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CHAPTER 1

Preface

First came the 32-bit SPARC Version 7 (V7) architecture, publicly released in 1987.
Shortly after, the SPARC V8 architecture was announced and published in book
form. The 64-bit SPARC V9 architecture was released in 1994. Now, the
UltraSPARC Architecture specification provides the first significant update in over
10 years to Sun’s SPARC processor architecture.

1.1 What’s New?

For the first time, UltraSPARC Architecture 2005 pulls together in one document all
parts of the architecture:

= the nonprivilged (Level 1) architecture from SPARC V9
= most of the privileged (Level 2) architecture from SPARC V9
= more in-depth coverage of all SPARC V9 features

Plus, it includes all of Sun’s now-standard architectural extensions:

= the VISO 1 and VIS 2 instruction sets and GSR register

= multiple levels of global registers, controlled by the GL register

= MMU architecture

= the new Hyperprivileged mode

= Chip-level Multithreading (CMT) architecture

Plus, now architectural features are tagged with Software Classes and

Implementation Classes!. Software Classes provide a new, high-level view of the
expected architectural longevity and portability of software that references those

1 although most features in this specification are already tagged with Software Classes, the full description of
those Classes does not appear in this version of the specification. Please check back
(htt p: // openspar c. sunsour ce. net/ nonav/ openspar ct 1. ht n ) for a later release of this
document, which will include that description



features. Implementation Classes give an indication of how efficiently each feature
is likely to be implemented across current and future UltraSPARC Architecture
processor implementations. This information provides guidance that should be
particularly helpful to programmers who write in assembly language or those who
write tools that generate SPARC instructions. It also provides the infrastructure for
defining clear procedures for adding and removing features from the architecture
over time, with minimal software disruption.

1.2 Acknowledgements

This specification builds upon all previous SPARC specifications — SPARC V7, V8,
and especially, SPARC V9. It therefore owes a debt to all the pioneers who
developed those architectures.

SPARC V7 was developed by the SPARC (“Sunrise”) architecture team at Sun
Microsystems, with special assistance from Professor David Patterson of University
of California at Berkeley.

The enhancements present in SPARC V8 were developed by the nine member
companies of the SPARC International Architecture Committee: Amdahl
Corporation, Fujitsu Limited, ICL, LSI Logic, Matsushita, Philips International, Ross
Technology, Sun Microsystems, and Texas Instruments.

SPARC V9 was also developed by the SPARC International Architecture Committee,
with key contributions from the individuals named in the Editor’s Notes section of
The SPARC Architecture Manual-Version 9.

The voluminous enhancements and additions present in this UltraSPARC
Architecture 2005 specification are the result of years of deliberation, review, and
feedback from readers of earlier Sun-internal revisions. I would particularly like to
acknowledge the following people for their key contributions:

» The UltraSPARC Architecture working group, who reviewed dozens of drafts of
this specification and strived for the highest standards of accuracy and
completeness; its active members included: Hendrik-Jan Agterkamp, Paul
Caprioli, Steve Chessin, Hunter Donahue, Greg Grohoski, John (J]) Johnson, Paul
Jordan, Jim Laudon, Jim Lewis, Bob Maier, Wayne Mesard, Greg Onufer,
Seongbae Park, Joel Storm, David Weaver, and Tom Webber.

= Robert (Bob) Maier, for expansion of exception descriptions in every page of the
Instructions chapter, major re-writes of 7 chapters and appendices (Memory,
Memory Management, Performance Instrumentation, Resets, and Interrupt Handling),
significant updates to 5 other chapters, and tireless efforts to infuse commonality
wherever possible across implementations.
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= Steve Chessin and Joel Storm, “ace” reviewers — the two of them spotted more
typographical errors and small inconsistencies than all other reviewers combined

= Jim Laudon (an UltraSPARC T1 architect and author of that processor’s
implementation specification), for numerous descriptions of new features which
were merged into this specicification

= The working group responsible for developing the system of Software Classes
and Implementation Classes, comprising: Steve Chessin, Yuan Chou, Peter
Damron, Q. Jacobson, Nicolai Kosche, Bob Maier, Ashley Saulsbury, Lawrence
Spracklen, and David Weaver.

= Lawrence Spracklen, for his advice and numerous contributions regarding
descriptions of VIS instructions

I hope you find the UltraSPARC Architecture 2005 specification more complete,
accurate, and readable than its predecessors.

—  David Weaver

UltraSPARC Architecture coordinator and specification editor

Corrections and other comments regarding this specification can be emailed to:
UA- edi t or @un. com
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CHAPTER 2

Document Overview

This chapter discusses:

Navigating UltraSPARC Architecture 2005 on page 1.
= Fonts and Notational Conventions on page 2.
Reporting Errors in this Specification on page 5.

2.1 Navigating UltraSPARC Architecture
2005

If you are new to the SPARC architecture, read Chapter 4, Architecture Overview,
study the definitions in Chapter 3, Definitions, then look into the subsequent sections
and appendixes for more details in areas of interest to you.

If you are familiar with the SPARC V9 architecture but not UltraSPARC Architecture
2005, note that UltraSPARC Architecture 2005 conforms to the SPARC V9 Level 1
architecture (and most of Level 2), with numerous extensions — particularly with
respect to CMT features, VIS instructions, and support for hyperprivileged-mode
operation. For additional details, see the following:

» Chapter 3, Definitions

» Chapter 5, Data Formats, for a description of the supported data formats

= Chapter 6, Registers, for a description of the register set

= Chapter 6, Instruction Set Overview, for a description of the new instructions
» Chapter 7, Instructions, for descriptions of instruction set extensions

» Chapter 8, IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2005, for a
description of the trap model

=  Chapter 9, Memory
= Chapter 10, Address Space Identifiers (ASIs), for a complete list of supported ASIs



Chapter 11, Performance Instrumentation

Chapter 12, Traps, for a description of the trap model

Chapter 13, Interrupt Handling, for information on how interrupts are handled
Chapter 14, Memory Management

Chapter 15, Chip-Level Multithreading (CMT), for a description of new CMT
features

Chapter 16, Resets, for a detailed description of resets, RED_st at e, and
error_state.

Appendix A, Opcode Maps, to see the overall pictures of how the instruction
opcodes are mapped

Appendix B, Implementation Dependencies, for descriptions of resolutions of all
implementation dependencies

Appendix C, Assembly Language Syntax, to see extensions to the assembly
language syntax; in particular, synthetic instructions are documented in this
appendix

Appendix D, Formal Specification of the Memory Models

2.2 Fonts and Notational Conventions

Fonts are used as follows:

Italic font is used for emphasis, book titles, and the first instance of a word that is
defined.

Italic font is also used for terms where substitution is expected, for example,

”oou

“f ccn”, “virtual processor n”, or “reg_plus_imm”.

Italic sans serif font is used for exception and trap names. For example, “The
privileged_action exception....”

lowercase helvetica font is used for register field names (named bits) and
instruction field names, for example: “The rs1 field contains....”

UPPERCASE HELVETICA font is used for register names; for example, FSR.

TYPEWRI TER (Courier) font is used for literal values, such as code (assembly
language, C language, ASI names) and for state names. For example: % O,
ASI _PRI MARY, execut e_st at e.

When a register field is shown along with its containing register name, they are
separated by a period ("."), for example, “FSR.cexc”.

UPPERCASE words are acronyms or instruction names. Some common acronyms
appear in the glossary in Chapter 3, Definitions. Note: Names of some instructions
contain both upper- and lower-case letters.
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An underscore character joins words in register, register field, exception, and trap
names. Note: Such words may be split across lines at the underbar without an
intervening hyphen. For example: “This is true whenever the integer_condition_
code field....”

The following notational conventions are used:

The left arrow symbol ( « ) is the assignment operator. For example, “PC ~ PC +
1” means that the Program Counter (PC) is incremented by 1.

Square brackets ( [ ] ) are used in two different ways, distinguishable by the
context in which they are used:

= Square brackets indicate indexing into an array. For example, TT[TL] means the
element of the Trap Type (TT) array, as indexed by the contents of the Trap
Level (TL) register.

= Square brackets are also used to indicate optional additions/extensions to
symbol names. For example, “ST[D,QJF” expands to all three of “STF”,
“STDF”, and “STQF”. Similarly, ASI _PRI MARY[_LI TTLE] indicates two
related address space identifiers, ASI _PRI MARY and ASI _PRI MARY_LI TTLE.
(Contrast with the use of angle brackets, below)

Angle brackets ( < > ) indicate mandatory additions/extensions to symbol names.
For example, “ST<D | Q>F” expands to mean “STDF” and “STQF”. (Contrast with
the second use of square brackets, above)

Curly braces ( { } ) indicate a bit field within a register or instruction. For example,
CCR{4} refers to bit 4 in the Condition Code Register.

A consecutive set of values is indicated by specifying the upper and lower limit of
the set separated by a colon ( : ), for example, CCR{3:0} refers to the set of four
least significant bits of register CCR. (Contrast with the use of double periods,
below)

A double period ( .. ) indicates any single intermediate value between two given
end values is possible. For example, NAMEJ2..0] indicates four forms of NAME
exist: NAME, NAME2, NAME1, and NAMEQ; whereas NAME<2..0> indicates
that three forms exist: NAME2, NAME1, and NAMEQO. (Contrast with the use of
the colon, above)

A vertical bar ( | ) separates mutually exclusive alternatives inside square
brackets ([ ] ), angle brackets ( < > ), or curly braces ( { } ). For example,
“NAMEJA | B]” expands to “NAME, NAMEA, NAMEB” and “NAME<A | B>"
expands to "NAMEA, NAMEB".

The asterisk (*) is used as a wild card, encompassing the full set of valid values.
For example, FCMP* refers to FCMP with all valid suffixes (in this case,
FCMP<s|d|g> and FCMPE<s | d | q>). An asterisk is typically used when the full
list of valid values either is not worth listing (because it has little or no relevance
in the given context) or the valid values are too numerous to list in the available
space.

CHAPTER 2 « Document Overview 3



2.2.1

2.2.2

2.2.3

= The slash ( /) is used to separate paired or complementary values in a list, for
example, “the LDBLOCKF/STBLOCKEF instruction pair ....”

= The double colon (::) is an operator that indicates concatenation (typically, of bit
vectors). Concatenation strictly strings the specified component values into a
single longer string, in the order specified. The concatenation operator performs
no arithmetic operation on any of the component values.

Implementation Dependencies

Implementors of UltraSPARC Architecture 2005 processors are allowed to resolve
some aspects of the architecture in machine-dependent ways. Each possible
implementation dependency is indicated by the notation “IMPL. DEP. #1nn: Some
descriptive text.” In this specification, the number nn enumerates the dependencies
in . References to implementation dependencies are indicated by the notation
“(impl. dep. #nn)”.

Notation for Numbers

Numbers throughout this specification are decimal (base-10) unless otherwise
indicated. Numbers in other bases are followed by a numeric subscript indicating
their base (for example, 1001,, FFFF 000044). Long binary and hexadecimal numbers
within the text have spaces inserted every four characters to improve readability.
Within C language or assembly language examples, numbers may be preceded by
“0x” to indicate base-16 (hexadecimal) notation (for example, 0XFFFF0000).

Informational Notes

This guide provides several different types of information in notes, as follows:

Note | General notes contain incidental information relevant to the
paragraph preceding the note.

Programming | Programming notes contain incidental information about how
Note | software can use an architectural feature.

Implementation | An Implementation Note contains incidental information,
Note | describing how an UltraSPARC Architecture 2005 processor
might implement an architectural feature.

V9 Compatibility | Note containing information about possible differences between

Note | UltraSPARC Architecture 2005 and SPARC V9 implementations.
Such information is relevant to UltraSPARC Architecture 2005
implementations and might not apply to other SPARC V9
implementations.
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Forward | Note containing information about how the UltraSPARC
Compatibility | Architecture is expected to evolve in the future. Such notes are
Note | not intended as a guarantee that the architecture will evolve as
indicated, but as a guide to features that should not be depended
upon to remain the same, by software intended to run on both
current and future implementations.

2.3

Reporting Errors in this Specification

This specification has been reviewed for completeness and accuracy. Nonetheless, as
with any document this size, errors and omissions may occur, and reports of such
are welcome. Please send “bug reports” and other comments on this document to
email address: UA-edi t or @un. com
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CHAPTER 3

TTTTIITITIITIITIITIITIITITITIITIITITIITITIITITITIITITIITITIIIIIrS

/ / Note: This chapter is undergoing final review; please check 4
/ back later for a copy of UltraSPARC Architecture ;
/ 2005 containing the final version of this chapter. /

’IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIA

Definitions

This chapter defines concepts and terminology common to all implementations of
UltraSPARC Architecture 2005.

aliased  Said of each of two virtual addresses that refer to the same underlying memory
location.

address space identifier
(ASI) An 8-bit value that identifies an address space. For each instruction or data
access, an ASI is associated withthe address. See also implicit ASI.

application program A program executed with the virtual processor in nonprivileged mode. Note:
Statements made in this specification regarding application programs may not
be applicable to programs (for example, debuggers) that have access to
privileged virtual processor state (for example, as stored in a memory-image
dump).

ASI  Address space identifier.
ASR  Ancillary State register.

available (virtual
processor) A virtual processor that is physically present and functional, that can be
enabled and used.

big-endian An addressing convention. Within a multiple-byte integer, the byte with the
smallest address is the most significant; a byte’s significance decreases as its
address increases.

BLD (Obsolete) abbreviation for Block Load instruction; replaced by LDBLOCKE.

BST (Obsolete) abbreviation for Block Store instruction; replaced by STBLOCKF.



bypass ASI

byte

clean window

CMT

coherence

completed (memory
operation)

consistency

context

context ID

copyback

CPI

core

cross-call
CTI

current window

data access
(instruction)

DCTI

demap

An ASI that refers to memory space and for which the MMU does not perform
address translation (that is, memory is accessed using a direct physical
address).

Eight consecutive bits of data, aligned on an 8-bit boundary.

A register window in which all of the registers contain 0, a valid address from
the current address space, or valid data from the current address space.

Chip-level MultiThreading (or, as an adjective, Chip-level MultiThreaded).
Refers to a processor containing more than one virtual processor.

A set of protocols guaranteeing that all memory accesses are globally visible to
all caches on a shared-memory bus.

Said of a memory transaction when an idealized memory has executed the
transaction with respect to all processors. A load is considered completed
when no subsequent memory transaction can affect the value returned by the
load. A store is considered completed when no subsequent load can return the
value that was overwritten by the store.

See coherence.

A set of translations that defines a particular address space. See also Memory
Management Unit (MMU).

A numeric value that uniquely identifies a particular context.

The process of sending a copy of the data from a cache line owned by a
physical processor core, in response to a snoop request from another device.

Cycles per instruction. The number of clock cycles it takes to execute an
instruction.

In an UltraSPARC Architecture processor, may refer to either a virtual
processor or a physical processor core.

An interprocessor call in a system containting multiple virtual processors.
Abbreviation for control-transfer instruction.

The block of 24 R registers that is presently in use. The Current Window
Pointer (CWP) register points to the current window.

A load, store, load-store, or FLUSH instruction.
Delayed control transfer instruction.

To invalidate a mapping in the MMU.
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denormalized
number

deprecated

disable (core)

disabled (core)

dispatch

doublet

doubleword

enable (core)

enabled (core)

even parity

exception

explicit ASI

A nonzero floating-point number, the exponent of which has a value of zero. A
more complete definition is provided in IEEE Standard 754-1985.

The term applied to an architectural feature (such as an instruction or register)
for which an UltraSPARC Architecture implementation provides support only
for compatibility with previous versions of the architecture. Use of a
deprecated feature must generate correct results but may compromise software
performance.

Deprecated features should not be used in new UltraSPARC Architecture
software and may not be supported in future versions of the architecture.

The process of changing the state of a virtual processor to Di sabl ed, during
which all other processor state (including cache coheriency) may be lost and all
interrupts to that virtual processor will be discarded. See also park and
enable.

A virtual processor that is out of operation (not executing instructions, not
participating in cache coherency, and discarding interrupts). See also parked
and enabled.

To send a previously fetched instruction to one or more functional units for
execution. Typically, the instruction is dispatched from a reservation station or
other buffer of instructions waiting to be executed. (Other conventions for this
term exist, but the this specification attempts to use dispatch consistently as
defined here). See also issued.

Two bytes (16 bits) of data.

An 8-byte datum. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.

The process of moving a virtual processor from Di sabl ed to Enabl ed state
and preparing it for operation. See also disable and parked.

A virtual processor that is in operation (participating in cache coherency, but
not executing instructions unless it is also Runni ng). See also disabled and
running.

The mode of parity checking in which each combination of data bits plus a
parity bit contains an even number of ‘1" bits.

A condition that makes it impossible for the processor to continue executing
the current instruction stream. Some exceptions may be masked (that is, trap
generation disabled — for example, floating-point exceptions masked by
FSR.tem) so that the decision on whether or not to apply special processing
can be deferred and made by software at a later time. See also trap.

An ASI that that is provided by a load, store, or load-store alternate instruction
(either from its imm_asi field or from the ASI register).
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extended word

fcen

floating-point
exception

F register

floating-point operate
(FPop) instructions

floating-point trap
type

floating-point unit

FPop
FPRS
FGU

FPU

FSR

GL

GSR

halfword
hyperprivileged
(software)

hyperprivileged
(state)

An 8-byte datum, nominally containing integer data. Note: The definition of
this term is architecture dependent and may differ from that used in other
processor architectures.

One of the floating-point condition code fields fccO, fccl, fec2, or fec3.

An exception that occurs during the execution of a floating-point operate
(FPop) instruction. The exceptions are unfinished_FPop, unimplemented_FPop,
sequence_error, hardware_error, invalid_fp_register, or IEEE_754_exception.

A floating-point register. The SPARC V9 architecture includes single-, double-,
and quad-precision F registers.

Instructions that perform floating-point calculations, as defined in Floating-
Point Operate (FPop) Instructions on page 131. FPop instructions do not include
FBfcc instructions, loads and stores between memory and the F registers, or
non-floating-point operations that read or write F registers.

The specific type of a floating-point exception, encoded in the FSRftt field.

A processing unit that contains the floating-point registers and performs
floating-point operations, as defined by this specification.

See floating-point operate (FPop) instructions.
Floating-Point Register State register.

Floating-point and Graphics Unit (which, in most implementations, is a
synonym for FPU).

Floating-Point Unit.

Floating-Point Status register.

Global Level register.

General Status register.

A 2-byte datum. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.

Software executing while the processor is in hyperprivileged state.

The highest processor privilege state (defined by HPSTATE.hpriv = 1), in which
all processor features are accessible.
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hypervisor (software)

IEEE 754

IEEE-754 exception

implementation

implementation
dependent

implicit ASI

initiated
instruction field

instruction group

instruction set
architecture

integer unit

interrupt request
inter-strand
intra-strand
invalid

(ASI or address)

ISA

A layer of software that executes in hyperprivileged processor state. One
purpose of hypervisor software (also referred to as “the hypervisor”) is to
provide greater isolation between operating system (“supervisor”) software
and the underlying processor implementation.

IEEE Standard 754-1985, the IEEE Standard for Binary Floating-Point
Arithmetic.

A floating-point exception, as specified by IEEE Std 754-1985. Listed within
this specification as IEEE_754_exception.

Hardware or software that conforms to all of the specifications of an
instruction set architecture (ISA).

An aspect of the UltraSPARC Architecture that can legitimately vary among
implementations. In many cases, the permitted range of variation is specified.
When a range is specified, compliant implementations must not deviate from
that range.

An address space identifier that is implicitly supplied by the virtual processor
on all instruction accesses and on data accesses that do not explicitly provide
an ASI value (from either an imm_asi instruction field or the ASI register).

Synonym for issued.
A bit field within an instruction word.

One or more independent instructions that can be dispatched for simultaneous
execution.

A set that defines instructions, registers, instruction and data memory, the
effect of executed instructions on the registers and memory, and an algorithm
for controlling instruction execution. Does not define clock cycle times, cycles
per instruction, data paths, etc. This specification defines the UltraSPARC
Architecture 2005 instruction set architecture.

A processing unit that performs integer and control-flow operations and
contains general-purpose integer registers and virtual processor state registers,
as defined by this specification.

A request for service presented to a virtual processor by an external device.
Describes an operation that crosses virtual processor (strand) boundaries.

Describes an operation that occurs entirely within one virtual processor
(strand).

Undefined, reserved, or illegal.

Instruction set architecture.
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issued

IU

little-endian

load

load-store

may

Memory Management
Unit

MMU

multiprocessor
system

must

(1) A memory transaction (load, store, or atomic load-store) is said to be
“issued” when a virtual processor has sent the transaction to the memory
subsystem and the completion of the request is out of the virtual processor’s
control. Synonym for initiated.

(2) An instruction (or sequence of instructions) is said to be issued when
released from the virtual processor's instruction fetch unit. Typically,
instructions are issued to a reservation station or other buffer of instructions
waiting to be executed. (Other conventions for this term exist, but this
specification attempts to use "issued" consistently as defined here.)

See also dispatched.

Integer Unit.

An addressing convention. Within a multiple-byte integer, the byte with the
smallest address is the least significant; a byte’s significance increases as its
address increases.

An instruction that reads (but does not write) memory or reads (but does not
write) location(s) in an alternate address space. Some examples of Load
includes loads into integer or floating-point registers, block loads, and
alternate address space variants of those instructions. See also load-store and
store, the definitions of which are mutually exclusive with load.

An instruction that explicitly both reads and writes memory or explicitly reads
and writes location(s) in an alternate address space. Load-store includes
instructions such as CASA, CASXA, LDSTUB, and the deprecated SWAP
instruction. See also load and store, the definitions of which are mutually
exclusive with load-store.

A keyword indicating flexibility of choice with no implied preference. Note:
“May” indicates that an action or operation is allowed; “can” indicates that it is
possible.

The address translation hardware in an UltraSPARC Architecture
implementation that translates 64-bit virtual address into physical addresses.
The MMU is composed of the TLBs, ASRs, and ASI registers used to manage
address translation. See also context, physical address, and virtual address.

Memory Management Unit.

A system containing more than one processor.

A keyword indicating a mandatory requirement. Designers must implement
all such mandatory requirements to ensure interoperability with other
UltraSPARC Architecture-compliant products. Synonym: shall.
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next program counter
(NPC)

NFO

nonfaulting load

nonprivileged

nonprivileged mode

nontranslating ASI

normal trap

NPC

npt

nucleus software
NUMA
N_REG_WINDOWS

octlet

odd parity

opcode

Conceptually, a register that contains the address of the instruction to be
executed next if a trap does not occur.

Nonfault access only.

A load operation that behaves identically to a normal load operation, except
when supplied an invalid effective address by software. In that case, a regular
load triggers an exception whereas a nonfaulting load appears to ignore the
exception and loads its destination register with a value of zero (on an
UltraSPARC Architecture processor, hardware treats regular and nonfaulting
loads identically; the distinction is made in trap handler software). Contrast
with speculative load.

An adjective that describes

(1) the state of the virtual processor when PSTATE.priv = 0, that is,
nonprivileged mode;

(2) virtual processor state information that is accessible to software while the
virtual processor is in either privileged mode or nonprivileged mode; for
example, nonprivileged registers, nonprivileged ASRs, or, in general,
nonprivileged state;

(3) an instruction that can be executed when the virtual processor is in either
privileged mode or nonprivileged mode.

The mode in which a virtual processor is operating when executing application
software (at the lowest privilege level). Nonprivileged mode is defined by
PSTATE.priv = 0 and HSTATE.hpriv = 0. See also privileged.

An ASI that does not refer to memory (for example, refers to control/status
register(s)) and for which the MMU does not perform address translation.

A trap processed in execut e_st at e (or equivalently, a non-RED_st at e
trap). Contrast with RED_st at e trap.

Next program counter.

Nonprivileged trap.

Privileged software running at a trap level greater than 0 (TL> 0).
Nonuniform memory access.

The number of register windows present in a particular implementation.

Eight bytes (64 bits) of data. Not to be confused with “octet,” which has been
commonly used to describe eight bits of data. In this document, the term byte,
rather than octet, is used to describe eight bits of data.

The mode of parity checking in which each combination of data bits plus a
parity bit together contain an odd number of ‘1’ bits.

A bit pattern that identifies a particular instruction.
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optional
PA

park

parked

PC
PCR

physical address

physical core

PIC
PIL

pipeline

PIPT
POR

A feature not required for UltraSPARC Architecture 2005 compliance.
Physical address.

The process of suspending a virtual processor from operation. There may be a
delay until the virtual processor is parked, but no heavyweight operation (such
as a reset) is required to complete the parking process. See also disable and
unpark.

A virtual processor suspended from operation. When parked, a virtual
processor does not issue instructions for execution but (if enabled) still
maintains cache coherency. See also disabled, enabled, and running.

Program counter.
Performance Control register.

An address that maps real physical memory or I/O device space. See also
virtual address.

The term physical processor core, or just physical core, is similar to the term
pipeline but represents a broader collection of hardware. A physical core
includes an execution pipeline plus associated structures, such as caches, that
are required for performing the execution of instructions from one or more
software threads. A physical core contains one or more virtual processors
(strands). The physical core provides the necessary resources for the threads on
each strand to make forward progress at a reasonable rate. A multistranded
physical core can execute multiple software threads either by time
multiplexing or partitioning resources (or any combination thereof). See also
pipeline, processor, strand, thread, and virtual processor.

Performance Instrumentation Counter.
Processor Interrupt Level register.

Refers to an execution pipeline. It is a loose term for the basic collection of
hardware needed to execute instructions. A pipeline may be used by one or
more strands to execute instructions from one or more threads. Synonym for
microcore. See also physical core, processor, strand, thread, and virtual
processor.

Physically indexed, physically tagged (cache).

Power-on reset.
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prefetchable

privileged

privileged mode

processor

processor core
processor module
program counter (PC)

quadword

R register
RA

RAS

RAW
rd
RDPR

(1) An attribute of a memory location that indicates to an MMU that
PREFETCH operations to that location may be applied.

(2) A memory location condition for which the system designer has
determined that no undesirable effects will occur if a PREFETCH operation to
that location is allowed to succeed. Typically, normal memory is prefetchable.

Nonprefetchable locations include those that, when read, change state or cause
external events to occur. For example, some I/O devices are designed with
registers that clear on read; others have registers that initiate operations when
read. See side effect.

An adjective that describes:

(1) the state of the processor when PSTATE.priv = 1 and HPSTATE.hpriv =0,
that is, privileged mode;

(2) processor state that is only accessible to software while the processor is in
privileged mode; for example, privileged registers, privileged ASRs, or, in
general, privileged state;

(3) an instruction that can be executed only when the processor is in privileged
mode.

The mode in which a processor is operating when PSTATE.priv = 1 and
HPSTATE.hpriv = 0. See also nonprivileged.

The unit on which a shared interface is provided to control the configuration
and execution of a collection of strands. A processor contains one or more
physical cores, each of which contains one or more strands. On a more physical
side, a processor is a physical module that plugs into a system. A processor is
expected to appear logically as a single agent on the system interconnect fabric.
Synonym for processor module. See also pipeline, physical core, strand, thread,
and virtual processor.

See virtual processor.
Synonym for processor.
A register that contains the address of the instruction currently being executed.

A 16-byte datum. Note: The definition of this term is architecture dependent
and may be different from that used in other processor architectures.

An integer register. Also called a general-purpose register or working register.
Real address.

(1) Return Address Stack
(2) Reliability, Availability, and Serviceability

Read After Write (hazard)
Rounding direction.

Read Privileged Register instruction.
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RED_state Reset, Error, and Debug state. The virtual processor state when
HPSTATE.red = 1. A restricted execution environment used to process resets
and traps that occur when TL = MAXTL — 1.

RED state trap A trap processed in RED_st at e. Contrast with normal trap.

reserved Describing an instruction field, certain bit combinations within an instruction
field, or a register field that is reserved for definition by future versions of the
architecture.

A reserved instruction field must read as 0, unless the implementation supports
extended instructions within the field. The behavior of an UltraSPARC
Architecture 2005 virtual processor when it encounters a nonzero value in a
reserved instruction field is as defined in Reserved Opcodes and Instruction Fields
on page 132.

A reserved bit combination within an instruction field is defined in Chapter 7,
Instructions. In all cases, an UltraSPARC Architecture 2005 processor must
decode and trap on such reserved bit combinations.

A reserved field within a register reads as 0 in current implementations and, when
written by software, should always be written with values of that field
previously read from that register or with the value zero (as described in
Reserved Register Fields on page 48).

Throughout this specification, figures and tables illustrating registers and
instruction encodings indicate reserved fields and combinations with an em
dash (—).

reset trap A vectored transfer of control to privileged software through a fixed-address
reset trap table. Reset traps cause entry into RED_st at e.

restricted Describes an address space identifier (ASI) that may be accessed only while the
virtual processor is operating in a privileged mode or hyperprivileged mode.

retired An instruction is said to be “retired” when one of (instruction) the following
two events has occurred:
(1) A precise trap has been taken, with TPC containing the instruction's
address (the instruction has not changed architectural state in this case).
(2) The instruction's execution has progressed to a point at which architectural
state affected by the instruction has been updated such that all three of the
following are true:

= The PC has advanced beyond the instruction.

= Except for deferred trap handlers, no consumer in the same instruction
stream can see the old values and all consumers in the same instruction
stream will see the new values.

= Stores are visible to all loads in the same instruction stream, including
stores to noncacheable locations.

RMO Relaxed memory order.
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rsl, rs2, rd

RTO

RTS

running

service processor

SFAR

SFSR

shall
should

side effect

SIMD

SIR

snooping

speculative load

store

The integer or floating-point register operands of an instruction. rs1 and rs2
are source registers; rd is the destination register.

Read to Own (a type of transaction, used to request ownership of a cache line).

Read to Share (a type of transaction, used to request read-only access to a
cache line).

A state of a virtual processor in which it is in operation (maintaining cache
coherency and issuing instructions for execution) and not Par ked.

A device external to the processor that can examine and alter internal
processor state. A service processor may be used to control/coordinate a
multiprocessor system and aid in error recovery.

Synchronous Fault Address register.
Synchronous Fault Status register.
Synonym for must.

A keyword indicating flexibility of choice with a strongly preferred
implementation. Synonym for it is recommended.

The result of a memory location having additional actions beyond the reading
or writing of data. A side effect can occur when a memory operation on that
location is allowed to succeed. Locations with side effects include those that,
when accessed, change state or cause external events to occur. For example,
some I/O devices contain registers that clear on read; others have registers that
initiate operations when read. See also prefetchable.

Single Instruction/Multiple Data; a class of instructions that perform identical
operations on multiple data contained (or “packed”) in each source operand.

Software-initiated reset.

The process of maintaining coherency between caches in a shared-memory bus
architecture. All cache controllers monitor (snoop) the bus to determine
whether they have a copy of the shared cache block.

A load operation that is issued by a virtual processor speculatively, that is,
before it is known whether the load will be executed in the flow of the
program. Speculative accesses are used by hardware to speed program
execution and are transparent to code. An implementation, through a
combination of hardware and system software, must nullify speculative loads
on memory locations that have side effects; otherwise, such accesses produce
unpredictable results. Contrast with nonfaulting load.

An instruction that writes (but does not explicitly read) memory or writes (but
does not explicitly read) location(s) in an alternate address space. Some
examples of Store includes stores from either integer or floating-point registers,
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strand

subnormal number

superscalar

supervisor software
suspend

synchronization

system

taken

TBA
TEE
thread

TLB

TLB hit
TLB miss
TPC

Translation Lookaside
Buffer (TLB)

block stores, Partial Store, and alternate address space variants of those
instructions. See also load and load-store, the definitions of which are mutually
exclusive with store.

Identifies the hardware state used to hold a software thread in order to execute
it. Strand is specifically the software-visible architected state (program counter
(PC), next program counter (NPC), general-purpose registers, floating-point
registers, condition codes, status registers, ASRs, etc.) of a thread and any
microarchitecture state required by hardware for its execution. See also
pipeline, physical core, processor, thread, and virtual processor.

Synonym for denormalized number.

An implementation that allows several instructions to be issued, executed, and
committed in one clock cycle.

Software that executes when the virtual processor is in privileged mode.
See park.

An operation that causes the processor to wait until the effects of all previous
instructions are completely visible before any subsequent instructions are
executed.

A set of virtual processors that share a physical address space.

A control-transfer instruction (CTI) is taken when the CTI alters the control
flow by writing a value into NPC other than the default value NPC = 4.

A trap is taken when the control flow changes in response to an exception,
reset, Tcc instruction, or interrupt. An exception must be detected and
recognized before it can cause a trap to be taken.

Trap base address.
Thread Execution Engine. Synonym for virtual processor and strand.

A software entity that can be run on hardware. A thread is scheduled, may or
may not be actively running on hardware at any given time, and may migrate
around the hardware of a system. See also pipeline, physical core, processor,
strand, and virtual processor.

See Translation Lookaside Buffer (TLB).

The desired translation is present in the TLB.

The desired translation is not present in the TLB.

Trap-saved program counter.

A cache within an MMU that contains recent partial translations. TLBs speed

up closely following translations by often eliminating the need to reread
Translation Table Entries from memory.
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trap

TSB

TSO
TTE

UA-2005

unassigned

undefined

unimplemented

unpark

unparked
unpredictable
uniprocessor system

unrestricted

user application
program

The action taken by a virtual processor when it changes the instruction flow in
response to the presence of an exception, reset, a Tcc instruction, or an
interrupt. The action is a vectored transfer of control to supervisor software
through a table, the address of which is specified by the privileged Trap Base
Address (TBA) register. See also exception.

Translation storage buffer. A table of the address translations that is
maintained by software in system memory and that serves as a cache of the
address translations.

Total store order.

Translation Table Entry. Describes the virtual-to-physical translation and page
attributes for a specific page in the page table. In some cases, the term is
explicitly used for the entries in the TSB.

UltraSPARC Architecture 2005

A value (for example, an ASI number), the semantics of which are not
architecturally mandated and which may be determined independently by
each implementation within any guidelines given.

An aspect of the architecture that has deliberately been left unspecified.
Software should have no expectation of, nor make any assumptions about, an
undefined feature or behavior. Use of such a feature can deliver unexpected
results, may or may not cause a trap, can vary among implementations, and
can vary with time on a given implementation.

Notwithstanding any of the above, undefined aspects of the architecture shall
not cause security holes (such as changing the privilege state or allowing
circumvention of normal restrictions imposed by the privilege state), put a
virtual processor into privileged mode, or put the virtual processor into an
unrecoverable state.

An architectural feature that is not directly executed in hardware because it is
optional or is emulated in software.

The process of bringing a virtual processor out of suspension. There may be a
delay until the virtual processor is unparked, but no heavyweight operation
(such as a reset) is required to complete the unparking process. See also disable
and park.

Synonym for running.
Synonym for undefined.
A system containing a single virtual processor.

Describes an address space identifier (ASI) that can be used in all privileged
modes; that is, regardless of the value of PSTATE.priv and HPSTATE.hpriv.

Synonym for application program.
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VA

virtual address

virtual core,
virtual processor,
virtual processor core

virtual processor

VIS
Strand
WDR

word

WRPR
XIR

Virtual address.

An address produced by a virtual processor that maps all systemwide,
program-visible memory. Virtual addresses usually are translated by a
combination of hardware and software to physical addresses, which can be
used to access physical memory.

Synonyms: virtual processor.

The term virtual processor, or virtual processor core, is used to identify each
strand in a processor. A CMT processor contains one or more physical cores,
each of which contains one or more virtual processors (strands). Each virtual
processor (strand) has its own interrupt ID. At any given time, an operating
system can have a different thread scheduled on each virtual processor. See also
pipeline, physical core, processor, strand, and thread.

VIS™ Instruction Set.
Abbreviation for Virtual Processor.
Watchdog reset.

A 4-byte datum. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.

Write Privileged Register instruction.

Externally initiated reset.
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CHAPTER 4

Architecture Overview

The UltraSPARC Architecture supports 32- and 64-bit integer and 32- 64-, and 128-bit
floating-point as its principal data types. The 32- and 64-bit floating-point types
conform to IEEE Std 754-1985. The 128-bit floating-point type conforms to IEEE Std
1596.5-1992. The architecture defines general-purpose integer, floating-point, and
special state/status register instructions, all encoded in 32-bit-wide instruction
formats. The load/store instructions address a linear, 26*-byte virtual address space.

The UltraSPARC Architecture 2005 specification describes a processor architecture to
which Sun Microsystem’s SPARC processor implementations (beginning with
UltraSPARC T1) comply. Future implementations are expected to comply with either
this document or a later revision of this document.

The UltraSPARC Architecture 2005 is a descendant of the SPARC V9 architecture and
complies fully with the “Level 1” (nonprivileged) SPARC V9 specification.

Nonprivileged (application) software that is intended to be portable across all
SPARC V9 processors should be written to adhere to The SPARC Architecture Manual-
Version 9.

Material in this document specific to UltraSPARC Architecture 2005 processors may
not apply to SPARC V9 processors produced by other vendors.

In this specification, the word architecture refers to the processor features that are
visible to an assembly language programmer or to a compiler code generator. It does
not include details of the implementation that are not visible or easily observable by
software, nor those that only affect timing (performance).
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4.1 The UltraSPARC Architecture 2005

This section briefly describes features, attributes, and components of the
UltraSPARC Architecture 2005 and, further, describes correct implementation of the
architecture specification and SPARC V9-compliance levels.

4.1.1 Features

The UltraSPARC Architecture 2005, like its ancestor SPARC V9, includes the
following principal features:

= A linear 64-bit address space with 64-bit addressing.

= 32-bit wide instructions — These are aligned on 32-bit boundaries in memory.
Only load and store instructions access memory and perform I/0O.

= Few addressing modes — A memory address is given as either “register +
register” or “register + immediate”.

= Triadic register addresses — Most computational instructions operate on two
register operands or one register and a constant and place the result in a third
register.

= A large windowed register file — At any one instant, a program sees 8 global
integer registers plus a 24-register window of a larger register file. The windowed
registers can be used as a cache of procedure arguments, local values, and return
addresses.

= Floating point — The architecture provides an IEEE 754-compatible floating-
point instruction set, operating on a separate register file that provides 32 single-
precision (32-bit), 32 double-precision (64-bit), 16 quad-precision (128-bit)
registers, or a mixture thereof.

= Fast trap handlers — Traps are vectored through a table.

= Multiprocessor synchronization instructions — One instruction performs an
atomic read-then-set-memory operation; another performs an atomic exchange-
register-with-memory operation; another compares the contents of a register with
a value in memory and exchanges memory with the contents of another register if
the comparison was equal (compare and swap); two others synchronize the order
of shared memory operations as observed by virtual processors.

» Predicted branches — The branch with prediction instructions allows the
compiler or assembly language programmer to give the hardware a hint about
whether a branch will be taken.

= Branch elimination instructions — Several instructions can be used to eliminate
branches altogether (for example, Move on Condition). Eliminating branches
increases performance in superscalar and superpipelined implementations.
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4.1.2

Hardware trap stack — A hardware trap stack is provided to allow nested traps.
It contains all of the machine state necessary to return to the previous trap level.
The trap stack makes the handling of faults and error conditions simpler, faster,
and safer.

In addition, UltraSPARC Architecture 2005 includes the following features that were
not present in the SPARC V9 specification:

Hyperprivileged mode, which simplifies porting of operating systems, supports
far greater portability of operating system (privileged) software, supports the
ability to run multiple simultaneous guest operating systems, and provides more
robust handling of error conditions.

Multiple levels of global registers — Instead of the two 8-register sets of global
registers specified in the SPARC V9 architecture, UltraSPARC Architecture 2005
provides multiple sets; typically, one set is used at each trap level.

Extended instruction set — UltraSPARC Architecture 2005 provides many
instruction set extensions, including the VIS instruction set for "vector" (SIMD)
data operations.

More detailed, specific instruction descriptions — UltraSPARC Architecture
2005 provides many more details regarding what exceptions can be generated by
each instruction and the specific conditions under which those exceptions can
occur. Also, detailed lists of valid ASIs are provided for each load/store
instruction from/to alternate space.

Detailed MMU architecture — Although some details of the UltraSPARC MMU
architecture are necessarily implementation-specifc, UltraSPARC Architecture
2005 provides a blueprint for the UltraSPARC MMU, including software view
(TTEs and TSBs) and MMU hardware control registers.

Chip-Level Multithreading (CMT) — UltraSPARC Architecture 2005 provides a
control architecture for highly-threaded processor implementations.

Attributes

UltraSPARC Architecture 2005 is a processor instruction set architecture (ISA) derived
from SPARC V8 and SPARC V9, which in turn come from a reduced instruction set
computer (RISC) lineage. As an architecture, UltraSPARC Architecture 2005 allows
for a spectrum of processor and system implementations at a variety of price/
performance points for a range of applications, including scientific/engineering,
programming, real-time, and commercial applications.
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4.1.3

41.2.1 Design Goals

The UltraSPARC Architecture 2005 architecture is designed to be a target for
optimizing compilers and high-performance hardware implementations. This
specification documents the UltraSPARC Architecture 2005 and provides a design
spec against which an implementation can be verified, using appropriate verification
software.

4122 Register Windows

The UltraSPARC Architecture 2005 architecture is derived from the SPARC
architecture, which was formulated at Sun Microsystems in 1984 through1987. The
SPARC architecture is, in turn, based on the RISC I and II designs engineered at the
University of California at Berkeley from 1980 through 1982. The SPARC “register
window” architecture, pioneered in the UC Berkeley designs, allows for
straightforward, high-performance compilers and a reduction in memory load/store
instructions.

Note that supervisor software, not user programs, manages the register windows.
The supervisor can save a minimum number of registers (approximately 24) during
a context switch, thereby optimizing context-switch latency.

System Components

The UltraSPARC Architecture 2005 allows for a spectrum of subarchitectures, such
as cache system, I/O, and memory management unit (MMU).

41.3.1 Binary Compatibility

The most important SPARC V9 architectural mandate is binary compatibility of
nonprivileged programs across implementations. Binaries executed in nonprivileged
mode should behave identically on all SPARC V9 systems when those systems are
running an operating system known to provide a standard execution environment.
One example of such a standard environment is the SPARC V9 Application Binary
Interface (ABI).

Although different SPARC V9 systems can execute nonprivileged programs at
different rates, they will generate the same results as long as they are run under the
same memory model. See Chapter 9, Memory, for more information.

Additionally, the SPARC V9 architecture is binary upward-compatible from SPARC
V8 for applications running in nonprivileged mode that conform to the SPARC V8
ABL
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4.1.4

4.1.5

4.1.6

4.1.3.2 UltraSPARC Architecture 2005 MMU

Although the SPARC V9 architecture allows its implementations freedom in their
MMU designs, UltraSPARC Architecture 2005 defines a common MMU architecture
(see Chapter 14, Memory Management) with some specifics left to implementations
(see processor implementation documents).

4.1.3.3 Privileged Software

UltraSPARC Architecture 2005 does not assume that all implementations must
execute identical privileged software (operating systems) or hyperprivileged
software (hypervisors). Thus, certain traits that are visible to privileged software
may be tailored to the requirements of the system.

Architectural Definition

The UltraSPARC Architecture 2005 is defined by the chapters and normative
appendixes of this specification. A correct implementation of the architecture
interprets a program strictly according to the rules and algorithms specified in the
chapters and normative appendixes.

UltraSPARC Architecture 2005 defines a set of implementations that conform to the
SPARC V9 architecture, Level 1.

UltraSPARC Architecture 2005 Compliance with
SPARC V9 Architecture

UltraSPARC Architecture 2005 fully complies with SPARC V9 Level 1
(nonprivileged). It partially complies with SPARC V9 Level 2 (privileged).

Implementation Compliance with UltraSPARC
Architecture 2005

Compliant implementations must not add to or deviate from this standard except in
aspects described as implementation dependent. Appendix B, Implementation
Dependencies lists all UltraSPARC Architecture 2005, SPARC V8, and SPARC V9
implementation dependencies. Documents for specific UltraSPARC Architecture
2005 processor implementations describe the manner in which implementation
dependencies have been resolved in those implementations.
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IMPL. DEP. #1-V8: Whether an instruction complies with UltraSPARC Architecture
2005 by being implemented directly by hardware, simulated by software, or
emulated by firmware is implementation dependent.

4.2

4.2.1

Processor Architecture

An UltraSPARC Architecture processor logically consists of an integer unit (IU) and
a floating-point unit (FPU), each with its own registers. This organization allows for
implementations with concurrent integer and floating-point instruction execution.
Integer registers are 64 bits wide; floating-point registers are 32, 64, or 128 bits wide.
Instruction operands are single registers, register pairs, register quadruples, or
immediate constants.

An UltraSPARC Architecture virtual processor can run in nonprivileged mode,
privileged mode, or hyperprivileged mode. In hyperprivileged mode, the processor can
execute any instruction, including privileged instructions. In privileged mode, the
processor can execute nonprivileged and privileged instructions. In nonprivileged
mode, the processor can only execute nonprivileged instructions. In nonprivileged
or privileged mode, an attempt to execute an instruction requiring greater privilege
than the current mode causes a trap to hyperprivileged software.

Integer Unit (IU)

The integer unit contains the general-purpose registers and controls the overall
operation of the virtual processor. The IU executes the integer arithmetic
instructions and computes memory addresses for loads and stores. It also maintains
the program counters and controls instruction execution for the FPU.

IMPL. DEP. #2-V8: An UltraSPARC Architecture implementation may contain from
72 to 640 general-purpose 64-bit R registers. This corresponds to a grouping of the
registers into MAXPGL MAXGL + 1 sets of global R registers plus a circular stack of
N_REG_WINDOWS sets of 16 registers each, known as register windows. The number
of register windows present (N_REG_WINDOWS) is implementation dependent, within
the range of 3 to 32 (inclusive).
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4.2.2 Floating-Point Unit (FPU)

The FPU has thirty-two 32-bit (single-precision) floating-point registers, thirty-two
64-bit (double-precision) floating-point registers, and sixteen 128-bit (quad-
precision) floating-point registers, some of which overlap. Double-precision values
occupy an even-odd pair of single-precision registers , and quad-precision values
occupy a quad-aligned group of four single-precision registers.

If no FPU is present, then it appears to software as if the FPU is permanently
disabled.

If the FPU is not enabled, then an attempt to execute a floating-point instruction
generates an fp_disabled trap and the fp_disabled trap handler software must either

= Enable the FPU (if present) and reexecute the trapping instruction, or
= Emulate the trapping instruction in software.

4.3 Instructions

Instructions fall into the following basic categories:

= Memory access

Integer arithmetic / logical / shift
Control transfer

State register access
Floating-point operate
Conditional move

= Register window management

These classes are discussed in the following subsections.

4.3.1 Memory Access

Load, store, load-store, and PREFETCH instructions are the only instructions that
access memory. They use two R registers or an R register and a signed 13-bit
immediate value to calculate a 64-bit, byte-aligned memory address. The Integer
Unit appends an ASI to this address.

The destination field of the load/store instruction specifies either one or two R
registers or one, two, or four F registers that supply the data for a store or that
receive the data from a load.

CHAPTER 4 « Architecture Overview 27



Integer load and store instructions support byte, halfword (16-bit), word (32-bit),
and doubleword (64-bit) accesses. Some versions of integer load instructions
perform sign extension on 8-, 16-, and 32-bit values as they are loaded into a 64-bit
destination register. Floating-point load and store instructions support word,
doubleword, and quadword! memory accesses.

CASA, CASXA, SWAP, and LDSTUB are special atomic memory access instructions
that concurrent processes use for synchronization and memory updates.

The (nonportable) LDTXA instruction supplies an atomic 128-bit (16-byte) load that
is important in certain system software applications.

43.1.1 Memory Alignment Restrictions

A memory access on an UltraSPARC Architecture virtual processor must typically be
aligned on an address boundary greater than or equal to the size of the datum being
accessed. An improperly aligned address in a load, store, or load-store in instruction
may trigger an exception and cause a subsequent trap. For details, see Memory
Alignment Restrictions on page 114.

43.12 Addressing Conventions

The SPARC V9 architecture uses big-endian byte order by default: the address of a
quadword, doubleword, word, or halfword is the address of its most significant
byte. Increasing the address means decreasing the significance of the unit being
accessed. All instruction accesses are performed using big-endian byte order.

The SPARC V9 architecture also supports little-endian byte order for data accesses
only: the address of a quadword, doubleword, word, or halfword is the address of
its least significant byte. Increasing the address means increasing the significance of
the data unit being accessed. See Processor State (PSTATEP) Register (PR 6) on page 94
for information about changing the implicit byte order to little-endian.

Addressing conventions are illustrated in FIGURE 6-2 on page 117 and FIGURE 6-3 on
page 119.

4.3.1.3 Addressing Range

IMPL. DEP. #405-S10: An UltraSPARC Architecture implementation may support a
full 64-bit virtual address space or a more limited range of virtual addresses. In an
implementation that does support a full 64-bit virtual address space, the supported
range of virtual addresses is restricted to two equal-sized ranges at the extreme
upper and lower ends of 64-bit addresses; that is, for n-bit virtual addresses, the
valid address ranges are 0 to 2"~ =1 and 26% - 271 t0 264 - 1.

1- No UltraSPARC Architecture processor currently implements the LDQF instruction in hardware; it generates
an exception and is emulated in supervisor software.
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4.3.1.4 Load/Store Alternate

Versions of load/store instructions, the load/store alternate instructions, can specify an
arbitrary 8-bit address space identifier for the load/store data access. Access to
alternate spaces 0014—7F4 is restricted to privileged code, and access to alternate
spaces 801—FFy4 is unrestricted. Some of the ASIs are available for implementation-
dependent uses. Supervisor software can use the implementation-dependent ASIs to
access special protected registers, such as MMU, cache control, and virtual processor
state registers, and other processor- or system-dependent values. See Address Space
Identifiers (ASIs) on page 120 for more information.

Alternate space addressing is also provided for the atomic memory access
instructions LDSTUBA, CASA, and CASXA.

Note | SWAPA is also available, but it is deprecated and should not be
used in newly developed software.

43.1.5 Separate I and D Memories

The interpretation of addresses can be unified, in which case the same translations
and caching are applied to both instructions and data. Alternatively, addresses can
be split, in which case instruction references use one translation mechanism and

cache and data references use another, although the same main memory is shared.

In such split-memory systems, the coherency mechanism may be split, so a write
into data memory is not immediately reflected in instruction memory. For this
reason, programs that modify their own code (self-modifying code) and that wish to
be portable across all SPARC V9 processors must issue FLUSH instructions, or a
system call with a similar effect, to bring the instruction and data caches into a
consistent state.

An UltraSPARC Architecture virtual processor may or may not have coherent
instruction and data caches. Even if it does, a FLUSH instruction is required for self-
modifying code — not for cache coherency, but to flush pipeline instruction buffers
that contain unmodified instructions which may have been subsequently modified.

43.1.6 Input/Output (I/0)

The UltraSPARC Architecture assumes that input/output registers are accessed
through load/store alternate instructions, normal load/store instructions, or read/
write Ancillary State Register instructions (RDasr, WRasr).

IMPL. DEP. #123-V9: The semantic effect of accessing input/output (I/O) locations
is implementation dependent.

IMPL. DEP. #6-V8: Whether the I/O registers can be accessed by nonprivileged code
is implementation dependent.
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4.3.2

4.3.3

IMPL. DEP. #7-V8: The addresses and contents of I/O registers are implementation
dependent.

4.3.1.7 Memory Synchronization

Two instructions are used for synchronization of memory operations: FLUSH and
MEMBAR. Their operation is explained in Flush Instruction Memory on page 186 and
Memory Barrier on page 271, respectively.

Note | STBAR is also available, but it is deprecated and should not be

used in newly developed software.

Arithmetic / Logical / Shift Instructions

The arithmetic/logical /shift instructions perform arithmetic, tagged arithmetic,
logical, and shift operations. With one exception, these instructions compute a result
that is a function of two source operands; the result is either written into a
destination register or discarded. The exception, SETHI, can be used in combination
with another arithmetic or logical instruction to create a 32-bit constant in an R
register.

Shift instructions shift the contents of an R register left or right by a given count. The
shift distance is specified by a constant in the instruction or by the contents of an R
register.

The integer multiply instruction performs a 64 x 64 — 64-bit operation. The integer
division instructions perform 64 + 64 — 64-bit operations. Division by zero causes a
trap. Some versions of the 32-bit multiply and divide instructions set the condition
codes.

The tagged arithmetic instructions assume that the least-significant two bits of each
operand are a data-type tag. These instructions set the integer condition code (icc)
and extended integer condition code (xcc) overflow bits on 32-bit (icc) or 64-bit (xcc)
arithmetic overflow. In addition, if any of the operands’ tag bits are nonzero, icc is
set. The xcc overflow bit is not affected by the tag bits.

Control Transfer

Control-transfer instructions (CTIs) include PC-relative branches and calls, register-
indirect jumps, and conditional traps. Most of the control-transfer instructions are
delayed; that is, the instruction immediately following a control-transfer instruction
in logical sequence is dispatched before the control transfer to the target address is
completed. Note that the next instruction in logical sequence may not be the
instruction following the control-transfer instruction in memory.
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4.3.4

The instruction following a delayed control-transfer instruction is called a delay
instruction. A bit in a delayed control-transfer instruction (the annul bit) can cause
the delay instruction to be annulled (that is, to have no effect) if the branch is not
taken (or in the “branch always” case if the branch is taken).

Note | The SPARC V8 architecture specified that the delay instruction
was always fetched, even if annulled, and that an annulled
instruction could not cause any traps. The SPARC V9
architecture does not require the delay instruction to be fetched
if it is annulled.

Branch and CALL instructions use PC-relative displacements. The jump and link
(JMPL) and return (RETURN) instructions use a register-indirect target address.
They compute their target addresses either as the sum of two R registers or as the
sum of an R register and a 13-bit signed immediate value. The “branch on condition
codes without prediction” instruction provides a displacement of +8 Mbytes; the
“branch on condition codes with prediction” instruction provides a displacement of
*1 Mbyte; the “branch on register contents” instruction provides a displacement of
+128 Kbytes; and the CALL instruction’s 30-bit word displacement allows a control
transfer to any address within * 2 gigabytes (+ 2! bytes).

Note | The return from privileged trap instructions (DONE and
RETRY) get their target address from the appropriate TPC or
TNPC register.

State Register Access

The read and write state register instructions read and write the contents of state
registers visible to nonprivileged software (Y, CCR, ASI, PC, TICK, and FPRS). The
read and write privileged register instructions read and write the contents of state
registers visible only to privileged software (TPC, TNPC, TSTATE, TT, TICK, TBA,
PSTATE, TL, PIL, CWP, CANSAVE, CANRESTORE, CLEANWIN, OTHERWIN,
WSTATE, and VER).

IMPL. DEP. #8-V8-Cs20: Ancillary state registers (ASRs) in the range 0-27 that are
not defined in UltraSPARC Architecture 2005 are reserved for future architectural
use. ASRs in the range 28-31 are available to be used for implementation-dependent
purposes.

IMPL. DEP. #9-V8-Cs20: Whether each of the implementation-dependent read/
write ancillary state register instructions (for ASRs 28-31) is privileged is
implementation dependent.
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4.3.5

4.3.6

4.3.7

Floating-Point Operate

Floating-point operate (FPop) instructions perform all floating-point calculations;
they are register-to-register instructions that operate on the floating-point registers.
FPops compute a result that is a function of one or two source operands. The groups
of instructions that are considered FPops are listed in Floating-Point Operate (FPop)
Instructions on page 131.

Conditional Move

Conditional move instructions conditionally copy a value from a source register to a
destination register, depending on an integer or floating-point condition code or
upon the contents of an integer register. These instructions increase performance by
reducing the number of branches.

Register Window Management

Register window instructions manage the register windows. SAVE and RESTORE
are nonprivileged and cause a register window to be pushed or popped. FLUSHW is
nonprivileged and causes all of the windows except the current one to be flushed to
memory. SAVED and RESTORED are used by privileged software to end a window
spill or fill trap handler.

4.4

Traps

A trap is a vectored transfer of control to privileged software through a trap table
that may contain the first 8 instructions (32 for some frequently used traps) of each
trap handler. The base address of the table is established by software in a state
register (the Trap Base Address register, TBA, or the Hyperprivileged Trap Base
Register, HTBA). The displacement within the table is encoded in the type number of
each trap and the level of the trap. Part of the trap table is reserved for hardware
traps, and part of it is reserved for software traps generated by trap (Tcc)
instructions.

A trap causes the current PC and NPC to be saved in the TPC and TNPC registers.
It also causes the CCR, ASI, PSTATE, and CWP registers to be saved in TSTATE.
TPC, TNPC, and TSTATE are entries in a hardware trap stack, where the number of
entries in the trap stack is equal to the number of supported trap levels. A trap
causes hyperprivileged state to be saved in the HTSTATE trap stack. A trap also sets

32 UltraSPARC Architecture 2005 « Draft D0.8.7, 27 Mar 2006



bits in the PSTATE register and typically increments the GL register. Normally, the
CWP is not changed by a trap; on a window spill or fill trap, however, the CWP is
changed to point to the register window to be saved or restored.

A trap can be caused by a Tcc instruction, an asynchronous exception, an instruction-
induced exception, or an interrupt request not directly related to a particular
instruction. Before executing each instruction, a virtual processor determines if there
are any pending exceptions or interrupt requests. If any are pending, the virtual
processor selects the highest-priority exception or interrupt request and causes a
trap.

See Chapter 12, Traps, for a complete description of traps.

4.5

Chip-Level Multithreading (CMT)

An UltraSPARC Architecture implementation may include multiple virtual processor
cores on the same processor module to provide a dense, high-throughput system.
This may be achieved by having a combination of multiple physical processor cores
and/or multiple strands (threads) per physical processor core. Chapter 15, Chip-Level
Multithreading (CMT), specifies a common interface between hardware and software
for such products, referred to here as chip-level multiprocessors (CMT processors).
Chapter 10 addresses issues common to CMT processors, regardless of the
microarchitecture of the individual physical processor cores.

The CMT Programming Model describes a set of privileged registers that are used
for identification and configuration of CMT processors. Equally important, the CMT
Programming Model describes certain behavior that must be common across all
UltraSPARC Architecture CMT processors. The set of registers and the common
behavior are covered in Chapter 15, Chip-Level Multithreading (CMT).
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CHAPTER 5

Data Formats

The UltraSPARC Architecture recognizes these fundamental data types:

= Signed integer: 8, 16, 32, and 64 bits

= Unsigned integer: 8, 16, 32, and 64 bits

= SIMD data formats: Uint8 SIMD (32 bits), Int16 SIMD (64 bits), and Int32 SIMD
(64 bits)

= Floating point: 32, 64, and 128 bits

The widths of the data types are as follows:

= Byte: 8 bits

= Halfword: 16 bits

= Word: 32 bits

» Tagged word: 32 bits (30-bit value plus 2-bit tag)
= Doubleword/Extended-word: 64 bits

= Quadword: 128 bits

The signed integer values are stored as two’s-complement numbers with a width
commensurate with their range. Unsigned integer values, bit vectors, Boolean
values, character strings, and other values representable in binary form are stored as
unsigned integers with a width commensurate with their range. The floating-point
formats conform to the IEEE Standard for Binary Floating-point Arithmetic, IEEE
Std 754-1985. In tagged words, the least significant two bits are treated as a tag; the
remaining 30 bits are treated as a signed integer.

Data formats are described in these sections:

= Integer Data Formats on page 36.
= Floating-Point Data Formats on page 40.
= SIMD Data Formats on page 43.

Names are assigned to individual subwords of the multiword data formats as
described in these sections:

= Signed Integer Doubleword (64 bits) on page 37.

= Unsigned Integer Doubleword (64 bits) on page 39.

= Floating Point, Double Precision (64 bits) on page 41.

= Floating Point, Quad Precision (128 bits) on page 42.
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5.1 Integer Data Formats

TABLE 5-1 describes the width and ranges of the signed, unsigned, and tagged integer
data formats.

TABLES5-1  Signed Integer, Unsigned Integer, and Tagged Format Ranges

Width
Data Type (bits) Range
Signed integer byte 8 27027 -1
Signed integer halfword 16 20215 -1
Signed integer word 32 2310231 -1
Signed integer doubleword /extended-word 64 -2%3 t0 203 -1
Unsigned integer byte 8 0to28 -1
Unsigned integer halfword 16 0to2'-1
Unsigned integer word 32 0to2%2 -1
Unsigned integer doubleword/extended-word 64 0to2% -1
Integer tagged word 32 0to2%0 -1

TABLE 5-2 describes the memory and register alignment for multiword integer data.
All registers in the integer register file are 64 bits wide, but can be used to contain
smaller (narrower) data sizes. Note that there is no difference between integer
extended-words and doublewords in memory; the only difference is how they are
represented in registers.

TABLE 5-2 Integer Doubleword /Extended-word Alignment

Memory Address Register Number

Subformat Required Address Required Register
Name Subformat Field Alignment (big—endian)1 Alignment Number
SD-0 signed_dbl_integer{63:32} nmod 8=0 n rmod2 =0 r

SD-1 signed_dbl_integer{31:0} m+4)mod8=4 n+4 r+1)mod2=1 r+1
SX signed_ext_integer{63:0} nmod 8 =0 n — r

UD-0 unsigned_dbl_integer{63:32} nmod 8 =0 n rmod2 =0 r

UD-1 unsigned_dbl_integer{31:0} m+4)mod8=4 n+4 r+1)mod2=1 r+1
UX unsigned_ext_integer{63:0} nmod 8 =0 n — r

1. The Memory Address in this table applies to big-endian memory accesses. Word and byte order are reversed when little-endian access-
es are used.
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The data types are illustrated in the following subsections.

51.1 Signed Integer Data Types

Figures in this section illustrate the following signed data types:

Signed integer byte

Signed integer halfword
Signed integer word

Signed integer doubleword
Signed integer extended-word

5.1.1.1 Signed Integer Byte, Halfword, and Word

FIGURE 5-1 illustrates the signed integer byte, halfword, and word data formats.

SB S
76 0
SH |S
1514 0
SW |[S
3130 0

FIGURE 5-1 Signed Integer Byte, Halfword, and Word Data Formats

51.1.2 Signed Integer Doubleword (64 bits)

FIGURE 5-2 illustrates both components (SD-0 and SD-1) of the signed integer double
data format.

SD-0 |s signed_int_doubleword{62:32}

3130 0

SD-1 signed_int_doubleword{31:0}

31 0

FIGURE 5-2 Signed Integer Double Data Format
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5.1.1.3 Signed Integer Extended-Word (64 bits)

FIGURE 5-3 illustrates the signed integer extended-word (SX) data format.

SX |s signed_int_extended

63 62

FIGURE 5-3 Signed Integer Extended-Word Data Format

5.1.2 Unsigned Integer Data Types

Figures in this section illustrate the following unsigned data types:

Unsigned integer byte

Unsigned integer halfword
Unsigned integer word
Unsigned integer doubleword
Unsigned integer extended-word

5.1.2.1 Unsigned Integer Byte, Halfword, and Word

FIGURE 5-4 illustrates the unsigned integer byte data format.

uB

UH

15 0

uw

31 0

FIGURE 5-4 Unsigned Integer Byte, Halfword, and Word Data Formats
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5.1.2.2 Unsigned Integer Doubleword (64 bits)

FIGURE 5-5 illustrates both components (UD-0 and UD-1) of the unsigned integer
double data format.

UD-0 unsigned_int_doubleword{ 63:32}

31 0

ub-1 unsigned_int_doubleword{31:0}

31 0

FIGURE 5-5 Unsigned Integer Double Data Format

5.1.2.3 Unsigned Extended Integer (64 bits)

FIGURE 5-6 illustrates the unsigned extended integer (UX) data format.

Uux unsigned_int_extended

63 0

FIGURE 5-6 Unsigned Extended Integer Data Format

5.1.3 Tagged Word (32 bits)

FIGURE 5-7 illustrates the tagged word data format.

T™W tag

31 21 0

FIGURE 5-7 Tagged Word Data Format
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5.2 Floating-Point Data Formats

Single-precision, double-precision, and quad-precision floating-point data types are
described below.

521 Floating Point, Single Precision (32 bits)

FIGURE 5-8 illustrates the floating-point single-precision data format, and TABLE 5-3
describes the formats.

FS | exp{7:0} fraction{22:0}

3130 2322 0

FIGURE 5-8 Floating-Point Single-Precision Data Format

TABLES5-3  Floating-Point Single-Precision Format Definition

s =sign (1 bit)

e = biased exponent (8 bits)
f = fraction (23 bits)

u = undefined

Normalized value (0 < e < 255): (-1)° x 267127 x 1.f

Subnormal value (e = 0): (-1)s x 27126 x .f
Zero (e =0,f =0) (-1)®*x0
Signalling NaN s =u; e =255 (max); f =.0uu--uu
(At least one bit of the fraction must be nonzero)
Quiet NaN s =u; e =255 (max); f =.1luu--uu
- o (negative infinity) s =1; e =255 (max); f =.000--00
+ o (positive infinity) s =0; e =255 (max); f =.000--00
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522

Floating Point, Double Precision (64 bits)

FIGURE 5-9 illustrates both components (FD-0 and FD-1) of the floating-point double-
precision data format, and TABLE 5-4 describes the formats.

FD-0 |s|  exp{10:0} fraction{51:32}

3130 2019 0
FD-1 fraction{31:0}

31 0

FIGURE 5-9 Floating-Point Double-Precision Data Format

TABLES5-4  Floating-Point Double-Precision Format Definition

s =sign (1 bit)

e =biased exponent (11 bits)
f = fraction (52 bits)

u = undefined

Normalized value (0 < e < 2047): (=1)8 x 2671023 1 ¢
Subnormal value (e =0): (1) x 271022 x 0 £
Zero (e =0,f =0) (-1)®x0
Signalling NaN s =u; e =2047 (max); f =.0uu--uu
(At least one bit of the fraction must be nonzero)
Quiet NaN s =u; e =2047 (max); f =.luu--uu
- o (negative infinity) s =1; e =2047 (max); f =.000--00
+ o (positive infinity) s =0; e =2047 (max); f =.000--00
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5.2.3 Floating Point, Quad Precision (128 bits)

FIGURE 5-10 illustrates all four components (FQ-0 through FQ-3) of the floating-point
quad-precision data format, and TABLE 5-5 describes the formats.

FQ-0 S exp{14:0} fraction{111:96}

3130 1615 0
FO-1 fraction{95:64}

31 0
FQ-2 fraction{63:32}

31 0
FQ-3 fraction{31:0}

31 0

FIGURE 5-10 Floating-Point Quad-Precision Data Format

TABLES-5  Floating-Point Quad-Precision Format Definition

s =sign (1 bit)

e =biased exponent (15 bits)
f = fraction (112 bits)

u = undefined

Normalized value (0 < e < 32767): (-1)® x 26716383 » 1 £
Subnormal value (e =0): (-1)3 x 2716382 0 £
Zero (e =0,f =0) (-1)*x0
Signalling NaN s =u; e =32767 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)
Quiet NaN s =u; e =32767 (max); f =.luu--uu
— o (negative infinity) s =1; e =32767 (max); f =.000--00
+ o (positive infinity) s =0; e =32767 (max); f =.000--00
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524

Floating-Point Data Alignment in Memory and

Registers

TABLE 5-6 describes the address and memory alignment for floating-point data.

TABLE 5-6 Floating-Point Doubleword and Quadword Alignment

Memory Address Register Number
Subformat Required Address Required Register
Name Subformat Field Alignment (big-endian)*  |Alignment Number
FD-0 s:exp{10:0}:fraction{51:32} Omod 47 n 0 mod 2 f
FD-1 fraction{31:0} Omod4®™  n+4 Tmod2  f+1°
FQ-0 s:exp{14:0}:fraction{111:96} Omod 41 n 0 mod 4 f
FQ-1 fraction{95:64} Omod4t n+4 Tmod4  f+1°
FQ-2 fraction{63:32} Omod4t n+8 2 mod 4 f+2
FQ-3 fraction{31:0) Omod4t  n+12 3mod4  f+3°

accesses are used.

-+

The memory Address in this table applies to big-endian memory accesses. Word and byte order are reversed when little-endian

Although a floating-point doubleword is required only to be word-aligned in memory, it is recommended that it be double-

word-aligned (that is, the address of its FD-0 word should be 0 mod 8 so that it can be accessed with doubleword loads/stores
instead of multiple singleword loads/stores).

++

aligned (that is, the address of its FQ-0 word should be 0 mod 16).

o

number is < 31).

5.3

SIMD Data Formats

SIMD (single instruction/multiple data) instructions perform identical operations on
multiple data contained (“packed”) in each source operand. This section describes

the data formats used by SIMD instructions.

Conversion between the different SIMD data formats can be achieved through SIMD

Although a floating-point quadword is required only to be word-aligned in memory, it is recommended that it be quadword-

Note that this 32-bit floating-point register is only directly addressable in the lower half of the register file (that is, if its register

multiplication or by the use of the SIMD data formatting instructions.
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53.1

5.3.2

Int1l6
SIMD

5.3.3

Int32
SIMD

Programming | The SIMD data formats can be used in graphics calculations to
Note | represent intensity values for an image (e.g., a, B, G, R).

Intensity values are typically grouped in one of two ways, when
using SIMD data formats:

» Band interleaved images, with the various color components
of a point in the image stored together, and

= Band sequential images, with all of the values for one color
component stored together.

Uint8 SIMD Data Format

The Uint8 SIMD data format consists of four unsigned 8-bit integers contained in a
32-bit word (see FIGURE 5-11).

Uint8 SIMD valueg value, value, valueg

31 24 23 16 15 87 0

FIGURE 5-11 Uint8 SIMD Data Format

Intl6 SIMD Data Formats

The Int16 SIMD data format consists of four signed 16-bit integers contained in a 64-
bit word (see FIGURE 5-12).

Sg valueg Sy value, S5 value, S3 values
63 62 48 47 46 32 31 30 16 15 14 0
FIGURE 5-12 Int16 SIMD Data Format
Int32 SIMD Data Format
The Int32 SIMD data format consists of two signed 32-bit integers contained in a 64-
bit word (see FIGURE 5-13).
Sp valueg S value,
63 62 32 31 30 0

FIGURE 5-13 Int32 SIMD Data Format
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Programming | The integer SIMD data formats can be used to hold fixed-point
Note | data. The position of the binary point in a SIMD datum is
implied by the programmer and does not influence the
computations performed by instructions that operate on that
SIMD data format.
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CHAPTER 6

Registers

The following registers are described in this chapter:

General-Purpose R Registers on page 49.

Floating-Point Registers on page 55.

Floating-Point State Register (FSR) on page 61.

Ancillary State Registers on page 70. The following registers are included in this
category:

= 32-bit Multiply/Divide Register (Y) (ASR 0) on page 72.

= Integer Condition Codes Register (CCR) (ASR 2) on page 72.

= Address Space Identifier (ASI) Register (ASR 3) on page 74.

= Tick (TICK) Register (ASR 4) on page 74.

= Program Counters (PC, NPC) (ASR 5) on page 76.

= Floating-Point Registers State (FPRS) Register (ASR 6) on page 76.

« Performance Control Register (PCRY) (ASR 16) on page 78.

= Performance Instrumentation Counter (PIC) Register (ASR 17) on page 79.
= General Status Register (GSR) (ASR 19) on page 80.

« SOFTINTP Register (ASRs 20, 21, 22) on page 80.

« SOFTINT_SET? Pseudo-Register (ASR 20) on page 82.

« SOFTINT_CLR? Pseudo-Register (ASR 21) on page 82.

» Tick Compare (TICK_CMPR?Y) Register (ASR 23) on page 83.

= System Tick (STICK) Register (ASR 24) on page 83.

« System Tick Compare (STICK_CMPRPF) Register (ASR 25) on page 84.

Register-Window PR State Registers on page 85. The following registers are
included in this subcategory:

» Current Window Pointer (CWPF) Register (PR 9) on page 86.

» Savable Windows (CANSAVEP) Register (PR 10) on page 86.

» Restorable Windows (CANRESTOREFY) Register (PR 11) on page 87.

«» Clean Windows (CLEANWINP) Register (PR 12) on page 87.

« Other Windows (OTHERWINP) Register (PR 13) on page 87.

» Window State (WSTATE?) Register (PR 14) on page 88.

Non-Register-Window PR State Registers on page 90. The following registers are
included in this subcategory:

« Trap Program Counter (TPCF) Register (PR 0) on page 90.

« Trap Next PC (TNPCF) Register (PR 1) on page 91.
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6.1

Trap State (TSTATE?) Register (PR 2) on page 92.

Trap Type (TTF) Register (PR 3) on page 93.

Trap Base Address (TBAF) Register (PR 5) on page 94.
Processor State (PSTATEY) Register (PR 6) on page 94.

Trap Level Register (TLF) (PR 7) on page 99.

Processor Interrupt Level (PILY) Register (PR 8) on page 101.
Global Level Register (GLF) (PR 16) on page 101.

HPR State Registers on page 103. The following registers are included in this
category.

Hyperprivileged State (HPSTATE!) Register (HPR 0) on page 104.
Hyperprivileged Trap State (HTSTATE™) Re}%ister (HPR 1) on page 105.
Hyperprivileged Interrupt Pending (HINTP™") Register (HPR 3) on page 106.
Hyperprivileged Trap Base Address (HTBAH) Register (HPR 5) on page 107.
Hyperprivileged Implementation Version (HVER") Register (HPR 6) on page
107.

Hyperprivileged System Tick Compare (HSTICK_CMPRY) Register (HPR 31)
on page 109.

There are additional registers that may be accessed through ASIs; those registers are
described in Chapter 10, Address Space Identifiers (ASIs).

Reserved Register Fields

For convenience, some registers in this chapter are illustrated as fewer than 64 bits
wide. Any bits not shown (or explicitly marked as reserved) are reserved for future
extensions to the architecture.

Such a reserved field within a register reads as zero in current implementations and,
when written by software, should only be written with the value of that field
previously read from that register or with the value zero.

Programming | Software intended to run on future versions of the UltraSPARC
Note | Architecture should not assume that reserved register fields will
read as 0 or any other particular value.
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6.2

6.2.1

6.2.2

General-Purpose R Registers

An UltraSPARC Architecture virtual processor contains an array of general-purpose
64-bit R registers. The array is partitioned into MAXGL + 1 sets of eight global
registers, plus N_REG_WINDOWS groups of 16 registers each. The value of
N_REG_WINDOWS in an UltraSPARC Architecture implementation falls within the
range 3 to 32 (inclusive).

One set of 8 global registers is always visible. At any given time, a group of 24
registers, known as a register window, is also visible. A register window comprises
the 16 registers from the current 16-register group (referred to as 8 in registers and 8
local registers), plus half of the registers from the next 16-register group (referred to
as 8 out registers). See FIGURE 5-1.

