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State After Reset.

During power_on_reset, the contents of the STRAND_AVAILABLE register are
copied to the XIR_STEERING register. During a warm reset, the contents of the
STRAND_ENABLE register are copied to the XIR_STEERING register. This provides
for a default condition in which all enabled virtual processors receive an XIR reset
when an external reset is asserted for the processor. (impl. dep. #325-U4b)

15.6 Error Handling in CMT Processors
Errors in a structure private to a virtual processor are considered virtual-
processor(strand)-specific and are reported to that virtual processor using its error-
reporting mechanism.

When an error in a structure shared among virtual processors occurs:

■ If the virtual processor initiating the request that caused or detected the error can
be identified, the error is considered virtual-processor-specific and is reported
back to the originating virtual processor.

■ If the virtual processor initiating the request that caused or detected the error
cannot be identified, the error is considered non-virtual-processor-specific.

■ All virtual processors that share a structure are considered to be part of the error-
handling group for that structure. This implies that any virtual processor in the
group can be assigned to handle error traps associated with the structure and
have diagnostic access to the structure for error recovery.

The following sections describe how a CMT processor handles both virtual-
processor-specific and non-virtual-processor-specific errors.

15.6.1 Virtual-Processor-Specific Error Reporting
Errors specific to a particular virtual processor are reported to the virtual processor
associated with the error, using the virtual processor’s error reporting mechanism. A
virtual-processor-specific error can be either synchronous or asynchronous. It may
be an error that occurred in a shared structure but is traceable to the originating
virtual processor. It is the responsibility of error handling software to recognize the
implication of errors in shared structures and take appropriate action.
CHAPTER 15 • Chip-Level Multithreading (CMT) 535



15.6.2 Reporting Errors on Shared Structures
Errors in shared structures are more complicated than virtual-processor-specific
errors. When a non-virtual-processor-specific error occurs, it must be recorded and
an exception must be generated on one of the virtual processors within the CMP to
deal with the error. More precisely, the virtual processor that reports the exception
must be part of the error-handling group for the shared structure in which the error
was detected. The following subsections describe where the error should be
recorded and in which virtual processor the exception should be generated.

15.6.2.1 Error Steering

When an error occurs in a shared resource, the error must be reported to a virtual
processor that shares that resource and is part of its error-handling group. That
virtual processor has the capability of issuing diagnostic reads and writes to the
structure for diagnosis, correction, and error-clearing purposes. Error steering
registers are used to determine which virtual processor will handle the error.
Software configures an error steering register to specify which virtual processor
should handle the error(s) associated with that error steering register. That is, an
error steering register defines in which virtual processor an exception will be
generated, to report and handle the error.

A given CMT implementation may contain resources shared by all the virtual
processors of the CMT processor or shared by a subset of two or more virtual
processors.

IMPL. DEP. #434-S10: Because of the range of implementation, the number of,
organization of, and ASI assignments for error steering registers in a CMT processor
are implementation dependent.

Error steering registers may be provided per shared resource or per level of sharing.
In the case that all shared resources are shared by all virtual processors, it is
recommended that a single error steering register be used and that error steering
register should follow the behavior of the ERROR_STEERING register defined in
Error Steering Register (ERROR_STEERING) on page 538. If a mechanism is used
where error steering registers are used per level of sharing, it is recommended that
the ERROR_STEERING register be used for the level at which all virtual processors
share and provide error-handling groups.

General Guidelines for Error Steering Registers. An error steering register
controls which virtual processor handles non-virtual-processor-specific errors. Such
an error is recorded using the virtual processor’s asynchronous error reporting
mechanism (as relevant to the error) and generates an appropriate exception.

An error steering register is accessed through an ASI or a memory-mapped address.
It must be accessible for both reading and writing by software (using load and store
alternate instructions).
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A processor contains one or more error steering registers. The number of error
steering registers needed depends on how resources are shared and the ability of a
virtual processor to diagnose errors in a resource it does not share.

An error steering register specifies a virtual processor by an encoded field, target_id,
that corresponds to the strand_id of the targeted virtual processor. Use of an
encoded representation guarantees that only one virtual processor can be specified.
An error steering register should contain only one field, the target_id field, that
encodes the strand_id of the virtual processor that should be informed of non-
virtual-processor-specific errors in its sharing group.

IMPL. DEP. #326-U4-Cs10a: The number of implemented bits of
ERROR_STEERING.target_id is nominally six, but is implementation dependent
and must be sufficient to encode the highest implemented virtual processor ID.

It is the responsibility of software to ensure that an error steering register identifies
an appropriate virtual processor for handling the error(s) assigned to it. If an error
steering register identifies a virtual processor that is not available (per
STRAND_AVAILABLE) or is disabled (per STRAND_ENABLE_STATUS), none of
the enabled virtual processors in the error-handling group will be affected by the
reporting of a non-virtual-processor-specific error to the disabled virtual processor.
However, the behavior of the specified disabled virtual processor is undefined; for
example, the error status register in the disabled virtual processor may or may not
be observed to have been updated.

If an error steering register identifies a virtual processor that is not part of the error-
handling group, operation is also undefined. An example would be if the error
steering register identifies a virtual processor in another error-handling group for a
virtual-processor-specific error. To avoid this case, an error steering register should
be assigned on a core basis for core errors that are non-virtual-processor-specific.

If an error steering register identifies a virtual processor that is parked, the non-
virtual-processor-specific error is reported to that virtual processor and the virtual
processor will observe the appropriate exception, but not until after it is unparked.

When an error steering register is written by software, the update becomes visible
after an unspecified delay. If a store to the register is followed by a MEMBAR
synchronization barrier instruction, it is guaranteed that the write to the error
steering register will complete by the time the execution of the MEMBAR instruction
completes.

When a non-virtual-processor-specific error occurs, the corresponding error steering
register is consulted. The error is reported to and an exception is generated in the
virtual processor indicated by the error steering register.

If a non-virtual-processor-specific error occurs and at the same time target_id is
being changed in the corresponding error steering register, the subsequent error
report and the generated exception will occur together on the same virtual processor,
either the virtual processor indicated by the old value in the error steering register or
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the one indicated by the new value. That is, for non-virtual-processor-specific
errors, the generation of an error report plus an exception is atomic with respect to
changes to the contents of the error steering register.

State of Error Steering Register After Reset.

The target_id field of an error steering register is initialized during a power-on-reset
and warm reset. After a power-on-reset, the value in the target_id field of an error
steering register should refer to the lowest-numbered available virtual processor (as
indicated by the STRAND_AVAILABLE register) that corresponds to the resource(s)
covered by the steering register. After a warm reset, the value in the target_id field of
an error steering register should refer to the lowest-numbered enabled virtual
processor (as indicated by the STRAND_ENABLE register) that corresponds to the
resource(s) covered by the steering register.

Error Steering Register (ERROR_STEERING). The ERROR_STEERING
register is the recommended mechanism for specifying which virtual processor in an
error-handling group should handle non-virtual-processor-specific errors in
resources shared by all virtual processors of the error-handling group.
ERROR_STEERING is a shared register, accessible from all virtual processors in the
error-handling group.

When a non-virtual-processor-specific error occurs, the error is recorded using the
asynchronous error reporting mechanism in the virtual processor indicated by
ERROR_STEERING. The appropriate exception is generated in that same virtual
processor.

The Error Steering register has only one field that encodes the strand ID of the
strand that should be informed of non-virtual-processor-specific errors. When an
error is detected that cannot be traced back to a specific virtual processor, the error
is recorded in, and a trap is sent to, the virtual processor identified by the Error
Steering register.

FIGURE 15-9 ERROR_STEERING Register

IMPL. DEP. #435-S10: Although the ERROR_STEERING register is the
recommended mechanism for steering non-virtual-processor-specific errors to a
virtual processor for handling, the actual mechanism used in a given
implementation is implementation dependent.

Register Name ASI # (Name) VA Scope Access Note

ERROR_STEERING per-proc RW

0

target_idReservedERROR_STEERING
n n - 163
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The ERROR_STEERING register contains one field, target_id, that encodes the
virtual processor ID of the virtual processor that should be informed of non-virtual-
processor-specific errors (see FIGURE 15-9).

IMPL. DEP. #436-S10: The width of the target_id field of the ERROR_STEERING
register is implementation dependent.

The target_id field (refer to FIGURE 15-9) must be wide enough to encode the strand
ID of the highest-numbered implemented virtual processor. If n bits of this field are
implemented, the unused most-significant bits numbered 5 to 6-n read as zero and
writes to those bits are ignored.

IMPL. DEP. #437-S10: An implementation may provide multiple target_id fields in
an ERROR_STEERING register for different types of non-virtual-processor-specific
errors.

15.6.2.2 Reporting Non-Virtual-Processor-Specific Errors

Before an exception can be generated for a non-virtual-processor-specific error, the
error must be recorded. Non-virtual-processor-specific errors are recorded using the
asynchronous error reporting mechanism of the virtual processor specified by the
ERROR_STEERING register. The mechanism used is the same as that for reporting
vitual processor-specific errors.

Each asynchronous error is defined as either virtual-processor-specific or non-
virtual-processor-specific. If the same error can occur as either a virtual-processor-
specific error or a non-virtual-processor-specific error, the two cases must be
reported as two identifiably distinct errors.

IMPL. DEP. #438-S10: It is implementation dependent whether the error-reporting
structures for errors in shared resources appear within a virtual processor in per-
virtual-processor registers or are contained within shared registers associated with
the shared structures in which the errors may occur.

IMPL. DEP. #439-S10: The type of exception generated in a virtual processor to
handle each type of non-virtual-processor-specific error is implementation
dependent. A virtual processor can choose to use the same exceptions used for
corresponding virtual-processor-specific asynchronous errors or it can choose to
generate different exceptions.
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15.7 Additional CMT Software Interfaces

15.7.1 Diagnostic/RAS Registers
The CMT software interface defines how virtual processors are disabled or parked
(for diagnostic and error recovery) and how errors are reported in a CMT processor.
It is up to the implementation to provide appropriate diagnostic and recovery
mechanisms, which are not specified here.

A future extension of the CMT Programming Model may include more common
features for diagnostics and RAS. Increasing commonality without significantly
limiting the implementation options is best.

15.7.2 Configuration Registers
Given the broad range of possible implementations, no common configuration
interface is defined here.

At this time the CMT Programming Model does not specify any common
configuration registers. A future extension of the CMT Programming Model may
include some. Increasing commonality without significantly limiting the
implementation options is best.

15.7.3 Performance Registers
At this time, no common performance registers are specified. A future extension of
the CMT Programming Model may include some.

This is a specifically important area to have common features. A range of software
tools rely on the performance registers and common features will enable software
tools to be more quickly deployed on new architectures with less work.

15.7.4 Booting Support
Some of the registers previously described can be used by firmware for booting
support. See Strand Running Register (STRAND_RUNNING) on page 527 for an
example of such a register.

During a power-on-reset, only one enabled virtual processor per processor will be
unparked. Only this virtual processor will begin fetching instructions after the reset.
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IMPL. DEP. #440-S10: Which virtual processor is unparked during POR and
whether it is unparked by processor hardware or by a service processor is
implementation dependent. Conventionally, the virtual processor with the lowest-
numbered strand_id is unparked.

In a recommended booting sequence, software determines when virtual processors
become unparked after reset. The default behavior is for only one virtual processor
to be unparked when the system reset signal is removed. That virtual processor, in
turn, configures common registers and then unparks other virtual processors one at
a time. This is only one possible boot sequence; software is free to implement other
boot sequences.

15.8 Performance Issues for CMT Processors
Which resources are shared among which virtual processors in a CMT processor is
implementation-dependent. Resources such as caches, TLBs, and even execution
pipelines may be shared by virtual processors. From a performance perspective,
there are significant issues that result from this sharing. In this section,
hyperprivileged software issues of thread scheduling and configuration of inactive
virtual processors is discussed. Issues of how to develop algorithms and approaches
to take advantage of the low communication latencies between virtual processors are
not covered here.

To understand and take advantage of performance issues in a CMT processor
requires some knowledge of the underlying implementation. The existence of
implementation dependencies is unavoidable, but hopefully abstract representations
and general approaches can reduce the degree of implementation dependence in
hyperprivileged software.

15.9 Recommended Subset for Single-Strand
Processors
It is recommended that single-strand UltraSPARC Architecture 2005 processors
implement a subset of the CMT interface. This enables them to more easily integrate
into systems that may also contain CMT processors and enables more consistent
software to be deployed across those and other future systems.

Single-strand UltraSPARC Architecture 2005 processors should implement all of the
CMT registers described in this chapter, as follows:
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■ The Strand Interrupt ID register (STRAND_INTR_ID) should be fully
implemented.

■ All other registers can be implemented as read-only registers containing fixed
values, writes to which are ignored.

TABLE 15-1 summarizes the recommended implementation of CMT registers for a
single-strand processor implementation:

TABLE 15-1 Recommended CMT Register Set for Single-Strand Processors

ASI VA Register Name Type Note

4116 0016 STRAND_AVAILABLE R only Read value of 0116

1016 STRAND_ENABLE_STATUS R only Read value of 0116

2016 STRAND_ENABLE R only Read value of 0116

3016 XIR_STEERING R only Read value of 0116

5016 STRAND_RUNNING_RW R only Read value of 0116

5816 STRAND_RUNNING_STATUS R only Read value of 0116

6016 STRAND_RUNNING_W1S W only (ignored) Access (write) ignored

6816 STRAND_RUNNING_W1C W only (ignored) Access (write) ignored

6316 0016 STRAND_INTR_ID RW Software assigned unique interrupt ID
for virtual processor (read/write)

1016 STRAND_ID R only Read value of 0016
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15.10 Machine State Summary
TABLE 15-2 describes the ASI extensions that support CMT registers. The states of
CMT registers after resets are enumerated in TABLE 16-2 on page 552.

TABLE 15-2 ASI Extensions

ASI VA Register Name Scope Type Description

4116 0016 STRAND_AVAILABLE per-proc R Bit mask of implemented virtual
processors

1016 STRAND_ENABLE_STATUS per-proc R Bit mask of enabled virtual processors

2016 STRAND_ENABLE per-proc RW Bit mask of virtual processors to enable
after next reset (read/write)

3016 XIR_STEERING per-proc RW Bit mask of virtual processors to
propagate XIR to (read/write)

5016 STRAND_RUNNING_RW per-proc RW Bit mask to control which virtual
processors are active and which are
parked (read/write): 1= active, 0 =
parked

5816 STRAND_RUNNING_STATUS per-proc R Bit mask of virtual processors that are
currently active: 1 = active, 0 = parked

6016 STRAND_RUNNING_W1S per-proc W1S Pseudo-register for write-one-to-set
access to STRAND_RUNNING

6816 STRAND_RUNNING_W1C per-proc W1C Pseudo-register for write-one-to-clear
access to STRAND_RUNNING

6316 0016 STRAND_INTR_ID per-
strand

RW Software assigned unique interrupt ID
for virtual processor (read/write)

1016 STRAND_ID per-
strand

R Hardware assigned ID for virtual
processor (read-only)

4016 and
greater

Reserved per-
strand

Impl.
Dep.

Reserved for implementation-specific
per-strand registers
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CHAPTER 16

Resets

16.1 Resets
The UltraSPARC Architecture 2005 defines 5 types of resets. Reset priorities, listed
in order from highest to lowest, are as follows:

■ power-on reset (POR)

■ warm reset (WMR)

■ externally initiated reset (XIR)

■ watchdog reset (WDR), and

■ software-initiated reset (SIR)

POR, WMR, and XIR resets are initiated external to the processor (chip). WDR and
SIR resets are initiated by the virtual processor itself, in response to specific
conditions.

POR resets are processor-wide (affect all virtual processors on the chip). WDR and
SIR resets are directed to a specific virtual processor. XIR resets are directed to the
virtual processor(s) indicated by the XIR_STEERING register. WMR resets are
implementation dependent and may be either processor-wide or directed to specific
virtual processor(s).

Resets are used to initialize a virtual processor and place it in an operating state, to
attempt recovery of a failing or stuck virtual processor, to attempt recovery of failing
operating system privileged software, and for debug purposes. The defined states
for each reset show an increasing amount of resource reset, such that, for example, a
XIR, WDR or SIR reset will leave most architectural and memory resources
unchanged, while a WMR reset will leave most memory resources unchanged but
reset certain architectural resources, and a POR reset will initialize all processor
resources.
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All resets are processed as traps and place the virtual processor in RED_state.
RED_state (Reset, Error, and Debug state) is a restricted execution state reserved
for processing hardware- and software-initiated resets. Please refer to Reset Traps on
page 449 and the subsections regarding reset traps in RED_state Trap Processing,
which begins on page 474.

16.1.1 Power-on Reset (POR)
A POR reset occurs when the assigned POR pin is asserted and deasserted. During
this time, all other resets and traps are ignored. POR reset has the highest trap
priority. POR causes any pending external transactions to be cancelled.

The POR reset is a processor-wide reset. It affects all virtual processors on the chip,
as well as all IO, cache, and DRAM subsystems.

During a POR reset, hardware sets registers to a known state (see Machine States on
page 548). All hardware-based initialization functions are performed, all logic
(including the pipeline) is initialized, all architectural registers are placed in their
reset state (as defined in TABLE 16-1 on page 549), and all entries in caches and TLBs
are invalidated.

A service processor may also participate in the POR reset process. The POR reset
functions provided by a service processor are documented in the relevant Service
Processor specification.

After a POR reset is complete:

■ The first available1 virtual processor begins executing at physical address
RSTVADDR + 2016 (RED_state trap vector base address plus the POR offset of
2016), with a trap type of 0116.

■ All other virtual processors are in "parked" state (see Parking and Unparking
Virtual Processors on page 526)

1. per the Strand Available register (see Strand Available Register (STRAND_AVAILABLE) on page 523)

Implementation
Note

From the perspective of this specification, which describes a
processor architecture, after a Power-On Reset (POR) execution
begins on one strand of the processor. However, in a
multiprocessor system, after POR a service processor might
arrange for execution to initially occur on only one strand per
system. If and how that that occurs is beyond the scope of this
specification and would be described in system-level
documentation.
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16.1.2 Warm Reset (WMR)
A Warm Reset (WMR) occurs when software writes into a particular
implementation-dependent reset register or when an implementation-dependent
reset input pin is asserted and then deasserted. When a WMR reset is received, all
other resets and traps except POR are ignored.

The extent to which the processor is reset by a WMR reset is implementation
dependent. A WMR reset may be chip-wide or it may be core-wide (reseting all
virtual processors on the core, but allowing virtual processors on other cores to
continue processing and maintaining cache coherency).

A WMR, even if it is chip-wide, will not alter the contents of external memory. It
may, however, alter on-chip portions of the memory system (for example, store
queues or cache(s)).

Warm reset has the same trap type (116) and trap vector offset (2016) as a POR reset.
By what means hyperprivileged software can distinguish between WMR and POR
resets is implementation dependent.

IMPL. DEP. #420-S10: The following aspects of Warm Reset (WMR) are
implemenation dependent:
(a) by what means WMR can be applied (for example, write to reset register or
assertion/deassertion of an input pin)
(b) the extent to which a processor is reset by WMR (for example, single physical
core, entire processor (chip), and how the on-chip memory system is affected),
(c) by what means hyperprivileged software can distinguish between WMR and
POR resets

16.1.3 Externally Initiated Reset (XIR)
An externally initiated reset (XIR) is sent by asserting and deasserting an input pin,
setting and clearing a bit in a reset register, or both.

An XIR reset is sent to all virtual processors specified in the XIR_STEERING register
(impl. dep. #304-U4-Cs10). It causes an XIR reset trap in each affected virtual
processor. An XIR reset trap has trap type 316 and uses a trap vector with a physical
address offset of 6016.

Programming
Note

After a POR reset, software must initialize values that are
specified as “undefined” in TABLE 16-1. In particular, I-cache
tags, D-cache tags and L2 cache tags must be initialized before
enabling the caches. The ITLB, DTLB and UTLB also must be
initialized before enabling memory management. If a service
processor participates in the reset, software should also
reference the Service Processor Specification to determine which
machine state has been reset by the service processor.
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Memory state, cache state, and most architectural state (see TABLE 16-1) are
unchanged by an XIR reset. System coherency is guaranteed to be maintained
during an XIR reset. The PC (NPC) saved in TPC (TNPC) observed after an XIR will
be mutually consistent, such that execution could resume using the saved PC and
NPC. In effect, XIR behaves like a non-maskable interrupt.

16.1.4 Watchdog Reset (WDR)
An UltraSPARC Architecture virtual processor enters error_state when a non-
reset trap or SIR reset occurs at TL = MAXTL.

The virtual processor signals itself internally to take a watchdog reset (WDR) and
sets TT to the trap type of the trap that caused entry to error_state. The WDR
causes a trap using a trap vector with a physical address offset of 4016. WDR only
affects the virtual processor on which it occurs; no other virtual processors are
affected.

On a watchdog reset trap caused by a register window-related trap, CWP register is
updated the same as if a WDR had not occurred.

16.1.5 Software-Initiated Reset (SIR)
A software-initiated reset is initiated by an SIR instruction executing on a virtual
processor. This virtual processor reset has a trap type 4 and uses a trap vector with a
physical address offset of 8016. SIR affects only the virtual processor on which it
executes; all other virtual processors are unaffected.

16.2 Machine States
Machine state changes when a trap is taken at TL = MAXTL − 1 or when a reset occurs.

TABLE 16-1 specifies the machine states observed by software after a trap is taken at
TL = MAXTL − 1 or after a reset occurs. For details of how those machine states are
set, see processor-specific documentation and/or relevant Service Processor
documentation.

The UltraSPARC Architecture specifies the machine state that must be obeserved by
software after reset.

Implemenatation
Note

For the POR reset (and possibly the WMR reset), the change in
machine state may be accomplished directly by processor
hardware or with support from a service processor.
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In the following tables, a value marked as "Undefined" may or may not be set to a
known value by hardware (and/or a service processor) after reset.

Programming
Note

Virtual processor states are only updated according to TABLE 16-1
if RED_state is entered because of a trap at TL = MAXTL − 1 or a
reset. If RED_state is entered because the HPSTATE.red bit
was explicitly set to 1 by software, then software is responsible
for setting the appropriate machine state.

Programming
Note

Values marked as "Undefined" after POR in the following tables
should be initialized by software after the power-on reset.

TABLE 16-1 Machine State After Reset or a Trap @ TL = MAXTL − 1 (1 of 3)

Name
Fields

POR WMR WDR XIR SIR
Traps taken
@TL=MAXTL-1

Integer registers Undefined1
Unchanged

Floating-point registers Undefined

RSTVADDR

VA = FFFF FFFF F000 000016
PA = 0000 7FFF F000 000016

(impl. dep. #114)

PC RSTVADDR | 2016
RSTVADDR |

4016

RSTVADDR |
6016

RSTVADDR |
8016

RSTVADDR |
A016

NPC RSTVADDR | 2416
RSTVADDR |

4416

RSTVADDR |
6416

RSTVADDR |
8416

RSTVADDR |
A416

PSTATE

tct 0 (Trap on control transfer disabled)
mm 002 (TSO)
pef 1 (FPU on)
am 0 (Full 64-bit address)
priv 0
ie 0 (Disable interrupts)
cle 0 (Current not little-endian)
tle 0 (Trap little-endian) Unchanged

HPSTATE

ibe 0 (Instruction breakpoint disabled)
red 1 (RED_state)
hpriv 1 (Hyperprivileged mode)
tlz 0 (trap_level_zero traps disabled)

TBA<63:15> tba_high49 Undefined Unchanged
HTBA<63:14> htba_high50 Undefined Unchanged
Y Undefined Unchanged
PIL Undefined Unchanged
CWP Undefined Unchanged except for register window traps
TT[TL] 1 1 trap type 3 4 trap type
CCR Undefined Unchanged
ASI Undefined Unchanged
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TL MAXTL min(TL+1, MAXTL)
GL MAXGL min(GL+1, MAXGL)

TPC[TL] Undefined
(impl.dep.#
419-S10)‡

PC

TNPC[TL] Undefined
(impl.dep.#
419-S10)‡

NPC

TSTATE[TL]

gl

Undefined
(impl.dep.#
419-S10)‡

GL

ccr CCR

asi ASI

pstate PSTATE

cwp CWP

HTSTATE[TL]

ibe

Undefined
(impl.dep.#
419-S10)‡

HPSTATE.ibe

red HPSTATE.red

hpriv HPSTATE.hpriv

tlz HPSTATE.tlz

TICK
npt 1 1 Unchanged
counter Undefined Count

CANSAVE Undefined Unchanged
CANRESTORE Undefined Unchanged
OTHERWIN Undefined Unchanged
CLEANWIN Undefined Unchanged

WSTATE
other

Undefined Unchanged
normal

HVER

manuf Implementation dependent (impl. dep. #104-V9)
impl Implementation dependent (impl. dep. # 13-V8)
mask Mask dependent
maxgl MAXGL

maxtl MAXTL

maxwin N_REG_WINDOWS − 1
FSR all Undefined Unchanged
GSR all Undefined Unchanged

FPRS

fef

Undefined Unchangeddu

dl

SOFTINT Undefined Unchanged
HINTP hsp Undefined Unchanged

TICK_CMPR
int_dis

Undefined Unchanged
tick_cmpr

STICK
npt

Undefined
Unchanged

counter Count

TABLE 16-1 Machine State After Reset or a Trap @ TL = MAXTL − 1 (2 of 3)

Name
Fields

POR WMR WDR XIR SIR
Traps taken
@TL=MAXTL-1
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STICK_CMPR
int_dis

Undefined
Unchanged

stick_cmpr Unchanged

HSTICK_CMPR
int_dis

Undefined
Unchanged

hstick_cmpr Unchanged
SCRATCHPAD_n Undefined Unchanged
HYP_SCRATCHPAD_n Undefined† Unchanged† Unchanged Unchanged† Unchanged
I_SFSR, D_SFSR Undefined Unchanged
D_SFAR Undefined Unchanged

I-cache controls enable(s) 0 (disable I$) Unchanged
I-cache entries Invalidated Unchanged
I-cache data Undefined Unchanged
D-cache controls enable(s) 0 (disable D$) Unchanged
D-cache entries Invalidated Unchanged
D-cache data Undefined Unchanged

MMU controls /Demap enable(s)
0 (disable

MMU)
Unchanged

MMU registers all Undefined Unchanged
ITLB/DTLB/UTLB entries Invalidated Unchanged
store queue entries Invalidated Unchanged
L2 cache controls eanble(s) 1 (enable L2$) Unchanged
L2 cache entries Invalidated Unchanged
L2 cache directory Invalidated Unchanged
L2 cache data Undefined Unchanged
Error enable registers Undefined Unchanged
Error Trap enable
registers

Undefined
Unchanged

Error Status registers error events Undefined2 Unchanged
Watchpoint Controls enables 0 (disabled) Unchanged
Interrupt Queue pointers all Undefined Unchanged
Error Queue pointers all Undefined Unchanged
† If a service processor is present, it may change the value of hyperprivileged scratchpad register(s) before execution of the reset trap handler

begins

‡ IMPL. DEP. #419-S10: It is implementation dependent whether, after a Warm Reset (WMR), the contents of TPC[TL], TNPC[TL],
TSTATE[TL], and HTSTATE[TL] are unchanged from their values before the WMR, or contain the same values saved as during a WDR,
XIR, or SIR reset.  (The latter implementation is the preferred one.)