SPARC instructions use 5-bit fields to reference R registers. That is, 32 R registers are
visible to software at any moment. Which 32 out of the full set of R registers are
visible is described in the following sections. The visible 32 R registers are named
R[0] through R[31], illustrated in FIGURE 6-1.

Global R Registers

Registers R[0]-R[7] refer to a set of eight registers called the global registers (labeled
g0 through g7). At any time, one of MAXGL +1 sets of eight registers is enabled and
can be accessed as the current set of global registers. The currently enabled set of
global registers is selected by the GL register. See Global Level Register (GLY) (PR 16)
on page 101.

Global register zero (GO) always reads as zero; writes to it have no software-visible
effect.

Windowed R Registers @p

A set of 24 R registers that is visible as R[8]-R[31] at any given time is called a
“register window”. The registers that become R[8]-R[15] in a register window are
called the out registers of the window. Note that the in registers of a register window
become the out registers of an adjacent register window. See TABLE 6-1 and

FIGURE 6-2.
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R[31] v |- 7~
R([30] i6
R[29] i5
R[28] i4 .
R[27] i3 ns
R[26] i2
R[25] i1
R[24] i0
R[23] 7 | T T T
R[22] 16
R[21] 5
R[20] 14
locals
R[19] 13
R[18] 12
R[17] 11
R[16] 10
R[15] Y
R[14] 06
R[13] 05
R[12] 04
R[11] 03 outs
R[10] 02
R[9] ol
R[] 00
R[7] 9o | T T
R[6] g6
R[5] g5
RI4] g4 globals
R[3] g3
R[2] g2
R[1] gl
R[O] go

FIGURE 6-1 General-Purpose Registers (as Visible at Any Given Time)

The names in, local, and out originate from the fact that the out registers are typically
used to pass parameters from (out of) a calling routine and that the called routine
receives those parameters as its in registers.

TABLE6-1  Window Addressing

Windowed Register Address R Register Address

in[0] — in[7] R[24] - R[31]
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TABLE6-1  Window Addressing

Windowed Register Address R Register Address
local[0] - local[7] R[16] — R[23]
out[0] — out[7] R[ 8] - R[15]
global[0] — global[7] R[ 0] -R[ 7]

V9 Compatibility | In the SPARC V9 architecture, the number of 16-register

Note | windowed register sets, N_REG_WINDOWS, ranges from 3 to 32
(impl. dep. #2-V8). The maximum global register set index in the
UltraSPARC Architecture, MAXGL, ranges from 2 to 15. The
number of implemented global register sets is MAXGL + 1. The
total number of R registers in a given UltraSPARC Architecture
implementation is:

(N_REG_WINDOWS X 16) + (( MAXGL + 1) x 8)

Therefore, an UltraSPARC Architecture processor may contain
from 72 to 640 R registers.
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The current window in the windowed portion of R registers is indicated by the
current window pointer (CWP) register. The CWP is decremented by the RESTORE
instruction and incremented by the SAVE instruction.

Window (CWP — 1)

R[31]
. ins
R[24]
R[23]
. locals
R[16] Window (CWP)
R[15] R[31]
. outs : ins
R[ 8] R[24]
R[23]
: locals
R[16] Window (CWP + 1)
R[15] R[31]
: outs : ins
R 8] R[24]
R[23]
: locals
R[16]
R[15]
: outs
R 8]
R[ 7]
. globals
RI 1]
EEE
63 0

FIGURE 6-2 Three Overlapping Windows and Eight Global Registers

Overlapping Windows. Each window shares its ins with one adjacent window
and its outs with another. The outs of the CWP — 1 (modulo N_REG_WINDOWS)
window are addressable as the ins of the current window, and the outs in the current
window are the ins of the CWP + 1 (modulo N_REG_WINDOWS) window. The locals
are unique to each window.

Register address o, where 8 < 0 < 15, refers to exactly the same out register before the
register window is advanced by a SAVE instruction (CWP is incremented by 1

(modulo N_REG_WINDOWS)) as does register address 0+16 after the register window
is advanced. Likewise, register address i, where 24 <i < 31, refers to exactly the same
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in register before the register window is restored by a RESTORE instruction (CWP is
decremented by 1 (modulo N_REG_WINDOWS)) as does register address i—16 after the
window is restored. See FIGURE 6-2 on page 52 and FIGURE 6-3 on page 54.

To application software, the virtual processor appears to provide an infinitely-deep
stack of register windows.

Programming | Since the procedure call instructions (CALL and JMPL) do not
Note | change the CWP, a procedure can be called without changing
the window. See the section “Leaf-Procedure Optimization” in
Software Considerations, contained in the separate volume
UltraSPARC Architecture Application Notes

Since CWP arithmetic is performed modulo N_REG_WINDOWS, the highest-numbered
implemented window overlaps with window 0. The outs of window
N_REG_WINDOWS — 1 are the ins of window 0. Implemented windows are numbered
contiguously from 0 through N_REG_wINDOWS —1.

Because the windows overlap, the number of windows available to software is 1 less
than the number of implemented windows; that is, N_REG_WINDOWS — 1. When the
register file is full, the outs of the newest window are the ins of the oldest window,
which still contains valid data.

Window overflow is detected by the CANSAVE register, and window underflow is
detected by the CANRESTORE register, both of which are controlled by privileged
software. A window overflow (underflow) condition causes a window spill (fill)
trap.

When a new register window is made visible through use of a SAVE instruction, the
local and out registers are guaranteed to contain either zeroes or valid data from the
current context. If software executes a RESTORE and later executes a SAVE, then the
contents of the resulting window’s local and out registers are not guaranteed to be
preserved between the RESTORE and the SAVE!. Those registers may even have
been written with “dirty” data, that is, data created by software running in a
different context. However, if the clean_window protocol is being used, system
software must guarantee that registers in the current window after a SAVE always
contains only zeroes or valid data from that context. See Clean Windows
(CLEANWINP) Register (PR 12) on page 87, Savable Windows (CANSAVEP) Register
(PR 10) on page 86, and Restorable Windows (CANRESTORE?Y) Register (PR 11) on
page 87.

Implementation | An UltraSPARC Architecture virtual processor supports the
Note | guarantee in the preceding paragraph of “either zeroes or valid
data from the current context”; it may do so either in hardware
or in a combination of hardware and system software.

1 For example, any of those 16 registers might be altered due to the occurrence of a trap between the RESTORE
and the SAVE, or might be altered during the RESTORE operation due to the way that register windows are
implemented. After a RESTORE instruction executes, software must assume that the values of the affected 16
registers from before the RESTORE are unrecoverable.
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Register Window Management Instructions on page 129 describes how the windowed
integer registers are managed.

CWP =0 |
(CURRENT WINDOW POINTER)

CANSAVE =4

w0 outs

wO locals

RESTORE

w4 outs

w5 locals

w6 locals

CANREST (Overlap)

w5 outs

CANSAVE + CANRESTORE + OTHERWIN = N_REG_WINDOWS — 2

The current window (window 0) and the overlap window (window 5) account for the
two windows in the right side of the equation. The “overlap window” is the window
that must remain unused because its ins and outs overlap two other valid windows.

FIGURE 6-3 Windowed R Registers for N_REG_WINDOWS = 8
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6.2.3

In FIGURE 6-3, N_REG_WINDOWS = 8. The eight global registers are not illustrated.
CWP =0, CANSAVE =4, OTHERWIN =1, and CANRESTORE = 1. If the procedure
using window WO executes a RESTORE, then window W7 becomes the current
window. If the procedure using window wO executes a SAVE, then window w1l
becomes the current window.

Special R Registers

The use of two of the R registers is fixed, in whole or in part, by the architecture:
= The value of R[0] is always zero; writes to it have no program-visible effect.

» The CALL instruction writes its own address into register R[15] (out register 7).

Register-Pair Operands. LDTW, LDTWA, STTW, and STTWA instructions access
a pair of words (“twin words”) in adjacent R registers and require even-odd register
alignment. The least significant bit of an R register number in these instructions is
unused and must always be supplied as 0 by software.

When the R[0]-R[1] register pair is used as a destination in LDTW or LDTWA, only
R[1] is modified. When the R[0]-R[1] register pair is used as a source in STTW or
STTWA, 0 is read from R[0], so 0 is written to the 32-bit word at the lowest address,
and the least significant 32 bits of R[1] are written to the 32-bit word at the highest
address.

An attempt to execute anLDTW, LDTWA, STTW, or STTWA instruction that refers
to a misaligned (odd) destination register number causes an illegal_instruction trap.

6.3

Floating-Point Registers

The floating-point register set consists of sixty-four 32-bit registers, which may be
accessed as follows:

= Sixteen 128-bit quad-precision registers, referenced as Fq[0], Fg[4], ..., Fg[60]
» Thirty-two 64-bit double-precision registers, referenced as Fp[0], Fp[2], ..., Fp[62]

= Thirty-two 32-bit single-precision registers, referenced as Fg[0], Fg[1], ..., Fg[31]
(only the lower half of the floating-point register file can be accessed as single-
precision registers)

The floating-point registers are arranged so that some of them overlap, that is, are
aliased. The layout and numbering of the floating-point registers are shown in
TABLE 6-2. Unlike the windowed R registers, all of the floating-point registers are
accessible at any time. The floating-point registers can be read and written by
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floating-point operate (FPop1l/FPop2 format) instructions, by load/store single/
double/quad floating-point instructions, by VIS™ instructions, and by block load
and block store instructions.

TABLE6-2  Floating-Point Registers, with Aliasing (I of 3)

Single Precision Double Precision Quad Precision
(32-bit) (64-bit) (128-bit)
Assembly Assembly Assembly
Register Language |Bits Register Language |Bits Register Language
Fgl0] %0 63:32
Fpl0] %0 127:64
Fs[1] % 1 31:0
Folo] %0
Fsl2] %2 63:32
Fpl2] %2 63:0
Fsl3] %3 31:0
Fgl4] %4 63:32
Fol4] %4 127:64
Fsl5] %5 31:0
Fol4] 4
Fsl6] %6 63:32
Fpl6] %6 63:0
Fsl7] %7 31:0
Fgl8]] %8 63:32
Fpl8] %8 127:64
Fgl9] %9 31:0
Fol8] %8

F[10] %10  |63:32
Fsll1] %11  |31:0
Fsl12] %12  |63:32

Fpl10] %10  |63:0

Fpll12] %12  |127:64
Fg[13] %13  [31:0

Fol14] %14  |63:32
Fs[15] %15  |31:0
Fsll6] %16  |63:32

Foll2] %12

Fpl14] %14  |63:0

Fpll6] %16  |127:64
Fsl17] %17  |31:0

Fo[18] %18  [63:32
Fs[19] %19  |31:0
Fs[20] %20  |63:32

Foll6] %16

Fpl18] %18  |63:0

Fpl20] %20  |127:64
Fgl21] %21  [31:0

Fgl22] %22  |63:32
Fsl23] %23  |31:0

Fol20] %20

Fpl22] 22  |63:0

56 UltraSPARC Architecture 2005 « Draft D0.8.7, 27 Mar 2006



TABLE6-2  Floating-Point Registers, with Aliasing (2 of 3)

Single Precision Double Precision Quad Precision
(32-bit) (64-bit) (128-bit)
Assembly Assembly Assembly
Register Language |Bits Register Language |Bits Register Language
Fs[24] % 24 63:32
Fp[24] %24 127:64
Fs[25] % 25 31:0
FQ[24] %924
Fs[26] %26  [63:32
Fpl26] %26 63:0
Fs[27] % 27 31:0
Fs[28] 9% 28 63:32
Fp[28] %128 127:64
Fs[29] % 29 31:0
FQ[28] %928
Fs[30] % 30 63:32
Fp[30] %30 63:0
Fs[31] % 31
Fp[32] %32 127:64
= FQ[32] %932
——Fpl34] %34 [63:0
63:32
Fp[36] %136 127:64
FQ[36] %36
63:32
Fp[38] %38 63:0
63:32
Fp[40] %40 127:64
FQ[40] %940
63:32
Fpl42] %42 63:0
Fpl44] %44 127:64
= FQ[44] %944
——Fpl46] %46  [63:0
63:32
Fpl48] %148 127:64
FQ[48] %948
63:32
Fp[50] %50 63:0
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6.3.1

TABLE 6-3

TABLE 6-2

Floating-Point Registers, with Aliasing (3 of 3)
Single Precision Double Precision Quad Precision
(32-bit) (64-bit) (128-bit)
Assembly Assembly Assembly
Register Language |Bits Register Language |Bits Register Language
63:32
Fp[52] %52 127:64
FQ[52] %952
63:32
Fp[54] %54 63:0
63:32
Fp[56] %156 127:64
FQ[56] %956
63:32
Fp[58] %58 63:0
Fpl60] %60 127:64
= FQ[60] %960
Fpl62] %62 63:0

Floating-Point Register Number Encoding

Register numbers for single, double, and quad registers are encoded differently in
the 5-bit register number field of a floating-point instruction. If the bits in a register
number field are labeled b{4} ... b{0} (where b{4} is the most significant bit of the
register number), the encoding of floating-point register numbers into 5-bit

instruction fields is as given in TABLE 6-3.

Floating-Point Register Number Encoding

Register Operand
Type

Full 6-bit Register Number

Encoding in a 5-bit Register Field in an
Instruction

Single
Double
Quad

0 b{4}  b{3}  bf2}  bi1}
b{5}  b{4} b3}  b{2}  b{l}
b{5}  b{4}  bf3} b2} 0

bi{4} b{3} bi{2} bi{1} b{0}
bi{4} b{3} b{2} b(1} b{5}
bi{4} bi{3} bi{2} 0 bi{5}
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6.3.2

SPARC V8 | In the SPARC V8 architecture, bit 0 of double and quad register
Compatibility | numbers encoded in instruction fields was required to be zero.
Note | Therefore, all SPARC V8 floating-point instructions can run
unchanged on an UltraSPARC Architecture virtual processor,
using the encoding in TABLE 5-3.

Double and Quad Floating-Point Operands

A single 32-bit F register can hold one single-precision operand; a double-precision
operand requires an aligned pair of F registers, and a quad-precision operand
requires an aligned quadruple of F registers. At a given time, the floating-point
registers can hold a maximum of 32 single-precision, 16 double-precision, or 8 quad-
precision values in the lower half of the floating-point register file, plus an
additional 16 double-precision or 8 quad-precision values in the upper half, or
mixtures of the three sizes.

CHAPTER 6 + Registers 59



Programming | The upper 16 double-precision (upper 8 quad-precision)

Note | floating-point registers cannot be directly loaded by 32-bit load
instructions. Therefore, double- or quad-precision data that is
only word-aligned in memory cannot be directly loaded into the
upper registers with LDF[A] instructions. The following
guidelines are recommended:

1. Whenever possible, align floating-point data in memory on
proper address boundaries. If access to a datum is required to
be atomic, the datum must be properly aligned.

2. If a double- or quad-precision datum is not properly aligned
in memory or is still aligned on a 4-byte boundary, and access
to the datum in memory is not required to be atomic, then
software should attempt to allocate a register for it in the
lower half of the floating-point register file so that the datum
can be loaded with multiple LDF[A] instructions.

3. If the only available registers for such a datum are located in
the upper half of the floating-point register file and access to
the datum in memory is not required to be atomic, the word-
aligned datum can be loaded into them by one of two
methods:
= Load the datum into an upper register by using multiple
LDF[A] instructions to first load it into a double- or quad-
precision register in the lower half of the floating-point
register file, then copy that register to the desired
destination register in the upper half

= Use an LDDF[A] or LDQF[A] instruction to perform the
load directly into the upper floating-point register,
understanding that use of these instructions on poorly
aligned data can cause a trap (LDDF_mem_not_aligned) on
some implementations, possibly slowing down program
execution significantly.

Programming | If an UltraSPARC Architecture 2005 implementation does not

Note | implement a particular quad floating-point arithmetic operation
in hardware and an invalid quad register operand is specified,
per FSR.fit priorities in TABLE 6-7, the fp_exception_other
exception occurs with FSR.ftt = 3 (unimplemented_FPop)
instead of with FSRfitt = 6 (invalid_fp_register).

Implementation | UltraSPARC Architecture 2005 implementations do not

Note | implement any quad floating-point arithmetic operations in
hardware. Therefore, an attempt to execute any of them results
in a trap on the fp_exception_other exception with FSR.ftt =3
(unimplemented_FPop).

60 UltraSPARC Architecture 2005 « Draft D0.8.7, 27 Mar 2006



6.4

Floating-Point State Register (FSR)

The Floating-Point State register (FSR) fields, illustrated in FIGURE 6-4, contain FPU
mode and status information. The lower 32 bits of the FSR are read and written by
the STFSR and LDFSR instructions; all 64 bits of the FSR are read and written by the
STXFSR and LDXFSR instructions, respectively. FSR.ver, FSRfit, and the reserved
(“—") fields of FSR are not modified by LDFSR or LDXFSR.

RW RW RW

— fce3 | fec2 | fecl
63 38 37 36 35 34 33 32
FSR
RW RW RW R R R RW RW RW
rd — tem ns| — ver ftt qne| — | fccO aexc cexc
31 30 29 28 27 23 22 21 20 19 17 16 14 13 12 11 10 9 54 0

6.4.1

FIGURE 6-4 FSR Fields

Bits 63-38, 29-28, 21-20, and 12 are reserved. When read by an STXFSR instruction,
these bits always read as zero.

Programming | For future compatibility, software should issue LDXFSR
Note | instructions only with zero values in these bits or values of these
bits exactly as read by a previous STXFSR.

The subsections on pages 61 through 70 describe the remaining fields in the FSR.

Floating-Point Condition Codes (fccO, fccl, fcc2,
fccl)

The four sets of floating-point condition code fields are labeled fccO, fccl, fcc2, and
fce3 (feen refers to any of the floating-point condition code fields).

The fccO field consists of bits 11 and 10 of the FSR, fccl consists of bits 33 and 32,
fcc2 consists of bits 35 and 34, and fcc3 consists of bits 37 and 36. Execution of a
floating-point compare instruction (FCMP or FCMPE) updates one of the fccn fields
in the FSR, as selected by the compare instruction. The fccn fields are read and
written by STXFSR and LDXFSR instructions, respectively. The fccO field can also be
read and written by STFSR and LDEFSR, respectively. FBfcc and FBPfcc instructions
base their control transfers on the content of these fields. The MOVcc and FMOVcc
instructions can conditionally copy a register, based on the contents of these fields.
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6.4.2

6.4.3

In TABLE 6-5, f151 and f;s» correspond to the single, double, or quad values in the
floating-point registers specified by a floating-point compare instruction’s rs1 and
rs2 fields. The question mark (?) indicates an unordered relation, which is true if
either fig1 or fi5o is a signalling NaN or a quiet NaN. If FCMP or FCMPE generates
an fp_exception_ieee_754 exception, then fccn is unchanged.

TABLE 6-4  Floating-Point Condition Codes (fccn) Fields of FSR

Content of fccn Indicated Relation

0 F[rs1] =F[rs2]

1 F[rs1] < F[rs2]

2 F[rs1] > F[rs2]

3 Flrs1] ? F[rs2] (unordered)

TABLE6-5  Floating-Point Condition Codes (fccn) Fields of FSR

Content of fccn

0 1 2 3
Indicated Relation  F[rs1] = F[rs2] Flrs1] < F[rs2] F[rs1] > F[rs2] Flrs1] ? F[rs2]
(FCMP*, FCMPE*) (unordered)

Rounding Direction (rd)

Bits 31 and 30 select the rounding direction for floating-point results according to
IEEE Std 754-1985. TABLE 6-6 shows the encodings.

TABLE 6-6 Rounding Direction (rd) Field of FSR

rd Round Toward

0 Nearest (even, if tie)
1 0

2 + 00

3 )

If the interval mode bit of the General Status register has a value of 1 (GSR.im =1),
then the value of FSRu.rd is ignored and floating-point results are instead rounded
according to GSR.irnd. See General Status Register (GSR) (ASR 19) on page 80 for
further details.

Trap Enable Mask (tem)

Bits 27 through 23 are enable bits for each of the five IEEE-754 floating-point
exceptions that can be indicated in the current_exception field (cexc). See FIGURE 6-5
on page 69. If a floating-point instruction generates one or more exceptions and the
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6.4.4

6.4.5

6.4.6

tem bit corresponding to any of the exceptions is 1, then this condition causes an
fp_exception_ieee_754 trap. A tem bit value of 0 prevents the corresponding IEEE
754 exception type from generating a trap.

Nonstandard Floating-Point (ns)

On an UltraSPARC Architecture 2005 processor, FSR.ns is a reserved bit; it always
reads as 0 and writes to it are ignored. (impl. dep. #18-V8)

FPU Version (ver)

IMPL. DEP. #19-V8: Bits 19 through 17 identify one or more particular
implementations of the FPU architecture.

For each SPARC V9 IU implementation (as identified by its VER.impl field), there
may be one or more FPU implementations, or none. This field identifies the
particular FPU implementation present. The value in FSR.ver for each
implementation is strictly implementation dependent. Consult the appropriate
document for each implementation for its setting of FSR.ver.

FSR.ver =7 is reserved to indicate that no hardware floating-point controller is
present.

The ver field is read-only; it cannot be modified by the LDFSR and LDXFSR
instructions.

Floating-Point Trap Type (ftt)

Several conditions can cause a floating-point exception trap. When a floating-point
exception trap occurs, FSR.ftt (FSR{16:14}) identifies the cause of the exception, the
“floating-point trap type.” After a floating-point exception occurs, FSR.ftt encodes
the type of the floating-point exception until it is cleared (set to 0) by execution of an
STFSR, STXFSR, or FPop that does not cause a trap due to a floating-point exception.

The FSR fit field can be read by a STFSR or STXFSR instruction. The LDFSR and
LDXFSR instructions do not affect FSR.ftt.

CHAPTER 6 * Registers 63



Privileged software that handles floating-point traps must execute an STFSR (or
STXFSR) to determine the floating-point trap type. STFSR and STXFSR shall zero ftt
after the store completes without error. If the store generates an error and does not
complete, ftt remains unchanged.

Programming | Neither LDFSR nor LDXFSR can be used for the purpose of
Note | clearing the fit field, since both leave ftt unchanged. However,
executing a nontrapping floating-point operate (FPop)
instruction such as “f novs % 0, % 0” prior to returning to
nonprivileged mode will zero FSR.fit. The ftt field remains zero
until the next FPop instruction completes execution.

FSR.fit encodes the primary condition (“floating-point trap type”) that caused the
generation of an fp_exception_other or fp_exception_ieee_754 exception. It is
possible for more than one such condition to occur simultaneously; in such a case,
only the highest-priority condition will be encoded in FSR.ftt. The conditions
leading to fp_exception_other and fp_exception_ieee_754 exceptions, their relative
priorities, and the corresponding FSR.ftt values are listed in TABLE 6-7. Note that the
FSR.ftt values 4 and 5 were defined in the SPARC V9 architecture but are not
currently in use, and that the value 7 is reserved for future architectural use.

TABLE 6-7 FSR Floating-Point Trap Type (ftt) Field

. Result

Relative
Condition Detected During Priority FSR.ftt Set
Execution of an FPop (1 = highest) to Value Exception Generated
unimplemented_FPop 10 3 fp_exception_other
invalid_fp_register 20 6 fp_exception_other
unfinished _FPop 30 2 fp_exception_other
IEEE_754_exception 40 1 fp_exception_ieee_754
Reserved — 4,5,7 —
(none detected) — 0 —

IEEE_754_exception, unimplemented_FPop, and unfinished_FPop will likely arise
occasionally in the normal course of computation and must be recoverable by
system software.

When a floating-point trap occurs, the following results are observed by user
software:

1. The value of aexc is unchanged.

2. When an fp_exception_ieee_754 trap occurs, a bit corresponding to the trapping
exception is set in cexc. On other traps, the value of cexc is unchanged.

3. The source and destination registers are unchanged.

4. The value of fcen is unchanged.
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The foregoing describes the result seen by a user trap handler if an IEEE exception is
signalled, either immediately from an fp_exception_ieee_754 exception or after
recovery from an unfinished_FPop or unimplemented_FPop. In either case, cexc as
seen by the trap handler reflects the exception causing the trap.

In the cases of an fp_exception_other exception with a floating-point trap type of
unfinished_FPop or unimplemented_FPop that does not subsequently generate an
IEEE trap, the recovery software should set cexc, aexc, and the destination register
or fccn, as appropriate.

ftt =1 (IEEE_754_exception). The IEEE_754_exception floating-point trap type
indicates the occurrence of a floating-point exception conforming to IEEE Std 754-
1985. The IEEE 754 exception type (overflow, inexact, etc.) is set in the cexc field. The
aexc and fccn fields and the destination F register are unchanged.

ftt =2 (unfinished_FPop). The unfinished_FPop floating-point trap type indicates
that the virtual processor was unable to generate correct results or that exceptions as
defined by IEEE Std 754-1985 have occurred. In cases where exceptions have
occurred, the cexc field is unchanged.

IMPL. DEP. #248-U3: The conditions under which an fp_exception_other exception
with floating-point trap type of unfinished_FPop can occur are implementation
dependent. An implementation may cause fp_exception_other with

FSR.ftt = unfinished_FPop under a different (but specified) set of conditions.

ftt = 3 (unimplemented_FPop) . The unimplemented_FPop floating-point trap
type indicates that the virtual processor decoded an FPop that it does not implement
in hardware. In this case, the cexc field is unchanged.

For example, all quad-precision FPop variations in an UltraSPARC Architecture 2005
virtual processor cause an fp_exception_other exception, setting
FSR.fit = unimplemented_FPop.

Forward | The next revision of the UltraSPARC Architecture is expected to
Compatibility | eliminate “unimplemented_FPop”, to simplify handling of
Note | unimplemented instructions. At that point, all conditions which
currently cause cause fp_exception_other with FSR.fit = 3 will
cause an illegal_instruction exception, instead. FSR.ftt =3 and
the trap type associated with fp_exception_other will become
reserved for other possible future uses.
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6.4.7

6.4.8

ftt = 4 (Reserved).

SPARC V9 | In the SPARC V9 architecture, FSR.ftt = 4 was defined to be
Compatibility | "sequence_error", for use with certain error conditions
Note | associated with a floating-point queue (FQ). Since UltraSPARC
Architecture implementations generate precise (rather than
deferred) traps for floating-point operations, an FQ is not
needed; therefore sequence_error conditions cannot occur and
ftt =4 has been returned to the pool of reserved ftt values.

ftt = 5 (Reserved).

SPARC V9 | In the SPARC V9 architecture, FSR.ftt = 5 was defined to be

Compatibility | "hardware_error", for use with hardware error conditions
Note | associated with an external floating-point unit (FPU) operating

asynchronously to the main processor (IU). Since UltraSPARC
Architecture processors are now implemented with an integral
FPU, a hardware error in the FPU can generate an exception
directly, rather than indirectly report the error through FSR.ftt
(as was required when FPUs were external to IUs). Therefore,
ftt = 5 has been returned to the pool of reserved ftt values.

ftt = 6 (invalid_fp_register). This trap type indicates that one or more F register
operands of an FPop are misaligned; that is, a quad-precision register number is not
0 mod 4. An implementation generates an fp_exception_other trap with FSR.ftt =
invalid_fp_register in this case.

Implementation | Per FSR.ftt priorities in TABLE 6-7, if an UltraSPARC Architecture
Note | 2005 processor does not implement a particular quad FPop in
hardware, that FPop generates an fp_exception_other exception
with FSR.ftt = 3 (unimplemented_FPop) instead of
fp_exception_other with FSR.ftt = 6 (invalid_fp_register),
regardless of the specified F registers.

FQ Not Empty (gne)

Since UltraSPARC Architecture virtual processors do not implement a floating-point
queue, FSR.gne always reads as zero and writes to FSR.qne are ignored.

Accrued Exceptions (aexc)

Bits 9 through 5 accumulate IEEE_754 floating-point exceptions as long as floating-
point exception traps are disabled through the tem field. See FIGURE 6-6 on page 69.
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After an FPop completes with ftt = 0, the tem and cexc fields are logically anded
together. If the result is nonzero, aexc is left unchanged and an
fp_exception_ieee_754 trap is generated; otherwise, the new cexc field is ored into
the aexc field and no trap is generated. Thus, while (and only while) traps are
masked, exceptions are accumulated in the aexc field.

FSR.aexc is written with the appropriate value when an LDFSR or LDXFSR
instruction is executed.

Current Exception (cexc)

FSR.cexc (FSR{4:0}) indicates whether one or more IEEE 754 floating-point
exceptions were generated by the most recently executed FPop instruction. The
absence of an exception causes the corresponding bit to be cleared (set to 0). See
FIGURE 6-5 on page 69.

Programming | If the FPop traps and software emulate or finish the instruction,
Note | the system software in the trap handler is responsible for
creating a correct FSR.cexc value before returning to a
nonprivileged program.

The cexc bits are set as described in Floating-Point Exception Fields on page 68, by the
execution of an FPop that either does not cause a trap or causes an
fp_exception_ieee_754 exception with FSR.ftt = IEEE_754_exception. An IEEE 754
exception that traps shall cause exactly one bit in FSR.cexc to be set, corresponding
to the detected IEEE Std 754-1985 exception.

Floating-point operations which cause an overflow or underflow condition may also
cause an “inexact” condition. For overflow and underflow conditions, FSR.cexc bits
are set and trapping occurs as follows:

» If an IEEE 754 overflow condition occurs:

« if FSR.tem.ofm = 0 and tem.nxm = 0, the FSR.cexc.ofc and FSR.cexc.nxc bits
are both set to 1, the other three bits of FSR.cexc are set to 0, and an
fp_exception_ieee_754 trap does not occur.

« if FSR.tem.ofm = 0 and tem.nxm = 1, the FSR.cexc.nxc bit is set to 1, the other
four bits of FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does
occur.

« if FSR.tem.ofm =1, the FSR.cexc.ofc bit is set to 1, the other four bits of
FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does occur.

» If an IEEE 754 underflow condition occurs:

« if FSR.tem.ufm =0 and FSR.tem.nxm = 0, the FSR.cexc.ufc and FSR.cexc.nxc
bits are both set to 1, the other three bits of FSR.cexc are set to 0, and an
fp_exception_ieee_754 trap does not occur.
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« if FSR.tem.ufm = 0 and FSR.tem.nxm = 1, the FSR.cexc.nxc bit is set to 1, the
other four bits of FSR.cexc are set to 0, and an fp_exception_ieee_754 trap
does occur.

« if FSR.tem.ufm =1, the FSR.cexc.ufc bit is set to 1, the other four bits of
FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does occur.

The above behavior is summarized in TABLE 6-8 (where “0” indicates “exception was
detected” and “x” indicates “don’t care”):

TABLE 6-8  Setting of FSR.cexc Bits

Conditions Results
Exception(s) Current
Detected Trap Enable Exception
in F.p. Mask bits ) bits (in
operation (in FSR.tem) fp_exception_ FSR.cexc)
ieee_754
of uf nx ofm ufm nxm | Trap Occurs? ofc ufc nxc
- - - X X X no 0 0 0
- - 0 X X 0 no 0 0 1
- ol ol «x 0 0 no 0o 1 1
02 - 0z o X 0 no 1 0 1
- - ad X X 1 yes 0 0 1
- ol ot X 0 1 yes 0 0 1
- O - X 1 X yes 0 1 0
- O O X 1 X yes 0 1 0
02 - 02 1 X X yes 1 0 0
02 - 02 0 X 1 yes 0 0 1

Notes: ' When the underflow trap is disabled (FSR.tem.ufm = 0)
underflow is always accompanied by inexact.
2 Overflow is always accompanied by inexact.

If the execution of an FPop causes a trap other than fp_exception_ieee_754,
FSR.cexc is left unchanged.

6.4.10  Floating-Point Exception Fields

The current and accrued exception fields and the trap enable mask assume the
following definitions of the floating-point exception conditions (per IEEE Std 754-
1985):
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RW RW __RW __RW ___RW
FSR.tem I nvm | ofm | ufm | dzm | nxm I
27 26 25 24 23

FIGURE 6-5 Trap Enable Mask (tem) Fields of FSR

RW RW __RW ___RW __ RW
FSR.aexc I nva | ofa | ufa | dza | nxa I
9 8 7 6 5

FIGURE 6-6 Accrued Exception Bits (aexc) Fields of FSR

RW RW RW _RW  RW
FSR.cexc I nvc | ofc | ufc | dzc | nxc I

4 3 2 1 0

FIGURE 6-7 Current Exception Bits (aexc) Fields of FSR

Invalid (nvc, nva). An operand is improper for the operation to be performed.
For example, 0.0 + 0.0 and  — o are invalid; 1 = invalid operand(s), 0 = valid
operand(s).

Overflow (ofc, ofa). The result, rounded as if the exponent range were
unbounded, would be larger in magnitude than the destination format’s largest
finite number; 1 = overflow, 0 = no overflow.

Underflow (ufc, ufa). The rounded result is inexact and would be smaller in
magnitude than the smallest normalized number in the indicated format;
1 = underflow, 0 = no underflow.

Underflow is never indicated when the correct unrounded result is 0.
Otherwise, when the correct unrounded result is not 0:

If FSR.tem.ufm = 0: Underflow occurs if a nonzero result is tiny and a loss of
accuracy occurs.

If FSR.tem.ufm = 1: Underflow occurs if a nonzero result is tiny.

The SPARC V9 architecture allows tininess to be detected either before or after
rounding. However, in all cases and regardless of the setting of FSR.tem.ufm, an
UltraSPARC Architecture strand detects tininess before rounding (impl. dep. #55-V8-
Cs10). See Trapped Underflow Definition (ufm = 1) on page 382 and Untrapped
Underflow Definition (ufm = 0) on page 383 for additional details.

Division by zero (dzc, dza). X + 0.0, where X is subnormal or normalized;
1 = division by zero, 0 = no division by zero.
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Inexact (nxc, nxa). The rounded result of an operation differs from the infinitely
precise unrounded result; 1 = inexact result, 0 = exact result.

FSR Conformance

An UltraSPARC Architecture implementation implements the tem, cexc, and aexc
fields of FSR in hardware, conforming to IEEE Std 754-1985 (impl. dep. #22-V8).

Programming | Privileged software (or a combination of privileged and

Note | nonprivileged software) must be capable of simulating the
operation of the FPU in order to handle the fp_exception_other
(with FSR.ftt = unfinished_FPop or unimplemented_FPop) and
IEEE_754_exception floating-point trap types properly. Thus, a
user application program always sees an FSR that is fully
compliant with IEEE Std 754-1985.

6.5

Ancillary State Registers

The SPARC V9 architecture defines several optional ancillary state registers (ASRs)
and allows for additional ones. Access to a particular ASR may be privileged or
nonprivileged.

An ASR is read and written with the Read State Register and Write State Register
instructions, respectively. These instructions are privileged if the accessed register is
privileged.

The SPARC V9 architecture left ASRs numbered 16-31 available for implementation-
dependent uses. UltraSPARC Architecture virtual processors implement the ASRs
summarized in TABLE 6-9 and defined in the following subsections.

Each virtual processor contains its own set of ASRs; ASRs are not shared among
virtual processors.

TABLE 6-9 ASR Register Summary
ASR Read by Written by
number ASR name Register Instruction(s) Instruction(s)
0o YP Y register (deprecated) RDYP WRYP
1 — Reserved — —
2 CCR Condition Codes register RDCCR WRCCR
3 ASI ASI register RDASI WRASI
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TABLE 6-9 ASR Register Summary (Continued)
ASR Read by Written by
number ASR name Register Instruction(s) Instruction(s)
4 TICKPMRt TICK register RDTICKPnt, WRPR? (TICK)
RDPR? (TICK)
5 PC Program Counter (PC) RDPC (all instructions)
6 FPRS Floating-Point Registers Status register RDFPRS WRFPRS
7-14 — Reserved — —
15 — Reserved — —
16-31 non-SPARC V9 ASRs — —
16 PCRFP Performance Control registers (PCR) RDPCRF WRPCRF
17 PICP Performance Instrumentation Counters RDPICF7Ic WRPICFPie
(PIC)
18 — Implementation dependent (impl. dep. — —
#8-V8-Cs20, 9-V8-Cs20)
19 GSR General Status register (GSR) RDGSR, WRGSR,
FALIGNDATA, BMASK, SIAM

many VIS and
floating-point
instructions

20 SOFTINT_CLRP (pseudo-register, for "Write 1s Clear" to — WRSOFTINT_CLRF

SOFTINT register, ASR 22)

(pseudo-register, for "Write 1s Set"to =~ —
SOFTINT register, ASR 22)

21  SOFTINT_SETP WRSOFTINT_SET?

22 SOFTINTP per-virtual processor Soft Interrupt RDSOFTINTY WRSOFTINT?
register
23 TICK_CMPRP Tick Compare register RDTICK_CMPR? WRTICK_CMPR?
24 STICKPNet System Tick register RDSTICK mt WRSTICKH
25 STICK_CMPRP System Tick Compare register RDSTICK_CMPRP  WRSTICK_CMPRY
26-31 — Implementation dependent (impl. dep. — —

#8-V8-Cs20, 9-V8-Cs20)
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6.5.2

32-bit Multiply /Divide Register (Y) (ASR 0)

The Y register is deprecated; it is provided only for compatibility with previous
versions of the architecture. It should not be used in new SPARC V9 software.
It is recommended that all instructions that reference the Y register (that is,
SMUL, SMULcc, UMUL, UMULce, MULScc, SDIV, SDIVec, UDIV, UDIVcc,
RDY, and WRY) be avoided. For suitable substitute instructions, see the
following pages: for the multiply instructions, see page 367; for the multiply
step instruction, see page 281; for division instructions, see page 364; for the

read instruction, see page 300; and for the write instruction, see page 370.

The low-order 32 bits of the Y register, illustrated in FIGURE 6-8, contain the more
significant word of the 64-bit product of an integer multiplication, as a result of
either a 32-bit integer multiply (SMUL, SMULcc, UMUL, UMULcc) instruction or an
integer multiply step (MULScc) instruction. The Y register also holds the more
significant word of the 64-bit dividend for a 32-bit integer divide (SDIV, SDIVcc,
UDIV, UDIVcc) instruction.

R RW

product{63:32} or dividend{63:32}

63

32 a1 0
FIGURE 6-8 Y Register
Although Y is a 64-bit register, its high-order 32 bits always read as 0.

The Y register may be explicitly read and written by the RDY and WRY instructions,
respectively.

Integer Condition Codes Register (CCR)
(ASR 2)

The Condition Codes Register (CCR), shown in FIGURE 6-9, contains the integer
condition codes. The CCR register may be explicitly read and written by the RDCCR
and WRCCR instructions, respectively.

RW RW
CCR I xcc | icc I
7 4 3 0

FIGURE 6-9 Condition Codes Register
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6.5.2.1 Condition Codes (CCR.xcc and CCR.icc)

All instructions that set integer condition codes set both the xcc and icc fields. The
xcc condition codes indicate the result of an operation when viewed as a 64-bit
operation. The icc condition codes indicate the result of an operation when viewed
as a 32-bit operation. For example, if an operation results in the 64-bit value

0000 0000 FFFF FFFFqg4, the 32-bit result is negative (icc.n is set to 1) but the 64-bit
result is nonnegative (xcc.n is set to 0).

Each of the 4-bit condition-code fields is composed of four 1-bit subfields, as shown
in FIGURE 6-10.

Lrnfzlvi el
xcc: 7 6 5 4
icc. 3 2 1 0

FIGURE 6-10 Integer Condition Codes (CCR.icc and CCR.xcc)

The n bits indicate whether the two’s-complement ALU result was negative for the
last instruction that modified the integer condition codes; 1 = negative, 0 = not
negative.

The z bits indicate whether the ALU result was zero for the last instruction that
modified the integer condition codes; 1 = zero, 0 = nonzero.

The v bits signify whether the ALU result was within the range of (was
representable in) 64-bit (xcc) or 32-bit (icc) two’s complement notation for the last
instruction that modified the integer condition codes; 1 = overflow, 0 = no overflow.

The c bits indicate whether a 2’s complement carry (or borrow) occurred during the
last instruction that modified the integer condition codes. Carry is set on addition if
there is a carry out of bit 63 (xcc) or bit 31 (icc). Carry is set on subtraction if there is
a borrow into bit 63 (xcc) or bit 31 (icc); 1 = borrow, 0 = no borrow (see TABLE 6-10).

TABLE6-10  Setting of Carry (Borrow) bits for Subtraction That Sets CCs

Unsigned Comparison of Operand Values Setting of Carry bits in CCR

R[rs1]{31:0} = R[rs2]{31:0} CCR.icc.c « 0
R[rs1]{31:0} < R[rs2]{31:0} CCR.icc.c < 1
R[rs1]{63:0} = R[rs2]{63:0} CCR.xcc.c « 0
R[rs1]{63:0} < R[rs2]{63:0} CCR.xcc.Cc « 1

Both fields of CCR (xcc and icc) are modified by arithmetic and logical instructions,
the names of which end with the letters “cc” (for example, ANDcc), and by the
WRCCR instruction. They can be modified by a DONE or RETRY instruction, which
replaces these bits with the contents of TSTATE.ccr. The behavior of the following
instructions are conditioned by the contents of CCR.icc or CCR.xcc:

= BPcc and Tcc instructions (conditional transfer of control)
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6.5.4

= Bicc (conditional transfer of control, based on CCR.icc only)
= MOVcc instruction (conditionally move the contents of an integer register)

= FMOVcc instruction (conditionally move the contents of a floating-point register)

Extended (64-bit) integer condition codes (xcc). Bits 7 through 4 are the IU
condition codes, which indicate the results of an integer operation, with both of the
operands and the result considered to be 64 bits wide.

32-bit Integer condition codes (icc). Bits 3 through 0 are the IU condition codes,
which indicate the results of an integer operation, with both of the operands and the
result considered to be 32 bits wide.

Address Space Identifier (ASI) Register
(ASR 3)

The Address Space Identifier register (FIGURE 6-11) specifies the address space
identifier to be used for load and store alternate instructions that use the “rsl +
simm13” addressing form.

The ASI register may be explicitly read and written by the RDASI and WRASI
instructions, respectively.

Software (executing in any privilege mode) may write any value into the ASI
register. However, values in the range 0014 to 7F;4 are “restricted” ASIs; an attempt
to perform an access using an ASI in that range is restricted to software executing in
a mode with sufficient privileges for the ASI. When an instruction executing in
nonprivileged mode attempts an access using an ASI in the range 00;4 to 7F;4 or an
instruction executing in privileged mode attempts an access using an ASI the range
3014 to 7Fy4, a privileged_action exception is generated. See Chapter 10, Address Space
Identifiers (ASIs) for details.

RW
Ast | |
7 0

FIGURE 6-11 Address Space Identifier Register

Tick (TICK) Register (ASR 4)

FIGURE 6-12 illustrates the TICK register.
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R, WH R, WH

TICKPnPt npt counter

63 62
FIGURE 6-12 TICK Register

The counter field of the TICK register is a 63-bit counter that counts strand clock
cycles. Bit 63 of the TICK register is the nonprivileged trap (npt) bit, which controls
access to the TICK register by nonprivileged software.

Privileged and hyperprivileged software can always read the TICK register with
either the RDPR or RDTICK instruction.

Privileged software cannot write to the TICK register; an attempt to do so (with the
WRPR instruction) results in an illegal_instruction exception. Hyperprivileged
software can always write to the TICK register with the WRPR instruction (there is
no distinct WRTICK instruction).

Nonprivileged software can read the TICK register by using the RDTICK instruction,
but only when nonprivileged access to TICK is enabled (TICK.npt = 0) by
hyperprivileged software. If nonprivileged access is disabled (TICK.npt = 1), an
attempt by nonprivileged software to read the TICK register causes a
privileged_action exception. Nonprivileged software cannot write the TICK register.
An attempt by nonprivileged software to read the TICK register using the privileged
RDPR instruction causes a privileged_opcode exception.

TICK.npt is set to 1 by a power-on reset trap. The value of TICK.counter is reset to 0
after a power-on reset trap.

After the TICK register is written, reading the TICK register returns a value
incremented (by 1 or more) from the last value written, rather than from some
previous value of counter. The number of counts between a write and a subsequent
read does not accurately reflect the number of strand cycles between the write and
the read. Software may rely only on read-to-read counts of the TICK register for
accurate timing, not on write-to-read counts.

The difference between the values read from the TICK register on two reads is
intended to reflect the number of strand cycles executed between the reads.

Programming | If a single TICK register is shared among multiple virtual
Note | processors, then the difference between subsequent reads of
TICK.counter reflects a shared cycle count, not a count specific to
the virtual processor reading the TICK register.

IMPL. DEP. #105-V9: (a) If an accurate count cannot always be returned when TICK
is read, any inaccuracy should be small, bounded, and documented.

(b) An implementation may implement fewer than 63 bits in TICK.counter; however,
the counter as implemented must be able to count for at least 10 years without
overflowing. Any upper bits not implemented must read as zero.
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Programming | TICK.npt may be used by a secure operating system to control
Note | access by user software to high-accuracy timing information.
The operation of the timer might be emulated by the trap
handler, which could read TICK.counter and “fuzz” the value to
lower accuracy.

6.5.5 Program Counters (PC, NPC) (ASR 5)

The PC contains the address of the instruction currently being executed. The least-
significant two bits of PC always contain zeroes.

The PC can be read directly with the RDPC instruction. PC cannot be explicitly
written by any instruction (including Write State Register), but is implicitly written
by control transfer instructions. A WRasr to ASR 5 causes an illegal_instruction
exception.

The Next Program Counter, NPC, is a pseudo-register that contains the address of
the next instruction to be executed if a trap does not occur. The least-significant two
bits of NPC always contain zeroes.

NPC is written implicitly by control transfer instructions. However, NPC cannot be
read or written explicitly by any instruction.

PC and NPC can be indirectly set by privileged software that writes to TPC[TL]
and/or TNPC[TL] and executes a RETRY instruction.

See Chapter 6, Instruction Set Overview, for details on how PC and NPC are used.

6.5.6 Floating-Point Registers State (FPRS) Register
(ASR 6)

The Floating-Point Registers State (FPRS) register, shown in FIGURE 6-13, contains
control information for the floating-point register file; this information is readable
and writable by nonprivileged software.

RW _RW _RW

PR [ [av [ a_

2 1 0
FIGURE 6-13 Floating-Point Registers State Register

The FPRS register may be explicitly read and written by the RDFPRS and WRFPRS
instructions, respectively.
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Enable FPU (fef). Bit 2, fef, determines whether the FPU is enabled. If it is
disabled, executing a floating-point instruction causes an fp_disabled trap. If this bit
is set (FPRS.fef = 1) but the PSTATE.pef bit is not set (PSTATE.pef = 0), then
executing a floating-point instruction causes an fp_disabled exception; that is, both
FPRS.fef and PSTATE.pef must be set to 1 to enable floating-point operations.

Programming | FPRS.fef can be used by application software to notify system

Note | software that the application does not require the contents of the
F registers to be preserved. Depending on system software, this
may provide some performance benefit, for example, the F
registers would not have to be saved or restored during context
switches to or from that application. Once an application sets
FPRS.fef to 0, it must assume that the values in all F registers
are volatile (may change at any time).

Dirty Upper Registers (du). Bit 1 is the “dirty” bit for the upper half of the
floating-point registers; that is, F[32]-F[62]. It is set to 1 whenever any of the upper
floating-point registers is modified. The du bit is cleared only by software.

IMPL. DEP. #403-S10(a): An UltraSPARC Architecture 2005 virtual processor may
set FPRS.du pessimistically; that is, it may be set whenever an FPop is issued, even
though no destination F register is modified. The specific conditions under which a
dirty bit is set pessimistically are implementation dependent.

Dirty Lower Registers (dl). Bit 0 is the “dirty” bit for the lower 32 floating-point
registers; that is, F[0]-F[31]. It is set to 1 whenever any of the lower floating-point
registers is modified. The dl bit is cleared only by software.

IMPL. DEP. #403-S10(b): An UltraSPARC Architecture 2005 virtual processor may
set FPRS.dI pessimistically; that is, it may be set whenever an FPop is issued, even
though no destination F register is modified. The specific conditions under which a
dirty bit is set pessimistically are implementation dependent.

Implementation | If an instruction that normally writes to the F registers is

Note | executed and causes an fp_disabled exception, an UltraSPARC
Architecture 2005 implementation still sets the “dirty” bit
(FPRS.du or FPRS.dI) corresponding to the destination register
to ‘1"

Forward | It is expected that in future revisions to the UltraSPARC
Compatibility | Architecture, if an instruction that normally writes to the F
Note | registers is executed and causes an fp_disabled exception the
“dirty” bit (FPRS.du or FPRS.dI) corresponding to the
destination register will be left unchanged.
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Performance Control Register (PCRF) (ASR 16)

The PCR is used to control performance monitoring events collected in counter
pairs, which are accessed via the Performance Instrumentation Counter (PIC)
register (ASR 17) (see page 79). Unused PCR bits read as zero; they should be
written only with zeroes or with values previously read from them.

When the virtual processor is operating in privileged mode (PSTATE.priv =1 and
HPSTATE.hpriv = 0)or hyperprivileged mode (HPSTATE.hpriv = 1), PCR may be
freely read and written by software.

When the virtual processor is operating in nonprivileged mode (PSTATE.priv = 0),
an attempt to access PCR (using a RDPCR or WRPCR instruction) results in a
privileged_opcode exception (impl. dep. #250-U3-Cs10).

The PCR is illustrated in FIGURE 6-14 and described in TABLE 6-11.

RW RW RW _RW RW
PCRP — impl. dep — impl. dep. su |—| sl |dn;|;| ut | st |priv
63 48 47 32 31 27 26 17 16 11 10 9 4 3 2 1 0

FIGURE 6-14 Performance Control Register (PCR) (ASR 16)

IMPL. DEP. #207-U3: The values and semantics of bits 47:32, 26:17, and bit 3 of the

PCR are implementation dependent.
TABLE6-11  PCR Bit Description
Bit Field Description
47:32 — These bits are implementation dependent (impl. dep #207-U3).
26:17 — These bits are implementation dependent (impl. dep. #207-U3).
16:11 su Six-bit field selecting 1 of 64 event counts in the upper half (bits {63:32}) of the PIC.
9:4 sl Six-bit field selecting 1 of 64 event counts in the lower half (bits {31:0}) of the PIC.
3 — This bit is implementation dependent (impl. dep. #207-U3).
2 ut User Trace Enable. If set to 1, events in nonprivileged (user) mode are counted.
1 st System Trace Enable. If set to 1, events in privileged (system) mode are counted.

Notes:

If both PCR.ut and PCR.st are set to 1, all selected events are counted.

If both PCR.ut and PCR:st are zero, counting is disabled.

PCR.ut and PCRst are global fields which apply to all PIC pairs.

0 priv Privileged. Controls access to the PIC register (via RDPIC or WRPIC instructions). If

PCR.priv = 0, an attempt to access PIC will succeed regardless of the privilege state
(PSTATE.priv). If PCR.priv = 1, access to PIC is restricted to privileged software; that is, an
attempt to access PIC while PSTATE.priv = 1 will succeed, but an attempt to access PIC while
PSTATE.priv = 0 will result in a privileged_action exception.
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Performance Instrumentation Counter (PIC)
Register (ASR 17)

PIC contains two 32-bit counters that count performance-related events (such as
instruction counts, cache misses, TLB misses, and pipeline stalls). Which events are
actively counted at any given time is selected by the PCR register.

The difference between the values read from the PIC register at two different times
reflects the number of events that occurred between register reads. Software can only
rely on the difference in counts between two PIC reads to get an accurate count, not
on the difference in counts between a PIC write and a PIC read.

PIC is normally a nonprivileged-access, read/write register. However, if the priv bit
of the PCR (ASR 16) is set, attempted access by nonprivileged (user) code causes a
privileged_action exception.

Multiple PICs may be implemented. Each is accessed through ASR 17, using an
implementation-dependent PIC pair selection field in PCR (ASR 16) (impl. dep.
#207-U3). Read /write access to the PIC will access the picu/picl counter pair selected
by PCR.

The PIC is described below and illustrated in FIGURE 6-15.

Bit Field Description

63:32 picu 32-bit counter representing the count of an event selected by the su field of the
Performance Control Register (PCR) (ASR 16).

31:0 picl 32-bit counter representing the count of an event selected by the sl field of the Performance
Control Register (PCR) (ASR 16).

RW RW
PIcP picu picl
63 32 31 0

FIGURE 6-15 Performance Instrumentation Counter (PIC) (ASR 17)

Counter Overflow. On overflow, the effective counter wraps to 0, SOFTINT
register bit 15 is set to 1, and an interrupt level 15 trap is generated if not masked by
PSTATE.ie and PIL. The counter overflow trap is triggered on the transition from
value FFFF FFFF4 to value 0.
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6.5.9

General Status Register (GSR) (ASR 19)

The General Status Register! (GSR) is a nonprivileged read/write register that is
implicitly referenced by many VIS instructions. The GSR can be read by the RDGSR
instruction (see Read Ancillary State Register on page 299) and written by the WRGSR
instruction (see Write Ancillary State Register on page 369).

If the FPU is disabled (PSTATE.pef = 0 or FPRS.fef = 0), an attempt to access this
register using an otherwise-valid RDGSR or WRGSR instruction causes an
fp_disabled trap.

The GSR is illustrated in FIGURE 6-16 and described in TABLE 6-12.

RW RW__RW RW RW
GSRP mask — |im|irnd — scale |align
63 32 31 28 27 26 2524 87 32 0
FIGURE 6-16 General Status Register (GSR) (ASR 19)
TABLE6-12  GSR Bit Description
Bit Field Description
63:32 mask This 32-bit field specifies the mask used by the BSHUFFLE instruction. The field
contents are set by the BMASK instruction.
31:28 — Reserved.
27 im Interval Mode: If GSR.im = 0, rounding is performed according to FSR.rd; if
GSR.im = 1, rounding is performed according to GSR.irnd.
26:25 irnd IEEE Std 754-1985 rounding direction to use in Interval Mode (GSR.im = 1), as follows:
irnd Round toward ...
0 Nearest (even, if tie)
1 0
2 + 00
3 - 00
24:8 — Reserved.
7:3 scale 5-bit shift count in the range 0-31, used by the FPACK instructions for formatting.
2:0 align Least three significant bits of the address computed by the last-executed

ALIGNADDRESS or ALIGNADDRESS_LITTLE instruction.

6.5.10

SOFTINT" Register (ASRs 20 ®, 21 @, 22 @D)

Software uses the privileged, read /write SOFTINT register (ASR 22) to schedule
interrupts (via interrupt_level_n exceptions).

1 This register was (inaccurately) referred to as the "Graphics Status Register" in early UltraSPARC
implementations
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SOFTINT can be read with a RDSOFTINT instruction (see Read Ancillary State
Register on page 299) and written with a WRSOFTINT, WRSOFTINT_SET, or
WRSOFTINT_CLR instruction (see Write Ancillary State Register on page 369). An
attempt to access to this register in nonprivileged mode causes a privileged_opcode
exception.

Programming | To atomically modify the set of pending software interrupts, use
Note | of the SOFTINT_SET and SOFTINT_CLR ASRs is
recommended.

The SOFTINT register is illustrated in FIGURE 6-17 and described in TABLE 6-13.

RW RW RW
SOFTINTP — sm int_level tm
63 17 16 15 10
FIGURE 6-17 SOFTINT Register (ASR 22)
TABLE6-13  SOFTINT Bit Description
Bit Field Description
16 sm When the STICK_CMPR (ASR 25) register’s int_dis (interrupt disable) field is 0 (that is,

System Tick Compare is enabled) and its stick_cmpr field matches the value in the
STICK register, then SOFTINT.sm (“STICK match”) is set to 1 and a level 14 interrupt
(interrupt_level_14) is generated. See System Tick Compare (STICK_CMPR?) Register (ASR
25) on page 84 for details. SOFTINT.sm can also be directly written to 1 by software.

15:1  int_level When SOFTINT.int_level{n—1} (SOFTINT{n}) is set to 1, an interrupt_level_n exception is
generated.

Notes: |A level-14 interrupt (interrupt_level_14) can be triggered by
SOFTINT.sm, SOFTINT.tm, or a write to SOFTINT.int_level{13}
(SOFTINT{14}).

A level-15 interrupt (interrupt_level_15) can be triggered by a write to
SOFTINT.int_level{14} (SOFTINT{15}), or possibly by other
implementation-dependent mechanisms.

An interrupt_level_n exception will only cause a trap if (PIL < n) and
(PSTATE.ie =1 and (HPSTATE.hpriv = 0).

0 tm When the TICK_CMPR (ASR 23) register’s int_dis (interrupt disable) field is 0 (that is,
Tick Compare is enabled) and its tick_cmpr field matches the value in the TICK register,
then the tm (“TICK match”) field in SOFTINT is set to 1 and a level-14 interrupt
(interrupt_level_14) is generated. See Tick Compare (TICK_CMPRP) Register (ASR 23) on
page 83 for details. SOFTINT.tm can also be directly written to 1 by software.

Setting any of SOFTINT.sm, SOFTINT.int_level{13} (SOFTINT{14}), or SOFTINT.tm
to 1 causes a level-14 interrupt (interrupt_level_14). However, those three bits are
independent; setting any one of them does not affect the other two.

See Software Interrupt Register (SOFTINT) on page 496 for additional information
regarding the SOFTINT register.
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6.5.10.1 SOFTINT_SETP Pseudo-Register (ASR 20)

A Write State register instruction to ASR 20 (WRSOFTINT_SET) atomically sets

selected bits in the privileged SOFTINT Register (ASR 22) (see page 80). That is, bits
16:0 of the write data are ored into SOFTINT; any ‘1’ bit in the write data causes the
corresponding bit of SOFTINT to be set to 1. Bits 63:17 of the write data are ignored.

Access to ASR 20 is privileged and write-only. There is no instruction to read this
pseudo-register. An attempt to write to ASR 20 in non-privileged mode, using the
WRasr instruction, causes a privileged_opcode exception.

Programming | There is no actual “register” (machine state) corresponding to
Note | ASR 20; it is just a programming interface to conveniently set
selected bits to “1” in the SOFTINT register, ASR 22.

FIGURE 6-18 illustrates the SOFTINT_SET pseudo-register.

W1s

SOFTINT_SETP — ASR 22 bits to be set
63 17 16 0

FIGURE 6-18 SOFTINT_SET Pseudo-Register (ASR 20)

6.5.10.2 SOFTINT_CLRP Pseudo-Register (ASR 21)

A Write State register instruction to ASR 21 (WRSOFTINT_CLR) atomically clears
selected bits in the privileged SOFTINT register (ASR 22) (see page 80). That is, bits
16:0 of the write data are inverted and anded into SOFTINT; any ‘1’ bit in the write
data causes the corresponding bit of SOFTINT to be set to 0. Bits 63:17 of the write
data are ignored.

Access to ASR 21 is privileged and write-only. There is no instruction to read this
pseudo-register. An attempt to write to ASR 21 in non-privileged mode, using the
WRasr instruction, causes a privileged_opcode exception.

Programming | There is no actual “register” (machine state) corresponding to
Note | ASR 21; it is just a programming interface to conveniently clear
(set to ‘0") selected bits in the SOFTINT register, ASR 22.

FIGURE 6-19 illustrates the SOFTINT_CLR pseudo-register.

Wic
SOFTINT_CLRP — ASR 22 bits to be cleared
63 17 16 0
FIGURE 6-19 SOFTINT_CLR Pseudo-Register (ASR 21))
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6.5.11 Tick Compare (TICK_CMPRY) Register (ASR
23)

The privileged TICK_CMPR register allows system software to cause a trap when
the TICK register reaches a specified value. Nonprivileged accesses to this register
cause a privileged_opcode exception (see Exception and Interrupt Descriptions on page
481).

After a power-on reset trap, the int_dis bit is set to 1 (disabling Tick Compare
interrupts) and the value of the tick_cmpr field is undefined.

The TICK_CMPR register is illustrated in FIGURE 6-20 and described in TABLE 6-14.

RW RW
TICK_CMPRP [int_dis tick_cmpr
63 62

FIGURE 6-20 TICK_CMPR Register

TABLE 6-14 TICK_CMPR Register Description

Bit Field Description

63 int_dis Interrupt Disable. If int_dis = 0, TICK compare interrupts are enabled
and if int_dis = 1, TICK compare interrupts are disabled.

62:0 tick_cmpr Tick Compare Field. When this field exactly matches the value in
TICK.counter and TICK_CMPRu.int_dis = 0, SOFTINT.tm is set to 1.
This has the effect of posting a level-14 interrupt to the virtual
processor, which causes an interrupt_level_14 trap when (PIL < 14)
and (PSTATE.ie = 1 and HPSTATE.hpriv = 0). The level-14 interrupt
handler must check SOFTINT{14}, SOFTINT{0} (tm), and
SOFTINT{16} (sm) to determine the source of the level-14 interrupt.

6.5.12 System Tick (STICK) Register (ASR 24)

The System Tick (STICK) register provides a counter that is synchronized across a
system, useful for timestamping. The counter field of the STICK register is a 63-bit
counter that increments at a rate determined by a clock signal external to the
processor.

Bit 63 of the STICK register is the nonprivileged trap (npt) bit, which controls access
to the STICK register by nonprivileged software.

The STICK register is illustrated in FIGURE 6-21 and described below.
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R, WH R, WH

STICKPNR npt counter

63 62
FIGURE 6-21 STICK Register

Hyperprivileged software can always read the STICK register with the RDSTICK
instruction and write it with the WRSTICK instruction.

Privileged software can always read the STICK register with the RDSTICK
instruction. Privileged software cannot write the STICK register; an attempt to
execute the WRSTICK instruction in privileged mode results in an illegal_instruction
exception.

Nonprivileged software can read the STICK register by using the RDSTICK
instruction, but only when nonprivileged access to STICK is enabled (STICK.npt = 0)
by hyperprivileged software. If nonprivileged access is disabled (STICK.npt = 1), an
attempt by nonprivileged software to read the STICK register causes a
privileged_action exception. Nonprivileged software cannot write the STICK
register; an attempt to execute the WRSTICK instruction in nonprivileged mode
results in an illegal_instruction exception.

After the STICK register is written, reading the STICK register returns a value
incremented (by 1 or more) from the last value written, rather than from some
previous value of counter.

After a power-on reset trap, STICK.npt is set to 1 and the value of STICK.counter is
undefined.

Note | The STICK register is unaffected by any reset other than a

power-on reset.

6.5.13 System Tick Compare (STICK_CMPRY) Register
(ASR 25)

The privileged STICK_CMPR register allows system software to cause a trap when
the STICK register reaches a specified value. Nonprivileged accesses to this register
cause a privileged_opcode exception (see Exception and Interrupt Descriptions on page
481).

After a power-on reset trap, the int_dis bit is set to 1 (disabling System Tick Compare
interrupts), and the stick_cmpr field is undefined.

The System Tick Compare Register is illustrated in FIGURE 6-22 and described in
TABLE 6-15.
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RW RW

STICK_CM PRP|int_dis stick_cmpr

63 62 0
FIGURE 6-22 STICK_CMPR Register

TABLE 6-15 STICK_CMPR Register Description

Bit Field Description

63 int_dis Interrupt Disable. If set to 1, STICK_CMPR interrupts are disabled.

62:0 stick_cmpr System Tick Compare Field. When this field exactly matches
STICK.counter and STICK_CMPR.int_dis =0, SOFTINT.sm is set to
1. This has the effect of posting a level-14 interrupt to the virtual
processor, which causes an interrupt_level_14 trap when (PIL < 14)
and (PSTATE.ie = 1). The level-14 interrupt handler must check
SOFTINT{14}, SOFTINT{0} (tm), and SOFTINT{16} (sm) to
determine the source of the level-14 interrupt.

6.6

Register-Window PR State Registers

The state of the register windows is determined by the contents of a set of privileged
registers. These state registers can be read/written by privileged software using the
RDPR/WRPR instructions. An attempt by nonprivileged software to execute a
RDPR or WRPR instruction causes a privileged_opcode exception. In addition, these
registers are modified by instructions related to register windows and are used to
generate traps that allow supervisor software to spill, fill, and clean register
windows.

IMPL. DEP. #126-V9-Ms10: Privileged registers CWP, CANSAVE, CANRESTORE,
OTHERWIN, and CLEANWIN contain values in the range 0 to N_REG_WINDOWS — 1.
An attempt to write a value greater than N_REG_WINDOWS — 1 to any of these
registers causes an implementation-dependent value between 0 and
N_REG_WINDOWS - 1 (inclusive) to be written to the register. Furthermore, an attempt
to write a value greater than N_REG_WINDOWS — 2 violates the register window state
definition in Register Window State Definition on page 88.

Although the width of each of these five registers is architecturally 5 bits, the width
is implementation dependent and shall be between og,(N_REG_WINDOWS)[and 5
bits, inclusive. If fewer than 5 bits are implemented, the unimplemented upper bits
shall read as 0 and writes to them shall have no effect. All five registers should have
the same width.

For UltraSPARC Architecture 2005 processors, N_REG_WINDOWS = 8. Therefore, each
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6.6.1

6.6.2

register window state register is implemented with 3 bits, the maximum value for
CWP and CLEANWIN is 7, and the maximum value for CANSAVE, CANRESTORE,
and OTHERWIN is 6. When these registers are written by the WRPR instruction, bits
63:3 of the data written are ignored.

For details of how the window-management registers are used, see Register Window
Management Instructions on page 129.

Programming | CANSAVE, CANRESTORE, OTHERWIN, and CLEANWIN must

Note | never be set to a value greater than N_REG_WINDOWS — 2 on an
UltraSPARC Architecture virtual processor. Setting any of these
to a value greater than N_REG_WINDOWS — 2 violates the register
window state definition in Register Window State Definition on
page 88. Hardware is not required to enforce this restriction; it is
up to system software to keep the window state consistent.

Implementation | A write to any privileged register, including PR state registers,
Note | may drain the CPU pipeline.

Current Window Pointer (CWP?Y) Register (PR 9)

The privileged CWP register, shown in FIGURE 6-23, is a counter that identifies the
current window into the array of integer registers. See Register Window Management
Instructions on page 129 and Chapter 12, Traps, for information on how hardware
manipulates the CWP register.

RW RW
cwpP | | |
4 32 0

FIGURE 6-23 Current Window Pointer Register

Savable Windows (CANSAVEPY) Register (PR 10)

The privileged CANSAVE register, shown in FIGURE 6-24, contains the number of
register windows following CWP that are not in use and are, hence, available to be
allocated by a SAVE instruction without generating a window spill exception.

RW RW
CANSAVEP | | |
4 32 0

FIGURE 6-24 CANSAVE Register, Figure 5-24, page 88
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6.6.3

6.6.4

6.6.5

Restorable Windows (CANRESTORE?Y) Register
(PR 11)

The privileged CANRESTORE register, shown in FIGURE 6-25, contains the number of
register windows preceding CWP that are in use by the current program and can be
restored (by the RESTORE instruction) without generating a window fill exception.

RW RW
CANRESTOREP| | |
4 32 0

FIGURE 6-25 CANRESTORE Register

Clean Windows (CLEANWIND) Register (PR 12)

The privileged CLEANWIN register, shown in FIGURE 6-26, contains the number of
windows that can be used by the SAVE instruction without causing a clean_window
exception.

RW RW
CLEANWINFP | | |
4 32 0

FIGURE 6-26 CLEANWIN Register

The CLEANWIN register counts the number of register windows that are “clean”
with respect to the current program; that is, register windows that contain only
zeroes, valid addresses, or valid data from that program. Registers in these windows
need not be cleaned before they can be used. The count includes the register
windows that can be restored (the value in the CANRESTORE register) and the
register windows following CWP that can be used without cleaning. When a clean
window is requested (by a SAVE instruction) and none is available, a clean_window
exception occurs to cause the next window to be cleaned.

Other Windows (OTHERWINF) Register (PR 13)

The privileged OTHERWIN register, shown in FIGURE 6-27, contains the count of
register windows that will be spilled/filled by a separate set of trap vectors based on
the contents of WSTATE.other. If OTHERWIN is zero, register windows are spilled /
filled by use of trap vectors based on the contents of WSTATE.normal.
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6.6.6

6.6.7

The OTHERWIN register can be used to split the register windows among different
address spaces and handle spill/fill traps efficiently by use of separate spill/fill
vectors.

RW RW
OTHERWINP | | |
4 32 0

FIGURE 6-27 OTHERWIN Register

Window State (WSTATE?Y) Register (PR 14)

The privileged WSTATE register, shown in FIGURE 6-28, specifies bits that are
inserted into TT[TL]{4:2} on traps caused by window spill and fill exceptions. These
bits are used to select one of eight different window spill and fill handlers. If
OTHERWIN =0 at the time a trap is taken because of a window spill or window fill
exception, then the WSTATE.normal bits are inserted into TT[TL]. Otherwise, the
WSTATE.other bits are inserted into TT[TL]. See Register Window State Definition,
below, for details of the semantics of OTHERWIN.

RW RW
WSTATEP I other | normal I
5 32 0

FIGURE 6-28 WSTATE Register

Register Window Management

The state of the register windows is determined by the contents of the set of
privileged registers described in Register-Window PR State Registers on page 85.
Those registers are affected by the instructions described in Register Window
Management Instructions on page 129. Privileged software can read/write these state
registers directly by using RDPR/WRPR instructions.

6.6.7.1 Register Window State Definition

For the state of the register windows to be consistent, the following must always be
true:

CANSAVE + CANRESTORE + OTHERWIN = N_REG_WINDOWS — 2

FIGURE 6-3 on page 54 shows how the register windows are partitioned to obtain the
above equation. The partitions are as follows:

= The current window plus the window that must not be used because it overlaps
two other valid windows. In FIGURE 6-3, these are windows 0 and 5, respectively.
They are always present and account for the “2” subtracted from N_REG_WINDOWS
in the right-hand side of the above equation.
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= Windows that do not have valid contents and that can be used (through a SAVE
instruction) without causing a spill trap. These windows (windows 14 in
FIGURE 6-3) are counted in CANSAVE.

= Windows that have valid contents for the current address space and that can be
used (through the RESTORE instruction) without causing a fill trap. These
windows (window 7 in FIGURE 6-3) are counted in CANRESTORE.

= Windows that have valid contents for an address space other than the current
address space. An attempt to use these windows through a SAVE (RESTORE)
instruction results in a spill (fill) trap to a separate set of trap vectors, as discussed
in the following subsection. These windows (window 6 in FIGURE 6-3) are counted
in OTHERWIN.

In addition,
CLEANWIN = CANRESTORE

since CLEANWIN is the sum of CANRESTORE and the number of clean windows
following CWP.

For the window-management features of the architecture described in this section to
be used, the state of the register windows must be kept consistent at all times, except
within the trap handlers for window spilling, filling, and cleaning. While window
traps are being handled, the state may be inconsistent. Window spill/fill trap
handlers should be written so that a nested trap can be taken without destroying
state.

Programming | System software is responsible for keeping the state of the
Note | register windows consistent at all times. Failure to do so will
cause undefined behavior. For example, CANSAVE,
CANRESTORE, and OTHERWIN must never be greater than or
equal to N_REG_WINDOWS — 1.

6.6.7.2 Register Window Traps

Window traps are used to manage overflow and underflow conditions in the register
windows, support clean windows, and implement the FLUSHW instruction.

See Register Window Traps on page 491 for a detailed description of how fill, spill, and
clean_window traps support register windowing.
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6.7 Non-Register-Window PR State
Registers

The registers described in this section are visible only to software running in
privileged or hyperprivileged mode (that is, when PSTATE.priv =1 or
HPSTATE.hpriv = 1), and may be accessed with the WRPR and RDPR instructions.
(An attempt to execute a WRPR or RDPR instruction in nonprivileged mode causes
a privileged_opcode exception.)

Each virtual processor provides a full set of these state registers.
Implementation | A write to any privileged register, including PR state registers,
Note | may drain the CPU pipeline.

6.7.1 Trap Program Counter (TPCF) Register (PR 0)

The privileged Trap Program Counter register (TPC; FIGURE 6-29) contains the
program counter (PC) from the previous trap level. There are MAXTL instances of the
TPC, but only one is accessible at any time. The current value in the TL register
determines which instance of the TPC[TL] register is accessible. An attempt to read
or write the TPC register when TL = 0 causes an illegal_instruction exception.

RW R

TPC,? pc_high62 (PC{63:2} from trap while TL = 0) 00

TPC,F pc_high62 (PC{63:2} from trap while TL = 1) 00

TPC,P pc_high62 (PC{63:2} from trap while TL =2) 00

TPCMAXTLP pc_high62 (PC{ 63:2} from trap while TL = MAXTL - 1) 00
63 210

FIGURE 6-29 Trap Program Counter Register Stack

After a power-on reset, the contents of TPC[1] through TPC[MAXTL] are undefined.
During normal operation, the value of TPC[n], where 7 is greater than the current
trap level (n > TL), is undefined.

TABLE 6-16 lists the events that cause TPC to be read or written.
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6.7.2

TNPC,P
TNPC,P

TNPC,P

TNPCMAXTLP

TABLE 6-16 Events that involve TPC, when executing with TL = n.

Event Effect

Trap TPC[n +1] « PC

RETRY instruction PC ~ TPCJn]

RDPR (TPC) R[rd] « TPC[#n]

WRPR (TPC) TPC[n] « value

Power-on reset (POR) All TPC values are left undefined

Trap Next PC (TNPCP) Register (PR 1)

The privileged Trap Next Program Counter register (TNPC; FIGURE 6-29) is the next
program counter (NPC) from the previous trap level. There are MAXTL instances of
the TNPC, but only one is accessible at any time. The current value in the TL register
determines which instance of the TNPC register is accessible. An attempt to read or
write the TNPC register when TL = 0 causes an illegal_instruction exception.

RW R
npc_high62 (NPC{63:2} from trap while TL =0) 00
npc_high62 (NPC{63:2} from trap while TL =1) 00
npc_high62 (NPC{63:2} from trap while TL =2) 00
npc_high62 (NPC{ 63:2} from trap while TL = MAXTL - 1) 00
63 210

FIGURE 6-30 Trap Next Program Counter Register Stack

After a power-on reset, the contents of TNPC[1] through TNPC[MAXTL] are
undefined. During normal operation, the value of TNPC[n], where n is greater than
the current trap level (n > TL), is undefined.

TABLE 6-17 lists the events that cause TNPC to be read or written.

TABLE 6-17 Events that involve TNPC, when executing with TL = n.

Event Effect

Trap TNPC[n + 1] — NPC

DONE instruction PC —~ TNPC[n]; NPC —~ TNPC[n] +4
RETRY instruction NPC ~ TNPC[n]

RDPR (TNPC) R[rd] « TNPCI[n]

WRPR (TNPC) TNPC[n] « value

Power-on reset (POR) All TNPC values are left undefined
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6.7.3

Trap State (TSTATED) Register (PR 2)

The privileged Trap State register (TSTATE; FIGURE 6-31) contains the state from the
previous trap level, comprising the contents of the GL, CCR, ASI, CWP, and
PSTATE registers from the previous trap level. There are MAXTL instances of the
TSTATE register, but only one is accessible at a time. The current value in the TL
register determines which instance of TSTATE is accessible. An attempt to read or
write the TSTATE register when TL = 0 causes an illegal_instruction exception.

RW RW RW R RW R RW
TST ATElP gl ccl asi — pstate — cwp
(GL from TL = 0) |(CCR from TL = 0)| (ASI from TL = 0) (PSTATE from TL = 0) (CWP from TL =0)
TST ATEZP gl ccl asi — pstate — cwp
(GL from TL = 1) |(CCR from TL = 1)| (ASI from TL=1 (PSTATE from TL = 1) (CWP fromTL=1)
TST, ATE3P gl ccr asi — pstate — cwp
P (GL from TL = 2) |(CCR from TL = 2)| (ASI from TL =2 (PSTATE from TL =2) (CWP fromTL =2)
gl cer asi — pstate — cwp
TSTATE yaxer. | (GL from (CCR from (ASI from (PSTATE from (CWP from
TL = MAXPTL — 1)[TL = MAXPTL — 1)[TL = MAXPTL — 1) TL = MAXPTL — 1) TL = MAXPTL — 1)
gl cer asi — pstate — cwp
TSTATEMAxpTL+1H (GL from (CCR from (ASI from (PSTATE from (CWP from
H TL = MAXPTL) TL = MAXPTL) TL = MAXPTL) TL = MAXPTL) TL = MAXPTL)
TSTATEMAXTLH gl cer asi — pstate — cwp
(GL from (CCR from (ASI from (PSTATE from (CWP from
TL = MAXTL = 1) | TL = MAXTL = 1) |TL = MAXTL - 1) TL = MAXTL - 1) TL = MAXTL - 1)
47 40 39 37 31 247232T 20 8§ 75 4 0
TABLE 6-18

FIGURE 6-31 Trap State (TSTATE) Register Stack

After a power-on reset the contents of TSTATE[1] through TSTATE[MAXTL] are
undefined. During normal operation the value of TSTATE[n], when  is greater than
the current trap level (n > TL), is undefined.

V9 Compatibility
Note

Because of the addition of additional bits in the PSTATE register
in the UltraSPARC Architecture, a 13-bit PSTATE value is stored
in TSTATE instead of the 10-bit value specified in the SPARC V9
architecture.
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TABLE 6-19 lists the events that cause TSTATE to be read or written.

TABLE 6-19 Events That Involve TSTATE, When Executing with TL =n

Event Effect

Trap TSTATE[n + 1] ~ (registers)

DONE instruction (registers) — TSTATE[n]

RETRY instruction (registers) — TSTATE[n]

RDPR (TSTATE) R[rd] — TSTATE[n]

WRPR (TSTATE) TSTATE[n] < value

Power-on reset (POR) All TSTATE values are left undefined

6.7.4 Trap Type (TT') Register (PR 3)

The privileged Trap Type register (TT; see FIGURE 6-32) contains the trap type of the
trap that caused entry to the current trap level. On a reset trap, the TT register
contains the trap type of the reset (see TABLE 12-2 on page 444). There are MAXTL
instances of the TT register, but only one is accessible at a time. The current value in
the TL register determines which instance of the TT register is accessible. An attempt
to read or write the TT register when TL = 0 causes an illegal_instruction exception.

RW
TTlP Trap type from trap while TL = 0
TT,P Trap type from trap while TL = 1
: P
TTuaxers Trap type from trap while TL = MAXPTL - 1

TTyaxer. + 11| Trap type from trap while TL = MAXPTL

H

TTar Trap type from trap while TL = MAXTL - 1

FIGURE 6-32 Trap Type Register Stack

After a power-on reset the contents of TT[1] through TT[MAXTL — 1] are undefined
and TT[MAXTL] = 001;4. During normal operation, the value of TT[n], where 7 is
greater than the current trap level (n > TL), is undefined.

TABLE 6-20 lists the events that cause TT to be read or written.
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6.7.5

TBAP

6.7.6

PSTATEF

TABLE 6-20 Events that involve TT, when executing with TL = .

Event Effect

Trap TT[n +1] « (trap type)

RDPR (TT) R[rd] « TT[n]

WRPR (TT) TT[n] ~ value

Power-on reset (POR) TT values TT[1] through TT[MAXTL — 1] are left undefined;

TT[MAXTL] « 0014¢.

Trap Base Address (TBAP) Register (PR 5)

The privileged Trap Base Address register (TBA), shown in FIGURE 6-33, provides the
upper 49 bits (bits 63:15) of the virtual address used to select the trap vector for a
trap that is to be delivered to privileged mode. The lower 15 bits of the TBA always
read as zero, and writes to them are ignored.

RW R

tba_high49 000 0000 0000 0000

63 1514 0
FIGURE 6-33 Trap Base Address Register

Details on how the full address for a trap vector is generated, using TBA and other
state, are provided in Trap-Table Entry Address to Privileged Mode on page 453.

Processor State (PSTATED) Register (PR 6)

The privileged Processor State register (PSTATE), shown in FIGURE 6-34, contains
control fields for the current state of the virtual processor. There is only one instance
of the PSTATE register per virtual processor.

RW RW RW RW RW RW RW RW
— — cle tle mm — pef am priv ie —
12 11 10 9 8 7 6 5 4 3 2 1 0

FIGURE 6-34 PSTATE Field

Writes to PSTATE are nondelayed; that is, new machine state written to PSTATE is
visible to the next instruction executed. The privileged RDPR and WRPR
instructions are used to read and write PSTATE, respectively.

The following subsections describe the fields of the PSTATE register.
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Current Little Endian (cle). This bit affects the endianness of data accesses
performed using an implicit ASI. When PSTATE.cle = 1, all data accesses using an
implicit ASI are performed in little-endian byte order. When PSTATE.cle = 0, all data
accesses using an implicit ASI are performed in big-endian byte order. Specific ASIs
used are shown in TABLE 6-3 on page 120. Note that the endianness of a data access
may be further affected by TTE.ie used by the MMU.

Instruction accesses are unaffected by PSTATE.cle and are always performed in big-
endian byte order.

Trap Little Endian (tle). When a trap is taken, the current PSTATE register is
pushed onto the trap stack.

During a virtual processor trap to privileged mode, the PSTATE.tle bit is copied into
PSTATE.cle in the new PSTATE register. This behavior allows system software to
have a different implicit byte ordering than the current process. Thus, if PSTATE.tle
is set to 1, data accesses using an implicit ASI in the trap handler are little-endian.

The original state of PSTATE.cle is restored when the original PSTATE register is
restored from the trap stack. During a virtual processor trap to hyperprivileged
mode, the PSTATE.tle bit is not copied into PSTATE.cle of the new PSTATE register
and is unused.

Memory Model (mm). This 2-bit field determines the memory model in use by
the virtual processor. The defined values for an UltraSPARC Architecture virtual
processor are listed in TABLE 6-21.

TABLE 6-21 PSTATE.mm Encodings

mm Value Selected Memory Model

00 Total Store Order (TSO)

01 Reserved

10 Implementation dependent (impl. dep. #113-V9-Ms10)
11 Implementation dependent (impl. dep. #113-V9-Ms10)

The current memory model is determined by the value of PSTATE.mm. Software
should refrain from writing the values 01,, 10,, or 11, to PSTATE.mm because they
are implementation-dependent or reserved for future extensions to the architecture,
and in any case not currently portable across implementations.

= Total Store Order (TSO) — Loads are ordered with respect to earlier loads. Stores
are ordered with respect to earlier loads and stores. Thus, loads can bypass earlier
stores but cannot bypass earlier loads; stores cannot bypass earlier loads or stores.

IMPL. DEP. #113-V9-Ms10: Whether memory models represented by
PSTATE.mm = 10, or 11, are supported in an UltraSPARC Architecture processor is
implementation dependent. If the 10, model is supported, then when
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PSTATE.mm = 10, the implementation must correctly execute software that adheres
to the RMO model described in The SPARC Architecture Manual-Version 9. If the 11,
model is supported, its definition is implementation dependent.

IMPL. DEP. #119-Ms10: The effect of writing an unimplemented memory model
designation into PSTATE.mm is implementation dependent.

SPARC V9 | The PSO memory model described in SPARC V8 and SPARC V9
Compatibility | architecture specifications was never implemented in a SPARC
Notes | V9 implementation and is not included in the UltraSPARC
Architecture specification.

The RMO memory model described in the SPARC V9
specification was implemented in some non-Sun SPARC V9
implementations, but is not directly supported in UltraSPARC
Architecture 2005 implementations. All software written to run
correctly under RMO will run correctly under TSO on an
UltraSPARC Architecture 2005 implementation.

Enable FPU (pef). When set to 1, the PSTATE.pef bit enables the floating-point
unit. This allows privileged software to manage the FPU. For the FPU to be usable,
both PSTATE.pef and FPRS.fef must be set to 1. Otherwise, any floating-point
instruction that tries to reference the FPU causes an fp_disabled trap.

If an implementation does not contain a hardware FPU, PSTATE.pef always reads as
0 and writes to it are ignored.

Address Mask (am). The PSTATE.am bit is provided to allow 32-bit SPARC
software to run correctly on a 64-bit SPARC V9 processor, by masking out (zeroing)
bits 63:32 of virtual addresses at appropriate times.

When PSTATE.am = 0, the full 64 bits of all instruction and data addresses are
preserved at all times.

When PSTATE.am = 1, bits 63:32 of instruction and data virtual addresses are
masked out (treated as 0).

Programming | It is the responsibility of privileged and hyperprivileged
Note | software to manage the setting of the PSTATE.am bit, since
hardware masks virtual addresses when PSTATE.am =1.

Misuse of the PSTATE.am bit can result in undesirable behavior.
PSTATE.am should not be set to 1 in privileged or
hyperprivileged mode.

The PSTATE.am bit should always be set to 1 when 32-bit
software is executed.
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Instances in which the more-significant 32 bits of a virtual address are masked
include:

Before any (virtual, real, or physical) data address is sent out of the virtual
processor (notably, to the memory system, which includes MMU, internal caches,
and external caches); this includes ASI accesses using ASI _AS_| F_USER* in
privileged or hyperprivileged mode.

Before any instruction virtual address is sent out of the virtual processor (notably,
to the memory system, which includes MMU, internal caches, and external
caches)

When the value of PC is stored to a general-purpose register by a CALL, JMPL, or
RDPC instruction (closed impl.dep. #125-V9-Cs10)

When the values of PC and NPC are written to TPC[TL] and TNPCJ[TL]
(respectively) during a trap (closed impl.dep. #125-V9-Cs10)

Before any virtual address is sent to a watchpoint comparator

Programming | A 64-bit comparison is always used when performing a masked
Note | watchpoint address comparison with the Instruction or Data VA
watchpoint register. When PSTATE.am = 1, the more significant
32 bits of the VA watchpoint register must be zero for a match
(and resulting trap) to occur.

When a bypassing ASI (ASI _* REAL_* or ASI _* PHYS_*) is used in a load or
store instruction (see ASI 1414, ASI _REAL, for an example).

When an exception occurs and any address (virtual, real, or physical) is written to
the Data Synchronous Fault Address register (DSFAR) (impl.dep. #241-U3)

Programming | If a memory access is initiated when PSTATE.am = 1, the
Note | memory system will only see a 32-bit memory address.
Therefore, if such a memory access causes an exception or error,
the memory system will (is only able to) report a 32-bit address
in the DSFAR register (64-bit address with the more-significant
32 bits set to 0).

When PSTATE.am = 1, the more-significant 32 bits of a virtual address are
explicitly preserved and not masked out in the following cases:

When a target address is written to NPC by a control transfer instruction
Forward
Compatibility
Note

This behavior is expected to change in the next revision of the
architecture, such that implementations will explicitly mask out
(not preserve) the more-significant 32 bits, in this case.

When NPC is incremented to NPC + 4 during execution of an instruction that is
not a taken control transfer

Forward
Compatibility
Note

This behavior is expected to change in the next revision of the
architecture, such that implementations will explicitly mask out
(not preserve) the more-significant 32 bits, in this case.
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= When a WRPR instruction writes to TPC[TL] or TNPC[TL]

Programming | Since writes to PSTATE are nondelayed (see page 94), a change
Note [ to PSTATE.am can affect the address of the next instruction
executed. Specifically, if a WRPR to the PSTATE register
changes the value of PSTATE.am from ‘0’ to ‘1, and the more-
significant 32 bits of NPC when the WRPR began execution were
nonzero, then the next instruction that executes after the WRPR
will not be from the address in NPC when the WRPR began
execution but rather from that address truncated to a 32-bit
address (NPC with its more-significant 32 bits set to zero).

= When a RDPR instruction reads from TPC[TL] or TNPC[TL]

If (1) TSTATE[TL].pstate.am =1 and (2) a DONE or RETRY instruction is
executed!, it is implementation dependent whether the DONE or RETRY instruction
masks (zeroes) the more-significant 32 bits of the values it places into PC and NPC
(impl. dep. #417-510).

Programming | Because of implementation dependency #417-510, great care
Note | must be taken in trap handler software if
TSTATE[TL].pstate.am = 1 and the trap handler wishes to write
a nonzero value to the more-significant 32 bits of TPC[TL] or
TNPC[TL].

Privileged Mode (priv). When PSTATE.priv =1 and HPSTATE.hpriv = 0, the
virtual processor is operating in privileged mode.

When PSTATE.priv = 0 and HPSTATE.hpriv = 0, the processor is operating in
nonprivileged mode

When HPSTATE.hpriv = 1, the virtual processor is operating in hyperprivileged
mode, independent of the state of PSTATE.priv. Hyperprivileged mode provides a
superset of the capabilities of privileged mode.

PSTATE interrupt_enable (ie). PSTATE.ie controls when the virtual processor
can take traps due to disrupting exceptions (such as interrupts or errors unrelated to
instruction processing).

Outstanding disrupting exceptions that are destined for privileged mode can only
cause a trap when the virtual processor is in nonprivileged or privileged mode and
PSTATE.ie = 1. At all other times, they are held pending. For more details, see
Conditioning of Disrupting Traps on page 448.

1 which sets PSTATE.am to '1’, by restoring the value from TSTATE[TL].pstate.am to PSTATE.am
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6.7.7

Outstanding disrupting exceptions that are destined for hyperprivileged mode can
only cause a trap when the virtual processor is not in hyperprivileged mode, or
when it is in hyperprivileged mode and PSTATE.ie = 1. At all other times, they are
held pending. For more details, see Conditioning of Disrupting Traps on page 448

SPARC V9 | Since the UltraSPARC Architecture provides a more general
Compatibility | “alternate globals” facility (through use of the GL register) than
Note | does SPARC V9, an UltraSPARC Architecture processor does not
implement the SPARC V9 PSTATE.ag bit.

Trap Level Register (TLY) (PR 7)

The privileged Trap Level register (TL; FIGURE 6-35) specifies the current trap level.
TL = 0 is the normal (nontrap) level of operation. TL > 0 implies that one or more
traps are being processed.

RW

2 0
FIGURE 6-35 Trap Level Register

The maximum valid value that the TL register may contain is MAXTL, which is always
equal to the number of supported trap levels beyond level 0.

IMPL. DEP. #101-V9-CS10: The architectural parameter MAXPTL is a constant for
each implementation; its legal values are from 2 to 6 (supporting from 2 to 6 levels of
saved trap state visible to privileged software). In a typical implementation

MAXPTL = MAXPGL (see impl. dep. #401-510). The architectural parameter MAXTL is a
constant for each implementation; its legal values are from 4 to 7 (supporting from 4
to 7 levels of saved trap state). Architecturally, MAXPTL must be > 2, MAXTL must be 2
4, and MAXTL must be > MAXPTL.

In an UltraSPARC Architecture 2005 implementation, MAXPTL = 2 and MAXTL = 6. See
Chapter 12, Traps, for more details regarding the TL register.

After a power-on rest (POR), TL is set to MAXTL.
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The effect of writing to TL with a WRPR instruction is summarized in TABLE 6-22.

TABLE 6-22  Effect of WRPR of Value x to Register TL

Privilege Level when Executing WRPR

Value x Written with WRPR Nonprivileged Privileged Hyperprivileged
x < MAXPTL TL « x
o TL « x
MAXPTL < x < MAXTL privileged_opcode TL « MAXPTL
exception no exception generated
X > MAXTL P ( P & ) TL « MAXTL
(no exception generated)

Writing the TL register with a WRPR instruction does not alter any other machine
state; that is, it is not equivalent to taking a trap or returning from a trap.

Programming
Note

Implementation
Note

Implementation
Note

Programming
Note

An UltraSPARC Architecture implementation only needs to
implement sufficient bits in the TL register to encode the
maximum trap level value. In an implementation

whereMAXTL < 7, bits 63:3 of data written to the TL register using
the WRPR instruction are ignored; only the least-significant
three bits (bits 2:0) of TL are actually written. For example, if
MAXTL = 6, writing a value of 0914 to the TL register causes a
value of 14 to actually be stored in TL.

MAXPTL =2 for all UltraSPARC Architecture 2005 processors.
Writing a value between 3 and 7 to the TL register in privileged
mode causes a 2 to be stored in TL.

MAXTL = 6 for all UltraSPARC Architecture 2005 processors.
Writing a value of 7 to the TL register in hyperprivileged mode
causes a 6 to be stored in TL.

Although it is possible for hyperprivileged software to set

TL > MAXPTL for privileged or nonprivileged software', an
UltraSPARC Architecture virtual processor’s behavior when
executing with TL > MAXPTL outside of hyperprivileged mode is

undefined.

Although it is possible for privileged or hyperprivileged
software to set TL > 0 for nonprivileged software’, an
UltraSPARC Architecture virtual processor’s behavior when
executing with TL > 0 in nonprivileged mode is undefined.

t by executing a WRPR to TSTATE followed by DONE instruction or RETRY
instruction or a JMPL/WRHPR instruction pair.

100 UltraSPARC Architecture 2005 ¢ Draft D0.8.7, 27 Mar 2006




6.7.8

6.7.9

Processor Interrupt Level (PILP) Register (PR 8)

The privileged Processor Interrupt Level register (PIL; see FIGURE 6-36) specifies the
interrupt level above which the virtual processor will accept an interrupt_level_n
interrupt. Interrupt priorities are mapped so that interrupt level 2 has greater
priority than interrupt level 1, and so on. See TABLE 12-4 on page 459 for a list of
exception and interrupt priorities.

PILP I I;an |
3 0

FIGURE 6-36 Processor Interrupt Level Register

V9 Compatibility | On SPARC V8 processors, the level 15 interrupt is considered to
Note [ be nonmaskable, so it has different semantics from other
interrupt levels. SPARC V9 processors do not treat a level 15
interrupt differently from other interrupt levels.

Global Level Register (G LP) (PR 16)

The privileged Global Level (GL) register selects which set of global registers is
visible at any given time.

FIGURE 6-37 illustrates the Global Level register.

RW
GLP gl
2 0

FIGURE 6-37 Global Level Register, GL

When a trap occurs, GL is stored in TSTATE[TL].gl, GL is incremented, and a new
set of global registers (R[1] through R[7]) becomes visible. A DONE or RETRY
instruction restores the value of GL from TSTATE[TL].

The valid range of values that the GL register may contain is MAXGL, where MAXGL is
one fewer than the number of global register sets available to the virtual processor.

IMPL. DEP. #401-S10: The architectural parameter MAXPGL is a constant for each
implementation; its legal values are from 2 to 7 (supporting from 3 to 8 sets of global
registers visible to privileged software). In a typical implementation

MAXPGL = MAXPTL (see impl. dep. #101-V9-CS10). The architectural parameter MAXGL
is a constant for each implementation; its legal values are from 3 to 7 (supporting
from 4 to 8 sets of global registers). Architecturally, MAXPGL must be = 2 and MAXGL
must be > MAXPGL.

CHAPTER 6 « Registers 101



In all UltraSPARC Architecture 2005 implementations, MAXPGL = 2 and MAXGL = 3.
MAXGL (impl. dep. #401-510).

IMPL. DEP. #400-S10: Although GL is defined as a 3-bit register, an implementation
may implement any subset of those bits sufficient to encode the values from 0 to
MAXGL for that implementation. If any bits of GL are not implemented, they read as
zero and writes to them are ignored.

GL operates similarly to TL, in that it increments during entry to a trap, but the
values of GL and TL are independent. That is, TL = n does not imply that GL =#,
and GL = n does not imply that TL = n. Furthermore, there may be a different total
number of global levels (register sets) than there are trap levels; that is, MAXTL and
MAXGL are not necessarily equal.

The GL register can be accessed directly with the RDPR and WRPR instructions (as
privileged register number 16). Writing the GL register directly with WRPR will
change the set of global registers visible to all instructions subsequent to the WRPR.

In privileged mode, attempting to write a value greater than MAXPGL to the GL
register causes MAXPGL to be written to GL.

In hyperprivileged mode, attempting to write a value greater than MAXGL to the GL
register causes MAXGL to be written to GL.

When a DONE or RETRY instruction is executed in privileged mode and
HTSTATE[TL].hpstate.hpriv = 0 (which will cause the DONE or RETRY to return the
virtual processor to nonprivileged or privileged mode), the value of GL restored
from TSTATE[TL] saturates at MAXPGL. That is, if the value in TSTATE[TL].gl is
greater than MAXPGL, then MAXPGL is substituted and written to GL. This protects
against non-hyperprivileged software executing with GL > MAXPGL.

Programming | Although it is possible for hyperprivileged software to set
Note | GL > MAXPGL for privileged or nonprivileged software’,
executing with GL > MAXPGL outside of hyperprivileged mode is

an illegal state and the behavior of a virtual processor in that

state is undefined.

t by executing a WRPR that modifies GL, followed by a JMPL/WRHPR instruction
pair (it is not possible to set GL > MAXPGL using DONE/RETRY)
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The effect of writing to GL with a WRPR instruction is summarized in TABLE 6-23.

TABLE 6-23  Effect of WRPR to Register GL

Privilege Level when WRPR Is Executed

Value x Written with WRPR Nonprivileged Privileged Hyperprivileged

X < MAXPGL GL « x

o GL « x
MAXPGL < X £ MAXGL privileged_opcode
exception GL ~ MAXPGL
X > MAXGL (no exception generated) GL — MAXGL
(no exception generated)

If MAXGL < MAXTL, then there are fewer sets of global registers than trap levels. In this
case, if a trap occurs while GL = MAXGL, GL will have the same value before the trap
occurs and in the software that handles the trap. Trap handler software must detect
this case and safely save any global register before the trap handler writes to it. The
Hyperprivileged Scratchpad registers (see Privileged Scratchpad Registers

(ASI _SCRATCHPAD) on page 431) may be useful in such cases.

Programming | An UltraSPARC Architecture implementation only needs to
Note | implement sufficient bits in the GL register to encode the
maximum global level value. In an implementation where
MAXGL < 7, bits 63:3 of data written to the GL register using the
WRPR instruction are ignored; only the least-significant three
bits (bits 2:0) are actually written to GL. For example, if
MAXGL = 7, writing a value of 914 to the TL register causes a
value of 14 to actually be stored in GL.

Since TSTATE itself is software-accessible, it is possible that when a DONE or
RETRY is executed to return from a trap handler, the value of GL restored from
TSTATE[TL] will be different from that which was saved into TSTATE[TL] when the
trap occurred.

During power-on reset (POR), the value of GL is set to MAXGL. During all other
resets, GL is incremented (the same behavior as TL).

6.8

HPR State Registers

The registers described in this section can be directly accessed with the
hyperprivileged WRHPR and RDHPR instructions.
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5.7.1

HPSTATEH

An attempt to read or write any HPR state register (using RDHPR or WRHPR) in
privileged or nonprivileged modes (that is, when HPSTATE.hpriv = 0) causes an
illegal_instruction exception.

Hyperprivileged State (HPSTATE) Register
(HPR 0)

The Hyperprivileged State register (HPSTATE), shown in FIGURE 5-37, contains
hyperprivileged control fields for the virtual processor. There is one instance of the
HPSTATE register per virtual processor.

RW RW RW RW
— i.d.|ibe — red] — |hpriv|— [tz
63 12 11 109 65 4 32 1 0

FIGURE 5-37 HPSTATE Fields

Writing HPSTATE is nondelayed; that is, new machine state written to HPSTATE is
visible to the next instruction executed. The hyperprivileged RDHPR and WRHPR
instructions are used to read and write HPSTATE, respectively.

The following subsections describe the fields contained in the HPSTATE register.

IMPL. DEP. #408-S10: The contents and semantics of HPSTATE{11} are
implementation dependent.

Instruction Breakpoint Enable (ibe). When HPSTATE.ibe = 1, the Instruction
Breakpoint feature is enabled, allowing an instr_breakpoint exception to occur. When
an instr_breakpoint exception trap occurs, the virtual processor sets HPSTATE.ibe to
0 before entering trap handler software, to guarantee that no additional
instr_breakpoint exception can occur in the instruction breakpoint trap handler
unless the trap handler explicitly reenables instruction breakpointing by setting
HPSTATE.ibe to 1.

RED_state (red). When HPSTATE.red is set to 1, the virtual processor is
operating in RED_st at e (Reset, Error, and Debug state). See RED_st at e on page
441. The virtual processor sets HPSTATE.red when any hardware reset occurs.
HPSTATE.red is also set to 1 when a trap is taken while TL = (MAXTL — 1). Software
can reliably exit RED_st at e by one of two methods:

1. Execute a DONE or RETRY instruction, which restores the stacked copy of
HPSTATE and clears HPSTATE.red if it was 0 in the stacked copy.
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5.7.2

2. Write a 0 to HPSTATE.red with a WRHPR instruction.
Programming | Software should not write 0 to HPSTATE.red in the delay slot of
Note | a DCTI (e.g. JMPL instruction). Exiting RED_st at e using a
DONE or RETRY instruction avoids this problem entirely.

Programming | HPSTATE.hpriv = 0 and HPSTATE.red = 1 is an undefined
Note | operational state. Therefore, care should be taken never to write
that combination of values to HPSTATE.

Hyperprivileged mode (hpriv). When HPSTATE. hpriv = 1, the virtual processor
is operating in hyperprivileged mode and ignores PSTATE.priv.

When HPSTATE.hpriv = 0, the processor is operating in privileged or nonprivileged
mode, as determined by PSTATE.priv.

See the Programming Note on page 373, recommending that a WRHPR instruction
that changes HPSTATE.priv never be executed in the delay slot of a DCTI
instruction.

Trap Level Zero trap enable (tlz). When HPSTATE.tlz = 0, generation of
trap_level_zero exceptions is disabled. When all three of the following conditions
exist, a trap_level_zero exception is generated:

= HPSTATE.tlz = 1 (generation of trap_level_zero is enabled)

= the virtual processor is in nonprivileged or privileged mode (HPSTATE.hpriv = 0)
= the trap level (TL) register’s value is zero (TL = 0)

Programming | The purpose of trap_level_zero is to improve efficiency when

Note | descheduling a virtual processor. When a descheduling event
occurs and the virtual processor is executing in privileged mode
at TL > 0, hyperprivileged software can choose to enable the
trap_level_zero exception (set HPSTATE.tlz ~ 1) and return to
privileged mode, enabling privileged software to complete its
TL > 0 processing. When privileged code returns to TL = 0, this
exception enables the hyperprivileged code to regain control
and deschedule the virtual processor with low overhead.

Hyperprivileged Trap State (HTSTATE) Register
(HPR 1)

The Hyperprivileged Trap State register (HTSTATE; FIGURE 5-38) contains the
hyperprivileged state from the previous trap level, comprising the contents of the
HPSTATE register from the previous trap level. There are MAXTL instances of the
HTSTATE register, but only one is accessible at a time. The current value in the TL
register determines which instance of HTSTATE is accessible.
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HTSTATE,"
HTSTATE,!

HTSTATE;"

HTSTATE,pur

5.7.3

— HPSTATE from TL =0

— HPSTATE from TL =1

— HPSTATE from TL =2

HPSTATE from TL =MAXTL -1

63 1110 0

FIGURE 5-38 Hyperprivileged Trap State Register

An attempt to read or write the HTSTATE register when TL = 0 causes an
illegal_instruction exception.

After a power-on reset the contents of HTSTATE[1] through HTSTATE[MAXTL] are
undefined. During normal operation the value of HTSTATE[n], when # is greater
than the current trap level (n > TL), is undefined.

TABLE 5-24 lists the events that cause HTSTATE to be read or written.

TABLE 5-24 Events that involve HTSTATE, when executing with TL = .

Event Effect

Trap HTSTATE[#n + 1]{10:0} — HPSTATE
DONE instruction HPSTATE ~ HTSTATE[#]{10:0}
RETRY instruction HPSTATE ~ HTSTATE[#]{10:0}
RDHPR (HTSTATE) R[rd] « HTSTATE[xn]

WRHPR (HTSTATE) HTSTATE[n] ~ value

Power-on reset (POR) All HTSTATE values are left undefined

Hyperprivileged Interrupt Pending (HINTPH)
Register (HPR 3)

The hyperprivileged HINTP register provides a mechanism for hyperprivileged
software to determine that an hstick_match interrupt is pending while PSTATE.ie =0
and to clear the interrupt without having to first set PSTATE.ie = 1 and take a
disrupting trap.

When HINTP.hsp =1, a match between STICK and HSTICK_CMPR has occurred
with the match enabled (see System Tick Compare (STICK_CMPRP) Register (ASR 25)
on page 84), causing an hstick_match exception to be generated.
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HINTPH

5.7.4

HTBAH

5.7.5

When HINTP.hsp = 0, no interrupt is pending due to a match between STICK and
HSTICK_CMPR. An interrupt might have existed earlier but was cleared by
software.

The format of the HINTP register is illustrated in FIGURE 5-39.

RW

— hsp

63

1 0
FIGURE 5-39 Hyperprivileged Interrupt Pending (HINTP) Register Format

Hyperprivileged Trap Base Address (HTBAM)
Register (HPR 5)

The Hyperprivileged Trap Base Address register (HTBA), shown in FIGURE 5-40,
provides the most significant 50 bits (bits 63:14) of the physical address used to

select the trap vector for a trap that is to be serviced in hyperprivileged mode. The
least significant 14 bits of HTBA always read as zero, and writes to them are ignored.

RW R

htba_high50 00 0000 0000 0000

63 14 13 0
FIGURE 5-40 Hyperprivileged Trap Base Address Register

Details on how the full address for a trap vector is generated, using HTBA and other
state, are provided in Trap-Table Entry Address to Hyperprivileged Mode on page 454.

IMPL. DEP. #406-S10: It is implementation dependent whether all 50 bits of
HTBA{63:14} are implemented or if only bits n-1:14 are implemented. If the latter,
writes to bits 63:n are ignored and when HTBA is read, bits 63:n read as sign-
extended copies of the most significant implemented bit, HTBA{n - 1}.

See Chapter 12, Traps, for more details on trap vectors.

Hyperprivileged Implementation Version
(HVERY) Register (HPR 6)

The Hyperprivileged Implementation Version register, shown in FIGURE 5-41,
specifies the fixed parameters pertaining to a particular processor implementation
and mask set. The HVER register is read-only, readable by the RDHPR instruction in
hyperprivileged mode.
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R R R R R R
HVERH manuf impl mask — | maxgl maxtl | — maxwinl

63 48 47 32 31 2423 1918 16 15 87 54 0
FIGURE 5-41 Hyperprivileged Implementation Version Register

IMPL. DEP. #104-V9: HVER.manuf contains a 16-bit manufacturer code. This field is
optional and if not present shall read as 0. HYER.manuf may indicate the original
supplier of a second-sourced processor. It is intended that the contents of
HVER.manuf track the JEDEC semiconductor manufacturer code as closely as
possible. If the manufacturer does not have a JEDEC semiconductor manufacturer
code, SPARC International will assign a value for HVER.manuf.

IMPL. DEP. #13-V8: HVER.impl uniquely identifies an implementation or class of
software-compatible implementations of the architecture. Values FFF0;,—FFFF;4 are
reserved and are not available for assignment.

HVER.mask specifies the current mask set revision and is chosen by the
implementor. It generally increases numerically with successive releases of the
processor but does not necessarily increase by 1 for consecutive releases.

Implementation | Conventionally, this field is die-specific, with bits 31:28
Note | indicating the major mask revision number and bits 27:24
indicating the minor mask revision number.

HVER.maxg! contains the maximum number of levels of global register sets
supported by an implementation (impl. dep. #401-510), that is, MAXGL, the maximum
value that the GL register may contain.

HVER.maxtl contains the maximum number of trap levels supported by an
implementation (impl. dep. #101-V9-CS10), that is, MAXTL, the maximum value of the
contents of the TL register.

HVER.maxwin contains the maximum index number available for use as a valid
CWP value in an implementation; that is, HVER.maxwin contains the value
N_REG_WINDOWS — 1 (impl. dep. #2-V8).

SPARC V9 | The SPARC V9 VER register was replaced in the UltraSPARC

Compatibility | Architecture by the hyperprivileged HVER register.
Note
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5.7.6

Hyperprivileged System Tick Compare
(HSTICK_CMPR™) Register (HPR 31)

The Hyperprivileged System Tick Compare (HSTICK_CMPR) register allows
hyperprivileged software to cause an hstick_match interrupt when the STICK
register reaches a specified value while HSTICK_CMPR.int_dis = 0. While executing
in hyperprivileged mode and PSTATE.ie = 0, the interrupt is masked.

The Hyperprivileged System Tick Compare Register is illustrated in FIGURE 5-42.

RW RW

HSTICK_CMPR" | int_dis hstick_cmpr

63 62 0
FIGURE 5-42 HSTICK_CMPR Register

The fields of HSTICK_CMPR are described in TABLE 5-25.
TABLE 5-25 Bit Description of HSTICK_CMPR Register

Bit(s) Field Name Description

63 int_dis Interrupt Disable. If int_dis = 1, hstick_match interrupts are
disabled; if 0, they are enabled (may occur).

62:0 hstick_cmpr Hyperprivileged System Tick Compare Field. When
HSTICK_CMPR.int_dis = 0 and the value in
HSTICK_CMPR hstick_cmpr exactly matches the value in
STICK.counter, HINTP.hsp is set to 1. After that, if HINTP.hsp
remains set to 1, the next time that hyperprivileged interrupts are
unmasked (HPSTATE.hpriv = 0 or PSTATE.ie = 1), an hstick_match
exception will occur.

After a power-on reset trap, the int_dis bit is set to 1 (disabling Hyperprivileged
System Tick Compare interrupts), and the hstick_cmpr field is undefined.
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CHAPTER 6

Instruction Set Overview

Instructions are fetched by the virtual processor from memory and are executed,
annulled, or trapped. Instructions are encoded in 4 major formats and partitioned
into 11 general categories. Instructions are described in the following sections:

= Instruction Execution on page 111.
= Instruction Formats on page 112.
= Instruction Categories on page 113.

Instruction Execution

The instruction at the memory location specified by the program counter is fetched
and then executed. Instruction execution may change program-visible virtual
processor and/or memory state. As a side effect of its execution, new values are
assigned to the program counter (PC) and the next program counter (NPC).

An instruction may generate an exception if it encounters some condition that makes
it impossible to complete normal execution. Such an exception may in turn generate
a precise trap. Other events may also cause traps: an exception caused by a previous
instruction (a deferred trap), an interrupt or asynchronous error (a disrupting trap),
or a reset request (a reset trap). If a trap occurs, control is vectored into a trap table.
See Chapter 12, Traps, for a detailed description of exception and trap processing.

If a trap does not occur and the instruction is not a control transfer, the next program
counter is copied into the PC, and the NPC is incremented by 4 (ignoring arithmetic
overflow if any). There are two types of control-transfer instructions (CTIs): delayed
and immediate. For a delayed CTI, at the end of the execution of the instruction,
NPC is copied to into the PC and the target address is copied into NPC. For an
immediate CTI, at the end of execution, the target is copied to PC and target + 4 is
copied to NPC. In the SPARC instruction set, many CTIs do not transfer control until
after a delay of one instruction, hence the term “delayed CTI” (DCTI). Thus, the two
program counters provide for a delayed-branch execution model.

111



For each instruction access and each normal data access, an 8-bit address space
identifier (ASI) is appended to the 64-bit memory address. Load/store alternate
instructions (see Address Space Identifiers (ASIs) on page 120) can provide an arbitrary
ASI with their data addresses or can use the ASI value currently contained in the
ASI register.

6.2 Instruction Formats

Instructions are encoded in four major 32-bit formats and several minor formats, as
shown in FIGURE 6-1. For detailed formats for specific instructions, see individual
instruction descriptions in the Instructions chapter.

op = 00,: SETHI and Branches

00 rd op2 imm22
00 |a|l cond op2 disp22
00 [a| cond op2 |cclecl] p disp19
00 |a|Of rcond op2 |di6hi| p rsl d16lo
31 302928 27 2524 22 2120 19 18 14 13 0
op = 01,: CALL
01 disp30
31 3029 0

op = 10, or 11,: Arithmetic, Logical, Moves, Tcc, Loads, Stores, Prefetch, and Misc

1x rd op3 rsl i=0j imm_asi rs2
1x rd op3 rsl i=1] simm13
31 3029 25 24 19 18 14 13 12 5 4 0

FIGURE 6-1 Summary of Instruction Formats
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6.3

6.3.1

Instruction Categories

UltraSPARC Architecture instructions can be grouped into the following categories:

= Memory access

= Memory synchronization

= Integer arithmetic

= Control transfer (CTI)

= Conditional moves

= Register window management
= State register access

= Privileged register access

= Floating-point operate

= Implementation dependent
= Reserved

These categories are described in the following subsections.

Memory Access Instructions

Load, store, load-store, and PREFETCH instructions are the only instructions that
access memory. All of the memory access instructions except CASA, CASXA, and
Partial Store use either two R registers or an R register and simm13 to calculate a 64-
bit byte memory address. For example, Compare and Swap uses a single R register
to specify a 64-bit byte memory address. To this 64-bit address, an ASI is appended
that encodes address space information.

The destination field of a memory reference instruction specifies the R or F
register(s) that supply the data for a store or that receive the data from a load or
LDSTUB. For SWAP, the destination register identifies the R register to be
exchanged atomically with the calculated memory location. For Compare and Swap,
an R register is specified, the value of which is compared with the value in memory
at the computed address. If the values are equal, then the destination field specifies
the R register that is to be exchanged atomically with the addressed memory
location. If the values are unequal, then the destination field specifies the R register
that is to receive the value at the addressed memory location; in this case, the
addressed memory location remains unchanged. The LDFSR/LDXFSR and the
STFSR/STXEFSR are special load and store instructions that load or store the floating-
point status instead of acting on an R or F register.

The destination field of a PREFETCH instruction (fcn) is used to encode the type of
the prefetch.

CHAPTER 6 ¢ Instruction Set Overview 113



Memory is byte (8-bit) addressable. Integer load and store instructions support byte,
halfword (2 bytes), word (4 bytes), and doubleword/extended-word (8 bytes)
accesses. Floating-point load and store instructions support word, doubleword, and
quadword memory accesses. LDSTUB accesses bytes, SWAP accesses words, CASA
accesses words, and CASXA accesses doublewords. The LDTXA (load twin-
extended-word) instruction accesses a quadword (16 bytes) in memory. Block loads
and stores access 64-byte aligned data. PREFETCH accesses at least 64 bytes.

Programming | For some instructions, by using simm13, any location in the
Note | lowest or highest 4 Kbytes of an address space can be accessed
without using a register to hold part of the address.

6.3.1.1 Memory Alignment Restrictions

A halfword access must be aligned on a 2-byte boundary, a word access (including
an instruction fetch) must be aligned on a 4-byte boundary, an extended-word (LDX,
LDXA, STX, STXA) or integer twin word (LDTW, LDTWA, STTW, STTWA ) access
must be aligned on an 8-byte boundary,an integer twin-extended-word (LDTXA)
access must be aligned on a 16-byte boundary, and a Block Load (LDBLOCKEF) or
Store (STBLOCKF) access must be aligned on a 64-byte boundary.

A floating-point doubleword access (LDDF, LDDFA, STDF, STDFA) should be
aligned on an 8-byte boundary, but is only required to be aligned on a word (4-byte)
boundary. A floating-point doubleword access to an address which is 4-byte aligned
but not 8-byte aligned may result in less efficient and nonatomic access (causes a
trap and is emulated in software (impl. dep. #109-V9-Cs10)), so 8-byte alignment is
recommended.

A floating-point quadword access (LDQF, LDQFA, STQF, STQFA) should be aligned
on a 16-byte boundary, but is only required to be aligned on a word (4-byte)
boundary. A floating-point quadword access to an address which is 4-byte or 8-byte
aligned but not 16-byte aligned may result in less efficient and nonatomic access
(causes a trap and is emulated in software (impl. dep. #111-V9-Cs10)), so 16-byte
alignment is recommended.

An improperly aligned address in a load, store, or load-store instruction causes a
mem_address_not_aligned exception to occur, with these exceptions:

= An LDDF or LDDFA instruction accessing an address that is word aligned but not
doubleword aligned may cause an LDDF_mem_address_not_aligned exception
(impl. dep. #109-V9-Cs10).

= An STDF or STDFA instruction accessing an address that is word aligned but not
doubleword aligned may cause an STDF_mem_address_not_aligned exception
(impl. dep. #110-V9-Cs10).
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= An LDQF or LDQFA instruction accessing an address that is word aligned but not
quadword aligned may cause an LDQF_mem_address_not_aligned exception
(impl. dep. #111-V9-Cs10a).

Implementation | Although the architecture provides for the
Note | LDQF_mem_address_not_aligned exception,UltraSPARC
Architecture 2005 implementations do not currently generate it.

= An STQF or STQFA instruction accessing an address that is word aligned but not
quadword aligned may cause an STQF_mem_address_not_aligned exception
(impl. dep. #112-V9-Cs10a).

Implementation | Although the architecture provides for the
Note | STQF_mem_address_not_aligned exception, UltraSPARC
Architecture 2005 implementations do not currently generate it.

6.3.1.2 Addressing Conventions

An UltraSPARC Architecture virtual processor uses big-endian byte order for all
instruction accesses and, by default, for data accesses. It is possible to access data in
little-endian format by using selected ASIs. It is also possible to change the default
byte order for implicit data accesses. See Processor State ( PSTATEP) Register (PR 6) on
page 94 for more information.!

Big-endian Addressing Convention. Within a multiple-byte integer, the byte
with the smallest address is the most significant; a byte’s significance decreases as its
address increases. The big-endian addressing conventions are described in TABLE 6-1
and illustrated in FIGURE 6-2.

TABLE6-1  Big-endian Addressing Conventions

Term Definition

byte A load/store byte instruction accesses the addressed byte in both big- and
little-endian modes.

halfword For a load/store halfword instruction, two bytes are accessed. The most
significant byte (bits 15-8) is accessed at the address specified in the
instruction; the least significant byte (bits 7-0) is accessed at the
address + 1.

1. Readers interested in more background information on big- vs. little-endian can also refer to Cohen, D., “On
Holy Wars and a Plea for Peace,” Computer 14:10 (October 1981), pp. 48-54.
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TABLE 6-1  Big-endian Addressing Conventions

Term Definition

word For a load/store word instruction, four bytes are accessed. The most
significant byte (bits 31-24) is accessed at the address specified in the
instruction; the least significant byte (bits 7-0) is accessed at the
address + 3.

doubleword or For a load/store extended or floating-point load/store double instruction,

extended word eight bytes are accessed. The most significant byte (bits 63:56) is accessed
at the address specified in the instruction; the least significant byte (bits
7:0) is accessed at the address + 7.
For the deprecated integer load/store twin word instructions (LDTW,
LDTWA+, STTW, STTWA), two big-endian words are accessed. The word
at the address specified in the instruction corresponds to the even register
specified in the instruction; the word at address + 4 corresponds to the

following odd-numbered register.
Note that the LDTXA instruction, which is not an LDTWA operation but does share
LDTWA'’s opcode, is not deprecated.

quadword For a load/store quadword instruction, 16 bytes are accessed. The most
significant byte (bits 127-120) is accessed at the address specified in the
instruction; the least significant byte (bits 7-0) is accessed at the
address + 15.

116 UltraSPARC Architecture 2005 « Draft D0.8.7, 27 Mar 2006



Byte

Halfword

Word

Doubleword / Address{ 2:0}
Extended word

Quadword

Address

7 0
Address{ 0} = 0 1

15 8|7 0
Address{ 1:0} = 00 01 10 11

31 24|23 16|15 8|7 0

= 000 001 010 011

63 56 | 55 48|47 40|39 32
Address{ 2;0} = 100 101 110 111

31 24|23 16|15 8|7 0
Address{ 3:0} = 0000 0001 0010 0011

127 120|119 112{111 104 (103 96
Address{ 3:0} = 0100 0101 0110 0111

95 88|87 80|79 72|71 64
Address{ 3:0} = 1000 1001 1010 1011

63 56 | 55 48|47 40|39 32
Address{ 3:0} = 1100 1101 1110 1111

31 24|23 16|15 8|7 0

FIGURE 6-2 Big-endian Addressing Conventions
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Little-endian Addressing Convention. Within a multiple-byte integer, the byte

with the smallest address is the least significant; a byte’s significance increases as its
address increases. The little-endian addressing conventions are defined in TABLE 6-2
and illustrated in FIGURE 6-3.

TABLE6-2  Little-endian Addressing Convention

Term Definition

byte A load/store byte instruction accesses the addressed byte in both big-
and little-endian modes.

halfword For a load/store halfword instruction, two bytes are accessed. The least
significant byte (bits 7-0) is accessed at the address specified in the
instruction; the most significant byte (bits 15-8) is accessed at the
address + 1.

word For a load/store word instruction, four bytes are accessed. The least
significant byte (bits 7-0) is accessed at the address specified in the
instruction; the most significant byte (bits 31-24) is accessed at the
address + 3.

doubleword or  For a load/store extended or floating-point load/store double

extended word instruction, eight bytes are accessed. The least significant byte (bits 7-0)
is accessed at the address specified in the instruction; the most significant
byte (bits 63-56) is accessed at the address + 7.

For the deprecated integer load/store twin word instructions (LDTW,
LDTWA*, STTW, STTWA), two little-endian words are accessed. The
word at the address specified in the instruction corresponds to the even
register in the instruction; the word at the address specified in the
instruction +4 corresponds to the following odd-numbered register. With
respect to little-endian memory, an LDTW/LDTWA (STTW/STTWA)
instruction behaves as if it is composed of two 32-bit loads (stores), each
of which is byte-swapped independently before being written into each
destination register (memory word).

+Note that the LDTXA instruction, which is not an LDTWA operation but does share
LDTWA'’s opcode, is not deprecated.

quadword For a load/store quadword instruction, 16 bytes are accessed. The least
significant byte (bits 7-0) is accessed at the address specified in the
instruction; the most significant byte (bits 127-120) is accessed at the
address + 15.
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Byte

Halfword

Word

Doubleword /
Extended word

Quadword

Address

Address{0} =

Address{1:0} =

Address{2:0} =

Address{2:0} =

Address{3:0} =

Address{3:0} =

Address{3:0} =

Address{3:0} =

7 0
0 1

7 0] 15 8
00 01 10 11

7 0] 15 8| 23 16|31 24
000 001 010 011

7 0] 15 8| 23 16|31 24
100 101 110 111

39 32| 47 40| 55 48|63 56
0000 0001 0010 0011

7 0] 15 8| 23 16|31 24
0100 0101 0110 0111

39 32| 47 40| 55 48|63 56
1000 1001 1010 1011

71 64|79 72| 87 80|95 88
1100 1101 1110 1111

103 96| 111 104| 119 112|127 120

FIGURE 6-3 Little-endian Addressing Conventions

CHAPTER 6 ¢ Instruction Set Overview 119



6.3.1.3 Address Space Identifiers (ASIs)

Alternate-space load, store, and load-store instructions specify an explicit ASI to use
for their data access; when i = 0, the explicit ASI is provided in the instruction’s

imm_asi field, and when i =1, it is provided in the ASI register.

Non-alternate-space load, store, and load-store instructions use an implicit ASI value
that depends on the current trap level (TL) and the value of PSTATE.cle. Instruction
fetches use an implicit ASI that depends only on the current trap level. The cases are
enumerated in TABLE 6-3. Note that in hyperprivileged mode, all accesses are performed

using physical addresses, so there is no implicit ASI in hyperprivileged mode.

TABLE 6-3  ASIs Used for Data Accesses and Instruction Fetches in Nonprivileged and

Privileged Modes

Access Type TL PSTATE.cle  ASI Used
Instruction Fetch = any ASI _PRI MARY

>0 any ASI _NUCLEUS*
Non-alternate-space =0 0 ASI _PRI VARY
Load, Store, or 1 AS| PRI MARY_LI TTLE
Load-Store

>0 0 ASI _NUCLEUS*

1 ASI _NUCLEUS_LI TTLE*

Alternate-space Load, any any
Store, or Load-Store

ASI explicitly specified in the instruction
(subject to privilege-level restrictions)

*On some early SPARC V9 implementations, ASI _PRI MARY may have been used for this case.
**On some early SPARC V9 implementations, ASI _PRI MARY_LI TTLE may have been used for this case.
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See also Memory Addressing and Alternate Address Spaces on page 389.

ASIs 0014 through 7F;¢ are restricted; only software with sufficient privilege is
allowed to access them. ASIs 0014-2F;¢ are accessible by both privileged and
hyperprivileged software, while ASIs 3014-7Fq4 are accessible only by
hyperprivileged software. An attempt to access a restricted ASI by insufficiently-
privileged software results in a privileged_action exception (impl. dep #103-V9-
Ms10(6)). ASIs 8014 through FFy4 are unrestricted; software is allowed to access them

regardless of the virtual processor’s privilege mode, as summarized in TABLE 6-4.
TABLE 6-4  Allowed Accesses to ASIs

Processor Mode
(HPSTATE.hpriv,

Value Access Type PSTATE.priv) Result of ASI Access
0014—2F1¢ Restricted Nonprivileged (0,0) privileged_action exception
(Privileged) Privileged (0,1) Valid access
Hyperprivileged (1,x)  Valid access
3016—7F1¢ Restricted Nonprivileged (0,0) privileged_action exception
(Hyperprivileged) Privileged (0,1) data_access_exception exception

Hyperprivileged (1,x)  Valid access

8014—FF1¢ Unrestricted Nonprivileged (0,0) Valid access
Privileged (0,1) Valid access
Hyperprivileged (1,x)  Valid access

IMPL. DEP. #29-V8: Some UltraSPARC Architecture 2005 ASIs are implementation
dependent. See TABLE 10-1 on page 409 for details.

V9 Compatibility
Note

In SPARC V9, many ASIs were defined to be implementation
dependent.

An UltraSPARC Architecture implementation decodes all 8 bits of ASI specifiers
(impl. dep. #30-V8-Cu3).

V9 Compatibility
Note

In SPARC V9, an implementation could choose to decode only a
subset of the 8-bit ASI specifier.

6.3.1.4 Separate Instruction Memory

A SPARC V9 implementation may choose to access instruction and data through the
same address space and use hardware to keep data and instruction memory
consistent at all times. It may also choose to overload independent address spaces
for data and instructions and allow them to become inconsistent when data writes
are made to addresses shared with the instruction space.
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6.3.2

6.3.3

Programming | A SPARC V9 program containing self-modifying code should
Note | use FLUSH instruction(s) after executing stores to modify
instruction memory and before executing the modified
instruction(s), to ensure the consistency of program execution.

Memory Synchronization Instructions

Two forms of memory barrier (MEMBAR) instructions allow programs to manage
the order and completion of memory references. Ordering MEMBARs induce a
partial ordering between sets of loads and stores and future loads and stores.
Sequencing MEMBARs exert explicit control over completion of loads and stores (or
other instructions). Both barrier forms are encoded in a single instruction, with
subfunctions bit-encoded in cmask and mmask fields.

Integer Arithmetic and Logical Instructions

The integer arithmetic and logical instructions generally compute a result that is a
function of two source operands and either write the result in a third (destination)
register R[rd] or discard it. The first source operand is R[rs1]. The second source
operand depends on the i bit in the instruction; if i = 0, then the second operand is
R[rs2]; if i = 1, then the second operand is the constant Simm10, simm11, or simm13
from the instruction itself, sign-extended to 64 bits.

Note | The value of R[0] always reads as zero, and writes to it are
ignored.

6.3.3.1 Setting Condition Codes

Most integer arithmetic instructions have two versions: one sets the integer
condition codes (icc and xcc) as a side effect; the other does not affect the condition
codes. A special comparison instruction for integer values is not needed since it is
easily synthesized with the “subtract and set condition codes” (SUBcc) instruction.
See Synthetic Instructions on page 598 for details.

6.3.3.2  Shift Instructions

Shift instructions shift an R register left or right by a constant or variable amount.
None of the shift instructions change the condition codes.
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6.3.4

6.3.3.3  Set High 22 Bits of Low Word

The “set high 22 bits of low word of an R register” instruction (SETHI) writes a 22-
bit constant from the instruction into bits 31 through 10 of the destination register. It
clears the low-order 10 bits and high-order 32 bits, and it does not affect the
condition codes. Its primary use is to construct constants in registers.

6.3.3.4 Integer Multiply/Divide

The integer multiply instruction performs a 64 x 64 — 64-bit operation; the integer
divide instructions perform 64 + 64 — 64-bit operations. For compatibility with
SPARC V8 processors, 32 x 32 — 64-bit multiply instructions, 64 + 32 - 32-bit divide
instructions, and the Multiply Step instruction are provided. Division by zero causes
a division_by_zero exception.

6.3.3.5 Tagged Add/Subtract

The tagged add/subtract instructions assume tagged-format data, in which the tag is
the two low-order bits of each operand. If either of the two operands has a nonzero
tag or if 32-bit arithmetic overflow occurs, tag overflow is detected. If tag overflow
occurs, then TADDcc and TSUBcc set the CCR.icc.v bit; if 64-bit arithmetic overflow
occurs, then they set the CCR.xcc.v bit.

The trapping versions (TADDccTV, TSUBccTV) of these instructions are deprecated.
See Tagged Add on page 355 and Tagged Subtract on page 361 for details.

Control-Transfer Instructions (CTIs)

The basic control-transfer instruction types are as follows:

= Conditional branch (Bicc, BPcc, BPr, FBfcc, FBPfcc)
Unconditional branch

Call and link (CALL)

Jump and link (JMPL, RETURN)

Return from trap (DONE, RETRY)

Trap (Tcc)

A control-transfer instruction functions by changing the value of the next program
counter (NPC) or by changing the value of both the program counter (PC) and the
next program counter (NPC). When only the next program counter, NPC, is changed,
the effect of the transfer of control is delayed by one instruction. Most control
transfers are of the delayed variety. The instruction following a delayed control-
transfer instruction is said to be in the delay slot of the control-transfer instruction.
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Some control transfer instructions (branches) can optionally annul, that is, not
execute, the instruction in the delay slot, depending upon whether the transfer is
taken or not taken. Annulled instructions have no effect upon the program-visible
state, nor can they cause a trap.

Programming
Note

The annul bit increases the likelihood that a compiler can find a
useful instruction to fill the delay slot after a branch, thereby
reducing the number of instructions executed by a program. For
example, the annul bit can be used to move an instruction from
within a loop to fill the delay slot of the branch that closes the
loop.

Likewise, the annul bit can be used to move an instruction from
either the “else” or “then” branch of an “if-then-else” program
block to the delay slot of the branch that selects between them.
Since a full set of conditions is provided, a compiler can arrange
the code (possibly reversing the sense of the condition) so that
an instruction from either the “else” branch or the “then” branch
can be moved to the delay slot. Use of annulled branches
provided some benefit in older, single-issue SPARC
implementations. On an UltraSPARC Architecture
implementation, the only benefit of annulled branches might be
a slight reduction in code size. Therefore, the use of annulled
branch instructions is no longer encouraged.

TABLE 6-5 defines the value of the program counter and the value of the next
program counter after execution of each instruction. Conditional branches have two
forms: branches that test a condition (including branch-on-register), represented in
the table by Bcc, and branches that are unconditional, that is, always or never taken,
represented in the table by BA and BN, respectively. The effect of an annulled branch
is shown in the table through explicit transfers of control, rather than by fetching
and annulling the instruction.

TABLE 6-5 Control-Transfer Characteristics

Instruction Group Address Form Delayed Taken Annul Bit New PC New NPC
Non-CTIs — — — — NPC NPC + 4
Bec PC-relative Yes Yes 0 NPC EA

Bec PC-relative Yes No 0 NPC NPC + 4
Bcc PC-relative Yes Yes 1 NPC EA

Bcc PC-relative Yes No 1 NPC + 4 NPC + 8
BA PC-relative Yes Yes 0 NPC EA

BA PC-relative No Yes 1 EA EA +4
BN PC-relative Yes No 0 NPC NPC +4
BN PC-relative Yes No 1 NPC + 4 NPC + 8
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TABLE 6-5 Control-Transfer Characteristics (Continued)

Instruction Group Address Form Delayed Taken Annul Bit New PC New NPC
CALL PC-relative Yes — — NPC EA

JMPL, RETURN Register-indirect Yes — — NPC EA

DONE Trap state No — — TNPC[TL] TNPC[TL] + 4
RETRY Trap state No — — TPC[TL] TNPC[TL]
Tec Trap vector No Yes — EA EA +4

Tec Trap vector No No — NPC NPC + 4

The effective address, EA in TABLE 6-5, specifies the target of the control-transfer
instruction. The effective address is computed in different ways, depending on the
particular instruction.

= PC-relative effective address — A PC-relative effective address is computed by
sign extending the instruction’s immediate field to 64-bits, left-shifting the word
displacement by two bits to create a byte displacement, and adding the result to
the contents of the PC.

= Register-indirect effective address — A register-indirect effective address
computes its target address as either R[rs1] + R[rs2] if i = 0, or
R[rs1] + sign_ext(simm13) if i = 1.

= Trap vector effective address — A trap vector effective address first computes the
software trap number as the least significant 7 or 8 bits of R[rs1] + R[rs2] if
i =0, or as the least significant 7 or 8 bits of R[rs1] + imm_trap# if i = 1. Whether
7 or 8 bits is used depends on the privilege level — 7 bits are used in
nonprivileged mode and 8 bits are used in privileged and hyperprivileged modes.
The trap level, TL, is incremented. The hardware trap type is computed as 256 +
the software trap number and stored in TT[TL]. The effective address is generated
by combining the contents of the TBA register with the trap type and other data;
see Trap Processing on page 470 for details.

= Trap state effective address — A trap state effective address is not computed but
is taken directly from either TPC[TL] or TNPCJ[TL].

SPARC V8 | The SPARC V8 architecture specified that the delay instruction
Compatibility | was always fetched, even if annulled, and that an annulled
Note | instruction could not cause any traps. The SPARC V9
architecture does not require the delay instruction to be fetched
if it is annulled.

6.3.4.1 Conditional Branches

A conditional branch transfers control if the specified condition is TRUE. If the annul
bit is 0, the instruction in the delay slot is always executed. If the annul bit is 1, the
instruction in the delay slot is executed only when the conditional branch is taken.
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Note | The annuling behavior of a taken conditional branch is different
from that of an unconditional branch.

6.3.4.2 Unconditional Branches

An unconditional branch transfers control unconditionally if its specified condition
is “always”; it never transfers control if its specified condition is “never.” If the
annul bit is 0, then the instruction in the delay slot is always executed. If the annul
bit is 1, then the instruction in the delay slot is never executed.

Note | The annul behavior of an unconditional branch is different from
that of a taken conditional branch.

6.3.4.3 CALL and JMPL Instructions

The CALL instruction writes the contents of the PC, which points to the CALL
instruction itself, into R[15] (out register 7) and then causes a delayed transfer of
control to a PC-relative effective address. The value written into R[15] is visible to
the instruction in the delay slot.

The JMPL instruction writes the contents of the PC, which points to the JMPL
instruction itself, into R[rd] and then causes a register-indirect delayed transfer of
control to the address given by “R[rs1] + R[rs2]” or “R[rsl1] + a signed immediate
value.” The value written into R[rd] is visible to the instruction in the delay slot.

When PSTATE.am =1, the value of the high-order 32 bits transmitted to R[15] by
the CALL instruction or to R[rd] by the JMPL instruction is zero.

6.3.44 RETURN Instruction

The RETURN instruction is used to return from a trap handler executing in
nonprivileged mode. RETURN combines the control-transfer characteristics of a
JMPL instruction with R[0] specified as the destination register and the register-
window semantics of a RESTORE instruction.

6.3.45 DONE and RETRY Instructions

The DONE and RETRY instructions are used by privileged software to return from a
trap. These instructions restore the machine state to values saved in the TSTATE
register stack.

RETRY returns to the instruction that caused the trap in order to reexecute it. DONE
returns to the instruction pointed to by the value of NPC associated with the
instruction that caused the trap, that is, the next logical instruction in the program.
DONE presumes that the trap handler did whatever was requested by the program
and that execution should continue.
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6.3.5

6.3.4.6  Trap Instruction (Tcc)

The Tcc instruction initiates a trap if the condition specified by its cond field matches
the current state of the condition code register specified in its cc field; otherwise, it
executes as a NOP. If the trap is taken, it increments the TL register, computes a trap
type that is stored in TT[TL], and transfers to a computed address in a trap table
pointed to by a trap base address register.

A Tcc instruction can specify one of 256 software trap types (128 when in
nonprivileged mode). When a Tcc is taken, 256 plus the 7 (in nonprivileged mode) or
8 (in privileged or hyperprivileged mode) least significant bits of the Tcc’s second
source operand are written to TT[TL]. The only visible difference between a software
trap generated by a Tcc instruction and a hardware trap is the trap number in the TT
register. See Chapter 12, Traps, for more information.

Programming | Tcc can be used to implement breakpointing, tracing, and calls
Note | to privileged or hyperprivileged software. Tec can also be used
for runtime checks, such as out-of-range array index checks or

integer overflow checks.

6.3.4.7 DCTI Couples

A delayed control transfer instruction (DCTI) in the delay slot of another DCTT is
referred to as a “DCTI couple”. The use of DCTI couples is deprecated in the
UltraSPARC Architecture; no new software should place a DCTI in the delay slot of
another DCTI, as on future UltraSPARC Architecture implementations that construct
may execute either slowly or differently than the programmer assumes it will.

SPARC V8 and | The SPARC V8 architecture left behavior undefined for a DCTI
SPARC V9 | couple. The SPARC V9 architecture defined behavior in that
Compatibility | case, but as of UltraSPARC Architecture 2005, use of DCTI couples
Note | js deprecated.

Conditional Move Instructions

This subsection describes two groups of instructions that copy or move the contents
of any integer or floating-point register.

MOVcc and FMOVecc Instructions. The MOVcc and FMOVcc instructions copy
the contents of any integer or floating-point register to a destination integer or
floating-point register if a condition is satisfied. The condition to test is specified in
the instruction and may be any of the conditions allowed in conditional delayed
control-transfer instructions. This condition is tested against one of the six sets of
condition codes (icc, xcc, fceO, fcel, fec2, and fee3), as specified by the instruction.
For example:

f movdg % cc2, 9% 20, 9% 22
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moves the contents of the double-precision floating-point register % 20 to register
% 22 if floating-point condition code number 2 (fcc2) indicates a greater-than
relation (FSR.fcc2 = 2). If fcc2 does not indicate a greater-than relation

(FSR.fcc2 # 2), then the move is not performed.

The MOVcc and FMOVcc instructions can be used to eliminate some branches in
programs. In most implementations, branches will be more expensive than the
MOVcc or FMOVcc instructions. For example, the following C statement:

if (A>B) X =1; else X =0;

can be coded as

cnp %0, %2 ' (A>B)
or %90, 0, %3 ! set X =0
nmovg o%cec, 1, %3 ! overwite Xwith 1 if A>B

which eliminates the need for a branch.

MOVr and FMOVr Instructions. The MOVr and FMOVr instructions allow the
contents of any integer or floating-point register to be moved to a destination integer
or floating-point register if the contents of a register satisfy a specified condition.
The conditions to test are enumerated in TABLE 6-6.

TABLE6-6  MOVr and FMOVr Test Conditions

Condition Description

NZ Nonzero

Z Zero

GEZ Greater than or equal to zero
Lz Less than zero

LEZ Less than or equal to zero
GZ Greater than zero

Any of the integer registers (treated as a signed value) may be tested for one of the
conditions, and the result used to control the move. For example,

novr nz %2, %4, %6

moves integer register % 4 to integer register % 6 if integer register % 2 contains a
nonzero value.

MOVr and FMOVr can be used to eliminate some branches in programs or can
emulate multiple unsigned condition codes by using an integer register to hold the
result of a comparison.
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6.3.6

Register Window Management Instructions

This subsection describes the instructions that manage register windows in the
UltraSPARC Architecture. The privileged registers affected by these instructions are
described in Register-Window PR State Registers on page 85.

6.3.6.1 SAVE Instruction

The SAVE instruction allocates a new register window and saves the caller’s register
window by incrementing the CWP register.

If CANSAVE = 0, then execution of a SAVE instruction causes a window spill
exception, that is, one of the spill_n_<normal | other> exceptions.

If CANSAVE # 0 but the number of clean windows is zero, that is,
(CLEANWIN - CANRESTORE) = 0, then SAVE causes a clean_window exception.

If SAVE does not cause an exception, it performs an ADD operation, decrements
CANSAVE, and increments CANRESTORE. The source registers for the ADD
operation are from the old window (the one to which CWP pointed before the
SAVE), while the result is written into a register in the new window (the one to
which the incremented CWP points).

6.3.6.2 RESTORE Instruction

The RESTORE instruction restores the previous register window by decrementing
the CWP register.

If CANRESTORE = 0, execution of a RESTORE instruction causes a window fill
exception, that is, one of the fill_n_<normal | other> exceptions.

If RESTORE does not cause an exception, it performs an ADD operation, decrements
CANRESTORE, and increments CANSAVE. The source registers for the ADD are
from the old window (the one to which CWP pointed before the RESTORE), and the
result is written into a register in the new window (the one to which the
decremented CWP points).
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Programming | This note describes a common convention for use of register
Note | windows, SAVE, RESTORE, CALL, and JMPL instructions.

A procedure is invoked by executing a CALL (or a JMPL)
instruction. If the procedure requires a register window, it
executes a SAVE instruction in its prologue code. A routine that
does not allocate a register window of its own (possibly a leaf
procedure) should not modify any windowed registers except
out registers 0 through 6. This optimization, called “Leaf-
Procedure Optimization”, is routinely performed by SPARC
compilers.

A procedure that uses a register window returns by executing
both a RESTORE and a JMPL instruction. A procedure that has
not allocated a register window returns by executing a JMPL
only. The target address for the JMPL instruction is normally 8
plus the address saved by the calling instruction, that is, the
instruction after the instruction in the delay slot of the calling
instruction.

The SAVE and RESTORE instructions can be used to atomically
establish a new memory stack pointer in an R register and
switch to a new or previous register window.

6.3.6.3 SAVED Instruction

SAVED is a privileged instruction used by a spill trap handler to indicate that a
window spill has completed successfully. It increments CANSAVE and decrements
either OTHERWIN or CANRESTORE, depending on the conditions at the time
SAVED is executed.

See SAVED on page 315 for details.

6.3.6.4 RESTORED Instruction

RESTORED is a privileged instruction, used by a fill trap handler to indicate that a
window has been filled successfully. It increments CANRESTORE and decrements
either OTHERWIN or CANSAVE, depending on the conditions at the time
RESTORED is executed. RESTORED also manipulates CLEANWIN, which is used to
ensure that no address space’s data become visible to another address space through
windowed registers.

See RESTORED on page 307 for details.
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6.3.7

6.3.8

6.3.9

6.3.6.5 Flush Windows Instruction

The FLUSHW instruction flushes all of the register windows, except the current
window, by performing repetitive spill traps. The FLUSHW instruction causes a spill
trap if any register window (other than the current window) has valid contents. The
number of windows with valid contents is computed as:

N_REG_WINDOWS — 2 — CANSAVE

If this number is nonzero, the FLUSHW instruction causes a spill trap. Otherwise,
FLUSHW has no effect. If the spill trap handler exits with a RETRY instruction, the
FLUSHW instruction continues causing spill traps until all the register windows
except the current window have been flushed.

Ancillary State Register (ASR) Access

The read /write state register instructions access program-visible state and status
registers. These instructions read/write the state registers into/from R registers. A
read/write Ancillary State register instruction is privileged only if the accessed
register is privileged.

The supported RDasr and WRasr instructions are described in Ancillary State
Registers on page 70.

Privileged Register Access

The read /write privileged register instructions access state and status registers that
are visible only to privileged software. These instructions read/write privileged
registers into/from R registers. The read/write privileged register instructions are
privileged.

Floating-Point Operate (FPop) Instructions

Floating-point operate instructions (FPops) compute a result that is a function of one
or two source operands and place the result in one or more destination F registers,
with one exception: floating-point compare operations do not write to an F register
but update one of the fccn fields of the FSR instead.

The term “FPop” refers to instructions in the FPop1, and FPop2 opcode spaces. FPop
instructions do not include FBfcc instructions, loads and stores between memory
and the F registers, or non-floating-point operations that read or write F registers.

The FMOVcc instructions function for the floating-point registers as the MOVcc
instructions do for the integer registers. See MOVcc and FMOVcc Instructions on page
127.
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6.3.10

6.3.11

The FMOVr instructions function for the floating-point registers as the MOVr
instructions do for the integer registers. See MOVr and FMOVr Instructions on page
128.

If no floating-point unit is present or if PSTATE.pef = 0 or FPRS.fef = 0, then any
instruction, including an FPop instruction, that attempts to access an FPU register
generates an fp_disabled exception.

All FPop instructions clear the ftt field and set the cexc field unless they generate an
exception. Floating-point compare instructions also write one of the fccn fields. All
FPop instructions that can generate IEEE exceptions set the cexc and aexc fields
unless they generate an exception. FABS<s|d|q>, FMOV<s|d|q>,

FMOVcce<s|d I g>, FMOVr<s|dlg>, and FNEG<s|d|q> cannot generate IEEE
exceptions, so they clear cexc and leave aexc unchanged.

IMPL. DEP. #3-V8: An implementation may indicate that a floating-point instruction
did not produce a correct IEEE Std 754-1985 result by generating an
fp_exception_other exception with FSR.ftt = unfinished_FPop or

FSR.fit = unimplemented FPop. In this case, software running in a mode with
greater privileges must emulate any functionality not present in the hardware.

See ftt = 2 (unfinished_FPop) on page 65 to see which instructions can produce an
fp_exception_other exception (with FSR.ftt = unfinished_FPop). See ftt = 3
(unimplemented_FPop) on page 65 to see which instructions can produce an
fp_exception_other exception (with FSR.ftt = unimplemented_FPop).

Implementation-Dependent Instructions

The SPARC V9 architecture provided two instruction spaces that are entirely
implementation dependent: IMPDEP1 and IMPDEP?2.

In the UltraSPARC Architecture, the IMPDEP1 opcode space is used by VIS
instructions.

In the UltraSPARC Architecture, IMPDEP?2 is subdivided into IMPDEP2A and
IMPDEP2B. IMPDEP2A remains implementation dependent. The IMPDEP2B opcode
space is reserved for implementation of floating-point multiply-add /multiply-
subtract instructions.

Reserved Opcodes and Instruction Fields

If a conforming UltraSPARC Architecture 2005 implementation attempts to execute
an instruction bit pattern that is not specifically defined in this specification, it
behaves as follows:

= If the instruction bit pattern encodes an implementation-specific extension to the
instruction set, that extension is executed.
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= {r=1} If the instruction bit pattern does not encode an extension to the instruction
set, but would decode as a valid instruction if nonzero bits in reserved instruction
field(s) were ignored (read as 0):

= The recommended behavior is to generate an illegal_instruction exception (or,
for FPop, an fp_exception_other exception with FSR.ftt = 3
(unimplemented_FPop)).

= Alternatively, the implementation can ignore the nonzero reserved field bits
and execute the instruction as if those bits had been zero.

= {r=1} If the instruction bit pattern does not encode an extension to the instruction
set and would still not decode as a valid instruction if nonzero bits in reserved
instruction field(s) were ignored, then the instruction bit pattern is invalid and
causes an exception. Specifically, attempting to execute an FPop instruction (see
Floating-Point Operate on page 32) causes an fp_exception_other exception (with
FSR.ftt = unimplemented_FPop); attempting to execute any other invalid
instruction bit pattern causes an illegal_instruction exception.

Forward
Compatibility
Note

To further enhance backward (and forward) binary
compatibility, the next revision of the UltraSPARC Architecture
is expected to require an illegal_instruction exception to be
generated by any instruction bit pattern that encodes neither a
known UltraSPARC Architecture instruction nor an
implementation-specific extension instruction (including those
with nonzero bits in reserved instruction fields).

{r>1} See Appendix A, Opcode Maps, for an enumeration of the reserved instruction
bit patterns (opcodes).

Implementation
Note

Programming
Note

As described above, implementations are strongly encouraged,
but not strictly required, to trap on nonzero values in reserved
instruction fields.

For software portability, software (such as assemblers, static
compilers, and dynamic compilers) that generates SPARC
instructions must always generate zeroes in instruction fields
marked “reserved” (“—").
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CHAPTER 7

TTTTIITITIITIITIITIITIITITITIITIITITIITITIITITITIITITIITITIIIIIrS

/ / Note: This chapter is undergoing final review; please check 4
/ back later for a copy of UltraSPARC Architecture ;
/ 2005 containing the final version of this chapter. /

’IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIA

Instructions

UltraSPARC Architecture 2005 extends the standard SPARC V9 instruction set with
additional classes of instructions:

» Enhanced functionality:

Instructions for alignment (Align Address on page 147)

Array handling (Three-Dimensional Array Addressing on page 150)
Byte-permutation instructions ()

Edge handling (Edge Handling Instructions on pages 168 and 170)

Logical operations on floating-point registers (F Register Logical Operate (1
operand) on page 224)

Partitioned arithmetic (Fixed-point Partitioned Add on page 216 andFixed-point
Partitioned Subtract on page 221)

Pixel manipulation (FEXPAND on page 184, FPACK on page 210, and
FPMERGE on page 219)

= Efficient memory access

Partial store (Store Partial Floating-Point on page 341)
Short floating-point loads and stores (Store Short Floating-Point on page 344)
Block load and store (Block Load on page 245 and Block Store on page 328)

» Efficient interval arithmetic: SIAM (Set Interval Arithmetic Mode on page 319) and
all instructions that reference GSR.im

TABLE 7-2 provides a quick index of instructions, alphabetically by architectural
instruction name.