1. After POR, integer register R[0] must read as zero (with good ECC/parity). The value to which all other integer and all floating-
point registers are set during a Power-On Reset (POR) is Undefined. For an implementation that protect these registers with ECC/
parity, the registers must be initialized with good ECC/parity as part of a POR reset,  either by hardware or software.

2.  For a POR reset, the Error Status register(s) can be set either by hardware or by a service processor.

TABLE 16-1 Machine State After Reset or a Trap @ TL = MAXTL − 1 (3 of 3)

Name
Fields

POR WMR WDR XIR SIR
Traps taken
@TL=MAXTL-1
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16.2.1 Machines States for CMT
TABLE 16-2 shows the CMT machine state set by hardware as a result of a trap taken
at TL = MAXTL − 1 or when a reset occurs.

TABLE 16-2 Machine State After Reset and in RED_state for CMT Registers

Name Fields POR WMR WDR XIR SIR

Traps
taken
@TL=

MAXTL-1

Registers shared among Virtual Processors (Strands)

STRAND_AVAILABL
E

Unchanged
(Predefined value, set at time of manufacture)

STRAND_ENABLE_
STATUS Copied from

STRAND_AVAILABLE†
(but may be changed by a
service processor during
reset)

Copied from
STRAND_ENABLE†
(but may be changed by a
service processor during
reset)

Unchanged

STRAND_ENABLE Unchanged

XIR_STEERING Copied from
STRAND_AVAILABLE†
(impl. dep. #325-U4(b))
(but may be changed by a
service processor during
reset)

Copied from
STRAND_ENABLE†
(but may be changed by a
service processor during
reset)

Unchanged

STRAND_RUNNING
and

STRAND_RUNNING
_STATUS

Set to 0†, then during the
reset either
(1) virtual processor
hardware sets to 1 the bit
in the position
corresponding to lowest-
numbered implemented and
available virtual processor
(as specified by
STRAND_AVAILABLE), or
(2) this register is
initialized by a service
processor.

Set to 0†, then during the
reset either
(1) virtual processor
hardware sets to 1 the bit
in the position
corresponding to lowest-
numbered enabled virtual
processor (as specified by
the value of
STRAND_ENABLE before
the reset), or
(2) this register is
initialized by a service
processor.

Unchanged
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Per-Strand Registers (not shared)

STRAND_ID max_stra
nd_id

max strand ID †

Unchanged
max_core
_id

max core ID †

core_id core ID † of this core

CORE_INTR_ID core_intr_
id

interrupt ID † of this core

† if the implementation is always paired with a service processor and the service processor always initializes
this register during reset, processor hardware can leave this register unchanged (or set it to 0) and allow
the service processor to perform  the initialization

TABLE 16-2 Machine State After Reset and in RED_state for CMT Registers (Continued)

Name Fields POR WMR WDR XIR SIR

Traps
taken
@TL=

MAXTL-1
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APPENDIX A

Opcode Maps

This appendix contains the UltraSPARC Architecture 2005 instruction opcode maps.
Also included are the optional UltraSPARC V instruction opcode maps; UltraSPARC
V opcodes are highlighted in bold face.

In this appendix and in Chapter 7, Instructions, certain opcodes are marked with
mnemonic superscripts. These superscripts and their meanings are defined in
TABLE 7-1 on page 136. For preferred substitute instructions for deprecated opcodes,
see the individual opcodes in Chapter 7 that are labeled “Deprecated”.

In the tables in this appendix, reserved (—) and shaded entries (as defined below)
indicate opcodes that are not implemented in UltraSPARC Architecture 2005 strands.

An attempt to execute a reserved opcode behaves as defined in Reserved Opcodes and
Instruction Fields on page 132.

Shading Meaning

An attempt to execute opcode will cause an illegal_instruction exception.
An attempt to execute opcode will cause an fp_exception_other exception with
FSR.ftt = 3 (unimplemented_FPop).

TABLE A-1 op{1:0}

op {1:0}
0 1 2 3

Branches and SETHI
(See TABLE A-2)

CALL Arithmetic & Miscellaneous
(See TABLE A-3)

Loads/Stores
(See TABLE A-4)

TABLE A-2 op2{2:0} (op = 0)

op2 {2:0}
0 1 2 3 4 5 6 7

ILLTRAP BPcc (See
TABLE A-7)

BiccD(See
TABLE A-7)

BPr (bit 28 = 0)
(See TABLE A-8)

SETHI FBPfcc (See
TABLE A-7)

FBfccD (See
TABLE A-7)

—

— (bit 28 = 1)1

1. See the footnote regarding bit 28 on page 160.

NOP2

2. rd = 0, imm22 = 0
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TABLE A-3 op3{5:0} (op = 102) (1 of 2)

op3{5:4}

0 1 2 3

op3
{3:0}

0 ADD ADDcc TADDcc WRYD (rd = 0)
— (rd = 1)
WRCCR (rd = 2
WRASI (rd = 3)
— (rd = 4, 5)
SIRH (rd = 15, rs1 = 0, i = 1)
— (rd = 15) and (rs1 ≠ 0 or i ≠ 1))
— (rd = 7 − 14)
WRFPRS (rd = 6)
WRasrPASR (7 ≤ rd ≤ 14)
WRPCRP (rd = 16)
WRPIC (rd = 17)
— (rd = 18)
WRGSR (rd = 19)
WRSOFTINT_SETP (rd = 20)
WRSOFTINT_CLRP (rd = 21)
WRSOFTINTP (rd = 22)
WRTICK_CMPRP (rd = 23)
WRSTICKH (rd = 24)
WRSTICK_CMPRP (rd = 25)
— (rd = 26 - 31)

1 AND ANDcc TSUBcc SAVEDP (fcn = 0)
RESTOREDP (fcn = 1)
ALLCLEANP (fcn = 2)
OTHERWP (fcn = 3)
NORMALWP (fcn = 4)
INVALWP (fcn = 5)
— (fcn ≥ 6)

2 OR ORcc TADDccTVD —
2 OR ORcc TADDccTVD WRPRP (rd = 0-14 or 16)

— (rd = 15 or 17−31)
3 XOR XORcc TSUBccTVD WRHPRH

4 SUB SUBcc MULSccD FPop1 (See TABLE A-5)
5 ANDN ANDNcc SLL (x = 0), SLLX (x = 1) FPop2 (See TABLE A-6)
6 ORN ORNcc SRL (x = 0), SRLX (x = 1) IMPDEP1 (VIS) (See TABLE A-12)
7 XNOR XNORcc SRA (x = 0), SRAX (x = 1) IMPDEP2
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op3
{3:0}

8 ADDC ADDCcc RDYD (rs1 = 0, i = 0) JMPL
— (rs1 = 1, i = 0)
RDCCR (rs1= 2, i = 0)
RDASI (rs1 = 3, i = 0)
RDTICKPnpt (rs1 = 4, i = 0)
RDPC (rs1 = 5, i = 0)
RDFPRS (rs1 = 6, i = 0)
RDasrPASR (7 ≤ rd ≤ 14, i = 0)
MEMBAR (rs1 = 15, rd = 0, i = 1,

instruction bit 12 = 0)
— (rs1 = 15, rd = 0, i = 1,

instruction bit 12 = 1)
— (i = 1, (rs1 ≠ 15 or rd ≠ 0))
STBARD (rs1 = 15, rd = 0, i = 0)
— (rs1 = 15 and rd > 0 and i = 0)
RDPCRP (rs1 = 16 and i = 0)
RDPIC (rs1 = 17 and i = 0)
— (rs1 = 18 and i = 0)
RDGSR (rs1 = 19 and i = 0)
— (rs1 = 20 or 21) and (i = 0))
RDSOFTINTP (rs1 = 22 and i = 0)
RDTICK_CMPRP (rs1 = 23 and i = 0)
RDSTICK (rs1 = 24 and i = 0)
RDSTICK_CMPRP

(rs1 = 25 and i = 0)
— ((rs1 = 26 – 31) and (i = 0))

9 MULX — RDHPRH RETURN
A UMULD UMULccD RDPRP (rs1 = 1–14 or 16) Tcc ((i = 0 and inst{10:5} = 0) or

((i = 1) and (inst{10:7} = 0)))
(See TABLE A-7)

— (rs1 = 15 or 17 – 30) — (bit 29 = 1)
— ((i = 0 and (inst{10:5} ≠ 0)) or

(i = 1 and (inst{10:7} ≠ 0))
B SMULD SMULccD FLUSHW FLUSH

op3
{3:0}

C SUBC SUBCcc MOVcc SAVE
D UDIVX — SDIVX RESTORE
E UDIVD UDIVccD POPC (rs1 = 0) DONEP (fcn = 0)

— (rs1 > 0) RETRYP (fcn = 1)
— (fcn = 2..15)
— (fcn = 16..31)

F SDIVD SDIVccD MOVr (See TABLE A-8) —

TABLE A-3 op3{5:0} (op = 102) (2 of 2)

op3{5:4}

0 1 2 3
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TABLE A-4 op3{5:0} (op = 112)

op3{5:4}

0 1 2 3

op3
{3:0}

0 LDUW LDUWAPASI LDF LDFAPASI

1 LDUB LDUBAPASI LDFSRD, LDXFSR —

— (rd > 1)

2 LDUH LDUHAPASI LDQF LDQFAPASI

3 LDTWD LDTWAD, PASI LDDF LDDFAPASI

— (rd odd) LDBLOCKF

— (rd odd) LDSHORTF

4 STW STWAPASI STF STFAPASI

5 STB STBAPASI STFSRD, STXFSR —

— (rd > 1)

6 STH STHAPASI STQF STQFAPASI

7 STTWD STTWAPASI STDF STDFAPASI

— (rd odd) — (rd odd) STLBLOCKF

STPARTIALF

STSHORTF

8 LDSW LDSWAPASI — —

9 LDSB LDSBAPASI — —

A LDSH LDSHAPASI — —

B LDX LDXAPASI — —

C — — — CASAPASI

D LDSTUB LDSTUBAPASI PREFETCH PREFETCHAPASI

— (fcn = 5 − 15) — (fcn = 5 − 15)

E STX STXAPASI — CASXAPASI

F SWAPD SWAPAD, PASI — —
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TABLE A-5 opf{8:0} (op = 102,op3 = 3416 = FPop1)

opf{3:0}

opf{8:4} 0 1 2 3 4 5 6 7

0016 — FMOVs FMOVd FMOVq — FNEGs FNEGd FNEGq

0116 — — — — — — — —

0216 — — — — — — — —

0316 — — — — — — — —

0416 — FADDs FADDd FADDq — FSUBs FSUBd FSUBq

0516 — — — — — — — —

0616 — — — — — — — —

0716 — — — — — — — —

0816 — FsTOx FdTOx FqTOx FxTOs — — —

0916 — — — — — — — —

0A16 — — — — — — — —

0B16 — — — — — — — —

0C16 — — — — FiTOs — FdTOs FqTOs

0D16 — FsTOi FdTOi FqTOi — — — —

0E16–1F16 — — — — — — — —

8 9 A B C D E F

0016 — FABSs FABSd FABSq — — — —

0116 — — — — — — — —

0216 — FSQRTs FSQRTd FSQRTq — — — —

0316 — — — — — — — —

0416 — FMULs FMULd FMULq — FDIVs FDIVd FDIVq

0516 — — — — — — — —

0616 — FsMULd — — — — FdMULq —

0716 — — — — — — — —

0816 FxTOd — — — FxTOq — — —

0916 — — — — — — — —

0A16 — — — — — — — —

0B16 — — — — — — — —

0C16 FiTOd FsTOd — FqTOd FiTOq FsTOq FdTOq —

0D16 — — — — — — — —

0E16–1F16 — — — — — — — —
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† Reserved variation of FMOVR

‡ bit 13 of instruction = 0

TABLE A-6 opf{8:0} (op = 102, op3 = 3516 = FPop2)

opf{3:0}

opf{8:4} 0 1 2 3 4 5 6 7 8–F

0016 — FMOVs
(fcc0)

FMOVd
(fcc0)

FMOVq (fcc0) — † ‡ † ‡ † ‡ —

0116 — — — — — — — — —

0216 — — — — — FMOVRsZ ‡ FMOVRdZ ‡ FMOVRqZ ‡ —

0316 — — — — — — — — —

0416 — FMOVs
(fcc1)

FMOVd
(fcc1)

FMOVq (fcc1) — FMOVRsLEZ ‡ FMOVRdLEZ ‡ FMOVRqLEZ ‡ —

0516 — FCMPs FCMPd FCMPq — FCMPEs ‡ FCMPEd ‡ FCMPEq ‡ —

0616 — — — — — FMOVRsLZ ‡ FMOVRdLZ ‡ FMOVRqLZ ‡ —

0716 — — — — — — — — —

0816 — FMOVs
(fcc2)

FMOVd
(fcc2)

FMOVq (fcc2) — † † † —

0916 — — — — — — — — —

0A16 — — — — — FMOVRsNZ ‡ FMOVRdNZ ‡ FMOVRqNZ ‡ —

0B16 — — — — — — — — —

0C16 — FMOVs
(fcc3)

FMOVd
(fcc3)

FMOVq (fcc3) — FMOVRsGZ ‡ FMOVRdGZ ‡ FMOVRqGZ ‡ —

0D16 — — — — — — — — —

0E16 — — — — — FMOVRsGEZ ‡ FMOVRdGEZ ‡ FMOVRqGEZ ‡ —

0F16 — — — — — — — — —

1016 — FMOVs
(icc)

FMOVd
(icc)

FMOVq (icc) — — — — —

1116–1716 — — — — — — — — —

1816 — FMOVs
(xcc)

FMOVd
(xcc)

FMOVq (xcc) — — — — —

1916–1F16 — — — — — — — — —
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TABLE A-7 cond{3:0}

BPcc
op = 0
op2 = 1

Bicc
op = 0
op2 = 2

FBPfcc
op = 0
op2 = 5

FBfccD

op = 0
op2 = 6

Tcc
op = 2

op3 = 3a16

cond
{3:0}

0 BPN BND FBPN FBND TN

1 BPE BED FBPNE FBNED TE

2 BPLE BLED FBPLG FBLGD TLE

3 BPL BLD FBPUL FBULD TL

4 BPLEU BLEUD FBPL FBLD TLEU

5 BPCS BCSD FBPUG FBUGD TCS

6 BPNEG BNEGD FBPG FBGD TNEG

7 BPVS BVSD FBPU FBUD TVS

8 BPA BAD FBPA FBAD TA

9 BPNE BNED FBPE FBED TNE

A BPG BGD FBPUE FBUED TG

B BPGE BGED FBPGE FBGED TGE

C BPGU BGUD FBPUGE FBUGED TGU

D BPCC BCCD FBPLE FBLED TCC

E BPPOS BPOSD FBPULE FBULED TPOS

F BPVC BVCD FBPO FBOD TVC

TABLE A-8 Encoding of rcond{2:0} Instruction Field

BPr
op = 0
op2 = 3

MOVr
op = 2

op3 = 2F16

FMOVr
op = 2

op3 = 3516

rcond
{2:0}

0 — — —

1 BRZ MOVRZ FMOVR<s|d|q>Z

2 BRLEZ MOVRLEZ FMOVR<s|d|q>LEZ

3 BRLZ MOVRLZ FMOVR<s|d|q>LZ

4 — — —

5 BRNZ MOVRNZ FMOVR<s|d|q>NZ

6 BRGZ MOVRGZ FMOVR<s|d|q>GZ

7 BRGEZ MOVRGEZ FMOVR<s|d|q>GEZ
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TABLE A-9 cc / opf_cc Fields (MOVcc and FMOVcc)

opf_cc Condition Code
Selectedcc2 cc1 cc0

0 0 0 fcc0

0 0 1 fcc1

0 1 0 fcc2

0 1 1 fcc3

1 0 0 icc

1 0 1 —

1 1 0 xcc

1 1 1 —

TABLE A-10 cc Fields (FBPfcc, FCMP, and FCMPE)

cc1 cc0
Condition Code

Selected

0 0 fcc0

0 1 fcc1

1 0 fcc2

1 1 fcc3

TABLE A-11 cc Fields (BPcc and Tcc)

cc1 cc0
Condition Code

Selected

0 0 icc

0 1 —

1 0 xcc

1 1 —
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,P
TABLE A-12 IMPDEP1: opf{8:0} for VIS opcodes (op = 102, op3 = 3616)

opf {8:4}

00 01 02 03 04 05 06 07 08

opf
{3:0}

0
EDGE8 ARRAY8 FCMPLE16 — — FPADD16 FZERO FAND SHUT

DOWND

1
EDGE8N — — FMUL

8x16
— FPADD16S FZEROS FANDS SIAM

2 EDGE8L ARRAY16 FCMPNE16 — — FPADD32 FNOR FXNOR —

3
EDGE8LN — — FMUL

8x16AU
— FPADD32S FNORS FXNORS —

4 EDGE16 ARRAY32 FCMPLE32 — FPSUB16 FANDNOT2 FSRC1 —

5
EDGE16N — — FMUL

8x16AL
— FPSUB16S FANDNOT2S FSRC1S —

6
EDGE16L — FCMPNE32 FMUL

8SUx16
— FPSUB32 FNOT2 FORNOT2 —

7
EDGE16LN — — FMUL

8ULx16
— FPSUB32S FNOT2S FORNOT2S —

8
EDGE32 ALIGN

ADDRESS
FCMPGT16 FMULD

8SUx16
FALIGN
DATA

— FANDNOT1 FSRC2 —

9
EDGE32N BMASK — FMULD

8ULx16
— — FANDNOT1S FSRC2S —

A
EDGE32L ALIGN

ADDRESS
_LITTLE

FCMPEQ16 FPACK32 — — FNOT1 FORNOT1 —

B EDGE32LN — — FPACK16 FPMERGE — FNOT1S FORNOT1S —

C — — FCMPGT32 — BSHUFFLE — FXOR FOR —

D — — — FPACKFIX FEXPAND — FXORS FORS —

E — — FCMPEQ32 PDIST — — FNAND FONE —

F — — — — — — FNANDS FONES —
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TABLE A-14 IMPDEP1: opf{8:0} for VIS opcodes (op = 102, op3 = 3616) (3 of 3)

opf {8:4}

09–1F 10 11 12 13 14 15 16–1F

opf
{3:0}

0 — — — — — — —

1 — — — — — — — —

2 — — — — — — —

3 — — — — — — — —

4 — — — — — — — —

5 — — — — — — — —

6 — — — — — — — —

7 — — — — — — — —

8 — — — — — — —

9 — — — — — — — —

A — — — — — — —

B — — — — — — — —

C — — — — — — — —

D — — — — — — — —

E — — — — — — — —

F — — — — — — — —
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APPENDIX B

Implementation Dependencies

This appendix summarizes implementation dependencies in the SPARC V9
standard. In SPARC V9, the notation “IMPL. DEP. #nn:” identifies the definition of
an implementation dependency; the notation “(impl. dep. #nn)” identifies a reference
to an implementation dependency. These dependencies are described by their
number nn in TABLE B-1 on page 569.

The appendix contains these sections:

■ Definition of an Implementation Dependency on page 567.
■ Hardware Characteristics on page 568.
■ Implementation Dependency Categories on page 568.
■ List of Implementation Dependencies on page 569.

B.1 Definition of an Implementation
Dependency
The SPARC V9 architecture is a model that specifies unambiguously the behavior
observed by software on SPARC V9 systems. Therefore, it does not necessarily
describe the operation of the hardware of any actual implementation.

An implementation is not required to execute every instruction in hardware. An
attempt to execute a SPARC V9 instruction that is not implemented in hardware
generates a trap. Whether an instruction is implemented directly by hardware,
simulated by software, or emulated by firmware is implementation dependent.

Note: This chapter is undergoing final review; please check
back later for a copy of UltraSPARC Architecture
2005 containing the final version of this chapter.
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The two levels of SPARC V9 compliance are described in UltraSPARC Architecture
2005 Compliance with SPARC V9 Architecture on page 25.

Some elements of the architecture are defined to be implementation dependent.
These elements include certain registers and operations that may vary from
implementation to implementation; they are explicitly identified as such in this
appendix.

Implementation elements (such as instructions or registers) that appear in an
implementation but are not defined in this document (or its updates) are not
considered to be SPARC V9 elements of that implementation.

B.2 Hardware Characteristics
Hardware characteristics that do not affect the behavior observed by software on
SPARC V9 systems are not considered architectural implementation dependencies. A
hardware characteristic may be relevant to the user system design (for example, the
speed of execution of an instruction) or may be transparent to the user (for example,
the method used for achieving cache consistency). The SPARC International
document, Implementation Characteristics of Current SPARC V9-based Products, Revision
9.x, provides a useful list of these hardware characteristics, along with the list of
implementation-dependent design features of SPARC V9-compliant
implementations.

In general, hardware characteristics deal with

■ Instruction execution speed

■ Whether instructions are implemented in hardware

■ The nature and degree of concurrency of the various hardware units constituting
a SPARC V9 implementation

B.3 Implementation Dependency Categories
Many of the implementation dependencies can be grouped into four categories,
abbreviated by their first letters throughout this appendix:
■ Value (v)

The semantics of an architectural feature are well defined, except that a value
associated with the feature may differ across implementations. A typical example
is the number of implemented register windows (impl. dep. #2-V8).
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■ Assigned Value (a)
The semantics of an architectural feature are well defined, except that a value
associated with the feature may differ across implementations and the actual
value is assigned by SPARC International. Typical examples are the impl field of
the Version register (VER) (impl. dep. #13-V8) and the FSR.ver field (impl. dep.
#19-V8).

■ Functional Choice (f)
The SPARC V9 architecture allows implementors to choose among several
possible semantics related to an architectural function. A typical example is the
treatment of a catastrophic error exception, which may cause either a deferred or
a disrupting trap (impl. dep. #31-V8-Cs10).

■ Total Unit (t)
The existence of the architectural unit or function is recognized, but details are
left to each implementation. Examples include the handling of I/O registers
(impl. dep. #7-V8) and some alternate address spaces (impl. dep. #29-V8).

B.4 List of Implementation Dependencies
TABLE B-1 provides a complete list of the SPARC V9 implementation dependencies.
The Page column lists the page for the context in which the dependency is defined;
bold face indicates the main page on which the implementation dependency is
described.

TABLE B-1 SPARC V9 Implementation Dependencies (1 of 10)

Nbr Category Description Page

1-V8 f Software emulation of instructions
Whether an instruction complies with UltraSPARC Architecture 2005 by being
implemented directly by hardware, simulated by software, or emulated by firmware is
implementation dependent.

26

2-V8 v Number of IU registers
An UltraSPARC Architecture implementation may contain from 72 to 640 general-
purpose 64-bit R registers. This corresponds to a grouping of the registers into
MAXGL + 1 sets of global R registers plus a circular stack of N_REG_WINDOWS sets of 16
registers each, known as register windows. The number of register windows present
(N_REG_WINDOWS) is implementation dependent, within the range of 3 to 32
(inclusive).

26, 51

3-V8 f Incorrect IEEE Std 754-1985 results
An implementation may indicate that a floating-point instruction did not produce a
correct IEEE Std 754-1985 result by generating an fp_exception_other exception with
FSR.ftt = unfinished_FPop or FSR.ftt = unimplemented_FPop. In this case, software
running in a higher privilege mode shall emulate any functionality not present in the
hardware.

132

4, 5 Reserved.
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6-V8 f I/O registers privileged status
Whether I/O registers can be accessed by nonprivileged code is implementation
dependent.

29

7-V8 t I/O register definitions
The contents and addresses of I/O registers are implementation dependent.

30

8-V8-
Cs20

t RDasr/WRasr target registers
Ancillary state registers (ASRs) in the range 0–27 that are not defined in UltraSPARC
Architecture 2005 are reserved for future architectural use. ASRs in the range 28–31 are
available to be used for implementation-dependent purposes.

31, 70,
299, 369

9-V8-
Cs20

f RDasr/WRasr privileged status
Whether each of the implementation-dependent read/write ancillary state register
instructions (for ASRs 28–31) is privileged is implementation dependent.

31, 70,
299, 369

10-V8–12-V8 Reserved.

13-V8 a HVER.impl
HVER.impl uniquely identifies an implementation or class of software-compatible
implementations of the architecture. Values FFF016–FFFF16 are reserved and are not
available for assignment.

108

14-V8–15-V8 Reserved.

16-V8-Cu3 Reserved.

17-V8 Reserved.

18-
V8-
Ms10

f Nonstandard IEEE 754-1985 results
UltraSPARC Architecture 2005 implementations do not implement a nonstandard
floating-point
mode. FSR.ns is a reserved bit; it always reads as 0 and writes to it are ignored.

63

19-V8 a FPU version, FSR.ver
Bits 19:17 of the FSR, FSR.ver, identify one or more implementations of the FPU
architecture.

63

20-V8–21-V8 Reserved.

22-V8 f FPU tem, cexc, and aexc
An UltraSPARC Architecture implementation implements the tem, cexc, and aexc
fields in hardware, conformant to IEEE Std 754-1985.

70

23-V8 Reserved.

24-V8 Reserved.

25-V8 f RDPR of FQ with nonexistent FQ
An UltraSPARC Architecture implementation does not contain a floating-point queue
(FQ). Therefore, FSR.ftt = 4 (sequence_error) does not occur, and an attempt to read
the FQ with the RDPR instruction causes an illegal_instruction exception.

66, 304

26-V8–28-V8 Reserved.

TABLE B-1 SPARC V9 Implementation Dependencies (2 of 10)

Nbr Category Description Page
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29-V8 t Address space identifier (ASI) definitions
In SPARC V9, many ASIs were defined to be implementation dependent. Some of
those ASIs have been allocated for standard uses in the UltraSPARC Architecture.
Others remain implementation dependent in the UltraSPARC Architecture. See ASI
Assignments on page 408 and Block Load and Store ASIs on page 429 for details.

121

30-
V8-
Cu3

f ASI address decoding
In SPARC V9, an implementation could choose to decode only a subset of the 8-bit ASI
specifier. In UltraSPARC Architecture implementations, all 8 bits of each ASI specifier
must be decoded. Refer to Chapter 10, Address Space Identifiers (ASIs), of this
specification for details.

121

31-
V8-
Cs10

f This implementation dependency is no longer used in the UltraSPARC Architecture,
since “catastrophic” errors are now handled using normal error-reporting
mechanisms.

—

32-
V8-
Ms10

t Restartable deferred traps
Whether any restartable deferred traps (and associated deferred-trap queues) are
present is implementation dependent.

447

33-
V8-
Cs10

f Trap precision
In an UltraSPARC Architecture implementation, all exceptions that occur as the result
of program execution, except for store_error, are precise.

451

34-V8 f Interrupt clearing
a: The method by which an interrupt is removed is now defined in the UltraSPARC
Architecture (see Clearing the Software Interrupt Register on page 497).
b: How quickly a virtual processor responds to an interrupt request, like all timing-
related issues, is implementation dependent.

497

35-
V8-
Cs20

t Implementation-dependent traps
Trap type (TT) values 06016–07F16 were reserved for
implementation_dependent_exception_n exceptions in SPARC V9 but are now all
defined as standard UltraSPARC Architecture exceptions.

457

36-V8 f Trap priorities
The relative priorities of traps defined in the UltraSPARC Architecture are fixed.
However, the absolute priorities of those traps are implementation dependent (because
a future version of the architecture may define new traps). The priorities (both
absolute and relative) of any new traps are implementation dependent.

469

37-V8 f Reset trap
Some of a virtual processor’s behavior during a reset trap is implementation
dependent.

449

38-V8 f Effect of reset trap on implementation-dependent registers
Implementation-dependent registers may or may not be affected by the various reset
traps.

474

TABLE B-1 SPARC V9 Implementation Dependencies (3 of 10)
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39-
V8-
Cs10

f Entering error_state on implementation-dependent errors
The virtual processor enters error_state when a trap occurs while the virtual
processor is already at its maximum supported trap level — that is, it enters
error_state when a trap occurs while TL = MAXTL. No other conditions cause entry
into error_state on an UltraSPARC Architecture virtual processor.

444, 477

40-V8 f error_state virtual processor state
Effects when error_state is entered are implementation dependent, but it is
recommended that as much virtual processor state as possible be preserved upon
entry to error_state. In addition, an UltraSPARC Architecture virtual processor
may have other error_state entry traps that are implementation dependent.

444

41-V8 Reserved.

42-
V8-
Cs10

t, f, v FLUSH instruction
FLUSH is implemented in hardware in all UltraSPARC Architecture 2005
implementations, so never causes a trap as an unimplemented instruction.

43-V8 Reserved.

44-
V8-
Cs10

f Data access FPU trap
a: If a load floating-point instruction generates an exception that causes a non-precise

trap, it is implementation dependent whether the contents of the destination
floating-point register(s) are undefined or are guaranteed to remain unchanged.

b: If a load floating-point alternate instruction generates an exception that causes a
non-precise trap, it is implementation dependent whether the contents of the
destination floating-point register(s) are undefined or are guaranteed to remain
unchanged.

251

254

45-V8–46-V8 Reserved.

47-
V8-
Cs20

t RDasr
RDasr instructions with rd in the range 28–31 are available for implementation-
dependent uses (impl. dep. #8-V8-Cs20). For an RDasr instruction with rs1 in the
range 28–31, the following are implementation dependent:
• the interpretation of bits 13:0 and 29:25 in the instruction
• whether the instruction is nonprivileged or privileged or hyperprivileged (impl.

dep. #9-V8-Cs20)
• whether an attempt to execute the instruction causes an illegal_instruction exception

300

48-
V8-
Cs20

t WRasr
WRasr instructions with rd in the range 26–31 are available for implementation-
dependent uses (impl. dep. #8-V8-Cs20). For a WRasr instruction with rd in the range
26–31, the following are implementation dependent:
• the interpretation of bits 18:0 in the instruction
• the operation(s) performed (for example, xor) to generate the value written to the

ASR
• whether the instruction is nonprivileged or privileged or hyperprivileged (impl.

dep. #9-V8-Cs20)
• whether an attempt to execute the instruction causes an illegal_instruction exception

370

49-V8–54-V8 Reserved.

TABLE B-1 SPARC V9 Implementation Dependencies (4 of 10)
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55-
V8-
Cs10

f Tininess detection
In SPARC V9, it is implementation-dependent whether “tininess” (an IEEE 754 term) is
detected before or after rounding. In all UltraSPARC Architecture implementations,
tininess is detected before rounding.

69

56–100 Reserved.

101-
V9-
CS10

Maximum trap level (MAXPTL, MAXTL)
The architectural parameter MAXPTL is a constant for each implementation; its legal
values are from 2 to 6 (supporting from 2 to 6 levels of saved trap state visible to
privileged software). In a typical implementation MAXPTL = MAXPGL (see impl. dep.
#401-S10).
The architectural parameter MAXTL is a constant for each implementation; its legal
values are from 3 to 7 (supporting from 3 to 7 levels of saved trap state).
Architecturally, MAXPTL must be ≥ 2, MAXTL must be ≥ 4, and MAXTL must be > MAXPTL.

99, 101

102-
V9

f Clean windows trap
An implementation may choose either to implement automatic “cleaning” of register
windows in hardware or to generate a clean_window trap, when needed, for
window(s) to be cleaned by software.

482

103-
V9-
Ms10

f Prefetch instructions
The following aspects of the PREFETCH and PREFETCHA instructions are
implementation dependent:
a: the attributes of the block of memory prefetched: its size (minimum = 64 bytes)

and its alignment (minimum = 64-byte alignment)
b: whether each defined prefetch variant is implemented (1) as a NOP, (2) with its

full semantics, or (3) with common-case prefetching semantics
c: whether and how variants 16, 18, 19 and 24–31 are implemented; if not

implemented, a variant must execute as a NOP

292

292, 295

297C

The following aspects of the PREFETCH and PREFETCHA instructions used to be (but
are no longer) implementation dependent:
d: while in nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), an attempt

to reference an ASI in the range 016..7F16 by a PREFETCHA instruction executes
as a NOP; specifically, it does not cause a privileged_action exception.

e: PREFETCH and PREFETCHA have no observable effect in privileged code
f: In UltraSPARC Architecture 2005, neither PREFETCH nor PREFETCHA can cause a

data_access_MMU_miss exception (because a Strong prefetch is treated the same
as a Weak prefetch)

g: while in privileged mode (PSTATE.priv = 1 and HPSTATE.hpriv = 0), an attempt to
reference an ASI in the range 3016..7F16 by a PREFETCHA instruction executes as a
NOP (specifically, it does not cause a privileged_action exception)

—

—
—

—
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104-
V9

a HVER.manuf
HVER.manuf contains a 16-bit semiconductor manufacturer code. This field is optional
and, if not present, reads as zero. VER.manuf may indicate the original supplier of a
second-sourced processor in cases involving mask-level second-sourcing. It is
intended that the contents of HVER.manuf track the JEDEC semiconductor
manufacturer code as closely as possible. If the manufacturer does not have a JEDEC
semiconductor manufacturer code, then SPARC International will assign a
HVER.manuf value.

108

105-
V9

f TICK register
a: If an accurate count cannot always be returned when TICK is read, any inaccuracy

should be small, bounded, and documented.
b: An implementation may implement fewer than 63 bits in TICK.counter; however,

the counter as implemented must be able to count for at least 10 years without
overflowing. Any upper bits not implemented must read as 0.

75

106-
V9

f IMPDEP2A instructions
The IMPDEP2A instructions are completely implementation dependent.
Implementation-dependent aspects include their operation, the interpretation of bits
29:25 and 18:0 in their encodings, and which (if any) exceptions they may cause.

236

107-
V9

f Unimplemented LDTW(A) trap
a: It is implementation dependent whether LDTW is implemented in hardware. If

not, an attempt to execute an LDTW instruction will cause an
unimplemented_LDTW exception.

b: It is implementation dependent whether LDTWA is implemented in hardware. If
not, an attempt to execute an LDTWA instruction will cause an
unimplemented_LDTW exception.

266

269

108-
V9

f Unimplemented STTW(A) trap
a: It is implementation dependent whether STTW is implemented in hardware. If not,

an attempt to execute an STTW instruction will cause an unimplemented_STTW
exception.

b: It is implementation dependent whether STDA is implemented in hardware. If not,
an attempt to execute an STTWA instruction will cause an unimplemented_STTW
exception.

346

349
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109-
V9-
Cs10

f LDDF(A)_mem_address_not_aligned
a: LDDF requires only word alignment. However, if the effective address is word-

aligned but not doubleword-aligned, an attempt to execute a valid (i = 1 or
instruction bits 12:5 = 0) LDDF instruction may cause an
LDDF_mem_address_not_aligned exception. In this case, the trap handler software
shall emulate the LDDF instruction and return.
(In an UltraSPARC Architecture processor, the LDDF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the LDDF
instruction)

114, 114,
250, 487

b: LDDFA requires only word alignment. However, if the effective address is word-
aligned but not doubleword-aligned, an attempt to execute a valid (i = 1 or
instruction bits 12:5 = 0) LDDFA instruction may cause an
LDDF_mem_address_not_aligned exception. In this case, the trap handler software
shall emulate the LDDFA instruction and return.
(In an UltraSPARC Architecture processor, the LDDF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the LDDFA
instruction)

253

110-
V9-
Cs10

f STDF(A)_mem_address_not_aligned
a: STDF requires only word alignment in memory. However, if the effective address is

word-aligned but not doubleword-aligned, an attempt to execute a valid (i = 1 or
instruction bits 12:5 = 0) STDF instruction may cause an
STDF_mem_address_not_aligned exception. In this case, the trap handler software
must emulate the STDF instruction and return.
(In an UltraSPARC Architecture processor, the STDF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the STDF
instruction)

114,
333, 489

b: STDFA requires only word alignment in memory. However, if the effective address
is word-aligned but not doubleword-aligned, an attempt to execute a valid (i = 1 or
instruction bits 12:5 = 0) STDFA instruction may cause an
STDF_mem_address_not_aligned exception. In this case, the trap handler software
must emulate the STDFA instruction and return.
(In an UltraSPARC Architecture processor, the STDF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the STDFA
instruction)

336
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111-
V9-
Cs10

f LDQF(A)_mem_address_not_aligned
a: LDQF requires only word alignment. However, if the effective address is word-

aligned but not quadword-aligned, an attempt to execute an LDQF instruction may
cause an LDQF_mem_address_not_aligned exception. In this case, the trap handler
software must emulate the LDQF instruction and return.
(In an UltraSPARC Architecture processor, the LDQF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the LDQF
instruction)
(this exception does not occur in hardware on UltraSPARC Architecture 2005
implementations, because they do not implement the LDQF instruction in
hardware)

115, 114,
250, 491

b: LDQFA requires only word alignment. However, if the effective address is word-
aligned but not quadword-aligned, an attempt to execute an LDQFA instruction
may cause an LDQF_mem_address_not_aligned exception. In this case, the trap
handler software must emulate the LDQF instruction and return.
(In an UltraSPARC Architecture processor, the LDQF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the LDQFA
instruction)
(this exception does not occur in hardware on UltraSPARC Architecture 2005
implementations, because they do not implement the LDQFA instruction in
hardware)

253

112-
V9-
Cs10

f STQF(A)_mem_address_not_aligned
a: STQF requires only word alignment in memory. However, if the effective address is

word aligned but not quadword aligned, an attempt to execute an STQF instruction
may cause an STQF_mem_address_not_aligned exception. In this case, the trap
handler software must emulate the STQF instruction and return.
(In an UltraSPARC Architecture processor, the STQF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the STQF
instruction)
(this exception does not occur in hardware on UltraSPARC Architecture 2005
implementations, because they do not implement the STQF instruction in
hardware)

115,
333, 491

b: STQFA requires only word alignment in memory. However, if the effective address
is word aligned but not quadword aligned, an attempt to execute an STQFA
instruction may cause an STQF_mem_address_not_aligned exception. In this case,
the trap handler software must emulate the STQFA instruction and return.
(In an UltraSPARC Architecture processor, the STQF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the STQFA
instruction)
(this exception does not occur in hardware on UltraSPARC Architecture 2005
implementations, because they do not implement the STQFA instruction in
hardware)

336

TABLE B-1 SPARC V9 Implementation Dependencies (8 of 10)

Nbr Category Description Page
576 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006



113-
V9-
Ms10

f Implemented memory models
Whether memory models represented by PSTATE.mm = 102 or 112 are supported in an
UltraSPARC Architecture processor is implementation dependent. If the 102 model is
supported, then when PSTATE.mm = 102 the implementation must correctly execute
software that adheres to the RMO model described in The SPARC Architecture Manual-
Version 9. If the 112 model is supported, its definition is implementation dependent.

95, 396

114-
V9-
Cs10

f RED_state trap vector address (RSTVADDR)
The RED_state trap vector is located at an address referred to as RSTVADDR. In thr
UltraSPARC Architecture, RSTVADDR is bound to the following address:

In an implementation that implements fewer than 64 bits of physical addressing,
unimplemented high-order bits of the above RSTVADDR are ignored.

455, 549

115-
V9

f RED_state
What occurs after the processor enters RED_state is implementation dependent.

443

116-
V9

f SIR_enable control flag
SPARC V9 states that the location of the SIR_enable control flag and the means by
which it is accessed are implementation dependent. In UltraSPARC Architecture
virtual processors, the SIR_enable control flag does not explicitly exist; the SIR
instruction always generated an illegal_instruction exception in nonprivileged and
privileged modes. SIR only causes a software_initiated_reset trap when executed in
hyperprivleged mode.

320

118-
V9

f Identifying I/O locations
The manner in which I/O locations are identified is implementation dependent.

388

119-
Ms10

f Unimplemented values for PSTATE.mm
The effect of an attempt to write an unsupported memory model designation into
PSTATE.mm is implementation dependent; however, it should never result in a value
of PSTATE.mm value greater than the one that was written. In the case of an
UltraSPARC Architecture implementation that only supports the TSO memory model,
PSTATE.mm always reads as zero and attempts to write to it are ignored.

96, 397

120-
V9

f Coherence and atomicity of memory operations
The coherence and atomicity of memory operations between virtual processors and
I/O DMA memory accesses are implementation dependent.

388

121-
V9

f Implementation-dependent memory model
An implementation may choose to identify certain addresses and use an
implementation-dependent memory model for references to them.

388

122-
V9

f FLUSH latency
The latency between the execution of FLUSH on one virtual processor and the point at
which the modified instructions have replaced outdated instructions in a
multiprocessor is implementation dependent.

186, 404

123-
V9

f Input/output (I/O) semantics
The semantic effect of accessing I/O registers is implementation dependent.

29
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TABLE B-2 provides a list of implementation dependencies that, in addition to those
in TABLE B-1, apply to UltraSPARC Architecture processors. Bold face indicates the
main page on which the implementation dependency is described. See Appendix C
in the Extensions Documents for further information.

124-
V9

v Implicit ASI when TL > 0
In SPARC V9, when TL > 0, the implicit ASI for instruction fetches, loads, and stores is
implementation dependent. In all UltraSPARC Architecture implementations, when
TL > 0, the implicit ASI for instruction fetches is ASI_NUCLEUS; loads and stores will
use ASI_NUCLEUS if PSTATE.cle = 0 or ASI_NUCLEUS_LITTLE if PSTATE.cle = 1.

391

125-
V9-
Cs10

f Address masking
(1) When PSTATE.am = 1, only the less-significant 32 bits of the PC register are stored
in the specified destination register(s) in CALL, JMPL, and RDPC instructions, while
the more-significant 32 bits of the destination registers(s) are set to 0.
((2) When PSTATE.am = 1, during a trap, only the less-significant 32 bits of the PC and
NPC are stored (respectively) to TPC[TL] and TNPC[TL]; the more-significant 32 bits
of TPC[TL] and TNPC[TL] are set to 0.

97, 97,
162, 239,
300, 472

126-
V9-
Ms10

Register Windows State registers width
Privileged registers CWP, CANSAVE, CANRESTORE, OTHERWIN, and CLEANWIN
contain values in the range 0 to N_REG_WINDOWS − 1. An attempt to write a value
greater than N_REG_WINDOWS − 1 to any of these registers causes an implementation-
dependent value between 0 and N_REG_WINDOWS − 1 (inclusive) to be written to the
register. Furthermore, an attempt to write a value greater than N_REG_WINDOWS − 2
violates the register window state definition in Register Window Management
Instructions on page 129.
Although the width of each of these five registers is architecturally 5 bits, the width is
implementation dependent and shall be between  log2(N_REG_WINDOWS) and 5 bits,
inclusive. If fewer than 5 bits are implemented, the unimplemented upper bits shall
read as 0 and writes to them shall have no effect. All five registers should have the
same width.
For UltraSPARC Architecture 2005 processors, N_REG_WINDOWS = 8. Therefore, each
register window state register is implemented with 3 bits, the maximum value for
CWP and CLEANWIN is 7, and the maximum value for CANSAVE, CANRESTORE,
and OTHERWIN is 6. When these registers are written by the WRPR instruction, bits
63:3 of the data written are ignored.

85

127–199 Reserved. —
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200–201 Reserved. —

202-U3 fast_ECC_error trap
Whether or not a fast_ECC_error trap exists is implementation dependent. If it does exist,
it indicates that an ECC error was detected in an external cache and its trap type is 07016.

491

203-U3-
Cs10

Dispatch Control register (DCR) bits 13:6 and 1
This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.
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204-U3-
CS10

DCR bits 5:3 and 0
This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.

205-U3-
Cs10

Instruction Trap Register
This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.

206-U3-
Cs10

SHUTDOWN instruction
On an UltraSPARC Architecture implementation executing in privileged or
hyperprivileged mode, SHUTDOWN behaves like a NOP.

318

207-U3 PCR register bits 47:32, 26:17, and 3
The values and semantics of bits 47:32, 26:17, and bit 3 of the PCR register are
implementation dependent.

78

208-U3 Ordering of errors captured in instruction execution
The order in which errors are captured in instruction execution is implementation
dependent. Ordering may be in program order or in order of detection.

—

209-U3 Software intervention after instruction-induced error
Precision of the trap to signal an instruction-induced error of which recovery requires
software intervention is implementation dependent.

—

210-U3 ERROR output signal
The following aspects of the ERROR output signal are implementation dependent in the
UltraSPARC Architecture:
• The causes of the ERROR signal
• Whether each of the causes of the ERROR signal, when it generates the ERROR signal,

halts the virtual processor or allows the virtual processor to continue running
• The exact semantics of the ERROR signal

—

211-U3 Error logging registers’ information
The information that the error logging registers preserves beyond the reset induced by an
ERROR signal is implementation dependent.

—

212-U3-
Cs10

Trap with fatal error
This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.

—

213-U3 AFSR.priv
The existence of the AFSR.priv bit is implementation dependent. If AFSR.priv is
implemented, it is implementation dependent whether the logged AFSR.priv indicates the
privileged state upon the detection of an error or upon the execution of an instruction that
induces the error. For the former implementation to be effective, operating software must
provide error barriers appropriately.

—

214-U3 Enable/disable control for deferred traps
Whether an implementation provides an enable/disable control feature for deferred traps
is implementation dependent.

—

215-U3 Error barrier
DONE and RETRY instructions may implicitly provide an error barrier function as
MEMBAR #Sync. Whether DONE and RETRY instructions provide an error barrier is
implementation dependent.

—
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216-U3 data_access_error trap precision
The precision of a data_access_error trap is implementation dependent.

—

217-U3 instruction_access_error trap precision
The precision of an instruction_access_error trap is implementation dependent.

—

218-U3-
Cs10

async_data_error
The async_data_error exception has been superseded by sw_recoverable_error, so this
implementation dependency no longer applies.

—

219-U3 Asynchronous Fault Address register (AFAR) allocation
Allocation of Asynchronous Fault Address register (AFAR) is implementation dependent.
There may be one instance or multiple instances of AFAR. Although the ASI for AFAR is
defined as 4D16, the virtual address of AFAR if there are multiple AFARs is implementation
dependent.

—

220-U3 Addition of logging and control registers for error handling
Whether the implementation supports additional logging and control registers for error
handling is implementation dependent.

—

221-U3 Special/signalling ECCs
The method to generate “special” or “signalling” ECCs and whether a processor ID is
embedded into the data associated with special/signalling ECCs is implementation
dependent.

—

223-U3 TLB multiple-hit detection
Whether TLB multiple-hit detection is supported in an UltraSPARC Architecture
implementation is implementation dependent.

—

225-U3 TLB locking of entries
The mechanism by which entries in TLB are locked is implementation dependent in
UltraSPARC Architecture implementations.

228-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

229-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.TSB
Base address generation
Whether the implementation generates the TSB Base address by exclusive-ORing the TSB
Base register and a TSB register or by taking the tsb_base field directly from a TSB register
is implementation dependent in UltraSPARC Architecture. This implementation
dependency existed for UltraSPARC III/IV, only to maintain compatibility with the TLB
miss handling software of UltraSPARC I/II.

—

230 Reserved. —

230-U3 data_access_exception trap
The causes of a data_access_exception trap are implementation dependent in UltraSPARC
Architecture 2005.

—

232-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

233-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —
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235-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

236-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.t —

237-U3 JMPL/RETURN mem_address_not_aligned
Whether the fault status and/or address (D-SFSR/D-SFAR) are is captured when a
mem_address_not_aligned trap occurs during a JMPL or RETURN instruction is
implementation dependent.

—

239-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.

240-U3-
Cs10

Reserved. —

241-U3 Address Masking and DSFAR
When PSTATE.am = 1 and an exception occurs, the value written to the more-significant 32
bits of the Data Synchronous Fault Address Register (DSFAR) is implementation
dependent.

97, 97

243-U3 This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

244-U3-
Cs10

Data Watchpoint Reliability
Data Watchpoint traps are completely implementation-dependent in UltraSPARC
Architecture processors.

—

245-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

246-U3 This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

247-U3 This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

248-U3 Conditions for fp_exception_other with unfinished_FPop
The conditions under which an fp_exception_other exception with floating-point trap type
of unfinished_FPop can occur are implementation dependent. An implementation may
cause fp_exception_other with unfinished_FPop under a different (but specified) set of
conditions.

65

249-U3-
Cs10

Data Watchpoint for Partial Store Instruction
For an STPARTIAL instruction, the following aspects of data watchpoints are
implementation dependent: (a) whether data watchpoint logic examines the byte store
mask in R[rs2] or it conservatively behaves as if every Partial Store always stores all 8
bytes, and (b) whether data watchpoint logic examines individual bits in the Virtual
(Physical) Data Watchpoint Mask in the LSU Control register to determine which bytes are
being watched or (when the Watchpoint Mask is nonzero) it conservatively behaves as if
all 8 bytes are being watched.

343
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250-U3-
Cs10

PCR accessibility when PSTATE.priv = 0
In an UltraSPARC Architecture implementation, PCR is never accessible to nonprivileged
software. Specifically, when a virtual processor is operating in nonprivileged mode
(PSTATE.priv = 0 and HPSTATE.HPRIV = 0), an attempt to access PCR (using an RDPCR or
a WRPCR instruction) results in a privileged_opcode exception.

78, 301,
371

251 Reserved.

252-U3-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

253-U3-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

254-U3-
Cs10

Means of exiting error_state
A virtual processor, upon entering error_state, automatically generates a
watchdog_reset (WDR).

444, 450,
477, 490,
548

257-U3 LDDFA with ASI C016–C516 or C816–CD16 and misaligned memory address
If an LDDFA opcode is used with an ASI of C016–C516 or C816–CD16 (Partial Store ASIs,
which are an illegal combination with LDDFA) and a memory address is specified with
less than 8-byte alignment, the virtual processor generates n exception. It is
implementation dependent whether the exception generated is data_access_exception,
mem_address_not_aligned, or LDDF_mem_address_not_aligned.

254

258-U3-
Cs10

ASI_SERIAL_ID
(This register is not defined in the UltraSPARC Architecture, so this implementation
dependency does not apply to UltraSPARC Architecture 2005.)

—

259–299 Reserved. —

300-U4-
Cs10

Attempted access to ASI registers with LDTWA
If an LDTWA instruction referencing a non-memory ASI is executed, it generates a
data_access_exception exception.

270

301-U4-
Cs10

Attempted access to ASI registers with STTWA
If an STTWA instruction referencing a non-memory ASI is executed, it generates a
data_access_exception exception.

349

302-U4-
Cs10

Scratchpad registers
An UltraSPARC Architecture processor includes eight privileged Scratchpad registers (64
bits each, read/write accessible).

431

303-U4-
CS10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

304-U4-
Cs10

XIR
XIR affects only the virtual processors identified in the XIR_STEERING register (not a
whole system).

547

305-U4-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —
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306-U4-
Cs10

Trap type generated upon attempted access to noncacheable page with LDTXA
When an LDTXA instruction attempts access from an address that is not mapped to
cacheable memory space, a data_access_exception exception is generated.

264

307-U4-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

308-U3-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

309-U4-
Cs10

Reserved. —

311–319 Reserved.

Strand Interrupt ID register
Whether any portion of the int_id field of the Strand Interrupt ID register is read-only is
implementation dependent.

521

321-U4 This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.

322-U4 Power used by CMT
Whether disabling a virtual processor reduces the power used by a CMT processor is
implementation dependent.

523

323-U4 Updating Strand Enable Register
Whether an implementation provides a restriction that prevents software from writing a
value of all zeroes (or zeroes corresponding to all available virtual processors) to the
STRAND_ENABLE register is implementation dependent. This restriction avoids the
dangerous case where all virtual processors become disabled and the only way to enable
any virtual processor is a hard power_on_reset (a warm reset would not suffice). If such a
restriction is implemented and software running on any virtual processor attempts to write
a value of all zeroes (or zeroes corresponding to all available virtual processors) to the
STRAND_ENABLE register, hardware forces the STRAND_ENABLE register to an
implementation-dependent value which enables at least one of the available virtual
processors.

525

324-U4 Parking a virtual processor
Whether parking a virtual processor reduces the power used by a CMT processor is
implementation dependent.

527

325-U4 XIR Steering register (XIR Reset)
a: Whether XIR_STEERING{n} is a read-only bit or a read/write bit is implementation
dependent. If XIR_STEERING{n} is read-only, then (1) writes to XIR_STEERING{n} are
ignored and (2) XIR_STEERING{n} is set to 1 if virtual processor n is available and to 0 if
it is not available (that is, XIR_STEERING{n} reads the same as STRAND_AVAILABLE{n}.
b: If XIR_STEERING{n} is read/write, upon de-assertion of reset the value of
STRAND_AVAILABLE{n} is copied to XIR_STEERING{n} for all UltraSPARC Architecture
implementations.

534

535, 552

326-U4-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

327–399 Reserved
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400-S10 Global Level register (GL) implementation
Although GL is defined as a 4-bit register, an implementation may implement any subset
of those bits sufficient to encode the values from 0 to MAXGL for that implementation. If
any bits of GL are not implemented, they read as zero and writes to them are ignored.