TABLE 7-3 summarizes the instruction set, listed within functional categories.
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Within these tables and throughout the rest of this chapter, and in Appendix A,
Opcode Maps, certain opcodes are marked with mnemonic superscripts. The
superscripts and their meanings are defined in TABLE 7-1.

TABLE7-1  Instruction Superscripts

Superscript Meaning

D Deprecated instruction

H Hyperprivileged instruction

N Nonportable instruction

P Privileged instruction

Pagr Privileged action if bit 7 of the referenced ASI is 0

Pasg Privileged instruction if the referenced ASR register is privileged
Prpt Privileged action if PSTATE.priv = 0 and (S)TICK.npt =1

Ppic Privileged action if PCR.priv =1
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TABLE 7-2 UltraSPARC Architecture 2005 Instruction Set - Alphabetical (1 of 2)

Page Instruction

146  ADD (ADDcc) 193  FMOV(s,d,q)cc 249 LDQF

146  ADDC (ADDCcc) 198 FEMOV(s,d,qR 252 LDQFAPas
147 ALIGNADDRESS{ LITTLE} 207 FMUL(s,d,q) 240 LDSB

148 ALLCLEAN 201 EMULS(SU,UL)x16 242 LDSBAPas
149 AND (ANDcc) 201 FEMULSx16 240 LDSH

150 ARRAY(8,16,32) 201 FMUL8Sx16(AU,AL) 242 LDSHAP»s
154  Bicc 201 FMULDS(SU,UL)x16 258 LDSHORTF
156 BMASK 227 ENANDs) 260 LDSTUB

157  BPcc 209 FNEG(s,d,q) 261 LDSTUBAP»s
160 BPr 227 FNOR({s} 240 LDSW

156 BSHUFFLE 225 FENOT(1,2){ s} 242  LDSWAPast
162 CALL 224 FONE(s) 263 LDTXAN

163 CASAPas 227  FORNOT(1,2){s} 266 LDTWP

163 CASXAPast 227  FOR({s} 268 LDTWAPD: Pasi
166 DONEF 210 FPACK(16,32, FIX) 260 LDUB

168 EDGE(8,16,32){L}cc 216 FPADD<16,32>[9] 242 LDUBAPas
170  EDGE(8,16,32){L}N 219 FPMERGE 240 LDUH

231 F(s,d,q)TO(s,d,q) 221 FPSUB<16,32>[S] 242 LDUHAP»s
229 F(s,d,q)TOi 207 FsMULd 240 LDUW

229 F(s,d,q)TOx 228  FSQRT(s,d,q) 242  LDUWAPs
171  FABS(s,d,q) 225 FSRC(1,2)(s} 240 LDX

172 FADD(s,d,q) 233 FSUB(s,d,q) 242  LDXAP»s

173 FALIGNDATA 227  FXNOR({s} 249 LDXFSR

227 FANDNOT(1,2)(s) 227  EXOR({s} 271 MEMBAR
227 FAND(s} 234 FxTO(s,d,q) 275 MOVcc

174  FBfecP 224  FZERO{s} 279  MOVr

176  FBPfcc 235 ILLTRAP 281 MULSccP
181 FCMP(s,d,q) 236 IMPDEP2A 283  MULX

178  FCMP*<16,32> 236  IMPDEP2B 284 NOP

181 FCMPE(s,d,q) 238 INVALW 285 NORMALW
183  FDIV(s,d,q) 239 JMPL 286  OR (ORcc)
207 FdMULq 245 LDBLOCKF 286  ORN (ORNcc)
184 FEXPAND 249 LDDF 287 OTHERW
185 FiTO(s,d,q) 252 LDDFAP»s 288 PDIST

186 FLUSH 249 LDF 289 POPC

190 FLUSHW 252  LDEAPast 291 PREFETCH
191 FMOV(s,d,q) 256 LDFSRP 291 PREFETCHAPss
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TABLE 7-2 UltraSPARC Architecture 2005 Instruction Set - Alphabetical (2 of 2)

Page Instruction

299 RDASI 332 STDF 372  WRPR"

299  RDasrlAs® 335 STDFAPAs 369 WRSOFTINT_CLRP
299 RDCCR 332 STF 369 WRSOFTINT_SET?
299 RDFPRS 335 STFAPast 369 WRSOFTINT?
299 RDGSR 339  STFSRP 369 WRSTICK_CMPR?
302 RDHPRH 323 STH 369 WRSTICKF

299 RDPC 324 STHAPast 369 WRTICK_CMPR?
299 RDPCRP 341 STPARTIALF 369 WRYP

299 RDPICPrc 332 STQF 377 XNOR (XNORcc)
303 RDPRP 335 STQFAP»s 377  XOR (XORcc)
299  RDSOFTINT? 344 STSHORTF

299 RDSTICK_CMPRP 346 STTWP

299  RDSTICKPre 348 STTWAD: Pasi

299 RDTICK_CMPR? 323 STW

299  RDTICK 324 STWAPas

307 RESTOREDY 323 STX

305 RESTOREP 324  STXAPas

309 RETRY? 332 STXFSR

311 RETURN 351 SUB (SUBcc)

315 SAVEDP 351 SUBC (SUBCcc)

313 SAVEF 353 SWAPAD: Pasi

364 SDIVP (SDIVccP) 352  SWAPP

283  SDIVX 355 TADDcc

317 SETHI 356 TADDccTVP

318 SHUTDOWNPT 358 Tec

319 SIAM 361 TSUBcc

320 SIRH 362 TSUBccTVP

321 SLL 364 UDIVP (UDIVccP)

321 SLLX 283  UDIVX

367 SMULP (SMULccP) 367 UMULP (UMULccP)

321 SRA 369 WRASI

321 SRAX 369 WRasrlast

321 SRL 369 WRCCR

321 SRLX 369 WRFPRS

323 STB 369 WRGSR

324 STBAPas 372 WRHPRH

327 STBARP 369 WRPCRP

328 STBLOCKF 369 WRPICric
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TABLE 7-3 Instruction Set - by Functional Category (1 of 6)

Ext. to

Instruction Category and Function Page V9?
Data Movement Operations, Between R Registers
MOVcc Move integer register if condition is satisfied 275
MOVr Move integer register on contents of integer register 279
Data Movement Operations, Between F Registers
FMOV(s,d,q) Floating-point move 191
FMOV(s,d,q)cc Move floating-point register if condition is satisfied 193
FMOV(s,d,q)R Move {-p reg. if integer reg. contents satisfy condition 198
FSRC(1,2){s} Copy source 225 VIS 1
Data Conversion Instructions
FiTO(s,d,q) Convert 32-bit integer to floating-point 185
F(s,d,q)TOi Convert floating point to integer 229
F(s,d,q)TOx Convert floating point to 64-bit integer 229
F(s,d,q)TO(s,d,q) Convert between floating-point formats 231
FxTO(s,d,q) Convert 64-bit integer to floating-point 234
Logical Operations on R Registers
AND (ANDcc) Logical and (and modify condition codes) 149
OR (ORcc) Inclusive-or (and modify condition codes) 286
ORN (ORNCcc) Inclusive-or not (and modify condition codes) 286
XNOR (XNORcc) Exclusive-nor (and modify condition codes) 377
XOR (XORcc) Exclusive-or (and modify condition codes) 377
Logical Operations on F Registers
FAND(s} Logical and operation 227 VIS 1
FANDNOT(1,2){s} Logical and operation with one inverted source 227 VIS 1
FNAND({s} Logical nand operation 227 VIS 1
FNOR(s} Logical nor operation 227 VIS 1
FNOT(1,2){ s} Copy negated source 225 VIS 1
FONE/(s} One fill 224 VIS 1
FOR{s} Logical or operation 227 VIS 1
FORNOT(1,2){s} Logical or operation with one inverted source 227 VIS 1
FXNOR(s} Logical xnor operation 227 VIS 1
FXOR({s} Logical xor operation 227 VIS 1
FZERO(s} Zero fill 224 VIS 1
Shift Operations on R Registers

SLL Shift left logical 321
SLLX Shift left logical, extended 321
SRA Shift right arithmetic 321
SRAX Shift right arithmetic, extended 321
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TABLE 7-3 Instruction Set - by Functional Category (2 of 6)

Ext. to
Instruction Category and Function Page V9?
SRL Shift right logical 321
SRLX Shift right logical, extended 321

Special Addressing Operations
ALIGNADDRESS{_LITTLE} Calculate address for misaligned data 147 VIS 1
ARRAY(8,16,32) 3-D array addressing instructions 150 VIS 1
FALIGNDATA Perform data alignment for misaligned data 173 VIS 1
Control Transfers
Bicc Branch on integer condition codes 154
BPcc Branch on integer condition codes with prediction 157
BPr Branch on contents of integer register with prediction 160
CALL Call and link 162
DONE? Return from trap 166
FBfccP Branch on floating-point condition codes 174
FBPfcc Branch on floating-point condition codes with prediction 176
ILLTRAP Illegal instruction 235
JMPL Jump and link 239
RETRY" Return from trap and retry 309
RETURN Return 311
SIRH Software-initiated reset 320
Tec Trap on integer condition codes 358
Byte Permutation
BMASK Set the GSR.mask field 156 VIS 2
BSHUFFLE Permute bytes as specified by GSR.mask 156 VIS 2
Data Formatting Operations on F Registers
FEXPAND Pixel expansion 184 VIS 1
FPACK(16,32, FIX) Pixel packing 210 VIS 1
FPMERGE Pixel merge 219 VIS 1
Memory Operations to/from F Registers

LDBLOCKF Block loads 245 VIS 1
STBLOCKF Block stores 328 VIS 1
LDDF Load double floating-point 249
LDDFAPs! Load double floating-point from alternate space 252
LDF Load floating-point 249
LDFAPsst Load floating-point from alternate space 252
LDQF Load quad floating-point 249
LDQFAPast Load quad floating-point from alternate space 252
LDSHORTF Short floating-point loads 258 VIS 1
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TABLE 7-3 Instruction Set - by Functional Category (3 of 6)

Ext. to
Instruction Category and Function Page V9?
STDF Store double floating-point 332
STDFAPsst Store double floating-point into alternate space 335
STF Store floating-point 332
STEAPast Store floating-point into alternate space 335
STPARTIALF Partial Store instructions 341 VIS 1
STQF Store quad floating point 332
STQFAFas! Store quad floating-point into alternate space 335
STSHORTF Short floating-point stores 344 VIS 1

Memory Operations — Miscellaneous
LDFSRP Load floating-point state register lower 256
LDXFSR Load floating-point state register 249
MEMBAR Memory barrier 271
PREFETCH Prefetch data 291
PREFETCHAP»s1 Prefetch data from alternate space 291
STFSRP Store floating-point state register 339
STXFSR Store extended floating-point state register 332
Atomic (Load-Store) Memory Operations to/from R Registers
CASAPs! Compare and swap word in alternate space 163
CASXAPast Compare and swap doubleword in alternate space 163
LDSTUB Load-store unsigned byte 260
LDSTUBAPast Load-store unsigned byte in alternate space 261
SWAPP Swap integer register with memory 352
SWAPAD: Pasi Swap integer register with memory in alternate space 353
Memory Operations to/from R Registers

LDSB Load signed byte 240
LDSBAPAst Load signed byte from alternate space 242
LDSH Load signed halfword 240
LDSHAPAs! Load signed halfword from alternate space 242
LDSW Load signed word 240
LDSWAPst Load signed word from alternate space 242
LDTXAN Load integer twin extended word from alternate space 263 VIS 2+
LDTWD: Pasi Load integer twin word 266
LDTWAP: Pasi Load integer twin word from alternate space 268
LDUB Load unsigned byte 260
LDUBAPst Load unsigned byte from alternate space 242
LDUH Load unsigned halfword 240
LDUHAPAs! Load unsigned halfword from alternate space 242
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TABLE 7-3 Instruction Set - by Functional Category (4 of 6)

Ext. to

Instruction Category and Function Page V9?
LDUW Load unsigned word 240
LDUWAPast Load unsigned word from alternate space 242
LDX Load extended 240
LDXAPast Load extended from alternate space 242
STB Store byte 323
STBAPAst Store byte into alternate space 324
STBARP Store barrier 327
STTWP Store twin word 346
STTWAPD: Past Store twin word into alternate space 348
STH Store halfword 323
STHAP»st Store halfword into alternate space 324
STW Store word 323
STWAPast Store word into alternate space 324
STX Store extended 323
STXAPast Store extended into alternate space 324

Floating-Point Arithmetic Operations
FABS(s,d,q) Floating-point absolute value 171
FADD(s,d,q) Floating-point add 172
FDIV(s,d,q) Floating-point divide 183
FdAMULq Floating-point multiply double to quad 207
FMUL(s,d,q) Floating-point multiply 207
FNEG(s,d,q) Floating-point negate 209
FsMULd Floating-point multiply single to double 207
FSQRT(s,d,q) Floating-point square root 228
FSUB(s,d,q) Floating-point subtract 233

Floating-Point Comparison Operations
FCMP*<16,32> Compare four 16-bit signed values or two 32-bit signed values 178 VIS 1
FCMP(s,d,q) Floating-point compare 181
FCMPE(s,d,q) Floating-point compare (exception if unordered) 181

Register-Window Control Operations
ALLCLEAN Mark all register window sets as “clean” 148
INVALW Mark all register window sets as “invalid” 238
FLUSHW Flush register windows 190
NORMALW “Other” register windows become “normal” register windows 285
OTHERW “Normal” register windows become “other” register windows 287
RESTORE? Restore caller’s window 305
RESTORED® Window has been restored 307
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TABLE 7-3 Instruction Set - by Functional Category (5 of 6)

Ext. to
Instruction Category and Function Page V9?
SAVE"Y Save caller’s window 313
SAVEDP Window has been saved 315

Miscellaneous Operations
FLUSH Flush instruction memory 186
IMPDEP2A Implementation-dependent instructions 236
IMPDEP2B Implementation-dependent instructions (reserved) 236
NOP No operation 284
SHUTDOWNP-P Shut down the virtual processor 318 VIS 1
Integer SIMD Operations on F Registers
FPADD<16,32>[S] Fixed-point partitioned add 216 Vis1
FPSUB<16,32>[S] Fixed-point partitioned subtract 221 VIS 1
Integer Arithmetic Operations on R Registers
ADD (ADDcc) Add (and modify condition codes) 146
ADDC (ADDCcc) Add with carry (and modify condition codes) 146
MULSccP Multiply step (and modify condition codes) 281
MULX Multiply 64-bit integers 283
SDIVP (SDIVccP) 32-bit signed integer divide (and modify condition codes) 364
SDIVX 64-bit signed integer divide 283
SMULP (SMULccP) Signed integer multiply (and modify condition codes) 367
SUB (SUBcc) Subtract (and modify condition codes) 351
SUBC (SUBCcc) Subtract with carry (and modify condition codes) 351
TADDcc Tagged add and modify condition codes (trap on overflow) 355
TADDccTVP Tagged add and modify condition codes (trap on overflow) 356
TSUBcc Tagged subtract and modify condition codes (trap on overflow) 361
TSUBccTVP Tagged subtract and modify condition codes (trap on overflow) 362
UDIVP (UDIVccP) Unsigned integer divide (and modify condition codes) 364
UDIVX 64-bit unsigned integer divide 283
UMULP (UMULccP) Unsigned integer multiply (and modify condition codes) 367
Integer Arithmetic Operations on F Registers
FMULS8x16 8x16 partitioned product 201 VIS 1
FMUL8x16(AU,AL) 8x16 upper/lower a partitioned product 201 VIS 1
FMULS8(SU,UL)x16 8x16 upper/lower partitioned product 201 VIS 1
FMULDS8(SU,UL)x16 8x16 upper/lower partitioned product 201 VIS 1
Miscellaneous Operations on R Registers

POPC Population count 289
SETHI Set high 22 bits of low word of integer register 317

Miscellaneous Operations on F Registers
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TABLE 7-3 Instruction Set - by Functional Category (6 of 6)

Ext. to
Instruction Category and Function Page V9?
EDGE(8,16,32){L}cc Edge handling instructions (and modify condition codes) 168 VIS 1
EDGE(8,16,32){L}N Edge handling instructions 170 VIS 2
PDIST Pixel component distance 288 VIS 1

Control and Status Register Access
RDASI Read ASI register 299
RDasrPsk Read ancillary state register 299
RDCCR Read Condition Codes register (CCR) 299
RDFPRS Read Floating-Point Registers State register (FPRS) 299
RDGSR Read General Status register (GSR) 299
RDPC Read Program Counter register (PC) 299
RDPCRF Read Performance Control register (PCR) 299
RDPICFric Read Performance Instrumentation Counters register (PIC) 299
RDHPRH Read hyperprivileged register 302
RDPR" Read privileged register 303
RDSOFTINT? Read per-virtual processor Soft Interrupt register (SOFTINT) 299
RDSTICKPret Read System Tick register (STICK) 299
RDSTICK_CMPR” Read System Tick Compare register (STICK_CMPR) 299
RDTICK Read Tick register (TICK) 299
RDTICK_CMPR? Read Tick Compare register (TICK_CMPR) 299
SIAM Set interval arithmetic mode 319 VIS 2
WRASI Write ASI register 369
WRasrFAsk Write ancillary state register 369
WRCCR Write Condition Codes register (CCR) 369
WRFPRS Write Floating-Point Registers State register (FPRS) 369
WRGSR Write General Status register (GSR) 369
WRPCR? Write Performance Control register (PCR) 369
WRPICFrie Write Performance Instrumentation Counters register (PIC) 369
WRHPRH Write hyperprivileged register 372
WRPRF Write privileged register 372
WRSOFTINT? Write per-virtual processor Soft Interrupt register (SOFTINT) 369
WRSOFTINT_CLR? Clear bits of per-virtual processor Soft Interrupt register 369
(SOFTINT)

WRSOFTINT_SET? Set bits of per-virtual processor Soft Interrupt register (SOFTINT) 369
WRTICK_CMPR? Write Tick Compare register (TICK_CMPR) 369
WRSTICKP Write System Tick register (STICK) 369
WRSTICK_CMPR” Write System Tick Compare register (STICK_CMPR) 369
WRYP Write Y register 369
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In the remainder of this chapter, related instructions are grouped into subsections.
Each subsection consists of the following sets of information:

(1) Instruction Table. This lists the instructions that are defined in the subsection,
including the values of the field(s) that uniquely identify the instruction(s), assembly
language syntax, and software and implementation classifications for the
instructions. (description of the Software Classes [letters] and Implementation Classes
[digits] will be provided in a later update to this specification)

(2) Illustration of Instruction Format(s). These illustrations show how the
instruction is encoded in a 32-bit word in memory. In them, a dash (—) indicates
that the field is reserved for future versions of the architecture and must be 0 in any
instance of the instruction. If a conforming UltraSPARC Architecture
implementation encounters nonzero values in these fields, its behavior is as defined
in Reserved Opcodes and Instruction Fields on page 132.

Note | Instruction classes are subject to change, and are not yet defined in
this document. The classes will be defined in a later draft of this
document and in the meantime are subject to change.

(3) Description. This subsection describes the operation of the instruction, its
features, restrictions, and exception-causing conditions.

(4) Exceptions. The exception that can occur as a consequence of attempting to
execute the instruction(s). Exceptions due to an instruction_access_exception,
fast_instruction_access_MMU_miss, WDR, and interrupts are not listed because they
can occur on any instruction. An FPop that is not implemented in hardware
generates an fp_exception_other exception with FSR.ftt = unimplemented_FPop
when executed. A non-FPop instruction not implemented in hardware generates an
illegal_instruction exception and therefore will not generate any of the other
exceptions listed. Exceptions are listed in order of trap priority (see Trap Priorities on
page 469), from highest to lowest priority.

(5) See Also. A list of related instructions (on selected pages).

Note | This specification does not contain any timing information (in
either cycles or elapsed time), since timing is always
implementation dependent.
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7.1 Add

ADD

Instruction op3 Operation Assembly Language Syntax Class
ADD 00 0000 Add add regrs1, reg_or_imm, regqy Al
ADDcc 01 0000 Add and modify cc’s addcc  regsy, reg_or_imm, regyy Al
ADDC 00 1000 Add with 32-bit Carry addc regg1, reg_or_imm, regq Al
ADDCcc 01 1000 Add with 32-bit Carry and modify cc’s addccc  regsy, reg_or_imm, regyy Al

10 rd op3 rsl i= — rs2

10 rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description ~ 1f i =0, ADD and ADDcc compute “R[rs1] + R[rs2]”. If i = 1, they compute

Exceptions

“R[rs1] + sign_ext( simm13)”. In either case, the sum is written to R[rd].

ADDC and ADDCcc (“ADD with carry”) also add the CCR register’s 32-bit carry
(icc.c) bit. That is, if i = 0, they compute “R[rs1] + R[rs2] + icc.c” and if i = 1, they
compute “R[rs1] + sign_ext( sinm13) + icc.c”. In either case, the sum is written to
R[rd].

ADDcc and ADDCcc modify the integer condition codes (CCR.icc and CCR.xcc).
Overflow occurs on addition if both operands have the same sign and the sign of the
sum is different from that of the operands.

Programming
Note

ADDC and ADDCcc read the 32-bit condition codes’ carry bit
(CCRucc.c), not the 64-bit condition codes’ carry bit (CCR.xcc.c).

SPARC V8
Compatibility
Note

ADDC and ADDCcc were previously named ADDX and
ADDXcc, respectively, in SPARC V8.

An attempt to execute an ADD, ADDcc, ADDC or ADDCcc instruction when i =0
and reserved instruction bits 12:5 are nonzero causes an illegal_instruction exception.

illegal_instruction
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ALIGNADDRESS

7.2 Align Address

Instruction opf Operation Assembly Language Syntax Class

ALIGNADDRESS 000011000 Calculate address for misaligned al i gnaddr  regs1. 7egrs2,  7€8rd Al
data access

ALIGNADDRESS_ 000011010 Calculate address for misaligned al i gnaddr| regis1, regrsp,  7€8rq Al

LITTLE data access little-endian
10 rd | 110110 | rsi opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description ALIGNADDRESS adds two integer values, R[rs1] and R[rs2], and stores the result
(with the least significant 3 bits forced to 0) in the integer register R[rd]. The least
significant 3 bits of the result are stored in the GSR.align field.

ALIGNADDRESS_LITTLE is the same as ALIGNADDRESS except that the two’s
complement of the least significant 3 bits of the result is stored in GSR.align.

Note | ALIGNADDRESS_LITTLE generates the opposite-endian byte
ordering for a subsequent FALIGNDATA operation.

A byte-aligned 64-bit load can be performed as shown below.

al i gnaddr Address, Offset, Address !set GSR align

| dd [ Address] , %60
| dd [ Address + 8], %2
faligndata %0, %2, %4 luse GSR align to sel ect bytes

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no
FPU is present, an attempt to execute an ALIGNADDRESS or
ALIGNADDRESS_LITTLE instruction causes an fp_disabled exception.

Exceptions fp_disabled

See Also Align Data on page 173
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ALLCLEAN

7.3 Mark All Register Window Sets “Clean”

Instruction Operation Assembly Language Syntax Class
ALLCLEAN'  Mark all register window sets as “clean”  al | ¢l ean C1
10 | fcn =0 0010 11 0001 —
31 30 29 25 24 19 18 0

Description The ALLCLEAN instruction marks all register window sets as “clean”; specifically, it
performs the following operation:

CLEANWIN « (N_REG_WINDOWS - 1)

Programming | ALLCLEAN is used to indicate that all register windows are

Note | “clean”; that is, do not contain data belonging to other address
spaces. It is needed because the value of N_REG_WINDOWS is not
known to privileged software.

This instruction allows window manipulations to be atomic,
without the value of N_REG_WINDOWS being visible to privileged
software and without an assumption that N_REG_WINDOWS is
constant (since hyperprivileged software can migrate a thread
among virtual processors, across which N_REG_WINDOWS may
vary).

Exceptions illegal_instruction (not implemented in hardware in UltraSPARC Architecture 2005)
privileged_opcode

See Also INVALW on page 238
NORMALW on page 285
OTHERW on page 287
RESTORED on page 307
SAVED on page 315
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7.4

AND, ANDN

AND Logical Operation

Instruction op3 Operation Assembly Language Syntax Class
AND 00 0001 and and regis1, reg_or_imm, regyy Al
ANDcc 01 0001 and and modify cc’s andcc  regyg1, reg_or_imm, regyg Al
ANDN 00 0101 and not andn regrs1, reg_or_imm, regyq Al
ANDNCcc 01 0101 and not and modify cc’s andncc reg.y, reg_or_imm, regyy Al
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
3T 30 29 25 24 19 18 14 13 12 5 4
Description These instructions implement bitwise logical and operations. They compute “R[rs1]
op R[rs2]” if i =0, or “R[rs1] op sign_ext( simm13)” if i = 1, and write the result into
R[rd].
ANDcc and ANDNcc modify the integer condition codes (icc and xcc). They set the
condition codes as follows:
= ICC.V, icc.c, xcc.v, and xcc.c are set to 0
= icc.n is copied from bit 31 of the result
= Xcc.n is copied from bit 63 of the result
= icc.z is set to 1 if bits 31:0 of the result are zero (otherwise to 0)
= XCC.z is set to 1 if all 64 bits of the result are zero (otherwise to 0)
ANDN and ANDNCcc logically negate their second operand before applying the
main (and) operation.
An attempt to execute an AND, ANDcc, ANDN or ANDNCcc instruction when i =0
and reserved instruction bits 12:5 are nonzero causes an illegal_instruction exception.
Exceptions illegal_instruction
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ARRAY<8|16|32>

7.5 Three-Dimensional Array Addressing

Instruction  opf Operation Assembly Language Syntax Class

ARRAY8 00001 0000 Convert 8-bit 3D address to blocked byte address array8 regys1, regrsz, regrg C3
ARRAY16 00001 0010 Convert 16-bit 3D address to blocked byte address array16 regys1, regrsp, regrg C3
ARRAY32 00001 0100 Convert 32-bit 3D address to blocked byte address array32 reg,s1, regrsz, regrg C3

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description These instructions convert three-dimensional (3D) fixed-point addresses contained
in R[rs1] to a blocked-byte address; they store the result in R[rd]. Fixed-point
addresses typically are used for address interpolation for planar reformatting
operations. Blocking is performed at the 64-byte level to maximize external cache
block reuse, and at the 64-Kbyte level to maximize TLB entry reuse, regardless of the
orientation of the address interpolation. These instructions specify an element size of
8 bits (ARRAYS), 16 bits (ARRAY16), or 32 bits (ARRAY32).

The second operand, R[rs2], specifies the power-of-2 size of the X and Y dimensions
of a 3D image array. The legal values for R[rs2] and their meanings are shown in
TABLE 7-4. Illegal values produce undefined results in the destination register, R[rd].

TABLE7-4 3D R[rs2] Array X and Y Dimensions
R[rs2] Value (n) Number of Elements
0 64
128
256
512
1024
2048

QL = W N =

Implementation | Architecturally, an illegal R[rs2] value (>5) causes the array
Note | instructions to produce undefined results. For historic reference,
past implementations of these instructions have ignored
R[rs2]{63:3} and have treated R[rs2] values of 6 and 7 as if they
were 5.

The array instructions facilitate 3D texture mapping and volume rendering by
computing a memory address for data lookup based on fixed-point x, y, and z
coordinates. The data are laid out in a blocked fashion, so that points which are near
one another have their data stored in nearby memory locations.
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ARRAY<8|16|32>

If the texture data were laid out in the obvious fashion (the z = 0 plane, followed by
the z = 1 plane, etc.), then even small changes in z would result in references to
distant pages in memory. The resulting lack of locality would tend to result in TLB
misses and poor performance. The three versions of the array instruction, ARRAYS,
ARRAY16, and ARRAY32, differ only in the scaling of the computed memory offsets.
ARRAY16 shifts its result left by one position and ARRAY32 shifts left by two in
order to handle 16- and 32-bit texture data.

When using the array instructions, a “blocked-byte” data formatting structure is
imposed. The N x N x M volume, where N =2"x64, M=m x32,0<n<51<m<16
should be composed of 64 x 64 x 32 smaller volumes, which in turn should be
composed of 4 x 4 x 2 volumes. This data structure is optimal for 16-bit data. For 16-
bit data, the 4 x 4 x 2 volume has 64 bytes of data, which is ideal for reducing cache-
line misses; the 64 x 64 x 32 volume will have 256 Kbytes of data, which is good for
improving the TLB hit rate. FIGURE 7-1 illustrates how the data has to be organized,
where the origin (0,0,0) is assumed to be at the lower-left front corner and the x
coordinate varies faster than y than z. That is, when traversing the volume from the
origin to the upper right back, you go from left to right, front to back, bottom to top.

1
z
A |
I
[
|
M =m X 32 I
|
| \%
| b 4
I 7/
N=2"x 64 e e e e e | - — — —
/
I /
16x2=32 Z _
T L [ Jxazes
ey
X
0 4 16 X 4 = 64 N=2"x64 >

FIGURE 7-1 Blocked-Byte Data Formatting Structure

The array instructions have 2 inputs:
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ARRAY<8|16|32>

The (x,y,z) coordinates are input via a single 64-bit integer organized in R[rs1] as
shown in FIGURE 7-2.

Z integer Z fraction Y integer Y fraction| X integer X fraction
63 55 54 44 43 33 32 22 21 11 10 0

FIGURE 7-2 Three-Dimensional Array Fixed-Point Address Format

Note that z has only 9 integer bits, as opposed to 11 for x and y. Also note that since
(x,y,z) are all contained in one 64-bit register, they can be incremented or
decremented simultaneously with a single add or subtract instruction (ADD or
SUB).

So for a 512 x 512 x 32 or a 512 x 512 x 256 volume, the size value is 3. Note that the
x and y size of the volume must be the same. The z size of the volume is a multiple
of 32, ranging between 32 and 512.

The array instructions generate an integer memory offset, that when added to the
base address of the volume, gives the address of the volume element (voxel) and can
be used by a load instruction. The offset is correct only if the data has been
reformatted as specified above.

The integer parts of x, y, and z are converted to the following blocked-address
formats as shown in FIGURE 7-3 for ARRAYS, FIGURE 7-4 for ARRAY16, and FIGURE 7-5
for ARRAY32.

UPPER MIDDLE LOWER
Z Y X Z Y X Z Y X
20 17 17 17 13 9 5 4 2 0
+2n +2n +n

FIGURE 7-3 Three-Dimensional Array Blocked-Address Format (ARRAY8)

UPPER MIDDLE LOWER

Z Y X Z Y X Z Y X

21 18 18 18 14 10 6 5 3 10
+2n +2n +n

FIGURE 7-4 Three-Dimensional Array Blocked-Address Format (ARRAY16)
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UPPER MIDDLE LOWER
00
z Y X z Y X z Y X
22 19 19 19 15 11 7 6 5 4 3 21 0
+2n +2n +n
FIGURE 7-5 Three Dimensional Array Blocked-Address Format (ARRAY32)
The bits above Z upper are set to 0. The number of zeroes in the least significant bits
is determined by the element size. An element size of 8 bits has no zeroes, an
element size of 16 bits has one zero, and an element size of 32 bits has two zeroes.
Bits in X and Y above the size specified by R[rs2] are ignored.
TABLE7-5 ARRAY8 Description
Result (R[rd]) Bits Source (R[rs1] Bits Field Information
1:0 12:11 X_integer{1:0}
3:2 34:33 Y_integer{1:0}
4 55 Z_integer{0}
8:5 16:13 X_integer{5:2}
12:9 38:35 Y_integer{5:2}
16:13 59:56 Z_integer{4:1}
17+n-1:17 17+n-1:17 X_integer{6+71-1:6}
17+2n-1:17+n 39+n-1:39 Y_integer{6+11-1:6}
20+2n:17+2n 63:60 Z_integer{8:5}
63:20+2n+1 n/a 0
In the above description, if n = 0, there are 64 elements, so X_integer{6} and
Y_integer{6} are not defined. That is, result{20:17} equals Z_integer{8:5}.
Note | To maximize reuse of external cache and TLB data, software
should block array references of a large image to the 64-Kbyte
level. This means processing elements within a 32 x 32 x 64
block.
The code fragment below shows assembly of components along an interpolated line
at the rate of one component per clock.
add Addr, DeltaAddr, Addr
array8 Addr, %0, bAddr
| dda [ bAddr] #AS|I _FL8_PRI MARY, data
faligndata data, accum, accum
Exceptions None
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Bicc Instructions

7.6 Branch on Integer Condition Codes
(Bicc)

Assembly Language

Opcode cond Operation icc Test Syntax Class
BA 1000 Branch Always 1 ba{, a} label Al
BN 0000 Branch Never 0 bn{, a} label Al
BNE 1001  Branch on Not Equal not Z bnef{, a} label Al
BE 0001 Branch on Equal Z be¥{, a} label Al
BG 1010  Branch on Greater not (Z or (N xor V)) bg{, a} label Al
BLE 0010 Branch on Less or Equal Z or (N xor V) bl e{,a} label Al
BGE 1011  Branch on Greater or Equal not (N xor V) bge{, a} label Al
BL 0011 Branch on Less N xor V bl {, a} label Al
BGU 1100  Branch on Greater Unsigned not (C or Z) bgu{, a} label Al
BLEU 0100 Branch on Less or Equal Unsigned CorZ bl eu{, a} label Al
BCC 1101  Branch on Carry Clear (Greater Than not C bcc®{, a} label Al
or Equal, Unsigned)
BCS 0101 Branch on Carry Set (Less Than, Unsigned) C besD{, a} label Al
BPOS 1110 Branch on Positive not N bpos{, a} label Al
BNEG 0110 Branch on Negative N bneg{, a} label Al
BVC 1111  Branch on Overflow Clear not V bvc{,a} label Al
BVS 0111  Branch on Overflow Set v bvs{,a} label Al
t synonym: bnz  synonym: bz © synonym: bgeu O synonym: bl u
00 |a cond 010 disp22
3130 29 28 25 24 22 21 0

Programming | To set the annul (a) bit for Bicc instructions, append “, a” to the
Note | opcode mnemonic. For example, use “bgu, a label”. In the
preceding table, braces signify that the “, a” is optional.

Unconditional branches and icc-conditional branches are described below:

= Unconditional branches (BA, BN) — If its annul bit is 0 (a = 0), a BN (Branch
Never) instruction is treated as a NOP. If its annul bit is 1 (a = 1), the following
(delay) instruction is annulled (not executed). In neither case does a transfer of
control take place.
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Exceptions

Bicc Instructions

BA (Branch Always) causes an unconditional PC-relative, delayed control transfer
to the address “PC + (4 x sign_ext( disp22) )”. If the annul (a) bit of the branch
instruction is 1, the delay instruction is annulled (not executed). If the annul bit is
0 (a=0), the delay instruction is executed.

icc-conditional branches — Conditional Bicc instructions (all except BA and BN)
evaluate the 32-bit integer condition codes (icc), according to the cond field of the
instruction, producing either a TRUE or FALSE result. If TRUE, the branch is taken,
that is, the instruction causes a PC-relative, delayed control transfer to the
address “PC + (4 x sign_ext( disp22) )”. If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed
regardless of the value of the annul field. If a conditional branch is not taken and
the annul bit is 1 (a = 1), the delay instruction is annulled (not executed).

Note | The annul bit has a different effect on conditional branches than
it does on unconditional branches.

Annulment, delay instructions, and delayed control transfers are described further
in Chapter 6, Instruction Set Overview.

None
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BMASK / BSHUFFLE

7.7 Byte Mask and Shuffle

Instruction opf Operation Assembly Language Syntax Class

BMASK 000011001 Set the GSR.mask field in preparation bmask regrs1y €Srs2s 1€8rd C3
for a subsequent BSHUFFLE instruction

BSHUFFLE 001001100 Permute 16 bytes as specified by GSR.mask bshuf fl e fregs1, fregisos fregq C3

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description BMASK adds two integer registers, R[rs1] and R[rs2], and stores the result in the
integer register R[rd]. The least significant 32 bits of the result are stored in the
GSR.mask field.

BSHUFFLE concatenates the two 64-bit floating-point registers Fp[rsl] (more
significant half) and Fp[rs2] (less significant half) to form a 128-bit (16-byte) value.
Bytes in the concatenated value are numbered from most significant to least
significant, with the most significant byte being byte 0. BSHUFFLE extracts 8 of
those 16 bytes and stores the result in the 64-bit floating-point register Fp[rd]. Bytes
in Fp[rd] are also numbered from most to least significant, with the most significant
being byte 0. The following table indicates which source byte is extracted from the
concatenated value to generate each byte in the destination register, Fp[rd].

Destination Byte (in F[rd])  Source Byte

0 (most significant)  (Fp[rsl] :: Fp[[rs2]){GSR.mask{31:28}}

1 (Fpllrs1] :: Fpllrs2]){GSR.mask{27:24}}
2 (Fpllrs1] :: Fpl[rs2]){GSR.mask{23:20}}
3 (Fpllrs1] :: Fpllrs2]){GSR.mask{19:16}}
4 (Fpllrs1] :: Fpllrs2]){GSR.mask{15:12}}
5 (Fpllrs1] :: Fpl[rs2]){GSR.mask{11:8}}
6 (Fpllrs1] :: Fpl[rs2]){GSR.mask({7:4}}

7 (least significant)  (Fp[[rs1] :: Fp[[rs2]){GSR.mask({3:0}}

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no
FPU is present, an attempt to execute a BMASK or BSHUFFLE instruction causes an
fp_disabled exception.

Exceptions fp_disabled
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BPcc

7.8 Branch on Integer Condition Codes with
Prediction (BPcc)

Instructioncond Operation cc Test Assembly Language Syntax Class
BPA 1000 Branch Always 1 ba{, a}{, pt I, pn} i_or_x_cc, label Al
BPN 0000 Branch Never 0 bn{, a}{, pt I, pn}  i_or_x_cc, label Al
BPNE 1001 Branch on Not Equal not Z bnet{, al{, pt |, pn} i_or_x_cc, label Al
BPE 0001 Branch on Equal Z bei{, al{, pt I, pn} i_or_x_cc, label Al
BPG 1010 Branch on Greater not (Z or ba{, a}{, pt I, pn} i_or_x_cc, label Al
(N xor V))

BPLE 0010 Branch on Less or Equal Zor (N xorV) blef{,al}{,ptl,pn} ior_x_cc, label Al
BPGE 1011 Branch on Greater or Equal not (N xor V) bge{, a}{, pt I, pn} i_or_x_cc, label Al
BPL 0011 Branch on Less N xor V bl {, al{, pt I, pn} i_or_x_cc, label Al
BPGU 1100 Branch on Greater Unsigned not (C or Z) bgu{, al{, pt I, pn} i_or_x_cc, label Al
BPLEU 0100 Branch on Less or Equal Unsigned C or Z bl eu{, al{, pt |, pn} i_or_x_cc, label Al
BPCC 1101 Branch on Carry Clear not C bcedf, al{, pt |, pn} i_or_x_cc, label Al

(Greater than or Equal, Unsigned)
BPCS 0101 Branch on Carry Set C besOf, a}{, pt |, pn}i_or_x_cc, label Al

(Less than, Unsigned)
BPPOS 1110 Branch on Positive not N bpos{, a}{, pt |, pn} i_or_x_cc, label Al
BPNEG 0110 Branch on Negative N bnegf{, a}{, pt |, pn} i_or_x_cc, label Al
BPVC 1111 Branch on Overflow Clear not V bvc{, a}{, pt |, pn} i_or_x_cc, label Al
BPVS 0111 Branch on Overflow Set A% bvs{, al{, pt |, pn} i_or_x_cc, label Al
1t synonym: bnz 1 synonym: bz ¢ synonym: bgeu O synonym: bl u
00 |a cond 001 |cclccO| p disp19
3130 29 28 25 24 22 21 20 19 18
ccl cc0 Condition Code

0 0 icc

0 1 —

1 0 Xcc

1 1 —
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Description

Exceptions

BPcc

Programming | To set the annul (a) bit for BPcc instructions, append “, a” to the
Note | opcode mnemonic. For example, use bgu, a % cc, label. Braces in
the preceding table signify that the “, a” is optional. To set the
branch prediction bit, append to an opcode mnemonic either
“, pt” for predict taken or “, pn” for predict not taken. If neither
“, pt” nor “, pn” is specified, the assembler defaults to “,pt ”. To
select the appropriate integer condition code, include “% cc” or
“%xcc” before the label.

Unconditional branches and conditional branches are described below.
= Unconditional branches (BPA, BPN) — A BPN (Branch Never with Prediction)

instruction for this branch type (0p2 = 1) may be used in the SPARC V9
architecture as an instruction prefetch; that is, the effective address (PC + (4 x
sign_ext( disp19))) specifies an address of an instruction that is expected to be
executed soon. If the Branch Never’s annul bit is 1 (a = 1), then the following
(delay) instruction is annulled (not executed). If the annul bit is 0 (a = 0), then the
following instruction is executed. In no case does a Branch Never cause a transfer
of control to take place.

BPA (Branch Always with Prediction) causes an unconditional PC-relative,
delayed control transfer to the address “PC + (4 x sign_ext( disp19))”. If the annul
bit of the branch instruction is 1 (a = 1), then the delay instruction is annulled (not
executed). If the annul bit is 0 (a = 0), then the delay instruction is executed.

Conditional branches — Conditional BPcc instructions (except BPA and BPN)
evaluate one of the two integer condition codes (icc or Xcc), as selected by ccO
and ccl, according to the cond field of the instruction, producing either a TRUE or
FALSE result. If TRUE, the branch is taken; that is, the instruction causes a PC-
relative, delayed control transfer to the address “PC + (4 x sign_ext( disp19))”. If
FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed
regardless of the value of the annul (a) bit. If a conditional branch is not taken
and the annul bit is 1 (a = 1), the delay instruction is annulled (not executed).

Note | The annul bit has a different effect on conditional branches than
it does on unconditional branches.

The predict bit (p) is used to give the hardware a hint about whether the branch is
expected to be taken. A 1 in the p bit indicates that the branch is expected to be
taken; a 0 indicates that the branch is expected not to be taken.

Annulment, delay instructions, prediction, and delayed control transfers are
described further in Chapter 6, Instruction Set Overview.

An attempt to execute a BPcc instruction with ccO =1 (a reserved value) causes an
illegal_instruction exception.

illegal_instruction
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See Also Branch on Integer Register with Prediction (BPr) on page 160
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7.9

Branch on Integer Register with
Prediction (BPr)

Register
Contents
Instruction rcond Operation Test Assembly Language Syntax Class
— 000 Reserved — —
BRZ 001 Branch on Register Zero R[rsl]=0 brz {,a}{,pt |, pn}  regs1, label Al
BRLEZ 010 Branch on Register Less Than or Equal R[rs1]<0 brlez {, a}{, pt |, pn} reg,s1, label Al
to Zero
BRLZ 011 Branch on Register Less Than Zero Rlrs1] <0 brlz {, a}{, pt |, pn} regsy, label Al
— 100 Reserved — —
BRNZ 101 Branch on Register Not Zero Rlrs1]20 brnz {, a}{, pt |, pn} reg.s1, label Al
BRGZ 110 Branch on Register Greater Than Zero R[rs1] >0 brgz {, a}{, pt |, pn} reg.s1, label Al
BRGEZ 111 Branch on Register Greater Than or  R[rs1] 20 brgez {, a}{, pt |, pn} reg,s1, label Al
Equal to Zero
00 [a|0"| rcond | 011 |di6hi|p rsi d16lo
3130 29 28 27 25 24 22 21 20 19 18 14 13 0
* Although SPARC V9 implementations should cause an illegal_instruction exception when bit 28 = 1, many
early implementations ignored the value of this bit and executed the opcode as a BPr instruction even if
bit28 =1.
Programming | To set the annul (a) bit for BPr instructions, append “, a” to the
Note | opcode mnemonic. For example, use “brz, a % 3, label.” In the
preceding table, braces signify that the “, a” is optional. To set the
branch prediction bit p, append either “, pt ” for predict taken or
“, pn” for predict not taken to the opcode mnemonic. If neither
“, pt” nor “, pn” is specified, the assembler defaults to “, pt ”.
Description These instructions branch based on the contents of R[rs1]. They treat the register

contents as a signed integer value.

A BPr instruction examines all 64 bits of R[rs1] according to the rcond field of the
instruction, producing either a TRUE or FALSE result. If TRUE, the branch is taken;
that is, the instruction causes a PC-relative, delayed control transfer to the address
“PC + (4 x sign_ext( d16hi :: d16lo))”. If FALSE, the branch is not taken.

If the branch is taken, the delay instruction is always executed, regardless of the
value of the annul (a) bit. If the branch is not taken and the annul bit is 1 (a = 1), the
delay instruction is annulled (not executed).
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Exceptions

See Also

BPr

The predict bit (p) gives the hardware a hint about whether the branch is expected to
be taken. If p = 1, the branch is expected to be taken; p = 0 indicates that the branch
is expected not to be taken.

An attempt to execute a BPr instruction when instruction bit 28 =1 or rcond is a
reserved value (000, or 100,) causes an illegal_instruction exception.

Annulment, delay instructions, prediction, and delayed control transfers are
described further in Chapter 6, Instruction Set Overview.

Implementation | If this instruction is implemented by tagging each register value
Note | with an N (negative) bit and Z (zero) bit, the table below can be
used to determine if rcond is TRUE:
Branch Test
BRNZ not Z
BRZ Z
BRGEZ not N
BRLZ N
BRLEZ NorZ
BRGZ not (N or Z)

illegal_instruction

Branch on Integer Condition Codes with Prediction (BPcc) on page 157
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CALL

7.10 Call and Link

Instruction op Operation Assembly Language Syntax Class

CALL 01 Call and Link cal l label Al

01 disp30
3130 29 0

Description The CALL instruction causes an unconditional, delayed, PC-relative control transfer
to address PC + (4 x sign_ext(disp30)). Since the word displacement (disp30) field is
30 bits wide, the target address lies within a range of 23! to +23! — 4 bytes. The PC-
relative displacement is formed by sign-extending the 30-bit word displacement field
to 62 bits and appending two low-order zeroes to obtain a 64-bit byte displacement.

The CALL instruction also writes the value of PC, which contains the address of the
CALL, into R[15] (out register 7).

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address
are masked out (set to 0) before being sent to the memory system and in the address
written into R[15]. (closed impl. dep. #125-V9-Cs10)

Exceptions None

See Also JMPL on page 239
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CASA / CASXA

7.11

Compare and Swap

Instruction op3 Operation Assembly Language Syntax Class
CASAPAs 111100 Compare and Swap Word from casa [ regis1] imm_asi, regiso, regq Al
Alternate Space casa [ regs1] Y@Si, regrso, regig
CASXAPat 111110  Compare and Swap Extended from casxa [ regsi] imm_asi, regyss, regq Al
Alternate Space casxa [regisi]l Y@Si, regso, regrg
11 rd op3 rsl i= imm_asi rs2
11 rd op3 rsl i=1] — rs2
3130 29 25 24 19 18 14 13 12 5 4 0
Description Concurrent processes use these instructions for synchronization and memory

updates. Uses of compare-and-swap include spin-lock operations, updates of shared
counters, and updates of linked-list pointers. The last two can use wait-free
(nonlocking) protocols.

The CASXA instruction compares the value in register R[rs2] with the doubleword
in memory pointed to by the doubleword address in R[rs1]. If the values are equal,
the value in R[rd] is swapped with the doubleword pointed to by the doubleword
address in R[rs1]. If the values are not equal, the contents of the doubleword
pointed to by R[rs1] replaces the value in R[rd], but the memory location remains
unchanged.

The CASA instruction compares the low-order 32 bits of register R[rs2] with a word
in memory pointed to by the word address in R[rs1]. If the values are equal, then the
low-order 32 bits of register R[rd] are swapped with the contents of the memory
word pointed to by the address in R[rs1] and the high-order 32 bits of register R[rd]
are set to 0. If the values are not equal, the memory location remains unchanged, but
the contents of the memory word pointed to by R[rs1] replace the low-order 32 bits
of R[rd] and the high-order 32 bits of register R[rd] are set to 0.

A compare-and-swap instruction comprises three operations: a load, a compare, and
a swap. The overall instruction is atomic; that is, no intervening interrupts or
deferred traps are recognized by the virtual processor and no intervening update
resulting from a compare-and-swap, swap, load, load-store unsigned byte, or store
instruction to the doubleword containing the addressed location, or any portion of it,
is performed by the memory system.
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A compare-and-swap operation does not imply any memory barrier semantics.
When compare-and-swap is used for synchronization, the same consideration
should be given to memory barriers as if a load, store, or swap instruction were
used.

A compare-and-swap operation behaves as if it performs a store, either of a new
value from R[rd] or of the previous value in memory. The addressed location must
be writable, even if the values in memory and R[rs2] are not equal.

If i = 0, the address space of the memory location is specified in the imm_asi field; if
i =1, the address space is specified in the ASI register.

An attempt to execute a CASXA or CASA instruction when i = 1 and instruction bits
12:5 are nonzero causes an illegal_instruction exception.

A mem_address_not_aligned exception is generated if the address in R[rs1] is not
properly aligned.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI
is 0, CASXA and CASA cause a privileged_action exception. In privileged mode
(PSTATE.priv =1 and HPSTATE.hpriv = 0), if the ASI is in the range 3014 to 7Fy,
CASXA and CASA cause a privileged_action exception.

Compatibility | An implementation might cause an exception because of an
Note | error during the store memory access, even though there was no
error during the load memory access.

Programming | Compare and Swap (CAS) and Compare and Swap Extended

Note | (CASX) synthetic instructions are available for “big endian”
memory accesses. Compare and Swap Little (CASL) and Compare
and Swap Extended Little (CASXL) synthetic instructions are
available for “little endian” memory accesses. See Synthetic
Instructions on page 536 for the syntax of these synthetic
instructions.

The compare-and-swap instructions do not affect the condition codes.

The compare-and-swap instructions can be used with any of the following ASIs,
subject to the privilege mode rules described for the privileged_action exception
above. Use of any other ASI with these instructions causes a data_access_exception
exception.

ASils valid for CASA and CASXA instructions
ASI _NUCLEUS ASI _NUCLEUS LI TTLE
ASI _AS | F_USER_PRI MARY ASI _AS | F_USER_PRI MARY_LI TTLE
ASI _AS | F_USER_SECONDARY ASI _AS | F_USER_SECONDARY_LI TTLE

ASI _REAL ASI _REAL_LI TTLE
ASI _PRI MARY ASI _PRI MARY_LI TTLE
ASI _SECONDARY ASI _SECONDARY_LI TTLE
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Exceptions

CASA / CASXA

illegal_instruction
mem_address_not_aligned
privileged_action
VA_watchpoint
data_access_exception
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
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DONE

712  DONE

Instruction  op3 Operation Assembly Language Syntax Class
DONE" 111110  Return from Trap (skip trapped instruction) done C1
10 fcn =0 0000 11 1110 —
31 30 29 25 24 19 18 0

Description The DONE instruction restores the saved state from TSTATE[TL] (GL, CCR, ASI,
PSTATE, and CWP), HTSTATE[TL] (HPSTATE), sets PC and NPC, and decrements
TL. DONE sets PC — TNPC[TL] and NPC — TNPC[TL]+4 (normally, the value of
NPC saved at the time of the original trap and address of the instruction
immediately after the one referenced by the NPC).

Programming | The DONE and RETRY instructions are used to return from
Notes | privileged trap handlers.

Unlike RETRY, DONE ignores the contents of TPC[TL].

If the saved TNPC[TL] was not altered by trap handler software, DONE causes
execution to resume immediately after the instruction that originally caused the trap
(as if that instruction was “done” executing).

Execution of a DONE instruction in the delay slot of a control-transfer instruction
produces undefined results.

When a DONE instruction is executed in privileged mode and
HTSTATE[TL].hpstate.hpriv = 0 (which will cause the DONE to return the virtual
processor to nonprivileged or privileged mode), the value of GL restored from
TSTATE[TL] saturates at MAXPGL. That is, if the value in TSTATE[TL].gl is greater
than MAXPGL, then MAXPGL is substituted and written to GL. This protects against
non-hyperprivileged software executing with GL > MAXPGL.

If software writes invalid or inconsistent state to TSTATE or HTSTATE before
executing DONE, virtual processor behavior during and after execution of the
DONE instruction is undefined.

The DONE instruction does not provide an error barrier, as MEMBAR #Sync does
(impl. dep. #215-U3).

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address
are masked out (set to 0) before being sent to the memory system.
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Exceptions

See Also

DONE

IMPL. DEP. #417-S10: If (1) TSTATEJ[TL].pstate.am =1 and (2) a DONE instruction
is executed (which sets PSTATE.am to 1" by restoring the value from
TSTATE[TL].pstate.am to PSTATE.am), it is implementation dependent whether the
DONE instruction masks (zeroes) the more-significant 32 bits of the values it places
into PC and NPC.

Exceptions. In privileged mode (PSTATE.priv =1 and HPSTATE.hpriv = 0) or
hyperprivileged mode (HPSTATE.hpriv = 1), an attempt to execute DONE while
TL = 0 causes an illegal_instruction exception. An attempt to execute DONE (in any
mode) with instruction bits 18:0 nonzero causes an illegal_instruction exception.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), an attempt to
execute DONE causes a privileged_opcode exception.

Implementation | In nonprivileged mode, illegal_instruction exception due to TL =0
Note | does not occur. The privileged_opcode exception occurs instead,
regardless of the current trap level (TL).

A trap_level_zero disrupting trap can occur upon the completion of a DONE
instruction, if the following three conditions are true after DONE has executed:
= trap_level_zero exceptions are enabled (HPSTATE.tlz = 1),
= the virtual processor is in nonprivileged or privileged mode
(HPSTATE.hpriv = 0), and
= the trap level (TL) register’s value is zero (TL = 0)

illegal_instruction
privileged_opcode

trap_level_zero

RETRY on page 309
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EDGE<8|16|32>{L}cc

7.13  Edge Handling Instructions

Instruction opf Operation Assembly Language Syntax t Class

EDGE8cc 00000 0000 Eight 8-bit edge boundary processing  edge8cc regrs1y 1€Srs2s 1egrqg C3

EDGES8Lcc 000000010 Eight 8-bit edge boundary processing, edge8l cc regrs1, 1€Srs2y €8rd C3
little-endian

EDGEl6cc 00000 0100 Four 16-bit edge boundary processing edgel6cc regrs1, 1€Srs2y €8rd C3

EDGE16Lcc 000000110 Four 16-bit edge boundary processing, edgel6l cc  regis1, 7€9rsns 7€8rd C3
little-endian

EDGE32cc 000001000 Two 32-bit edge boundary processing  edge32cc regrs1y T€Srs2y 1€8rd C3

EDGE32Lcc 000001010 Two 32-bit edge boundary processing, edge32lcc  reg,g;, regmy, regy C3
little-endian

t The original assembly language mnemonics for these instructions did not include the “cc” suffix, as appears in the names of all other
instructions that set the integer condition codes. The old, non-"cc” mnemonics are deprecated. Over time, assemblers will support
the new mnemonics for these instructions. In the meantime, some older assemblers may recognize only the mnemonics, without “cc”.

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description These instructions handle the boundary conditions for parallel pixel scan line loops,
where R[rs1] is the address of the next pixel to render and R[rs2] is the address of
the last pixel in the scan line.

EDGES8Lcc, EDGE16Lcc, and EDGE32Lcc are little-endian versions of EDGES8cc,
EDGE16cc, and EDGE32cc. They produce an edge mask that is bit-reversed from
their big-endian counterparts but are otherwise identical. This makes the mask
consistent with the mask produced by the Partial Store instruction (see Partial Store
on page 298) on little-endian data.

A 2-bit (EDGE32cc), 4-bit (EDGE16cc), or 8-bit (EDGE8cc) pixel mask is stored in the
least significant bits of R[rd]. The mask is computed from left and right edge masks
as follows:

1. The left edge mask is computed from the 3 least significant bits of R[rs1] and the
right edge mask is computed from the 3 least significant bits of R[rs2], according
to TABLE 7-6.

2. If a 32-bit address masking is disabled (PSTATE.am = 0, 64-bit addressing) and
the upper 61 bits of R[rs1] are equal to the corresponding bits in R[rs2], R[rd] is
set to the right edge mask anded with the left edge mask.
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3. If 32-bit address masking is enabled (PSTATE.am = 1, 32-bit addressing) and bits
31:3 of R[rs1] match bits 31:3 of R[rs2], R[rd] is set to the right edge mask anded
with the left edge mask.

4. Otherwise, R[rd] is set to the left edge mask.

The integer condition codes are set per the rules of the SUBcc instruction with the
same operands (see Subtract on page 303).

TABLE 7-6 lists edge mask specifications.

TABLE7-6  Edge Mask Specification

Edge R[rsn] Big Endian Little Endian
Size  {2:0} Left Edge Right Edge Left Edge Right Edge
8 000 1111 1111 1000 0000 1111 1111 0000 0001
8 001 0111 1111 1100 0000 1111 1110 0000 0011
8 010 0011 1111 1110 0000 1111 1100 0000 0111
8 011 0001 1111 1111 0000 1111 1000 0000 1111
8 100 0000 1111 1111 1000 1111 0000 0001 1111
8 101 0000 0111 1111 1100 1110 0000 0011 1111
8 110 0000 0011 1111 1110 1100 0000 0111 1111
8 111 0000 0001 1111 1111 1000 0000 1111 1111
16 00x 1111 1000 1111 0001
16 01x 0111 1100 1110 0011
16 10x 0011 1110 1100 0111
16 11x 0001 1111 1000 1111
32 Oxx 1 10 11 01
32 1Ixx 01 11 10 11
Exceptions illegal_instruction
See Also EDGE(8,16,32){LIN on page 170
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7.14  Edge Handling Instructions (no CC)

Instruction opf Operation Assembly Language Syntax Class
EDGESN 000000001 Eight 8-bit edge boundary processing, no CC edge8n  regs;, regrs2, tegrq  C3
EDGESLN 000000011 Eight 8-bit edge boundary processing, edge8l n  regs1, 7€Qrs2s 1€Srd C3

little-endian, no CC
EDGE16N 000000101 Four 16-bit edge boundary processing, no CC edgel6n regs1, "egrs2: '€Srd C3

EDGE16LN 000000111 Four 16-bit edge boundary processing, edgel6l n regis1, regrs2, T€Srd C3
little-endian, no CC

EDGE32N 000001001 Two 32-bit edge boundary processing, no CC edge32n reg,s1, regus, regy C3

EDGE32LN 000001011 Two 32-bit edge boundary processing, edge32l n reg.s;, regisy, regy C3
little-endian, no CC

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description EDGES[L]N, EDGE16[L]N, and EDGE32[L]N operate identically to EDGE8[L]cc,
EDGE16[L]cc, and EDGE32[L]cc, respectively, but do not set the integer condition
codes.

See Edge Handling Instructions on page 168 for details.
Exceptions illegal_instruction

See Also EDGE<8,16,32>[L]cc on page 168
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7.15

Floating-Point Absolute Value

Instruction  op3

opf Operation Assembly Language Syntax Class

FABSs 11 0100 00000 1001 Absolute Value Single fabss  fregiso, fregyg Al
FABSd 110100 000001010  Absolute Value Double fabsd  fregsa fregeg Al
FABSq 11 0100 00000 1011 Absolute Value Quad fabsq  fregso, fregug C3

10

rd op3 — opf rs2

31 30 29

Description

Exceptions

25 24 19 18 14 13 5 4 0

FABS copies the source floating-point register(s) to the destination floating-point
register(s), with the sign bit cleared (set to 0).

FABSs operates on single-precision (32-bit) floating-point registers, FABSd operates on
double-precision (64-bit) floating-point register pairs, and FABSq operates on quad-
precision (128-bit) floating-point register quadruples.

These instructions clear (set to 0) both FSR.cexc and FSR fit. They do not round, do
not modify FSR.aexc, and do not treat floating-point NaN values differently from
other floating-point values.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FABSq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FABS instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FABS instruction causes an fp_disabled exception.

illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FABSq))
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7.16  Floating-Point Add

Instruction op3 opf Operation Assembly Language Syntax Class
FADDs 11 0100 00100 0001 Add Single f adds freges1, fregrsos  fregid Al
FADDd 11 0100 00100 0010 Add Double f addd fregis1,  fregrsz,  fregrd Al
FADDq 11 0100 00100 0011 Add Quad f addq freges1, fregrsos  freged C3
10 rd op3 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description The floating-point add instructions add the floating-point register(s) specified by the
rsl field and the floating-point register(s) specified by the rs2 field. The instructions
then write the sum into the floating-point register(s) specified by the rd field.

Rounding is performed as specified by FSR.rd.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FADDq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FADD instruction causes an fp_disabled exception.

If the FPU is enabled, FADDq causes an fp_exception_other (with FSR.ftt =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

Note | An fp_exception_other with FSR.ftt = unfinished_FPop can occur
if the operation detects unusual, implementation-specific
conditions.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FADDq))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (OF, UF, NX, NV)
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7.17  Align Data

10 rd | 110110 | rsi opf rs2
31 30 29 25 24 1918 1413 5 4 0
Instruction opf Operation Assembly Language Syntax Class
FALIGNDATA 001001000 Perform data alignment for faligndata fregs1, fregrsos fregq Al

misaligned data

Description FALIGNDATA concatenates the two 64-bit floating-point registers specified by rsl
and rs2 to form a 128-bit (16-byte) intermediate value. The contents of the first
source operand form the more-significant 8 bytes of the intermediate value, and the
contents of the second source operand form the less significant 8 bytes of the
intermediate value. Bytes in the intermediate value are numbered from most
significant (byte 0) to least significant (byte 15). Eight bytes are extracted from the
intermediate value and stored in the 64-bit floating-point destination register
specified by rd. GSR.align specifies the number of the most significant byte to extract
(and, therefore, the least significant byte extracted is numbered GSR.align+7).

GSR.align is normally set by a previous ALIGNADDRESS instruction.
GSR.align

bytd byte
Fplrsl] :: Fp[rs2] ol1|2|3|4|5|6|7]|8|9]|10[12]|12]|123[124]15

|12<7 Fplrsil] > | Fplrs2] "

FD[I’d]

63 0
FIGURE 7-6 FALIGNDATA

A byte-aligned 64-bit load can be performed as shown below.

al i gnaddr Address, Offset, Address !set GSR align

| dd [ Address] , %0
| dd [ Address + 8], %2
faligndata %0, %2, %4 luse GSR. align to sel ect bytes

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FALIGNDATA instruction causes an fp_disabled exception.

Exceptions fp_disabled
See Also Align Address on page 147
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FBfcc (Deprecated)

7.18

Branch on Floating-Point Condition

Codes (FBfcc)

The FBfcc instructions are deprecated and should not be used in new software.
The FBPfcc instructions should be used instead.

Opcode cond Operation fcc Test Assembly Language Syntax Class
FBAP 1000  Branch Always 1 f ba{, a} label Al
FBNP 0000 Branch Never 0 fbn{,a} label Al
FBUP 0111  Branch on Unordered U f bu{, a} label Al
FBGP 0110  Branch on Greater G f bg{, a} label Al
FBUGP 0101 Branch on Unordered or Greater GorU fbug{, a} label Al
FBLP 0100  Branch on Less L f bl {, a} label Al
FBULP 0011 Branch on Unordered or Less LorU fbul {,a} label Al
FBLGP 0010 Branch on Less or Greater LorG fbl g{, a} label Al
FBNEP 0001 Branch on Not Equal LorGorU fbnet(, a} label Al
FBEP 1001  Branch on Equal E fbef{, a} label Al
FBUEP 1010 Branch on Unordered or Equal EorU fbue{, a} label Al
FBGEP 1011  Branch on Greater or Equal Eor G fbge{, a} label Al
FBUGEP 1100 Branch on Unordered or Greater or Equal EorGorU f bugef{, a} label Al
FBLEP 1101  Branch on Less or Equal EorL fbl e{,a} label Al
FBULEP 1110  Branch on Unordered or Less or Equal EorLorU f bul e{, a} label Al
FBOP 1111  Branch on Ordered EorLorG f bo{, a} label Al

t synonym: f bnz ¥ synonym: f bz
00 |a cond 110 disp22

31 30 29 28 25 24 22 21 0
Programming | To set the annul (a) bit for FBfcc instructions, append “, a” to

Note | the opcode mnemonic. For example, use “f bl , a Iabel”. In the

preceding table, braces around “, a” signify that “, a” is
optional.
Description Unconditional and Fcc branches are described below:
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= Unconditional branches (FBA, FBN) — If its annul field is 0, an FBN (Branch
Never) instruction acts like a NOP. If its annul field is 1, the following (delay)
instruction is annulled (not executed) when the FBN is executed. In neither case
does a transfer of control take place.

FBA (Branch Always) causes a PC-relative, delayed control transfer to the address
“PC + (4 x sign_ext( disp22) )” regardless of the value of the floating-point
condition code bits. If the annul field of the branch instruction is 1, the delay
instruction is annulled (not executed). If the annul (a) bit is 0, the delay
instruction is executed.

» Fcc-conditional branches — Conditional FBfcc instructions (except FBA and
FBN) evaluate floating-point condition code zero (fcc0) according to the cond
field of the instruction. Such evaluation produces either a TRUE or FALSE result.
If TRUE, the branch is taken, that is, the instruction causes a PC-relative, delayed
control transfer to the address “PC + (4 x sign_ext(disp22))”. If FALSE, the branch
is not taken.

If a conditional branch is taken, the delay instruction is always executed,
regardless of the value of the annul (a) bit. If a conditional branch is not taken
and the annul bit is 1 (a = 1), the delay instruction is annulled (not executed).

Note | The annul bit has a different effect on conditional branches than
it does on unconditional branches.

Annulment, delay instructions, and delayed control transfers are described
further in Chapter 6.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FBfcc instruction causes an fp_disabled exception.

Exceptions fp_disabled
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7.19  Branch on Floating-Point Condition
Codes with Prediction (FBPfcc)

Instruction cond Operation fcc Test Assembly Language Syntax Class
FBPA 1000  Branch Always 1 fbaf{, a}{, pt I, pn} % ccn, label Al
FBPN 0000  Branch Never 0 fbn{, a}{, pt I, pn} % ccn, label Al
FBPU 0111  Branch on Unordered U fbu{, a}{, pt I, pn} % ccn, label Al
FBPG 0110  Branch on Greater G fbg{, a}{, pt I, pn} % ccn, label Al
FBPUG 0101  Branch on Unordered or Greater G or U fbug{, a}{, pt I, pn} % ccn, label Al
FBPL 0100  Branch on Less L fbl {, al{,pt 1, pn} % ccn, label Al
FBPUL 0011  Branch on Unordered or Less LorU fbul {,a}{,pt |, pn} % ccn, label Al
FBPLG 0010  Branch on Less or Greater LorG fblgf{,al{, pt I, pn} % ccn, label Al
FBPNE 0001  Branch on Not Equal LorGorU fbne'{, a}f, pt |, pn} 9% ccn, label Al
FBPE 1001  Branch on Equal E f be¥(, a}f, pt |, pn} 9% ccn, label Al
FBPUE 1010  Branch on Unordered or Equal EorU fbue{, a}{, pt I, pn} % ccn, label Al
FBPGE 1011  Branch on Greater or Equal Eor G fbge{, a}{, pt I, pn} % ccn, label Al
FBPUGE 1100 Branch on Unordered or Greater E or Gor U fbuge{, a}{, pt |, pn} % ccn, label Al
or Equal
FBPLE 1101  Branch on Less or Equal EorL fble{, al{,pt I, pn} % ccn, label Al
FBPULE 1110 Branch on Unordered or Lessor EorLorU fbul e{, a}{, pt |, pn} % ccn, label Al
Equal
FBPO 1111  Branch on Ordered EorLorG fbo{, al{f, ptl, pn} % ccn, label Al

t synonym: f bnz 1 synonym: f bz

00 |a cond 101  |ccl|ccO| p disp19
3130 29 28 25 24 22 21 20 19 18 0
ccl cc0 Condition Code
0 0 fcco
0 1 fccl
1 0 fcc2
1 1 fcc3
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Description

Exceptions

FBPfcc

Programming | To set the annul (a) bit for FBPfcc instructions, append “, a” to the
Note | opcode mnemonic. For example, use “f bl , a % cc3, Ilabel”. In

the preceding table, braces signify that the “, a” is optional. To set
the branch prediction bit, append either “, pt ” (for predict taken)
or “pn” (for predict not taken) to the opcode mnemonic. If neither
“, pt ” nor “, pn” is specified, the assembler defaults to “, pt ”. To
select the appropriate floating-point condition code, include

“o cc0”, “% ccl”, “% cc2”, or “% cc3” before the label.

Unconditional branches and Fcc-conditional branches are described below.

Unconditional branches (FBPA, FBPN) — If its annul field is 0, an FBPN
(Floating-Point Branch Never with Prediction) instruction acts like a NOP. If the
Branch Never’s annul field is 0, the following (delay) instruction is executed; if
the annul (a) bit is 1, the following instruction is annulled (not executed). In no
case does an FBPN cause a transfer of control to take place.

FBPA (Floating-Point Branch Always with Prediction) causes an unconditional
PC-relative, delayed control transfer to the address

“PC + (4 x sign_ext( disp19))”. If the annul field of the branch instruction is 1, the
delay instruction is annulled (not executed). If the annul (&) bit is 0, the delay
instruction is executed.

Fcc-conditional branches — Conditional FBPfcc instructions (except FBPA and
FBPN) evaluate one of the four floating-point condition codes (f cc0O,fccl,fcc2,
f cc3) as selected by cc0 and ccl, according to the cond field of the instruction,
producing either a TRUE or FALSE result. If TRUE, the branch is taken, that is, the
instruction causes a PC-relative, delayed control transfer to the address

“PC + (4 x sign_ext( disp19))”. If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed,
regardless of the value of the annul (a) bit. If a conditional branch is not taken
and the annul bit is 1 (a = 1), the delay instruction is annulled (not executed).

Note | The annul bit has a different effect on conditional branches than it
does on unconditional branches.

The predict bit (p) gives the hardware a hint about whether the branch is expected
to be taken. A 1 in the p bit indicates that the branch is expected to be taken. A 0
indicates that the branch is expected not to be taken.

Annulment, delay instructions, and delayed control transfers are described further
in Chapter 6, Instruction Set Overview.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FBPfcc instruction causes an fp_disabled exception.

fp_disabled
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7.20 SIMD Signed Compare [VIS1]

Instruction opf Operation sl d Assembly Language Syntax Class
FCMPLE16 0 0010 0000 Four 16-bit compare; f64 fo4 i64 fcnpl el6 fregrsy, fregrsa, 1€8rd C3
set R[rd] if srcl < src2
FCMPNE16 00010 0010 Four 16-bit compare; f64 fo4 i64 fcnpnel6 fregsy, fregrso, 1€8rd C3
set R[rd] if src1 # src2
FCMPLE32 00010 0100 Two 32-bit compare; f64 fo4 i64 fcnpl €32 fregsy, fregrsa, 1€8rd C3
set R[rd] if srcl < src2
FCMPNE32 00010 0110 Two 32-bit compare; f64 fo4 i64 fcnpne32 fregsy, fregrso, 1€8rd C3
set R[rd] if src1 # src2
FCMPGT16 00010 1000 Four 16-bit compare; f64 fo4 i64 fcnpgt 16 fregrsy, fregrso, 1€8rd C3
set R[rd] if src1 > src2
FCMPEQ16 00010 1010 Four 16-bit compare; f64 fo4 i64 fcnpeql6 fregsy, fregrso, 1€8rd C3
set R[rd] if src1 = src2
FCMPGT32 00010 1100 Two 32-bit compare; f64 fo4 i64 fcnpgt 32 fregsy, fregrso, 1€8rd C3
set R[rd] if src1 > src2
FCMPEQ32 00010 1110 Two 32-bit compare; f64 fo4 i64 fcnpeq32 fregsy, fregrso, 1€8rd C3
set R[rd] if src1 = src2
10 rd | 110110 opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description Either four 16-bit signed values or two 32-bit signed values in Fp[rs1] and Fp[rs2]

are compared. The 4-bit or 2-bit condition-code results are stored in the least

significant bits of the integer register R[rd]. The least significant 16-bit or 32-bit
compare result corresponds to bit zero of R[rd].

Note | Bits 63:4 of the destination register R[rd] are set to zero for 16-bit
compares. Bits 63:2 of the destination register R[rd] are set to
zero for 32-bit compares.

For FCMPGT{16,32}, each bit in the result is set to 1 if the corresponding signed
value in Fp[rsl] is greater than the signed value in Fp[rs2]. Less-than comparisons
are made by swapping the operands.

For FCMPLE(16,32}, each bit in the result is set to 1 if the corresponding signed value
in Fp[rsl] is less than or equal to the signed value in Fp[rs2]. Greater-than-or-equal
comparisons are made by swapping the operands.

For FCMPEQ({16,32}, each bit in the result is set to 1 if the corresponding signed
value in Fp[rsl] is equal to the signed value in Fp[rs2].
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For FCMPNE{16,32}, each bit in the result is set to 1 if the corresponding signed
value in Fp[rs1] is not equal to the signed value in Fp[rs2].

FIGURE 7-7 and FIGURE 7-8 illustrate 16-bit and 32-bit pixel comparison operations,
respectively.

Fplrsi]
63 48" 47 32 31 16 15 0
fcmp[gt, le, eq, ne, It, ge]16
Fplrs2]
R[rd]

FIGURE 7-7  Four 16-bit Signed Fixed-point SIMD Comparison Operations

Fplrsi]
63 32 31 o
femp[gt, le, eq, ne, It ge]32
Fplrs2]
R[rd]

FIGURE 7-8 Two 32-bit Signed Fixed-point SIMD Comparison Operation

In all comparisons, if a compare condition is not true, the corresponding bit in the
result is set to 0.