102

401-S10 Maximum Global Level (MAXPGL, MAXGL)
The architectural parameter MAXPGL is a constant for each implementation; its legal values
are from 2 to 15 (supporting from 3 to 16 sets of global registers visible to privileged
software). In a typical implementation MAXPGL = MAXPTL (see impl. dep. #101-V9-CS10).
The architectural parameter MAXGL is a constant for each implementation; its legal values
are from 4 to 15 (supporting from 5 to 16 sets of global registers).
Architecturally, MAXPTL must be ≥ 2 and MAXGL must be > MAXPGL.

99, 101

402-S10 Priority of internal_processor_error
The trap priority of the internal_processor_error exception is implementation dependent.
Furthermore, its priority may vary within an implementation, based on the cause of the
error being reported.

464, 468,
487

403-S10 Setting of “dirty” bits in FPRS
A “dirty” bit (du or dl) in the FPRS register must be set to ‘1’ if any of its corresponding F
registers is actually modified. The specific conditions under which a dirty bit is set are
implementation dependent.

77, 77

404-S10 Privileged Scratchpad registers 4 through 7
The degree to which Scratchpad registers 4–7 are accessible to privileged software is
implementation dependent. Each may be (1) fully accessible, (2) accessible, with access
much slower than to scratchpad register 0–3(emulated by trap to hyperprivileged
software), or (3) inaccessible (cause a data_access_exception exception).

431

405-S10 Virtual address range
An UltraSPARC Architecture implementation may support a full 64-bit virtual address
space or a more limited range of virtual addresses. In an implementation that does support
a full 64-bit virtual address space, the supported range of virtual addresses is restricted to
two equal-sized ranges at the extreme upper and lower ends of 64-bit addresses; that is, for
n-bit virtual addresses, the valid address ranges are 0 to 2n−1 − 1 and 264 − 2n−1 to 264 − 1.

28

406-S10 HTBA high-order bits
It is implementation dependent whether all 50 bits of HTBA{63:14} are implemented or if
only bits n-1:0 are implemented. If the latter, writes to bits 63:n are ignored and when
HTBA is read, bits 63:n read as sign-extended copies of the most significant implemented
bit, HTBA{n − 1}.

107

407-S10 Hyperprivileged Scratchpad register aliasing
It is implementation dependent whether any of the hyperprivileged Scratchpad registers
are aliased to the corresponding privileged Scratchpad register or is an independent
register.

432

408-S10 HPSTATE bit 11
The contents and semantics of HPSTATE{11} are implementation dependent.

104
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409-S10-
Cs20

FLUSH instruction and memory consistency
The implementation of the FLUSH instruction is implementation dependent.
If the implementation automatically maintains consistency between instruction and data
memory,
(1) the FLUSH address is ignored and
(2) the FLUSH instruction cannot cause any data access exceptions, because its effective

address operand is not translated or used by the MMU.
On the other hand, if the implementation does not maintain consistency between
instruction and data memory, the FLUSH address is used to access the MMU and the
FLUSH instruction can cause data access exceptions.

187, 188,
189

410-S10 Block Load behavior
The following aspects of the behavior of block load (LDBLOCKF) instructions are
implementation dependent:
• What memory ordering model is used by LDBLOCKF (LDBLOCKF is not required to

follow TSO memory ordering)
• Whether LDBLOCKF follows memory ordering with respect to stores (including block

stores), including whether the virtual processor detects read-after-write and write-after-
read hazards to overlapping addresses

• Whether LDBLOCKF appears to execute out of order, or follow LoadLoad ordering
(with respect to older loads, younger loads, and other LDBLOCKFs)

• Whether LDBLOCKF follows register-dependency interlocks, as do ordinary load
instructions

• Whether LDBLOCKFs to non-cacheable locations are (a) strictly ordered, (b) not strictly
ordered and cause an illegal_instruction exception, or (c) not strictly ordered and silently
execute without causing an exception (option (c) is strongly discouraged)

246

• Whether the MMU ignores the side-effect bit (TTE.e) for LDBLOCKF accesses
(in which case, LDBLOCKFs behave as if TTE.e = 0)

388

• Whether VA_watchpoint exceptions are recognized on accesses to all 64 bytes of a
LDBLOCKF (the recommended behavior), or only on accesses to the first eight bytes

247, 247
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411-S10 Block Store behavior
The following aspects of the behavior of block store (STBLOCKF) instructions are
implementation dependent:
• The memory ordering model that STBLOCKF follows (other than as constrained by the

rules outlined on page 330).
• Whether VA_watchpoint exceptions are recognized on accesses to all 64 bytes of a

STBLOCKF (the recommended behavior), or only on accesses to the first eight bytes.
• Whether STBLOCKFs to non-cacheable (TTE.cp = 0) pages execute in strict program

order or not. If not, a STBLOCKF to a non-cacheable page causes an illegal_instruction
exception.

• Whether STBLOCKF follows register dependency interlocks (as ordinary stores do).
• Whether a non-Commit STBLOCKF forces the data to be written to memory and

invalidates copies in all caches present (as the Commit variants of STBLOCKF do).

330, 330

• Whether the MMU ignores the side-effect bit (TTE.e) for STBLOCKF accesses
(in which case, STBLOCKFs behave as if TTE.e = 0)

388

• Any other restrictions on the behavior of STBLOCKF, as described in implementation-
specific documentation.

412-S10 MEMBAR behavior
An UltraSPARC Architecture implementation may define the operation of each MEMBAR
variant in any manner that provides the required semantics.

273

413-S10 Load Twin Extended Word behavior
It is implementation dependent whether VA_watchpoint exceptions are recognized on
accesses to all 16 bytes of a LDTXA instruction (the recommended behavior) or only on
accesses to the first 8 bytes.

264

414 Reserved. —

417-S10 Behavior of DONE and RETRY when TSTATE[TL].pstate.am = 1
If (1) TSTATE[TL].pstate.am = 1 and (2) a DONE or RETRY instruction is executed (which
sets PSTATE.am to ’1’ by restoring the value from TSTATE[TL].pstate.am to PSTATE.am),
it is implementation dependent whether the DONE or RETRY instruction masks (zeroes)
the more-significant 32 bits of the values it places into PC and NPC.

98, 167309

418 —— unsused —— ,

419-S10 Contents of TPC[TL], TNPC[TL], TSTATE[TL], and HTSTATE[TL] after a Warm Reset
(WMR)
It is implementation dependent whether, after a Warm Reset (WMR), the contents of
TPC[TL], TNPC[TL], TSTATE[TL], and HTSTATE[TL] are unchanged from their values
before the WMR, or are contain the same values saved as during a WDR, XIR, or SIR reset.
(The latter implementation is the preferred one.)

551
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420-S10 Implementation Dependent Aspects of a Warm Reset (WMR)
The following aspects of Warm Reset (WMR) are implemenation dependent:
(a) by what means WMR can be applied (for example, write to reset register or assertion/
deassertion of an input pin)
(b) the extent to which a processor is reset by WMR (for example, single physical core,
entire processor (chip), and how the on-chip memory system is affected),
(c) by what means hyperprivileged software can distinguish between WMR and POR
resets

547

421-S10 Interrupt Queue Head and Tail Register Contents
It is implementation dependent whether interrupt queue head and tail registers (a) are
datatype-agnostic “scratch registers” used for communication between privileged and
hyperprivileged software, in which case their contents are defined purely by software
convention, or (b) are maintained to some degree by virtual processor hardware, imposing
a fixed meaning on their contents.

498

422-S10 Interrupt Queue Tail Register Writability
It is implementation dependent whether tail registers are writable in privileged mode. If
a tail register is read-only in privileged mode, an attempt to write to it causes a
data_access_exception exception. If a tail register is writable in privileged mode, an
attempt to write to it results in undefined behavior.

499, 499

423-S10 Performance Impact of Disabling a Virtual Processor
Whether disabling a virtual processor increases the performance of other virtual processors
in the CMT is implementation dependent.

523

424-S10 Ability to Dynamically Enable/Disable a Virtual Processor
Whether a CMT implementation provides the ability to dynamically enable and disable
virtual processors is implementation dependent. It is tightly coupled to the underlying
microarchitecture of a specific CMT implementation. This feature is implementation
dependent because any implementation-independent interface would be too inefficient on
some implementations.

526

425-S10 TICK Register Counting While a Virtual Processor is Parked
It is implementation dependent whether the TICK register continues to count

while a virtual processor is parked.

526

426-S10 Performance Impact of Parking a Virtual Processor
The degree to which parking a virtual processor impacts the performance of other virtual
processors is implementation dependent.

527

427-S10 Latency to Park or Unpark a aVirtual Processor
There may be an arbitrarily long, but bounded, delay (“skid”) from the time when a virtual
processor is directed to park or unpark (via an update to the STRAND_RUNNING register)
until the corresponding virtual processor(s) actually park or unpark.

527, 530

428-S10 Method by Which Self-Parking is Assured
When a virtual processor writes to the STRAND_RUNNING register to park itself, the
method by which completion of parking is assured (instructions stop being issued) is
implementation dependent.

528
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429-S10 Which Virtual Processor is Automatically Unparked
If an update to the STRAND_RUNNING register would cause all enabled virtual

processors to become parked, it is implementation dependent which virtual processor is
automatically unparked by hardware. The preferred implementation is that when an
update to the STRAND_RUNNING register (STXA instruction) would cause all virtual
processors to become parked, hardware silently ignores (discards) that STXA instruction.

529

430-S10 Parking All But One Virtual Processor in a Multiprocessor Configuration
In a multi‘fio
configuration, whether all but one virtual processor can be parked is implementation

dependent.

530

431-S10 Criteria for Completion of Park/Unpark
The criteria used for determining whether a virtual processor is fully parked
(corresponding bit set to ‘1’ in the STRAND_RUNNING_STATUS register) are
implementation dependent.

531

432-S10 Standby/Wait state
Whether an implementation implements a Standby (or Wait) state for virtual processors,
how that state is controlled, and how that state is observed are implementation-dependent.

531

433-S10 Partial-Processor Reset Subsetting Mechanism
A mechanism must exist to specify which subset of virtual processors in a processor
should be reset when a partial-processor reset (for example, XIR) occurs. The specific
mechanism is implementation-dependent.

533

434-S10 Error Steering Register(s)
Because of the range of implementation, the number of, organization of, and ASI
assignments for error steering registers in a CMT processor are implementation dependent.

536

435-S10 Error Steering Register Alternatives
Although the ERROR_STEERING register is the recommended mechanism for steering
non-virtual-processor-specific errors to a virtual processor for handling, the actual
mechanism used in a given implementation is implementation dependent.

538

436-S10 Error Steering Register
The width of the target_id field of the ERROR_STEERING register is implementation
dependent.

539

437-S10 Error Steering Register targetid Field Plurality
An implementation may provide multiple target_id fields in an ERROR_STEERING
register for different types of non-virtual-processor-specific errors.

539

438-S10 Non-Virtual Processor-Specific Errors in Shared Resources
It is implementation dependent whether the error-reporting structures for errors in shared
resources appear within a virtual processor in per-virtual-processor registers or are
contained within shared registers associated with the shared structures in which the errors
may occur.

539

TABLE B-2 UltraSPARC Architecture Implementation Dependencies (11 of 12)

Nbr Description Page
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439-S10 Exception Generated for Each Non-Virtual Processor-Specific Error
The type of exception generated in a virtual processor to handle each type of non-virtual-
processor-specific error is implementation dependent. A virtual processor can choose to
use the same exceptions used for corresponding virtual-processor-specific asynchronous
errors or it can choose to generate different exceptions.

539

440-S10 Which Virtual Processor Unparked During Power-on-Reset (POR)
Which virtual processor is unparked during POR and whether it is unparked by processor
hardware or by a service processor is implementation dependent. Conventionally, the
virtual processor with the lowest-numbered strand_id is unparked

541

441–449 Reserved for UltraSPARC Architecture 2005

450-499 Reserved for UltraSPARC Architecture 2006

451
and up

Reserved.

TABLE B-2 UltraSPARC Architecture Implementation Dependencies (12 of 12)

Nbr Description Page
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APPENDIX C

Assembly Language Syntax

This appendix supports Chapter 7, Instructions. Each instruction description in
Chapter 7 includes a table that describes the suggested assembly language format
for that instruction. This appendix describes the notation used in those assembly
language syntax descriptions and lists some synthetic instructions provided by
UltraSPARC Architecture assemblers for the convenience of assembly language
programmers.

The appendix contains these sections:

■ Notation Used on page 591.
■ Syntax Design on page 598.
■ Synthetic Instructions on page 598.

C.1 Notation Used
The notations defined here are also used in the assembly language syntax
descriptions in Chapter 7, Instructions.

Items in typewriter font are literals to be written exactly as they appear. Items
in italic font are metasymbols that are to be replaced by numeric or symbolic values
in actual SPARC V9 assembly language code. For example, “imm_asi” would be
replaced by a number in the range 0 to 255 (the value of the imm_asi bits in the
binary instruction) or by a symbol bound to such a number.

Note: This chapter is undergoing final review; please check
back later for a copy of UltraSPARC Architecture
2005 containing the final version of this chapter.
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Subscripts on metasymbols further identify the placement of the operand in the
generated binary instruction. For example, regrs2 is a reg (register name) whose
binary value will be placed in the rs2 field of the resulting instruction.

C.1.1 Register Names

reg. A reg is an integer register name. It can have any of the following values:1

%r0–%r31
%g0–%g7 (global registers; same as %r0–%r7)
%o0–%o7 (out registers; same as %r8–%r15)
%l0–%l7 (local registers; same as %r16–%r23)
%i0–%i7 (in registers; same as %r24–%r31)
%fp (frame pointer; conventionally same as %i6)
%sp (stack pointer; conventionally same as %o6)

Subscripts identify the placement of the operand in the binary instruction as one of
the following:

regrs1 (rs1 field)
regrs2 (rs2 field)
regrd (rd field)

freg. An freg is a floating-point register name. It may have the following values:
%f0, %f1, %f2–%f63

See Floating-Point Registers on page 55.

Subscripts further identify the placement of the operand in the binary instruction as
one of the following:

fregrs1 (rs1 field)
fregrs2 (rs2 field)
fregrs3 (rs3 field)
fregrd (rd field)

asr_reg. An asr_reg is an Ancillary State Register name. It may have one of the
following values:

%asr16–%asr31

Subscripts further identify the placement of the operand in the binary instruction as
one of the following:

asr_regrs1 (rs1 field)
asr_regrd (rd field)

1. In actual usage, the %sp, %fp, %gn, %on, %ln, and %in forms are preferred over %rn.
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i_or_x_cc. An i_or_x_cc specifies a set of integer condition codes, those based on
either the 32-bit result of an operation (icc) or on the full 64-bit result (xcc). It may
have either of the following values:

%icc
%xcc

fccn. An fccn specifies a set of floating-point condition codes. It can have any of
the following values:

%fcc0
%fcc1
%fcc2
%fcc3

C.1.2 Special Symbol Names
Certain special symbols appear in the syntax table in typewriter font. They must be
written exactly as they are shown, including the leading percent sign (%).

The symbol names and the registers or operators to which they refer are as follows:

%asi Address Space Identifier (ASI) register
%canrestore Restorable Windows register
%cansave Savable Windows register
%ccr Condition Codes register
%cleanwin Clean Windows register
%cwp Current Window Pointer (CWP) register
%fprs Floating-Point Registers State (FPRS) register
%fsr Floating-Point State register
%gsr General Status Register (GSR)
%hintp Hyperprivileged Interrupt Pending (HINTP) register
%hpstate Hyperprivileged State (HSTATE) register
%hstick Hyperprivileged System Timer (HSTICK) register
%hstick_cmpr Hyperprivileged System Tick Compare (HSTICK_CMPR)

register
%htba Hyperprivileged Trap Base Address (HTBA) register
%htstate Hyperprivileged Trap State (HTSTATE) register
%hver Hyperprivileged Version (HVER) register
%otherwin Other Windows (OTHERWIN) register
%pc Program Counter (PC) register
%pcr Performance Control Register (PCR)
%pic Performance Instrumentation Counters
%pil Processor Interrupt Level register
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%pstate Processor State register
%softint Soft Interrupt register
%softint_clr Soft Interrupt register (clear selected bits)
%softint_set Soft Interrupt register (set selected bits)
%sys_tick System Timer (STICK) register
%sys_tick_cmpr System Timer Compare (STICK_CMPR) register
%tba Trap Base Address (TBA) register
%tick Cycle count (TICK) register
%tick_cmpr Timer Compare (TICK_CMPR) register
%tl Trap Level (TL) register
%tnpc Trap Next Program Counter (TNPC) register
%tpc Trap Program Counter (TPC) register
%tstate Trap State (TSTATE) register
%tt Trap Type (TT) register
%wstate Window State register
%y Y register

The following special symbol names are unary operators that perform the functions
described:

%uhi Extracts bits 63:42 (high 22 bits of upper word) of its operand
%ulo or %hm Extracts bits 41:32 (low-order 10 bits of upper word) of its

operand
%hi or %lm Extracts bits 31:10 (high-order 22 bits of low-order word) of

its operand
%lo Extracts bits 9:0 (low-order 10 bits) of its operand

Certain predefined value names appear in the syntax table in typewriter font.
They must be written exactly as they are shown, including the leading sharp sign
(#). The value names and the constant values to which they are bound are listed in
TABLE C-1.

TABLE C-1 Value Names and Values (1 of 2)

Value Name in Assembly Language Value Comments

for PREFETCH instruction “fcn” field

#n_reads 0

#one_read 1

#n_writes 2

#one_write 3

#page 4

#unified 17 (1116)
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C.1.3 Values
Some instructions use operand values as follows:

const4 A constant that can be represented in 4 bits
const22 A constant that can be represented in 22 bits
imm_asi An alternate address space identifier (0–255)
siam_mode A 3-bit mode value for the SIAM instruction
simm7 A signed immediate constant that can be represented in 7 bits
simm8 A signed immediate constant that can be represented in 8 bits
simm10 A signed immediate constant that can be represented in 10 bits
simm11 A signed immediate constant that can be represented in 11 bits
simm13 A signed immediate constant that can be represented in 13 bits
value Any 64-bit value
shcnt32 A shift count from 0–31
shcnt64 A shift count from 0–63

#n_reads_strong 20 (1416)

#one_read_strong 21 (1516)

#n_writes_strong 22 (1616)

#one_write_strong 23 (1716)

for MEMBAR instruction “mmask” field

#LoadLoad 0116

#StoreLoad 0216

#LoadStore 0416

for MEMBAR instruction “cmask” field

#StoreStore 0816

#Lookaside 1016

#MemIssue 2016

#Sync 4016

TABLE C-1 Value Names and Values (2 of 2)

Value Name in Assembly Language Value Comments
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C.1.4 Labels
A label is a sequence of characters that comprises alphabetic letters (a–z, A–Z [with
upper and lower case distinct]), underscores (_), dollar signs ($), periods (.), and
decimal digits (0-9). A label may contain decimal digits, but it may not begin with
one. A local label contains digits only.

C.1.5 Other Operand Syntax
Some instructions allow several operand syntaxes, as follows:

reg_plus_imm Can be any of the following:

regrs1 (equivalent to regrs1 + %g0)
regrs1 + simm13
regrs1 – simm13
simm13 (equivalent to %g0 + simm13)
simm13 + regrs1(equivalent to regrs1 + simm13)

address Can be any of the following:

regrs1 (equivalent to regrs1 + %g0)
regrs1 + simm13
regrs1 – simm13
simm13 (equivalent to %g0 + simm13)
simm13 + regrs1(equivalent to regrs1 + simm13)
regrs1 + regrs2

membar_mask Is the following:

const7 A constant that can be represented in 7 bits. Typically, this is an
expression involving the logical OR of some combination of
#Lookaside, #MemIssue, #Sync, #StoreStore, #LoadStore,
#StoreLoad, and #LoadLoad.

prefetch_fcn (prefetch function) Can be any of the following:

#n_reads
#one_read

#n_writes
#one_write

#page
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0–31

regaddr (register-only address) Can be any of the following:

regrs1 (equivalent to regrs1 + %g0)
regrs1 + regrs2

reg_or_imm (register or immediate value) Can be either of:

regrs2
simm13

reg_or_imm10 (register or immediate value) Can be either of:

regrs2
simm10

reg_or_imm11 (register or immediate value) Can be either of:

regrs2
simm11

reg_or_shcnt (register or shift count value) Can be any of:

regrs2
shcnt32
shcnt64

software_trap_number Can be any of the following:

regrs1 (equivalent to regrs1 + %g0)
regrs1 + regrs2

regrs1 + simm8
regrs1 – simm8
simm8 (equivalent to %g0 + simm8)
simm8 + regrs1 (equivalent to regrs1 + simm8)

The resulting operand value (software trap number) must be in the range 0–255,
inclusive.
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C.1.6 Comments
Two types of comments are accepted by the SPARC V9 assembler: C-style “/*...*/
” comments, which may span multiple lines, and “!...” comments, which extend
from the “!” to the end of the line.

C.2 Syntax Design
The SPARC V9 assembly language syntax is designed so that the following
statements are true:

■ The destination operand (if any) is consistently specified as the last (rightmost)
operand in an assembly language instruction.

■ A reference to the contents of a memory location (in a Load, Store, CASA, CASXA,
LDSTUB[A], or SWAP[A] instruction) is always indicated by square brackets ([] );
a reference to the address of a memory location (such as in a JMPL, CALL, or
SETHI) is specified directly, without square brackets.

C.3 Synthetic Instructions
TABLE C-2 describes the mapping of a set of synthetic (or “pseudo”) instructions to
actual instructions. These synthetic instructions are provided by the SPARC V9
assembler for the convenience of assembly language programmers.

Note: Synthetic instructions should not be confused with “pseudo ops,” which
typically provide information to the assembler but do not generate instructions.
Synthetic instructions always generate instructions; they provide more mnemonic
syntax for standard SPARC V9 instructions.

TABLE C-2 Mapping Synthetic to SPARC V9 Instructions (1 of 3)

Synthetic Instruction SPARC V9 Instruction(s) Comment

cmp regrs1, reg_or_imm subcc regrs1, reg_or_imm, %g0 Compare.

jmp address jmpl address, %g0

call address jmpl address, %o7

iprefetch label bn,a,pt %xcc,label Instruction prefetch.

tst regrs1 orcc %g0, regrs1, %g0 Test.

ret jmpl %i7+8, %g0 Return from subroutine.

retl jmpl %o7+8, %g0 Return from leaf subroutine.
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restore restore %g0, %g0, %g0 Trivial RESTORE.

save save %g0, %g0, %g0 Trivial SAVE.
(Warning: trivial SAVE should
only be used in kernel code!)

setuw value,regrd sethi %hi(value), regrd (When ((value&3FF16) == 0).)

— or —

or %g0, value, regrd (When 0 ≤ value ≤ 4095).

— or —

sethi %hi(value), regrd; (Otherwise)

or regrd, %lo(value), regrd Warning: do not use setuw in
the delay slot of a DCTI.

set value,regrd synonym for setuw.

setsw value,regrd sethi %hi(value), regrd (When (value> = 0) and
((value & 3FF16) == 0).)

— or —

or %g0, value, regrd (When 4096 ≤ value ≤ 4095).

— or —

sethi %hi(value), regrd (Otherwise, if (value < 0) and
((value & 3FF16) = = 0))

sra regrd, %g0, regrd

— or —

sethi %hi(value), regrd; (Otherwise, if value 0)

or regrd, %lo(value), regrd

— or —

sethi %hi(value), regrd; (Otherwise, if value < 0)

or regrd, %lo(value), regrd

sra regrd, %g0, regrd Warning: do not use setsw in
the delay slot of a CTI.

setx value, reg, regrd sethi %uhi(value), reg Create 64-bit constant.

or reg, %ulo(value), reg (“reg” is used as a temporary
register.)sllx reg,32,reg

sethi %hi(value), regrd Note: setx optimizations are
possible but not enumerated
here. The worst case is shown.
Warning: do not use setx in the
delay slot of a CTI.

or regrd, reg, regrd

or regrd, %lo(value), regrd

signx regrs1, regrd sra regrs1, %g0, regrd Sign-extend 32-bit value to
64 bits.signx regrd sra regrd, %g0, regrd

not regrs1, regrd xnor regrs1, %g0, regrd One’s complement.

not regrd xnor regrd, %g0, regrd One’s complement.

TABLE C-2 Mapping Synthetic to SPARC V9 Instructions (2 of 3)

Synthetic Instruction SPARC V9 Instruction(s) Comment
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neg regrs2, regrd sub %g0, regrs2, regrd Two’s complement.

neg regrd sub %g0, regrd, regrd Two’s complement.

cas [regrs1], regrs2, regrd casa [regrs1]#ASI_P, regrs2, regrd Compare and swap.

casl [regrs1], regrs2, regrd casa [regrs1]#ASI_P_L, regrs2, regrd Compare and swap, little-endian.

casx [regrs1], regrs2, regrd casxa [regrs1]#ASI_P, regrs2, regrd Compare and swap extended.

casxl [regrs1], regrs2, regrd casxa [regrs1]#ASI_P_L, regrs2, regrd Compare and swap extended,
little-endian.

inc regrd add regrd, 1, regrd Increment by 1.

inc const13,regrd add regrd, const13, regrd Increment by const13.

inccc regrd addcc regrd, 1, regrd Increment by 1; set icc & xcc.

inccc const13,regrd addcc regrd, const13, regrd Incr by const13; set icc & xcc.

dec regrd sub regrd, 1, regrd Decrement by 1.

dec const13, regrd sub regrd, const13, regrd Decrement by const13.

decc regrd subcc regrd, 1, regrd Decrement by 1; set icc & xcc.

deccc const13, regrd subcc regrd, const13, regrd Decr by const13; set icc & xcc.

btst reg_or_imm, regrs1 andcc regrs1, reg_or_imm, %g0 Bit test.

bset reg_or_imm, regrd or regrd, reg_or_imm, regrd Bit set.

bclr reg_or_imm, regrd andn regrd, reg_or_imm, regrd Bit clear.

btog reg_or_imm, regrd xor regrd, reg_or_imm, regrd Bit toggle.

clr regrd or %g0, %g0, regrd Clear (zero) register.

clrb [address] stb %g0, [address] Clear byte.

clrh [address] sth %g0, [address] Clear half-word.

clr [address] stw %g0, [address] Clear word.

clrx [address] stx %g0, [address] Clear extended word.

clruw regrs1, regrd srl regrs1, %g0, regrd Copy and clear upper word.

clruw regrd srl regrd, %g0, regrd Clear upper word.

mov reg_or_imm, regrd or %g0, reg_or_imm, regrd

mov %y, regrd rd %y, regrd

mov %asrn, regrd rd %asrn, regrd

mov reg_or_imm, %y wr %g0, reg_or_imm, %y

mov reg_or_imm, %asrn wr %g0, reg_or_imm, %asrn

TABLE C-2 Mapping Synthetic to SPARC V9 Instructions (3 of 3)

Synthetic Instruction SPARC V9 Instruction(s) Comment
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Index
A
a (annul) instruction field

branch instructions, 154, 155, 157, 160, 175, 177
accesses

cacheable, 387
I/O, 387
restricted ASI, 391
with side effects, 387, 398

accrued exception (aexc) field of FSR register, 66,
452, 570

ADD instruction, 146
ADDC instruction, 146
ADDcc instruction, 146, 322
ADDCcc instruction, 146
address

aliasing, 505
operand syntax, 596
space identifier (ASI), 407

address mask (am) field of PSTATE register
description, 96

address space, 22
address space identifier (ASI), 386

appended to memory address, 27, 112
architecturally specified, 391
bypass, 8, 408
bypassing, 97
changed in, 433
changed in UA

ASI_LD_TWINX_NUCLEUS_LITTLE, 433
ASI_LD_TWINX_REAL_LITTLE, 433
ASI_LDTX_N, 433
ASI_LDTX_NL, 433
ASI_LDTX_REAL, 433

ASI_LDTX_REAL_L, 433
ASI_QUAD_LDD_REAL, 433
ASI_REAL, 433
ASI_REAL_IO, 433
ASI_REAL_IO_LITTLE, 433
ASI_REAL_LITTLE, 433

definition, 7
encoding address space information, 113
explicit, 120
explicitly specified in instruction, 120
implicit, See implicit ASIs
nontranslating, 13, 270, 349
nontranslating ASIs, 408
with prefetch instructions, 292
restricted, 391, 407

hyperprivileged, 392
privileged, 392

restriction indicator, 74
SPARC V9 address, 389
translating ASIs, 408
unrestricted, 392, 407

address space identifier (ASI) register
for load/store alternate instructions, 74
address for explicit ASI, 120
and LDDA instruction, 252, 268
and LDSTUBA instruction, 261
load integer from alternate space

instructions, 242
with prefetch instructions, 292
for register-immediate addressing, 392
restoring saved state, 166, 309
saving state, 437
and STDA instruction, 348
store floating-point into alternate space
i



instructions, 335
store integer to alternate space instructions, 324
and SWAPA instruction, 353
after trap, 32
and TSTATE register, 92
and write state register instructions, 370

addressing modes, 22
ADDX instruction (SPARC V8), 146
ADDXcc instruction (SPARC V8), 146
AFAR, See Asynchronous Fault Address register

(AFAR)
AFSR, See Asynchronous Fault Status register

(AFSR)
alias

floating-point registers, 55
aliased, 7
ALIGNADDRESS instruction, 147
ALIGNADDRESS_LITTLE instruction, 147
alignment

data (load/store), 28, 114, 389
doubleword, 28, 114, 389
extended-word, 114
halfword, 28, 114, 389
instructions, 28, 114, 389
integer registers, 267, 269
memory, 389, 487
quadword, 28, 114, 389
word, 28, 114, 389

ALLCLEAN instruction, 148
alternate space instructions, 29, 74
ancillary state registers (ASRs)

access, 70
assembly language syntax, 592
I/O register access, 29
possible registers included, 300, 371
privileged, 31, 570
reading/writing implementation-dependent

processor registers, 31, 570
writing to, 370

AND instruction, 149
ANDcc instruction, 149
ANDN instruction, 149
ANDNcc instruction, 149
annul bit

in branch instructions, 160
in conditional branches, 175

annulled branches, 160
application program, 7, 70
architectural direction note, 5

architecture, meaning for SPARC V9, 21
arithmetic overflow, 73
ARRAY16 instruction, 150
ARRAY32 instruction, 150
ARRAY8 instruction, 150
ASI

invalid, and data_access_exception, 483
ASI register, 70
ASI, See address space identifier (ASI)
ASI_*REAL* ASIs, 390
ASI_AIPN, 428
ASI_AIPN_L, 428
ASI_AIPP, 428
ASI_AIPP_L, 428
ASI_AIPS, 428
ASI_AIPS_L, 428
ASI_AIUP, 410, 423
ASI_AIUPL, 410, 424
ASI_AIUS, 410, 423
ASI_AIUS_L, 263
ASI_AIUSL, 410, 424
ASI_AS_IF_PRIV_NUCLEUS, 428
ASI_AS_IF_PRIV_NUCLEUS_LITTLE, 428
ASI_AS_IF_PRIV_PRIMARY, 428
ASI_AS_IF_PRIV_PRIMARY_LITTLE, 428
ASI_AS_IF_PRIV_SECONDARY, 428
ASI_AS_IF_PRIV_SECONDARY_LITTLE, 428
ASI_AS_IF_USER*, 97, 389, 390
ASI_AS_IF_USER* ASIs, 389
ASI_AS_IF_USER_NONFAULT_LITTLE, 393
ASI_AS_IF_USER_PRIMARY, 410, 423, 490
ASI_AS_IF_USER_PRIMARY_LITTLE, 392, 410,

424, 482
ASI_AS_IF_USER_SECONDARY, 392, 410, 423,

482, 490
ASI_AS_IF_USER_SECONDARY_LITTLE, 392,

410, 424, 482
ASI_AS_IF_USER_SECONDARY_NOFAULT_LITT

LE, 393
ASI_BLK_AIUP, 410, 423
ASI_BLK_AIUPL, 410, 424
ASI_BLK_AIUS, 410, 423
ASI_BLK_AIUSL, 410, 424
ASI_BLK_P, 420
ASI_BLK_PL, 420
ASI_BLK_S, 420
ASI_BLK_SL, 421
ASI_BLOCK_AS_IF_USER_PRIMARY, 410, 423
ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE, 4
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10, 424
ASI_BLOCK_AS_IF_USER_SECONDARY, 410, 423
ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE,

410, 424
ASI_BLOCK_PRIMARY, 420
ASI_BLOCK_PRIMARY_LITTLE, 420
ASI_BLOCK_SECONDARY, 420
ASI_BLOCK_SECONDARY_LITTLE, 421
ASI_CMT_PER_CORE, 418
ASI_CMT_PER_STRAND, 418, 519, 520
ASI_CMT_SHARED, 413, 523, 524, 527, 530, 534
ASI_DEVICE_ID+SERIAL_ID, 421
ASI_DMMU, 417
ASI_DMMU_DEMAP, 417
ASI_DTLB_DATA_ACCESS_REG, 417
ASI_DTLB_DATA_IN_REG, 417
ASI_DTLB_TAG_READ_REG, 417
ASI_FL16_P, 419
ASI_FL16_PL, 420
ASI_FL16_PRIMARY, 419
ASI_FL16_PRIMARY_LITTLE, 420
ASI_FL16_S, 419
ASI_FL16_SECONDARY, 419
ASI_FL16_SECONDARY_LITTLE, 420
ASI_FL16_SL, 420
ASI_FL8_P, 419
ASI_FL8_PL, 419
ASI_FL8_PRIMARY, 419
ASI_FL8_PRIMARY_LITTLE, 419
ASI_FL8_S, 419
ASI_FL8_SECONDARY, 419
ASI_FL8_SECONDARY_LITTLE, 419
ASI_FL8_SL, 419
ASI_IMMU, 414
ASI_IMMU_DEMAP, 417
ASI_ITLB_DATA_ACCESS_REG, 417
ASI_ITLB_TAG_READ_REG, 417
ASI_LD_TWINX_AS_IF_USER_PRIMARY, 411,

426
ASI_LD_TWINX_AS_IF_USER_PRIMARY_LITTL

E, 412, 426
ASI_LD_TWINX_AS_IF_USER_SECONDARY, 411,

426
ASI_LD_TWINX_AS_IF_USER_SECONDARY_LIT

TLE, 412, 426
ASI_LD_TWINX_NUCLEUS, 412, 426, 433
ASI_LD_TWINX_NUCLEUS[_L], 389
ASI_LD_TWINX_NUCLEUS_LITTLE, 413, 426, 433
ASI_LD_TWINX_PRIMARY, 420, 429

ASI_LD_TWINX_PRIMARY_LITTLE, 420, 429
ASI_LD_TWINX_REAL, 412, 427
ASI_LD_TWINX_REAL_LITTLE, 412, 427, 433
ASI_LD_TWINX_REAL_REAL[_]L, 389
ASI_LD_TWINX_SECONDARY, 420, 429
ASI_LD_TWINX_SECONDARY_LITTLE, 420, 429
ASI_LDTX_AIUP, 263, 411, 426
ASI_LDTX_AIUP_L, 263, 426
ASI_LDTX_AIUPL, 412
ASI_LDTX_AIUS, 263, 426
ASI_LDTX_AIUS_L, 412, 426
ASI_LDTX_N, 263, 412, 433
ASI_LDTX_NL, 263, 413, 426, 433
ASI_LDTX_P, 263, 420
ASI_LDTX_PL, 263, 420
ASI_LDTX_R, 427
ASI_LDTX_REAL, 263, 412, 433
ASI_LDTX_REAL_L, 412, 427, 433
ASI_LDTX_S, 263, 420
ASI_LDTX_SL, 263, 420
ASI_MMU, 416
ASI_MMU_CONTEXTID, 411
ASI_MMU_REAL, 414
ASI_N, 409
ASI_NL, 409
ASI_NUCLEUS, 120, 409
ASI_NUCLEUS_LITTLE, 120, 409
ASI_NUCLEUS_QUAD_LDD, 433
ASI_NUCLEUS_QUAD_LDD_L, 433
ASI_NUCLEUS_QUAD_LDD_LITTLE, 433
ASI_P, 418
ASI_PHY_BYPASS_EC_WITH_EBIT_L, 433
ASI_PHYS_BYPASS_EC_WITH_EBIT, 433
ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE, 4

33
ASI_PHYS_USE_EC, 433
ASI_PHYS_USE_EC_L, 433
ASI_PHYS_USE_EC_LITTLE, 433
ASI_PL, 418
ASI_PNF, 418
ASI_PNFL, 418
ASI_PRIMARY, 120, 391, 392, 418
ASI_PRIMARY_LITTLE, 120, 391, 418
ASI_PRIMARY_NO_FAULT, 388, 405, 418, 483
ASI_PRIMARY_NO_FAULT_LITTLE, 388, 405,

418, 483
ASI_PRIMARY_NOFAULT_LITTLE, 393
ASI_PST16_P, 341, 418
ASI_PST16_PL, 341, 419
Index iii



ASI_PST16_PRIMARY, 418
ASI_PST16_PRIMARY_LITTLE, 419
ASI_PST16_S, 341, 418
ASI_PST16_SECONDARY, 418
ASI_PST16_SECONDARY_LITTLE, 419
ASI_PST16_SL, 341
ASI_PST32_P, 341, 418
ASI_PST32_PL, 341, 419
ASI_PST32_PRIMARY, 418
ASI_PST32_PRIMARY_LITTLE, 419
ASI_PST32_S, 341, 419
ASI_PST32_SECONDARY, 419
ASI_PST32_SECONDARY_LITTLE, 419
ASI_PST32_SL, 341, 419
ASI_PST8_P, 418
ASI_PST8_PL, 419
ASI_PST8_PRIMARY, 418
ASI_PST8_PRIMARY_LITTLE, 419
ASI_PST8_S, 418
ASI_PST8_SECONDARY, 418
ASI_PST8_SECONDARY_LITTLE, 419
ASI_PST8_SL, 341, 419
ASI_QUAD_LDD_L, 433
ASI_QUAD_LDD_LITTLE, 433
ASI_QUAD_LDD_PHYS, 433
ASI_QUAD_LDD_REAL, 433
ASI_QUAD_LDD_REAL_LITTLE, 412
ASI_QUAD_LOAD_REAL, 412
ASI_REAL, 410, 424, 433
ASI_REAL_IO, 410, 424, 433
ASI_REAL_IO_L, 410
ASI_REAL_IO_LITTLE, 410, 425, 433
ASI_REAL_L, 410
ASI_REAL_LITTLE, 410, 425, 433
ASI_S, 418
ASI_SECONDARY, 418
ASI_SECONDARY_LITTLE, 418
ASI_SECONDARY_NO_FAULT, 405, 418, 483
ASI_SECONDARY_NO_FAULT_LITTLE, 405, 418,

483
ASI_SECONDARY_NOFAULT, 393
ASI_SL, 418
ASI_SNF, 418
ASI_SNFL, 418
ASI_UMMU, 417
asr_reg, 592
async_data_error exception, 490
async_data_error exception (superseded), 489, 580
atomic

memory operations, 264, 400, 402
store doubleword instruction, 346, 348
store instructions, 323, 324

atomic load-store instructions
compare and swap, 163
load-store unsigned byte, 260, 353
load-store unsigned byte to alternate space, 261
simultaneously addressing doublewords, 352
swap R register with alternate space

memory, 353
swap R register with memory, 163, 352

atomicity, 388, 577
available (core), 7

B
BA instruction, 154, 155, 563
BCC instruction, 154, 563
bclrg synthetic instruction, 600
BCS instruction, 154, 563
BE instruction, 154, 563
Berkeley RISCs, 24
BG instruction, 154, 563
BGE instruction, 154, 563
BGU instruction, 154, 563
Bicc instructions, 154, 557
big-endian, 7
big-endian byte order, 28, 95, 115

in hyperprivileged mode, 451
binary compatibility, 24
BL instruction, 563
BLD, See LDBLOCKF instruction
BLE instruction, 154, 563
BLEU instruction, 154, 563
block load instructions, 56, 245, 429
block store instructions, 56, 328, 429
blocked byte formatting, 151
BMASK instruction, 156
BN instruction, 154, 563
BNE instruction, 154, 563
BNEG instruction, 154, 563
BP instructions, 563
BPA instruction, 157, 563
BPCC instruction, 157, 563
BPcc instructions, 73, 74, 157, 564
BPCS instruction, 157, 563
BPE instruction, 157, 563
BPG instruction, 157, 563
BPGE instruction, 157, 563
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BPGU instruction, 157, 563
BPL instruction, 157, 563
BPLE instruction, 157, 563
BPLEU instruction, 157, 563
BPN instruction, 157, 563
BPNE instruction, 157, 563
BPNEG instruction, 157, 563
BPOS instruction, 154, 563
BPPOS instruction, 157, 563
BPr instructions, 160, 563
BPVC instruction, 157, 563
BPVS instruction, 157, 563
branch

annulled, 160
delayed, 111
elimination, 128
fcc-conditional, 175, 177
icc-conditional, 155
instructions

on floating-point condition codes, 174
on floating-point condition codes with

prediction, 176
on integer condition codes with prediction

(BPcc), 157
on integer condition codes, See Bicc instruc-

tions
when contents of integer register match

condition, 160
prediction bit, 160
unconditional, 154, 158, 175, 177
with prediction, 22

BRGEZ instruction, 160
BRGZ instruction, 160
BRLEZ instruction, 160
BRLZ instruction, 160
BRNZ instruction, 160
BRZ instruction, 160
bset synthetic instruction, 600
BSHUFFLE instruction, 156
BST, See STBLOCKF instruction
btog synthetic instruction, 600
btst synthetic instruction, 600
BVC instruction, 154, 563
BVS instruction, 154, 563
bypass ASIs, 8, 408
byte, 8

addressing, 120
data format, 35
order, 28

order, big-endian, 28
order, little-endian, 28

byte order
big-endian, 95

in hyperprivileged mode, 451
implicit, 95
in trap handlers, 451
little-endian, 95

C
cache

coherency protocol, 387
data, 395
instruction, 395
miss, 297
nonconsistent instruction cache, 395

cacheable accesses, 386
caching, TSB, 509
CALL instruction

description, 162
displacement, 31
does not change CWP, 53
and JMPL instruction, 239
writing address into R[15], 55

call synthetic instruction, 598
CANRESTORE (restorable windows) register, 87

and clean_window exception, 129
and CLEANWIN register, 87, 89, 492
counting windows, 89
decremented by RESTORE instruction, 305
decremented by SAVED instruction, 315
detecting window underflow, 53
if registered window was spilled, 306
incremented by SAVE instruction, 313
modified by NORMALW instruction, 285
modified by OTHERW instruction, 287
range of values, 85, 86, 578
RESTORE instruction, 129
specification for RDPR instruction, 303
specification for WRPR instruction, 374
state after reset, 550
window underflow, 491

CANSAVE (savable windows) register, 86
decremented by SAVE instruction, 313
detecting window overflow, 53
FLUSHW instruction, 190
if equals zero, 129
incremented by RESTORE, 305
Index v



incremented by SAVED instruction, 315
range of values, 85, 86, 578
SAVE instruction, 493
specification for RDPR instruction, 303
specification for WRPR instruction, 374
state after reset, 550
window overflow, 491

CAS synthetic instruction, 402
CASA instruction, 163

32-bit compare-and-swap, 400
alternate space addressing, 29
and data_access_exception (noncacheable page)

exception, 483
atomic operation, 260
hardware primitives for mutual exclusion of

CASXA, 400
in multiprocessor system, 261, 352, 353
R register use, 113
word access (memory), 114

casn synthetic instructions, 600
CASX synthetic instruction, 400, 402
CASXA instruction, 163

64-bit compare-and-swap, 400
alternate space addressing, 29
and data_access_exception (noncacheable page)

exception, 483
atomic operation, 261
doubleword access (memory), 114
hardware primitives for mutual exclusion of

CASA, 400
in multiprocessor system, 260, 261, 352, 353
R register use, 113

catastrophic error exception, 438
cc0 instruction field

branch instructions, 157, 177
floating point compare instructions, 181
move instructions, 277, 564

cc1 instruction field
branch instructions, 157, 177
floating point compare instructions, 181
move instructions, 277, 564

cc2 instruction field
move instructions, 277, 564

CCR (condition codes) register, 72
32-bit operation (icc) bit of condition field, 73, 74
64-bit operation (xcc) bit of condition field, 73,

74
ADD instructions, 146
ASR for, 70

carry (c) bit of condition fields, 73
icc field, See CCR.icc field
MULScc instruction, 281
negative (n) bit of condition fields, 73
overflow bit (v) in condition fields, 73
restored by RETRY instruction, 166, 309
saved after trap, 437
saving after trap, 32
state after reset, 549
TSTATE register, 92
write instructions, 370
xcc field, See CCR.xcc field
zero (z) bit of condition fields, 73

CCR.icc field
add instructions, 146, 355
bit setting for signed division, 366
bit setting for signed/unsigned multiply, 367
bit setting for unsigned division, 365
branch instructions, 155, 158, 277
integer subtraction instructions, 351
logical operation instructions, 149, 286, 377
MULScc instruction, 281
Tcc instruction, 359

CCR.xcc field
add instructions, 146, 355
bit setting for signed/unsigned divide, 365, 366
bit setting for signed/unsigned multiply, 367
branch instructions, 158, 277
logical operation instructions, 149, 286, 377
subtract instructions, 351
Tcc instruction, 359

clean register window, 313, 482
clean window, 8

and window traps, 89, 491
CLEANWIN register, 89
definition, 492
number is zero, 129
trap handling, 493

clean_window exception, 87, 129, 314, 457, 482, 492,
573

CLEANWIN (clean windows) register, 87
CANSAVE instruction, 129
clean window counting, 87
incremented by trap handler, 493
range of values, 85, 86, 578
specification for RDPR instruction, 303
specification for WRPR instruction, 374
specifying number of available clean

windows, 492
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state after reset, 550
value calculation, 89

clock cycle, counts for virtual processor, 75
clock tick registers, See TICK and STICK registers
clock-tick register (TICK), 488
clrn synthetic instructions, 600
CMP

disabling a core, 523
parking a core, 526

cmp synthetic instruction, 351, 598
CMT, 8, 511, 514

enabling a core, 523
ERROR_STEERING register, 536, 538
Programming Model, 512
registers, 518
STRAND_AVAILABLE register, 519, 523
STRAND_ENABLE register, 524
STRAND_ENABLE_STATUS register, 524
STRAND_ID register, 519
STRAND_INTR_ID register, 501, 520
STRAND_RUNNING register

simultaneous updates, 528
STRAND_RUNNING register, 527
STRAND_RUNNING_STATUS, 530
unparking a core, 526
XIR_STEERING register, 534

coherence, 8
between processors, 577
data cache, 395
domain, 387
memory, 388
unit, memory, 389

compare and swap instructions, 163
comparison instruction, 122, 351
compatibility note, 4
completed (memory operation), 8
compliant SPARC V9 implementation, 25
cond instruction field

branch instructions, 155, 157, 175, 177
floating point move instructions, 193
move instructions, 277

condition codes
adding, 355
effect of compare-and-swap instructions, 164
extended integer (xcc), 74
floating-point, 175
icc field, 73
integer, 72
results of integer operation (icc), 74

subtracting, 351, 361
trapping on, 359
xcc field, 73

condition codes register, See CCR register
conditional branches, 155, 175, 177
conditional move instructions, 32
conforming SPARC V9 implementation, 25
const22 instruction field of ILLTRAP

instruction, 235
constants, generating, 317
context, 8

nucleus, 188
context identifier, 390
control transfer

pseudo-control-transfer via WRPR to
PSTATE.am, 98

control-transfer instructions (CTIs), 30, 166, 309
conventions

font, 2
notational, 3

conversion
between floating-point formats instructions, 231
floating-point to integer instructions, 229, 383
integer to floating-point instructions, 185, 234
planar to packed, 219

copyback, 8
core, 8
CPI, 8
CPU, pipeline draining, 86, 90
cpu_mondo exception, 482
cross-call, 8
CTI, 8, 18
current exception (cexc) field of FSR register, 67,

132, 570
current window, 8
current window pointer register, See CWP register
current_little_endian (cle) field of PSTATE

register, 95, 391
CWP (current window pointer) register

and instructions
CALL and JMPL instructions, 53
FLUSHW instruction, 190
RDPR instruction, 303
RESTORE instruction, 129, 305
SAVE instruction, 129, 305, 313
WRPR instruction, 374

and traps
after spill trap, 493
after spill/fill trap, 33
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on window trap, 493
saved by hardware, 437

CWP (current window pointer) register, 86
clean windows, 87
definition, 8
incremented/decremented, 52, 305, 313
overlapping windows, 52
range of values, 85, 86, 578
restored during RETRY, 166, 309
specifying windows for use without

cleaning, 492
state after reset, 549
and TSTATE register, 92
updated during a WDR reset, 548

D
D superscript on instruction name, 136
d16hi instruction field

branch instructions, 160
d16lo instruction field

branch instructions, 160
data

access, 8
cache coherence, 395
conversion between SIMD formats, 43
flow order constraints

memory reference instructions, 394
register reference instructions, 394

formats
byte, 35
doubleword, 35
halfword, 35
Int16 SIMD, 44
Int32 SIMD, 44
quadword, 35
tagged word, 35
Uint8 SIMD, 44
word, 35

memory, 403
types

floating-point, 35
signed integer, 35
unsigned integer, 35
width, 35

Data Cache Unit Control register, See DCUCR

Data Synchronous Fault Address register, See D-
SFAR

Data Synchronous Fault Status register, See D-SFSR

data_access_error exception, 482
with load instructions, 265

data_access_exception (invalid ASI) exception
with load alternate instructions, 243

data_access_exception exception, 482
register update policy, 510
with compare-and-swap instructions, 165
with LD instructions, 241
with LDSHORTF instructions, 244, 247
with LDTXA instructions, 265
with load instructions, 251, 267, 270
with load instructions and ASIs, 254, 426, 427,

429, 430, 431
with store instructions and ASIs, 254, 426, 427,

429, 430, 431
with STPARTIALF instructions, 343
with SWAPA instruction, 354

data_access_MMU_error exception
on PREFETCH, 293, 298
with CASA instruction, 165
with load instructions, 241, 244, 248, 251, 255,

257, 260, 262, 265, 267, 270
with store instructions, 323, 343, 345, 347, 350
with SWAP instruction, 352, 354

data_access_MMU_miss exception
with integer load instructions, 241
with load alternate instructions, 244
with load instructions, 248
with PREFETCH instruction, 293

data_access_MMU_miss exception
(superseded), 483

data_access_protection exception
(superseded), 490

data_invalid_TSB_entry exception, 484
data_real_translation_miss exception, 484
data_store_error exception (SPARC V8), 489
DCTI couple, 127
DCTI instructions, 8

behavior, 111
RETURN instruction effects, 311

dec synthetic instructions, 600
decccg synthetic instructions, 600
deferred trap, 445

distinguishing from disrupting trap, 447
floating-point, 304
restartable

implementation dependency, 447
software actions, 447

delay instruction
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and annul field of branch instruction, 175
annulling, 31
conditional branches, 177
DONE instruction, 166
executed after branch taken, 160
following delayed control transfer, 31
RETRY instruction, 309
RETURN instruction, 311
unconditional branches, 177
with conditional branch, 158

delayed branch, 111
delayed control transfer, 160
delayed CTI, See DCTI
demap, 8
denormalized number, 9
deprecated, 9
deprecated exceptions

tag_overflow, 489
deprecated instructions

FBA, 174
FBE, 174
FBG, 174
FBGE, 174
FBL, 174
FBLE, 174
FBLG, 174
FBN, 174
FBNE, 174
FBO, 174
FBU, 174
FBUE, 174
FBUGE, 174
FBUL, 174
FBULE, 174
LDFSR, 256
LDTW, 266
LDTWA, 268
MULScc, 72, 281
RDY, 70, 72, 299
SDIV, 72, 364
SDIVcc, 72, 364
SMUL, 72, 367
SMULcc, 72, 367
STFSR, 339
STTW, 346
STTWA, 348
SWAP, 352
SWAPA, 353
TADDccTV, 356

TSUBccTV, 362
UDIV, 72, 364
UDIVcc, 72, 364
UMUL, 72, 367
UMULcc, 72, 367
WRY, 70, 72, 369

dev_mondo exception, 484
disable (core), 9
disabled (core), 9
disabling CMP core, 523
disp19 instruction field

branch instructions, 157, 177
disp22 instruction field

branch instructions, 154, 175
disp30 instruction field

word displacement (CALL), 162
dispatch, 9
disrupting trap, 447

differences from reset trap, 449
divide instructions, 30, 283, 364
division_by_zero exception, 123, 283, 484
division-by-zero bits of FSR.aexc/FSR.cexc

fields, 69
DMMU Tag Access register

context field after data_access_exception, 510
DONE instruction, 166

effect on HTSTATE, 106
effect on TNPC register, 91
effect on TSTATE register, 93
executed in RED_state, 442
generating illegal_instruction exception, 486
modifying CCR.xcc condition codes, 73
return from trap, 437
return from trap handler with different GL

value, 103
target address, 31

doublet, 9
doubleword, 9

addressing, 118
alignment, 28, 114, 389
data format, 35
definition, 9

D-SFAR
state after reset, 551

D-SFSR register, See SFSR register
DuTLB, disabled, 483
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E
EDGE16 instruction, 168
EDGE16L instruction, 168
EDGE16LN instruction, 170
EDGE16N instruction, 170
EDGE32 instruction, 168
EDGE32L instruction, 168
EDGE32LN instruction, 170
EDGE32N instruction, 170
EDGE8 instruction, 168
EDGE8L instruction, 168
EDGE8LN instruction, 170
EDGE8N instruction, 170
emulating multiple unsigned condition codes, 128
enable (core), 9
enable floating-point