Programming | The results of a SIMD signed compare operation can be used
Note | directly by both integer operations (for example, partial stores)
and partitioned conditional moves.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a SIMD signed compare instruction causes an fp_disabled
exception.
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Exception fp_disabled

See Also STPARTIALF on page 341
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721  Floating-Point Compare

Instruction opf Operation Assembly Language Syntax Class
FCMPs 001010001  Compare Single fcps Y ccn, freger, fregrso Al
FCMPd 001010010  Compare Double fcnpd 9 ccn, fregsr, fregrsa Al
FCMPq 001010011  Compare Quad fcpg Y ccn, freger, fregrso C3
FCMPEs 001010101  Compare Single and Exception if fcnpes 9 ccn, fregsr, fregsn Al
Unordered
FCMPEd 001010110  Compare Double and Exception if fcnped 9% ccn, fregsr, fregso Al
Unordered
FCMPEq 001010111  Compare Quad and Exception if fcnpeq % ccn, freger, fregrso C3
Unordered
10 — |ccelfecO 110101 rsl opf rs2
31 30 29 27 26 25 24 19 18 14 13 5 4 0
ccl cco Condition Code
0 0 fcco
0 1 fcecl
1 0 fcc2
1 1 fce3

Description These instructions compare the floating-point register(s) specified by the rs1 field
with the floating-point register(s) specified by the rs2 field, and set the selected
floating-point condition code (f ccn) as shown below.

fcc value Relation

0 fregrs1 = fregrss

1 fregrs1 < fregrs2

2 fregrs1 > fregrs2

3 fregrs1 ? fregrso (unordered)

The “?” in the preceding table means that the comparison is unordered. The
unordered condition occurs when one or both of the operands to the compare is a
signalling or quiet NaN.
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The “compare and cause exception if unordered” (FCMPEs, FCMPEd, and FCMPEq)
instructions cause an invalid (NV) exception if either operand is a NaN.

FCMP causes an invalid (NV) exception if either operand is a signalling NaN.

V8 Compatibility | Unlike the SPARC V8 architecture, SPARC V9 and the

Note | UltraSPARC Architecture do not require an instruction between a
floating-point compare operation and a floating-point branch
(FBfcc, FBPfcc).

SPARC V8 floating-point compare instructions are required to
have rd = 0. In SPARC V9 and the UltraSPARC Architecture, bits
26 and 25 of the instruction (rd{1:0}) specify the floating-point
condition code to be set. Legal SPARC V8 code will work on
SPARC V9 and the UltraSPARC Architecture because the zeroes
in the R[rd] field are interpreted as f ccO and the FBfcc
instruction branches based on the value of f ccO.

An attempt to execute an FCMP instruction when instruction bits 29:27 are nonzero
causes an illegal_instruction exception.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware the instructions that refer to quad-precision floating-
point registers. An attempt to execute FCMPq or FCMPEq
generates fp_exception_other (with
FSR.ftt = unimplemented_FPop), which causes a trap, allowing
privileged software to emulate the instruction.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FCMP or FCMPE instruction causes an fp_disabled exception.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

illegal_instruction

fp_disabled

fp_exception_ieee_754 (NV)

fp_exception_other (FSR.ftt = unimplemented_FPop (FCMPq, FCMPEq only))

182 UltraSPARC Architecture 2005 ¢ Draft D0.8.7, 27 Mar 2006



FDIV<s|d|g>

7.22

Floating-Point Divide

Instruction op3

opf Operation Assembly Language Syntax Class

FDIVs
FDIVd
FDIVq

11 0100
11 0100
11 0100

00100 1101
00100 1110
00100 1111

Divide Single fdivs
Divide Double

Divide Quad

fregrst,  fregrsas fregrg Al
fdivd fregis1, fregisos freg Al
fdivg fregisi, fregsos freg C3

10

rd op3 rsl opf rs2

31 30 29

Description

Exceptions

25 24 19 18 14 13 5 4 0
The floating-point divide instructions divide the contents of the floating-point

register(s) specified by the rsl field by the contents of the floating-point register(s)
specified by the rs2 field. The instructions then write the quotient into the floating-

point register(s) specified by the rd field.
Rounding is performed as specified by FSR.rd.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FCMP or FCMPE instruction causes an fp_disabled exception.

If the FPU is enabled, FDIVq causes an fp_exception_other (with FSR.ftt =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

Note | For FDIVs and FDIVd, an fp_exception_other with
FSRftt = unfinished_FPop can occur if the divide unit detects
unusual, implementation-specific conditions.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

illegal_instruction

fp_disabled

fp_exception_other (FSR.ftt = unimplemented_FPop (FDIVq only))
fp_exception_other (FSR.ftt = unfinished_FPop (FDIVs, FDIV))
fp_exception_ieee_754 (OF, UF, DZ, NV, NX)
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723  FEXPAND

Instruction opf Operation sl s2 d Assembly Language Syntax Class
FEXPAND 00100 1101 Four 16-bit expands — 32 fe4 fexpand fregso, fregrg C3
10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description FEXPAND takes four 8-bit unsigned integers from Fg[rs2], converts each integer to a
16-bit fixed-point value, and stores the four resulting 16-bit values in a 64-bit
floating-point register Fp[rd]. FIGURE 7-10 illustrates the operation.

Fslrs2] | — /
31 2 23 }16 8 y 0
Fplrdl | o000 <& 0000 | 0000 & 0000 | 0000 A& 0000 | 0000 0000
63 60 59 52 51 48 47 44 43 36 35 32 31 28 27 20 19 16 15 12 11 43 0

FIGURE 7-9 FEXPAND Operation

This operation is carried out as follows:
1. Left-shift each 8-bit value by 4 and zero-extend each result to a 16-bit fixed value.

2. Store the result in the destination register, Fp[rd].

Programming | FEXPAND performs the inverse of the FPACK16 operation.
Note

In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and is emulated in

software.
Exceptions illegal_instruction
See Also FPMERGE on page 219

FPACK on page 210
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7.24  Convert 32-bit Integer to Floating Point

Assembly Language

Instruction op3 opf Operation sl s2 d Syntax Class

FiTOs 11 0100 011000100 Convert 32-bit Integer to — 32 {32 fit 0S fregisz, fregy Al
Single

FiTOd 110100 011001000 Convert 32-bit Integer to — 32 f64 fit od fregsp, fregiq Al
Double

FiTOq 110100 011001100  Convert 32-bit Integer to —  f32 {128 fit 0q fregrsz, fregr C3
Quad

10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description  FiTOs, FiTOd, and FiTOq convert the 32-bit signed integer operand in floating-point
register Fg[rs2] into a floating-point number in the destination format. All write
their result into the floating-point register(s) specified by rd.

The value of FSR.rd determines how rounding is performed by FiTOs.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FiTOq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FiTO(s,d,q) instruction when instruction bits 18:14 are
nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FiTO(s,d,q) instruction causes an fp_disabled exception.

If the FPU is enabled, FiTOq causes an fp_exception_other (with FSR.ftt =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FiTOq))
fp_exception_ieee_754 (NX (FiTOs only))
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7.25

Flush Instruction Memory

Instruction op3 Operation Assembly Language Syntaxt Class

FLUSH 111011 Flush Instruction Memory flush [address] Al

t The original assembly language syntax for a FLUSH instruction (“f | ush address”) has been deprecated be-
cause of inconsistency with other SPARC assembly language syntax. Over time, assemblers will support the
new syntax for this instruction. In the meantime, some existing assemblers may only recognize the original syn-
tax.

10 — op3 rsi i=0 — rs2
10 — op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description FLUSH ensures that the aligned doubleword specified by the effective address is

consistent across any local caches and, in a multiprocessor system, will eventually
(impl. dep. #122-V9) become consistent everywhere.

The SPARC V9 instruction set architecture does not guarantee consistency between
instruction memory and data memory. When software writes (stores) to a memory
location containing an instruction (self-modifying code!), a potential memory
consistency problem arises, which is addressed by the FLUSH instruction. Use of
FLUSH ensures that instruction and data memory are synchronized after instruction
memory has been modified.

The virtual processor waits until all previous (cacheable) stores have completed
before issuing a FLUSH instruction. For the purpose of memory ordering, a FLUSH
instruction behaves like a store instruction.

In the following discussion Py gy refers to the virtual processor that executed the
FLUSH instruction.

FLUSH causes a synchronization within a virtual processor which ensures that
instruction fetches from the specified effective address by P ysy appear to execute
after any loads, stores, and atomic load-stores to that address issued by Pg ygy prior
to the FLUSH. In a multiprocessor system, FLUSH also ensures that these values will
eventually become visible to the instruction fetches of all other virtual processors in
the system. With respect to MEMBAR-induced orderings, FLUSH behaves as if it
was a store operation (see Memory Barrier on page 271).

If i = 0, the effective address operand for the FLUSH instruction is “R[rs1] + R[rs2]”;
ifi=1, it is “R[rs1] + sign_ext (simm13)”. The three least-significant three bits of
the effective address are ignored; that is, the effective address always refers to an

aligned doubleword.
1 practiced, for example, by software such as debuggers and dynamic linkers
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See implementation-specific documentation for details on specific implementations
of the FLUSH instruction.

On an UltraSPARC Architecture processor:

= A FLUSH instruction causes a synchronization within the virtual processor on
which the FLUSH is executed, which flushes its instruction pipeline to ensure that
no instruction already fetched has subsequently been modified in memory. Any
other virtual processors on the same physical processor are unaffected by a
FLUSH.

= Coherency between instruction and data memories may or may not be
maintained by hardware.

IMPL. DEP. #409-S10-Cs20: The implementation of the FLUSH instruction is
implementation dependent. If the implementation automatically maintains
consistency between instruction and data memory,
(1) the FLUSH address is ignored and
(2) the FLUSH instruction cannot cause any data access exceptions, because

its effective address operand is not translated or used by the MMU.
On the other hand, if the implementation does not maintain consistency between
instruction and data memory, the FLUSH address is used to access the MMU and the
FLUSH instruction can cause data access exceptions.

Programming | For portability across all SPARC V9 implementations, software
Note | must always supply the target effective address in FLUSH
instructions.

» If the implementation contains instruction prefetch buffers:
= the instruction prefetch buffer(s) are invalidated

= instruction prefetching is suspended, but may resume starting with the
instruction immediately following the FLUSH

Programming | 1.Typically, FLUSH is used in self-modifying code.
Notes | The use of self-modifying code is discouraged.

2. If a program includes self-modifying code, to be portable it must
issue a FLUSH instruction for each modified doubleword of
instructions (or make a call to privileged software that has an
equivalent effect) after storing into the instruction stream.
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Implementation
Note

V9 Compatibility
Note

FLUSH

3. The order in which memory is modified can be controlled by
means of FLUSH and MEMBAR instructions interspersed
appropriately between stores and atomic load-stores. FLUSH is
needed only between a store and a subsequent instruction fetch
from the modified location. When multiple processes may
concurrently modify live (that is, potentially executing) code, the
programmer must ensure that the order of update maintains the
program in a semantically correct form at all times.

4. The memory model guarantees in a uniprocessor that data loads
observe the results of the most recent store, even if there is no
intervening FLUSH.

5. FLUSH may be a time-consuming operation.
(see the Implementation Note below)

6. In a multiprocessor system, the effects of a FLUSH operation
will be globally visible before any subsequent store becomes
globally visible.

7. FLUSH is designed to act on a doubleword. On some
implementations, FLUSH may trap to system software. For these
reasons, system software should provide a service routine,
callable by nonprivileged software, for flushing arbitrarily-sized
regions of memory. On some implementations, this routine
would issue a series of FLUSH instructions; on others, it might
issue a single trap to system software that would then flush the
entire region.

8. FLUSH operates using the current (implicit) context. Therefore,
a FLUSH executed in privileged or hyperprivileged mode will
use the nucleus context and will not necessarily affect instruction
cache lines containing data from a user (nonprivileged) context.

In a multiprocessor configuration, FLUSH requires all processors
that may be referencing the addressed doubleword to flush their
instruction caches, which is a potentially disruptive activity.

The effect of a FLUSH instruction as observed from the virtual
processor on which FLUSH executes is immediate. Other virtual
processors in a multiprocessor system eventually will see the
effect of the FLUSH, but the latency is implementation dependent.

An attempt to execute a FLUSH instruction when instruction bits 29:25 are nonzero
causes an illegal_instruction exception.

Exceptions illegal_instruction

fast_data_access_MMU_miss (TLB miss with hardware tablewalk disabled)

(impl. dep. #409-510-Cs20)
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data_access_MMU_miss (TLB miss with hardware tablewalk enabled)
(impl. dep. #409-510-Cs20)
fast_data_access_protection
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7.26  Flush Register Windows

Instruction op3 Operation Assembly Language Syntax Class
FLUSHW 101011  Flush Register Windows flushw Al
10 — op3 — i=0 —
31 30 29 25 24 19 18 14 13 12 0

Description FLUSHW causes all active register windows except the current window to be
flushed to memory at locations determined by privileged software. FLUSHW
behaves as a NOP if there are no active windows other than the current window. At
the completion of the FLUSHW instruction, the only active register window is the
current one.

Programming | The FLUSHW instruction can be used by application software to
Note | flush register windows to memory so that it can switch memory
stacks or examine register contents from previous stack frames.

FLUSHW acts as a NOP if CANSAVE = N_REG_WINDOWS — 2. Otherwise, there is
more than one active window, so FLUSHW causes a spill exception. The trap vector
for the spill exception is based on the contents of OTHERWIN and WSTATE. The spill
trap handler is invoked with the CWP set to the window to be spilled (that is,
(CWP + CANSAVE + 2) mod N_REG_WINDOWS). See Register Window Management
Instructions on page 129.

Programming | Typically, the spill handler saves a window on a memory stack
Note | and returns to reexecute the FLUSHW instruction. Thus, FLUSHW
traps and reexecutes until all active windows other than the
current window have been spilled.

An attempt to execute a FLUSHW instruction when instruction bits 29:25, 18:14, or
12:0 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
spill_n_normal
spill_n_other
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7.27  Floating-Point Move

Instruction  op3 opf Operation Assembly Language Syntax Class
FMOVs 11 0100 00000 0001 Move (copy) Single fnovs fregrsa,  fregrg Al
FMOVd 11 0100 0 0000 0010 Move (copy) Double f movd fregrso,  fregrg Al
FMOVq 110100 00000 0011 Move (copy) Quad fnovq fregrso,  fregg C3
10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description FMOV copies the source floating-point register(s) to the destination floating-point
register(s), unaltered.

FMOVs, FMOVd, and FMOV(q perform 32-bit, 64-bit, and 128-bit operations,
respectively.

These instructions clear (set to 0) both FSR.cexc and FSR fit. They do not round, do
not modify FSR.aexc, and do not treat floating-point NaN values differently from
other floating-point values.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOV(q instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FMOV instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FMOV instruction causes an fp_disabled exception.

If the FPU is enabled, an attempt to execute an FMOV(q instruction causes an
fp_exception_other (with FSR ftt = unimplemented_FPop), since that instruction is
not implemented in hardware in UltraSPARC Architecture 2005 implementations.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FMOVq only))
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See Also F Register Logical Operate (2 operand) on page 225
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7.28

FMOVcc

Move Floating-Point Register on
Condition (FMOVcc)

Instruction opf_low Operation Assembly Language Syntax Class

FMOVSicc 000001 Move Floating-Point Single, fovsicc % cc, fregso, fregrg Al
based on 32-bit integer condition codes

FMOVDicc 000010 Move Floating-Point Double, fmovdicc % cc, fregrso, fregrg Al
based on 32-bit integer condition codes

FMOVQicc 000011 Move Floating-Point Quad, fmovaicc % cc, fregrso, fregrg C3
based on 32-bit integer condition codes

FMOVSxcc 000001 Move Floating-Point Single, fmovsxce MXcc, fregrso, fregrg Al
based on 64-bit integer condition codes

FMOVDxcc 000010 Move Floating-Point Double, fmovdxce Xcc, fregso, fregrg Al
based on 64-bit integer condition codes

FMOVQxcc 000011 Move Floating-Point Quad, fmovaxce 9Xcc, fregrso, fregrg C3
based on 64-bit integer condition codes

FMOVSfcc 000001  Move Floating-Point Single, frovsfce 9% ccn, fregiso, fregrg Al
based on floating-point condition codes

FMOVDfcc 000010 Move Floating-Point Double, fovdfcc % ccn, fregigo, fregrg Al
based on floating-point condition codes

FMOVQfcc 000011 Move Floating-Point Quad, fovafec % ccn, fregso, fregrg  C3
based on floating-point condition codes

10 rd 110101 0 cond opf_cc opf_low rs2
31 30 29 25 24 19 18 17 1413 11 10 5 4 0
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Encoding of the cond Field for F.P. Moves Based on Integer Condition Codes (icC or Xcc)

icc/xcc name(s) in
Assembly Language

cond  Operation icc / xcc Test Mnemonics
1000 Move Always 1 a
0000 Move Never 0 n
1001  Move if Not Equal not Z ne (or nz)
0001 Move if Equal Z e (or z)
1010 Move if Greater not (Z or (N xor V)) g
0010 Move if Less or Equal Z or (N xor V) e
1011  Move if Greater or Equal not (N xor V) ge
0011 Move if Less N xor V I

1100 Move if Greater Unsigned not (C or Z) gu
0100 Move if Less or Equal Unsigned (CorZ) I eu
1101  Move if Carry Clear (Greater or Equal, Unsigned) not C cc (or geu)
0101 Move if Carry Set (Less than, Unsigned) C cs (orlu)
1110  Move if Positive not N pos
0110 Move if Negative N neg
1111 Move if Overflow Clear not V vec
0111  Move if Overflow Set \Y Vs
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FMOVcc

Encoding of the cond Field for F.P. Moves Based on Floating-Point Condition Codes (fccn)

fcc name(s) in Assembly

cond  Operation fcen Test Language Mnemonics
1000 Move Always 1 a
0000 Move Never 0 n
0111  Move if Unordered U u
0110 Move if Greater G g
0101 Move if Unordered or Greater GorU ug
0100 Move if Less L I

0011 Move if Unordered or Less LorU ul
0010 Move if Less or Greater LorG g
0001 Move if Not Equal LorGorU ne (or nz)
1001 Move if Equal E e (orz
1010 Move if Unordered or Equal EorU ue
1011  Move if Greater or Equal Eor G ge
1100 Move if Unordered or Greater or Equal E or G or U uge
1101  Move if Less or Equal EorL le
1110  Move if Unordered or Less or Equal EorLorU ule
1111 Move if Ordered EorLorG o]

Encoding of opf_cc Field (also see TABLE E-10 on page 484)

Condition Code
opf_cc Instruction to be Tested

100, FEMOV(S,D,Q)icc icc
110, FMOV(S,D,Q)xcc xcc
000, FMOV(S,D,Q)fcc fccO

001, fccl
010, fcc2
011, fcc3

101,  (illegal_instruction exception)
111,
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FMOVcc

The FMOVcc instructions copy the floating-point register(s) specified by rs2 to the
floating-point register(s) specified by rd if the condition indicated by the cond field is
satisfied by the selected floating-point condition code field in FSR. The condition
code used is specified by the opf_cc field of the instruction. If the condition is
FALSE, then the destination register(s) are not changed.

These instructions read, but do not modify, any condition codes.

These instructions clear (set to 0) both FSR.cexc and FSR ftt. They do not round, do
not modify FSR.aexc, and do not treat floating-point NaN values differently from
other floating-point values.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOVQicc, FMOVQxcc, or
FMOVQfcc instruction causes an illegal_instruction exception,
allowing privileged software to emulate the instruction.

An attempt to execute an FMOVcc instruction when instruction bit 18 is nonzero or
opf_cc =101, or 111, causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FMOVQicc, FMOVQxcc, or FMOVQfcc instruction causes an
fp_disabled exception.

If the FPU is enabled, an attempt to execute an FMOVQicc, FMOVQxcc, or
FMOVQfcc instruction causes an fp_exception_other (with FSR.ftt =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.
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Exceptions

Programming
Note

illegal_instruction
fp_disabled

FMOVcc

Branches cause the performance of most implementations to
degrade significantly. Frequently, the MOVcc and FMOVcc
instructions can be used to avoid branches. For example, the
following C language segment:

double A, B, X
if (A>B) then X = 1.03; else X = 0.0;

can be coded as

I assune Ais in %0; Bisin %2, %x points to

I constant area
| dd [ %x+C_1.03], % 4 ' X =1.03
ferpd % cc3,%0, % 2 I A>B
fble,a % cc3, | abel
I followi ng instructiononly executed if the
I precedi ng branch was taken
fsubd 9% 4,%4,%4 I X =0.0

label : ...

This code takes four instructions including a branch.
With FMOVcgc, this could be coded as

| dd [ %x+C 1.03],% 4 ' X =1.03
fsubd % 4,%4,%6 ' X =0.0
fcnpd % cc3,%0,% 2 I A>B

frovdl e % cc3,% 6, % 4 I' X =0.0

This code also takes four instructions but requires no branches
and may boost performance significantly. Use MOVcc and
FMOVcc instead of branches wherever these instructions would
improve performance.

fp_exception_other (FSR.ftt = unimplemented_FPop (opf_cc = 101, or 111,))
fp_exception_other (FSR.ftt = unimplemented_FPop (FMOVQ instructions only))
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7.29

FMOVR

Move Floating-Point Register on Integer
Register Condition (FMOVR)

Instruction rcond opf_low Operation Test Class
— 000 00101 Reserved — —
FMOVRsZ 001 00101 Move Single if Register = 0 R[rs1]=0 A1l
FMOVRsLEZ 010 00101 Move Single if Register < 0 Rrs1]<0 A1l
FMOVRsLZ 011 00101 Move Single if Register < 0 R[rs1] <0 A1l
— 100 00101 Reserved — —
FMOVRsNZ 101 00101 Move Single if Register # 0 R[rs1]#0 Al
FMOVRsGZ 110 00101 Move Single if Register > 0 R[rsl]>0 Al
FMOVRsGEZ 111 00101 Move Single if Register = 0 R[rsl]=z0 Al
— 000 00110 Reserved — —
FMOVRdZ 001 00110 Move Double if Register = 0 R[rs1]=0 Al
FMOVRALEZ 010 00110 Move Double if Register < 0 R[rs1]<0 A1l
FMOVRdALZ 011 00110 Move Double if Register < 0 R[rs1] <0 Al
— 100 00110 Reserved — —
FMOVRdANZ 101 00110 Move Double if Register # 0 R[rs1]#0 Al
FMOVRAGZ 110 00110 Move Double if Register > 0 R[rs1] >0 A1l
FMOVRAGEZ 111 00110 Move Double if Register = 0 R[rs1]=0 Al
— 000 00111 Reserved — —
FMOVRqgZ 001 00111 Move Quad if Register = 0 R[rs1]=0 C3
FMOVRqLEZ 010 00111 Move Quad if Register < 0 R[rsl]<0 C3
FMOVRqLZ 011 00111 Move Quad if Register < 0 R[rs1]<0 C3
— 100 00111 Reserved — —
FMOVRgNZ 101 00111 Move Quad if Register # 0 R[rs1]#0 C3
FMOVRqGZ 110 00111 Move Quad if Register > 0 R[rs1]>0 C3
FMOVRqGEZ 111 00111 Move Quad if Register = 0 R[rs1]=0 C3
10 rd 110101 rsl 0| rcond opf_low rs2
31 30 29 25 24 19 18 14 13 12 10 9 5
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Description

FMOVR

Assembly Language Syntax

frovr{s,d, qjz regs1, fregrsz, fregrg (synonym: f movr {s, d, q}e)
frovr (s, d, q}l ez reg,s1, fregrso, fregrg

frovr{s, d, g}l regrs1: fregrsa, fregrd

{ }

{ }

{ I z

frovr (s, d, qinz regs1, fregrsz, fregrd (synonym: f movr {s, d, qjne)
{ }
{ }

frovri{s,d, algz regrs1, fregrsa, fregra
frovr s, d, qlgez reg,s1, fregrsz, fregrg

If the contents of integer register R[rs1] satisfy the condition specified in the rcond
field, these instructions copy the contents of the floating-point register(s) specified
by the rs2 field to the floating-point register(s) specified by the rd field. If the
contents of R[rs1] do not satisfy the condition, the floating-point register(s) specified
by the rd field are not modified.

These instructions treat the integer register contents as a signed integer value; they
do not modify any condition codes.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do
not modify FSR.aexc, and do not treat floating-point NaN values differently from
other floating-point values.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOVRq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FMOVR instruction when instruction bit 13 is nonzero or
rcond = 000, or 100, causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FMOVR instruction causes an fp_disabled exception.

If the FPU is enabled, an attempt to execute an FMOVR(q instruction causes an
fp_exception_other (with FSR.ftt = unimplemented_FPop), since that instruction is
not implemented in hardware in UltraSPARC Architecture 2005 implementations.
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Implementation | If this instruction is implemented by tagging each register value
Note | with an N (negative) and a Z (zero) condition bit, use the
following table to determine whether rcond is TRUE:

Branch Test
FMOVRNZ not Z
FMOVRZ Z

FMOVRGEZ not N
FMOVRLZ N
FMOVRLEZ NorZ
FMOVRGZ N nor Z

Exceptions fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (rcond = 000, or 100,))
fp_exception_other (FSR.ftt = unimplemented_FPop (FMOVRq))
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7.30

FMUL (partitioned)

Partitioned Multiply Instructions

Instruction opf Operation sl s2 d Assembly Language Syntax Class
FMULS8x16 00011 0001 Unsigned 8-bit by signed 16-bit 32 f64 f64 f mul 8x16  fregsy, fregrsz, fregq C3
partitioned product
FMULS8x16AU 00011 0011 Unsigned 8-bit by signed 16-bit {32 {32 f64 f nul 8x16au freg,s1, fregiso, fregrg C3
upper a partitioned product
FMULSx16AL 00011 0101 Unsigned 8-bit by signed 16-bit £32 £32 f64 f mul 8x16al fregys;, fregrso, fregrg C3
lower a partitioned product
FMUL8SUx16 00011 0110 Signed upper 8-bit by signed 32 f64 f64 f mul 8sux16 freg,s1, fregrsz, fregq C3
16-bit partitioned product
FMULSULx16 000110111 Unsigned lower 8-bit by signed 32 f64 f64 f mul 8ul x16 freg,s1, fregrsz, fregrg C3
16-bit partitioned product
FMULDS8SUx16 000111000 Signed upper 8-bit by signed 32 £32 {64 f mul d8sux16 freg,s1, fregrsz, fregq C3
16-bit partitioned product
FMULDS8ULx16 00011 1001 Unsigned lower 8-bit by signed 32 £32 64 f mul d8ul x16 fregs1, fregrsz, fregq C3
16-bit partitioned product
10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Programming | When software emulates an 8-bit unsigned by 16-bit signed
Note | multiply, the unsigned value must be zero-extended and the 16-bit
value sign-extended before the multiplication.
Description The following sections describe the versions of partitioned multiplies.
In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an illegal_instruction exception, and are emulated
in software.
Exceptions illegal_instruction

CHAPTER 7 - Instructions 201
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7.30.1 FMULS8x16 Instruction

FMULS8x16 multiplies each unsigned 8-bit value (for example, a pixel component) in
the 32-bit floating-point register Fg[rs1] by the corresponding (signed) 16-bit fixed-
point integer in the 64-bit floating-point register Fp[rs2]. It rounds the 24-bit product
(assuming binary point between bits 7 and 8) and stores the most significant 16 bits
of the result into the corresponding 16-bit field in the 64-bit floating-point
destination register Fp[rd]. FIGURE 7-10 illustrates the operation.

Note | This instruction treats the pixel component values as fixed-point
with the binary point to the left of the most significant bit.
Typically, this operation is used with filter coefficients as the fixed-
point rs2 value and image data as the rsl pixel value. Appropriate
scaling of the coefficient allows various fixed-point scaling to be

realized.
Flrsi1] /
31 y[s 16 7{ 8 7 / 0
Flrs2] | | | | /
63 * /8’ 47 * /éz 31 * '/ 16 15 ** 0
Xms16b XMs16b XMs16b XMs16b
Flrd] ¢ ¢ ¢ ¢
63 48 47 32 31 16 15 0

FIGURE 7-10 FMULS8x16 Operation
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7.30.2

7.30.3

Fslrsil

Fs[r51]

Fslrs2]

FD[rd]

FMUL (partitioned)
FMUL8Xx16AU Instruction

FMULS8x16AU is the same as FMULS8x16, except that one 16-bit fixed-point value is
used as the multiplier for all four multiplies. This multiplier is the most significant
(“upper”) 16 bits of the 32-bit register Fg[rs2] (typically an a pixel component
value). FIGURE 7-11 illustrates the operation.

Fs[rSZ] |

e

63 48 47 32 31 16 15 0

FIGURE 7-11 FMUL8x16AU Operation

FMUL8X16AL Instruction

FMULS8x16AL is the same as FMUL8x16AU, except that the least significant
(“lower”) 16 bits of the 32-bit register Fg[rs2] register are used as a multiplier.
FIGURE 7-12 illustrates the operation.

63 48 47 32 31 16 15 0

FIGURE 7-12 FMUL8Xx16AL Operation
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7.30.4 FMULS8SUx16 Instruction

FMUL8SUx16 multiplies the most significant (“upper”) 8 bits of each 16-bit signed
value in the 64-bit floating-point register Fp[rs1] by the corresponding signed, 16-bit,
fixed-point, signed integer in the 64-bit floating-point register Fp[rs2]. It rounds the
24-bit product toward the nearest representable value and then stores the most
significant 16 bits of the result into the corresponding 16-bit field of the 64-bit
floating-point destination register Fp[rd]. If the product is exactly halfway between
two integers, the result is rounded toward positive infinity. FIGURE 7-13 illustrates the
operation.

e I S T ) B N

R |

63 \56 55 48 47 \<O 39 32 31 \§4 23 16 15 \€ 7 0

Folrs2] \ \ \ \

63 ** 48 47 ** 32 31 ** 16 15 ** 0
XMs16b XMs16b XMs16b XMs16b
Fplrd]
63 48 47 32 31 16 15 0

FIGURE 7-13 FMUL8SUx16 Operation

7.30.5 FMUL8SULX16 Instruction

FMULSULXx16 multiplies the unsigned least significant (“lower”) 8 bits of each 16-bit
value in the 64-bit floating-point register Fp[rs1] by the corresponding fixed-point
signed 16-bit integer in the 64-bit floating-point register Fp[rs2]. Each 24-bit product
is sign-extended to 32 bits. The most significant (“upper”) 16 bits of the sign-
extended value are rounded to nearest and then stored in the corresponding 16-bit
field of the 64-bit floating-point destination register Fp[rd]. If the result is exactly
halfway between two integers, the result is rounded toward positive infinity.
FIGURE 7-14 illustrates the operation; CODE EXAMPLE 7-1 exemplifies the operation.
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7.30.6

FMUL (partitioned)

Fplrs2]

Fplrsi] Ir____ T T T
"63” 5655 | 48 47 40 39 | 32 31 24 23 | 16 15 8 7 0
] ] ] ]

Tw T w2 o 0

v

X .
sign-extended, X sign-extended, X sign-extended, X sign-extended,
‘MSle ¢ MS16b ¢ MS16b ¢ MS16b
FD[rd]
63 48 47 32 31 16 15 0

FIGURE 7-14 FMUL8ULXx16 Operation

CODE EXAMPLE 7-1  16-bit x 16-bit 16-bit Multiply

f mul 8sux16 %0, %1, %2
f mul 8ul x16 %0, %1, %3
f paddl16 %2, %3, %4

FMULDS8SUx16 Instruction

FMULDB8SUx16 multiplies the most significant (“upper”) 8 bits of each 16-bit signed
value in F[rs1] by the corresponding signed 16-bit fixed-point value in F[rs2]. Each
24-bit product is shifted left by 8 bits to generate a 32-bit result, which is then stored
in the 64-bit floating-point register specified by rd. FIGURE 7-15 illustrates the

operation.
Fslrsi] \ T \ T -;
31 \24 23 16 15 \87___0
Fslrs2] \

| |
31 ** 16 15 * * 0

X X
Fplrd] 4 |50000000 ~ 00000000
63 20 39 32 31 8 7 0

FIGURE 7-15 FMULD8SUx16 Operation
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7.30.7

Fslrs2]

FD[rd]

FMUL (partitioned)
FMULDSULX16 Instruction

FMULDS8ULx16 multiplies the unsigned least significant (“lower”) 8 bits of each 16-
bit value in F[rs1] by the corresponding 16-bit fixed-point signed integer in F[rs2].
Each 24-bit product is sign-extended to 32 bits and stored in the corresponding half
of the 64-bit floating-point register specified by rd. FIGURE 7-16 illustrates the

operation; CODE EXAMPLE 7-2 exemplifies the operation.

Fr— - - _

Fglrsi] | | / | | / |
31 24 23/ 16 15 87 / 0
31 ** 16 15 ** 0
X sign-extended X sign-extended
63 32 31 0

FIGURE 7-16 FMULD8ULXx16 Operation

CODE EXAMPLE 7-2  16-bit x 16-bit 32-bit Multiply

frul d8sux16 %0, % 1, 9% 2
frrul d8ul x16 %0, %1, %3
f padd32 %2, %3, %4
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FMUL<s|d|g>

7.31

Floating-Point Multiply

Instruction op3 opf Operation Assembly Language Syntax Class
FMULs 11 0100 001001001  Multiply Single frul's  fregsr, fregrsar  fregrg Al
FMULd 110100 001001010  Multiply Double fruld  freges:, fregrsas  fregrd Al
FMULq 110100 001001011  Multiply Quad frul g  fregesr, fregrsar  fregrg C3
FsMULd 110100 001101001  Multiply Single to Double  fsnul d freg,s1, fregisos fregeg Al
FAMULq 110100 00110 1110 ~ Multiply Double to Quad ~ fdrmul q freg,s1, fregrsor fregrg C3
10 rd op3 rsl opf rs2

31 30 29 25 24 19 18 14 13 5 4 0

Description The floating-point multiply instructions multiply the contents of the floating-point

register(s) specified by the rsl field by the contents of the floating-point register(s)
specified by the rs2 field. The instructions then write the product into the floating-
point register(s) specified by the rd field.

The FsMULJ instruction provides the exact double-precision product of two single-
precision operands, without underflow, overflow, or rounding error. Similarly,
FdMULq provides the exact quad-precision product of two double-precision
operands.

Rounding is performed as specified by FSR.rd.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMULq or FAMULq instruction
causes an illegal_instruction exception, allowing privileged
software to emulate the instruction.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute any FMUL instruction causes an fp_disabled exception.

If the FPU is enabled, an attempt to execute an FMULq or FAMULq instruction
causes an fp_exception_other (with FSR.ftt = unimplemented_FPop), since that
instruction is not implemented in hardware in UltraSPARC Architecture 2005
implementations.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.
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Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FMULq, FAMULq only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (any: NV, FMUL(s,d,q) only: OF, UF, NX)
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FNEG

7.32

Floating-Point Negate

Instruction  op3

opf Operation Assembly Language Syntax Class

FNEGs 110100 000000101  Negate Single fnegs  fregrso fregeg Al
FNEGd 110100 000000110  Negate Double frnegd  fregrso fregra Al
FNEGq 11 0100 00000 0111 Negate Quad fnegq  fregso, fregrg C3

10

rd op3 — opf rs2

31 30 29

Description

Exceptions

25 24 19 18 14 13 5 4 0

FNEG copies the source floating-point register(s) to the destination floating-point
register(s), with the sign bit complemented.

These instructions clear (set to 0) both FSR.cexc and FSR ftt. They do not round, do
not modify FSR.aexc, and do not treat floating-point NaN values differently from
other floating-point values.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FNEGq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FNEG instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FNEG instruction causes an fp_disabled exception.

illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FNEGq only))
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7.33

FPACK

Instruction opf Operation sl s2 d Assembly Language Syntax Class
FPACK16 000111011 Four 16-bit packs into 8 — fe4 32 fpackl6 fregsr, fregg C3
unsigned bits
FPACK32 000111010 Two 32-bit packs into 8 f64 f64 f64 fpack32 fregsy, fregrsos fregrg C3
unsigned bits
FPACKFIX 000111101 Four 16-bit packs into 16 ~— {64 {32 fpackfix fregiso, fregig C3
signed bits
10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description The FPACK instructions convert multiple values in a source register to a lower-
precision fixed or pixel format and stores the resulting values in the destination
register. Input values are clipped to the dynamic range of the output format. Packing
applies a scale factor from GSR.scale to allow flexible positioning of the binary
point.
In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an illegal_instruction exception, and are emulated
in software.
Exceptions illegal_instruction
See Also FEXPAND on page 184

FPMERGE on page 219
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7.33.1

FPACK
FPACK16

FPACK16 takes four 16-bit fixed values from the 64-bit floating-point register
Fplrs2], scales, truncates, and clips them into four 8-bit unsigned integers, and stores
the results in the 32-bit destination register, Fg[rd]. FIGURE 7-17 illustrates the
FPACK16 operation.

Folrse] | | | | |

63 48 4 3

?\3\
Fs[rd] 1\ | ‘
GSR.scale

Folrs2] (16 bits)

| H 0000|

el

FIGURE 7-17 FPACK16 Operation

Note | FPACK16 ignores the most significant bit of GSR.scale
(GSR.scale{4}).

This operation is carried out as follows:

1. Left-shift the value from Fp[rs2] by the number of bits specified in GSR.scale
while maintaining clipping information.

2. Truncate and clip to an 8-bit unsigned integer starting at the bit immediately to
the left of the implicit binary point (that is, between bits 7 and 6 for each 16-bit
word). Truncation converts the scaled value into a signed integer (that is, round
toward negative infinity). If the resulting value is negative (that is, its most
significant bit is set), 0 is returned as the clipped value. If the value is greater than
255, then 255 is delivered as the clipped value. Otherwise, the scaled value is
returned as the result.

3. Store the result in the corresponding byte in the 32-bit destination register, Fg[rd].

For each 16-bit partition, the sequence of operations performed is shown in the
following example pseudo-code:

tnp —~ source_operand{15: 0} << GSR.scale;
/1l Pick off the bits frombit position 15+GSR.scale to

CHAPTER 7 e Instructions 211



FPACK

/1 bit position 7 fromthe shifted result
trunc_si gned_val ue —~ tnp{(15+GSR.scale): 7};
If (trunc_signed_val ue < 0)
unsi gned_8bit _result ~ O;
else if (trunc_signed_value > 255)
unsi gned_8bit_result ~ 255;
el se
unsi gned_8bit _result « trunc_signed_val ue{14: 7};

7.33.2 FPACK32

FPACKB32 takes two 32-bit fixed values from the second source operand (64-bit
floating-point register Fp[rs2]) and scales, truncates, and clips them into two 8-bit
unsigned integers. The two 8-bit integers are merged at the corresponding least
significant byte positions of each 32-bit word in the 64-bit floating-point register
Fplrs1], left-shifted by 8 bits. The 64-bit result is stored in Fp[rd]. Thus, successive
FPACKB32 instructions can assemble two pixels by using three or four pairs of 32-bit
fixed values. FIGURE 7-18 illustrates the FPACK32 operation.

Fplrs2]
FD[rS].]
S S )X\ FTF )X\
63 56 55 48 47 40 39 32 31 24 23 16 15 87 0
GSR.scale |00110
4 0
Fplrs2] (32 bits)
000000
37 31 30 2 6 5 0
implicit binary point FD[rd] (8 bits)

FIGURE 7-18 FPACK32 Operation

This operation, illustrated in FIGURE 7-18, is carried out as follows:

1. Left-shift each 32-bit value in Fp[rs2] by the number of bits specified in
GSR.scale, while maintaining clipping information.
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2. For each 32-bit value, truncate and clip to an 8-bit unsigned integer starting at the
bit immediately to the left of the implicit binary point (that is, between bits 23 and
22 for each 32-bit word). Truncation is performed to convert the scaled value into
a signed integer (that is, round toward negative infinity). If the resulting value is
negative (that is, the most significant bit is 1), then 0 is returned as the clipped
value. If the value is greater than 255, then 255 is delivered as the clipped value.
Otherwise, the scaled value is returned as the result.

3. Left-shift each 32-bit value from Fp[rs1] by 8 bits.

4. Merge the two clipped 8-bit unsigned values into the corresponding least
significant byte positions in the left-shifted Fp[rs2] value.

5. Store the result in the 64-bit destination register Fp[rd].

For each 32-bit partition, the sequence of operations performed is shown in the
following pseudo-code:

tnp —~ source_operand2{31: 0} << GSR.scale;
/'l Pick off the bits frombit position 31+GSR.scale to
/1 bit position 23 fromthe shifted result
trunc_si gned_val ue « tnp{(31+GSR.scale): 23};
if (trunc_signed_value < 0)
unsi gned_8bi t _val ue « 0;
else if (trunc_signed_value > 255)
unsi gned_8bi t _val ue —~ 255;
el se
unsi gned_8bi t _val ue — trunc_signed_val ue{30: 23};
Fi nal _32bit_Result ~ (source_operandl{31:0} << 8) |
(unsi gned_8bit_val ue{7:0});
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7.33.3 FPACKFIX

FPACKEFIX takes two 32-bit fixed values from the 64-bit floating-point register
Fplrs2], scales, truncates, and clips them into two 16-bit unsigned integers, and then
stores the result in the 32-bit destination register Fg[rd]. FIGURE 7-19 illustrates the
FPACKFIX operation.

Fplrs2]
63 32 31 0
Fslrd] N
31 16 15 0
GSR.scale (00110
4 0
Fplrs2] (32 bits)

f/ 000000
37 32 31 16*15 65 0
implicit binary point

Fgrdl (16 bits)

FIGURE 7-19 FPACKFIX Operation

This operation is carried out as follows:

1. Left-shift each 32-bit value from Fp[rs2]) by the number of bits specified in
GSR.scale, while maintaining clipping information.

2. For each 32-bit value, truncate and clip to a 16-bit unsigned integer starting at the
bit immediately to the left of the implicit binary point (that is, between bits 16 and
15 for each 32-bit word). Truncation is performed to convert the scaled value into
a signed integer (that is, round toward negative infinity). If the resulting value is
less than —-32768, then —32768 is returned as the clipped value. If the value is
greater than 32767, then 32767 is delivered as the clipped value. Otherwise, the
scaled value is returned as the result.

3. Store the result in the 32-bit destination register Fg[rd].

For each 32-bit partition, the sequence of operations performed is shown in the
following pseudo-code:

tnp — source_operand{31: 0} << GSR.scale;

/1l Pick off the bits frombit position 31+GSR.scale to

/1 bit position 16 fromthe shifted result
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trunc_si gned_val ue « tnp{(31+GSR.scale): 16} ;
if (trunc_signed_value < -32768)
signed_16bit _result ~ -32768;
else if (trunc_signed_value > 32767)
signed_16bit _result ~ 32767;
el se
signed_16bit_result — trunc_signed_val ue{31: 16};
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7.34

FPADD

Fixed-point Partitioned Addvist ]

Instruction opf Operation sl s2 d Assembly Language Syntax Class
FPADD16 0 0101 0000 Four 16-bit adds f64 f64 f64  fpaddlé  fregsy, fregrso, fregda Al
FPADD16S 00101 0001 Two 16-bit adds 32 f32 32 fpaddl6s freg.s1, fregrsa, fregg Al
FPADD32 0 0101 0010 Two 32-bit adds f64 f64 fo4 fpadd32  fregsy, fregrso, fregga Al
FPADD32S 00101 0011 One 32-bit add 32 £32 32 fpadd32s fregs1, fregrso, frega Al
10 rd 110110 rsl opf rs2

31 30 29 25 24 19 18 14 13 5 4 0

Description ~ FPADD16 (FPADD32) performs four 16-bit (two 32-bit) partitioned additions

between the corresponding fixed-point values contained in the source operands
(Fplrsl], Fplrs2]). The result is placed in the destination register, Fp[rd].

The 32-bit versions of these instructions (FPADD16S and FPADD32S) perform two
16-bit or one 32-bit partitioned additions.

Any carry out from each addition is discarded and a 2’s-complement arithmetic
result is produced.

olred \ | | |
63 \ 48 47 \ 32 31 \ 16 15 \ 0
Fplrs2l \ | \ / \ /
63 48 47 32 31 16 15 0
W Ny N A
| | |
Fplrd] (sum) v v % v
63 48 47 32 31 16 15 0

FIGURE 7-20 FPADD16 Operation
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Fplrsi]
63 \ 32 31 | 0
L
Fplrs2] \ \
63 * % 32 31 * /
+ +
Fplrd] (sum) + +
63 32 31

FIGURE 7-21 FPADD32 Operation

Fslrsi]

Fslrs2]

Fslrd] (sum)

FIGURE 7-22 FPADD16S Operation

Fslrsil

Fglrs2]

Fglrd] (sum)

FIGURE 7-23 FPADD32S Operation

31 : 16 15 | 0
\ |
\ |
TNy T W
' '
31 \+’ 0
v
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If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FPADD instruction causes an fp_disabled exception.

Exceptions fp_disabled
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735  FPMERGE

Instruction opf Operation sl s2 d Assembly Language Syntax Class
FPMERGE 001001011 Two 32-bit merges 32 f32 fe4 fpmerge fregsy, fregrsas fregrg C3
10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description FPMERGE interleaves eight 8-bit unsigned values in Fg[rs1] and Fg[rs2] to produce
a 64-bit value in the destination register Fp[rd]. This instruction converts from

packed to planar representation when it is applied twice in succession; for example,
R1G1B1A1,R3G3B3A3 - RIR3G1G3A1A3 - RIR2R3R4G1G2G3G4.

FPMERGE also converts from planar to packed when it is applied twice in
succession; for example, RIR2R3R4,B1B2B3B4 — R1B1R2B2R3B3R4B4 -
R1G1B1A1R2G2B2A2.

FIGURE 7-24 illustrates the operation.

Fs[r51]

= i

FD[rd] > o ;

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

FIGURE 7-24 FPMERGE Operation

%0 Rl Gl BL Al R2 @ B2 A2 .
%2 R3 G3 B3 A3 R4 G4 B4 A4} packed representation

fprerge %0, %2, %4 'r1l R3 GL G3 Bl B3 Al A3, . )
fpnerge %1, %3, %6 !r2 R4 G2 G4 B2 B4 A2 A4} intermediate
fprerge %4, %6, %0 !r1 R RBRRA Gl & GB (A .
fpmerge %5, %7, %2 !Bl B2 B3 B4 Al A2 A3 A4] planar representation
fprerge %0, %2, %94 'r1 Bl R2 B2 R3 B3 R4 B4, . )
fpmerge %1, %3, %6 IGL Al @ A2 G3 A3 G4 A4lintermediate
fprerge %4, %6, %0 I'Ri GL BL Al R2 & B2 A2 .
fpnerge %5, %7, %2 |R3 G3 B3 A3 R4 G4 B4 A4l packed representation
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CODE EXAMPLE 7-3 FPMERGE

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an illegal_instruction exception, and are emulated
in software.

Exceptions illegal_instruction

See Also FPACK on page 210
FEXPAND on page 184
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7.36

FPSUB

Fixed-point Partitioned Subtract

Instruction opf Operation sl s2 d Assembly Language Syntax Class
FPSUB16 0 0101 0100 Four 16-bit subtracts f64 f64 {64 fpsubl6é  fregsy, fregrso, fregda Al
FPSUB16S 00101 0101 Two 16-bit subtracts {32 32 32 fpsubl6s freg.s1, fregrsa, fregg Al
FPSUB32 0 0101 0110 Two 32-bit subtracts f64 f64 f64 fpsub32  freg.1, fregrso, fregqa Al
FPSUB32S 00101 0111 One 32-bit subtract 32 32 32 fpsub32s freg.s1, fregiso, frega Al
10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description FPSUB16 (FPSUB32) performs four 16-bit (two 32-bit) partitioned subtractions

between the corresponding fixed-point values contained in the source operands
(Fplrs1], Fplrs2]). The values in Fp[rs2] are subtracted from those in Fp[rs1], and
the result is placed in the destination register, Fp[rd].

The 32-bit versions of these instructions (FPSUB16S and FPSUB32S) perform two 16-
bit or one 32-bit partitioned subtractions.

Any carry out from each subtraction is discarded and a 2’s-complement arithmetic
result is produced.

Folrsdl \ \ | |
63 \ 48 47 \ 32 31 \ 16 15 \ 0
FD[I’SZ] \ I \ \ /
63 V v 48 47 v ¥ 32 31 v y 16 15 0
| | |
Fplrd] %
(difference) v v v
63 48 47 32 31 16 15 0

FIGURE 7-25 FPSUB16 Operation
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Fplrsi] \ ‘
63 \ 32 31 \

FD[rSZJ \ \
63 V_ ’ 32 31 *_

|

FD[rd]

(difference) v v
63 32 31

FPSUB

FIGURE 7-26 FPSUB32 Operation

Fglrsil

Fglrs2]

Fs[rd]
(difference)

|

“ 17
\ |
I I
——+

FIGURE 7-27 FPSUB16S Operation

FslrS].]

Fs[rSZ]

Fglrd]
(difference)

31

31

>

v

31

FIGURE 7-28 FPSUB32S Operation
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If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FPSUB instruction causes an fp_disabled exception.

Exceptions fp_disabled
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F Register 1-operand Logical Ops

7.37  FRegister Logical Operate (1 operand)

Instruction opf Operation Assembly Language Syntax Class
FZERO 00110 0000  Zero fill fzero fregrg Al
FZEROs 00110 0001  Zero fill, 32-bit fzeros fregig Al
FONE 001111110  One fill fone fregrg Al
FONEs 001111111  One fill, 32-bit fones fregrg Al
10 rd 110110 — opf —
31 30 29 25 24 19 18 14 13 5 4 0

Description ~ FZERO and FONE fill the 64-bit destination register, Fp[rd], with all ‘0’ bits or all ‘1’
bits (respectively).

FZEROs and FONEs fill the 32-bit destination register, Fp[rd], with all ‘0" bits or all
‘1’ bits (respectively.

An attempt to execute an FZERO or FONE instruction when instruction bits 18:14 or
bits 4:0 are nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FZERO[s] or FONE[s] instruction causes an fp_disabled

exception.
Exceptions illegal_instruction
fp_disabled
See Also F Register 2-operand Logical Operations on page 225

F Register 3-operand Logical Operations on page 227
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7.38

F Register Logical Operate (2 operand)

Instruction opf Operation Assembly Language Syntax Class
FSRC1 00111 0100  Copy Fplrs1] to Fp[rd] fsrcl fregrs1, fregrd Al
FSRCls 001110101  Copy Fgrs1] to Fg[rd], 32-bit fsrcls  fregsr fregrg Al
FSRC2 001111000 Copy Fp[rs2] to Fp[rd] fsrc2 fregrsz, fregg Al
FSRC2s 001111001  Copy Fg[rs2] to Fg[rd], 32-bit fsrc2s  fregso fregeg Al
FNOT1 001101010 Negate (1's complement) Fp[rsl] fnotl fregs1s fregeg Al
FNOT1s 001101011 Negate (1's complement) Fg[rs1], 32-bit fnotls  fregs1, fregrg Al
FNOT2 00110 0110  Negate (1’s complement) Fp[rs2] fnot2 fregrso, fregd Al
FNOT2s 00110 0111  Negate (1’s complement) Fg[rs2], 32-bit fnot2s  freg.sp, fregrg Al
10 rd 110110 rsl —
10 rd 110110 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description The standard 64-bit versions of these instructions perform one of four 64-bit logical
operations on the 64-bit floating-point register Fp[rs1] (or Fp[rs2]) and store the
result in the 64-bit floating-point destination register Fp[rd].
The 32-bit (single-precision) versions of these instructions perform 32-bit logical
operations on Fg[rs1] (or Fg[rs2]) and store the result in Fg[rd].
An attempt to execute an FSRC1(s) or FNOT1(s) instruction when instruction bits 4:0
are nonzero causes an illegal_instruction exception. An attempt to execute an
FSRC2(s) or FNOT2(s) instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.
If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FSRC1[s], FNOT1[s], FSRC1[s], or FNOT1[s] instruction causes
an fp_disabled exception.
Programming | FSRC1s (FSRC1) functions similarly to FMOVs (FMOVd), except
Note | that FSRC1s (FSRC1) does not modify the FSR register while
FMOVs (FMOVd) update some fields of FSR (see Floating-Point
Move on page 191). Programmers are encouraged to use FMOVs
(FMOVd) instead of FSRC1s (FSRC1) whenever practical.
Exceptions illegal_instruction

fp_disabled
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See Also Floating-Point Move on page 191
F Register 1-operand Logical Operations on page 224
F Register 3-operand Logical Operations on page 227
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F Register 3-operand Logical Ops

7.39

F Register Logical Operate (3 operand)

Instruction opf Operation Assembly Language Syntax Class
FOR 001111100 Logical or for fregrs1, fregrsn, fregid Al
FORs 001111101 Logical or, 32-bit fors fregrs1, fregrso, fregid Al
FNOR 001100010 Logical nor f nor fregrs1, fregrso, fregid Al
FNORs 00110 0011  Logical nor, 32-bit fnors fregs1y fregrsas fregrg Al
FAND 00111 0000 Logical and fand fregs1y fregrsas fregrg Al
FANDs 00111 0001 Logical and, 32-bit f ands fregrs1, fregrse, fregig Al
FNAND 00110 1110  Logical nand f nand fregrs1, fregrse, fregig Al
FNANDs 001101111  Logical nand, 32-bit f nands fregrs1, fregrse, fregig Al
FXOR 00110 1100  Logical xor f xor fregrs1, fregrsa, fregid Al
FXORs 00110 1101  Logical xor, 32-bit fxors fregrs1, fregrsn, fregid Al
FXNOR 00111 0010  Logical xnor f xnor fregrs1, fregrsa, fregid Al
FXNORs 00111 0011  Logical xnor, 32-bit fxnors fregrs1, fregrso, fregid Al
FORNOT1 001111010 (not F[rs1]) or F[rs2] fornotl  fregis1, fregrsoy fregd Al
FORNOTIs 001111011 (not F[rs1]) or F[rs2], 32-bit fornotls frege1, fregisy fregrq Al
FORNOT2 00111 0110  F[rs1] or (not F[rs2]) fornot2  fregis1, frersoy fregd Al
FORNOT2s 001110111  F[rs1] or (not F[rs2]), 32-bit fornot2s freger, fregrsps fregrg Al
FANDNOT1 001101000 (not F[rs1]) and F[rs2] fandnotl fregis1, fregrsas fregrd Al
FANDNOT1s 001101001 (not F[rs1]) and F[rs2], 32-bit fandnot 1s fregs1, fregrsar fregrg Al
FANDNOT2 001100100 F[rs1] and (not F[rs2]) fandnot 2 fregis1, fregrsar fregrg Al
FANDNOT2s 001100101 F[rs1] and (not F[rs2]), 32-bit fandnot 2s fregis1, fregrsas fregrg Al
10 rd 110110 rsi opf rs2
31 30 29 25 24 19 18 5 4 0
Description The standard 64-bit versions of these instructions perform one of ten 64-bit logical
operations between the 64-bit floating-point registers Fp[rs1] and Fp[rs2]. The result
is stored in the 64-bit floating-point destination register Fp[rd].
The 32-bit (single-precision) versions of these instructions perform 32-bit logical
operations between Fg[rs1] and Fg[rs2], storing the result in Fg[rd].
If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute any 3-operand F Register Logical Operate instruction causes an
fp_disabled exception.
Exceptions fp_disabled
See Also F Register 1-operand Logical Operations on page 224

F Register 2-operand Logical Operations on page 225
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FSQRT<s|d|g> Instructions

7.40

Floating-Point Square Root

Instruction

op3 opf Operation Assembly Language Syntax Class

FSQRTs
FSQRTd
FSQRTq

11 0100 00010 1001 Square Root Single fsqrts fregrso, fregr Al
11 0100 00010 1010 Square Root Double fsqrtd fregiso, fregeg Al
11 0100 00010 1011 Square Root Quad fsqrtq fregrso, fregr C3

10

rd op3 — opf rs2

31 30 29

Description

Exceptions

25 24 19 18 14 13 5 4 0

These SPARC V9 instructions generate the square root of the floating-point operand
in the floating-point register(s) specified by the rs2 field and place the result in the
destination floating-point register(s) specified by the rd field. Rounding is performed
as specified by FSR.rd.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FSQRT(q instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FSQRT instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FSQRT instruction causes an fp_disabled exception.

If the FPU is enabled, an fp_exception_other (with FSR.ftt = unimplemented_FPop)
exception occurs, since the FSQRT instructions are not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

illegal_instruction

fp_disabled

fp_exception_other (FSR.ftt = unimplemented_FPop (FSQRT is not implemented
in hardware))
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F<s|d|q>TOi

7.41

Convert Floating-Point to Integer

Instruction opf Operation sl s2 d Assembly Language Syntax Class
FsTOx 010000001 Convert Single to 64-bit Integer — f32  f64 fstox fregsy, fregy Al
FATOx 01000 0010 Convert Double to 64-bit Integer — f64 f64 fdtox fregsn, fregig Al
FqTOx 010000011 Convert Quad to 64-bit Integer — f128 f64 fqtox fregss, fregy C3
FsTOi 01101 0001 Convert Single to 32-bit Integer — {32 {32 fstoi fregsy, fregig Al
FATOi 011010010 Convert Double to 32-bit Integer — f64 32 fdtoi freg.so, fregyqg Al
FqTOi 01101 0011  Convert Quad to 32-bit Integer — f128 f32 fqtoi fregsy, fregyg C3
10 rd op3 =11 0100 — opf rs2

31 30 29 25 24 19 18 1413 5 4 0

Description FsTOx, FdTOx, and FqTOx convert the floating-point operand in the floating-point

register(s) specified by rs2 to a 64-bit integer in the floating-point register Fp[rd].

FsTOi, FdTOi, and FqTOi convert the floating-point operand in the floating-point
register(s) specified by rs2 to a 32-bit integer in the floating-point register Fg[rd].

The result is always rounded toward zero; that is, the rounding direction (rd) field of
the FSR register is ignored.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FqTOx or FqTOi instruction
causes an illegal_instruction exception, allowing privileged
software to emulate the instruction.

An attempt to execute an F<s|d | q>TO<i | x> instruction when instruction bits 18:14
are nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an F<s|d | q>TO<ilx> instruction causes an fp_disabled
exception.

If the FPU is enabled, FqTOi and FqTOx cause fp_exception_other (with FSR.fit =
unimplemented_FPop), since those instructions are not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

If the floating-point operand’s value is too large to be converted to an integer of the
specified size or is a NaN or infinity, then an fp_exception_ieee_754 “invalid”
exception occurs. The value written into the floating-point register(s) specified by rd
in these cases is as defined in Integer Overflow Definition on page 383.
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For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.fit = unimplemented_FPop (FqTOx, FqTOi only))
fp_exception_ieee_754 (NV, NX)

230 UltraSPARC Architecture 2005 « Draft D0.8.7, 27 Mar 2006



F<s|d|g>TO<s|d|g>

742  Convert Between Floating-Point Formats

Instruction op3 opf Operation sl s2 d Assembly Language Syntax Class
FsTOd 110100 011001001 Convert Single to Double — 32 f64 fstod  freg.so, fregq Al
FsTOq 110100 011001101 Convert Single to Quad — 32 128 fstoq freg.sp, fregq  C3
FdTOs 110100 011000110 Convert Double to Single — f64 32 fdtos  fregsp, fregq Al
FATOq 110100 011001110 Convert Double to Quad — f64 128 fdtoq  fregsy, fregrg  C3
FqTOs 110100 011000111 Convert Quad to Single — 128 32 fqtos  freg.so, fregq  C3
FqTOd 110100 011001011 Convert Quad to Double — 128 f64 fqtod  freg.sp, fregq C3
10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description These instructions convert the floating-point operand in the floating-point register(s)
specified by rs2 to a floating-point number in the destination format. They write the
result into the floating-point register(s) specified by rd.

The value of FSR.rd determines how rounding is performed by these instructions.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FsTOq, FdTOq, FqTOs, or
FqTOd instruction causes an illegal_instruction exception, allowing
privileged software to emulate the instruction.

An attempt to execute an F(s,d,q)TO(s,d,q) instruction when instruction bits 18:14
are nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an F<s|d | q>TO<s|d | q> instruction causes an fp_disabled
exception.

If the FPU is enabled, FsTOq, FATOq, FqTOs, and FqTOd cause fp_exception_other
(with FSR.ftt = unimplemented_FPop), since those instructions are not implemented
in hardware in UltraSPARC Architecture 2005 implementations.

FqTOd, FqTOs, and FATOs (the “narrowing” conversion instructions) can cause
fp_exception_ieee_754 OF, UF, and NX exceptions. FATOq, FsTOq, and FsTOd (the
“widening” conversion instructions) cannot.

Any of these six instructions can trigger an fp_exception_ieee_754 NV exception if
the source operand is a signalling NaN.
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Exceptions

F<s|d|g>TO<s|d|g>

Untrapped Result in Different Format from Operands on page 380 defines the rules for
converting NaNs from one floating-point format to another.

Note | For FdTOs and FsTOd, an fp_exception_other with
FSR.ftt = unfinished_FPop can occur if implementation-dependent
conditions are detected during the conversion operation.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

illegal_instruction

fp_disabled

fp_exception_other (FSR.fit = unimplemented_FPop (FsTOq, FqTOs, FdTOq,
and FqTOd only))

fp_exception_other (FSR.ftt = unfinished_FPop)

fp_exception_ieee_754 (NV)

fp_exception_ieee_754 (OF, UF, NX (FqTOd, FqTOs, and FdTOs))
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7.43

Floating-Point Subtract

Instruction op3 opf Operation Assembly Language Syntax Class
FSUBs 11 0100 00100 0101 Subtract Single fsubs  fregis1, fregrso, fregeg Al
FSUBd 110100 001000110  Subtract Double fsubd  fregrs1, fregrsa fregrd Al
FSUBq 11 0100 00100 0111 Subtract Quad fsubq fregis1, fregrso, fregig C3
10 rd op3 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description The floating-point subtract instructions subtract the floating-point register(s)
specified by the rs2 field from the floating-point register(s) specified by the rs1 field.
The instructions then write the difference into the floating-point register(s) specified
by the rd field.
Rounding is performed as specified by FSR.rd.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FSUB(q instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FSUB instruction causes an fp_disabled exception.

If the FPU is enabled, FSUBq causes an fp_exception_other (with FSR.ftt =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

Note | An fp_exception_other with FSR.ftt = unfinished_FPop can occur
if the operation detects unusual, implementation-specific
conditions (for FSUBs or FSUBAJ).

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.
Exceptions illegal_instruction

fp_disabled

fp_exception_other (FSR.ftt = unimplemented_FPop (FSUBQ))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (OF, UF, NX, NV)
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744  Convert 64-bit Integer to Floating Point

Assembly Language

Instruction op3 opf Operation sl s2 d Syntax Class

FxTOs 11 0100 010000100 Convert 64-bit Integer to — 164 32  fXtos fregs, fregyg Al
Single

FxTOd 110100 010001000 Convert 64-bit Integer to — i64 f64  fxtod fregso, fregw Al
Double

FxTOq 110100 010001100 Convert 64-bit Integer to — 64 128 fxtoq fregso, fregyy C3
Quad

10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description FxTOs, FxTOd, and FxTOq convert the 64-bit signed integer operand in the floating-
point register Fp[rs2] into a floating-point number in the destination format.

All write their result into the floating-point register(s) specified by rd.
The value of FSR.rd determines how rounding is performed by FxTOs and FxTOd.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FXTOq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FxTO(s,d,q) instruction when instruction bits 18:14 are
nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FxTO(s,d,q) instruction causes an fp_disabled exception.

If the FPU is enabled, FXTOq causes an fp_exception_other (with FSRfit =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

For more details regarding floating-point exceptions, see Chapter 8, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FxTOq only))
fp_exception_ieee_754 (NX (FxTOs and FxTOd only))
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7.45  Illegal Instruction Trap

Instruction op op2 Operation Assembly Language Syntax Class
ILLTRAP 00 000 illegal_instruction trap illtrap const22 Al
00 — 000 const22
31 30 29 25 24 22 21 0

Description ~ The ILLTRAP instruction causes an illegal_instruction exception. The const22 value
in the instruction is ignored by the virtual processor; specifically, this field is not
reserved by the architecture for any future use.

V9 Compatibility | Except for its name, this instruction is identical to the SPARC V8
Note | UNIMP instruction.

An attempt to execute an ILLTRAP instruction when reserved instruction bits 29:25
are nonzero (also) causes an illegal_instruction exception. However, software should
not rely on this behavior, because a future version of the architecture may use
nonzero values of bits 29:25 to encode other functions.

Exceptions illegal_instruction
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7.46

Implementation-Dependent Instructions

Instruction op3 op4 Operation Class
IMPDEP1 11 0110 (any) Implementation-Dependent Instruction 1 N3
IMPDEP2A 11 0111 0 Implementation-Dependent Instruction 2A N3
IMPDEP2B 11 0111 1,2,3 Implementation-Dependent Instruction 2B N3
10 impl. dep. op3 impl. dep. op4 impl. dep.
31 30 29 25 24 19 18 76 5 4 0
Description IMPL. DEP. #106-V9: The IMPDEP2A opcode space is completely implementation
dependent. Implementation-dependent aspects of IMPDEP2A instructions include
their operation, the interpretation of bits 29-25, 18-7, and 40 in their encodings,
and which (if any) exceptions they may cause.
IMPDEP2B opcodes are reserved; see IMDEP2B Opcodes on page 237.
See “Implementation-Dependent and Reserved Opcodes” in the "Extending the
UltraSPARC Architecture" section of the separate document UltraSPARC Architecture
Application Notes, for information about extending the instruction set by means of
implementation-dependent instructions.
Compatibility | IMPDEP2A and IMPDEP2B are subsets of the SPARC V9
Note | IMPDEP2 opcode space. The IMPDEP1 opcode space from
SPARC V9 is occupied by various VIS instructions in the
UltraSPARC Architecture, so it should not be used for
implementation-dependent instructions.
Exceptions implementation-dependent (IMPDEP2A, IMPDEP2B)

7.46.1

IMPDEP1 Opcodes

All operands of instructions using IMPDEP1 opcodes are in floating-point registers,
unless otherwise specified. Pixel values are stored in single-precision floating point
registers and fixed values are stored in double-precision floating point registers,
unless otherwise specified.

Note | All instructions, regardless of whether they use floating-point
registers or integer registers, leave FSR.cexc and FSR.aexc
unchanged.
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7.46.1.1 Opcode Formats

Most of the VIS instruction set maps to the opcode space reserved for the
Implementation-Dependent Instruction 1 (op3 = IMPDEP1 = 3644) instructions.

7.46.2  IMDEP2B Opcodes

No instructions are currently encoded in the IMPDEP2B opcode space; it is a
reserved opcode space.
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7.47  Mark Register Window Sets as “Invalid”

Instruction Operation Assembly Language Syntax Class
INVALW? Mark all register window sets as “invalid” inval w C1
10 | fcn=00101 11 0001 —
31 30 29 25 24 19 18 0

Description The INVALW instruction marks all register window sets as “invalid”; specifically, it
atomically performs the following operations:

CANSAVE ~ (N_REG_WINDOWS — 2)
CANRESTORE - 0
OTHERWIN ~ 0

Programming | INVALW marks all windows as invalid; after executing INVALW,

Notes | N_REG_WINDOWS-2 SAVEs can be performed without generating a
spill trap. This instruction allows window manipulations to be
atomic, without the value of N_REG_WINDOWS being visible to
privileged software and without an assumption that
N_REG_WINDOWS is constant (since hyperprivileged software can
migrate a thread among virtual processors, across which
N_REG_WINDOWS may vary).

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an illegal_instruction exception, and are emulated
in software.

Exceptions illegal_instruction (not implemented in hardware in UltraSPARC Architecture 2005)

See Also ALLCLEAN on page 148
NORMALW on page 285
OTHERW on page 287
RESTORED on page 307
SAVED on page 315
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7.48

10

Jump and Link

Instruction op3 Operation Assembly Language Syntax Class

JMPL 11 1000 Jump and Link j mpl address, reg.q Al

rd op3 rsl i=0 — rs2

10

op3 rsi i=1 simm13

31 30 29

Description

Exceptions

See Also

25 24 19 18 14 13 12 5 4 0

The JMPL instruction causes a register-indirect delayed control transfer to the
address given by “R[rs1] + R[rs2]” if i field = 0, or “R[rs1] + sign_ext( sinm13)” if
i=1.

The JMPL instruction copies the PC, which contains the address of the JMPL
instruction, into register R[rd].

An attempt to execute a JMPL instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If either of the low-order two bits of the jump address is nonzero, a
mem_address_not_aligned exception occurs.

Programming | A JMPL instruction with rd = 15 functions as a register-indirect
Notes | call using the standard link register.

JMPL with rd = 0 can be used to return from a subroutine. The
typical return address is “r[31] + 8” if a nonleaf routine (one that
uses the SAVE instruction) is entered by a CALL instruction, or
“R[15] + 8” if a leaf routine (one that does not use the SAVE
instruction) is entered by a CALL instruction or by a JMPL
instruction with rd = 15.

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address
are masked out (set to 0) before being sent to the memory system or being written
into R[rd]. (closed impl. dep. #125-V9-Cs10)

illegal_instruction
mem_address_not_aligned

CALL on page 162
Bicc on page 154
BPCC on page 160
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7.49

Load Integer

Instruction op3 Operation Assembly Language Syntax Class
LDSB 00 1001 Load Signed Byte I dsb [ address] , regyq Al
LDSH 00 1010 Load Signed Halfword | dsh [ address] , regyq Al
LDSW 00 1000 Load Signed Word Il dsw [ address] , regyq Al
LDUB 00 0001 Load Unsigned Byte | dub [ address] , reg.g Al
LDUH 00 0010 Load Unsigned Halfword | duh [ address] , regyq Al
LDUW 00 0000 Load Unsigned Word | duwt [ address] , regyq Al
LDX 00 1011 Load Extended Word | dx [ address] , regyq Al

t synonym: | d

11 rd op3 rsl i=0| — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The load integer instructions copy a byte, a halfword, a word, or an extended word

from memory. All copy the fetched value into R[rd]. A fetched byte, halfword, or
word is right-justified in the destination register R[rd]; it is either sign-extended or
zero-filled on the left, depending on whether the opcode specifies a signed or
unsigned operation, respectively.

Load integer instructions access memory using the implicit ASI (see page 104). The
effective address is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( simm13)” if i = 1.

A successful load (notably, load extended) instruction operates atomically.

An attempt to execute a load integer instruction when i = 0 and instruction bits 12:5
are nonzero causes an illegal_instruction exception.

If the effective address is not halfword-aligned, an attempt to execute an LDUH or
LDSH causes a mem_address_not_aligned exception. If the effective address is not
word-aligned, an attempt to execute an LDUW or LDSW instruction causes a
mem_address_not_aligned exception. If the effective address is not doubleword-
aligned, an attempt to execute an LDX instruction causes a
mem_address_not_aligned exception.

V8 Compatibility | The SPARC V8 LD instruction was renamed LDUW in the SPARC
Note [ V9 architecture. The LDSW instruction was new in the SPARC V9
architecture.

A load integer twin word (LDTW) instruction exists, but is deprecated; see Load
Integer Twin Word on page 266 for details.
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Exceptions illegal_instruction
mem_address_not_aligned (all except LDSB, LDUB)
VA_watchpoint
data_access_exception
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
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7.50

Load Integer from Alternate Space

Instruction op3 Operation Assembly Language Syntax Class
LDSBAPAt 011001  Load Signed Byte from Alternate | dsba [ regaddr] imm_asi, reg.q Al
Space | dsba [ reg_plus_imm] %@sSi, regyq
LDSHAPA' 011010  Load Signed Halfword from Alternate | dsha [ regaddr] imm_asi, regq Al
Space I dsha [ reg_plus_imm] %@sSi, regyq
LDSWAPast 011000  Load Signed Word from Alternate | dswa [ regaddr] imm_asi, reg.g Al
Space | dswa [ reg_plus_imm] %@sSi, regyq
LDUBAMS 010001 Load Unsigned Byte from Alternate | duba [ regaddr] imm_asi, regq Al
Space I duba [ reg_plus_imm] %@si, regyq
LDUHAPAs' 010010 Load Unsigned Halfword from I duha [ regaddr] imm_asi, reg.qy Al
Alternate Space I duha [ reg_plus_imm] %@si, regyq
LDUWAPat 010000 Load Unsigned Word from Alternate | duwat [ regaddr] imm_asi, regq Al
Space I duwa [ reg_plus_imm] Y@si, regyq
LDXAPat 011011  Load Extended Word from Alternate | dxa [ regaddr] imm_asi, regyq Al
Space | dxa [ reg_plus_imm] Y@si, regyq
Y synonym: | da
11 rd op3 rsl i=0] imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description  The load integer from alternate space instructions copy a byte, a halfword, a word,

or an extended word from memory. All copy the fetched value into R[rd]. A fetched
byte, halfword, or word is right-justified in the destination register R[rd]; it is either
sign-extended or zero-filled on the left, depending on whether the opcode specifies a
signed or unsigned operation, respectively.

The load integer from alternate space instructions contain the address space
identifier (ASI) to be used for the load in the imm_asi field if i = 0, or in the ASI
register if i = 1. The access is privileged if bit 7 of the ASI is 0; otherwise, it is not
privileged. The effective address for these instructions is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1] + sign_ext( simm13)” if i = 1.

A successful load (notably, load extended) instruction operates atomically.

A load integer twin word from alternate space (LDTWA) instruction exists, but is
deprecated; see Load Integer Twin Word from Alternate Space on page 268 for details.

An attempt to execute a load integer from alternate space instruction when i = 0 and
instruction bits 12:5 are nonzero causes an illegal_instruction exception.
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If the effective address is not halfword-aligned, an attempt to execute an LDUHA or
LDSHA instruction causes a mem_address_not_aligned exception. If the effective
address is not word-aligned, an attempt to execute an LDUWA or LDSWA
instruction causes a mem_address_not_aligned exception. If the effective address is
not doubleword-aligned, an attempt to execute an LDXA instruction causes a
mem_address_not_aligned exception.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI
is 0, these instructions cause a privileged_action exception. In privileged mode
(PSTATE.priv =1 and HPSTATE.hpriv = 0), if the ASI is in the range 3014 to 7F1,
these instructions cause a privileged_action exception.

LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, and LDUWA can be used with any
of the following ASIs, subject to the privilege mode rules described for the
privileged_action exception above. Use of any other ASI with these instructions
causes a data_access_exception xception.

ASls valid for LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, and LDUWA
AS| _NUCLEUS ASI _NUCLEUS LI TTLE
ASI _AS | F_USER PRI MARY  AS|I _AS | F_USER PRI MARY LI TTLE
ASl _AS | F_USER SECONDARY AS| _AS | F_USER SECONDARY LI TTLE

AS| _REAL ASl _REAL_LI TTLE
ASI _REAL_1O ASI _REAL_| O LI TTLE

AS| _PRI MARY ASl _PRI MARY_LI TTLE

AS| _SECONDARY AS| _SECONDARY_LI TTLE

AS| PRI MARY_NO FAULT ASl _PRI MARY_NO FAULT LI TTLE

ASI _SECONDARY_NO FAULT  AS| _SECONDARY NO FAULT LI TTLE

LDXA can be used with any ASI (including, but not limited to, the above list), unless
it either (a) violates the privilege mode rules described for the privileged_action
exception above or (b) is used with any of the following ASIs, which causes a
data_access_exception exception.