See FPRS register, fef field
See PSTATE register, pef field

enabled (core), 9
enabling CMP core, 523
error_state, 444

definition, 440
effects when entering, 572
entering, 470, 472, 478, 479, 480
exiting, 470
recognizing interrupts, 471
and RED_state, 441

ERROR_STEERING register, 538
even parity, 9
exception, 9
exceptions

See also individual exceptions
async_data_error, 490
async_data_error (superseded), 489
catastrophic error, 438
causing traps, 437
clean_window, 457, 482, 573
cpu_mondo, 482
data_access_error, 482
data_access_exception, 482
data_access_MMU_error

on PREFETCH, 293
on PREFETCH, 293

data_access_MMU_error, 165, 241, 244, 248, 251,
255, 257, 260, 262, 265, 267, 270, 298, 323, 343,
345, 347, 350, 352

data_access_MMU_miss, 293
data_access_MMU_miss (superseded), 483
data_access_protection (superseded), 490

data_invalid_TSB_entry, 484
data_real_translation_miss, 484
data_store_error (SPARC V8), 489
definition, 438
dev_mondo, 484
division_by_zero, 484
fast_data_access_MMU_miss, 293, 484
fast_data_access_protection, 484
fast_ECC_error, 491
fill_n_normal, 485
fill_n_other, 485
fp_disabled

and GSR, 80
fp_disabled, 485
fp_exception_ieee_754, 485
fp_exception_other, 485
guest_watchdog, 485
hstick_match, 106, 109, 485
htrap_instruction, 485
illegal_instruction

and SIR instruction, 450
illegal_instruction, 104, 485
instruction_access_error, 486
instruction_access_exception, 486, 486
instruction_access_MMU_miss, 486
instruction_breakpoint, 486
instruction_invalid_TSB_entry, 487
instruction_real_translation_miss, 487
internal_processor_error, 487
interrupt_level_14

and SOFTINT.int_level, 81
and STICK_CMPR.stick_cmpr, 85
and TICK_CMPR.tick_cmpr, 83

interrupt_level_14, 487
interrupt_level_15

and SOFTINT.int_level, 81
interrupt_level_15, 487
interrupt_level_n

and SOFTINT register, 80
and SOFTINT.int_level, 81

interrupt_level_n, 448, 487
LDDF_mem_address_not_aligned, 487
LDQF_mem_address_not_aligned, 491
mem_address_not_aligned, 487
nonresumable_error, 487
PA_watchpoint, 487
pending, 33
pic_overflow, 487
power_on_reset, 488
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privileged_action, 488
privileged_opcode

and access to register-window PR state
registers, 85, 90, 100, 103

and access to SOFTINT, 81
and access to SOFTINT_CLR, 82
and access to SOFTINT_SET, 82
and access to STICK_CMPR, 84
and access to TICK_CMPR, 83

privileged_opcode, 488
RA_watchpoint, 462, 467
RED_state_exception, 488
resumable_error, 488
software_initiated_reset, 488
spill_n_normal, 314, 489
spill_n_other, 314, 489
STDF_mem_address_not_aligned, 489
store_error, 489
STQF_mem_address_not_aligned, 491
sw_recoverable_error, 489, 490
tag_overflow (deprecated), 489
trap_instruction, 489
trap_level_zero

state after reset, 549
trap_level_zero, 489
unimplemented_LDTW, 490
unimplemented_STTW, 490
VA_watchpoint, 490
watchdog_reset

and guest_watchdog, 439
watchdog_reset, 490
window fill, 457
window spill, 457

execute unit, 393
execute_state

and error_state, 472
and RED_state, 472
returning to, 470
trap processing, 440, 470

explicit ASI, 9, 120, 409
extended word, 10

addressing, 118
externally_initiated_reset (XIR), 478, 484, 547

causing entry into RED_state, 441
entering error_state, 440
and error_state, 456
for critical system events, 450
for debugging, 443
partial-processor, 533

RED_state trap processing, 474
to virtual processor, 547

F
F registers, 10, 27, 131, 379, 452
FABSd instruction, 171, 561, 562
FABSq instruction, 171, 561, 562
FABSs instruction, 171
FADD, 172
FADDd instruction, 172
FADDq instruction, 172
FADDs instruction, 172
FALIGNDATA instruction, 173
FAND instruction, 227
FANDNOT1 instruction, 227
FANDNOT1S instruction, 227
FANDNOT2 instruction, 227
FANDNOT2S instruction, 227
FANDS instruction, 227
fast_data_access_MMU_miss exception, 484

register update policy, 510
with integer load instructions, 241
with load alternate instructions, 244
with PREFETCH instruction, 293

fast_data_access_protection exception, 484
register update policy, 510
write permission not granted, 508

fast_ECC_error exception, 491
fast_instruction_access_MMU_miss exception

register update policy, 510
FBA instruction, 174, 175, 563
FBE instruction, 174, 563
FBfcc instructions, 61, 174, 485, 557, 563
FBG instruction, 174, 563
FBGE instruction, 174, 563
FBL instruction, 174, 563
FBLE instruction, 174, 563
FBLG instruction, 174, 563
FBN instruction, 174, 175, 563
FBNE instruction, 174, 563
FBO instruction, 174, 563
FBPA instruction, 176, 177, 563
FBPE instruction, 176, 563
FBPfcc instructions, 61, 176, 557, 563, 564
FBPG instruction, 176, 563
FBPGE instruction, 176, 563
FBPL instruction, 176, 563
FBPLE instruction, 176, 563
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FBPLG instruction, 176, 563
FBPN instruction, 176, 177, 563
FBPNE instruction, 176, 563
FBPO instruction, 176, 563
FBPU instruction, 176, 563
FBPUE instruction, 176, 563
FBPUG instruction, 176, 563
FBPUGE instruction, 176, 563
FBPUL instruction, 176, 563
FBPULE instruction, 176, 563
FBU instruction, 174, 563
FBUE instruction, 174, 563
FBUG instruction, 174, 563
FBUGE instruction, 174, 563
FBUL instruction, 174, 563
FBULE instruction, 174, 563
fcc-conditional branches, 175, 177
fccn, 10
FCMP instructions, 564
FCMP* instructions, 61, 62, 181
FCMPd instruction, 181, 381, 562
FCMPE instructions, 564
FCMPE* instructions, 61, 62, 181
FCMPEd instruction, 181, 381, 562
FCMPEq instruction, 181, 381, 562
FCMPEQ16 instruction, 178
FCMPEQ32 instruction, 178
FCMPEs instruction, 181, 381, 562
FCMPGT instruction, 178
FCMPGT16 instruction, 178
FCMPGT32 instruction, 178
FCMPLE16 instruction, 178
FCMPLE16 instruction, 178
FCMPLE32 instruction, 178
FCMPLE32 instruction, 178
FCMPNE16 instruction, 178, 179
FCMPNE32 instruction, 178, 179
FCMPq instruction, 181, 381, 562
FCMPs instruction, 181, 381, 562
fcn instruction field

DONE instruction, 166
PREFETCH, 291
RETRY instruction, 309

FDIVd instruction, 183
FDIVq instruction, 183
FDIVs instructions, 183
FdMULq instruction, 207
FdTOi instruction, 229, 383
FdTOq instruction, 231

FdTOs instruction, 231
FdTOx instruction, 229, 562
fef field of FPRS register, 77

and access to GSR, 80
and fp_disabled exception, 485
branch operations, 175, 177
byte permutation, 156
comparison operations, 179, 182
data movement operations, 278
enabling FPU, 96
floating-point operations, 171, 172, 183, 185, 191,

196, 199, 207, 209, 228, 229, 231, 233, 234, 250,
252, 256, 258

integer arithmetic operations, 218, 223
logical operations, 224, 225, 227
memory operations, 247
read operations, 301, 319, 330
special addressing operations, 147, 173, 333, 339,

343, 345, 371
fef, See FPRS register, fef field
FEXPAND instruction, 184
FEXPAND operation, 184
fill handler, 306
fill register window, 485

overflow/underflow, 53
RESTORE instruction, 89, 305, 491
RESTORED instruction, 130, 307, 493
RETRY instruction, 493
selection of, 492
trap handling, 492, 493
trap vectors, 306
window state, 89

fill_n_normal exception, 306, 312, 485, 485
fill_n_other exception, 306, 312, 485
FiTOd instruction, 185
FiTOq instruction, 185
FiTOs instruction, 185
fixed values, 236
fixed-point scaling, 202
floating point

absolute value instructions, 171
add instructions, 172
compare instructions, 61, 62, 181, 181, 381
condition code bits, 175
condition codes (fcc) fields of FSR register, 64,

175, 177, 181
data type, 35
deferred-trap queue (FQ), 304
divide instructions, 183
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exception, 10
exception, encoding type, 63
FPRS register, 370
FSR condition codes, 62
move instructions, 191
multiply instructions, 207
negate instructions, 209
operate (FPop) instructions, 10, 32, 63, 67, 131,

256
registers

destination F, 379
FPRS, See FPRS register
FSR, See FSR register
programming, 59

rounding direction, 62
square root instructions, 228
subtract instructions, 233
trap types, 10

IEEE_754_exception, 64, 65, 67, 70, 380
invalid_fp_register, 171, 172, 233
unfinished_FPop, 64, 65, 70, 172, 183, 208,

232, 233, 380
results after recovery, 65

unimplemented_FPop, 65, 70, 171, 172, 182,
183, 185, 191, 197, 200, 208, 209, 230, 232,
233, 380

traps
deferred, 304
precise, 304

floating-point condition codes (fcc) fields of FSR

register, 452
floating-point operate (FPop) instructions, 485
floating-point trap types

IEEE_754_exception, 452, 485
floating-point unit (FPU), 10, 27
FLUSH instruction, 187

memory ordering control, 273
FLUSH instruction

memory/instruction synchronization, 186
FLUSH instruction, 186, 404

data access, 8
immediacy of effect, 188
in multiprocessor system, 186
in self-modifying code, 187
latency, 577

flush instruction memory, See FLUSH instruction
flush register windows instruction, 190
FLUSHW instruction, 190, 489

effect, 32

management by window traps, 89, 491
spill exception, 131, 190, 493

FMOVcc instructions
conditionally moving floating-point register

contents, 74
conditions for copying floating-point register

contents, 127
copying a register, 61
encoding of opf<84> bits, 562
encoding of opf_cc instruction field, 564
encoding of rcond instruction field, 563
floating-point moves, 193
FPop instruction, 131
used to avoid branches, 197, 277

FMOVccd instruction, 562
FMOVccq instruction, 562
FMOVd instruction, 191, 561, 562
FMOVDfcc instructions, 193
FMOVdGEZ instruction, 198
FMOVdGZ instruction, 198
FMOVDicc instructions, 193
FMOVdLEZ instruction, 198
FMOVdLZ instruction, 198
FMOVdNZ instruction, 198
FMOVdZ instruction, 198
FMOVq instruction, 191, 561, 562
FMOVQfcc instructions, 193, 196
FMOVqGEZ instruction, 198
FMOVqGZ instruction, 198
FMOVQicc instructions, 193, 196
FMOVqLEZ instruction, 198
FMOVqLZ instruction, 198
FMOVqNZ instruction, 198
FMOVqZ instruction, 198
FMOVr instructions, 132, 563
FMOVRq instructions, 199
FMOVRsGZ instruction, 198
FMOVRsLEZ instruction, 198
FMOVRsLZ instruction, 198
FMOVRsNZ instruction, 198
FMOVRsZ instruction, 198
FMOVs instruction, 191
FMOVScc instructions, 195
FMOVSfcc instructions, 193
FMOVsGEZ instruction, 198
FMOVSicc instructions, 193
FMOVSxcc instructions, 193
FMOVxcc instructions, 193, 196
FMUL8SUx16 instruction, 201, 204
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FMUL8ULx16 instruction, 201, 204
FMUL8x16 instruction, 201, 202
FMUL8x16AL instruction, 201, 203
FMUL8x16AU instruction, 201, 203
FMULd instruction, 207
FMULD8SUx16 instruction, 201, 205
FMULD8ULx16 instruction, 201, 206
FMULq instruction, 207
FMULs instruction, 207
FNAND instruction, 227
FNANDS instruction, 227
FNEG instructions, 209
FNEGd instruction, 209, 561, 562
FNEGq instruction, 209, 561, 562
FNEGs instruction, 209
FNOR instruction, 227
FNORS instruction, 227
FNOT1 instruction, 225
FNOT1S instruction, 225
FNOT2 instruction, 225
FNOT2S instruction, 225
FONE instruction, 224
FONES instruction, 224
FOR instruction, 227
formats, instruction, 112
FORNOT1 instruction, 227
FORNOT1S instruction, 227
FORNOT2 instruction, 227
FORNOT2S instruction, 227
FORS instruction, 227
fp_disabled exception, 485

absolute value instructions, 171, 172, 233
and GSR, 80
FPop instructions, 132
FPRS.fef disabled, 77
PSTATE.pef not set, 77
with branch instructions, 175, 177
with compare instructions, 180
with conversion instructions, 185, 230, 232, 234
with floating-point arithmetic instructions, 183,

208, 218, 223
with FMOV instructions, 191
with load instructions, 255
with move instructions, 197, 200, 278
with store instructions, 333, 337, 339, 340, 343,

345, 371
fp_exception exception, 67
fp_exception_ieee_754 "invalid" exception, 229
fp_exception_ieee_754 exception, 485

and tem bit of FSR, 63
cause encoded in FSR.ftt, 64
FSR.aexc, 67
FSR.cexc, 68
FSR.ftt, 67
generated by FCMP or FCMPE, 62
and IEEE 754 overflow/underflow

conditions, 67, 68
trap handler, 380
when FSR.tem = 0, 452
when FSR.tem =1, 452
with floating-point arithmetic instructions, 172,

183, 208, 233
fp_exception_other exception, 70, 485

absolute value instructions, 171
cause encoded in FSR.ftt, 64
FADDq instruction, 172, 233
FCMP{E}q instructions, 182
FDIVq instruction, 183
FdTOq, FqTOd instructions, 232
FiTOq instruction, 185
FMOVcc instruction, 197
FMOVq instruction, 191
FMOVRq instruction, 200
FMULq, FdMULq instructions, 208
FNEGq instruction, 209
FqTOx, FqTOi instructions, 230
FSQRT instructions, 228
FxTOq instruction, 234
incorrect IEEE Std 754-1985 result, 132, 569
occurrence, 145
supervisor handling, 380
trap type of unfinished_FPop, 65
unimplemented_FPop for quad FPops, 60
when quad FPop unimplemented in

hardware, 66
with floating-point arithmetic instructions, 183,

208
FPACK instruction, 80
FPACK instructions, 210–214
FPACK16 instruction, 210, 211
FPACK16 operation, 211
FPACK32 instruction, 210, 212
FPACK32 operation, 212
FPACKFIX instruction, 210, 214
FPACKFIX operation, 214
FPADD16 instruction, 216
FPADD16S instruction, 216
FPADD32 instruction, 216
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FPADD32S instruction, 216
FPMERGE instruction, 219
FPop, 10
FPop instruction

unimplemented, 485
FPop, See floating-point operate (FPop) instructions
FPRS register

See also floating-point registers state (FPRS)
register

FPRS register, 76
ASR summary, 71
definition, 10
fef field, 132, 451
RDFPRS instruction, 300
state after reset, 550

FPRS register fields
dl (dirty lower fp registers), 77
du (dirty upper fp registers, 77
fef, 77
fef, See also fef field of FPRS register

FPSUB16 instruction, 221
FPSUB16S instruction, 221
FPSUB32 instruction, 221
FPSUB32S instruction, 221
FPU, 10
FqTOd instruction, 231
FqTOi instruction, 229, 383
FqTOs instruction, 231
FqTOx instruction, 229, 561, 562
freg, 592
FsMULd instruction, 207
FSQRTd instruction, 228
FSQRTq instruction, 228
FSQRTs instruction, 228
FSR (floating-point state) register

fields
aexc (accrued exception), 64, 65, 66, 67, 380
aexc (accrued exceptions)

in user-mode trap handler, 380
-- dza (division by zero) bit of aexc, 69
-- nxa (rounding) bit of aexc, 70
cexc (current exception), 62, 64, 65, 67, 67, 68,

380, 485
cexc (current exceptions)

in user-mode trap handler, 380
-- dzc (division by zero) bit of cexc, 69
-- nxc (rounding) bit of cexc, 70
fcc (condition codes), 61, 64, 65, 380, 593
fccn, 62

ftt (floating-point trap type), 63, 67, 132, 332,
339, 485

in user-mode trap handler, 380
not modified by LDFSR/LDXFSR

instructions, 61
qne (queue not empty), 66

in user-mode trap handler, 380
rd (rounding), 62
tem (trap enable mask), 62, 66, 68, 485
ver, 63

FSR (floating-point state) register, 61
after floating-point trap, 380
compliance with IEEE Std 754-1985, 70
LDFSR instruction, 256
reading/writing, 61
state after reset, 550
values in ftt field, 64
writing to memory, 332, 339

FSRC1 instruction, 225
FSRC1S instruction, 225
FSRC2 instruction, 225
FSRC2S instruction, 225
FsTOd instruction, 231
FsTOi instruction, 229, 383
FsTOq instruction, 231
FsTOx instruction, 229, 561, 562
FSUBd instruction, 233
FSUBq instruction, 233
FSUBs instruction, 233
functional choice, implementation-dependent, 569
FXNOR instruction, 227
FXNORS instruction, 227
FXOR instruction, 227
FXORS instruction, 227
FxTOd instruction, 234, 562
FxTOq instruction, 234, 562
FxTOs instruction, 234, 562
FZERO instruction, 224
FZEROS instruction, 224

G
General Status register, See GSR
generating constants, 317
GL register, 101

access, 102
during resets, 103
during trap processing, 470
function, 101
Index xv



reading with RDPR instruction, 303, 374
relationship to TL, 102
restored during RETRY, 166, 309
SPARC V9 compatibility, 99
and TSTATE register, 92
value restored from TSTATE[TL], 103
value restored from TSTATE[TL], 102, 166, 309
and VER.maxgl, 108
writing to, 102

global level register, See GL register
global registers, 22, 26, 49, 49, 49, 569
Graphics Status register, See GSR
GSR (general status) register

fields
align, 80
im (interval mode) field, 80
irnd (rounding), 80
mask, 80
scale, 80

GSR (general status) register
ASR summary, 71

GSR (graphics status) register
state after reset, 550, 551

guest_watchdog exception, 485

H
H superscript on instruction name, 136
halfword, 10

alignment, 28, 114, 389
data format, 35

hardware
dependency, 568
traps, 457

hardware tablewalk
disabled, 508
and TSB pointers, 508

hardware trap stack, 32
HINTP register, 106
HPR state registers (ASRs), 103–109
hpriv field of HPSTATE register, 442
HPSTATE register

fields
hpriv

and access to PCR, 78
HPSTATE register, 104

entering hyperprivileged execution mode, 437
hpriv field, 105
hpriv field, See also hyperprivileged (hpriv) field

of HPSTATE register
and HTSTATE register, 105
ibe field, 486
ibe field, 104
red field, 104, 442
state after reset, 549
tlz field, 105
tlz field, and trap_level_zero exception, 105, 489

hsp (hstick_match pending) field of HINTP

register, 106, 107, 109
HSTICK_CMPR register, 109, 485

and HINTP, 106
hstick_match exception, 106, 109, 485
hstick_match pending (hsp) field of HINTP

register, 106, 107, 109
HTBA (hyperprivileged trap base address)

register, 107, 439, 485
establishing table address, 437
initialization, 454
state after reset, 549

htrap_instruction exception, 360, 485
HTSTATE (hyperprivileged trap state) register, 105

number of copies for reading, 302
number of copies for writing, 372
reading, 302
writing to, 372

HVER (version) register
fields

maxtl, 108
maxwin, 108

HVER (version) register, 107
state after reset, 550

HVER (version) register fields
maxwin, 108

hyperprivileged
mode, 90
registers, 103

hyperprivileged (hpriv) field of HPSTATE

register, 349, 371
access to register-window PR state registers, 90
and trap control, 451
compare and swap instructions, 164, 354
disrupting trap condition detected, 448
load instructions, 243, 247, 253, 261, 269, 330
privileged_action exception, 391
store instructions, 324, 336, 349
trap_level_zero exception, 167, 310, 372, 373,

375, 489
hyperprivileged (software), 10
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hyperprivileged (state), 10
hyperprivileged mode

byte order, 451
hyperprivileged scratchpad registers

state after reset, 551
hypervisor (software), 11

I
i (integer) instruction field

arithmetic instructions, 281, 283, 286, 364, 367
floating point load instructions, 249, 252, 256
flush memory instruction, 186
flush register instruction, 190
jump-and-link instruction, 239
load instructions, 240, 260, 261, 266, 268
logical operation instructions, 149, 286, 377
move instructions, 277, 279
POPC, 289
PREFETCH, 291
RETURN, 311

I/O
access, 387
memory, 386
memory-mapped, 387

IEEE 754, 11
IEEE Std 754-1985, 11, 21, 62, 65, 68, 70, 132, 379,

569
IEEE_754_exception floating-point trap type, 11, 64,

65, 67, 70, 380, 452, 485
IEEE-754 exception, 11
IER register (SPARC V8), 371
illegal_instruction

and OTHERW instruction, 318
illegal_instruction exception, 190, 485

and SIR instruction, 450
attempt to write in nonprivileged mode, 84
DONE/RETRY, 167, 310, 311
HTSTATE register, reading/writing, 104, 106
ILLTRAP, 235
instruction not specifically defined in

architecture, 133
not implemented in hardware, 145
POPC, 290
PREFETCH, 298
RETURN, 312
with BPr instruction, 161
with branch instructions, 158, 161
with CASA and CASXA instructions, 164, 286

with CASXA instruction, 165
with DONE instruction, 167
with FMOV instructions, 191
with FMOVcc instructions, 197
with load instructions, 55, 247, 251, 267, 269, 430
with move instructions, 278, 280
with RDHPR instructions, 302
with read hyperprivileged register

instructions, 302, 303
with read instructions, 300, 301, 302, 303, 375,

572
with store instructions, 333, 340, 346, 347, 349
with STQFA instruction, 337
with Tcc instructions, 360
with TPC register, 90
with TSTATE register, 92
with write instructions, 371, 372, 373, 376
write to ASR 5, 76
write to STICK register, 84
write to TICK register, 75

ILLTRAP instruction, 235, 485
imm_asi instruction field

explicit ASI, providing, 120
floating point load instructions, 252
load instructions, 261, 266, 268
PREFETCH, 291

immediate CTI, 111
I-MMU

and instruction prefetching, 388
IMPDEP1 instruction, 237
IMPDEP1 instructions, 236, 565, 566
IMPDEP2A instructions, 236, 486, 574
IMPDEP2B instructions, 132, 236, 486
implementation, 11
implementation (impl) field of VER register, 108
implementation dependency, 567
implementation dependent, 11
implementation note, 4, 5
implementation number (impl) field of HVER

register, 108
implementation-dependent functional choice, 569
implementation-dependent instructions, See

IMPDEP2A instructions
implicit ASI, 11, 120, 408
implicit ASI memory access

LDFSR, 256
LDSTUB, 260
load fp instructions, 249
load integer doubleword instructions, 266
Index xvii



load integer instructions, 240
STD, 346
STFSR, 339
store floating-point instructions, 332
store integer instructions, 323
SWAP, 352

implicit byte order, 95
in registers, 49, 52, 313
inccc synthetic instructions, 600
inexact accrued (nxa) bit of aexc field of FSR

register, 383
inexact current (nxc) bit of cexc field of FSR

register, 383
inexact quotient, 364, 365
infinity, 383, 384
initiated, 11
input/output (I/O) locations

access by nonprivileged code, 570
behavior, 386
contents and addresses, 570
identifying, 577
order, 386
semantics, 577
value semantics, 386

instruction fields, 11
See also individual instruction fields
definition, 11

instruction group, 11
instruction MMU, See I-MMU
instruction prefetch buffer, invalidation, 187
instruction set architecture (ISA), 11, 11, 23
Instruction Synchronous Fault Status register, See I-

SFSR
instruction_access_error exception, 486
instruction_access_exception exception, 486

register update policy, 510
instruction_access_MMU_miss exception, 486
instruction_breakpoint exception, 486
instruction_invalid_TSB_entry exception, 487
instruction_real_translation_miss exception, 487
instructions

32-bit wide, 22
alignment, 114
alignment, 28, 147, 389
arithmetic, integer

addition, 146, 355
division, 30, 283, 364
multiplication, 30, 281, 283, 367
subtraction, 351, 361

tagged, 30
array addressing, 150
atomic

CASA/CASXA, 163
load twin extended word from alternate

space, 263
load-store, 113, 163, 260, 261, 352, 353
load-store unsigned byte, 260, 261
successful loads, 240, 242, 267, 269
successful stores, 323, 324

branch
branch if contents of integer register match

condition, 160
branch on floating-point condition codes, 174,

176
branch on integer condition codes, 154, 157

cache, 395
causing illegal instruction, 235
compare and swap, 163
comparison, 122, 351
conditional move, 32
control-transfer (CTIs), 30, 166, 309
conversion

convert between floating-point formats, 231
convert floating-point to integer, 229
convert integer to floating-point, 185, 234
floating-point to integer, 383

count of number of bits, 289
edge handling, 168
fetches, 114
floating point

compare, 61, 62, 181
floating-point add, 172
floating-point compare, 381
floating-point divide, 183
floating-point load, 113, 249
floating-point load from alternate space, 252
floating-point move, 191, 193, 198
floating-point operate (FPop), 32, 256
floating-point square root, 228
floating-point store, 113, 332
floating-point store to alternate space, 335
floating-point subtract, 233
operate (FPop), 63, 67
short floating-point load, 258
short floating-point store, 344
status of floating-point load, 256

flush instruction memory, 186
flush register windows, 190
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formats, 112
generate software-initiated reset, 320
implementation-dependent, See IMPDEP2A

instructions
jump and link, 31, 239
loads

block load, 245
floating point, See instructions: floating point
integer, 113
integer from alternate space, 516
simultaneously addressing doublewords, 352
unsigned byte, 163, 260
unsigned byte to alternate space, 261

logical operations
64-bit/32-bit, 225, 227
AND, 149
logical 1-operand ops on F registers, 224
logical 2-operand ops on F registers, 225
logical 3-operand ops on F registers, 227
logical XOR, 377
OR, 286

memory, 403
moves

floating point, See instructions: floating point
move integer register, 275, 279
on condition, 22

ordering MEMBAR, 122
permuting bytes specified by GSR.mask, 156
pixel component distance, 288, 288
pixel formatting (PACK), 210
prefetch data, 291
read hyperprivileged register, 302
read privileged register, 303
read state register, 31, 299
register window management, 32
reordering, 394
reserved, 132
reserved fields, 145
RETRY

and restartable deferred traps, 447
RETURN vs. RESTORE, 311
sequencing MEMBAR, 122
set high bits of low word, 317
set interval arithmetic mode, 319
setting GSR.mask field, 156
shift, 30
shift, 321
shift count, 321
shut down to enter power-down mode, 318