ASls invalid for LDXA (cause data_access_exception exception)

2446 (aliased to 2716, ASI _LDTX_N) 2C, ¢ (aliased to 2F1g, ASI _LDTX_NL)

2216 (ASI _LDTX_Al UP) 2As6 (ASI _LDTD_Al UP_L)

2316 (ASI _LDTX_Al US) 2By (ASI _LDTX_Al US_L)

26,5 (ASI _LDTX_REAL) 2E;s (ASI _LDTX_REAL_L)

2716 (ASI _LDTX_N) 2F;6 (ASI _LDTX_NL)

ASI _BLOCK_AS_| F_USER PRI MARY ASI _BLOCK_AS_| F_USER PRI MARY LI TTLE
ASI _BLOCK AS | F_USER SECONDARY  ASI BLOCK AS | F_USER SECONDARY LI TTLE
ASl _PST8_PRI MARY AS| _PST8_PRI MARY_ LI TTLE

AS| _PST8_SECONDARY AS| _PST8_SECONDARY_ LI TTLE

ASl _PST16_PRI MARY AS|I _PST16_PRI MARY_LI TTLE

AS| _PST16_SECONDARY AS| _PST16_SECONDARY LI TTLE

AS| _PST32_PRI MARY AS| _PST32_ PRI MARY_LI TTLE

AS| _PST32_SECONDARY AS| _PST32_SECONDARY_ LI TTLE
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ASls invalid for LDXA (cause data_access_exception exception)

AS| _FL8_PRI MARY AS| _FL8_PRI MARY_LI TTLE

AS| _FL8_SECONDARY AS| _FL8_SECONDARY_LI TTLE
AS| _FL16_PRI MARY AS| _FL16_PRI MARY_LI TTLE
AS| _FL16_SECONDARY AS| _FL16_SECONDARY LI TTLE
AS| _BLOCK_COMM T_PRI MARY AS| _BLOCK_COMM T_SECONDARY
E2;6 (ASI _LDTX_P) EA;g (ASI _LDTX_PL)

E3,6 (ASI _LDTX_S) EByg (ASI _LDTX_SL)

ASI _BLOCK_PRI MARY AS| _BLOCK_PRI MARY_LI TTLE
AS| _BLOCK_SECONDARY AS| _BLOCK_SECONDARY_LI TTLE

Exceptions mem_address_not_aligned (all except LDSBA and LDUBA)
privileged_action
VA_watchpoint
data_access_exception
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error

See Also LD on page 240
STA on page 324
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7.51

Block Load

The LDBLOCKEF instruction is intended to be a processor-specific instruction,
which may or may not be implemented in future UltraSPARC Architecture
implementations. Therefore, it should only be used in platform-specific
dynamically-linked libraries, in hyperprivileged software, or in software created
by a runtime code generator that is aware of the specific virtual processor
implementation on which it is executing.

ASI
Instruc-tion  Value Operation Assembly Language Syntax Class
LDBLOCKF 1644 64-byte block load from primary address | dda [ regaddr] #ASI _BLK_Al UP, freg,q B2
space, user privilege | dda [ reg_plus_imm] Y@si, fregyq
LDBLOCKF 17;4 64-byte block load from secondary | dda [ regaddr] #ASI _BLK_Al US, fregq B2
address space, user privilege | dda [ reg_plus_imm] %@Si , fregyq
LDBLOCKF 1E;4 64-byte block load from primary address | dda [ regaddr] #ASI _BLK_AlI UPL, freg,q B2
space, little-endian, user privilege I dda [ reg_plus_imm] Y@si, fregyq
LDBLOCKF 1F;4 64-byte block load from secondary | dda [ regaddr] #ASI _BLK_Al USL, freg,q B2
address space, little-endian, user privilegel dda [ reg_plus_imm] %@Si , freg,q
LDBLOCKF F0;4 64-byte block load from primary address | dda [ regaddr] #ASI _BLK_P, freg.q B2
space I dda [ reg_plus_imm] Y@si, fregyq
LDBLOCKF Fly4 64-byte block load from secondary | dda [ regaddr] #ASI _BLK_S, fregq B2
address space | dda [ reg_plus_imm] %@Si , freg,q
LDBLOCKF F8;4 64-byte block load from primary address | dda [ regaddr] #ASI _BLK_PL, freg.q B2
space, little-endian I dda [ reg_plus_imm] Y@si, fregyq
LDBLOCKF F9;4 64-byte block load from secondary | dda [ regaddr] #ASI _BLK_SL, fregq B2
address space, little-endian I dda [ reg_plus_imm] Y@si, fregyq
11 rd 110011 rsl I=0 imm_asi rs2
11 rd | 110011 rsi 1=1 simm_13
31 30 29 25 24 19 18 14 13 5 4 0
Description A block load (LDBLOCKF) instruction uses one of several special block-transfer

ASlIs. Block transfer ASIs allow block loads to be performed accessing the same
address space as normal loads. Little-endian ASIs (those with an ‘L’ suffix) access
data in little-endian format; otherwise, the access is assumed to be big-endian. Byte
swapping is performed separately for each of the eight 64-bit (double-precision) F
registers used by the instruction.
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A block load instruction loads 64 bytes of data from a 64-byte aligned memory area
into the eight double-precision floating-point registers specified by rd. The lowest-
addressed eight bytes in memory are loaded into the lowest-numbered 64-bit
(double-precision) destination F register.

A block load only guarantees atomicity for each 64-bit (8-byte) portion of the 64
bytes it accesses.

The block load instruction is intended to support fast block-copy operations.

Programming | LDBLOCKEF is intended to be a processor-specific instruction

Note | (see the warning at the top of page 245). If LDBLOCKEF must be
used in software intended to be portable across current and
previous processor implementations, then it must be coded to
work in the face of any implementation variation that is
permitted by implementation dependency #410-510, described
below.

IMPL. DEP. #410-S10: The following aspects of the behavior of block load
(LDBLOCKE) instructions are implementation dependent:

What memory ordering model is used by LDBLOCKF (LDBLOCKEF is not
required to follow TSO memory ordering)

Whether LDBLOCKF follows memory ordering with respect to stores (including
block stores), including whether the virtual processor detects read-after-write and
write-after-read hazards to overlapping addresses

Whether LDBLOCKEF appears to execute out of order, or follow LoadLoad
ordering (with respect to older loads, younger loads, and other LDBLOCKFs)
Whether LDBLOCKEF follows register-dependency interlocks, as do ordinary load
instructions

Whether LDBLOCKEFs to non-cacheable locations are (a) strictly ordered, (b) not
strictly ordered and cause an illegal_instruction exception, or (c) not strictly
ordered and silently execute without causing an exception (option (c) is strongly
discouraged)

Whether VA_watchpoint exceptions are recognized on accesses to all 64 bytes of a
LDBLOCKEF (the recommended behavior), or only on the first eight bytes
Whether the MMU ignores the side-effect bit (TTE.e) for LDBLOCKF accesses
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LDBLOCKF

Programming | If ordering with respect to earlier stores is important (for

Note | example, a block load that overlaps a previous store) and read-
after-write hazards are not detected, there must be a MEMBAR
#St or eLoad instruction between earlier stores and a block
load.

If ordering with respect to later stores is important, there must
be a MEMBAR #LoadSt or e instruction between a block load
and subsequent stores.

If LoadLoad ordering with respect to older or younger loads or
other block load instructions is important and is not provided
by an implementation, an intervening MEMBAR #LoadLoad is
required.

For further restrictions on the behavior of the block load instruction, see
implementation-specific processor documentation.

Implementation | In all UltraSPARC Architecture implementations, the MMU
Note | ignores the side-effect bit (TTE.e) for LDBLOCKEF accesses (impl.
dep. #410-510).

Exceptions. An illegal_instruction exception occurs if LDBLOCKF’s floating-point
destination registers are not aligned on an eight-double-precision register boundary.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an LDBLOCKEF instruction causes an fp_disabled exception.

If the least significant 6 bits of the effective memory address in an LDBLOCKF
instruction are nonzero, a mem_address_not_aligned exception occurs.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI
is 0 (ASIs 1644, 1714, 1E14, and 1F;4), LDBLOCKEF causes a privileged_action
exception.

An access caused by LDBLOCKF may trigger a VA_watchpoint exception (impl. dep.
#410-S10).

Implementation | LDBLOCKEF shares an opcode with LDDFA and LDSHORTF; it
Note | is distinguished by the ASI used.

illegal_instruction

fp_disabled
mem_address_not_aligned
privileged_action

VA_watchpoint (impl. dep. #410-510)
data_access_exception
fast_data_access_MMU_miss

CHAPTER 7 e Instructions 247



LDBLOCKF

data_access_ MMU_miss
data_access_MMU_error

See Also STBLOCKF on page 328
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7.52  Load Floating-Point

Instruction op3 rd Operation Assembly Language Syntax Class
LDF 10 0000 0-31 Load Floating-Point Register Id [ address], fregq Al
LDDF 10 0011 ¥ Load Double Floating-Point Register | dd [ address], freg.g Al
LDQF 10 0010 ¥ Load Quad Floating-Point Register I dq [ address], fregq Cs3
LDXFSR 100001 1 Load Floating-Point State Register I dx [ address], % sr Al

— 10 0001 2-31 Reserved

¥ Encoded floating-point register value, as described on page 51.

11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The load single floating-point instruction (LDF) copies a word from memory into 32-
bit floating-point destination register Fg[rd].

The load doubleword floating-point instruction (LDDF) copies a word-aligned
doubleword from memory into a 64-bit floating-point destination register, Fp[rd].
The unit of atomicity for LDDF is 4 bytes (one word).

The load quad floating-point instruction (LDQF) copies a word-aligned quadword
from memory into a 128-bit floating-point destination register, Fg[rd]. The unit of
atomicity for LDQF is 4 bytes (one word).

The load floating-point state register instruction (LDXFSR) waits for all FPop
instructions that have not finished execution to complete and then loads a
doubleword from memory into the FSR. LDXFSR does not alter the ver, ftt, gne, or
reserved fields of FSR (see page 61).

Programming | For future compatibility, software should only issue an LDXFSR
Note | instruction with a zero value (or a value previously read from
the same field) written into any reserved field of FSR.

These load floating-point instructions access memory using the implicit ASI (see
page 104).

If i = 0, the effective address for these instructions is “R[rs1] + R[rs2]” and if i =0,
the effective address is “R[rs1] + sign_ext( simm13)”.
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Exceptions. An attempt to execute an LDF, LDDF, LDQF, or LDXFSR instruction
when i = 0 and instruction bits 12:5 are nonzero causes an illegal_instruction
exception. An attempt to execute an instruction encoded as op =2, op3 = 2144, and
rd > 1 causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an LDF, LDDEF, LDQF, or LDXFSR instruction causes an
fp_disabled exception.

If the effective address is not word-aligned, an attempt to execute an LDF instruction
causes a mem_address_not_aligned exception. If the effective address is not
doubleword-aligned, an attempt to execute an LDXFSR instruction causes a
mem_address_not_aligned exception.

LDDF requires only word alignment. However, if the effective address is word-
aligned but not doubleword-aligned, an attempt to execute an LDDF instruction
causes an LDDF_mem_address_not_aligned exception. In this case, trap handler
software must emulate the LDDF instruction and return (impl. dep. #109-V9-
Cs10(a)).

LDQF requires only word alignment. However, if the effective address is word-
aligned but not quadword-aligned, an attempt to execute an LDQF instruction
causes an LDQF_mem_address_not_aligned exception. In this case, trap handler
software must emulate the LDQF instruction and return (impl. dep. #111-V9-
Cs10(a)).

Programming | Some compilers issued sequences of single-precision loads for
Note | SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9 processors, since emulation of
misaligned loads is expected to be fast, compilers should issue
sets of single-precision loads only when they can determine that
doubleword or quadword operands are not properly aligned.

An attempt to execute an LDQF instruction when rd{1} # 0 causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

Implementation | Since UltraSPARC Architecture 2005 processors do not implement

Note | in hardware instructions (including LDQF) that refer to quad-
precision floating-point registers, the
LDQF_mem_address_not_aligned and fp_exception_other (with
FSR.fit = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.

Destination Register(s) when Exception Occurs. If aload floating-point
instruction generates an exception that causes a precise trap, the destination floating-
point register(s) remain unchanged.
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See Also

LDF / LDDF / LDQF / LDXFSR

IMPL. DEP. #44-V8-Cs10(a): If a load floating-point instruction generates an
exception that causes a non-precise trap, the contents of the destination floating-point
register(s) remain unchanged or are undefined.

Implementation | LDXFSR shares an opcode with the LDFSR instruction (and
Note | possibly with other implementation-dependent instructions);
they are differentiated by the instruction rd field. An attempt to
execute the op = 11,, op3 = 10 0001, opcode with an invalid rd
value (rd > 1) causes an illegal_instruction exception.

illegal_instruction

fp_disabled

LDDF_mem_address_not_aligned

mem_address_not_aligned

fp_exception_other (FSR.ftt = invalid_fp_register (LDQF only))
VA_watchpoint

data_access_exception

fast_data_access_ MMU_miss

data_access_MMU_miss

data_access_MMU_error

Load Floating-Point from Alternate Space on page 252
Load Floating-Point State Register on page 256
Store Floating-Point on page 332
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7.53

Load Floating-Point from Alternate
Space

Instruction op3 rd Operation Assembly Language Syntax Class
LDFAPsst 110000 0-31 Load Floating-Point Register | da [ regaddr] imm_asi, freg.g Al
from Alternate Space Ida [ reg_plus_imm] Y@si, freqq
LDDFAPast 110011 # Load Double Floating-Point | dda [ regaddr] imm_asi, freg,q Al
Register from Alternate Space | dda [ reg_plus_imm] Y@si, fregq
LDQFAFasi 110010 * Load Quad Floating-Point I dga [ regaddr] imm_asi, freg.q C3
Register from Alternate Space |dqa [ reg_plus_imm] Y@Si, fregyq
¥ Encoded floating-point register value, as described in Floating-Point Register Number Encoding on page 51.
11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The load single floating-point from alternate space instruction (LDFA) copies a word

from memory into 32-bit floating-point destination register Fg[rd].

The load double floating-point from alternate space instruction (LDDFA) copies a
word-aligned doubleword from memory into a 64-bit floating-point destination
register, Fp[rd]. The unit of atomicity for LDDFA is 4 bytes (one word).

The load quad floating-point from alternate space instruction (LDQFA) copies a
word-aligned quadword from memory into a 128-bit floating-point destination
register, Fo[rd]. The unit of atomicity for LDQFA is 4 bytes (one word).

If i = 0, these instructions contain the address space identifier (ASI) to be used for the
load in the imm_asi field and the effective address for the instruction is

“R[rs1] + R[rs2]”. If i = 1, the ASI to be used is contained in the ASI register and the
effective address for the instruction is “R[rs1] + sign_ext( simm13)”.

Exceptions. If the FPU is not enabled (FPRS.fef =0 or PSTATE.pef = 0) or if no
FPU is present, an attempt to execute an LDFA, LDDFA, or LDQFA instruction
causes an fp_disabled exception.

LDFA causes a mem_address_not_aligned exception if the effective memory address
is not word-aligned.

V9 Compatibility | LDFA, LDDFA, and LDQFA cause a privileged_action exception if
Note | PSTATE.priv = 0 and bit 7 of the ASI is 0.
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LDDFA requires only word alignment. However, if the effective address is word-
aligned but not doubleword-aligned, LDDFA causes an
LDDF_mem_address_not_aligned exception. In this case, trap handler software
must emulate the LDDFA instruction and return (impl. dep. #109-V9-Cs10(b)).

LDQFA requires only word alignment. However, if the effective address is word-
aligned but not quadword-aligned, LDQFA causes an
LDQF_mem_address_not_aligned exception. In this case, trap handler software
must emulate the LDQFA instruction and return (impl. dep. #111-V9-Cs10(b)).

An attempt to execute an LDQFA instruction when rd{1} # O causes an
fp_exception_other (with FSR.fit = invalid_fp_register) exception.

Implementation | Since UltraSPARC Architecture 2005 processors do not implement

Note | in hardware instructions (including LDQFA) that refer to quad-
precision floating-point registers, the
LDQF_mem_address_not_aligned and fp_exception_other (with
FSR.fit = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.

Programming | Some compilers issued sequences of single-precision loads for
Note | SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9 processors, since emulation of
misaligned loads is expected to be fast, compilers should issue
sets of single-precision loads only when they can determine that
doubleword or quadword operands are not properly aligned.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI
is 0, this instruction causes a privileged_action exception. In privileged mode
(PSTATE.priv =1 and HPSTATE.hpriv = 0), if the ASI is in the range 3044 to 7Fy, this
instruction causes a privileged_action exception.

LDFA and LDQFA can be used with any of the following ASIs, subject to the
privilege mode rules described for the privileged_action exception above. Use of any
other ASI with these instructions causes a data_access_exception exception.

ASls valid for LDFA and LDQFA

ASI _NUCLEUS ASI _NUCLEUS LI TTLE

ASI _AS_| F_USER PRI MARY ASl _AS_| F_USER PRI MARY_ LI TTLE
ASI _AS_| F_USER SECONDARY ASl _AS_| F_USER _SECONDARY_ LI TTLE
AS| _REAL ASl _REAL_LI TTLE

ASl _REAL_1O ASI _REAL_| O LI TTLE

AS| _PRI MARY ASl _PRI MARY_LI TTLE
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ASls valid for LDFA and LDQFA

ASI _SECONDARY ASI _SECONDARY_LI TTLE
ASI _PRI MARY_NO_FAULT ASI _PRI MARY_NO_FAULT_LI TTLE
ASI _SECONDARY_NO FAULT ASI _SECONDARY_NO FAULT LI TTLE

LDDFA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
the LDDFA instruction causes a data_access_exception exception.

ASiIs valid for LDDFA

ASI _NUCLEUS ASI _NUCLEUS_LI TTLE
ASl _AS_| F_USER PRI MARY ASI _AS_| F_USER PRI MARY_ LI TTLE
AS| _AS_| F_USER SECONDARY ASI _AS_| F_USER _SECONDARY_ LI TTLE
AS| _REAL ASl _REAL_LI TTLE

ASI _REAL_|O ASI _REAL_1 O LI TTLE

AS| _PRI MARY ASI _PRI MARY_LI TTLE

AS| _SECONDARY AS| _SECONDARY_ LI TTLE

AS| _PRI MARY_NO FAULT AS| _PRI MARY_NO FAULT LI TTLE

AS| _SECONDARY_NO_FAULT AS| _SECONDARY_NO FAULT LI TTLE

Behavior with Partial Store ASIs. ASIs C0;4-C514 and C8;¢-CD14 are only
defined for use in Partial Store operations (see page 341). None of them should be
used with LDDFA; however, if any of those ASIs is used with LDDFA, the LDDFA
behaves as follows:

1. IMPL. DEP. #257-U3: If an LDDFA opcode is used with an ASI of C0,—C54¢4 or
C814—CDq4 (Partial Store ASIs, which are an illegal combination with LDDFA) and
a memory address is specified with less than 8-byte alignment, the virtual
processor generates an exceptoin. It is implementation dependent whether the
generated exception is a data_access_exception, mem_address_not_aligned, or
LDDF_mem_address_not_aligned exception.

2. If the memory address is correctly aligned, the virtual processor generates a
data_access_exception.

Destination Register(s) when Exception Occurs. If a load floating-point
alternate instruction generates an exception that causes a precise trap, the
destination floating-point register(s) remain unchanged.

IMPL. DEP. #44-V8-Cs10(b): If a load floating-point alternate instruction generates
an exception that causes a non-precise trap, it is implementation dependent whether
the contents of the destination floating-point register(s) are undefined or are
guaranteed to remain unchanged.

Implementation | LDDFA shares an opcode with the LDBLOCKF and LDSHORTF
Note | instructions; it is distinguished by the ASI used.
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See Also

LDFA / LDDFA / LDQFA

illegal_instruction

fp_disabled
LDDF_mem_address_not_aligned
mem_address_not_aligned

fp_exception_other (FSR.ftt = invalid_fp_register (LDQFA only))

privileged_action
VA_watchpoint
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error

Load Floating-Point on page 249

Block Load on page 245

Store Short Floating-Point on page 344

Store Floating-Point into Alternate Space on page 335
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7.54

Load Floating-Point State Register

The LDFSR instruction is deprecated and should not be used in new software.
The LDXFSR instruction should be used instead.

Opcode op3 rd Operation Assembly Language Syntax Class
LDFSRP 100001 0 Load Floating-Point State Register Lower | d  [address], % sr C2
11 rd op3 rsl i= — rs2
11 rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The load floating-point state register lower instruction (LDFSR) waits for all FPop

instructions that have not finished execution to complete and then loads a word
from memory into the less significant 32 bits of the FSR. The upper 32 bits of FSR
are unaffected by LDFSR. LDFSR does not alter the ver, fit, gne, or reserved fields of
FSR (see page 61).

Programming
Note

For future compatibility, software should only issue an LDFSR
instruction with a zero value (or a value previously read from
the same field) in any reserved field of FSR.

LDFSR accesses memory using the implicit ASI (see page 120).

An attempt to execute an LDFSR instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an LDFSR instruction causes an fp_disabled exception.

LDFSR causes a mem_address_not_aligned exception if the effective memory
address is not word-aligned.

V8 Compatibility | The SPARC V9 architecture supports two different instructions
Note | to load the FSR: the SPARC V8 LDFSR instruction is defined to
load only the less significant 32 bits of the FSR, whereas
LDXFSR allows SPARC V9 programs to load all 64 bits of the
FSR.w
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Implementation | LDFSR shares an opcode with the LDXFSR instruction (and
Note | possibly with other implementation-dependent instructions);
they are differentiated by the instruction rd field. An attempt to
execute the op = 11,, op3 = 10 0001, opcode with an invalid rd
value (rd > 1) causes an illegal_instruction exception.

Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
VA_watchpoint
fast_data_access_ MMU_miss
data_access_MMU_miss
data_access_MMU_error
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LDSHORTF

Short Floating-Point Load

ASI
Instruction Value Operation Assembly Language Syntax Class
LDSHORTF D04 8-bit load from primary address space | dda [ regaddr] #ASI _FL8_P, fregyy C3
| dda [ reg_plus_imm] Y&si, fregyq
LDSHORTF D144 8-bit load from secondary address | dda  [regaddr] #AS| _FL8_S, fregq C3
space | dda [ reg_plus_imm] %@si, fregyq
LDSHORTF  D8;¢ 8-bit load from primary address space, |dda [ regaddr] #ASI _FL8_PL, fregy C3
little-endian | dda  [reg_plus_imm] %&si, fregyq
LDSHORTF D94 8-bitload from secondary address space, | dda [ regaddr] #ASI _FL8_SL, fregq C3
little-endian | dda  [reg_plus_imm] Y@asi, fregy
LDSHORTF  D2;¢ 16-bit load from primary address space | dda [regaddr] #ASI _FL16_P, fregyq C3
| dda  [reg_plus_imm] %asi, fregq
LDSHORTF  D3;¢ 16-bit load from secondary address | dda  [regaddr] #AS| _FL16_S, fregq C3
space | dda [reg_plus_imm] Y@si, freg.y
LDSHORTF DA, 16-bit load from primary address space, | dda [ regaddr] #ASI _FL16_PL, fregq C3
little-endian | dda [ reg_plus_imm] Yasi, freg.y
LDSHORTF  DBjg 16-bit load from secondary address | dda  [regaddr] #AS| _FL16_SL, freg,q C3
space, little-endian | dda [ reg_plus_imm] Y@si, fregyq
11 rd 110011 rsl i=0 imm_asi rs2
11 rd 110011 rsl i=1 simm_13
31 30 29 25 24 19 18 14 13 5 4 0
Description Short floating-point load instructions allow an 8- or 16-bit value to be loaded from

memory into a 64-bit floating-point register.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an

attempt to execute an LDSHORTF instruction causes an fp_disabled exception.

An 8-bit load places the loaded value in the least significant byte of Fp[rd] and

zeroes in the most-significant three bytes of Fp[rd]. An 8-bit LDSHORTF can be
performed from an arbitrary byte address.

A 16-bit load places the loaded value in the least significant halfword of Fp[rd] and

zeroes in the more-significant halfword of Fp[rd]. A 16-bit LDSHORTF from an

address that is not halfword-aligned (an odd address) causes a
mem_address_not_aligned exception.
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LDSHORTF

Little-endian ASIs transfer data in little-endian format from memory; otherwise,
memory is assumed to be in big-endian byte order.

LDSHORTF is typically used with the FALIGNDATA instruction
(see Align Address on page 147) to assemble or store 64 bits from
noncontiguous components.

LDSHORTF shares an opcode with the LDBLOCKF and LDDFA
instructions; it is distinguished by the ASI used.

Programming
Note

Implementation
Note

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause a data_access_exception exception, and are
emulated in software.

VA_watchpoint
data_access_exception
fast_data_access_ MMU_miss
data_access_ MMU_miss
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7.56 Load-Store Unsigned Byte

Instruction op3 Operation Assembly Language Syntax Class
LDSTUB 001101 Load-Store Unsigned Byte | dstub [ address], reg.q Al
11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The load-store unsigned byte instruction copies a byte from memory into R[rd], then
rewrites the addressed byte in memory to all 1’s. The fetched byte is right-justified in
the destination register R[rd] and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening
interrupts or deferred traps. In a multiprocessor system, two or more virtual
processors executing LDSTUB, LDSTUBA, CASA, CASXA, SWAP, or SWAPA
instructions addressing all or parts of the same doubleword simultaneously are
guaranteed to execute them in an undefined, but serial, order.

LDSTUB accesses memory using the implicit ASI (see page 104). The effective
address for this instruction is “R[rs1] + R[rs2]” if i =0, or
“R[rs1] + sign_ext( simm13)” if i = 1.

The coherence and atomicity of memory operations between virtual processors and
I/0O DMA memory accesses are implementation dependent (impl. dep. #120-V9).

An attempt to execute an LDSTUB instruction when i = 0 and instruction bits 12:5
are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
VA_watchpoint
data_access_exception
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
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7.57  Load-Store Unsigned Byte to Alternate
Space

Instruction op3 Operation Assembly Language Syntax Class
LDSTUBAPAT 011101 Load-Store Unsigned Byte into | dstuba [ regaddr] imm_asi, regq Al
Alternate Space | dstuba [ reg_plus_imm] %@Si, regyq
11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description  The load-store unsigned byte into alternate space instruction copies a byte from
memory into R[rd], then rewrites the addressed byte in memory to all 1’s. The
fetched byte is right-justified in the destination register R[rd] and zero-filled on the
left.

The operation is performed atomically, that is, without allowing intervening
interrupts or deferred traps. In a multiprocessor system, two or more virtual
processors executing LDSTUB, LDSTUBA, CASA, CASXA, SWAP, or SWAPA
instructions addressing all or parts of the same doubleword simultaneously are
guaranteed to execute them in an undefined, but serial, order.

If i = 0, LDSTUBA contains the address space identifier (ASI) to be used for the load
in the imm_asi field. If i = 1, the ASI is found in the ASI register. In nonprivileged
mode (PSTATE.priv =0 and HPSTATE.hpriv = 0), if bit 7 of the ASI is 0, this
instruction causes a privileged_action exception. In privileged mode

(PSTATE.priv =1 and HPSTATE.hpriv = 0), if the ASI is in the range 3014 to 7Fy, this
instruction causes a privileged_action exception.

LDSTUBA can be used with any of the following ASlIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
this instruction causes a data_access_exception exception.

ASlIs valid for LDSTUBA

ASI _NUCLEUS ASI _NUCLEUS_LI TTLE

ASI _AS_| F_USER PRI MARY ASI _AS | F_USER PRI MARY LI TTLE
ASI _AS_| F_USER_SECONDARY ASI _AS | F_USER SECONDARY_LI TTLE
ASI _REAL ASl _REAL_LI TTLE

ASI _PRI MARY ASI _PRI MARY_LI TTLE

ASI _SECONDARY ASI _SECONDARY_LI TTLE
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Exceptions privileged_action
VA_watchpoint
data_access_exception
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection
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7.58

Load Integer Twin Extended Word from

Alternate Space

The LDTXA instructions are not guaranteed to be implemented on all
UltraSPARC Architecture implementations. Therefore, they should only be
used in platform-specific dynamically-linked libraries, in hyperprivileged
software, or in software created by a runtime code generator that is aware of the
specific virtual processor implementation on which it is executing.

ASI
Instruction Value Operation Assembly Language Syntax T Class
LDTXAN 221¢ Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _LDTX_Al UP, reg.y N1
as if user (nonprivileged), Primary
address space
2316 Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _LDTX_Al US, reg N1
as if user (nonprivileged), Secondary
address space
2616 Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _LDTX_REAL, reg N1
real address
271¢ Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _LDTX_N, reg.q N1
nucleus context
2A1¢ Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _LDTX_Al UP_L, regq N1
as if user (nonprivileged), Primary
address space, little endian
2By Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _LDTX_Al US_L, reg.q N1
as if user (nonprivileged), Secondary
address space, little endian
2E1¢ Load Integer Twin Extended Word, | dt xa [ regaddr] #AS| _LDTX_REAL_L, regq N1
real address, little endian
2F;¢ Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _LDTX_NL, reg.q N1
nucleus context, little-endian
LDTXAN E2, Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _LDTX_P, regq N1
Primary address space
E31¢, Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _LDTX_S, regq N1
Secondary address space
EAq¢ Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _LDTX_PL, regyy N1
Primary address space, little endian
EBys Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _LDTX_SL, regyy N1

Secondary address space, little-endian

t The original assembly language syntax for these instructions used the “I dda” instruction mnemonic. That syntax is now deprecated.
Over time, assemblers will support the new “I dt xa” mnemonic for this instruction. In the meantime, some existing assemblers may
only recognize the original “I dda” mnemonic.
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11 rd 01 0011 rsl i=0 imm_asi rs2
31 30 29 25 24 19 18 14 13 12 5 4 0

Description  ASIs 2614, 2E14, E214, E314, FO16, and F1; are used with the LDTXA instruction to
atomically read a 128-bit data item into a pair of 64-bit R registers (a “twin extended
word”). The data are placed in an even/odd pair of 64-bit registers. The lowest-
address 64 bits are placed in the even-numbered register; the highest-address 64 bits
are placed in the odd-numbered register.

Note | Execution of an LDTXA instruction with rd = 0 modifies only
R[1].

ASIs E244, E31¢, FOq4, and F1;¢ perform an access using a virtual address, while ASIs
2614 and 2E;4 use a real address.

An LDTXA instruction that performs a little-endian access behaves as if it comprises
two 64-bit loads (performed atomically), each of which is byte-swapped
independently before being written into its respective destination register.

Exceptions. An attempt to execute an LDTXA instruction with an odd-numbered
destination register (rd{0} = 1) causes an illegal_instruction exception.

An attempt to execute an LDTXA instruction with an effective memory address that
is not aligned on a 16-byte boundary causes a mem_address_not_aligned exception.

IMPL. DEP. #413-S10: It is implementation dependent whether VA_watchpoint and
PA_watchpoint exceptions are recognized on accesses to all 16 bytes of a LDTXA
instruction (the recommended behavior) or only on accesses to the first 8 bytes.

An attempted access by an LDTXA instruction to noncacheable memory causes an a
data_access_exception exception (impl. dep. #306-U4-Cs10).

Programming | A key use for this instruction is to read a full TTE entry (128 bits,

Note | tag and data) in a TSB directly, without using software
interlocks. The “real address” variants can perform the access
using a real address, bypassing the VA-to-RA translation.

Programming | In hyperprivileged mode, an access to ASI E2¢4, E34¢, FOy¢, or
Note | F1,4 is performed using physical (not virtual) addressing.

The virtual processor MMU does not provide virtual-to-real translation for ASIs 2644
and 2Eg; the effective address provided with either of those ASIs is interpreted
directly as a real address.

Compatibility | ASIs 2714, 2F14, 261, and 2E;¢ are now standard ASIs that
Note | replace (respectively) ASIs 2444, 2Cy4, 3414, and 3Cq4 that were
supported in some previous UltraSPARC implementations.
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A mem_address_not_aligned trap is taken if the access is not aligned on a 128-byte

boundary.
Implementation | LDTXA shares an opcode with the “i = 0” variant of the
Note | (deprecated) LDTWA instruction. See Load Integer Twin Word
from Alternate Space on page 268.
Exceptions illegal_instruction

mem_address_not_aligned
privileged_action

VA_watchpoint (impl. dep. #413-510)
data_access_exception
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
PA_watchpoint (impl. dep. #413-510)
data_access_error
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7.59  Load Integer Twin Word

The LDTW instruction is deprecated and should not be used in new software. It
is provided only for compatibility with previous versions of the architecture.The
LDX instruction should be used instead.

Instruction op3 Operation Assembly Language Syntax T Class

LDTWP 00 0011 Load Integer Twin Word I dtw [ address] , regyy D2

t The original assembly language syntax for this instruction used an “I dd” instruction mnemonic, which is now
deprecated. Over time, assemblers will support the new “l dt w” mnemonic for this instruction. In the mean-
time, some existing assemblers may only recognize the original “I dd” mnemonic.

11 rd op3 rsl i= — rs2
11 rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The load integer twin word instruction (LDTW) copies two words (with doubleword
alignment) from memory into a pair of R registers. The word at the effective
memory address is copied into the least significant 32 bits of the even-numbered R
register. The word at the effective memory address + 4 is copied into the least
significant 32 bits of the following odd-numbered R register. The most significant 32
bits of both the even-numbered and odd-numbered R registers are zero-filled.

Note | Execution of an LDTW instruction with rd = 0 modifies only
R[1].

Load integer twin word instructions access memory using the implicit ASI (see
page 104). If i = 0, the effective address for these instructions is “R[rs1] + R[rs2]” and
if i = 0, the effective address is “R[rs1] + sign_ext( simm13)”.

With respect to little endian memory, an LDTW instruction behaves as if it comprises
two 32-bit loads, each of which is byte-swapped independently before being written
into its respective destination register.

IMPL. DEP. #107-V9a: It is implementation dependent whether LDTW is
implemented in hardware. If not, an attempt to execute an LDTW instruction will
cause an unimplemented_LDTW exception.

Programming | LDTW is provided for compatibility with existing SPARC V8
Note | software. It may execute slowly on SPARC V9 machines because
of data path and register-access difficulties.
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Exceptions

See Also

LDTW (Deprecated)

SPARC V9 | LDTW was (inaccurately) named LDD in the SPARC V8 and
Compatibility | SPARC V9 specifications. It does not load a doubleword; it
Note | Joads two words (into two registers), and has been renamed
accordingly.

The least significant bit of the rd field in an LDTW instruction is unused and should
always be set to 0 by software. An attempt to execute an LDTW instruction that
refers to a misaligned (odd-numbered) destination register causes an
illegal_instruction exception.

An attempt to execute an LDTW instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If the effective address is not doubleword-aligned, an attempt to execute an LDTW
instruction causes a mem_address_not_aligned exception.

A successful LDTW instruction operates atomically.

unimplemented_LDTW
illegal_instruction
mem_address_not_aligned
VA_watchpoint
data_access_exception
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error

LDW/LDX on page 240
STTW on page 346
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LDTWA (Deprecated)

7.60  Load Integer Twin Word from Alternate
Space

The LDTWA instruction is deprecated and should not be used in new software.
The LDXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class
LDTWADP:Pas1 01 0011 Load Integer Twin Word from Alternate | dtwa [regaddr] imm_asi, reg,q t
Space | dtwa [reg_plus_imm] Y@Si , regq

1 The original assembly language syntax for this instruction used an “l dda” instruction mnemonic, which is now deprecated. Over time,
assemblers will support the new “l dt wa” mnemonic for this instruction. In the meantime, some assemblers may only recognize the
original “I dda” mnemonic.

T Y3 for restricted ASIs (0014-7F¢); D2 for unrestricted ASIs (80,4-FF¢)

11 rd op3 rsl i= imm_asi rs2
11 rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The load integer twin word from alternate space instruction (LDTWA) copies two
words (with doubleword alignment) from memory into a pair of R registers. The
word at the effective memory address is copied into the least significant 32 bits of
the even-numbered R register. The word at the effective memory address + 4 is
copied into the least significant 32 bits of the following odd-numbered R register.
The most significant 32 bits of both the even-numbered and odd-numbered R
registers are zero-filled.

Note | Execution of an LDTWA instruction with rd = 0 modifies only
R[1].

If i = 0, the LDTWA instruction contains the address space identifier (ASI) to be used
for the load in its imm_asi field and the effective address for the instruction is
“R[rs1] + R[rs2]”. If i = 1, the ASI to be used is contained in the ASI register and the
effective address for the instruction is “R[rs1] + sign_ext( simm13)”.

With respect to little endian memory, an LDTWA instruction behaves as if it is
composed of two 32-bit loads, each of which is byte-swapped independently before
being written into its respective destination register.
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IMPL. DEP. #107-V9b: It is implementation dependent whether LDTWA is
implemented in hardware. If not, an attempt to execute an LDTWA instruction will
cause an unimplemented_LDTW exception so that it can be emulated.

Programming | LDTWA is provided for compatibility with existing SPARC V8
Note | software. It may execute slowly on SPARC V9 machines because
of data path and register-access difficulties.

If LDTWA is emulated in software, an LDXA instruction
instruction should be used for the memory access in the
emulation code in order to preserve atomicity.

SPARC V9 | LDTWA was (inaccurately) named LDDA in the SPARC V8 and
Compatibility | SPARC V9 specifications.
Note

The least significant bit of the rd field in an LDTWA instruction is unused and
should always be set to 0 by software. An attempt to execute an LDTWA instruction
that refers to a misaligned (odd-numbered) destination register causes an
illegal_instruction exception.

If the effective address is not doubleword-aligned, an attempt to execute an LDTWA
instruction causes a mem_address_not_aligned exception.

A successful LDTWA instruction operates atomically.

LDTWA causes a mem_address_not_aligned exception if the address is not
doubleword-aligned.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI
is 0, these instructions cause a privileged_action exception. In privileged mode
(PSTATE.priv =1 and HPSTATE.hpriv = 0), if the ASI is in the range 3014 to 7F1,
these instructions cause a privileged_action exception.

LDTWA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
this instruction causes a data_access_exception exception (impl. dep. #300-U4-
Cs10).

ASls valid for LDTWA

ASI _NUCLEUS ASI _NUCLEUS LI TTLE
ASI _AS | F_USER_PRI MARY ASI _AS | F_USER PRI MARY_ LI TTLE
ASI _AS_| F_USER_SECONDARY ASI _AS | F_USER_SECONDARY_LI TTLE
ASI _REAL ASI _REAL_LI TTLE

ASI _REAL_I O ASI _REAL_I O LI TTLE

22,61 (ASI _LDTX_Al UP) 2A161 (ASI_LDTD_AI UP_L)

23161 (ASI _LDTX_Al US) 2B1st (ASI_LDTX_AI US_L)

24161 (aliased to 271, ASI _LDTX_N) 2C;6} (aliased to 2F;4, ASI _LDTX_NL)
26,61 (AS|_LDTX_REAL) 2E;6t (ASI _LDTX_REAL_L)

27161 (ASI _LDTX_N) 2F161 (ASI _LDTX_NL)
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ASIs valid for LDTWA

ASI _PRI MARY ASI _PRI MARY_LI TTLE

ASI _SECONDARY ASI _SECONDARY_LI TTLE

ASI _PRI MARY_NO_FAULT ASI _PRI MARY_NO FAULT LI TTLE
ASI _SECONDARY_NO_FAULT ASI _SECONDARY_NO FAULT LI TTLE
E2,6% (AS| _LDTX_P) EAef (ASI _LDTX_PL)

E3;6t (ASl _LDTX_S) EB;et (ASl _LDTX_SL)

f If this ASI is used with the opcode for LDTWA and i =0, the LDTXA

instruction is executed instead of LDTWA. For behavior of

LDTXA, see Load Integer Twin Extended Word from Alternate Space on page
263.

If this ASI is used with the opcode for LDTWA and i = 1, behavior is
undefined.

Programming | Nontranslating ASIs (see page 407) should only be accessed

Note | using LDXA (not LDTWA) instructions. If an LDTWA
referencing a nontranslating ASI is executed, per the above
table, it generates a data_access_exceptionexception (impl. dep.
#300-U4-Cs10).

Implementation | The deprecated instruction LDTWA shares an opcode with

Note | LDTXA. LDTXA is not deprecated and has different address
alignment requirements than LDTWA. See Load Integer Twin
Extended Word from Alternate Space on page 263.

Exceptions unimplemented_LDTW illegal_instruction
mem_address_not_aligned
privileged_action
VA_watchpoint
data_access_exception
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error

See Also LDWA/LDXA on page 242
STTWA on page 348
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MEMBAR

7.61

Memory Barrier

Instruction op3 Operation Assembly Language Syntax Class
MEMBAR 10 1000 Memory Barrier menbar membar_mask Al
10 op3 01111 i= — cmask | mmask
31 30 29 25 24 19 18 14 13 12 7 6 4 3 0
Description The memory barrier instruction, MEMBAR, has two complementary functions: to

express order constraints between memory references and to provide explicit control
of memory-reference completion. The membar_mask field in the suggested assembly
language is the concatenation of the cmask and mmask instruction fields.

MEMBAR introduces an order constraint between classes of memory references
appearing before the MEMBAR and memory references following it in a program.
The particular classes of memory references are specified by the mmask field.
Memory references are classified as loads (including load instructions LDSTUB[A],
SWAP[A], CASA, and CASX[A] and stores (including store instructions LDSTUB[A],
SWAP[A], CASA, CASXA, and FLUSH). The mmask field specifies the classes of
memory references subject to ordering, as described below. MEMBAR applies to all
memory operations in all address spaces referenced by the issuing virtual processor,
but it has no effect on memory references by other virtual processors. When the
cmask field is nonzero, completion as well as order constraints are imposed, and the
order imposed can be more stringent than that specifiable by the mmask field alone.

A load has been performed when the value loaded has been transmitted from
memory and cannot be modified by another virtual processor. A store has been
performed when the value stored has become visible, that is, when the previous
value can no longer be read by any virtual processor. In specifying the effect of
MEMBAR, instructions are considered to be executed as if they were processed in a
strictly sequential fashion, with each instruction completed before the next has
begun.

The mmask field is encoded in bits 3 through 0 of the instruction. TABLE 7-7 specifies
the order constraint that each bit of mmask (selected when set to 1) imposes on
memory references appearing before and after the MEMBAR. From zero to four
mask bits may be selected in the mmask field.
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TABLE 7-7

MEMBAR

MEMBAR mmask Encodings

Mask Bit

Assembly
Language Name

Description

mmask({3}

mmask({2}

mmask({1}

mmask{0}

#St oreStore

#LoadSt or e

#St or eLoad

#LoadLoad

The effects of all stores appearing prior to the MEMBAR
instruction must be visible to all virtual processors before the
effect of any stores following the MEMBAR. Equivalent to the
deprecated STBAR instruction.

All loads appearing prior to the MEMBAR instruction must
have been performed before the effects of any stores following
the MEMBAR are visible to any other virtual processor.

The effects of all stores appearing prior to the MEMBAR
instruction must be visible to all virtual processors before loads
following the MEMBAR may be performed.

All loads appearing prior to the MEMBAR instruction must
have been performed before any loads following the MEMBAR
may be performed.

The cmask field is encoded in bits 6 through 4 of the instruction. Bits in the cmask
field, described in TABLE 7-8, specify additional constraints on the order of memory
references and the processing of instructions. If cmask is zero, then MEMBAR
enforces the partial ordering specified by the mmask field; if cmask is nonzero, then
completion and partial order constraints are applied.

TaBLE7-8  MEMBAR cmask Encodings
Assembly
Mask Bit Function Language Name Description
cmask{2}  Synchronization  #Sync All operations (including nonmemory
barrier reference operations) appearing prior to the
MEMBAR must have been performed and
the effects of any exceptions be visible before
any instruction after the MEMBAR may be
initiated.
cmask{l} Memory issue #Menl ssue  All memory reference operations appearing
barrier prior to the MEMBAR must have been
performed before any memory operation
after the MEMBAR may be initiated.
cmask{0} Lookaside barrier #lLookasi de A store appearing prior to the MEMBAR

must complete before any load following the
MEMBAR referencing the same address can
be initiated.

A MEMBAR instruction with both mmask = 0 and cmask = 0 is functionally a NOP.

For information on the use of MEMBAR, see Memory Ordering and Synchronization on
page 401 and Programming with the Memory Models contained in the separate volume
UltraSPARC Architecture Application Notes. For additional information about the
memory models themselves, see Chapter 9, Memory.
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MEMBAR

The coherence and atomicity of memory operations between virtual processors and
I/0O DMA memory accesses are implementation dependent (impl. dep. #120-V9).

MEMBAR with mmask = 8,4 and cmask = 0;4 (MEMBAR
#St or eSt or e) is identical in function to the SPARC V8 STBAR
instruction, which is deprecated.

V9 Compatibility
Note

An attempt to execute a MEMBAR instruction when instruction bits 12:7 are nonzero
causes an illegal_instruction exception.

MEMBAR shares an opcode withRDasr and STBARP; it is
distinguished by rs1=15,rd =0, i=1, and bit 12 = 0.

Implementation
Note

Memory Synchronization

The UltraSPARC Architecture provides some level of software control over memory
synchronization, through use of the MEMBAR and FLUSH instructions for explicit
control of memory ordering in program execution.

IMPL. DEP. #412-S10: An UltraSPARC Architecture implementation may define the
operation of each MEMBAR variant in any manner that provides the required
semantics.

Implementation | For an UltraSPARC Architecture virtual processor that only

Note | provides TSO memory ordering semantics, three of the ordering
MEMBARs would normally be implemented as NOPs. TABLE 7-9
shows an acceptable implementation of MEMBAR for a TSO-
only UltraSPARC Architecture implementation.

TABLE 7-9 MEMBAR Semantics for TSO-only implementation

MEMBAR variant Preferred Implementation

#St oreSt ore, STBAR NOP

#LoadSt or e NOP
#St or eLoad #Sync
#LoadLoad NOP
#Sync #Sync
#Mem ssue #Sync
#Lookasi de #Sync

If an UltraSPARC Architecture implementation provides a less
restrictive memory model than TSO (for example, RMO), the
implementation of the MEMBAR variants may be different. See
implementation-specific documentation for details.
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7.61.3

Exceptions

MEMBAR

Synchronization of the Virtual Processor

Synchronization of a virtual processor forces all outstanding instructions to be
completed and any associated hardware errors to be detected and reported before
any instruction after the synchronizing instruction is issued.

Synchronization can be explicitly caused by executing a synchronizing MEMBAR
instruction (MEMBAR #Sync) or by executing an LDXA /STXA /LDDFA/STDFA
instruction with an ASI that forces synchronization.

During synchronization, if a disrupting trap condition due to a hardware error is
detected and external interrupts are enabled, the disrupting trap will occur before
the instruction after the synchronizing instruction is executed. In this case, the PC
value saved in TPC during trap entry will be the address of the instruction after the
synchronizing instruction.

Programming | Completion of a MEMBAR #Sync instruction does not

Note | guarantee that data previously stored has been written all the
way out to external memory (that is, that cache writebacks to
external memory have completed). Software cannot rely on
that behavior. There is no mechanism in the UltraSPARC
Architecture that allows software to wait for all previous stores
to be written to external memory (that is, for cache writebacks to
completely drain).

TSO Ordering Rules affecting Use of MEMBAR

For detailed rules on use of MEMBAR to enable software to adhere to the ordering
rules on a virtual processor running with the TSO memory model, refer to TSO
Ordering Rules on page 398.

illegal_instruction
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7.62

For Integer Condition Codes

MOVcc

Move Integer Register on Condition
(MOVcc)

Instruction op3 cond Operation icc / xcc Test Assembly Language Syntax Class
MOVA 101100 1000 Move Always 1 nova  i_or_x_cc, reg_or_immll, reg. Al
MOVN 101100 0000 Move Never 0 nmovn  i_or_x_cc, reg_or_immll, regy Al
MOVNE 101100 1001 Move if Not Equal not Z movnet i_or_x_cc, reg_or_immil, regyq Al
MOVE 101100 0001 Move if Equal 4 movet ior_x_cc, reg_or_immll, regyq Al
MOVG 101100 1010 Move if Greater not (Z or nmovg  i_or_x_cc, reg_or_immll, reg Al
N xor V))
MOVLE 101100 0010 Move if Less or Zor (N xorV) novle ior_x_cc, reg or_immll, regyq Al
Equal
MOVGE 101100 1011 Move if Greater not (N xor V) novge i_or_x_cc, reg_or_immll, reg.q Al
or Equal
MOVL 10 1100 0011 Move if Less N xor V nmov| i_or_x_cc, reg_or_immll, reg.y Al
MOVGU 101100 1100 Move if Greater, not (C or Z) novgu i_or_x_cc, reg_or_immll, reg.q Al
Unsigned
MOVLEU 101100 0100 Move if Less or (CorZz) nmovl eu i_or_x_cc, reg_or_immll, reg. Al
Equal, Unsigned
MOVCC 101100 1101 Move if Carry not C movee® i_or_x_cc, reg_or_immll, regyq Al
Clear (Greater or
Equal, Unsigned)
MOVCS 101100 0101 Move if Carry Set C movesY i_or_x_cc, reg_or_immil, regyq Al
(Less than,
Unsigned)
MOVPOS 101100 1110 Move if Positive not N novpos i_or_x_cc, reg_or_immll, regy Al
MOVNEG 101100 0110 Move if Negative N novneg i_or_x_cc, reg_or_immll, reg. Al
MOVVC 101100 1111 Move if Overflow  notV nmovvc i_or_x_cc, reg_or_immll, regy Al
Clear
MOVVS 101100 0111 Move if Overflow V novvs i_or_x_cc, reg_or_immll, reg.q Al

Set

t synonym: movnz

¥ synonym: movz

© synonym: movgeu

Y synonym: movl u

Programming | In assembly language, to select the appropriate condition code,
Note | include % cc or %&cc before the reg_or_imm11 field.
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For Floating-Point Condition Codes

Instruction op3 cond Operation fcc Test Assembly Language Syntax Class

MOVFA 101100 1000 Move Always 1 nmova % ccn, reg_or_immll, reg.q Al

MOVEN 101100 0000 Move Never 0 movn 9% ccn, reg_or_immll, reg.g Al

MOVFU 101100 0111 Move if Unordered U movu Y% ccn, reg_or_immll, regyq Al

MOVFG 101100 0110 Move if Greater G novg % ccn, reg_or_immll, reg.y Al

MOVFUG 101100 0101 Move if Unordered G or U nmovug % ccn, reg_or_immll, reg.y Al
or Greater

MOVFL 101100 0100 Move if Less L novl % ccn, reg_or_immll, reg.y Al

MOVFUL 101100 0011 Move if Unordered L orU novul % ccn, reg_or_immll, reg.y Al
or Less

MOVFLG 101100 0010 Move if Less or LorG movl g 9% ccn, reg_or_immll, reg.y Al
Greater

MOVENE 101100 0001 Move if Not Equal L or G or U movne® % ccn, reg or_immil, reg.q Al

MOVFE 101100 1001 Move if Equal E movel % ccn, reg_or_imm1l, regq Al

MOVFUE 101100 1010 Move if Unordered E or U novue 9% ccn, reg_or_immll, reg.y Al
or Equal

MOVFGE 101100 1011 Move if Greater or E or G novge 9% ccn, reg_or_immll, reg.y Al
Equal

MOVFUGE 101100 1100 Move if Unordered E or G or U novuge 9% ccn, reg_or_immll, regyq Al
or Greater or Equal

MOVFLE 101100 1101 Move if Less or EorL movl e 9% ccn, reg_or_immll, reg.q Al
Equal

MOVFULE 101100 1110 Move if Unordered E orL or U novul e % ccn, reg_or_immll, regyy Al
or Less or Equal

MOVFO 101100 1111 Move if Ordered EorLorG novo % ccn, reg_or_immll, reg.y Al

' synonym: movnz ¥ synonym: movz

Programming | In assembly language, to select the appropriate condition code,
Note | include % ccO, % ccl1, % cc2, or % cc3 before the reg_or_imm11

field.
10 rd op3 cc cond i=0fcc1fccO — rs2
10 rd op3 cc2l  cond i=1|cc cco simm11
31 30 29 25 24 19 18 17 14 13 12 11 10 5 4 0
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Description

MOVcc

(2]
o
N

ccl ccO Condition Code
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== T A e N )
—_ O R, O R O R

0 fccO

fccl

fcc2

fce3

icc

Reserved (illegal_instruction)
Xce

Reserved (illegal_instruction)

These instructions test to see if cond is TRUE for the selected condition codes. If so,
they copy the value in R[rs2] if i field = 0, or “sign_ext(simm11)” if i = 1 into R[rd].
The condition code used is specified by the cc2, ccl, and ccO fields of the
instruction. If the condition is FALSE, then R[rd] is not changed.

These instructions copy an integer register to another integer register if the condition
is TRUE. The condition code that is used to determine whether the move will occur
can be either integer condition code (icc or xcc) or any floating-point condition code
(fccO, fcel, fee2, or feel).

These instructions do not modify any condition codes.

Programming
Note

Branches cause the performance of many implementations to
degrade significantly. Frequently, the MOVcc and FMOVcc
instructions can be used to avoid branches. For example, the C
language if-then-else statement
if (A>B) then X = 1; else X = 0;
can be coded as
cnp % 0, % 2
bg,a %cc, | abel
or %90, 1, % 3! X
or %90, 0, % 3! X
| abel : ...

The above sequence requires four instructions, including a branch.
With MOVcc this could be coded as:
cnp % 0, % 2

or %90, 1, % 3! assune X =1

movl e 9cc,0,% 3! overwite with X =0
This approach takes only three instructions and no branches and
may boost performance significantly. Use MOVce and FMOVec
instead of branches wherever these instructions would increase
performance.

An attempt to execute a MOVcc instruction when either instruction bits 10:5 are

nonzero or (CC2 ::

ccl :: cc0) = 101, or 111, causes an illegal_instruction exception.
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If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a MOVcc instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled
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7.63  Move Integer Register on Register
Condition (MOVr)

Instruction op3 rcond Operation Test Assembly Language Syntax Class
— 101111 000 Reserved (illegal_instruction) —
MOVRZ 101111 001 Move if Register Zero RIs11=0 novrzt  regy, reg or_imml0, regq Al
MOVRLEZ 101111 010 Move if Register Less Rlrsl]<0 novrl ez reggy, reg_or_imml0, regyq Al
Than or Equal to Zero
MOVRLZ 101111 011 Move if Register Less RIrs1]<0 nmovrlz regsp, reg_or_imml0, regyg Al
Than Zero
— 101111 100 Reserved (illegal_instruction) —
MOVRNZ 101111 101 Move if Register Not RIrs11#20  novrnzt regrs1, reg_or_imml0, regy Al
Zero
MOVRGZ 101111 110 Move if Register RIrs1]>0 novrgz regwg1, reg_or_imml0, regyy Al
Greater Than Zero
MOVRGEZ 101111 111 Move if Register Rlrs1]=0 novrgez regygy, reg_or_imml0, regyq Al
Greater Than or Equal
to Zero
t synonym: movr e ¥ synonym: movr ne
10 rd op3 | rsi i=0[ rcond — rs2
10 rd op3 rsl i=1| rcond simm10
31 30 29 25 24 19 18 14 13 12 10 9 5 4 0

Description If the contents of integer register R[rs1] satisfy the condition specified in the rcond
field, these instructions copy their second operand (if i =0, R[rs2]; ifi=1,
sign_ext(simm10)) into R[rd]. If the contents of R[rs1] do not satisfy the condition,
then R[rd] is not modified.

These instructions treat the register contents as a signed integer value; they do not
modify any condition codes.
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Note

MOVr

If this instruction is implemented by tagging each register value
with an n (negative) and a z (zero) bit, use the table below to
determine if rcond is TRUE.

Move Test
MOVRNZ not Z
MOVRZ Z
MOVRGEZ not N
MOVRLZ N
MOVRLEZ NorZ
MOVRGZ N nor Z

An attempt to execute a MOVr instruction when either instruction bits 9:5 are

nonzero or rcond =

Exceptions illegal_instruction

000, or 100, causes an illegal_instruction exception.
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MULScc - Deprecated

7.64  Multiply Step

The MULScc instruction is deprecated and should not be used in new software.
The MULX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class
MULScc? 100100 Multiply Step and modify cc’s nul scc  regygy, reg_or_imm, regqy Y3
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description ~ MULScc treats the less-significant 32 bits of R[rs1] and the less-significant 32 bits of
the Y register as a single 64-bit, right-shiftable doubleword register. The least
significant bit of R[rs1] is treated as if it were adjacent to bit 31 of the Y register. The
MULScc instruction performs an addition operation, based on the least significant
bit of Y.

Multiplication assumes that the Y register initially contains the multiplier, R[rs1]
contains the most significant bits of the product, and R[rs2] contains the
multiplicand. Upon completion of the multiplication, the Y register contains the least
significant bits of the product.

Note | In a standard MULScc instruction, rs1 = rd.

MULScc operates as follows:
1. If i = 0, the multiplicand is R[rs2]; if i = 1, the multiplicand is sign_ext( sSimm13).

2. A 32-bit value is computed by shifting the value from R[rs1] right by one bit with
“CCRu.icc.n xor CCRu.icc.v” replacing bit 31 of R[rs1]. (This is the proper sign for
the previous partial product.)

3. If the least significant bit of Y =1, the shifted value from step (2) and the
multiplicand are added. If the least significant bit of the Y =0, then 0 is added to
the shifted value from step (2).
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4. MULScc writes the following result values:

Register field Value written by MULScc

CCRuicc updated according to the result of the addition in step (3)
above

R[rd]{63:32} undefined

R[rd]{31:0} the least-significant 32 bits of the sum from step (3) above

Y the previous value of the Y register, shifted right by one

bit, with Y{31} replaced by the value of R[rs1]{0} prior to
shifting in step (2)

CCRxcc undefined

5. The Y register is shifted right by one bit, with the least significant bit of the
unshifted R[rs1] replacing bit 31 of Y.

An attempt to execute a MULScc instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
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MULX / SDIVX / UDIVX

7.65

Multiply and Divide (64-bit)

Instruction op3 Operation Assembly Language Class
MULX 00 1001 Multiply (signed or unsigned) mul x regrs1, 1eg_or_imm, regiq Al
SDIVX 10 1101 Signed Divide sdi vx regrs1, teg_or_imm, regyg Al
UDIVX 001101 Unsigned Divide udi vx regrs1, reg_or_imm, regyq Al

10 rd op3 rsl i=0| — rs2

10 rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description =~ MULX computes “R[rs1] x R[rs2]” if i = 0 or “R[rs1] x sign_ext( simm13)” if i =1,

Exceptions

and writes the 64-bit product into R[rd]. MULX can be used to calculate the 64-bit
product for signed or unsigned operands (the product is the same).

SDIVX and UDIVX compute “R[rs1] + R[rs2]” if i = 0 or

“R[rs1] + sign_ext( simm13)” if i = 1, and write the 64-bit result into R[rd]. SDIVX
operates on the operands as signed integers and produces a corresponding signed
result. UDIVX operates on the operands as unsigned integers and produces a
corresponding unsigned result.

For SDIVX, if the largest negative number is divided by -1, the result should be the
largest negative number. That is:

8000 0000 0000 00001¢ + FFFF FFFF FFFF FFFF;4 = 8000 0000 0000 0000+¢.

These instructions do not modify any condition codes.

An attempt to execute a MULX, SDIVX, or UDIVX instruction when i = 0 and
instruction bits 12:5 are nonzero causes an illegal_instruction exception.

illegal_instruction
division_by_zero
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7.66  No Operation

Instruction op2 Operation Assembly Language Syntax Class
NOP 100 No Operation nop Al
00 (rd=00000 op2 imm22=0000000000000000000000
31 30 29 25 24 22 21 0

Description The NOP instruction changes no program-visible state (except that of the PC
register).

NOP is a special case of the SETHI instruction, with imm22 =0 and rd = 0.

Programming | There are many other opcodes that may execute as NOPs;
Note | however, this dedicated NOP instruction is only one guaranteed
to implemented efficiently across all implementations.

Exceptions None
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7.67  NORMALW

Instruction Operation Assembly Language Syntax Class
NORMALW?  “Other” register windows become “normal” register windows nor mal w C1
10 | fcn=00100 11 0001 —
31 30 29 25 24 19 18 0

Description NORMALWY is a privileged instruction that copies the value of the OTHERWIN
register to the CANRESTORE register, then sets the OTHERWIN register to zero.

Programming | The NORMALW instruction is used when changing address
Notes | spaces. NORMALW indicates the current "other" windows are
now "normal" windows and should use the spill_n_normal and
fill_n_normal traps when they generate a trap due to window spill
or fill exceptions. The window state may become inconsistent if
NORMALW is used when CANRESTORE is nonzero.

This instruction allows window manipulations to be atomic,
without the value of N_REG_WINDOWS being visible to privileged
software and without an assumption that N_REG_WINDOWS is
constant (since hyperprivileged software can migrate a thread
among virtual processors, across which N_REG_WINDOWS may
vary).

In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and is emulated in

software.
Exceptions illegal_instruction (not implemented in hardware in UltraSPARC Architecture 2005)
See Also ALLCLEAN on page 148

INVALW on page 238
OTHERW on page 287
RESTORED on page 307
SAVED on page 315
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7.68  OR Logical Operation

Instruction op3 Operation Assembly Language Syntax Class
OR 00 0010 Inclusive or or regrs1, reg_or_imm, regyq Al
ORcc 01 0010 Inclusive or and modify cc’s orcc regrs1, reg_or_imm, regyy Al
ORN 00 0110 Inclusive or not orn regys1, 1eg_or_imm, regyq Al
ORNCcc 01 0110 Inclusive or not and modify cc’s  orncc  reg.gy, reg_or_imm, reg.g Al

10 rd op3 rsi i=0 — rs2

10 rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description These instructions implement bitwise logical or operations. They compute “R[rs1]
op R[rs2]” if i = 0, or “R[rs1] op sign_ext( simm13)” if i = 1, and write the result into
R[rd].

ORcc and ORNcc modify the integer condition codes (icc and xcc). They set the
condition codes as follows:

= icc.y, icc.c, xce.v, and xcc.c are set to 0

= icc.n is copied from bit 31 of the result

= Xcc.n is copied from bit 63 of the result

= icc.z is set to 1 if bits 31:0 of the result are zero (otherwise to 0)

= XCC.z is set to 1 if all 64 bits of the result are zero (otherwise to 0)

ORN and ORNCcc logically negate their second operand before applying the main
(or) operation.

An attempt to execute an OR[N][cc] instruction when i = 0 and instruction bits 12:5
are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
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7.69 OTHERW

Instruction Operation Assembly Language Syntax Class

OTHERW? “Normal” register windows become “other” ot herw C1
register windows

10 | fcn=00011 11 0001 —
31 30 29 25 24 19 18 0

Description OTHERWY is a privileged instruction that copies the value of the CANRESTORE
register to the OTHERWIN register, then sets the CANRESTORE register to zero.

Programming | The OTHERW instruction is used when changing address spaces.

Notes | OTHERW indicates the current "normal" register windows are
now "other" register windows and should use the spill_n_other
and fill_n_other traps when they generate a trap due to window
spill or fill exceptions. The window state may become inconsistent
if OTHERW is used when OTHERWIN is nonzero.

This instruction allows window manipulations to be atomic,
without the value of N_REG_WINDOWS being visible to privileged
software and without an assumption that N_REG_WINDOWS is
constant (since hyperprivileged software can migrate a thread
among virtual processors, across which N_REG_WINDOWS may
vary).

In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and is emulated in

software.
Exceptions illegal_instruction (not implemented in hardware in UltraSPARC Architecture 2005)
See Also ALLCLEAN on page 148

INVALW on page 238
NORMALW on page 285
RESTORED on page 307
SAVED on page 315

CHAPTER 7 e Instructions 287



PDIST

7.70 Pixel Component Distance

Instruction  opf Operation Assembly Language Syntax Class

PDIST 000111110 Distance between eight 8-bit components, pdi st fregs1, fregiso, fregrq  C3
with accumulation

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description Eight unsigned 8-bit values are contained in the 64-bit floating-point source registers
Fplrsl] and Fp[rs2]. The corresponding 8-bit values in the source registers are
subtracted (that is, each byte in Fp[rs2] is subtracted from the corresponding byte in
Fplrsl]). The sum of the absolute value of each difference is added to the integer in
Fplrd] and the resulting integer sum is stored in the destination register, Fp[rd].

Programming | PDIST uses Fp[rd] as both a source and a destination register.

Notes Typically, PDIST is used for motion estimation in video

compression algorithms.

In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and is emulated in
software.

Exceptions illegal_instruction
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7.71  Population Count

Instruction op3 Operation Assembly Language Syntax Class
POPC 10 1110 Population Count popc reg_or_imm, regq D3
10 rd | op3 | 00000 |i=0 — rs2
10 rd op3 0 0000 i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description ~ POPC counts the number of one bits in R[rs2] if i = 0, or the number of one bits in
sign_ext( simm13) if i = 1, and stores the count in R[rd]. This instruction does not

modify the condition codes.
V9 Compatibility | Instruction bits 18 through 14 must be zero for POPC. Other
Note | encodings of this field (rs1) may be used in future versions of the
SPARC architecture for other instructions.

Programming | POPC can be used to “find first bit set” in a register. A ‘C’-
Note | language program illustrating how POPC can be used for this
purpose follows:

int ffs(zz)/* finds first 1 bit, counting fromthe LSB */
unsi gned zz;

{
return popc ( zz N (0O (-zz)));/* for nonzero zz */
}
Inline assembly language code for f f s() is:
neg %N, %VI_IN I —zz(2's conpl enent)
xnor %N, %VI_IN, WEMP ! ~ O -zz (exclusive nor)
popc YTEMP, YRESULT ! result = popc(zz N O -zz)
movrz %N, %90, YRESULT I %RESULT shoul d be 0 for % N=0

where IN, M_IN, TEMP, and RESULT are integer registers.

Example computation:

IN =...00101000 !1st ‘1" bit fromright is
—-IN=...11011000 ! bit 3 (4th bit)
~—-IN=...00100111
IN~ ~—IN=...00001111
popc(IN”~ ~—IN = 4
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Programming
Note

POPC

POPC can be used to “centrifuge” all the ‘1" bits in a register to the
least significant end of a destination register. Assembly-language
code illustrating how POPC can be used for this purpose follows:

popc
cnp
nov

sl | x
not
novcce

%N, YDEST
%N, -1 | Test for pattern of all 1's
-1, WEMP I Constant -1 -> tenp register

YTEMP, YDEST, Y“ODEST ! (shift count of 64 same as 0)
Y%DEST !
9%cc, -1, YDEST ' If src was -1, result is -1

where IN, TEMP, and DEST are integer registers.

In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and is emulated in

software.

An attempt to execute a POPC instruction when either instruction bits 18:14 are
nonzero, or i = 0 and instruction bits 12:5 are nonzero causes an illegal_instruction

exception.

Exceptions illegal_instruction
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PREFETCH

7.72 Prefetch

Instruction op3 Operation Assembly Language Syntax Class
PREFETCH 101101 Prefetch Data prefetch [address], prefetch_fcn Al
PREFETCHAP*' 111101 Prefetch Data from prefetcha [reqaddr] imm_asi, prefetch_fcn Al
Alternate Space prefetcha [ reg plus_imm] Y@si, prefetch_fen
PREFETCH
11 fcn op3 rsl i=0 — rs2
11 fcn op3 rsi |i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
PREFETCHA
11 fcn op3 rsl i=0 imm_asi rs2
11 fcn op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

TABLE 7-10 Prefetch Variants, by Function Code

fcn Prefetch Variant

0 (Weak) Prefetch for several reads

1 (Weak) Prefetch for one read

2 (Weak) Prefetch for several writes and possibly reads
3 (Weak) Prefetch for one write

4 Prefetch page

5-15 (0514—0F¢) Reserved (illegal_instruction)

16 (104¢) Implementation dependent (NOP if not implemented)
17 (1144) Prefetch to nearest unified cache

18-19 (1214-1314) Implementation dependent (NOP if not implemented)

20 (144¢) Strong Prefetch for several reads

21 (15¢¢) Strong Prefetch for one read

22 (1644) Strong Prefetch for several writes and possibly reads
23 (171¢) Strong Prefetch for one write

24-31 (1814-1Fq4) Implementation dependent (NOP if not implemented)
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A PREFETCHJ[A] instruction provides a hint to the virtual processor that software
expects to access a particular address in memory in the near future, so that the
virtual processor may take action to reduce the latency of accesses near that address.
Typically, execution of a prefetch instruction initiates movement of a block of data
containing the addressed byte from memory toward the virtual processor or creates
an address mapping.

Implementation | A PREFETCHJ[A] instruction may be used by software to:

Note |, prefetch a cache line into a cache

o prefetch a valid address translation into a TLB
® invalidate a cache line that may have caused a correctable error during
a load instruction.

If i = 0, the effective address operand for the PREFETCH instruction is
“R[rs1] + R[rs2]”; if i = 1, it is “R[rs1] + sign_ext (Simm13)”.

PREFETCH instructions access the primary address space
(AS| _PRI MARY[ LI TTLE]).

PREFETCHA instructions access an alternate address space. If i = 0, the address
space identifier (ASI) to be used for the instruction is in the imm_asi field. If i = 1, the
ASI is found in the ASI register.

A prefetch operates much the same as a regular load operation (including a possible
hardware tablewalk to load a TLB entry), but with certain important differences. In
particular, a PREFETCH[A] instruction is non-blocking; subsequent instructions can
continue to execute while the prefetch is in progress.

When executed in nonprivileged or privileged mode, PREFETCH[A] has the same
observable effect as a NOP. A prefetch instruction will not cause a trap if applied to
an illegal or nonexistent memory address. (impl. dep. #103-V9-Ms10(e))

IMPL. DEP. #103-V9-Ms10(a): The size and alignment in memory of the data block
prefetched is implementation dependent; the minimum size is 64 bytes and the
minimum alignment is a 64-byte boundary.
Programming | Software may prefetch 64 bytes beginning at an arbitrary address
Note | address by issuing the instructions

prefetch [address], prefetch_fcn
prefetch [address + 63], prefetch_fen

Variants of the prefetch instruction can be used to prepare the memory system for
different types of accesses.

IMPL. DEP. #103-V9-Ms10(b): An implementation may implement none, some, or
all of the defined PREFETCHJ[A] variants. It is implementation-dependent whether
each variant is (1) not implemented and executes as a NODP, (2) is implemented and
supports the full semantics for that variant, or (3) is implemented and only supports
the simple common-case prefetching semantics for that variant.
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PREFETCH

Exceptions

Prefetch instructions PREFETCH and PREFETCHA generate exceptions under the
conditions detailed in TABLE 7-11. Only the implementation-dependent prefetch
variants (see TABLE 7-10) may generate an exception under conditions not listed in
this table; the predefined variants only generate the exceptions listed here.

TABLE 7-11  Behavior of PREFETCH[A] Instructions Under Exceptional Conditions (1 of 2)

fcn Instruction Condition Result

any PREFETCH i =0 and instruction bits 12:5 are illegal_instruction
nonzero

any PREFETCHA  reference to an ASI in the range executes as NOP

016-7F1¢, while in nonprivileged
mode (privileged_action condition)
any PREFETCHA reference to an ASI in range executes as NOP
301¢..7F1¢, while in privileged
mode (privileged_action condition)

0-3 PREFETCHJ[A] condition detected for MMU miss executes as NOP

(weak) (data_access_MMU_miss or
fast_data_access_MMU_miss )

0-3 PREFETCHJ[A] condition detected for executes as NOP

(weak) data_access_MMU_error

0-4 PREFETCH[A] variant unimplemented executes as NOP

0-4 PREFETCHA reference to an invalid ASI executes as NOP

(ASI not listed in following table)
0-4, 17, PREFETCHJ[A] condition detected for ((TTE.cp = 0) executes as NOP

20-23 or ((fcn =0) and TTE.cv = 0)), or

(TTEe =1)
4,20-23  PREFETCH[A] prefetching the requested data executes as NOP
(strong) would be a very time-consuming

operation (condition detected for
data_access_ MMU_miss )

4,20-23  PREFETCH[A] prefetching the requested data executes as NOP
(strong) would be a time-consuming
operation (condition detected for
fast_data_access_MMU_miss )

4,20-23  PREFETCH[A] condition detected for data_access_MMU_error,
(strong) data_access_MMU_error, hw_corrected_error, or
hw_corrected_error, or sw_recoverable_error

sw_recoverable_error
(impl. dep. #_?_)
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TABLE 7-11 Behavior of PREFETCHJ[A] Instructions Under Exceptional Conditions (2 of 2)

fcn Instruction Condition Result

5-15 PREFETCH[A] (always) illegal_instruction
(0516—0F3¢)

16-31 PREFETCH[A] variant unimplemented executes as NOP

(1816-1F1¢)

ASls valid for PREFETCHA (all others are invalid)

ASI _NUCLEUS ASI _NUCLEUS_LI TTLE
AS| _AS_| F_USER PRI MARY ASI _AS_| F_USER PRI MARY_ LI TTLE
ASI _AS_| F_USER_SECONDARY AS| _AS_| F_USER_SECONDARY_ LI TTLE
AS| _PRI MARY AS| _PRI MARY_LI TTLE

AS| _SECONDARY AS| _SECONDARY_LI TTLE

ASI PRI MARY_NO FAULT ASl _PRI MARY_NO FAULT LI TTLE

AS| _SECONDARY_NO_FAULT AS| _SECONDARY_NO FAULT LI TTLE
ASI _REAL ASl _REAL_LI TTLE

Weak versus Strong Prefetches

Some prefetch variants are available in two versions, “Weak” and “Strong”.

From software’s perspective, the difference between the two is the degree of
certainty that the data being prefetched will subsequently be accessed. That, in
turn, affects the amount of effort (time) it’s willing for the underlying hardware to
invest to perform the prefetch. If the prefetch is speculative (software believes the
data will probably be needed, but isn’t sure), a Weak prefetch will initiate data
movement if the operation can be performed quickly, but abort the prefetch and
behave like a NOP if it turns out that performing the full prefetch will be time-
consuming. If software has very high confidence that data being prefetched will
subsequently be accessed, then a Strong prefetch requests that the prefetch operation
will continue, even if the prefetch operation does become time-consuming.

From the virtual processor’s perspective, the difference between a Weak and a
Strong prefetch is whether the prefetch is allowed to perform a time-consuming
operation! in order to complete. If a time-consuming operation is required, a Weak
prefetch will abandon the operation and behave like a NOP while a Strong prefetch

1 such as afast_data_access_MMU_miss trap, plus subsequently filling the cache line at the requested address
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may pay the cost of performing the time-consuming operation so it can finish
initiating the requested data movement. Behavioral differences among loads and
prefetches are compared in TABLE 7-12.

TABLE 7-12  Comparative Behavior of Load and Weak Prefetch Operations

Behavior
Condition Load Prefetch
On a PTLB miss, is an MMU access performed? Yes Yes

Upon detection of fast_data_access_MMU_miss exception... Traps NOPf

Upon detection of privileged_action, data_access_exception, Traps NOPf
data_access_protection, PA_watchpoint, or VA_watchpoint
exception...

If page table entry has cp =0, € = 1, and cv = 0 for Prefetch for Traps NOPf
Several Reads

If page table entry has nfo = 1 for a non-NoFault access... Traps NOPL

If page table entry has w = 0 for any prefetch for write access Traps NOP%
(fcn =2, 3,22, or 23)...

Upon detection of fatal error or disrupting error conditions... Traps Traps
Instruction blocks until cache line filled? Yes No

Prefetch Variants

The prefetch variant is selected by the fcn field of the instruction. fcn values 5-15 are
reserved for future extensions of the architecture, and PREFETCH fcn values of 16—
19 and 24-31 are implementation dependent in UltraSPARC Architecture 2005.

Each prefetch variant reflects an intent on the part of the compiler or programmer, a
“hint” to the underlying virtual processor. This is different from other instructions
(except BPN), all of which cause specific actions to occur. An UltraSPARC
Architecture implementation may implement a prefetch variant by any technique, as
long as the intent of the variant is achieved (impl. dep. #103-V9-Ms10(b)).

The prefetch instruction is designed to treat common cases well. The variants are
intended to provide scalability for future improvements in both hardware and
compilers. If a variant is implemented, it should have the effects described below. In
case some of the variants listed below are implemented and some are not, a
recommended overloading of the unimplemented variants is provided in the SPARC
V9 specification. An implementation must treat any unimplemented prefetch fcn
values as NOPs (impl. dep. #103-V9-Ms10).

7.72.3.1 Prefetch for Several Reads (fcn = 0, 20(144¢))

The intent of these variants is to cause movement of data into the cache nearest the
virtual processor.
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There are Weak and Strong versions of this prefetch variant; fcn = 0 is Weak and
fcn = 20 is Strong. The choice of Weak or Strong variant controls the degree of effort
that the virtual processor may expend to obtain the data.

Programming | The intended use of this variant is for streaming relatively small
Note | amounts of data into the primary data cache of the virtual
processor.

7.72.3.2 Prefetch for One Read (fcn =1, 21(154¢))

The data to be read from the given address are expected to be read once and not
reused (read or written) soon after that. Use of this PREFETCH variant indicates
that, if possible, the data cache should be minimally disturbed by the data read from
the given address.

There are Weak and Strong versions of this prefetch variant; fcn = 1 is Weak and
fcn = 21 is Strong. The choice of Weak or Strong variant controls the degree of effort
that the virtual processor may expend to obtain the data.

Programming | The intended use of this variant is in streaming medium amounts
Note | of data into the virtual processor without disturbing the data in
the primary data cache memory.

7.72.3.3 Prefetch for Several Writes (and Possibly Reads)
(fcn =2, 22(1616))

The intent of this variant is to cause movement of data in preparation for multiple
writes.

There are Weak and Strong versions of this prefetch variant; fcn = 2 is Weak and
fcn = 22 is Strong. The choice of Weak or Strong variant controls the degree of effort
that the virtual processor may expend to obtain the data.

Programming | An example use of this variant is to initialize a cache line, in
Note | preparation for a partial write.

Implementation | On a multiprocessor system, this variant indicates that exclusive

Note | ownership of the addressed data is needed. Therefore, it may
have the additional effect of obtaining exclusive ownership of the
addressed cache line.
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PREFETCH
7.72.3.4 Prefetch for One Write (fcn = 3, 23(174¢))

The intent of this variant is to initiate movement of data in preparation for a single
write. This variant indicates that, if possible, the data cache should be minimally
disturbed by the data written to this address, because those data are not expected to
be reused (read or written) soon after they have been written once.

There are Weak and Strong versions of this prefetch variant; fcn = 3 is Weak and
fcn = 23 is Strong. The choice of Weak or Strong variant controls the degree of effort
that the virtual processor may expend to obtain the data.

7.72.3.5 Prefetch Page (fcn = 4)

In a virtual memory system, the intended action of this variant is for hardware (or
privileged or hyperprivileged software) to initiate asynchronous mapping of the
referenced virtual address (assuming that it is legal to do so).

Programming
Note

Prefetch Page is used is to avoid a later page fault for the given
address, or at least to shorten the latency of a page fault.

In a non-virtual-memory system or if the addressed page is already mapped, this
variant has no effect.

Implementation
Note

The mapping required by Prefetch Page may be performed by
privileged software, hyperprivileged software, or hardware.

Implementation-Dependent Prefetch Variants
(fcn =16, 18, 19, and 24-31)

IMPL. DEP. #103-V9-Ms10(c): Whether and how PREFETCH fcns 16, 18, 19 and 24-
31 are implemented are implementation dependent. If a variant is not implemented,
it must execute as a NOP.

Additional Notes

Programming | Prefetch instructions do have some “cost to execute”. As long as

Note | the cost of executing a prefetch instruction is well less than the
cost of a cache miss, use of prefetching provides a net gain in
performance.

It does not appear that prefetching causes a significant number of
useless fetches from memory, though it may increase the rate of
useful fetches (and hence the bandwidth), because it more
efficiently overlaps computing with fetching.
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Programming | A compiler that generates PREFETCH instructions should
Note | generate each of the variants where its use is most appropriate.
That will help portable software be reasonably efficient across a
range of hardware configurations.

Implementation | Any effects of a data prefetch operation in privileged or
Note | hyperprivileged code should be reasonable (for example, in
handling ECC errors, no page prefetching is allowed within code
that handles page faults). The benefits of prefetching should be
available to most privileged code.

Implementation | A prefetch from a nonprefetchable location has no effect. It is up
Note | to memory management hardware to determine how locations
are identified as not prefetchable.

Exceptions illegal_instruction
data_access_MMU_error
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RDasr

Read Ancillary State Register

Instruction rsl  Operation Assembly Language Syntax Class

RDYP 0  Read Y register (deprecated) rd %, regyq Cc2

— 1 Reserved

RDCCR 2 Read Condition Codes register (CCR) rd %cr, regyq Al

RDASI 3 Read ASI register rd %asi, regyq Al

RDTICKPnet 4  Read TICK register rd %ick, regq Al

RDPC 5 Read Program Counter (PC) rd %pc, regyq B2

RDFPRS 6  Read Floating-Point Registers Status (FPRS) rd % prs, regyq Al
register

— 7-14 Reserved

See text 15 STBAR, MEMBAR or Reserved; see text

RDPCRP 16  Read Performance Control registers (PCR) rd %pcr, regq Al

RDPICPrc 17 Read Performance Instrumentation Counters rd 9%pic, regyq Al
register (PIC)

— 18  Reserved (impl. dep. #8-V8-Cs20, 9-V8-Cs20)

RDGSR 19 Read General Status register (GSR) rd %gsr, regq Al

— 20-21 Reserved (impl. dep. #8-V8-Cs20, 9-V8-Cs20)

RDSOFTINT? 22 Read per-virtual processor Soft Interrupt register rd %sof ti nt, regyq N2
(SOFTINT)

RDTICK_CMPRF 23 Read Tick Compare register (TICK_CMPR) rd %ick_cnpr, regy N2

RDSTICK et 24 Read System Tick Register (STICK) rd 9%ys_tick, regq N2

RDSTICK_CMPR' 25 Read System Tick Compare register rd %sys_tick_cnpr, regq N2
(STICK_CMPR)

— 26-27 Reserved (impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 28-31 Implementation dependent
(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

10 rd 10 1000 rsl |i:O —
31 30 29 25 24 19 18 14 13 12 0
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RDasr

The Read Ancillary State Register (RDasr) instructions copy the contents of the state
register specified by rsl into R[rd].

An RDasr instruction with rsl =0 is a (deprecated) RDY instruction (which should
not be used in new software).

The RDY instruction is deprecated. It is recommended that all instructions that
reference the Y register be avoided.

RDPC copies the contents of the PC register into R[rd]. If PSTATE.am = 0, the full
64-bit address is copied into R[rd]. If PSTATE.am = 1, only a 32-bit address is saved;
PC{31:0} is copied to R[rd]{31:0} and R[rd]{63:32} is set to 0. (closed impl. dep. #125-
V9-Cs10)

RDFPRS waits for all pending FPops and loads of floating-point registers to
complete before reading the FPRS register.

The following values of rsl are reserved for future versions of the architecture: 1, 7—
14, 18, 20-21, and 26-27.

IMPL. DEP. #47-V8-Cs20: RDasr instructions with rd in the range 28-31 are

available for implementation-dependent uses (impl. dep. #8-V8-Cs20). For an RDasr

instruction with rsl in the range 28-31, the following are implementation

dependent:

» the interpretation of bits 13:0 and 29:25 in the instruction

= whether the instruction is nonprivileged or privileged or hyperprivileged (impl.
dep. #9-V8-Cs20), and

= whether an attempt to execute the instruction causes an illegal_instruction
exception.

Implementation | See the section “Read/Write Ancillary State Registers (ASRs)” in

Note | Extending the UltraSPARC Architecture, contained in the separate
volume UltraSPARC Architecture Application Notes, for a
discussion of extending the SPARC V9 instruction set using read/
write ASR instructions.

Note | Ancillary state registers may include (for example) timer, counter,
diagnostic, self-test, and trap-control registers.

SPARC V8 | The SPARC V8 RDPSR, RDWIM, and RDTBR instructions do not
Compatibility | exist in the UltraSPARC Architecture, since the PSR, WIM, and
Note | TBR registers do not exist.

See Ancillary State Registers on page 70 for more detailed information regarding ASR
registers.
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See Also

RDasr

Exceptions. An attempt to execute a RDasr instruction when any of the following
conditions are true causes an illegal_instruction exception:

= rsl=15and rd # 0 (reserved for future versions of the architecture)
= 1sl=1,7-14, 18, 20-21, or 26-27 (reserved for future versions of the architecture)
= instruction bits 13:0 are nonzero

An attempt to execute a RDPCR (impl. dep. #250-U3-Cs10), RDSOFTINT,
RDTICK_CMPR, RDSTICK, or RDSTICK_CMPR instruction in nonprivileged mode
(PSTATE.priv = 0 and HPSTATE.hpriv = 0) causes a privileged_opcode exception
(impl. dep. #250-U3-Cs10).

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a RDGSR instruction causes an fp_disabled exception.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), the following
cause a privileged_action exception:

= execution of RDTICK when TICK.npt=1
= execution of RDSTICK when STICK.npt =1
= execution of RDPIC when nonprivileged access to PIC is disabled (PCR.priv =1)

Implementation | RDasr shares an opcode with MEMBAR and STBARD; it is
Note | distinguished by rs1 =15 or rd = 0 or (i = 0, and bit 12 = 0).

illegal_instruction
privileged_opcode
fp_disabled
privileged_action

RDHPR on page 302
RDPR on page 303
WRasr on page 369
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7.74

Read Hyperprivileged Register

Instruction op3 Operation rsi Assembly Language Syntax Class
RDHPRH 101001  Read hyperprivileged register C2
HPSTATE 0 rdhpr Yhpstate, regg
HTSTATE 1 rdhpr Yhtstate, regq
Reserved 2
HINTP 3 rdhpr  %intp, regy
Reserved 4
HTBA 5 rdhpr  Yhtba, regy
HVER 6 rdhpr  Yhver, regyq
Reserved 7-30
HSTICK_CMPR 31 rdhpr  %hsys_tick_cnpr, regyq
10 | rd op3 rsi —
31 30 29 25 24 19 18 14 13 0
Description This instruction reads the contents of the specified hyperprivileged state register into

Exceptions

See Also

the destination register, R[rd]. The rs1 field in the RDHPR instruction determines
which hyperprivileged register is read.

There are MAXTL copies of the HTSTATE register. A read from HTSTATE returns the
value in the copy of HTSTATE indexed by the current value in the trap level register
(TL).

An attempt to execute a RDHPR instruction when any of the following conditions

exist causes an illegal_instruction exception:

= instruction bits 13:0 are nonzero

s 1s1=2,rs1=4,or7<rsl< 30 (reserved rsl values)

= HPSTATE.hpriv = 0 (the processor is not in hyperprivileged mode)

= rsl =1 (attempt to read the HTSTATE register) while TL = 0 (current trap level is
Zero)

illegal_instruction

RDasr on page 299
RDPR on page 303
WRHPR on page 372
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7.75  Read Privileged Register

Instruction op3 Operation rsi Assembly Language Syntax Class
RDPRF 101010  Read Privileged register C2

TPC 0 rdpr % pc, regyg
TNPC 1 rdpr % npc, regyq
TSTATE 2 rdpr % state, regyq
TT 3 rdpr %t, regq
TICK 4 rdpr % ick, regyq
TBA 5 rdpr % ba, regq
PSTATE 6 rdpr Upstate, regyq
TL 7 rdpr %1, regyq
PIL 8 rdpr Yoi |, regyq
CWP 9 rdpr Yewp, regrg
CANSAVE 10 rdpr Y%ansave, regyq
CANRESTORE 1 rdpr Yanrestore, regyq
CLEANWIN 12 rdpr %1 eanwi n, regyy
OTHERWIN 13 rdpr Y%t herwi n, regyq
WSTATE 14 rdpr Ymst at e, regyq
Reserved 15
GL 16 rdpr %yl , regq
Reserved 17-31

10 | rd op3 rsl —

31 30 29 25 24 19 18 14 13 0

Description The rs1 field in the instruction determines the privileged register that is read. There
are MAXTL copies of the TPC, TNPC, TT, and TSTATE registers. A read from one of
these registers returns the value in the register indexed by the current value in the
trap level register (TL). A read of TPC, TNPC, TT, or TSTATE when the trap level is
zero (TL = 0) causes an illegal_instruction exception.

An attempt to execute a RDPR instruction when any of the following conditions

exist causes an illegal_instruction exception:

= instruction bits 13:0 are nonzero

= rsl=15,or 17 <rsl < 31 (reserved rsl values)

= 0<rsl< 3 (attempt to read TPC, TNPC, TSTATE, or TT register) while TL =0
(current trap level is zero) and the virtual processor is in privileged or
hyperprivileged mode.

Implementation | In nonprivileged mode, illegal_instruction exception due to
Note | 0 <rsl < 3 and TL = 0 does not occur; the privileged_opcode
exception occurs instead.
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An attempt to execute a RDPR instruction in nonprivileged mode (PSTATE.priv=0
and HSTATE.hpriv = 0) causes a privileged_opcode exception.

Historical Note | On some early SPARC implementations, floating-point exceptions
could cause deferred traps. To ensure that execution could be
correctly resumed after handling a deferred trap, hardware
provided a floating-point queue (FQ), from which the address of
the trapping instruction could be obtained by the trap handler.
The front of the FQ was accessed by executing a RDPR instruction
with rsl = 15.

On UltraSPARC Architecture implementations, all floating-point
traps are precise. When one occurs, the address of a trapping
instruction can be found by the trap handler in the TPC[TL], so no
floating-point queue (FQ) is needed or implemented (impl. dep.
#25-V8) and RDPR with rs1 = 15 generates an illegal_instruction
exception.

Exceptions illegal_instruction
privileged_opcode

See Also RDasr on page 299
RDHPR on page 302
WRPR on page 374
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7.76  RESTORE

Instruction op3 Operation Assembly Language Syntax Class
RESTORE 111101 Restore Caller’s Window restore reg.y, reg_or_imm, regyq Al
10 rd 11 1101 rsi i= — rs2
10 rd 11 1101 rsi i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The RESTORE instruction restores the register window saved by the last SAVE
instruction executed by the current process. The in registers of the old window
become the out registers of the new window. The in and local registers in the new
window contain the previous values.

Furthermore, if and only if a fill trap is not generated, RESTORE behaves like a
normal ADD instruction, except that the source operands R[rs1] or R[rs2] are read
from the old window (that is, the window addressed by the original CWP) and the
sum is written into R[rd] of the new window (that is, the window addressed by the
new CWP).

Note | CWP arithmetic is performed modulo the number of implemented
windows, N_REG_WINDOWS.

Programming | Typically, if a RESTORE instruction traps, the fill trap handler

Notes | returns to the trapped instruction to reexecute it. So, although the
ADD operation is not performed the first time (when the
instruction traps), it is performed the second time the instruction
executes. The same applies to changing the CWP.

There is a performance trade-off to consider between using SAVE/
RESTORE and saving and restoring selected registers explicitly.

Description (Effect on Privileged State)
If a RESTORE instruction does not trap, it decrements the CWP (mod
N_REG_WINDOWS) to restore the register window that was in use prior to the last
SAVE instruction executed by the current process. It also updates the state of the
register windows by decrementing CANRESTORE and incrementing CANSAVE.

CHAPTER 7 e Instructions 305



RESTORE

If the register window to be restored has been spilled (CANRESTORE = 0), then a
fill trap is generated. The trap vector for the fill trap is based on the values of
OTHERWIN and WSTATE, as described in Trap Type for Spi ll/Fill Traps on page 469.
The fill trap handler is invoked with CWP set to point to the window to be filled,
that is, old CWP - 1.

Programming
Note

The vectoring of fill traps can be controlled by setting the value of
the OTHERWIN and WSTATE registers appropriately. For details,
see the section “Splitting the Register Windows” in Software
Considerations, contained in the separate volume UltraSPARC
Architecture Application Notes.

The fill handler normally will end with a RESTORED instruction
followed by a RETRY instruction.

An attempt to execute a RESTORE instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

fill_n_normal (n = 0-7)
fill_n_other (n = 0-7)

See Also SAVE on page 313
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7.77  RESTORED

Instruction Operation Assembly Language Syntax Class
RESTORED”  Window has been restored restored C1l
10 | fcn =0 0001 11 0001 —
31 30 29 25 24 19 18 0

Description RESTORED adjusts the state of the register-windows control registers.
RESTORED increments CANRESTORE.
If CLEANWIN < (N_REG_WINDOWS-1), then RESTORED increments CLEANWIN.

If OTHERWIN = 0, RESTORED decrements CANSAVE. If OTHERWIN #0, it
decrements OTHERWIN.

Programming | Trap handler software for register window fills use the

Notes | RESTORED instruction to indicate that a window has been filled
successfully. For details, see the section “Example Code for Spill
Handler” in Software Considerations, contained in the separate
volume UltraSPARC Architecture Application Notes.

Normal privileged software would probably not execute a
RESTORED instruction from trap level zero (TL = 0). However, it
is not illegal to do so and doing so does not cause a trap.

Executing a RESTORED instruction outside of a window fill trap
handler is likely to create an inconsistent window state. Hardware
will not signal an exception, however, since maintaining a
consistent window state is the responsibility of privileged
software.

If CANSAVE = 0 or CANRESTORE = (N_REG_WINDOWS — 2) just prior to execution of
a RESTORED instruction, the subsequent behavior of the processor is undefined. In
neither of these cases can RESTORED generate a register window state that is both
valid (see Register Window State Definition on page 88) and consistent with the state
prior to the RESTORED.

An attempt to execute a RESTORED instruction when instruction bits 18:0 are
nonzero causes an illegal_instruction exception.

An attempt to execute a RESTORED instruction in nonprivileged mode (PSTATE.priv
= 0 and HSTATE.hpriv = 0) causes a privileged_opcode exception.
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Exceptions illegal_instruction
privileged_opcode

See Also ALLCLEAN on page 148
INVALW on page 238
NORMALW on page 285
OTHERW on page 287
SAVED on page 315
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7.78 RETRY

Instruction  op3 Operation Assembly Language Syntax Class
RETRY" 111110  Return from Trap (retry trapped instruction) retry C1
10 | fcn =0 0001 11 1110 —
31 30 29 25 24 19 18 0

Description The RETRY instruction restores the saved state from TSTATE[TL] (GL, CCR, ASI,
PSTATE, and CWP), HTSTATE[TL] (HPSTATE), sets PC and NPC, and decrements
TL. RETRY sets PC — TPC[TL] and NPC — TNPCJ[TL] (normally, the values of PC and
NPC saved at the time of the original trap).

Programming | The DONE and RETRY instructions are used to return from
Note | privileged trap handlers.

If the saved TPC[TL] and TNPC[TL] were not altered by trap handler software,
RETRY causes execution to resume at the instruction that originally caused the trap
(“retrying” it).

Execution of a RETRY instruction in the delay slot of a control-transfer instruction
produces undefined results.

When a RETRY instruction is executed in privileged mode and
HTSTATE[TL].hpstate.hpriv = 0 (which will cause the RETRY to return the virtual
processor to nonprivileged or privileged mode), the value of GL restored from
TSTATE[TL] saturates at MAXPGL. That is, if the value in TSTATE[TL].gl is greater
than MAXPGL, then MAXPGL is substituted and written to GL. This protects against
non-hyperprivileged software executing with GL > MAXPGL.

If software writes invalid or inconsistent state to TSTATE or HTSTATE before
executing RETRY, virtual processor behavior during and after execution of the
RETRY instruction is undefined.

The RETRY instruction does not provide an error barrier, as MEMBAR #Sync does
(impl. dep. #215-U3).

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address
are masked out (set to 0) before being sent to the memory system.

IMPL. DEP. #417-S10: If (1) TSTATE[TL].pstate.am =1 and (2) a RETRY
instruction is executed (which sets PSTATE.am to “1” by restoring the value from
TSTATE[TL].pstate.am to PSTATE.am), it is implementation dependent whether the
RETRY instruction masks (zeroes) the more-significant 32 bits of the values it places
into PC and NPC.
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Exceptions. An attempt to execute the RETRY instruction when the following

condition is true causes an illegal_instruction exception:

» TL =0 and the virtual processor is in privileged mode or hyperprivileged mode
(PSTATE.priv =1 or HPSTATE.hpriv = 1)

An attempt to execute a RETRY instruction in nonprivileged mode (PSTATE.priv =0
and HPSTATE.hpriv = 0) causes a privileged_opcode exception.

Implementation | In nonprivileged mode, illegal_instruction exception due to TL =0
Note | does not occur. The privileged_opcode exception occurs instead,
regardless of the current trap level (TL).

A trap_level_zero disrupting trap can occur upon the completion of a RETRY
instruction, if the following three conditions are true after RETRY has executed:
= trap_level_zero exceptions are enabled (HPSTATE.tlz = 1),
= the virtual processor is in nonprivileged or privileged mode
(HPSTATE.hpriv = 0), and
= the trap level (TL) register’s value is zero (TL = 0)

Exceptions illegal_instruction
privileged_opcode

trap_level_zero

See Also DONE on page 166
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RETURN

RETURN

Instruction op3 Operation Assembly Language Syntax Class
RETURN 111001 Return return address Al
10 — op3 rsl | i=o| — rs2
10 — op3 rsl i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The RETURN instruction causes a delayed transfer of control to the target address

and has the window semantics of a RESTORE instruction; that is, it restores the
register window prior to the last SAVE instruction. The target address is

“R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( simm13)” if i = 1. Registers R[rs1]
and R[rs2] come from the old window.

Like other DCTIs, all effects of RETURN (including modification of CWP) are visible
prior to execution of the delay slot instruction.

Programming
Note

Programming
Note

An attempt to

To reexecute the trapped instruction when returning from a user trap
handler, use the RETURN instruction in the delay slot of a JMPL
instruction, for example:

jmpl % 6, %g0 ' Trapped PC supplied to user trap handler
return%7 1 Trapped NPC supplied to user trap handl er

A routine that uses a register window may be structured either as:

save Usp, - framesize, %sp
r et ! Sane as jnpl %7 +8, %0
restore 1 Sonet hi ng useful like “restore

1 %92, % 2, Y%00”
or as:
save Usp, -framesize, %sp

return %7 + 8
nop ! Could do some useful work in the
rcaller’s window, e.g., “or %1, %2, %0”

execute a RETURN instruction when i = 0 and instruction bits 12:5 are

nonzero causes an illegal_instruction exception.

A RETURN instruction may cause a window_fill exception as part of its RESTORE

semantics.

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address
are masked out (set to 0) before being sent to the memory system.
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A RETURN instruction causes a mem_address_not_aligned exception if either of the
two least-significant bits of the target address is nonzero.

Exceptions illegal_instruction
fill_n_normal (n = 0-7)
fill_n_other (n = 0-7)
mem_address_not_aligned
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SAVE

SAVE

Instruction op3 Operation Assembly Language Syntax Class
SAVE 11 1100 Save Caller’s Window save regrs1, reg_or_imm, regyy Al
10 rd op3 rsl i= — rs2
10 rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The SAVE instruction provides the routine executing it with a new register window.

The out registers from the old window become the in registers of the new window.
The contents of the out and the local registers in the new window are zero or contain
values from the executing process; that is, the process sees a clean window.

Furthermore, if and only if a spill trap is not generated, SAVE behaves like a normal
ADD instruction, except that the source operands R[rs1] or R[rs2] are read from the
old window (that is, the window addressed by the original CWP) and the sum is

written into R[rd]
CWP).

Note

Programming
Notes

of the new window (that is, the window addressed by the new

CWP arithmetic is performed modulo the number of implemented
windows, N_REG_WINDOWS.

Typically, if a SAVE instruction traps, the spill trap handler returns
to the trapped instruction to reexecute it. So, although the ADD
operation is not performed the first time (when the instruction
traps), it is performed the second time the instruction executes.
The same applies to changing the CWP.

The SAVE instruction can be used to atomically allocate a new
window in the register file and a new software stack frame in
memory. For details, see the section “Leaf-Procedure
Optimization” in Software Considerations, contained in the
separate volume UltraSPARC Architecture Application Notes.

There is a performance trade-off to consider between using SAVE/
RESTORE and saving and restoring selected registers explicitly.

Description (Effect on Privileged State)

If a SAVE instruction does not trap, it increments the CWP (mod N_REG_WINDOWS)
to provide a new register window and updates the state of the register windows by
decrementing CANSAVE and incrementing CANRESTORE.
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If the new register window is occupied (that is, CANSAVE = 0), a spill trap is
generated. The trap vector for the spill trap is based on the value of OTHERWIN and
WSTATE. The spill trap handler is invoked with the CWP set to point to the window
to be spilled (that is, old CWP + 2).

An attempt to execute a SAVE instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If CANSAVE # 0, the SAVE instruction checks whether the new window needs to be
cleaned. It causes a clean_window trap if the number of unused clean windows is
zero, that is, (CLEANWIN — CANRESTORE) = 0. The clean_window trap handler is
invoked with the CWP set to point to the window to be cleaned (that is, old

CWP +1).

Programming
Note

Exceptions illegal_instruction

The vectoring of spill traps can be controlled by setting the value
of the OTHERWIN and WSTATE registers appropriately. For
details, see the section “Splitting the Register Windows” in
Software Considerations, contained in the separate volume
UltraSPARC Architecture Application Notes.

The spill handler normally will end with a SAVED instruction
followed by a RETRY instruction.

spill_n_normal (n = 0-7)
spill_n_other (n = 0-7)

clean_window

See Also RESTORE on page 305
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SAVED

SAVED

Instruction

Operation

Assembly Language Syntax Class

SAVED?

Window has been saved saved C1l

10 | fcn =0 0000

11 0001 —

31 30 29

Description

Exceptions

25 24

19 18 0

SAVED adjusts the state of the register-windows control registers.

SAVED increments CANSAVE. If OTHERWIN = 0, SAVED decrements
CANRESTORE. If OTHERWIN # 0, it decrements OTHERWIN.

Programming
Notes

If CANSAVE > (N_|

Trap handler software for register window spills uses the SAVED
instruction to indicate that a window has been spilled
successfully. For details, see the section “Example Code for Spill
Handler” in Software Considerations, contained in the separate
volume UltraSPARC Architecture Application Notes.

Normal privileged software would probably not execute a SAVED
instruction from trap level zero (TL = 0). However, it is not illegal
to do so and doing so does not cause a trap.

Executing a SAVED instruction outside of a window spill trap
handler is likely to create an inconsistent window state. Hardware
will not signal an exception, however, since maintaining a
consistent window state is the responsibility of privileged
software.

REG_WINDOWS - 2) or CANRESTORE = 0 just prior to execution of

a SAVED instruction, the subsequent behavior of the processor is undefined. In
neither of these cases can SAVED generate a register window state that is both valid
(see Register Window State Definition on page 88) and consistent with the state prior to

the SAVED.

An attempt to execute a SAVED instruction when instruction bits 18:0 are nonzero
causes an illegal_instruction exception.

An attempt to execute a SAVED instruction in nonprivileged mode (PSTATE.priv = 0
and HSTATE.hpriv = 0) causes a privileged_opcode exception.

illegal_instruction
privileged_opcode
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See Also ALLCLEAN on page 148
INVALW on page 238
NORMALW on page 285
OTHERW on page 287
RESTORED on page 307
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7.82  SETHI

Instruction op2 Operation Assembly Language Syntax Class

SETHI 100  Set High 22 Bits of Low Word sethi  const22, reg.y Al
sethi Wi (value), regyq

00 rd op2 imm22
31 30 29 25 24 22 21 0

Description SETHI zeroes the least significant 10 bits and the most significant 32 bits of R[rd] and
replaces bits 31 through 10 of R[rd] with the value from its imm22 field.

SETHI does not affect the condition codes.

Some SETHI instructions with rd = 0 have special uses:
= rd =0 and imm22 = 0: defined to be a NOP instruction (described in No Operation)

« rd =0 and imm22 # 0 may be used to trigger hardware performance counters in
some UltraSPARC Architecture implementations (for details, see implementation-
specific documentation).

Programming | The most common form of 64-bit constant generation is creating
Note | stack offsets whose magnitude is less than 2%2. The code below can

be used to create the constant 0000 0000 ABCD 1234:

set hi %i (Oxabcd1234), %0

or %0, 0x234, %0
The following code shows how to create a negative constant. Note:
The immediate field of the xor instruction is sign extended and can
be used to place 1’s in all of the upper 32 bits. For example, to set the
negative constant FFFF FFFF ABCD 1234¢:

set hi %i (0x5432edch), 00! note 0x5432EDCB, not O0xABCD1234
xor %0, 0x1e34, %0! part of imm overlaps upper bits

Exceptions None
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783  SHUTDOWN

The SHUTDOWN instruction is deprecated and should not be used in new

software.

Instruction opf Operation Assembly Language Syntax Class
SHUTDOWNP® 010000000  Enter low-power mode shut down D3
10 — 110110 — opf —

31 30 29 25 24 19 18 14 13 5 4 0

Description SHUTDOWN is a deprecated, privileged instruction that was used in early
UltraSPARC implementations to bring the virtual processor or its containing system
into a low-power state in an orderly manner. It had no effect on software-visible
virtual processor state.

On an UltraSPARC Architecture implementation operating in privileged or
hyperprivileged mode, SHUTDOWN behaves like a NOP (impl. dep. #206-U3-Cs10).

In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and its effect is
emulated in software.

Exceptions illegal_instruction  (instruction not implemented in hardware)
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7.84  Set Interval Arithmetic Mode

Instruction  opf Operation Assembly Language Syntax Class

SIAM 0 1000 0001 Set the interval arithmetic mode fields in the GSR  si am siam_mode B1

| 10 — 110110 — opf — mode|
31 30 29 25 24 19 18 14 13 5 4 3 2 0

Description ~ The SIAM instruction sets the GSR.im and GSR.irnd fields as follows:
GSR.im —~ mode{2}
GSR.irnd — mode{1:0}
Note | When GSR.im is set to 1, all subsequent floating-point
instructions requiring round mode settings derive rounding-

mode information from the General Status Register (GSR.irnd)
instead of the Floating-Point State Register (FSR.rd).

Note | When GSR.im =1, the processor operates in standard floating-
point mode regardless of the setting of FSR.ns.

An attempt to execute a SIAM instruction when instruction bits 29:25, 18:14, or 4:3
are nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a SIAM instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled
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7.85 Software-Initiated Reset

Instruction op3 rd Operation Assembly Language Syntax  Class
SIRH 110000 15 Software-Initiated Reset sir simm13 A2
10 01111 op3 0 0000 i= simm13
31 30 29 25 24 19 18 14 13 12 0

Description SIR is a hyperprivileged instruction, used to generate a software-initiated reset (SIR).
As with other traps, a software-initiated reset performs different actions when
TL = MAXTL than it does when TL< MAXTL.

See Software-Initiated Reset (SIR) Traps on page 479 and Software-Initiated Reset (SIR)
on page 548 for more information about software-initiated resets.

When executed in nonprivileged or privileged mode (HPSTATE.hpriv = 0), SIR
causes an illegal_instruction exception (impl. dep. #116-V9).

Implementation | The SIR instruction shares an opcode with WRasr; they are
Notes | distinguished by the rd, rs1, and i fields (rd = 15,rs1 =0, and i = 1
for SIR).

An instruction that uses the WRasr opcode (op1l = 10,,

op3 =11 0000,) with i =1 is not an SIR instruction; see Write
Ancillary State Register on page 369 for specification of its
behavior.

Exceptions software_initiated_reset
illegal_instruction

See Also WRasr on page 369
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7.86  Shift

Instruction op3 X Operation Assembly Language Syntax Class
SLL 10 0101 0 Shift Left Logical — 32 bits sl | regrs1, reg_or_shcnt, reg.y Al
SRL 10 0110 0 Shift Right Logical — 32 bits srl regrs1, reg_or_shcnt, reg.g Al
SRA 10 0111 0 Shift Right Arithmetic— 32 bits sra regrs1, reg_or_shcnt, regyy Al
SLLX 10 0101 1 Shift Left Logical — 64 bits slIx  regs1, reg_or_shcnt, regy Al
SRLX 10 0110 1 Shift Right Logical — 64 bits srlx  regsy, reg_or_shcnt, regyqy Al
SRAX 10 0111 1 Shift Right Arithmetic — 64 bits srax  regus1, reg_or_shcnt, regy Al

10 rd op3 rsl i=0| x — rs2

10 rd op3 rsl i=1x= — shcnt32

10 rd op3 rsl i=1ix= — shcnt64

31 30 29 25 24 19 18 14 13 12 6 5 4 0

Description These instructions perform logical or arithmetic shift operations.

When i = 0 and x = 0, the shift count is the least significant five bits of R[rs2].
When i = 0 and x = 1, the shift count is the least significant six bits of R[rs2]. When
i =1 and x = 0, the shift count is the immediate value specified in bits 0 through 4 of
the instruction.

When i =1 and x = 1, the shift count is the immediate value specified in bits 0
through 5 of the instruction.

TABLE 7-13 shows the shift count encodings for all values of i and x.

TABLE 7-13  Shift Count Encodings

i x  Shift Count

0 0 bits 4-0 of R[rs2]
0 1 bits 5-0 of R[rs2]
1 0
1 1

bits 4-0 of instruction

bits 5-0 of instruction

SLL and SLLX shift all 64 bits of the value in R[rs1] left by the number of bits
specified by the shift count, replacing the vacated positions with zeroes, and write
the shifted result to R[rd].
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SLL /SRL / SRA

SRL shifts the low 32 bits of the value in R[rs1] right by the number of bits specified
by the shift count. Zeroes are shifted into bit 31. The upper 32 bits are set to zero,
and the result is written to R[rd].

SRLX shifts all 64 bits of the value in R[rs1] right by the number of bits specified by
the shift count. Zeroes are shifted into the vacated high-order bit positions, and the
shifted result is written to R[rd].

SRA shifts the low 32 bits of the value in R[rs1] right by the number of bits specified
by the shift count and replaces the vacated positions with bit 31 of R[rs1]. The high-
order 32 bits of the result are all set with bit 31 of R[rs1], and the result is written to
R[rd].

SRAX shifts all 64 bits of the value in R[rs1] right by the number of bits specified by
the shift count and replaces the vacated positions with bit 63 of R[rs1]. The shifted
result is written to R[rd].

No shift occurs when the shift count is 0, but the high-order bits are affected by the
32-bit shifts as noted above.

These instructions do not modify the condition codes.

Programming | “Arithmetic left shift by 1 (and calculate overflow)” can be
Notes | effected with the ADDcc instruction.

The instruction “sra reg,s1, 0, regrq” can be used to convert a 32-
bit value to 64 bits, with sign extension into the upper word. “sr |
regrs1, 0, regrg” can be used to clear the upper 32 bits of R[rd].

An attempt to execute a SLL, SRL, or SRA instruction when instruction bits 11:5 are
nonzero causes an illegal_instruction exception.

An attempt to execute a SLLX, SRLX, or SRAX instruction when either of the
following conditions exist causes an illegal_instruction exception:

» i =0 or x =0 and instruction bits 11:5 are nonzero
» X =1 and instruction bits 11:6 are nonzero

illegal_instruction
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STB/STH/STW/STX

7.87

Store Integer

Instruction op3 Operation Assembly Language Syntax  Class
STB 00 0101 Store Byte stb®  reg.q, [ address] Al
STH 00 0110 Store Halfword sthi  reg.y, [ address) Al
STW 00 0100 Store Word stw’ regrq, | address) Al
STX 00 1110 Store Extended Word StX  regyq, [ address] Al
¥ synonyms: st ub, st sh ¥ synonyms: st uh, st sh © synonyms: St , st uw st sw
11 rd op3 rsl i=0| — rs2
11 rd op3 rsl i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The store integer instructions (except store doubleword) copy the whole extended
(64-bit) integer, the less significant word, the least significant halfword, or the least
significant byte of R[rd] into memory.
These instructions access memory using the implicit ASI (see page 104). The effective
address for these instructions is “R[rs1] + R[rs2]” if i=0, or
“R[rs1] + sign_ext( simm13)” if i = 1.
A successful store (notably, STX) integer instruction operates atomically.
An attempt to execute a store integer instruction when i = 0 and instruction bits 12:5
are nonzero causes an illegal_instruction exception.
STH causes a mem_address_not_aligned exception if the effective address is not
halfword-aligned. STW causes a mem_address_not_aligned exception if the effective
address is not word-aligned. STX causes a mem_address_not_aligned exception if
the effective address is not doubleword-aligned.
Exceptions illegal_instruction
mem_address_not_aligned
VA_watchpoint
data_access_ MMU_error
See Also STTW on page 346
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7.88  Store Integer into Alternate Space

Instruction op3 Operation Assembly Language Syntax Class
STBAPst 010101  Store Byte into Alternate Space stba®  regyq, [ regaddr] imm_asi Al
stba  regq, [ reg_plus_imm] Y@si
STHAPAst 010110  Store Halfword into Alternate Space st hat  regq, [ regaddr] imm_asi Al
stha  regq, [ reg_plus_imm] Y@si
STWAPAs 010100  Store Word into Alternate Space stwa®  regq, [ regaddr] imm_asi Al
stwa  regq, [ reg_plus_imm] Y@si
STXAPast 011110 Store Extended Word into Alternate  stxa  regyq, [ regaddr] imm_asi Al
Space stxa  regq, [ reg_plus_imm] Y@si
tsynonyms: st uba, st sba ¥ synonyms: st uha, st sha © synonyms: st a, st uwa, st swa
11 rd op3 rsl i= imm_asi rs2
11 rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The store integer into alternate space instructions copy the whole extended (64-bit)
integer, the less significant word, the least significant halfword, or the least
significant byte of R[rd] into memory.

Store integer to alternate space instructions contain the address space identifier (ASI)
to be used for the store in the imm_asi field if i = 0, or in the ASI register if i = 1. The
access is privileged if bit 7 of the ASI is 0; otherwise, it is not privileged. The
effective address for these instructions is “R[rs1] + R[rs2]” if i =0, or
“R[rs1]+sign_ext( simm13)” if i = 1.

A successful store (notably, STXA) instruction operates atomically.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI
is 0, these instructions cause a privileged_action exception. In privileged mode
(PSTATE.priv =1 and HPSTATE.hpriv = 0), if the ASI is in the range 3014 to 7F,
these instructions cause a privileged_action exception.

STHA causes a mem_address_not_aligned exception if the effective address is not
halfword-aligned. STWA causes a mem_address_not_aligned exception if the
effective address is not word-aligned. STXA causes a mem_address_not_aligned
exception if the effective address is not doubleword-aligned.
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STBA, STHA, and STWA can be used with any of the following ASIs, subject to the
privilege mode rules described for the privileged_action exception above. Use of any
other ASI with these instructions causes a data_access_exception exception.

ASls valid for STBA, STHA, and STWA

AS| _NUCLEUS

ASI _AS_| F_USER PRI MARY
ASl _AS | F_USER SECONDARY
ASI _REAL

ASI _REAL_|1 O

AS| PRI MARY
AS| _SECONDARY

ASI _NUCLEUS_LI TTLE

ASI _AS_| F_USER PRI MARY_ LI TTLE
ASl _AS | F_USER SECONDARY LI TTLE
ASl _REAL_LI TTLE

ASI_REAL_| O LI TTLE

ASl _PRI MARY_LI TTLE
AS|I _SECONDARY LI TTLE

STXA can be used with any ASI (including, but not limited to, the above list), unless
it either (a) violates the privilege mode rules described for the privileged_action
exception above or (b) is used with any of the following ASIs, which causes a

data_access_exception exception.

ASils invalid for STXA
246 (aliased to 271, ASI _LDTX_N)
ASI _BLOCK_AS_| F_USER_PRI MARY
ASI _BLOCK_AS_| F_USER_SECONDARY
24,6 (deprecated ASI _QUAD_LDD)

AS| _PST8_PRI MARY
AS| _PST8_SECONDARY

AS| _PRI MARY_NO FAULT

AS| _SECONDARY_NO FAULT
AS| _PST16_PRI MARY

AS| _PST16_SECONDARY

ASI _PST32_PRI MARY

ASI _PST32_SECONDARY

ASI _FL8_PRI MARY

AS| _FL8_SECONDARY

AS| _FL16_PRI MARY

ASI _FL16_SECONDARY

ASI _BLOCK_COMM T_PRI MARY
ASI _BLOCK_PRI MARY

AS| _BLOCK_SECONDARY

(cause data_access_exception exception)

2Cy¢ (aliased to 2F,, ASI _LDTX_NL)

ASI _BLOCK_AS_| F_USER PRI MARY_LI TTLE
ASI _BLOCK_AS_| F_USER_SECONDARY_LI TTLE
2Cy¢ (deprecated ASI _QUAD_LDD L)

AS| _PST8_PRI MARY_LI TTLE

AS| _PST8_SECONDARY_LI TTLE
AS| PRI MARY_NO FAULT LI TTLE
AS| _SECONDARY_NO FAULT LI TTLE
AS| _PST16_PRI MARY_LI TTLE
AS| _PST16_SECONDARY_ LI TTLE
AS| _PST32_PRI MARY_LI TTLE
AS| _PST32_SECONDARY_LI TTLE
AS| _FL8_PRI MARY_LI TTLE

AS| _FL8_SECONDARY LI TTLE

AS| _FL16_PRI MARY_LI TTLE

AS| _FL16_SECONDARY LI TTLE
AS| _BLOCK_COMM T_SECONDARY
AS| _BLOCK_PRI MARY_LI TTLE
AS| _BLOCK_SECONDARY_ LI TTLE

V8 Compatibility | The SPARC V8 STA instruction was renamed STWA in the

Note

SPARC V9 architecture.
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Exceptions mem_address_not_aligned (all except STBA)
privileged_action
VA_watchpoint

See Also LDA on page 242
STTWA on page 348
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STBAR - Deprecated

7.89 Store Barrier

The STBAR instruction is deprecated. Use the MEMBAR instruction instead.

Opcode op3 Operation Assembly Language Syntax Class
STBARP 10 1000 Store Barrier st bar Y2
10 0 op3 01111 0 —
31 30 29 25 24 19 18 14 13 12 0

Description The store barrier instruction (STBAR) forces all store and atomic load-store
operations issued by a virtual processor prior to the STBAR to complete their effects
on memory before any store or atomic load-store operations issued by that virtual
processor subsequent to the STBAR are executed by memory.

V8 Compatibility | STBAR is identical in function to a MEMBAR instruction with
Notes | mmask = 8;4. STBAR is retained for compatibility with existing
SPARC V8 software.

For correctness, it is sufficient for a virtual processor to stop
issuing new store and atomic load-store operations when an
STBAR is encountered and to resume after all stores have
completed and are observed in memory by all virtual
processors. More efficient implementations may take advantage
of the fact that the virtual processor is allowed to issue store and
load-store operations after the STBAR, as long as those
operations are guaranteed not to become visible before all the
earlier stores and atomic load-stores have become visible to all
virtual processors.

An attempt to execute a STBAR instruction when instruction bits 12:0 are nonzero
causes an illegal_instruction exception.

Implementation | STBAR shares an opcode with MEMBAR, and RDasr; it is
Note | distinguished by rs1 =15, rd =0, i = 0, and bit 12 = 0.

Exceptions illegal_instruction
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7.90  Block Store

The STBLOCKEF instruction is intended to be a processor-specific instruction,
which may or may not be implemented in future UltraSPARC Architecture
implementations. Therefore, it should only be used in platform-specific
dynamically-linked libraries, in hyperprivileged software, or in software created
by a runtime code generator that is aware of the specific virtual processor
implementation on which it is executing.

ASI

Instruction Value Operation Assembly Language Syntax Class

STBLOCKF 1614 64-byte block store to primary address stda fregy, [ regaddr] #ASI _BLK_Al UP A2
space, user privilege stda fregy, [reg_plus_imm] %asi

STBLOCKF 171, 64-byte block store to secondary address stda fregy, [ regaddr] #ASI _BLK_Al US A2
space, user privilege stda fregy, [reg_plus_imm] %asi

STBLOCKF 1Eq4 64-byte block store to primary address stda fregy, [ regaddr] #ASI _BLK_Al UPL A2
space, little-endian, user privilege stda fregy, [reg_plus_imm] Y@si

STBLOCKF 1F;4 64-byte block store to secondary address stda fregy, [ regaddr] #ASI _BLK_Al USL A2
space, little-endian, user privilege stda fregy, [reg_plus_imm] Y@si

STBLOCKF F0,4 64-byte block store to primary address stda fregyy, [ regaddr] #ASI _BLK_P A2
space stda fregyy, [reg_plus_imm] %asi

STBLOCKF Fly4 64-byte block store to secondary address stda fregy, [ regaddr] #ASI _BLK_S A2
space stda fregy, [reg_plus_imm] %asi

STBLOCKF F8y4 64-byte block store to primary address stda fregyy, [ regaddr] #ASI _BLK_PL A2
space, little-endian stda freg,y, [reg_plus_imm] Yasi

STBLOCKF F9;4 64-byte block store to secondary address stda fregy, [ regaddr] #ASI _BLK_SL A2
space, little-endian stda freg,y, [reg_plus_imm] Yasi

11 rd 110111 rsl 1=0 imm_asi rs2

11 rd 110111 rsl =1 simm_13

31 30 29 25 24 19 18 14 13 5 4 0

Description A block store instruction references one of several special block-transfer ASIs. Block-

transfer ASIs allow block stores to be performed accessing the same address space as
normal stores. Little-endian ASIs (those with an ‘L’ suffix) access data in little-endian
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format; otherwise, the access is assumed to be big-endian. Byte swapping is
performed separately for each of the eight double-precision registers accessed by the
instruction.
Programming | The block store instruction, STBLOCKEF, and its companion,
Note | LDBLOCKEF, were originally defined to provide a fast
mechanism for block-copy operations.

STBLOCKEF stores data from the eight double-precision floating-point registers
specified by rd to a 64-byte-aligned memory area. The lowest-addressed eight bytes
in memory are stored from the lowest-numbered double-precision rd.

While a STBLOCKEF operation is in progress, any of the following values may be
observed in a destination doubleword memory locations: (1) the old data value, (2)
zero, or (3) the new data value. When the operation is complete, only the new data
values will be seen.

Compatibility | Software written for older UltraSPARC implementations

Note | that reads data being written by STBLOCKEF instructions

may or may not allow for case (2) above. Such software
should be checked to verify that either it always waits
for STBLOCKEF to complete before reading the values
written, or that it will operate correctly if an intermediate
value of zero (not the “old” or “new” data values) is
observed while the STBLOCKEF operation is in progress.

A Block Store only guarantees atomicity for each 64-bit (8-byte) portion of the 64
bytes that it stores.

Software should assume the following (where “load operation” includes load, load-
store, and LDBLOCKEF instructions and “store operation” includes store, load-store,
and STBLOCKEF instructions):

= A STBLOCKEF does not follow memory ordering with respect to earlier or later
load operations. If there is overlap between the addresses of destination memory
locations of a STBLOCKF and the source address of a later load operation, the
load operation may receive incorrect data. Therefore, if ordering with respect to
later load operations is important, a MEMBAR #St or eLoad instruction must be
executed between the STBLOCKF and subsequent load operations.

= A STBLOCKEF does not follow memory ordering with respect to earlier or later
store operations. Those instructions’” data may commit to memory in a different
order from the one in which those instructions were issued. Therefore, if ordering
with respect to later store operations is important, a MEMBAR #St or eSt or e
instruction must be executed between the STBLOCKF and subsequent store
operations.

=« STBLOCKTFs do not follow register dependency interlocks, as do ordinary stores.
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Programming | STBLOCKEF is intended to be a processor-specific instruction (see
Note | the warning at the top of page 328). If STBLOCKF must be used
in software intended to be portable across current and previous
processor implementations, then it must be coded to work in the
face of any implementation variation that is permitted by
implementation dependency #411-510, described below.

IMPL. DEP. #411-S10: The following aspects of the behavior of the block store

(STBLOCKTF) instruction are implementation dependent:

= The memory ordering model that STBLOCKEF follows (other than as constrained
by the rules outlined above).

= Whether VA_watchpoint exceptions are recognized on accesses to all 64 bytes of
the STBLOCKEF (the recommended behavior), or only on accesses to the first eight
bytes.

= Whether STBLOCKFs to non-cacheable (TTE.cp = 0) pages execute in strict
program order or not. If not, a STBLOCKF to a non-cacheable page causes an
illegal_instruction exception.

= Whether STBLOCKEF follows register dependency interlocks (as ordinary stores
do).

= Whether a STBLOCKEF forces the data to be written to memory and invalidates
copies in all caches present.

= Any other restrictions on the behavior of STBLOCKE, as described in
implementation-specific documentation.

Exceptions. An illegal_instruction exception occurs if the source floating-point
registers are not aligned on an eight-register boundary.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a STBLOCKEF instruction causes an fp_disabled exception.

If the least significant 6 bits of the memory address are not all zero, a
mem_address_not_aligned exception occurs.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI
is 0 (ASIs 1644, 1714, 1E14, and 1F;4), STBLOCKEF causes a privileged_action
exception.

An access caused by STBLOCKF may trigger a VA_watchpoint exception (impl. dep.
#411-510).

Implementation | STBLOCKEF shares an opcode with the STDFA, STPARTIALE,
Note | and STSHORTF instructions; it is distinguished by the ASI used.
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Exceptions illegal_instruction
mem_address_not_aligned
privileged_action
VA_watchpoint (impl. dep. #411-510)

See Also LDBLOCKEF on page 245
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791  Store Floating-Point

Instruction  op3 rd Operation Assembly Language Class
STF 10 0100 0-31  Store Floating-Point register st fregeq, [ address] Al
STDF 10 0111 t Store Double Floating-Point register st d fregyq, [ address] Al
STQF 10 0110 ¥ Store Quad Floating-Point register ~ stq fregeq, [ address] C3
STXFSR 100101 1 Store Floating-Point State register st x % sr, [ address] Al

— 10 0101 2-31 Reserved

* Encoded floating-point register value, as described on page 51.

11 rd op3 rsl i=0] — rs2
11 rd op3 rsl i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The store single floating-point instruction (STF) copies the contents of the 32-bit
floating-point register Fg[rd] into memory.

The store double floating-point instruction (STDF) copies the contents of 64-bit
floating-point register Fp[rd] into a word-aligned doubleword in memory. The unit
of atomicity for STDF is 4 bytes (one word).

The store quad floating-point instruction (STQF) copies the contents of 128-bit
floating-point register Fg[rd] into a word-aligned quadword in memory. The unit of
atomicity for STQF is 4 bytes (one word).

The store floating-point state register instruction (STXFSR) waits for any currently
executing FPop instructions to complete, and then it writes all 64 bits of the FSR into
memory.

STXFSR zeroes FSRftt after writing the FSR to memory.

Implementation | FSR.ftt should not be zeroed by STXFSR until it is known that the
Note | store will not cause a precise trap.

These instruction access memory using the implicit ASI (see page 104). The effective
address for these instructions is “R[rs1] + R[rs2]” if i=0, or
“R[rs1] + sign_ext( simm13)” if i = 1.

Exceptions. An attempt to execute a STF, STDF, or STXFSR instruction when i = 0
and instruction bits 12:5 are nonzero causes an illegal_instruction exception.
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If the floating-point unit is not enabled (FPRS.fef =0 or PSTATE.pef = 0) or if the
FPU is not present, then an attempt to execute a STF, STDF, or STXFSR instruction
causes an fp_disabled exception.

STF causes a mem_address_not_aligned exception if the effective memory address is
not word-aligned. STXFSR causes a mem_address_not_aligned exception if the
address is not doubleword-aligned.

STDF requires only word alignment in memory. However, if the effective address is
word-aligned but not doubleword-aligned, an attempt to execute an STDF
instruction causes an STDF_mem_address_not_aligned exception. In this case, trap
handler software must emulate the STDF instruction and return (impl. dep. #110-V9-
Cs10(a)).

STQF requires only word alignment in memory. If the effective address is word-
aligned but not quadword-aligned, an attempt to execute an STQF instruction causes
an STQF_mem_address_not_aligned exception. In this case, trap handler software
must emulate the STQF instruction and return (impl. dep. #112-V9-Cs10(a)).

Programming | Some compilers issued sequences of single-precision stores for

Note | SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9, since emulation of misaligned
stores is expected to be fast, compilers should issue sets of single-
precision stores only when they can determine that double- or
quadword operands are not properly aligned.

An attempt to execute an STQF instruction when rd{1} # O causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

Implementation | Since UltraSPARC Architecture 2005 processors do not implement

Note | in hardware instructions (including STQF) that refer to quad-
precision floating-point registers, the
STQF_mem_address_not_aligned and fp_exception_other (with
FSR.ftt = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.

illegal_instruction

fp_disabled

STDF_mem_address_not_aligned

STQF_mem_address_not_aligned (not used in UltraSPARC Architecture 2005)
mem_address_not_aligned

fp_exception_other (FSR.ftt = invalid_fp_register (STQF only))

VA_watchpoint
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See Also Load Floating-Point on page 249
Block Store on page 328
Store Floating-Point into Alternate Space on page 335
Store (Lower) Floating-Point Status Register on page 339
Store Short Floating-Point on page 344
Store Partial Floating-Point on page 341
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STFA / STDFA /| STQFA

792  StoreFloating-Pointinto Alternate Space

Instruction op3 rd Operation Assembly Language Syntax Class
STFAPast 110100 0-31 Store Floating-Point Register sta  freg,, [ regaddr] imm_asi Al
to Alternate Space sta  fregg, [ reg_plus_imm] %@si
STDEAPast 110111 F Store Double Floating-Point stda freg,q, [ regaddr] imm_asi Al
Register to Alternate Space  stda freg,, [ reg_plus_imm] %@si
STQFAPast 110110 F Store Quad Floating-Point stga fregyy, [ regaddr] imm_asi c3

Register to Alternate Space  stqa freg,, [ reg_plus_imm] %@si

* Encoded floating-point register value, as described on page 51.

11 rd op3 rsl i=0| imm_asi rs2
11 rd op3 rsl i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The store single floating-point into alternate space instruction (STFA) copies the
contents of the 32-bit floating-point register Fg[rd] into memory.

The store double floating-point into alternate space instruction (STDFA) copies the
contents of 64-bit floating-point register Fp[rd] into a word-aligned doubleword in
memory. The unit of atomicity for STDFA is 4 bytes (one word).

The store quad floating-point into alternate space instruction (STQFA) copies the
contents of 128-bit floating-point register Fg[rd] into a word-aligned quadword in
memory. The unit of atomicity for STQFA is 4 bytes (one word).

Store floating-point into alternate space instructions contain the address space
identifier (ASI) to be used for the load in the imm_asi field if i = 0 or in the ASI
register if i = 1. The access is privileged if bit 7 of the ASI is 0; otherwise, it is not
privileged. The effective address for these instructions is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1] + sign_ext( simm13)” if i = 1.

Programming | Some compilers issued sequences of single-precision stores for

Note | SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9, since emulation of misaligned
stores is expected to be fast, compilers should issue sets of single-
precision stores only when they can determine that double- or
quadword operands are not properly aligned.

Exceptions. STFA causes a mem_address_not_aligned exception if the effective
memory address is not word-aligned.
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STDFA requires only word alignment in memory. However, if the effective address is
word-aligned but not doubleword-aligned, an attempt to execute an STDFA
instruction causes an STDF_mem_address_not_aligned exception. In this case, trap
handler software must emulate the STDFA instruction and return (impl. dep. #110-
V9-Cs10(b)).

STQFA requires only word alignment in memory. However, if the effective address is
word-aligned but not quadword-aligned, an attempt to execute an STQFA
instruction may cause an STQF_mem_address_not_aligned exception. In this case,
the trap handler software must emulate the STQFA instruction and return (impl.
dep. #112-V9-Cs10(b)).

Implementation | STDFA shares an opcode with the STBLOCKF, STPARTIALE,
Note | and STSHORTF instructions; it is distinguished by the ASI used.

An attempt to execute an STQFA instruction when rd{1} # O causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

Implementation | Since UltraSPARC Architecture 2005 processors do not implement

Note | in hardware instructions (including STQFA) that refer to quad-
precision floating-point registers, the
STQF_mem_address_not_aligned and fp_exception_other (with
FSR.ftt = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI
is 0, this instruction causes a privileged_action exception. In privileged mode
(PSTATE.priv = 1 and HPSTATE.hpriv = 0), if the ASI is in the range 30,4 to 7Fy, this
instruction causes a privileged_action exception.

STFA and STQFA can be used with any of the following ASIs, subject to the privilege
mode rules described for the privileged_action exception above. Use of any other ASI
with these instructions causes a data_access_exception exception.

ASIs valid for STFA and STQFA

AS| _NUCLEUS ASI _NUCLEUS_LI TTLE

ASI _AS_| F_USER PRI MARY ASI _AS_| F_USER PRI MARY_ LI TTLE
ASl _AS | F_USER SECONDARY ASI _AS | F_USER SECONDARY_ LI TTLE
AS| _REAL ASl _REAL_LI TTLE

ASI _REAL_| O ASI_REAL_| O LI TTLE

AS| _PRI MARY ASl _PRI MARY_LI TTLE

AS| _SECONDARY AS|I _SECONDARY LI TTLE
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STDFA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
the STDFA instruction causes a data_access_exception exception.

ASls valid for STDFA

AS| _NUCLEUS ASI _NUCLEUS_LI TTLE

AS| _AS_| F_USER PRI MARY ASI _AS_| F_USER PRI MARY_ LI TTLE
ASl _AS | F_USER_SECONDARY ASl _AS | F_USER SECONDARY_ LI TTLE
ASl _REAL ASl _REAL_LI TTLE

ASI_REAL_1O ASI _REAL_1O LI TTLE

ASl _PRI MARY ASI _PRI MARY_LI TTLE

AS| _SECONDARY AS| _SECONDARY_ LI TTLE

ASI _BLOCK_AS | F_USER PRI MARY+ ASI _BLOCK_AS_| F_USER PRI MARY LI TTLEt
ASI _BLOCK_AS | F_USER SECONDARY t+ ASI BLOCK_AS_| F_USER SECONDARY_ LI TTLE+
AS|I _BLOCK_PRI MARY + AS| _BLOCK_PRI MARY_ LI TTLE +

AS| _BLOCK_SECONDARY + AS| _BLOCK_SECONDARY_ LI TTLE+

ASlI _BLOCK_COVMM T_PRI MARY +

AS| _BLOCK_COVM T_SECONDARY +

ASI _FL8_PRI MARY } AS| _FL8_PRI MARY_LI TTLE}

AS| _FL8_SECONDARY AS| _FL8_SECONDARY_LI TTLE }
AS| _FL16_PRI MARY } ASl _FL16_PRI MARY LI TTLE}

AS| _FL16_SECONDARY t AS| _FL16_SECONDARY LI TTLE}
AS| _PST8_PRI MARY * AS| _PST8_ PRI MARY LI TTLE*
AS| _PST8_SECONDARY * AS| _PST8_SECONDARY_ LI TTLE*
AS| _PST16_PRI MARY * AS| _PST16_PRI MARY LI TTLE*
AS| _PST16_SECONDARY * AS| _PST16_SECONDARY LI TTLE*
AS| _PST32_PRI MARY * AS| _PST32_PRI MARY_LI TTLE*
AS| _PST32_SECONDARY * AS| _PST32_SECONDARY_ LI TTLE*

1 If this ASI is used with the opcode for STDFA, the STBLOCKEF instruction is
executed instead of STFA. For behavior of STBLOCKE, see Block Store on page 328.
f If this ASIis used with the opcode for STDFA, the STSHORTF instruction
is executed instead of STDFA. For behavior of STSHORTF, see
Store Short Floating-Point on page 344.
* If this ASI is used with the opcode for STDFA, the STPARTIALF instruction
is executed instead of STDFA. For behavior of STPARTIALF, see
Store Partial Floating-Point on page 341.

Exceptions illegal_instruction
fp_disabled
STDF_mem_address_not_aligned
STQF_mem_address_not_aligned (STQFA only) (not used in UA-2005)
mem_address_not_aligned
fp_exception_other (FSR.fit = invalid_fp_register (STQFA only))
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privileged_action
VA_watchpoint

See Also Load Floating-Point from Alternate Space on page 252
Block Store on page 328
Store Floating-Point on page 332
Store Short Floating-Point on page 344
Store Partial Floating-Point on page 341
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7.93  Store (Lower) Floating-Point Status
Register

The STFSR instruction is deprecated and should not be used in new software.
The STXFSR instruction should be used instead.

Opcode op3 rd Operation Assembly Language Syntax Class
STFSRP 100101 0 Store Floating-Point State Register Lower st % sr, [address] D2
11 rd op3 rsl i=0 — rs2

11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The Store Floating-point State register lower instruction (STFSR) waits for any
currently executing FPop instructions to complete, and then it writes the less
significant 32 bits of the FSR into memory.

STFSR zeroes FSR ftt after writing the FSR to memory.

V9 Compatibility | FSR.ftt should not be zeroed until it is known that the store will
Note | not cause a precise trap.

STFSR accesses memory using the implicit ASI (see page 104). The effective address
for this instruction is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( simm13)” if
i=1

An attempt to execute a STFSR instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If the floating-point unit is not enabled (FPRS.fef =0 or PSTATE.pef = 0) or if the
FPU is not present, then an attempt to execute a STFSR instruction causes an
fp_disabled exception.

STFSR causes a mem_address_not_aligned exception if the effective memory
address is not word-aligned.

V9 Compatibility | Although STFSR is deprecated, UltraSPARC Architecture
Note | implementations continue to support it for compatibility with
existing SPARC V8 software. The STFSR instruction is defined
to store only 32 bits of the FSR into memory, while STXFSR
allows SPARC V9 software to store all 64 bits of the FSR.
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Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
VA_watchpoint

See Also Store Floating-Point on page 332
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7.94

STPARTIALF

Store Partial Floating-Point

ASI

Instruction Value Operation Assembly Language Syntax T Class

STPARTIALF CO0,4 Eight 8-bit conditional stores to stda fregyg, regrso [ regrsi] #ASI _PST8_P C3
primary address space

STPARTIALF C1y4 Eight 8-bit conditional stores to stda fregyg, regrso [ regsi] #ASI _PST8_S C3
secondary address space

STPARTIALF C8;4 Eight 8-bit conditional stores to stda fregyq, regrsa. [1egrs1] #ASI _PST8_PL Cc3
primary address space, little-endian

STPARTIALF C9¢4 Eight 8-bit conditional stores to stda fregyqg, regrsp, [ regsi] #ASI _PST8_SL C3
secondary address space, little-
endian

STPARTIALF C244 Four 16-bit conditional stores to stda fregqg, regrso [ regs1] #ASI_PST16_P C3
primary address space

STPARTIALF C3;4 Four 16-bit conditional stores to st da fregyy, regrs2, [regrs1] #ASI _PST16_S C3
secondary address space

STPARTIALF CA;¢ Four 16-bit conditional stores to stda fregg, regrsp, [ regsi]l #ASI _PST16_PL C3
primary address space, little-endian

STPARTIALF CBj, Four 16-bit conditional stores to ~ stda fregu, regrs2. [ regs1] #ASI _PST16_SL C3
secondary address space, little-
endian

STPARTIALF C4;4 Two 32-bit conditional stores to stda fregyg, regrso. [ regrsi] #ASI_PST32_P C3
primary address space

STPARTIALF C5;4 Two 32-bit conditional stores to stda fregyg, regrso. [ regrsi] #ASI _PST32_S C3
secondary address space

STPARTIALF CC;4 Two 32-bit conditional stores to stda fregiq, regrsos [ regs1] #ASI _PST32_PL C3
primary address space, little-endian

STPARTIALF CD;¢ Two 32-bit conditional stores to stda fregyg, regrs2. [ regrsi]l #ASI _PST32_SL C3

secondary address space, little-
endian

t The original assembly language syntax for a Partial Store instruction (“st dafreg,q, [reg.;] reg,s, imm_asi” ) has been dep-
recated because of inconsistency with the rest of the SPARC assembly language. Over time, assemblers will support the new syntax
for this instruction. In the meantime, some existing assemblers may only recognize the original syntax.

11 rd 110111 rsl i=0 imm_asi rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description The partial store instructions are selected by one of the partial store ASIs with the

STDFA instruction.
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Two 32-bit, four 16-bit, or eight 8-bit values from the 64-bit floating-point register
Fplrd] are conditionally stored at the address specified by R[rs1], using the mask
specified in R[rs2]. STPARTIALF has the effect of merging selected data from its
source register, Fp[rd], into the existing data at the corresponding destination
locations.

The mask value in R[rs2] has the same format as the result specified by the pixel
compare instructions (see SIMD Signed Compare on page 178). The most significant
bit of the mask (not of the entire register) corresponds to the most significant part of
Fplrd]. The data is stored in little-endian form in memory if the ASI name has an “L”
(or “_LITTLE”) suffix; otherwise, it is stored in big-endian format.

R[rs2]
8-bit partial store mask
for ASI _PST8_* 7 6 543 210
mask for bits 63:56 gf
mask for bits 55:48
mask for bits 15:8
mask for bits  7:0
R[rs2]

16-bit partial store mask
for ASI _PST16_*

mask for bits 63:48
mask for bits 47:32
mask for bits 31:16
mask for bits 15:0

L
— P N

L—— P o

R[rs2]
32-bit partial store mask
for ASI _PST32_*

mask for bits 63:32
mask for bits 31:0

>
P o

FIGURE 7-29 Mask Format for Partial Store

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an data_access_exception exception, and are
emulated in software.

Exceptions. An attempt to execute a STPARTIALF instruction when i = 1 causes an
illegal_instruction exception.
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STPARTIALF

If the floating-point unit is not enabled (FPRS.fef =0 or PSTATE.pef = 0) or if the
FPU is not present, then an attempt to execute a STPARTIALF instruction causes an
fp_disabled exception.

STPARTIALF causes a mem_address_not_aligned exception if the effective memory
address is not word-aligned.

STPARTIALF requires only word alignment in memory for eight byte stores. If the
effective address is word-aligned but not doubleword-aligned, it generates an
STDF_mem_address_not_aligned exception. In this case, the trap handler software
shall emulate the STDFA instruction and return.

IMPL. DEP. #249-U3-Cs10: For an STPARTIAL instruction, the following aspects of
data watchpoints are implementation dependent: (a) whether data watchpoint logic
examines the byte store mask in R[rs2] or it conservatively behaves as if every
Partial Store always stores all 8 bytes, and (b) whether data watchpoint logic
examines individual bits in the Virtual (Physical) Data Watchpoint Mask in the LSU
Control register DCUCR to determine which bytes are being watched or (when the
Watchpoint Mask is nonzero) it conservatively behaves as if all 8 bytes are being
watched.

ASIs C074-C514 and C81,—CD;¢4 are only used for partial store operations. In
particular, they should not be used with the LDDFA instruction; however, if any of
them is used, the resulting behavior is specified in the LDDFA instruction
description on page 254.

Implementation | STPARTIALF shares an opcode with the STBLOCKF, STDFA,
Note | and STSHORTF instructions; it is distinguished by the ASI used.

illegal_instruction

fp_disabled

data_access_exception (not implemented in hardware in UA-2005)
data_access_MMU_error
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7.95  Store Short Floating-Point

ASI
Instruction Value Operation Assembly Language Syntax Class

STSHORTF D0y 8-bit store to primary address space stda freg.q, [regaddr] #ASl _FL8_P C3
stda  fregq, [reg_plus_imm] Y@asi

STSHORTF D1y,  8-bit store to secondary address space  stda  fregyy, [regaddr] #ASI _FL8_S C3
stda  fregq, [reg_plus_imm] Y@si

STSHORTF D8y  8-bit store to primary address space, stda  fregyy, [regaddr] #ASI _FL8_PL C3

little-endian stda  fregu, [reg_plus_imm] %@si
STSHORTF D9y  8-bit store to secondary address space, stda  fregyy, [regaddr] #ASI _FL8_SL C3
little-endian stda  fregu, [reg_plus_imm] %@si

STSHORTF  D2;¢ 16-bit store to primary address space ~ stda  freg,y, [regaddr] #ASI _FL16_P C3
stda  fregyy, [ reg_plus_imm] Yasi

STSHORTF D3y 16-bit store to secondary address space stda  fregyy, [regaddr] #ASI _FL16_S C3
stda  fregq, [reg_plus_imm] Y@asi

STSHORTEF DAj¢ 16-bit store to primary address space, stda freg.q, [regaddr] #AS| _FL16_PL C3

little-endian stda  fregrg, [ reg_plus_imm] Yasi
STSHORTF DBy 16-bit store to secondary address space, stda  fregyy, [regaddr] #ASI _FL16_SL  C3
little-endian stda  fregw, [reg_plus_imm] Yasi
11 rd 110111 rsl i=0 imm_asi rs2
11 rd 110111 rsl i=1 simm_13
31 30 29 25 24 19 18 14 13 5 4 0

Description The short floating-point store instruction allows 8- and 16-bit stores to be performed
from the floating-point registers. Short stores access the low-order 8 or 16 bits of the
register.

Little-endian ASIs transfer data in little-endian format from memory; otherwise,
memory is assumed to be big-endian. Short stores are typically used with the
FALIGNDATA instruction (see Align Data on page 173) to assemble or store 64 bits
on noncontiguous components.

Implementation | STSHORTF shares an opcode with the STBLOCKF, STDFA, and
Note | STPARTIALF instructions; it is distinguished by the ASI used.

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an data_access_exception exception, and are
emulated in software.
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If the floating-point unit is not enabled (FPRS.fef =0 or PSTATE.pef = 0) or if the
FPU is not present, then an attempt to execute a STSHORTF instruction causes an
fp_disabled exception.

STSHORTF causes a mem_address_not_aligned exception if the effective memory
address is not halfword-aligned.

An 8-bit STSHORTF (using ASI D04, D114, D814, or D944) can be performed to an
arbitrary memory address (no alignment requirement).

A 16-bit STSHORTF (using ASI D214, D314, DA14, or DByg) to an address that is not
halfword-aligned (an odd address) causes a mem_address_not_aligned exception.

Exceptions VA_watchpoint
data_access_exception
data_access_MMU_error
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7.96  Store Integer Twin Word

The STTW instruction is deprecated and should not be used in new software.
The STX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax T Class

STTWP 000111 Store Integer Twin Word sttw regrq, [address] D2

t The original assembly language syntax for this instruction used an “st d” instruction mnemonic, which is now
deprecated. Over time, assemblers will support the new “st t W mnemonic for this instruction. In the meantime,
some existing assemblers may only recognize the original “st d” mnemonic.

11 rd op3 rsl i=0) — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description  The store integer twin word instruction (STTW) copies two words from an R register
pair into memory. The least significant 32 bits of the even-numbered R register are
written into memory at the effective address, and the least significant 32 bits of the
following odd-numbered R register are written into memory at the “effective
address +4”.

The least significant bit of the rd field of a store twin word instruction is unused and
should always be set to 0 by software.

STTW accesses memory using the implicit ASI (see page 104). The effective address
for this instruction is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( simm13)” if
i=1.

A successful store twin word instruction operates atomically.

IMPL. DEP. #108-V9a: It is implementation dependent whether STTW is
implemented in hardware. If not, an attempt to execute it will cause an

unimplemented_STTW exception. (STTW is implemented in hardware in all
UltraSPARC Architecture 2005 implementations.)

An attempt to execute an STTW instruction when either of the following conditions
exist causes an illegal_instruction exception:

= destination register number rd is an odd number (is misaligned)
= i =0 and instruction bits 12:5 are nonzero
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Exceptions

See Also

STTW (Deprecated)

STTW causes a mem_address_not_aligned exception if the effective address is not
doubleword-aligned.

With respect to little-endian memory, an STTW instruction behaves as if it is
composed of two 32-bit stores, each of which is byte-swapped independently before
being written into its respective destination memory word.

Programming | STTW is provided for compatibility with SPARC V8. It may

Notes | execute slowly on SPARC V9 machines because of data path and
register-access difficulties. Therefore, software should avoid
using STTW.

If STTW is emulated in software, STX instruction should be
used for the memory access in the emulation code to preserve
atomicity.

unimplemented_STTW
illegal_instruction
mem_address_not_aligned
VA_watchpoint
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection

STW/STX on page 323
STTWA on page 348
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7.97  Store Integer Twin Word into Alternate
Space

The STTWA instruction is deprecated and should not be used in new software.
The STXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

STTWAD PAS 01 0111 Store Twin Word into Alternate Space  sttwa regq [regaddr] imm_asi ¥
sttwa regyy [reg_plus_imm] Y@si

1 The original assembly language syntax for this instruction used an “st da” instruction mnemonic, which is now deprecated. Over time,
assemblers will support the new “st t wa” mnemonic for this instruction. In the meantime, some existing assemblers may only recog-
nize the original “st da” mnemonic.

T Y3 for restricted ASIs (00,4-7F¢); D2 for unrestricted ASIs (80,4-FF¢)

11 rd op3 rsl i= imm_asi rs2
11 rd op3 rsi i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The store twin word integer into alternate space instruction (STTWA) copies two
words from an R register pair into memory. The least significant 32 bits of the even-
numbered R register are written into memory at the effective address, and the least
significant 32 bits of the following odd-numbered R register are written into memory
at the “effective address + 4”.