SIMD, 17
simultaneous addressing of doublewords, 353
SIR, 320
software-initiated reset, 320
stores

block store, 328
floating point, See instructions: floating point
integer, 113, 323
integer (except doubleword), 323
integer into alternate space, 324, 516
partial, 341
unsigned byte, 163
unsigned byte to alternate space, 261
unsigned bytes, 260

swap R register, 352, 353
synthetic (for assembly language

programmers), 598–600
tagged addition, 355
test-and-set, 401
timing, 145
trap on integer condition codes, 358
write hyperprivileged register, 372
write privileged register, 374
write state register, 370

integer unit (IU)
condition codes, 74
definition, 11
description, 26

internal_processor_error exception, 487
interrupt

enable (ie) field of PSTATE register, 448, 451
level, 101
request, 11, 33, 437

interrupt_level_14 exception, 81, 487
and SOFTINT.int_level, 81
and STICK_CMPR.stick_cmpr, 85
and TICK_CMPR.tick_cmpr, 83

interrupt_level_15 exception, 487
and SOFTINT.int_level, 81

interrupt_level_n exception, 448, 487
and SOFTINT register, 80
and SOFTINT.int_level, 81

inter-strand operation, 11
intra-strand operation, 11
invalid accrued (nva) bit of aexc field of FSR

register, 69
invalid ASI

and data_access_exception, 483
invalid current (nvc) bit of cexc field of FSR
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register, 69, 383, 384
invalid_exception exception, 229
invalid_fp_register floating-point trap type, 171,

172, 182, 183, 185, 191, 197, 200, 228, 233
INVALW instruction, 238
iprefetch synthetic instruction, 598
ISA, 11
ISA, See instruction set architecture
I-SFSR register, See SFSR register
issue unit, 393, 393
issued, 12
italic font, in assembly language syntax, 591
IU, 12
ixc synthetic instructions, 600
IXX>data_access_exception (invalid ASI)

with load alternate instructions, 269

J
jmp synthetic instruction, 598
JMPL instruction, 239

computing target address, 31
does not change CWP, 53
mem_address_not_aligned exception, 487
reexecuting trapped instruction, 311

jump and link, See JMPL instruction

L
LD instruction (SPARC V8), 240
LDBLOCKF instruction, 245, 429
LDD instruction (SPARC V8 and V9), 267
LDDA instruction, 428
LDDA instruction (SPARC V8 and V9), 269
LDDF instruction, 114, 249, 487
LDDF_mem_address_not_aligned exception, 487

address not doubleword aligned, 575
address not quadword aligned, 576
LDDF/LDDFA instruction, 114
load instruction with partial store ASI and

misaligned address, 254
with load instructions, 250, 253, 430
with store instructions, 336, 430

LDDF_mem_not_aligned exception, 60
LDDFA instruction, 252, 343

alignment, 114
ASIs for fp load operations, 430
behavior with partial store ASIs, 250–??, 254,

254–??, 430–??

causing LDDF_mem_address_not_aligned
exception, 114, 487

for block load operations, 429
reading from a CMP register, 518
used with ASIs, 429

LDF instruction, 60, 249
LDFA instruction, 60, 252
LDFSR instruction, 61, 63, 64, 256, 486
LDQF instruction, 249, 491
LDQF_mem_address_not_aligned exception, 491

address not quadword aligned, 576
LDQF/LDQFA instruction, 115
with load instructions, 253

LDQFA instruction, 252
LDSB instruction, 240
LDSBA instruction, 242
LDSH instruction, 240
LDSHA instruction, 242
LDSHORTF instruction, 258
LDSTUB instruction, 113, 260, 261, 401, 402

and data_access_exception (noncacheable page)
exception, 483

hardware primitives for mutual exclusion of
LDSTUB, 400

LDSTUBA instruction, 260, 261
alternate space addressing, 29
and data_access_exception exception, 483
hardware primitives for mutual exclusion of

LDSTUBA, 400
LDSW instruction, 240
LDSWA instruction, 242
LDTW instruction, 55, 114
LDTW instruction (deprecated), 266
LDTWA instruction, 55, 114
LDTWA instruction (deprecated), 268
LDTX instruction, 425
LDTXA instruction, 116, 118, 263, 426

access alignment, 114
access size, 114
and data_access_exception (noncacheable page)

exception, 483
LDUB instruction, 240
LDUBA instruction, 242
LDUH instruction, 240
LDUHA instruction, 242
LDUW instruction, 240
LDUWA instruction, 242
LDX instruction, 240
LDXA instruction, 242, 270, 398, 516
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reading from a CMP register, 518
LDXFSR instruction, 61, 63, 64, 249, 256, 315, 486
leaf procedure

modifying windowed registers, 130
little-endian byte order, 12, 28, 95
load

block, See block load instructions
floating-point from alternate space

instructions, 252
floating-point instructions, 249, 256
from alternate space, 29, 74, 120, 516
instructions, 12
instructions accessing memory, 113
nonfaulting, 393
short floating-point, See short floating-point load

instructions
LoadLoad MEMBAR relationship, 272
LoadLoad MEMBAR relationship, 402
LoadLoad predefined constant, 596
loads

nonfaulting, 405
load-store alignment, 28, 114, 389
load-store instructions

compare and swap, 163
definition, 12
and fast_data_access_protection exception, 484
load-store unsigned byte, 163, 260, 352, 353
load-store unsigned byte to alternate space, 261
memory access, 27
swap R register with alternate space

memory, 353
swap R register with memory, 163, 352

LoadStore MEMBAR relationship, 272, 402
LoadStore predefined constant, 596
local registers, 49, 52, 305
logical XOR instructions, 377
Lookaside predefined constant, 596
LSTPARTIALF instruction, 430

M
machine state

after reset, 548, 552
in RED_state, 548, 552

manufacturer (manuf) field of VER register, 108, 574
mask number (mask) field of VER register, 108
MAXGL, 26, 49, 99, 101, 102
maximum global levels maxgl field of VER

register, 108

maximum trap levels maxtl field of HVER

register, 108
MAXPGL, 99, 101
MAXTL

and error_state, 472
and MAXGL, 102
and RED_state, 472
instances of HTSTATE register, 105
instances of TNPC register, 91
instances of TPC register, 90
instances of TSTATE register, 92
instances of TT register, 93
non-reset trap, 441

may (keyword), 12
mem_address_not_aligned exception, 487

JMPL instruction, 239
LDTXA, 426, 427, 429
load instruction with partial store ASI and

misaligned address, 254
register update policy, 510
RETURN, 312
when recognized, 165
with CASA instruction, 164
with compare instructions, 165
with load instructions, 114–115, 240, 241, 243,

250, 256, 267, 269, 270, 429, 430
with store instructions, 114–115, 323, 324, 326,

337, 340, 347, 349, 429, 430
with swap instructions (deprecated), 352, 354

MEMBAR
#Sync

semantics, 274
instruction

atomic operation ordering, 402
FLUSH instruction, 186, 404
functions, 271, 401–403
memory ordering, 273
memory synchronization, 122
side-effect accesses, 388
STBAR instruction, 273
write to error steering register, 537

mask encodings
#LoadLoad, 272, 402
#LoadStore, 272, 402
#Lookaside, 272, 403
#MemIssue, 272, 403
#StoreLoad, 272, 402
#StoreStore, 272, 402
#Sync, 272, 403
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predefined constants
#LoadLoad, 596
#LoadStore, 596
#Lookaside, 596
#MemIssue, 596
#StoreLoad, 596
#StoreStore, 596
#Sync, 596

MEMBAR
#Lookaside, 398
#StoreLoad, 398

membar_mask, 596
MemIssue predefined constant, 596
memory

access instructions, 27, 113
alignment, 389
atomic operations, 400
atomicity, 577
cached, 386
coherence, 388, 577
coherency unit, 389
data, 403
instruction, 403
location, 386
models, 385
ordering unit, 389
real, 386
reference instructions, data flow order

constraints, 394
synchronization, 273
virtual address, 386
virtual address 0, 405

Memory Management Unit
definition, 12

Memory Management Unit, See MMU
memory model

mode control, 397
partial store order (PSO), 396
relaxed memory order (RMO), 273, 396
sequential consistency, 397
strong, 397
total store order (TSO), 273, 396, 397
weak, 397

memory model (mm) field of PSTATE register, 95
memory order

pending transactions, 395
program order, 393

memory_model (mm) field of PSTATE register, 397
memory-mapped I/O, 387

mmask instruction field
store instructions, 327

MMU
bypass, 407
definition, 12
page sizes, 503

mode
hyperprivileged, 90, 392
MMU bypass, 407
nonprivileged, 24
privileged, 26, 90, 392

motion estimation, 288
MOVA instruction, 275
MOVCC instruction, 275
MOVcc instructions, 275

conditionally moving integer register
contents, 74

conditions for copying integer register
contents, 127

copying a register, 61
encoding of cond field, 563
encoding of opf_cc instruction field, 564
used to avoid branches, 197, 277

MOVCS instruction, 275
move floating-point register if condition is true, 193
move floating-point register if contents of integer

register satisfy condition, 198
MOVE instruction, 275
move integer register if condition is satisfied

instructions, 275
move integer register if contents of integer register

satisfies condition instructions, 279
move on condition instructions, 22
MOVFA instruction, 276
MOVFE instruction, 276
MOVFG instruction, 276
MOVFGE instruction, 276
MOVFL instruction, 276
MOVFLE instruction, 276
MOVFLG instruction, 276
MOVFN instruction, 276
MOVFNE instruction, 276
MOVFO instruction, 276
MOVFU instruction, 276
MOVFUE instruction, 276
MOVFUG instruction, 276
MOVFUGE instruction, 276
MOVFUL instruction, 276
MOVFULE instruction, 276
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MOVG instruction, 275
MOVGE instruction, 275
MOVGU instruction, 275
MOVL instruction, 275
MOVLE instruction, 275
MOVLEU instruction, 275
MOVN instruction, 275
movn synthetic instructions, 600
MOVNE instruction, 275
MOVNEG instruction, 275
MOVPOS instruction, 275
MOVr instructions, 128, 279, 563
MOVRGEZ instruction, 279
MOVRGZ instruction, 279
MOVRLEZ instruction, 279
MOVRLZ instruction, 279
MOVRNZ instruction, 279
MOVRZ instruction, 279
MOVVC instruction, 275
MOVVS instruction, 275
multiple unsigned condition codes, emulating, 128
multiply instructions, 30, 283, 367
multiprocessor synchronization instructions, 163,

352, 353
multiprocessor system, 12, 186, 296, 352, 353, 395,

577
MULX instruction, 283
must (keyword), 12

N
N superscript on instruction name, 136
N_REG_WINDOWS, 13

integer unit registers, 26, 569
RESTORE instruction, 305
SAVE instruction, 313
value of, 49, 85

NaN (not-a-number)
conversion to integer, 383
converting floating-point to integer, 229
quiet, 181, 182, 381
signalling, 62, 181, 182, 231, 381
transformation, 381

neg synthetic instructions, 600
negative infinity, 383, 384
nested traps, 23
next program counter register, See NPC register
NFO, 13
noncacheable

accesses, 386
nonfaulting load, 13, 393
nonfaulting loads

behavior, 405
use by optimizer, 405

nonleaf routine, 239
nonprivileged, 13

mode, 7, 13, 24, 26, 64
software, 76

nonprivileged trap (npt) field of TICK register, 76,
301

nonresumable_error exception, 487
nonstandard floating-point, See floating-point status

register (FSR) NS field
nontranslating ASI, 13, 270, 349
nontranslating ASIs, 408
nonvirtual memory, 297
NOP instruction, 154, 175, 177, 284, 292, 359
normal trap, 13
normal traps, 441, 456, 471, 474
NORMALW instruction, 285
not synthetic instructions, 599
note

architectural direction, 5
compatibility, 4
general, 4
implementation, 4
programming, 4

NPC (next program counter) register, 76
control flow alteration, 18
definition, 13
DONE instruction, 166
instruction execution, 111
relation to TNPC register, 91
RETURN instruction, 309
saving after trap, 32
state after reset, 549

npt, 13
nucleus context, 188
nucleus software, 13
NUMA, 13, 515
NWIN, See N_REG_WINDOWS

O
octlet, 13
odd parity, 13
op3 instruction field

arithmetic instructions, 146, 158, 161, 163, 281,
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283, 364, 367
floating point load instructions, 249, 252, 256
flush instructions, 186, 190
jump-and-link instruction, 239
load instructions, 240, 260, 261, 266, 268
logical operation instructions, 149, 286, 377
PREFETCH, 291
RETURN, 311

opcode
definition, 13
format, 237

opf instruction field
floating point arithmetic instructions, 172, 183,

207, 228
floating point compare instructions, 181
floating point conversion instructions, 229, 231,

234
floating point instructions, 171
floating point integer conversion, 185
floating point move instructions, 191
floating point negate instructions, 209

opf_cc instruction field
floating point move instructions, 193
move instructions, 564

opf_low instruction field, 193
optional, 14
OR instruction, 286
ORcc instruction, 286
ordering MEMBAR instructions, 122
ordering unit, memory, 389
ORN instruction, 286
ORNcc instruction, 286
OTHERW instruction, 287
OTHERWIN (other windows) register, 87

FLUSHW instruction, 190
keeping consistent state, 89
modified by OTHERW instruction, 287
partitioned, 89
range of values, 85, 86, 578
rd designation for WRPR instruction, 374
rs1 designation for RDPR instruction, 303
SAVE instruction, 314
state after reset, 550
zeroed by INVALW instruction, 238
zeroed by NORMALW instruction, 285

OTHERWIN register trap vectors
fill/spill traps, 492
handling spill/fill traps, 492
selecting spill/fill vectors, 492

out register #7, 55
out registers, 49, 52, 313
overflow

bits
(v) in condition fields of CCR, 123
accrued (ofa) in aexc field of FSR register, 69
current (ofc) in cexc field of FSR register, 69

causing spill trap, 491
tagged add/subtract instructions, 123

P
p (predict) instruction field of branch

instructions, 157, 160, 161, 177
P superscript on instruction name, 136
PA_watchpoint exception, 408, 487
packed-to-planar conversion, 219
packing instructions, See FPACK instructions
page fault, 297
page table entry (PTE), See translation table entry

(TTE)
parity, even, 9
parity, odd, 13
park, 14
parked, 14
parking CMP core, 526
partial store instructions, 341, 430
partial store order (PSO) memory model, 396, 397
partition identifier, 390
partitioned

additions, 216
subtracts, 221

PASI superscript on instruction name, 136
PASR superscript on instruction name, 136
PC (program counter) register, 15, 71, 76

after instruction execution, 111
CALL instruction, 162
changed by NOP instruction, 284
copied by JMPL instruction, 239
saving after trap, 32
set by DONE instruction, 166
set by RETRY instruction, 309
state after reset, 549
Trap Program Counter register, 90

PCR

ASR summary, 71
PCR register fields

priv, 78
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sl (select lower bits of PIC), 78
st (system trace enable), 78
su (select upper bits of PIC), 78
ut (user trace enable), 78

PDIST instruction, 288
pef field of PSTATE register

and access to GSR, 80
and fp_disabled exception, 485
and FPop instructions, 132
branch operations, 175, 177
byte permutation, 156
comparison operations, 179, 182
data movement operations, 278
enabling FPU, 77
floating-point operations, 171, 172, 183, 185, 191,

196, 199, 207, 209, 228, 229, 231, 233, 234, 250,
252, 256, 258

integer arithmetic operations, 218, 223
logical operations, 224, 225, 227
memory operations, 247
read operations, 301, 319, 330
special addressing operations, 147, 173, 333, 339,

343, 345, 371
trap control, 451

pef, See PSTATE, pef field
Performance Control register, See PCR
performance instrumentation counter register, See

PIC register
physical address, 14
physical core, 14
PIC (performance instrumentation counter)

register, 14, 79
accessing, 488
ASR summary, 71
and PCR, 78
picl field, 79
picu field, 79

pic_overflow exception, 487
PIL (processor interrupt level) register, 101

interrupt conditioning, 448
interrupt request level, 452
interrupt_level_n, 487
specification of register to read, 303
specification of register to write, 374
state after reset, 549
trap processing control, 451

pipeline, 14
pipeline draining of CPU, 86, 90
PIPT, 14

pixel instructions
compare, 178
component distance, 288, 288
formatting, 210

pixel registers for storing values, 236
planar-to-packed conversion, 219
Pnpt superscript on instruction name, 136
POPC instruction, 289
POR, 14
POR (power_on_reset), 546

machine state changes, 548
POR, See power_on_reset (POR)
positive infinity, 383, 384
power failure, 450, 478
power_on_reset (POR)

hard reset when POR pin activated, 546
power_on_reset (POR), 488, 546

effect on HTSTATE, 106
effect on STICK register fields, 84
effect on TNPC register, 91
effect on TPC, 91
effect on TT register, 93
enabling/disabling virtual processors, 523, 524
full-processor reset, 532
hard reset, 525, 583
machine state changes, 548
and RED_state, 441, 443, 474
setting TICK.npt, 75
STRAND_ENABLE_STATUS register, 535
system reset, 532
when initiated, 450

Ppic superscript on instruction name, 136
precise floating-point traps, 304
precise trap, 445

conditions for, 445
software actions, 445
vs. disrupting trap, 447

predefined constants
LoadLoad, 596
lookaside, 596
MemIssue, 596
StoreLoad, 596
StoreStore, 596
Sync, 596

predict bit, 161
prefetch

for one read, 296
for one write, 297
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for several reads, 295
for several writes, 296
page, 297

prefetch data instruction, 291
PREFETCH instruction, 113, 291, 573
prefetch_fcn, 596
PREFETCHA instruction, 291, 573

and invalid ASI or VA, 483
prefetchable, 15
priority of traps, 451, 469
privilege violation

and data_access_exception, 482, 486
privileged, 15

mode, 26, 90, 392
registers, 90
software, 25, 53, 64, 96, 121, 190, 454, 573

privileged (priv) field of PCR register, 301
privileged (priv) field of PSTATE register, 98, 105,

164, 167, 243, 247, 252, 253, 261, 269, 301, 324,
330, 336, 349, 353, 354, 371, 392, 488

privileged mode, 15
privileged_action exception, 488

accessing restricted ASIs, 391
PIC access, 79
register update policy, 510
restricted ASI access attempt, 121, 408
TICK register access attempt, 74
with CASA instruction, 164
with compare instructions, 165
with load alternate instructions, 243, 247, 253,

261, 269, 324, 330, 336, 349, 354, 371
with load instructions, 252
with RDasr instructions, 301
with read instructions, 301
with store instructions, 338
with swap instructions, 354

privileged_opcode exception, 488
DONE instruction, 167
RETRY instruction, 310
SAVED instruction, 315
with DONE instruction, 167, 303, 310, 375
with write instructions, 376

processor, 15
execute unit, 393
issue unit, 393, 393
privilege-mode transition diagram, 440
reorder unit, 393
self-consistency, 394
state diagram, 441

processor cluster, See processor module
processor interrupt level register, See PIL register
processor state register, See PSTATE register
processor states

error_state, 441, 444, 470, 471, 472
entering, 478, 479, 480

execute_state, 470, 472
RED_state, 441, 442, 443, 457, 470, 472, 474,

476, 480
processor states, See error_state,

execute_state, and RED_state
program counter register, See PC register
program counters, saving, 437
program order, 393, 394
programming note, 4
PSO, See partial store order (PSO) memory model
PSR register (SPARC V8), 371
PSTATE register

fields
priv

and access to PCR, 78
PSTATE register

entering privileged execution mode, 437
restored by RETRY instruction, 166, 309
saved after trap, 437
saving after trap, 32
specification for RDPR instruction, 303
specification for WRPR instruction, 374
state after reset, 549
and TSTATE register, 92

PSTATE register fields
ag

unimplemented, 99
am

CALL instruction, 162
description, 96
masked/unmasked address, 166, 239, 309,

311
cle

and implicit ASIs, 120
and PSTATE.tle, 95
description, 95

ie
description, 98, 99
enabling disrupting traps, 448
interrupt conditioning, 448
masking disrupting trap, 458

mm
description, 95
xxvi UltraSPARC  Architecture 2005 • Draft D0.8.7, 27 Mar 2006



implementation dependencies, 95, 96, 396,
577

reserved values, 95
pef

and FPRS.fef, 96
description, 96
See also pef field of PSTATE register

priv
access to register-window PR state

registers, 90
accessing restricted ASIs, 391
description, 98
determining mode, 13, 15, 507
when processor in privileged mode, 105

tle
and PSTATE.cle, 95
description, 95

PTE (page table entry), See translation table entry
(TTE)

Q
quadword, 15

alignment, 28, 114, 389
data format, 35

quiet NaN (not-a-number), 62, 181, 182, 381

R
R register, 15

#15, 55
special-purpose, 55
alignment, 267, 269

RA_watchpoint exception, 462, 467
rational quotient, 364
R-A-W, See read-after-write memory hazard
rcond instruction field

branch instructions, 160
encoding of, 563
move instructions, 279

rd (rounding), 15
rd instruction field, 17

arithmetic instructions, 146, 158, 161, 163, 281,
283, 364, 367

floating point arithmetic, 172
floating point arithmetic instructions, 183, 207,

228
floating point conversion instructions, 229, 231,

234

floating point integer conversion, 185
floating point load instructions, 249, 252, 256
floating point move instructions, 191, 193
floating point negate instructions, 209
floating-point instructions, 171
jump-and-link instruction, 239
load instructions, 240, 260, 261, 266, 268
logical operation instructions, 149, 286, 377
move instructions, 277, 279
POPC, 289

RDASI instruction, 70, 74, 299
RDasr instruction, 299

accessing I/O registers, 29
implementation dependencies, 300, 572
reading ASRs, 70

RDCCR instruction, 70, 72, 299, 299
RDFPRS instruction, 71, 76, 299
RDGSR instruction, 71, 80, 299
RDHPR instruction, 103, 104, 106, 107, 302

hyperprivileged registers read, 302
RDPC instruction, 71, 299

reading PC register, 76
RDPCR instruction, 71, 299
RDPIC instruction, 71, 299, 488
RDPR instruction, 15, 71, 303

accessing GL register, 102
accessing non-register-window PR state

registers, 90
accessing register-window PR state registers, 85
and register-window PR state registers, 85
effect on TNPC register, 91
effect on TPC register, 91
effect on TSTATE register, 93
effect on TT register, 94
reading privileged registers, 90
reading PSTATE register, 94
reading the TICK register, 75
registers read, 303

RDSOFTINT instruction, 71, 81, 299
RDSTICK instruction, 71, 84, 299
RDSTICK_CMPR instruction, 71, 299
RDTICK instruction, 71, 75, 299
RDTICK_CMPR instruction, 71, 299
RDY instruction, 72
read ancillary state register (RDasr)

instructions, 299
read state register instructions, 31
read-after-write memory hazard, 394
real memory, 386
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RED_state, 16
catastrophic failure avoidance, 470
description, 440
entering, 443, 476, 577
entry conditions, 441
exiting, 105
red field of HPSTATE register, 441, 442, 443, 470,

471
restricted environment, 442
special trap processing, 474
trap processing, 443, 470, 472
trap table, 457
trap vector, 455, 577

RED_state trap, 16
RED_state_exception exception, 488
reference MMU, 591
reg, 592
reg_or_imm, 597
reg_plus_imm, 596
regaddr, 597
register reference instructions, data flow order

constraints, 394
register window, 49
register window management instructions, 32
register windows

clean, 87, 89, 129, 482, 491, 492, 493
fill, 53, 89, 129, 130, 306, 307, 315, 485, 491, 492,

493
management of, 24
overlapping, 52–54
spill, 53, 89, 129, 130, 131, 314, 315, 489, 491, 492,

493
registers

See also individual register (common) names
address space identifier (ASI), 392
ASI (address space identifier), 74
chip-level multithreading, See CMT
clean windows (CLEANWIN), 87
clock-tick (TICK), 488
current window pointer (CWP), 86
F (floating point), 379, 452
floating-point, 27

programming, 59
floating-point registers state (FPRS), 76
floating-point state (FSR), 61
general status (GSR), 80
GL (global level), 108
global, 22, 26, 49, 49, 49, 569
global level (GL), 101

HSTICK_CMPR

and HINTP, 106
HSTICK_CMPR, 109
HTSTATE (hyperprivileged trap state), 105
HVER (version register), 107
hyperprivileged, 103
IER (SPARC V8), 371
in, 49, 52, 313
local, 49, 52
next program counter (NPC), 76
other windows (OTHERWIN), 87
out, 49, 52, 313
out #7, 55
performance control (PCR), 78
performance instrumentation counter (PIC), 79
pixel storage registers, 236
processor interrupt level (PIL)

and PIC, 79
and PIC counter overflow, 79
and SOFTINT, 81
and STICK_CMPR, 85
and TICK_CMPR, 83

processor interrupt level (PIL), 101
program counter (PC), 76
PSR (SPARC V8), 371
R register #15, 55
renaming mechanism, 394
restorable windows (CANRESTORE), 87, 87
savable windows (CANSAVE), 86
scratchpad

hyperprivileged, 432
privileged, 431

SOFTINT, 71
SOFTINT_CLR pseudo-register, 71, 82
SOFTINT_SET pseudo-register, 71, 82
STICK, 83
STICK_CMPR

and HINTP, 106
ASR summary, 71
int_dis field, 81, 85
stick_cmpr field, 85
and system software trapping, 84

TBR (SPARC V8), 371
TICK, 74
TICK_CMPR

int_dis field, 81, 83
tick_cmpr field, 83

TICK_CMPR, 71, 83
TL (trap level), 108
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trap base address (TBA), 94
trap base address, See registers: TBA

trap level (TL), 99
trap level, See registers: TL

trap next program counter (TNPC), 91
trap next program counter, See registers: TNPC

trap program counter (TPC), 90
trap program counter, See registers: TPC

trap state (TSTATE), 92
trap state, See registers: TSTATE

trap type (TT), 93, 456
trap type, See registers: TT

VA_WATCHPOINT, 490
visible to software in privileged mode, 90–103
WIM (SPARC V8), 371
window state (WSTATE), 88
window state, See registers: WSTATE

Y (32-bit multiply/divide), 72
relaxed memory order (RMO) memory model, 273,

396
renaming mechanism, register, 394
reorder unit, 393
reordering instruction, 394
reserved, 16

fields in instructions, 145
register field, 48

reset
externally_initiated_reset (XIR), 440, 441, 443,

450, 456, 474, 478, 478, 484, 533, 547
power_on_reset (POR)

enabling/disabling virtual processors, 523,
524

machine state changes, 548
STRAND_ENABLE_STATUS register, 535

power_on_reset (POR), 441, 443, 450, 474, 488,
532, 546

power-on, 75
processing, 442
request, 488
reset trap, 75, 93, 447, 449
software_initiated_reset (SIR), 440, 441, 443, 449,

450, 456, 470, 479, 488, 532, 548
trap, 571
trap vector address, See RSTVaddr
warm_reset (WMR)

and STRAND_ENABLE register, 525
enabling/disabling virtual processors, 523,

524
machine state changes, 548

warm_reset (WMR), 547
watchdog (WDR), 532
watchdog_reset (POR), 443
watchdog_reset (WDR)

and guest_watchdog, 439
watchdog_reset (WDR), 474, 478, 490, 532, 548
XIR, 533

reset trap, 16
Reset, Error, and Debug state, See RED_state
restartable deferred trap, 446
restorable windows register, See CANRESTORE

register
RESTORE instruction, 53, 305–306

actions, 129
and current window, 55
decrementing CWP register, 52
fill trap, 485, 491
followed by SAVE instruction, 53
managing register windows, 32
operation, 305
performance trade-off, 305, 313
and restorable windows (CANRESTORE)

register, 87
restoring register window, 305
role in register state partitioning, 89

restore synthetic instruction, 599
RESTORED instruction, 130, 307

creating inconsistent window state, 307
fill handler, 306
fill trap handler, 130, 493
register window management, 32

restricted, 16
restricted address space identifier, 121
restricted ASI, 391, 407
resumable_error exception, 488
ret/ret1 synthetic instructions, 598
RETRY instruction, 309

and restartable deferred traps, 447
effect on HTSTATE, 106
effect on TNPC register, 91
effect on TPC register, 91
effect on TSTATE register, 93
executed in RED_state, 442
generating illegal_instruction exception, 486
modifying CCR.xcc, 73
reexecuting trapped instruction, 493
restoring gl value in GL, 103
return from trap, 437
returning to instruction after trap, 449
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target address, return from privileged traps, 31
RETURN instruction, 311–312

computing target address, 31
fill trap, 485
mem_address_not_aligned exception, 487
operation, 311
reexecuting trapped instruction, 311

RETURN vs. RESTORE instructions, 311
RMO, 16
RMO, See relaxed memory order (RMO) memory

model
rounding

for floating-point results, 62
in signed division, 365

rounding direction (rd) field of FSR register, 172,
183, 207, 228, 229, 231, 233, 234

routine, nonleaf, 239
rs1 instruction field, 17

arithmetic instructions, 146, 158, 161, 163, 281,
283, 364, 367

branch instructions, 160
floating point arithmetic instructions, 172, 183,

207
floating point compare instructions, 181
floating point load instructions, 249, 252, 256
flush memory instruction, 186
jump-and-link instruction, 239
load instructions, 240, 260, 261, 266, 268
logical operation instructions, 149, 286, 377
move instructions, 279
PREFETCH, 291
RETURN, 311

rs2 instruction field, 17
arithmetic instructions, 146, 158, 161, 163, 281,

283, 286, 364, 367
floating point arithmetic instructions, 172, 183,

207, 228
floating point compare instructions, 181
floating point conversion instructions, 229, 231,

234
floating point instructions, 171
floating point integer conversion, 185
floating point load instructions, 249, 252, 256
floating point move instructions, 191, 193
floating point negate instructions, 209
flush memory instruction, 186
jump-and-link instruction, 239
load instructions, 240, 266, 268
logical operation instructions, 149, 377

move instructions, 277, 279
POPC, 289
PREFETCH, 291

RSTVADDR, 443, 455, 456, 457, 476, 477, 478, 479,
480, 481, 549, 577

RTO, 17
RTS, 17

S
savable windows register, See CANSAVE register
SAVE instruction, 52, 313

actions, 129
after RESTORE instruction, 311
clean_window exception, 482, 492
and current window, 55
decrementing CWP register, 52
effect on privileged state, 314
leaf procedure, 239
and local/out registers of register window, 53
managing register windows, 32
no clean window available, 87
number of usable windows, 87
operation, 313
performance trade-off, 313
role in register state partitioning, 89
and savable windows (CANSAVE) register, 86
spill trap, 489, 491, 493

save synthetic instruction, 599
SAVED instruction, 130, 315

creating inconsistent window state, 315
register window management, 32
spill handler, 314, 315
spill trap handler, 130, 493

scaling of the coefficient, 202
scratchpad registers

hyperprivileged, 432
privileged, 431
state after reset, 551

SDIV instruction, 72, 364
SDIVcc instruction, 72, 364
SDIVX instruction, 283
self-consistency, processor, 394
self-modifying code, 186, 187
sequencing MEMBAR instructions, 122
sequential consistency memory model, 397
service processor, 17
SETHI instruction, 123, 317

creating 32-bit constant in R register, 30
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and NOP instruction, 284
with rd = 0, 317

setn synthetic instructions, 599
SFSR register, 17

data_access_exception, 482
fault type field (ft), 482
state after reset, 551
update policy, 510

shall (keyword), 17
shared memory, 385
shift count encodings, 321
shift instructions, 30
shift instructions, 122, 321
short floating-point load and store instructions, 430
short floating-point load instructions, 258
short floating-point store instructions, 344
should (keyword), 17
SHUTDOWN instruction, 318
SIAM instruction, 319
side effect

accesses, 387
definition, 17
I/O locations, 386
instruction prefetching, 388
real memory storage, 386
visible, 387

signalling NaN (not-a-number), 62, 181, 182, 231,
381

signed integer data type, 35
signx synthetic instructions, 599
SIMD, 17

instruction data formats, 43–45
simm10 instruction field

move instructions, 279
simm11 instruction field

move instructions, 277
simm13 instruction field

floating point
load instructions, 249

simm13 instruction field
arithmetic instructions, 281, 283, 286, 364, 367
floating point load instructions, 252, 256
flush memory instruction, 186
jump-and-link instruction, 239
load instructions, 240, 260, 261, 266, 268
logical operation instructions, 149, 377
POPC, 289
PREFETCH, 291
RETURN, 311

single instruction/multiple data, See SIMD
SIR, 17
SIR (software_initiated_reset), 548
SIR instruction, 320

affecting virtual processor, 548
causing software_initiated_reset exception, 450,

488
and trap priority, 469
use by supervisor software, 479

SIR, See software_initiated_reset (SIR)
SLL instruction, 321
SLLX instruction, 321
SMUL instruction, 72, 367
SMULcc instruction, 72, 367
snooping, 17
SOFTINT register, 71, 80

clearing, 497
clearing of selected bits, 82
communication from nucleus code to kernel

code, 496
scheduling interrupt vectors, 495, 496
setting, 497
state after reset, 550

SOFTINT register fields
int_level, 81
sm (stick_int), 81
tm (tick_int), 81, 83

SOFTINT_CLR pseudo-register, 71, 82
SOFTINT_SET pseudo-register, 71, 82, 82
software

nucleus, 13
software translation table, 504
software trap, 359, 454, 457
software trap number (SWTN), 359
software, nonprivileged, 76
software_initiated_reset (SIR), 479, 488, 548

entering error_state, 440
entering RED_state, 441
and MAXTL, 443
per-strand reset, 532
RED_state trap processing, 474
RED_state trap vector, 456
SIR instruction, 320, 449
and virtual processor, 548
virtual processor trap processing, 470
when TL = MAXTL, 470

software_trap_number, 597
source operands, 216, 221
SPA
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ASI_TWIN_DW_NUCLEUS, 433
SPARC V8 compatibility

LD, LDUW instructions, 240
operations to I/O locations, 388
read state register instructions, 300
STA instruction renamed, 325
STBAR instruction, 273, 327
STD instruction, 347
STDA instruction, 349
tagged subtract instructions, 363
UNIMP instruction renamed, 235
window_overflow exception superseded, 485
write state register instructions, 371

SPARC V9
compliance, 14
features, 22

SPARC V9 Application Binary Interface (ABI), 24
special trap, renamed, 441
special traps, 441, 457
speculative load, 17
spill register window, 489

FLUSH instruction, 131
overflow/underflow, 53
RESTORE instruction, 129
SAVE instruction, 89, 129, 313, 491
SAVED instruction, 130, 315, 493
selection of, 492
trap handling, 493
trap vectors, 314, 493
window state, 89

spill_n_normal exception, 314, 489
and FLUSHW instruction, 190

spill_n_other exception, 314, 489
and FLUSHW instruction, 190

SRA instruction, 321
SRAX instruction, 321
SRL instruction, 321
SRLX instruction, 321
stack frame, 313
state registers (ASRs), 70–85
STB instruction, 323
STBA instruction, 324
STBAR instruction, 273
STBAR instruction, 300, 370, 394, 402
STBLOCKF instruction, 328, 429
STDF instruction, 114, 332, 489
STDF_mem_address_not_aligned exception, 489

and store instructions, 333, 337
STDF/STDFA instruction, 114

STDFA instruction, 335
alignment, 114
ASIs for fp store operations, 430
causing data_access_exception exception, 430
causing mem_address_not_aligned or

illegal_instruction exception, 430
causing STDF_mem_address_not_aligned

exception, 114, 489
for block load operations, 429
for partial store operations, 430
used with ASIs, 429
writing to a CMP register, 518

STF instruction, 332
STFA instruction, 335
STFSR instruction, 61, 63, 64, 486
STH instruction, 323
STHA instruction, 324
STICK register, 71, 75, 83

and hstick_match exception, 485
counter field, 83, 84
fields after power-on reset trap, 84
npt field, 75, 83
RDSTICK instruction, 299
state after reset, 550
while virtual processor is parked, 526

STICK_CMPR register, 71, 84
and HINTP, 106
int_dis field, 81, 85
RDSTICK_CMPR instruction, 299
state after reset, 551
stick_cmpr field, 85

store
block, See block store instructions
partial, See partial store instructions
short floating-point, See short floating-point store

instructions
store buffer

merging, 387
store floating-point into alternate space

instructions, 335
store instructions, 17, 113, 484
store_error exception, 489
StoreLoad MEMBAR relationship, 272, 402
StoreLoad predefined constant, 596
stores to alternate space, 29, 74, 120
StoreStore MEMBAR relationship, 272, 402
StoreStore predefined constant, 596
STPARTIALF instruction, 341
STQF instruction, 115, 332, 491
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STQF_mem_address_not_aligned exception, 491
STQF/STQFA instruction, 115

STQFA instruction, 115, 335, 335
strand, 18
STRAND_AVAILABLE register, 519, 523, 523, 525, 526

state after reset, 552
STRAND_ENABLE register, 524

state after reset, 552
STRAND_ENABLE_STATUS register, 524

state after reset, 552
STRAND_ID register, 519

state after reset, 553
STRAND_INTR_ID register, 501, 520, 542

state after reset, 553
STRAND_RUNNING register, 526, 527

simultaneous updates, 528
state after reset, 552

STRAND_RUNNING_RW pseudo-register, 527, 528
STRAND_RUNNING_STATUS register, 526, 530

Parked or Unparked status, 531
state after reset, 552

STRAND_RUNNING_W1C pseudo-register, 527, 528
STRAND_RUNNING_W1S pseudo-register, 527, 528
strong consistency memory model, 397
strong ordering, 397
Strong Sequential Order, 398
strongly ordered page, illegal access to, 483
STSHORTF instruction, 344
STTW instruction, 55, 114
STTW instruction (deprecated), 346
STTWA instruction, 55, 114
STTWA instruction (deprecated), 348
STW instruction, 323
STWA instruction, 324
STX instruction, 323
STXA instruction, 324

accessing CMP-specific registers, 516
accessing nontranslating ASIs, 349
mem_address_not_aligned exception, 324
referencing internal ASIs, 398
writing to a CMP register, 518

STXFSR instruction, 61, 63, 64, 332, 486
SUB instruction, 351, 351
SUBC instruction, 351, 351
SUBcc instruction, 122, 351, 351
SUBCcc instruction, 351, 351
subnormal number, 18
subtract instructions, 351
superscalar, 18

supervisor software
accessing special protected registers, 29
definition, 18
forcing processing into RED_state, 470
use of SIR trap, 479

suspend, 18
sw_recoverable_error exception, 489, 490
SWAP instruction, 352

accessing doubleword simultaneously with other
instructions, 353

and data_access_exception (noncacheable page)
exception, 483

hardware primitive for mutual exclusion, 400,
401

identification of R register to be exchanged, 113
in multiprocessor system, 260, 261
memory accessing, 352
ordering by MEMBAR, 402

swap R register
bit contents, 163
with alternate space memory instructions, 353
with memory instructions, 352

SWAPA instruction, 353
accessing doubleword simultaneously with other

instructions, 353
alternate space addressing, 29
and data_access_exception (noncacheable page)

exception, 483
hardware primitive for mutual exclusion, 400
in multiprocessor system, 260, 261
ordering by MEMBAR, 402

SWTN (software trap number), 359
Sync predefined constant, 596
synchonization, 274
synchronization, 18
Synchronous Fault Address register (SFAR), 17
synchronous fault status register, See SFSR register
synthetic instructions

mapping to SPARC V9 instructions, 598–600
for assembly language programmers, 598
mapping

bclrg, 600
bset, 600
btog, 600
btst, 600
call, 598
casn, 600
clrn, 600
cmp, 598
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dec, 600
deccc, 600
inc, 600
inccc, 600
iprefetch, 598
jmp, 598
movn, 600
neg, 600
not, 599
restore, 599
ret/ret1, 598
save, 599
setn, 599
signx, 599
tst, 598

vs. pseudo ops, 598
system clock-tick register (STICK), 83
system software, 488

accessing memory space by server program, 391
ASIs allowing access to memory space, 392
FLUSH instruction, 188, 404
processing exceptions, 391
trap types from which software must recover, 64

System Tick Compare register, See STICK_CMPR

register
System Tick register, See STICK register

T
TA instruction, 358, 563
TADDcc instruction, 123, 355
TADDccTV instruction, 123, 489
tag overflow, 123
tag_overflow exception, 123, 355, 356, 357, 361, 363
tag_overflow exception (deprecated), 489
tagged arithmetic, 123
tagged arithmetic instructions, 30
tagged word data format, 35
tagged words, 35
TBA (trap base address) register, 94, 439

establishing table address, 32, 437
initialization, 453
specification for RDPR instruction, 303
specification for WRPR instruction, 374
state after reset, 549
trap behavior, 19

TBR register (SPARC V8), 371
TCC instruction, 358
Tcc instructions, 358

at TL > 0, 454
causing trap, 437
causing trap to privileged trap handler, 457
CCR register bits, 73
generating htrap_instruction exception, 485
generating illegal_instruction exception, 486
generating trap_instruction exception, 489
opcode maps, 559, 563, 564
programming uses, 360
trap table space, 32
vector through trap table, 437

TCS instruction, 358, 563
TE instruction, 358, 563
termination deferred trap, 445
test-and-set instruction, 401
TG instruction, 358, 563
TGE instruction, 358, 563
TGU instruction, 358, 563
thread, 18
TICK register, 71

controlling access to timing information, 76
counter field, 75, 574
fields after power-on reset trap, 75
inaccuracies between two readings of, 574
npt field, 76
specification for RDPR instruction, 303
specification for WRPR instruction, 374
state after reset, 550
while virtual processor is parked, 526, 587

TICK_CMPR register, 71, 83
int_dis field, 81, 83
state after reset, 550
tick_cmpr field, 83

timer registers, See TICK register and STICK register
timing of instructions, 145
tininess (floating-point), 69
TL (trap level) register, 99, 439

affect on privilege level to which a trap is
delivered, 452

and implicit ASIs, 120
displacement in trap table, 437
executing RESTORED instruction, 307
executing SAVED instruction, 315
indexing for WRHPR instruction, 372
indexing for WRPR instruction, 374
indexing hyperprivileged register after

RDHPR, 302
indexing privileged register after RDPR, 303
setting register value after WRHPR, 372
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setting register value after WRPR, 374
specification for RDPR instruction, 303
specification for WRPR instruction, 374
state after reset, 550
and TBA register, 453
and TPC register, 90
and TSTATE register, 92, 105
and TT register, 93
use in calculating privileged trap vector

address, 453
and VER.maxtl, 108
and WSTATE register, 88

TL instruction, 358, 563
TLB, 18

and 3-dimensional arrays, 153
definition, 18
hit, 18
miss, 18

handler, 504
MMU behavior, 504
reloading TLB, 504, 508

TLE instruction, 358, 563
TLEU instruction, 358, 563
TN instruction, 358, 563
TNE instruction, 358, 563
TNEG instruction, 358, 563
TNPC (trap next program counter) register, 91

after async_data_error disrupting trap, 489
saving NPC, 445
specification for RDPR instruction, 303
specification for WRPR instruction, 374
state after reset, 550

total order, 396
total store order (TSO) memory model, 95, 273, 387,

396, 397, 397
TPC (trap program counter) register, 18, 90

address of trapping instruction, 304
after async_data_error disrupting trap, 489
number of instances, 90
specification for RDPR instructions, 303
specification for WRPR instruction, 374
state after reset, 550

TPOS instruction, 358, 563
translating ASIs, 408
Translation Lookaside Buffer, See TLB
Translation Table Entry, See TTE
trap

See also exceptions and traps
noncacheable accesses, 388

when taken, 18
trap enable mask (tem) field of FSR register, 451,

452, 570
trap handler

for global registers, 103
hyperprivileged mode, 456
privileged mode, 456
regular/nonfaulting loads, 13
returning from, 166, 309
user, 65, 383

trap level register, See TL register
trap next program counter register, See TNPC register
trap on integer condition codes instructions, 358
trap program counter register, See TPC register
trap state register, See TSTATE register
trap type (TT) register, 456
trap type register, See TT register
trap_instruction (ISA) exception, 359, 360, 489
trap_level_zero exception, 105, 489

state after reset, 549
with WRHPR instructions, 373
with write instructions, 376

trap_little_endian (tle) field of PSTATE register, 95
traps, 19

See also exceptions and individual trap names
categories

deferred, 445, 445, 447
disrupting, 445, 447, 449
precise, 445, 445, 447
priority, 451, 469
reset, 93, 445, 447, 449, 449, 470, 571
restartable

implementation dependency, 447
restartable deferred, 446
termination deferred, 445

caused by undefined feature/behavior, 19
causes, 33, 33
definition, 32, 438
hardware, 457
hardware stack, 23
level specification, 99
model stipulations, 450
nested, 23
normal, 13, 441, 456, 471, 474
processing, 470
software, 359, 454, 457
software_initiated_reset (SIR), 474
special, 441, 457
stack, 472
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vector address, specifying, 94, 107
vector, RED_state, 455

TSB, 19, 508
cacheability, 509
caching, 509
indexing support, 508
organization, 509

TSO, 19
TSO, See total store order (TSO) memory model
tst synthetic instruction, 598
TSTATE (trap state) register, 92

DONE instruction, 166, 309
registers saved after trap, 32
restoring GL value, 103
specification for RDPR instruction, 303
specification for WRPR instruction, 374
state after reset, 550

tstate, See trap state (TSTATE) register
TSUBcc instruction, 123, 361
TSUBccTV instruction, 123, 489
TT (trap type) register, 93

and privileged trap vector address, 453, 454
reserved values, 571
specification for RDPR instruction, 303
specification for WRPR instruction, 374
state after reset, 549
and Tcc instructions, 360
transferring trap control, 456
trap type recorded after

RED_state_exception, 488
window spill/fill exceptions, 88
WRHPR instruction, 372
WRPR instruction, 374

TTE, 19
context ID field, 506
cp (cacheability) field, 386
cp field, 483, 507, 507
cv field, 507, 507
e field, 387, 405, 483, 507
ie field, 506
indexing support, 508
nfo field, 405, 483, 506, 507
p field, 482, 507
size field, 508
soft2 field, 506
SPARC V8 equivalence, 505
taddr field, 506
v field, 506
va_tag field, 506

w field, 508
TVC instruction, 358, 563
TVS instruction, 358, 563
typewriter font, in assembly language syntax, 591

U
UDIV instruction, 72, 364
UDIVcc instruction, 72, 364
UDIVX instruction, 283
UltraSPARC, previous ASIs

ASI_NUCLEUS_QUAD_LDD, 433
ASI_NUCLEUS_QUAD_LDD_L, 433
ASI_NUCLEUS_QUAD_LDD_LITTLE, 433
ASI_PHY_BYPASS_EC_WITH_EBIT_L, 433
ASI_PHYS_BYPASS_EC_WITH_EBIT, 433
ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE,

433
ASI_PHYS_USE_EC, 433
ASI_PHYS_USE_EC_L, 433
ASI_PHYS_USE_EC_LITTLE, 433
ASI_QUAD_LDD_L, 433
ASI_QUAD_LDD_LITTLE, 433
ASI_QUAD_LDD_PHYS, 433

UMUL instruction, 72, 367
UMULcc instruction, 72, 367
unassigned, 19
unconditional branches, 154, 158, 175, 177
undefined, 19
underflow

bits of FSR register
accrued (ufa) bit of aexc field, 69, 383
current (ufc) bit of cexc, 69
current (ufc) bit of cexc field, 383
mask (ufm) bit of FSR.tem, 69
mask (ufm) bit of tem field, 382

detection, 53
occurrence, 491

unfinished_FPop floating-point trap type, 65, 172,
183, 208, 232, 233, 380
handling, 70
in normal computation, 64
results after recovery, 65

UNIMP instruction (SPARC V8), 235
unimplemented, 19
unimplemented_FPop floating-point trap type, 65,

171, 172, 182, 183, 185, 191, 197, 200, 208, 209,
230, 232, 233, 380
handling, 70
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result after recovery, 65
unimplemented_LDTW exception, 267, 490
unimplemented_STTW exception, 347, 490
uniprocessor system, 19
unpark, 19
unparking CMP core, 526
unrestricted, 19
unrestricted ASI, 407
unsigned integer data type, 35
user application program, 19
user trap handler, 65, 383

V
VA, 20
VA_watchpoint exception, 490
VA_WATCHPOINT register, 490
value clipping, See FPACK instructions
value semantics of input/output (I/O)

locations, 386
VER (version) register (SPARC V9), 108
VER (version) register fields

impl, 63, 108
manuf, 108
mask, 108
maxgl, 108

virtual
address, 386
address 0, 405

virtual address, 20
virtual core, 20
virtual memory, 297
VIS, 20
VIS instructions

encoding, 565, 566
implicitly referencing GSR register, 80

Visual Instruction Set, See VIS instructions

W
W-A-R, See write-after-read memory hazard
warm_reset (WMR), 547

and STRAND_ENABLE register, 525
enabling/disabling virtual processors, 523, 524
machine state changes, 548

watchdog_reset (POR)
and RED_state, 443

watchdog_reset (WDR), 490
entering error_state, 444

exiting error_state, 548, 582
full-processor reset, 532
invoking RED_state trap processing, 474
per-strand reset, 532
and XIR traps, 478

watchdog_reset (WDR), and guest_watchdog, 439
watchdog_reset (WMR), 548
watchpoint comparator, 97
W-A-W, See write-after-write memory hazard
WDR, 20
WDR (watchdog_reset), 548
WDR, See watchdog_reset (WDR)
WIM register (SPARC V8), 371
window fill exception, See also fill_n_normal

exception
window fill trap handler, 32
window overflow, 53, 491
window spill exception, See also spill_n_normal

exception
window spill trap handler, 32
window state register, See WSTATE register
window underflow, 491
window, clean, 313
window_fill exception, 88, 129, 457

RETURN, 311
window_spill exception, 88, 457
WMR (warm_reset), 547

machine state changes, 548
word, 20

alignment, 28, 114, 389
data format, 35

WRASI instruction, 70, 74, 369
WRasr instruction, 369

accessing I/O registers, 29
attempt to write to ASR 5 (PC), 76
cannot write to PC register, 76
implementation dependencies, 572
writing ASRs, 70

WRCCR instruction, 70, 72, 73, 369
WRFPRS instruction, 71, 76, 369
WRGSR instruction, 71, 80, 369
WRHPR instruction, 103, 104, 106, 372
WRIER instruction (SPARC V8), 371
write ancillary state register (WRasr)

instructions, 369
write ancillary state register instructions, See WRasr

instruction
write hyperprivileged register instruction, 372
write privileged register instruction, 374
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write-after-read memory hazard, 394
write-after-write memory hazard, 394
WRPCR instruction, 71, 369
WRPIC instruction, 71, 369, 488
WRPR instruction, 20, 442

accessing non-register-window PR state
registers, 90

accessing register-window PR state registers, 85
and register-window PR state registers, 85
effect on TNPC register, 91
effect on TPC register, 91
effect on TSTATE register, 93
effect on TT register, 94
writing to GL register, 102
writing to PSTATE register, 94
writing to TICK register, 75

WRPSR instruction (SPARC V8), 371
WRSOFTINT instruction, 71, 81, 369
WRSOFTINT_CLR instruction, 71, 81, 82, 369, 497
WRSOFTINT_SET instruction, 71, 81, 82, 369, 497
WRSTICK instruction, 71, 84, 369
WRSTICK_CMPR instruction, 71, 369
WRTBR instruction (SPARC V8), 371
WRTICK_CMP instruction, 71, 369
WRWIM instruction (SPARC V8), 371
WRY instruction, 70, 72, 369
WSTATE (window state) register

description, 88
and fill/spill exceptions, 492
normal field, 492
other field, 492
overview, 85
reading with RDPR instruction, 303
spill exception, 190
spill trap, 314
state after reset, 550
writing with WRPR instruction, 374

X
XIR, 20
XIR (externally_initiated_reset), 547
XIR reset, 533
XIR, See externally_initiated_reset (XIR)
XIR_STEERING register, 534

state after reset, 552
XNOR instruction, 377
XNORcc instruction, 377
XOR instruction, 377

XORcc instruction, 377

Y
Y register, 70, 72

after multiplication completed, 281
content after divide operation, 364
divide operation, 364
multiplication, 281
state after reset, 549
unsigned multiply results, 367
WRY instruction, 370

Y register (deprecated), 72

Z
zero virtual address, 405
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