The least significant bit of the rd field of an STTWA instruction is unused and should
always be set to 0 by software.

Store integer twin word to alternate space instructions contain the address space
identifier (ASI) to be used for the store in the imm_asi field if i = 0, or in the ASI
register if i = 1. The access is privileged if bit 7 of the ASI is 0; otherwise, it is not
privileged. The effective address for these instructions is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1]+sign_ext( simm13)” if i = 1.

A successful store twin word instruction operates atomically.

With respect to little-endian memory, an STTWA instruction behaves as if it is
composed of two 32-bit stores, each of which is byte-swapped independently before
being written into its respective destination memory word.
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STTWA (Deprecated)

IMPL. DEP. #108-V9b: It is implementation dependent whether STTWA is
implemented in hardware. If not, an attempt to execute it will cause an
unimplemented_STTW exception. (STTWA is implemented in hardware in all
UltraSPARC Architecture 2005 implementations.)

An attempt to execute an STTWA instruction with a misaligned (odd) destination
register number rd causes an illegal_instruction exception.

STTWA causes a mem_address_not_aligned exception if the effective address is not
doubleword-aligned.

In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI
is 0, this instruction causes a privileged_action exception. In privileged mode
(PSTATE.priv =1 and HPSTATE.hpriv = 0), if the ASI is in the range 3014 to 7Fy, this
instruction causes a privileged_action exception.

STTWA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
this instruction causes a data_access_exception exception (impl. dep. #300-U4-
Cs10).

ASls valid for STTWA
ASI _NUCLEUS ASI _NUCLEUS LI TTLE
ASI _AS | F_USER_PRI MARY ASI _AS | F_USER_PRI MARY_LI TTLE
ASI _AS_| F_USER_SECONDARY ASI _AS | F_USER SECONDARY_LI TTLE

ASI _REAL ASI _REAL_LI TTLE

ASI _REAL_| O ASI _REAL_| O LI TTLE
ASI _PRI MARY ASI _PRI MARY_LI TTLE
ASI _SECONDARY ASI _SECONDARY_LI TTLE

Programming | Nontranslating ASIs (see page 407) may only be accessed using
Note | STXA (not STTWA) instructions. If an STTWA referencing a

nontranslating ASI is executed, per the above table, it generates

a data_access_exception exception (impl. dep. #300-U4-Cs10).

Programming | STTWA is provided for compatibility with existing SPARC V8

Note | software. It may execute slowly on SPARC V9 machines because
of data path and register-access difficulties. Therefore, software
should avoid using STTWA.

If STTWA is emulated in software, the STXA instruction should
be used for the memory access in the emulation code to preserve
atomicity.

unimplemented_STTW
illegal_instruction
mem_address_not_aligned
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privileged_action
VA_watchpoint
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection

See Also STWA /STXA on page 324
STTW on page 346
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7.98

Subtract

Instruction op3 Operation Assembly Language Syntax Class
SUB 000100  Subtract sub regrs1, reg_or_imm, regyq Al
SUBcc 010100  Subtract and modify cc’s subcc  reggy, reg_or_imm, regyy Al
SUBC 00 1100 Subtract with Carry subc regrs1, reg_or_imm, regyq Al
SUBCcc 011100 Subtract with Carry and modify cc’s subccc  regg1, reg_or_imm, regyy Al

10 rd op3 rsl i= — rs2

10 rd op3 rsl i= simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description These instructions compute “R[rs1] - R[rs2]” if i = 0, or

Exceptions

“R[rs1] - sign_ext( simm13)” if i = 1, and write the difference into R[rd].

SUBC and SUBCcc (“SUBtract with carry”) also subtract the CCR register’s 32-bit
carry (icc.c) bit; that is, they compute “R[rs1] — R[rs2] —icc.c” or
“R[rs1] - sign_ext( simm13) — icc.c” and write the difference into R[rd].

SUBcc and SUBCcc modify the integer condition codes (CCR.icc and CCR.xcc). A 32-
bit overflow (CCRu.icc.v) occurs on subtraction if bit 31 (the sign) of the operands
differs and bit 31 (the sign) of the difference differs from R[rs1]{31}. A 64-bit
overflow (CCR.xcc.v) occurs on subtraction if bit 63 (the sign) of the operands differs
and bit 63 (the sign) of the difference differs from R[rs1]{63}.

Programming | A SUBcc instruction with rd = 0 can be used to effect a signed or
Notes [ unsigned integer comparison. See the cnp synthetic instruction in
Appendix C, Assembly Language Syntax.

SUBC and SUBCcc read the 32-bit condition codes” carry bit
(CCRuicc.c), not the 64-bit condition codes’ carry bit (CCR.xcc.c).

An attempt to execute a SUB instruction when i = 0 and instruction bits 12:5 are

nonzero causes an illegal_instruction exception.

illegal_instruction
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7.99

11

Swap Register with Memory

The SWAP instruction is deprecated and should not be used in new software.

The CASA or CASXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

SWAPP 001111 Swap Register with Memory swap [address], regq D2

rd op3 rsl i=0) — rs2

11

rd op3 rsl i=1 simm13

31 30 29
Description

Exceptions

25 24 19 18 14 13 12 5 4 0

SWAP exchanges the less significant 32 bits of R[rd] with the contents of the word at
the addressed memory location. The upper 32 bits of R[rd] are set to 0. The operation
is performed atomically, that is, without allowing intervening interrupts or deferred
traps. In a multiprocessor system, two or more virtual processors executing CASA,
CASXA, SWAP, SWAPA, LDSTUB, or LDSTUBA instructions addressing any or all of
the same doubleword simultaneously are guaranteed to execute them in an
undefined, but serial, order.

SWAP accesses memory using the implicit ASI (see page 104). The effective address
for these instructions is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( simm13)” if
i=1.

An attempt to execute a SWAP instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If the effective address is not word-aligned, an attempt to execute a SWAP instruction
causes a mem_address_not_aligned exception.

The coherence and atomicity of memory operations between virtual processors and
I/0O DMA memory accesses are implementation dependent (impl. dep. #120-V9).

illegal_instruction
mem_address_not_aligned
VA_watchpoint
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_ MMU_error
fast_data_access_protection
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SWAPA (Deprecated)

7.100

Swap Register with Alternate Space
Memory

The SWAPA instruction is deprecated and should not be used in new software.
The CASXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class
SWAPAP: Past 011111 Swap register with Alternate Space  swapa [regaddr] imm_asi, regyy ¥
Memory swapa [reg_plus_imm] Y@si , reg.g

T Y3 for restricted ASIs (00,4-7F¢); D2 for unrestricted ASIs (80,4-FFq¢)

11 rd op3 rsl i=0) imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description ~ SWAPA exchanges the less significant 32 bits of R[rd] with the contents of the word

at the addressed memory location. The upper 32 bits of R[rd] are set to 0. The
operation is performed atomically, that is, without allowing intervening interrupts
or deferred traps. In a multiprocessor system, two or more virtual processors
executing CASA, CASXA, SWAP, SWAPA, LDSTUB, or LDSTUBA instructions
addressing any or all of the same doubleword simultaneously are guaranteed to
execute them in an undefined, but serial, order.

The SWAPA instruction contains the address space identifier (ASI) to be used for the
load in the imm_asi field if i = 0, or in the ASI register if i = 1. The access is
privileged if bit 7 of the ASI is 0; otherwise, it is not privileged. The effective address
for this instruction is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( simm13)” if
i=1

This instruction causes a mem_address_not_aligned exception if the effective
address is not word-aligned. It causes a privileged_action exception if
PSTATE.priv = 0 and bit 7 of the ASI is 0.

The coherence and atomicity of memory operations between virtual processors and
I/O DMA memory accesses are implementation dependent (impl. dep #120-V9).

If the effective address is not word-aligned, an attempt to execute a SWAPA
instruction causes a mem_address_not_aligned exception.
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In nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0), if bit 7 of the ASI
is 0, this instruction causes a privileged_action exception. In privileged mode
(PSTATE.priv =1 and HPSTATE.hpriv = 0), if the ASI is in the range 30,4 to 7Fy, this
instruction causes a privileged_action exception.

SWAPA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
this instruction causes a data_access_exception exception.

AS| _NUCLEUS

ASI _AS_| F_USER PRI MARY
ASl _AS | F_USER SECONDARY
ASI _PRI MARY

AS| _SECONDARY

ASI _REAL

mem_address_not_aligned
privileged_action
VA_watchpoint
data_access_exception
fast_data_access_MMU_miss
data_access_MMU_miss
data_access_MMU_error
fast_data_access_protection

ASls valid for SWAPA

ASI _NUCLEUS_LI TTLE

ASI _AS_| F_USER PRI MARY_ LI TTLE
ASl _AS | F_USER SECONDARY_ LI TTLE
ASl _PRI MARY_LI TTLE

AS| _SECONDARY_LI TTLE

ASl _REAL_LI TTLE



TADDcc

7.101

Tagged Add

Instruction op3 Operation Assembly Language Syntax Class
TADDcc 100000 Tagged Add and modify cc’s  taddcc  regs;, reg_or_imm, regyq Al
10 rd op3 rsl i= — rs2
10 rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description This instruction computes a sum that is “R[rs1] + R[rs2]” if i =0, or
“R[rs1] + sign_ext( simm13)” if i = 1.
TADDcc modifies the integer condition codes (i cc and xcc).
A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the
addition generates 32-bit arithmetic overflow (that is, both operands have the same
value in bit 31 and bit 31 of the sum is different).
If a TADDcc causes a tag overflow, the 32-bit overflow bit (CCR.icc.v) is set to 1; if
TADDcc does not cause a tag overflow, CCR.icc.v is set to 0.
In either case, the remaining integer condition codes (both the other CCR.icc bits and
all the CCR.xcc bits) are also updated as they would be for a normal ADD
instruction. In particular, the setting of the CCR.xcc.v bit is not determined by the
tag overflow condition (tag overflow is used only to set the 32-bit overflow bit).
CCR.xcc.v is set based on the 64-bit arithmetic overflow condition, like a normal 64-
bit add.
An attempt to execute a TADDcc instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

See Also TADDccTVP on page 356

TSUBcc on page 361
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TADDccTV (Deprecated)

7.102 Tagged Add and Trap on Overflow

The TADDccTV instruction is deprecated and should not be used in new
software. The TADDcc instruction followed by the BPVS instruction (with
instructions to save the pre-TADDcc integer condition codes if necessary) should
be used instead.

Opcode op3 Operation Assembly Language Syntax Class

TADDccTVP 100010  Tagged Add and modify cc’s, taddcctv — reg.y, reg or_imm, regyq D2
or Trap on Overflow

10 rd op3 rsl i=0) — rs2
10 rd op3 rsl i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description This instruction computes a sum that is “R[rs1] + R[rs2]” if i =0, or
“R[rs1] + sign_ext( simm13)” if i = 1.

TADDccTV modifies the integer condition codes if it does not trap.

An attempt to execute a TADDccTV instruction when i = 0 and instruction bits 12:5
are nonzero causes an illegal_instruction exception.

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the
addition generates 32-bit arithmetic overflow (that is, both operands have the same
value in bit 31 and bit 31 of the sum is different).

If TADDccTV causes a tag overflow, a tag_overflow exception is generated and R[rd]
and the integer condition codes remain unchanged. If a TADDccTV does not cause a
tag overflow, the sum is written into R[rd] and the integer condition codes are
updated. CCR.icc.v is set to 0 to indicate no 32-bit overflow.

In either case, the remaining integer condition codes (both the other CCR.icc bits and
all the CCR.xcc bits) are also updated as they would be for a normal ADD
instruction. In particular, the setting of the CCR.xcc.v bit is not determined by the
tag overflow condition (tag overflow is used only to set the 32-bit overflow bit).
CCR.xcc.v is set only on the basis of the normal 64-bit arithmetic overflow condition,
like a normal 64-bit add.
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SPARC V8 | TADDccTV traps based on the 32-bit overflow condition, just as
Compatibility | in the SPARC V8 architecture. Although the tagged add
Note | instructions set the 64-bit condition codes CCR.xcc, there is no
form of the instruction that traps on the 64-bit overflow

condition.
Exceptions illegal_instruction
tag_overflow
See Also TADDcc on page 355

TSUBccTVP on page 362
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7.103  Trap on Integer Condition Codes (Icc)

Instruction op3 cond Operation cc TestAssembly Language Syntax Class

TA 111010 1000 Trap Always 1 ta i_or_x_cc, software_trap_number Al

TN 111010 0000 Trap Never 0 tn i_or_x_cc, software_trap_number Al

TNE 111010 1001 Trap on Not Equal not Z tnef i_or_x_cc, software_trap_number Al

TE 111010 0001 Trap on Equal z tet  ior_x_cc, software_trap_number Al

TG 111010 1010 Trap on Greater not(Zor(N tg i_or_x_cc, software_trap_number Al
xor V))

TLE 111010 0010 Trap on Less or Equal Z or (N xor V)tl e i_or_x_cc, software_trap_number Al
TGE 111010 1011 Trap on Greater or not (N xor V) tge i_or_x_cc, software_trap_number Al

Equal

TL 111010 0011 Trap on Less N xor V tl i_or_x_cc, software_trap_number Al

TGU 111010 1100 Trap on Greater, not (CorZ) tgu i_or_x_cc, software_trap_number Al
Unsigned

TLEU 111010 0100 Trap on Less or (CorZ2) tleu i_or_x_cc, software_trap_number Al
Equal, Unsigned

TCC 111010 1101 Trap on Carry Clear not C tecc? i_or_x_cc, software_trap_number Al

(Greater than or
Equal, Unsigned)

TCS 111010 0101 Trap on Carry Set C tcsY ior_x_ce, software_trap_number Al
(Less Than, Unsigned)
TPOS 111010 1110 Trap on Positive or not N tpos i_or_x_cc, software_trap_number Al
Zero
TNEG 111010 0110 Trap on Negative N tneg i_or_x_cc, software_trap_number Al
TVC 111010 1111  Trap on Overflow not V tve  i_or_x_cc, software_trap_number Al
Clear
TVS 111010 0111 Trap on Overflow Set V tvs i_or_x_cc, software_trap_number Al
i synonym: t nz ¥ synonym: t z © synonym: t geu 0 synonym: t1u
10 |— cond op3 rsl i=0|ccliccO — rs2
10 |— cond op3 rsl i=1|ccliccO — imm_trap_#
3130 29 28 25 24 19 18 14 13 12 11 10 8 7 5 4 0
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Description

Tcc

ccl :: ccO Condition Codes Evaluated
00 CCRu.icc
01 — (illegal_instruction)
10 CCR.xcc
11 — (illegal_instruction)

The Tcc instruction evaluates the selected integer condition codes (icc or xcc)
according to the cond field of the instruction, producing either a TRUE or FALSE
result. If TRUE and no higher-priority exceptions or interrupt requests are pending,
then a trap_instruction or htrap_instruction exception is generated. If FALSE, the
trap_instruction (or htrap_instruction) exception does not occur and the instruction
behaves like a NOP.

For brevity, in the remainder of this section the value of the “software trap number”
used by Tcc will be referred to as “SWTN”.

In nonprivileged mode, if i = 0 the SWTN is specified by the least significant seven
bits of “R[rs1] + R[rs2]”. If i = 1, the SWTN is provided by the least significant seven
bits of “R[rs1] + imm_trap_#". Therefore, the valid range of values for SWTN in
nonprivileged mode is 0 to 127. The most significant 57 bits of SWTN are unused
and should be supplied as zeroes by software.

In privileged and hyperprivileged modes, if i = 0 the SWTN is specified by the least
significant eight bits of “R[rs1] + R[rs2]”. If i = 1, the SWTN is provided by the least
significant eight bits of “R[rs1] + imm_trap_#". Therefore, the valid range of values
for SWTIN in privileged and hyperprivileged modes is 0 to 255. The most significant
56 bits of SWTN are unused an should be supplied as zeroes by software.

Generally, values of 0 < SWTN < 127 are used to trap to privileged-mode software
and values of 128 < SWTN < 255 are used to trap to hyperprivileged-mode software.
The behavior of Tcc, based on the privilege mode in effect when it is executed and
the value of the supplied SWTN, is as follows:
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Behavior of Tcc instruction

Privilege Mode in effect when Tcc is executed 0 < SWTN < 127 128 < SWTN < 255
Nonprivileged trap_instruction exception =~ —
(PSTATE.priv =0 and HSTATE.hpriv=0) (to privileged mode) (not possible)
(256 < TT < 383)
Privileged trap_instruction exception  htrap_instruction exception
(PSTATE.priv =1 and HSTATE.hpriv=0) (to privileged mode) (to hyperprivileged mode)
(256 < TT < 383) (384 < TT < 511)
Hyperprivileged htrap_instruction exception htrap_instruction exception
(and HSTATE hpriv = 1) (to hyperprivileged mode)  (to hyperprivileged mode)
(256 < TT < 383) (384 < TT < 511)

Exceptions

Programming | Tec can be used to implement breakpointing, tracing, and calls to
Note | privileged and hyperprivileged software. It can also be used for
runtime checks, such as for out-of-range array indexes and integer
overflow.

Exceptions. An attempt to execute a Tcc instruction when any of the following
conditions exist causes an illegal_instruction exception:

= instruction bit 29 is nonzero

= i =0 and instruction bits 12:5 are nonzero
= i =1 and instruction bits 10:8 are nonzero
= ccO=1

If a Tec instruction causes a trap_instruction or htrap_instruction trap, 256 plus the
SWTN value is written into TT[TL]. Then the trap is taken and the virtual processor
performs the normal trap entry procedure, as described in Trap Processing on page
470.

illegal_instruction
trap_instruction (0 < SWTN < 127)
htrap_instruction (128 < SWTN < 255)
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TSUBcc

7.104 Tagged Subtract

Instruction

op3

Operation Assembly Language Syntax Class

TSUBcc

100001  Tagged Subtract and modify cc’'s  tsubcc  reg.gy, reg_or_imm, reg.y Al

10

rd op3 rsl i=0| — rs2

10

rd op3 rsl i=1 simm13

31 30 29

Description

Exceptions

See Also

25 24 19 18 14 13 12 5 4 0

This instruction computes “R[rs1] — R[rs2]” if i =0, or
“R[rs1] — sign_ext( simm13)” if i = 1.

TSUBcc modifies the integer condition codes (icc and xcc).

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the
subtraction generates 32-bit arithmetic overflow; that is, the operands have different
values in bit 31 (the 32-bit sign bit) and the sign of the 32-bit difference in bit 31
differs from bit 31 of R[rs1].

If a TSUBcc causes a tag overflow, the 32-bit overflow bit (CCR.icc.v) is set to 1; if
TSUBcc does not cause a tag overflow, CCRu.icc.v is set to 0.

In either case, the remaining integer condition codes (both the other CCRu.icc bits and
all the CCR.xcc bits) are also updated as they would be for a normal subtract
instruction. In particular, the setting of the CCR.xcc.v bit is not determined by the
tag overflow condition (tag overflow is used only to set the 32-bit overflow bit).
ccr.xcc.v is set based on the 64-bit arithmetic overflow condition, like a normal 64-bit
subtract.

An attempt to execute a TSUBcc instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

illegal_instruction

TADDcc on page 355
TSUBccTVP on page 362
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TSUBccTV (Deprecated)

7.105 Tagged Subtract and Trap on Overflow

The TSUBccTV instruction is deprecated and should not be used in new
software. The TSUBcc instruction followed by BPVS instead (with instructions to
save the pre-TSUBcc integer condition codes if necessary) should be used

instead.
Opcode op3 Operation Assembly Language Syntax Class
TSUBccTVP 100011 Tagged Subtract and modify cc’s, or  t subcctv regsy, reg_or_imm, regyq D2

Trap on Overflow

10 rd op3 rsl i=0) — rs2
10 rd op3 rsl i=1 simm13
3T 30 29 25 24 19 18 14 13 12 5 4 0

Description This instruction computes “R[rs1] - R[rs2]” if i = 0, or “R[rs1] - sign_ext( simm13)”
ifi=1.

TSUBccTV modifies the integer condition codes (icc and xcc) if it does not trap.

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the
subtraction generates 32-bit arithmetic overflow; that is, the operands have different
values in bit 31 (the 32-bit sign bit) and the sign of the 32-bit difference in bit 31
differs from bit 31 of R[rs1].

An attempt to execute a TSUBccTV instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If TSUBccTV causes a tag overflow, then a tag_overflow exception is generated and
R[rd] and the integer condition codes remain unchanged. If a TSUBccTV does not
cause a tag overflow condition, the difference is written into R[rd] and the integer
condition codes are updated. CCR.icc.v is set to 0 to indicate no 32-bit overflow.

In either case, the remaining integer condition codes (both the other CCR.icc bits and
all the CCR.xcc bits) are also updated as they would be for a normal subtract
instruction. In particular, the setting of the CCR.xcc.v bit is not determined by the
tag overflow condition (tag overflow is used only to set the 32-bit overflow bit).
CCR.xcc.v is set only on the basis of the normal 64-bit arithmetic overflow condition,
like a normal 64-bit subtract.
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TSUBccTV (Deprecated)

SPARC V8| TSUBccTV traps based on the 32-bit overflow condition, just as
Compatibility | in the SPARC V8 architecture. Although the tagged add
Note | instructions set the 64-bit condition codes CCR.xcc, there is no
form of the instruction that traps on the 64-bit overflow

condition.
Exceptions illegal_instruction
tag_overflow
See Also TADDccTVP on page 356

TSUBcc on page 361
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UDIV / UDIVcc / SDIV / SDIVce (Deprecated)

7.106  Divide (64-bit + 32-bit)

The UDIV, UDIVcc, SDIV, and SDIVcc instructions are deprecated and should not
be used in new software. The UDIVX and SDIVX instructions should be used

instead.

Opcode op3 Operation Assembly Language Syntax Class
uDIVP 001110  Unsigned Integer Divide udi v regrs1, 1eg_or_imm, regyq C2
SDIVP 001111  Signed Integer Divide sdi v regys1, 1€g_Or_imm, regyqy Cc2
UDIVccP 011110  Unsigned Integer Divide and modify cc’s udi vec regqq, reg_or_imm, regq C2
SDIVccP 011111  Signed Integer Divide and modify cc’s sdivce  regsy, reg_or_imm, regyq Cc2

10 rd op3 rsl i= — rs2

10 rd op3 rsl i= simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description The divide instructions perform 64-bit by 32-bit division, producing a 32-bit result. If

i =0, they compute “(Y :: R[rs1]{31:0}) + R[rs2]{31:0}". Otherwise (that is, if i = 1), the
divide instructions compute “(Y :: R[rs1]{31:0}) + (sign_ext(simm13){31:0})”. In either
case, if overflow does not occur, the less significant 32 bits of the integer quotient are
sign- or zero-extended to 64 bits and are written into R[rd].

The contents of the Y register are undefined after any 64-bit by 32-bit integer divide
operation.

Unsigned Divide

Unsigned divide (UDIV, UDIVcc) assumes an unsigned integer doubleword
dividend (Y :: R[rs1]{31:0}) and an unsigned integer word divisor R[rs2{31:0}] or
(sign_ext( simm13){31:0}) and computes an unsigned integer word quotient (R[rd]).
Immediate values in simm13 are in the ranges 0 to 2'2—1 and 232-212 to 2321 for
unsigned divide instructions.

Unsigned division rounds an inexact rational quotient toward zero.

Programming | The rational quotient is the infinitely precise result quotient. It
Note | includes both the integer part and the fractional part of the
result. For example, the rational quotient of 11/4 =2.75 (integer
part =2, fractional part =.75).
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UDIV / UDIVcc / SDIV / SDIVce (Deprecated)

Signed Divide

The result of an unsigned divide instruction can overflow the less significant 32 bits
of the destination register R[rd] under certain conditions. When overflow occurs, the
largest appropriate unsigned integer is returned as the quotient in R[rd]. The
condition under which overflow occurs and the value returned in R[rd] under this
condition are specified in TABLE 7-14.

TABLE 7-14 UDIV / UDIVCC Overflow Detection and Value Returned

Condition Under Which Overflow Occurs Value Returned in R[rd]
Rational quotient > 232 2%2 -1
(0000 0000 FFFF FFFF;g)

When no overflow occurs, the 32-bit result is zero-extended to 64 bits and written
into register R[rd].

UDIV does not affect the condition code bits. UDIVcc writes the integer condition
code bits as shown in the following table. Note that negative (N) and zero (Z) are set
according to the value of R[rd] after it has been set to reflect overflow, if any.

Bit UDIVce

icc.n Set if R[rd]{31} =1

icc.z Set if R[rd]{31:0} =0

icc.v Set if overflow (per TABLE 7-14)
icc.c Zero

Xcc.n Set if R[rd]{63} =1

Xcc.z Set if R[rd]{63:0} =0

Xce.v Zero

Xcc.c Zero

Signed divide (SDIV, SDIVcc) assumes a signed integer doubleword dividend

(Y :: lower 32 bits of R[rs1]) and a signed integer word divisor (lower 32 bits of
R[rs2] or lower 32 bits of sign_ext(simm13)) and computes a signed integer word
quotient (R[rd]).

Signed division rounds an inexact quotient toward zero. For example, -7 + 4 equals
the rational quotient of —1.75, which rounds to -1 (not —2) when rounding toward
zero.

The result of a signed divide can overflow the low-order 32 bits of the destination
register R[rd] under certain conditions. When overflow occurs, the largest
appropriate signed integer is returned as the quotient in R[rd]. The conditions under
which overflow occurs and the value returned in R[rd] under those conditions are
specified in TABLE 7-15.

CHAPTER 7 e Instructions 365



UDIV / UDIVcc / SDIV / SDIVce (Deprecated)

TABLE 7-15 SDIV / SDIVCC Overflow Detection and Value Returned

Condition Under Which Overflow Occurs Value Returned in R[rd]
Rational quotient > 23! 231 ~1 (0000 0000 7FFF FEFF;)
Rational quotient < —231 7 1 —231 (FFFF FFEF 8000 0000;4)

When no overflow occurs, the 32-bit result is sign-extended to 64 bits and written
into register R[rd].

SDIV does not affect the condition code bits. SDIVcc writes the integer condition
code bits as shown in the following table. Note that negative (N) and zero (Z) are set
according to the value of R[rd] after it has been set to reflect overflow, if any.

Bit

SDIVcc

icc.n
icc.z
icc.v

icc.c

Set to 1 if R[rd]{31} = 1; otherwise, set to 0

Set to 1 if R[rd]{31:0} = 0; otherwise, set to 0

Set to 1 if overflow (per TABLE 7-12); otherwise set to 0
Set to 0

Xcc.n

XCccC.z

XCC.v

Xcc.c

Set to 1 if R[rd]{63} = 1; otherwise, set to 0
Set to 1 if R[rd]{63:0} = 0; otherwise, set to 0
Set to 0

Set to 0

An attempt to execute a UDIV, UDIVcc, SDIV, or SDIVcc instruction when i = 0 and
instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
division_by_zero
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UMUL / UMULcc / SMUL / SMULcc (Deprecated)

7.107 Multiply (32-bit)

The UMUL, UMULcc, SMUL, and SMULcc instructions are deprecated and
should not be used in new software. The MULX instruction should be used

instead.

Opcode op3 Operation Assembly Language Syntax Class
UMULP 001010 Unsigned Integer Multiply umul regrs1, reg_or_imm, regyy Cc2
SMULP 001011 Signed Integer Multiply smul regrs1, reg_or_imm, regqy Cc2
UMULccP 011010  Unsigned Integer Multiply and modify cc’s umul cc  regys1, reg_or_imm, regyq Cc2
SMULccP 011011 Signed Integer Multiply and modify cc’s smul cc regyg1, reg_or_imm, regy Cc2

10 rd op3 rsl i=0) — rs2

10 rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description ~ The multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit
results. They compute “R[rs1]{31:0} x R[rs2]{31:0}"” if i = 0, or “R[rs1]{31:0} x
sign_ext( simm13){31:0}” if i = 1. They write the 32 most significant bits of the
product into the Y register and all 64 bits of the product into R[rd].

Unsigned multiply instructions (UMUL, UMULcc) operate on unsigned integer
word operands and compute an unsigned integer doubleword product. Signed
multiply instructions (SMUL, SMULcc) operate on signed integer word operands
and compute a signed integer doubleword product.

UMUL and SMUL do not affect the condition code bits. UMULcc and SMULcc write
the integer condition code bits, icc and xcc, as shown below.

Bit UMULcc / SMULcc

icc.n Set to 1 if product{31} = 1; otherwise, set to 0
icc.z Set to 1 if product{31:0}= 0; otherwise, set to 0
icc.v Setto 0

icc.c Setto 0

Xcc.n Set to 1 if product{63} = 1; otherwise, set to 0
Xcc.z Set to 1 if product{63:0} = 0; otherwise, set to 0
XCC.V Set to 0

Xcc.c Set to 0
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Note | 32-bit negative (icc.n) and zero (icc.z) condition codes are set
according to the less significant word of the product, not
according to the full 64-bit result.

Programming | 32-bit overflow after UMUL/UMULcc is indicated by Y # 0.

Notes 32-bit overflow after SMUL/SMULcc is indicated by
Y # (R[rd] >> 31), where “>>" indicates 32-bit arithmetic right-
shift.

An attempt to execute a UMUL, UMULcc, SMUL, or SMULcc instruction when i =0
and instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
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WRasr

7.108  Write Ancillary State Register

Instruction rd  Operation Assembly Language Syntax Class

WRYP 0 Write Y register (deprecated) W regrg1, reg_or_imm, Yy C1

— 1 Reserved

WRCCR 2 Write Condition Codes W regrg1, reg_or_imm, 4€Cr Al
register

WRASI 3 Write ASI register W regps1, teg_or_imm, Y@si Al

— 4  Reserved (read-only ASR (TICK))

— 5  Reserved (read-only ASR (PC))

WRFPRS 6  Write Floating-Point Registers Status Wr reg,sq1, reg_or_imm, % prs Al
register

— 7-14 Reserved

— 15 Software-initiated reset (see Software-
Initiated Reset on page 320)

WRPCRF 16  Write Performance Control register W regsy, reg_or_imm, Ypcr Al
(PCR)

WRPICFric 17  Write Performance Instrumentation W regsq, reg_or_imm, %pi Al
Counters (PIC)

— 18  Reserved (impl. dep. #8-V8-Cs20, #9-
V8-Cs20)

WRGSR 19 Write General Status register (GSR) wr regsq, reg_or_imm, %gsr Al

WRSOFTINT_SETY 20 Set bits of per-virtual processor Soft Wr regs;, reg_or_imm, ¥sof tint_set N1
Interrupt register

WRSOFTINT_CLRP 21 Clear bits of per-virtual processor Soft W regs1, reg_or_imm, ¥sof tint _clr N1
Interrupt register

WRSOFTINT? 22 Write per-virtual processor Soft W regs1, reg_or_imm, ¥sof tint N1
Interrupt register

WRTICK_CMPR? 23 Write Tick Compare register W regrs1, reg_or_imm, % i ck_cnpr N1

WRSTICKH 24 Write System Tick register W regrg1, reg_or_imm, ¥sys_tick N1

WRSTICK_CMPRY 25 Write System Tick Compare register W reg.g1, reg_or_imm, ¥%sys_tick_cnpr N1

— 26-27 Reserved (impl. dep. #8-V8-Cs20, 9-V8-

Cs20)

28-31 Implementation dependent (impl.

dep. #8-V8-Cs20, 9-V8-Cs20)
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10 rd op3 =11 0000 rsl i=0 — rs2
10 rd op3 =11 0000 rsl i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The WRasr instructions each store a value to the writable fields of the ancillary state

register (ASR) specified by rd.

The value stored by these instructions (other than the implementation-dependent
variants) is as follows: if i = 0, store the value “R[rs1] xor R[rs2]”; if i = 1, store
“R[rs1] xor sign_ext( simm13)”.

Note | The operation is exclusive-or.

The WRasr instruction with rsl = 0 is a (deprecated) WRY instruction (which should
not be used in new software). WRY is not a delayed-write instruction; the instruction
immediately following a WRY observes the new value of the Y register.

The WRY instruction is deprecated. It is recommended that all instructions that
reference the Y register be avoided.

WRCCR, WRFPRS, and WRASI are not delayed-write instructions. The instruction
immediately following a WRCCR, WRFPRS, or WRASI observes the new value of
the CCR, FPRS, or ASI register.

WRFPRS waits for any pending floating-point operations to complete before writing
the FPRS register.

IMPL. DEP. #48-V8-Cs20: WRasr instructions with rd in the range 26-31 are

available for implementation-dependent uses (impl. dep. #8-V8-Cs20). For a WRasr

instruction with rd in the range 26-31, the following are implementation dependent:

= the interpretation of bits 18:0 in the instruction

= the operation(s) performed (for example, xor) to generate the value written to the
ASR

= whether the instruction is nonprivileged or privileged or hyperprivileged (impl.
dep. #9-V8-Cs20), and

= whether an attempt to execute the instruction causes an illegal_instruction
exception.

Note | See the section “Read/Write Ancillary State Registers (ASRs)” in
Extending the UltraSPARC Architecture, contained in the separate
volume UltraSPARC Architecture Application Notes, for a
discussion of extending the SPARC V9 instruction set by means of
read/write ASR instructions.

370 UltraSPARC Architecture 2005 « Draft D0.8.7, 27 Mar 2006



Exceptions

See Also

WRasr

V9 | Ancillary state registers may include (for example) timer, counter,
Compatibility | diagnostic, self-test, and trap-control registers.

NOteS | T,e SPARC V8 WRIER, WRPSR, WRWIM, and WRTBR
instructions do not exist in the UltraSPARC Architecture because
the IER, PSR, TBR, and WIM registers do not exist in the
UltraSPARC Architecture.

See Ancillary State Registers on page 70 for more detailed information regarding ASR
registers.

Exceptions. An attempt to execute a WRasr instruction when any of the following

conditions exist causes an illegal_instruction exception:

» i=0 and instruction bits 12:5 are nonzero

= rd=1,4,5,7-14, 18, or 26-31

=« rd=15and ((rs1 #0) or (i = 0))

= the instruction is WRSTICK and the virtual processor is not in hyperprivileged
mode (HPSTATE.hpriv = 0)

An attempt to execute a WRPCR (impl. dep. #250-U3-Cs10), WRSOFTINT_SET,
WRSOFTINT_CLR, WRSOFTINT, WRTICK_CMPR, or WRSTICK_CMPR instruction
in nonprivileged mode (PSTATE.priv = 0 and HPSTATE.hpriv = 0) causes a
privileged_opcode exception.

If the floating-point unit is not enabled (FPRS.fef =0 or PSTATE.pef = 0) or if the
FPU is not present, then an attempt to execute a WRGSR instruction causes an
fp_disabled exception.

An attempt to execute a WRPIC instruction in nonprivileged mode (PSTATE.priv =0
and HPSTATE.hpriv = 0) when PCR.priv = 1 causes a privileged_action exception.

Implementation | The SIR instruction shares an opcode with WRasr; they are
Note | distinguished by the rd, rs1, and i fields (rd = 15,rs1 =0, and i =1
for SIR). See Software-Initiated Reset on page 320.

illegal_instruction
privileged_opcode
fp_disabled
privileged_action

RDasr on page 299
WRHPR on page 372
WRPR on page 374
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WRHPR

7.109  Write Hyperprivileged Register

Instruction op3 Operation rd Assembly Language Syntax Class
WRHPRY 110011 Write hyperprivileged register C1
HPSTATE 0 wrhpr  reg.q1, reg_or_imm, Yhpstate
HTSTATE 1 wrhpr  reg.gq, reg_or_imm, Y%htstate
Reserved 2
HINTP 3 wr hpr  regyg1, reg_or_imm, Y%hintp
Reserved 4
HTBA 5 wr hpr  reg.q, reg_or_imm, %t ba
Reserved 6-30
HSTICK_CMPR 31  wrhpr reggy, reg_or_imm, Yhsys_tick_cnpr
10 rd op3 rsl i=0| — rs2
10 rd op3 rsl i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description A WRHPR instruction stores the value “R[rs1] xor R[rs2]” if i = 0, or “R[rs1] xor

sign_ext( simm13)” if i = 1 to the writable fields of the specified hyperprivileged
state register.

Note | The operation is exclusive-or.

The rd field in the instruction determines the hyperprivileged register that is written.
There are MAXTL copies of the HTSTATE register, one for each trap level. A write to
one of these registers sets the copy of HTSTATE indexed by the current value in the
trap-level register (TL).

The WRHPR instruction is a non-delayed-write instruction. The instruction
immediately following the WRHPR observes any changes made to virtual processor
state made by the WRHPR.

An attempt to execute a WRHPR instruction when any of the following conditions
exist causes an illegal_instruction exception:

= i=0 and instruction bits 12:5 are nonzero

= rd =2, 4, or 6-30 (reserved for future versions of the architecture)

» rd=1and TL = 0 (write to HTSTATE when the trap level is zero)

= virtual processor is in nonprivileged or privileged mode (HPSTATE.hpriv = 0)

A trap_level_zero disrupting trap can occur upon the completion of a WRHPR
instruction to HPSTATE, if the following three conditions are true after WRHPR has
executed:

= trap_level_zero exceptions are enabled (HPSTATE.tlz = 1),
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= the virtual processor is in nonprivileged or privileged mode
(HPSTATE.hpriv = 0), and
« the trap level (TL) register’s value is zero (TL = 0)

Programming | Execution of a WRHPR instruction that causes the value of
Note | HPSTATE.hpriv to change from 1 to 0 is not guaranteed to work
if the WRHPR is in the delay slot of a DCTI instruction.
Therefore, it is recommended that WRHPR not be executed in a
delay slot, especially if it will toggle the value of HPSTATE.hpriv
to 0.

Programming | For historical reasons, the WRPR instruction, not WRHPR, is used
Note | to write to the hyperprivileged TICK register. See Write Privileged
Register on page 374.

Exceptions illegal_instruction
trap_level_zero

See Also RDHPR on page 302
WRasr on page 369
WRPR on page 374
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7.110

WRPR

Write Privileged Register

Instruction op3 Operation rd Assembly Language Syntax Class

WRPRF 110010  Write Privileged register C1
TPC 0 wr pr regrs1, reg_or_imm, % pc
TNPC 1 wr pr regrs1, reg_or_imm, % npc
TSTATE 2 wr pr regrs1, reg_or_imm, % state
1T 3 wWr pr regrs1, reg_or_imm, Y%t
TICK 4 wr pr regrs1, reg_or_imm, % i ck
TBA 5 wr pr regrs1, reg_or_imm, % ba
PSTATE 6 wr pr regrs1, reg_or_imm, %pstate
TL 7 wr pr regrs1, reg_or_imm, % |
PIL 8 wr pr regrs1, reg_or_imm, Ui |
CwP 9 wr pr regrs1, reg_or_imm, YCWp
CANSAVE 10 wr pr regrs1, reg_or_imm, %cansave
CANRESTORE 1 wr pr regrs1, reg_or_imm, %ganrestore
CLEANWIN 12 wr pr regrs1, reg_or_imm, %€l eanwi n
OTHERWIN 13 wr pr regrs1, reg_or_imm, Y®therw n
WSTATE 14 wr pr regrs1, reg_or_imm, WSt ate
Reserved 15
GL 16 wr pr regrs1, reg_or_imm, gl
Reserved 17-31

10 rd op3 rsl i=0| — rs2
10 rd op3 rsl i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description This instruction stores the value “R[rs1] xor R[rs2]” if i =0, or “R[rs1] xor

sign_ext( simm13)” if i = 1 to the writable fields of the specified privileged state

register.

Note | The operation is exclusive-or.

The rd field in the instruction determines the privileged register that is written.

There are MAXTL copies of the TPC, TNPC, TT, and TSTATE registers, one for each
trap level. A write to one of these registers sets the register, indexed by the current
value in the trap-level register (TL).
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A WRPR to TL only stores a value to TL; it does not cause a trap, cause a return from
a trap, or alter any machine state other than TL and state (such as PC, NPC, TICK,
etc.) that is indirectly modified by every instruction.

Programming | A WRPR of TL can be used to read the values of TPC, TNPC, and
Note | TSTATE for any trap level; however, software must take care that
traps do not occur while the TL register is modified.

The WRPR instruction is a non-delayed-write instruction. The instruction
immediately following the WRPR observes any changes made to virtual processor
state made by the WRPR.

In privileged mode, MaxPTL is the maximum value that may be written by a WRPR to
TL; an attempt to write a larger value results in MAXPTL being written to TL. In
hyperprivileged mode, MaxTL is the maximum value that may be written by a WRPR
to TL; an attempt to write a larger value results in MaxTL being written to TL. For
details, see TABLE 6-22 on page 100.

In privileged mode, maxPGL is the maximum value that may be written by a WRPR to
GL; an attempt to write a larger value results in MaxPGL being written to GL. In
hyperprivileged mode, maxGL is the maximum value that may be written by a WRPR
to GL; an attempt to write a larger value results in MaxGL being written to GL. For
details, see TABLE 6-23 on page 103.

Programming | For historical reasons, the WRPR instruction, not WRHPR, is used
Note | to write to the hyperprivileged TICK register.

Exceptions. An attempt to execute a WRPR instruction in nonprivileged mode
(PSTATE.priv = 0 and HSTATE.hpriv = 0) causes a privileged_opcode exception.

An attempt to execute a WRPR instruction when any of the following conditions

exist causes an illegal_instruction exception:

» i=0and instruction bits 12:5 are nonzero

» (rd =4) and (PSTATE.priv =1 and HSTATE.hpriv = 0)
(an attempt to write to hyperprivileged register TICK while in privileged mode)

= rd =15, or 17-31 (reserved for future versions of the architecture)

= 0<rd< 3 (attempt to write TPC, TNPC, TSTATE, or TT register) while TL =0
(current trap level is zero) and the virtual processor is in privileged or
hyperprivileged mode.

Implementation | In nonprivileged mode, illegal_instruction exception due to
Note |0 <rd < 3 and TL = 0 does not occur; the privileged_opcode
exception occurs instead.

A trap_level_zero disrupting trap can occur upon the completion of a WRPR
instruction to TL, if the following three conditions are true after WRPR has executed:
= trap_level_zero exceptions are enabled (HPSTATE.tlz =1)
= the virtual processor is in nonprivileged or privileged mode
(HPSTATE.hpriv = 0), and

CHAPTER 7 e Instructions 375



WRPR

= the trap level (TL) register’s value is zero (TL = 0)

Exceptions privileged_opcode
illegal_instruction
trap_level_zero

See Also RDPR on page 303
WRasr on page 369
WRHPR on page 372
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XOR / XNOR

7.111

XOR Logical Operation

Instruction op3 Operation Assembly Language Syntax Class
XOR 00 0011 Exclusive or xor regis1, reg_or_imm, regyy Al
XORcc 01 0011 Exclusive or and modify cc’s XOrcC  regug1, reg_or_imm, regyg Al
XNOR 00 0111 Exclusive nor xnor regrs1, reg_or_imm, regyq Al
XNORcc 010111 Exclusive nor and modify cc’s XNOrcC  regg1, reg_or_imm, regyg Al
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description These instructions implement bitwise logical xor operations. They compute “R[rs1]
op R[rs2]” if i = 0, or “R[rs1] op sign_ext( sSimm13)” if i = 1, and write the result into
R[rd].
XORcc and XNORcc modify the integer condition codes (icc and xcc). They set the
condition codes as follows:
= icc.y, icc.c, xce.y, and Xxcc.c are set to 0
= icc.n is copied from bit 31 of the result
= Xcc.n is copied from bit 63 of the result
= icc.z is set to 1 if bits 31:0 of the result are zero (otherwise to 0)
= XCC.z is set to 1 if all 64 bits of the result are zero (otherwise to 0)
Programming | XNOR (and XNORcc) is identical to the xor_not (and set condition
Note | codes) xor_not_cc logical operation, respectively.
An attempt to execute an XOR, XORcc, XNOR, or XNORCcc instruction when i = 0 and
instruction bits 12:5 are nonzero causes an illegal_instruction exception.
Exceptions illegal_instruction
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CHAPTER 8

TTTTIITITIITIITIITIITIITITITIITIITITIITITIITITITIITITIITITIIIIIrS

/ / Note: This chapter is undergoing final review; please check 4
/ back later for a copy of UltraSPARC Architecture ;
/ 2005 containing the final version of this chapter. /

’IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIA

IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2005

The IEEE Std 754-1985 floating-point standard contains a number of implementation
dependencies. This chapter specifies choices for these implementation dependencies,
to ensure that SPARC V9 implementations are as consistent as possible.

The chapter contains these major sections:

Traps Inhibiting Results on page 379.

NaN Operand and Result Definitions on page 380.
Trapped Underflow Definition (ufm =1) on page 382.
Untrapped Underflow Definition (ufm = 0) on page 383.
Integer Overflow Definition on page 383.
Floating-Point Nonstandard Mode on page 384.

Exceptions are discussed in this chapter on the assumption that instructions are
implemented in hardware. If an instruction is implemented in software, it may not
trigger hardware exceptions but its behavior as observed by nonprivileged software
(other than timing) must be the same as if it was implemented in hardware.

8.1 Traps Inhibiting Results

As described in Floating-Point State Register (FSR) on page 61 and elsewhere, when a
floating-point trap occurs, the following conditions are true:

= The destination floating-point register(s) (the F registers) are unchanged.
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= The floating-point condition codes (f ccO, f cc1, f cc2, and f cc3) are unchanged.
= The FSR.aexc (accrued exceptions) field is unchanged.

= The FSR.cexc (current exceptions) field is unchanged except for
IEEE_754_exceptions; in that case, cexc contains a bit set to 1, corresponding to
the exception that caused the trap. Only one bit shall be set in cexc.

Instructions causing an fp_exception_other trap because of unfinished or
unimplemented FPops execute as if by hardware; that is, such a trap is undetectable
by application software, except that timing may be affected.

Programming | A user-mode trap handler invoked for an IEEE_754_exception,

Note | whether as a direct result of a hardware fp_exception_ieee_754
trap or as an indirect result of privileged software handling of
an fp_exception_other trap with FSR.ftt = unfinished_FPop or
FSR ftt = unimplemented_FPop, can rely on the following
behavior:

= The address of the instruction that caused the exception will
be available.

= The destination floating-point register(s) are unchanged from
their state prior to that instruction’s execution.

» The floating-point condition codes (f ccO, fccl, fcc2, and
f cc3) are unchanged.

= The FSR.aexc field is unchanged.

= The FSR.cexc field contains exactly one bit set to 1,
corresponding to the exception that caused the trap.

= The FSRftt, FSR.gne, and reserved fields of FSR are zero.

8.2

8.2.1

NaN Operand and Result Definitions

An untrapped floating-point result can be in a format that is either the same as, or
different from, the format of the source operands. These two cases are described
separately below.

Untrapped Result in Different Format from
Operands

= F<sdq>TO<sdq> or F<sd>MUL<dq> with a quiet NaN operand — No
exception caused; result is a quiet NaN. The operand is transformed as follows:
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8.2.2

NaN transformation: The most significant bits of the operand fraction are copied
to the most significant bits of the result fraction. In conversion to a narrower
format, excess low-order bits of the operand fraction are discarded (which is not
considered a "rounding” operation). In conversion to a wider format, excess low-
order bits of the result fraction are set to 0. The quiet bit (the most significant bit
of the result fraction) is always set to 1, so the NaN transformation always
produces a quiet NaN. The sign bit is copied from the operand to the result
without modification.

F<sdq>TO<sdq> or F<sd>MUL<dq> with a signalling NaN operand — Invalid
exception; result is the signalling NaN operand processed by the NaN
transformation above to produce a quiet NaN.

FCMPE<sdq> with any NaN operand — Invalid exception; the selected floating-
point condition code is set to unordered.

FCMP<sdq> with any signalling NaN operand — Invalid exception; the selected
floating-point condition code is set to unordered.

FCMP<sdq> with any quiet NaN operand but no signalling NaN operand —
No exception; the selected floating-point condition code is set to unordered.

Untrapped Result in Same Format as Operands

No NaN operand — For an invalid operation such as sqrt(—1.0) or 0.0 + 0.0, the
result is the quiet NaN with sign = zero, exponent = all 1’s, and fraction = all ones.
The sign is zero to distinguish such results from storage initialized to all ones.

One operand, a quiet NaN — No exception; result is the quiet NaN operand.

One operand, a signalling NaN — Invalid exception; result is the signalling NaN
with its quiet bit (most significant bit of fraction field) set to 1.

Two operands, both quiet NaNs — No exception; result is the rs2 (second source)
operand.

Two operands, both signalling NaNs — Invalid exception; result is the rs2
operand with the quiet bit set to 1.

Two operands, only one is a signalling NaN — Invalid exception; result is the
signalling NaN operand with the quiet bit set to 1.

Two operands, neither is a signalling NaN, only one is a quiet NaN — No
exception; result is the quiet NaN operand.

In TABLE 8-1, NaNn means that the NaN is in rsn, Q means quiet, S signalling.
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TABLE8-1  Untrapped Floating-Point Results

rs2 Operand
Number QNaN2 SNaN2
rsi None IEEE 754 QNaN2 QSNaN2
operand
Number 1IEEE 754 QNaN2 QSNaN2
QNaN1 QNaN1 QNaN2 QSNaN2
SNaN1 QSNaN1 QSNaN1 QSNaN2

QSNaNn means a quiet NaN produced by the NaN transformation on a signalling
NaN from rsn; the invalid exception is always indicated. The QNaN# results in the
table never generate an exception, but IEEE 754 specifies several cases of invalid
exceptions, and QNaN results from operands that are both numbers.

8.3 Trapped Underflow Definition (ufm = 1)

An UltraSPARC Architecture virtual processor detects tininess before rounding
occurs. (impl. dep. #55-V8-Cs10)

Since tininess is detected before rounding, trapped underflow occurs when the exact
unrounded result has magnitude between zero and the smallest normalized number
in the destination format.

Note | The wrapped exponent results intended to be delivered on
trapped underflows and overflows in IEEE 754 are irrelevant to
the SPARC V9 architecture at the hardware, hyperprivileged,
and privileged software levels. If they are created at all, it
would be by user software in a nonprivileged-mode trap
handler.
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8.4

Untrapped Underflow Definition
(ufm = 0)

On an implementation that detects tininess before rounding, untrapped underflow
occurs when the exact unrounded result has magnitude between zero and the
smallest normalized number in the destination format and the correctly rounded
result in the destination format is inexact.

TABLE 8-2 summarizes what happens on an implementation that detects tininess
before rounding, when an exact unrounded value u satisfying

0 < u|] < smallest normalized number

would round, if no trap intervened, to a rounded value r which might be zero,
subnormal, or the smallest normalized value.

TABLE8-2  Untrapped Floating-Point Underflow (Tininess Detected Before Rounding)

Underflow trap: ufm=1 ufm =0 ufm =0
Inexact trap: nxm =X nxm=1 nxm =0
r is minimum normal None None None
u=r |rissubnormal UF None None
r is zero None None None
r is minimum normal UF NX uf nx
u#r |ris subnormal UF NX uf nx
r is zero UF NX uf nx
UF = fp_exception_ieee_754 trap with cexc.ufc =1
NX = fp_exception_ieee_754 trap with cexc.nxc = 1
uf = cexc.ufc = 1, aexc.ufa =1, no fp_exception_ieee_754 trap
nx = cexc.nxc = 1, aexc.nxa = 1, no fp_exception_ieee_754 trap

8.5

Integer Overflow Definition

» F<sdq>TOi — When a NaN, infinity, large positive argument > 231 or large
negative argument < -(2%1 + 1) is converted to an integer, the invalid_current
(nvc) bit of FSR.cexc should be set and fp_exception_IEEE_754 should be raised.
If the floating-point invalid trap is disabled (FSR.tem.nvm = 0), no trap occurs
and a numerical result is generated: if the sign bit of the oFerand is 0, the result is

231 _1; if the sign bit of the operand is 1, the result is 231
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» F<sdq>TOx — When a NaN, infinity, large positive argument = 293, or large
negative argument < -(2% +1) is converted to an extended integer, the
invalid_current (nvc) bit of FSR.cexc should be set and fp_exception_IEEE_754
should be raised. If the floating-point invalid trap is disabled (FSR.tem.nvm = 0),
no trap occurs and a numerical result is generated: if the sign bit of the %gerand is
0, the result is 203 _q ; if the sign bit of the operand is 1, the result is —2°°.

8.6 Floating-Point Nonstandard Mode

Please refer to Nonstandard Floating-Point (ns) on page 63 for information.
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CHAPTER 9

Memory

The UltraSPARC Architecture memory models define the semantics of memory
operations. The instruction set semantics require that loads and stores behave as if
they are performed in the order in which they appear in the dynamic control flow of
the program. The actual order in which they are processed by the memory may be
different. The purpose of the memory models is to specify what constraints, if any,
are placed on the order of memory operations.

The memory models apply both to uniprocessor and to shared memory
multiprocessors. Formal memory models are necessary for precise definitions of the
interactions between multiple virtual processors and input/output devices in a
shared memory configuration. Programming shared memory multiprocessors
requires a detailed understanding of the operative memory model and the ability to
specify memory operations at a low level in order to build programs that can safely
and reliably coordinate their activities. For additional information on the use of the
models in programming real systems, see Programming with the Memory Models,
contained in the separate volume UltraSPARC Architecture Application Notes.

This chapter contains a great deal of theoretical information so that the discussion of
the UltraSPARC Architecture TSO memory model has sufficient background.

This chapter describes memory models in these sections:

= Memory Location Identification on page 386.

= Memory Accesses and Cacheability on page 386.

= Memory Addressing and Alternate Address Spaces on page 389.

= SPARC V9 Memory Model on page 393.

= The UltraSPARC Architecture Memory Model — TSO on page 396.
= Nonfaulting Load on page 405.

= Store Coalescing on page 405.
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9.1

Memory Location Identification

A memory location is identified by an 8-bit address space identifier (ASI) and a 64-
bit memory address. The 8-bit ASI can be obtained from an ASI register or included
in a memory access instruction. The ASI used for an access can distinguish among
different 64-bit address spaces, such as Primary memory space, Secondary memory
space, and internal control registers. It can also apply attributes to the access, such as
whether the access should be performed in big- or little-endian byte order, or
whether the address should be taken as a virtual, real, or physical address.

9.2

9.2.1

Memory Accesses and Cacheability

Memory is logically divided into real memory (cached) and I/O memory
(noncached with and without side effects) spaces.

Real memory stores information without side effects. A load operation returns the
value most recently stored. Operations are side-effect-free in the sense that a load,
store, or atomic load-store to a location in real memory has no program-observable
effect, except upon that location (or, in the case of a load or load-store, on the
destination register).

I/O locations may not behave like memory and may have side effects. Load, store,
and atomic load-store operations performed on I/0O locations may have observable
side effects, and loads may not return the value most recently stored. The value
semantics of operations on I/O locations are not defined by the memory models, but
the constraints on the order in which operations are performed is the same as it
would be if the I/O locations were real memory. The storage properties, contents,
semantics, ASI assignments, and addresses of I/O registers are implementation
dependent.

Coherence Domains

Two types of memory operations are supported in the UltraSPARC Architecture:
cacheable and noncacheable accesses. The manner in which addresses are
differentiated is implementation dependent. In some implementations, it is indicated
by the page translation (TTE.cp), while in other implementations, it is physical
address bit specific.
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Although SPARC V9 does not specify memory ordering between cacheable and
noncacheable accesses, the UltraSPARC Architecture maintains TSO ordering
between memory references regardless of their cacheability.

The UltraSPARC Architecture obeys the Sun-5 Ordering rules as documented in the
“Sun-4u/Sun-5 Ordering with TSO” specification.

9.2.1.1 Cacheable Accesses

Accesses within the coherence domain are called cacheable accesses. They have these
properties:

= Data reside in real memory locations.

= Accesses observe supported cache coherency protocol(s).

= The cache line size is 2" bytes (where n 2 4), and can be different for each cache.

9.2.1.2 Noncacheable Accesses

Noncacheable accesses are outside of the coherence domain. They have the
following properties:

» Data might not reside in real memory locations. Accesses may result in
programmer-visible side effects. An example is memory-mapped I/O control
registers.

= Accesses do not observe supported cache coherency protocol(s).

= The smallest unit in each transaction is a single byte.

The UltraSPARC Architecture MMU optionally includes an attribute bit in each page
translation, TTE.e, which when set signifies that this page has side effects.

Noncacheable accesses without side effects (TTE.e = 0) are processor consistent and
obey TSO memory ordering. In particular, processor consistency ensures that a
noncacheable load that references the same location as a previous noncacheable store
will load the data of the previous store.

Noncacheable accesses with side effects (TTE.e = 1) are processor consistent and are
strongly ordered. These accesses are described in more detail in the following
section.

9.2.1.3 Noncacheable Accesses with Side-Effect

Loads, stores, and load-stores to I/O locations might not behave with memory
semantics. Loads and stores could have side effects; for example, a read access could
clear a register or pop an entry off a FIFO. A write access could set a register address
port so that the next access to that address will read or write a particular internal
register. Such devices are considered order sensitive. Also, such devices may only
allow accesses of a fixed size, so store merging of adjacent stores or stores within a
16-byte region would cause an error (see Store Coalescing on page 405).
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Noncacheable accesses (other than block loads and block stores) to pages with side
effects (TTE.e = 1) exhibit the following behavior:

= Noncacheable accesses are strongly ordered with respect to each other. Bus
protocol should guarantee that IO transactions to the same device are delivered in
the order that they are received.

= Noncacheable loads with the TTE.e bit = 1 will not be issued to the system until
all previous instructions have completed, and the store queue is empty.

= Noncacheable store coalescing is disabled for accesses with TTE.e = 1.

= A MEMBAR may be needed between side-effect and non-side-effect accesses. See
TABLE 9-3 on page 402.

Whether block loads and block stores adhere to the above behavior or ignore TTE.e
and always behave as if TTE.e = 0 is implementation-dependent (impl. dep. #410-
510, #411-510).

On UltraSPARC Architecture virtual processors, noncacheable and side-effect
accesses do not observe supported cache coherency protocols (impl. dep. #120).

Non-faulting loads (using ASI _PRI MARY_NO_FAULT[_LI TTLE] or
AS| _SECONDARY_NO_FAULT[_LI TTLE]) with the TTE.e bit=1 cause a trap.

Prefetches to noncacheable addresses result in nops.

The processor does speculative instruction memory accesses and follows branches
that it predicts are taken. Instruction addresses mapped by the MMU can be
accessed even though they are not actually executed by the program. Normally,
locations with side effects or that generate timeouts or bus errors are not mapped as
instruction addresses by the MMU, so these speculative accesses will not cause
problems.

IMPL. DEP. #118-V9: The manner in which I/O locations are identified is
implementation dependent.

IMPL. DEP. #120-V9: The coherence and atomicity of memory operations between
virtual processors and I/O DMA memory accesses are implementation dependent.

V9 Compatibility | Operations to I/O locations are not guaranteed to be
Note | sequentially consistent among themselves, as they are in SPARC
V8.

Systems supporting SPARC V8 applications that use memory-mapped 1/0 locations
must ensure that SPARC V8 sequential consistency of I/O locations can be
maintained when those locations are referenced by a SPARC V8 application. The
MMU either must enforce such consistency or cooperate with system software or the
virtual processor to provide it.

IMPL. DEP. #121-V9: An implementation may choose to identify certain addresses
and use an implementation-dependent memory model for references to them.
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9.3

9.3.1

Memory Addressing and Alternate
Address Spaces

An address in SPARC V9 is a tuple consisting of an 8-bit address space identifier
(ASI) and a 64-bit byte-address offset within the specified address space. Memory is
byte-addressed, with halfword accesses aligned on 2-byte boundaries, word accesses
(which include instruction fetches) aligned on 4-byte boundaries, extended-word
and doubleword accesses aligned on 8-byte boundaries, and quadword quantities
aligned on 16-byte boundaries. With the possible exception of the cases described in
Memory Alignment Restrictions on page 114, an improperly aligned address in a load,
store, or load-store instruction always causes a trap to occur. The largest datum that
is guaranteed to be atomically read or written is an aligned doubleword®. Also,
memory references to different bytes, halfwords, and words in a given doubleword
are treated for ordering purposes as references to the same location. Thus, the unit of
ordering for memory is a doubleword.

Notes | The doubleword is the coherency unit for update, but
programmers should not assume that doubleword floating-point
values are updated as a unit unless they are doubleword-aligned
and always updated with double-precision loads and stores.
Some programs use pairs of single-precision operations to load
and store double-precision floating-point values when the
compiler cannot determine that they are doubleword aligned.

Also, although quad-precision operations are defined in the
SPARC V9 architecture, the granularity of loads and stores for
quad-precision floating-point values may be word or
doubleword.

Memory Addressing Types

The UltraSPARC Architecture supports the following types of memory addressing:

Virtual Addresses (VA). Virtual addresses are addresses produced by a virtual
processor that maps all systemwide, program-visible memory. Virtual addresses are
translated by the MMU in order to locate data in physical memory. Virtual addresses
can be presented in nonprivileged mode and privileged mode, or in hyperprivileged
mode using the ASI _AS_| F_USER* ASI variants.

1 Two exceptions to this are the special ASI _TW N_DW NUCLEUS[ _L] and ASI _LD_TW NX_REAL[ _L] which
provide hardware support for an atomic quad load to be used for TTE loads from TSBs.
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Real addresses (RA). A real address is provided to privileged software to
describe the underlying physical memory allocated to it. Translation storage buffers
(TSBs) maintained by privileged software are used to translate privileged or
nonprivileged mode virtual addresses into real addresses. MMU bypass addresses in
privileged mode are also real addresses.

Physical addresses (PA). A physical address is one that appears on the system
bus and is the same as the physical addresses in legacy architectures.
Hyperprivileged software is responsible for managing the translation of real
addresses into physical addresses.

Nonprivileged software only uses virtual addresses. Privileged software uses virtual
and real addresses. Hyperprivileged software uses physical addresses, except when
the explicit ASI _AS_| F_USER* or ASI _* REAL* ASI variants are used for load and
store alternate instructions.

Memory Address Spaces

The UltraSPARC Architecture supports accessing memory using virtual, real, or
physical addresses. Multiple virtual address spaces within the same real address
space are distinguished by a context identifier (context ID). Multiple real address
spaces within the same physical address space are distinguished by a partition
identifier (partition ID).

Privileged software can create multiple virtual address spaces, using the primary
and secondary context registers to associate a context ID with every virtual address.
Privileged software manages the allocation of context IDs.

Hyperprivileged software can create multiple real address spaces, using the partition
register to associate a partition ID with every real address. Hyperprivileged software
manages the allocation of partition IDs.

IMPL. DEP. #___ The number of bits in the partition register is implementation
dependent.
The full representation of each type of address is as follows:

real_address = context_ID :: virtual_address

physical_address = partition ID :: real address
or
physical_address = partition ID :: context ID :: virtual_address

390 UltraSPARC Architecture 2005 « Draft D0.8.7, 27 Mar 2006



9.3.3

Address Space Identifiers

The virtual processor provides an address space identifier with every address. This
ASI may serve several purposes:

= To identify which of several distinguished address spaces the 64-bit address offset
is addressing

= To provide additional access control and attribute information, for example, to
specify the endianness of the reference

= To specify the address of an internal control register in the virtual processor,
cache, or memory management hardware

Memory management hardware can associate an independent 264—byte memory
address space with each ASI. In practice, the three independent memory address
spaces (contexts) created by the MMU are Primary, Secondary, and Nucleus.

Programming | Independent address spaces, accessible through ASIs, make it
Note | possible for system software to easily access the address space of

faulting software when processing exceptions or to implement
access to a client program’s memory space by a server program.

Alternate-space load, store, load-store and prefetch instructions specify an explicit
ASI to use for their data access. The behavior of the access depends on the current
privilege mode.

Non-alternate space load, store, load-store, and prefetch instructions use an implicit
ASI value that is determined by current virtual processor state (the current privilege
mode, trap level (TL), and the value of the PSTATE.cle). Instruction fetches use an
implicit ASI that depends only on the current mode and trap level.

The architecturally specified ASIs are listed in Chapter 10, Address Space Identifiers
(ASIs). The operation of each ASI in nonprivileged, privileged and hyperprivileged
modes is indicated in TABLE 10-1 on page 409.

Attempts by nonprivileged software (PSTATE.priv =0 and HPSTATE.hpriv = 0) to
access restricted ASIs (ASI bit 7 = 0) cause a privileged_action exception. Attempts by
privileged software (PSTATE.priv =1 and HPSTATE.hpriv = 0) to access ASIs 3074—
7F1¢ cause a privileged_action exception.

When TL = 0, normal accesses by the virtual processor to memory when fetching
instructions and performing loads and stores implicitly specify ASI _PRI MARY or
ASI _PRI MARY_LI TTLE, depending on the setting of PSTATE.cle.

When TL =1 or 2 (> 0 but < MAXPTL), the implicit ASI in privileged mode is:

= for instruction fetches, ASI _NUCLEUS

= for loads and stores, ASI _NUCLEUS if PSTATE.cle =0 or ASI _NUCLEUS_LI TTLE
if PSTATE.cle =1 (impl. dep. #124-V9).
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In hyperprivileged mode, all instruction fetches and loads and stores with implicit
ASIs use a physical address, regardless of the value of TL.

SPARC V9 supports the PRI MARY[_LI TTLE], SECONDARY[_LI TTLE], and
NUCLEUS[_LI TTLE] address spaces.

Accesses to other address spaces use the load/store alternate instructions. For these
accesses, the ASI is either contained in the instruction (for the register+register
addressing mode) or taken from the ASI register (for register+immediate
addressing).

ASIs are either nonrestricted, restricted-to-privileged, or restricted-to-
hyperprivileged:

= A nonrestricted ASI (ASI range 8014 — FF14) is one that may be used
independently of the privilege level (PSTATE.privand HPSTATE.hpriv) at which
the virtual processor is running.

= A restricted-to-privileged ASI (ASI range 0014 — 2F¢) requires that the virtual
processor be in privileged or hyperprivileged mode for a legal access to occur.

= A restricted-to-hyperprivileged ASI (ASI range 3014 — 7F;¢) requires that the
virtual processor be in hyperprivileged mode for a legal access to occur.

The relationship between virtual processor state and ASI restriction is shown in
TABLE 9-1.

TABLE9-1  Allowed Accesses to ASIs

Result of ASI Result of ASI Result of ASI
ASI Value Type Access in NP Mode Access in P Mode Access in HP Mode
0016 — Restricted-to- privileged_action Valid Access Valid Access
2F1¢ privileged exception
3016 — 7F1¢ Restricted-to- privileged_action privileged_action Valid Access
hyperprivileged  exception exception
8016 — Nonrestricted Valid Access Valid Access Valid Access

FF1¢

Some restricted ASIs are provided as mandated by SPARC V9:

AS| _AS_| F_USER PRI MARY[_LI TTLE] and

ASI _AS_| F_USER_SECONDARY[_LI TTLE]. The intent of these ASIs is to give
privileged software efficient, yet secure access to the memory space of nonprivileged
software.

The normal address space is primary address space, which is accessed by the
unrestricted ASI _PRI MARY[_LI TTLE] ASIs. The secondary address space, which is
accessed by the unrestricted ASI _SECONDARY[_LI TTLE] ASIs, is provided to allow
server software to access client software’s address space.
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AS| _PRI MARY_NOFAULT[_LI TTLE] and ASI _SECONDARY_NOFAULT[_LI TTLE]
support nonfaulting loads. These ASIs may be used to color (that is, distinguish into
classes) loads in the instruction stream so that, in combination with a judicious
mapping of low memory and a specialized trap handler, an optimizing compiler can
move loads outside of conditional control structures.

9.4

9.4.1

SPARC V9 Memory Model

The SPARC V9 processor architecture specified the organization and structure of a
central processing unit but did not specify a memory system architecture. This
section summarizes the MMU support required by an UltraSPARC Architecture
processor.

The memory models specify the possible order relationships between memory-
reference instructions issued by a virtual processor and the order and visibility of
those instructions as seen by other virtual processors. The memory model is
intimately intertwined with the program execution model for instructions.

SPARC V9 Program Execution Model

The SPARC V9 strand model of a virtual processor consists of three units: an Issue
Unit, a Reorder Unit, and an Execute Unit, as shown in FIGURE 9-1.

Processor
Data Path
Issue | | Reorder | | Execute _ Memory
Unit Unit Unit Instruction Path

FIGURE 9-1 Processor Model: Uniprocessor System

The Issue Unit reads instructions over the instruction path from memory and issues
them in program order to the Reorder Unit. Program order is precisely the order
determined by the control flow of the program and the instruction semantics, under
the assumption that each instruction is performed independently and sequentially.
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Issued instructions are collected and potentially reordered in the Reorder Unit, and
then dispatched to the Execute Unit. Instruction reordering allows an
implementation to perform some operations in parallel and to better allocate
resources. The reordering of instructions is constrained to ensure that the results of
program execution are the same as they would be if the instructions were performed
in program order. This property is called processor self-consistency.

Processor self-consistency requires that the result of execution, in the absence of any
shared memory interaction with another virtual processor, be identical to the result
that would be observed if the instructions were performed in program order. In the
model in FIGURE 9-1, instructions are issued in program order and placed in the
reorder buffer. The virtual processor is allowed to reorder instructions, provided it
does not violate any of the data-flow constraints for registers or for memory.

The data-flow order constraints for register reference instructions are these:

1. An instruction that reads from or writes to a register cannot be performed until all
earlier instructions that write to that register have been performed (read-after-
write hazard; write-after-write hazard).

2. An instruction cannot be performed that writes to a register until all earlier
instructions that read that register have been performed (write-after-read hazard).

V9 Compatibility | An implementation can avoid blocking instruction execution in
Note | case 2 and the write-after-write hazard in case 1 by using a
renaming mechanism that provides the old value of the register
to earlier instructions and the new value to later uses.

The data-flow order constraints for memory-reference instructions are those for
register reference instructions, plus the following additional constraints:

1. A memory-reference instruction that uses (loads or stores) the value at a location
cannot be performed until all earlier memory-reference instructions that set (store
to) that location have been performed (read-after-write hazard, write-after-write
hazard).

2. A memory-reference instruction that writes (stores to) a location cannot be
performed until all previous instructions that read (load from) that location have
been performed (write-after-read hazard).

Memory-barrier instruction (MEMBAR) and the TSO memory model also constrain
the issue of memory-reference instructions. See Memory Ordering and Synchronization
on page 401 and The UltraSPARC Architecture Memory Model — TSO on page 396 for
a detailed description.

The constraints on instruction execution assert a partial ordering on the instructions
in the reorder buffer. Every one of the several possible orderings is a legal execution
ordering for the program. See Appendix D, Formal Specification of the Memory Models,
for more information.

394 UltraSPARC Architecture 2005 « Draft D0.8.7, 27 Mar 2006



9.4.2

Virtual Processor/Memory Interface Model

Each UltraSPARC Architecture virtual processor in a multiprocessor system is
modeled as shown in FIGURE 9-2; that is, having two independent paths to memory:
one for instructions and one for data.

Memory Transactions

Virtual Processors in Memory Order

Instructions
M M Data

Instructions
H H Data Memory

Instructions
M M Data

FIGURE 9-2 Data Memory Paths: Multiprocessor System

Data caches are maintained by hardware to be consistent (coherent). Instruction
caches need not be kept consistent with data caches and therefore require explicit
program action to ensure consistency when a program modifies an executing
instruction stream. See Synchronizing Instruction and Data Memory on page 403 for
details. Memory is shared in terms of address space, but it may be nonhomogeneous
and distributed in an implementation. Mapping and caches are ignored in the
model, since their functions are transparent to the memory model'.

In real systems, addresses may have attributes that the virtual processor must
respect. The virtual processor executes loads, stores, and atomic load-stores in
whatever order it chooses, as constrained by program order and the memory model.
The ASI-address couples it generates are translated by a memory management unit
(MMU), which associates attributes with the address and may, in some instances,
abort the memory transaction and signal an exception to the virtual processor.

For example, a region of memory may be marked as nonprefetchable, noncacheable,
read-only, or restricted. It is the MMU'’s responsibility, working in conjunction with
system software, to ensure that memory attribute constraints are not violated. See
implementation-specific MMU documentation for detailed information about how
this is accomplished in each UltraSPARC Architecture implementation.

Instructions are performed in an order constrained by local dependencies. Using this
dependency ordering, an execution unit submits one or more pending memory

transactions to the memory. The memory performs transactions in memory order. The
1- The model described here is only a model; implementations of UltraSPARC Architecture systems are
unconstrained as long as their observable behaviors match those of the model.
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memory unit may perform transactions submitted to it out of order; hence, the
execution unit must not concurrently submit two or more transactions that are
required to be ordered, unless the memory unit can still guarantee in-order
semantics.

The memory accepts transactions, performs them, and then acknowledges their
completion. Multiple memory operations may be in progress at any time and may be
initiated in a nondeterministic fashion in any order, provided that all transactions to
a location preserve the per-virtual processor partial orderings. Memory transactions
may complete in any order. Once initiated, all memory operations are performed
atomically: loads from one location all see the same value, and the result of stores is
visible to all potential requestors at the same instant.

The order of memory operations observed at a single location is a fotal order that
preserves the partial orderings of each virtual processor’s transactions to this
address. There may be many legal total orders for a given program’s execution.

9.5

The UltraSPARC Architecture Memory
Model — TSO

The UltraSPARC Architecture is a model that specifies the behavior observable by
software on UltraSPARC Architecture systems. Therefore, access to memory can be
implemented in any manner, as long as the behavior observed by software conforms
to that of the models described here.

The SPARC V9 architecture defines three different memory models: Total Store Order
(TSO), Partial Store Order (PSO), and Relaxed Memory Order (RMO).

All SPARC V9 processors must provide Total Store Order (or a more strongly
ordered model, for example, Sequential Consistency) to ensure compatibility for
SPARC V8 application software.

All UltraSPARC Architecture virtual processors implement TSO ordering. The PSO
and RMO models from SPARC V9 are not described in this UltraSPARC Architecture
specification. UltraSPARC Architecture 2005 processors do not implement the PSO
memory model directly, but all software written to run under PSO will execute
correctly on an UltraSPARC Architecture 2005 processor (using the TSO model).

Whether memory models represented by PSTATE.mm = 10, or 11, are supported in
an UltraSPARC Architecture processor is implementation dependent (impl. dep.
#113-V9-Ms10). If the 10, model is supported, then when PSTATE.mm = 10, the
implementation must correctly execute software that adheres to the RMO model
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9.5.1

9.5.2

described in The SPARC Architecture Manual-Version 9. If the 11, model is supported,
its definition is implementation dependent and will be described in implementation-
specific documentation.

Programs written for Relaxed Memory Order will work in both Partial Store Order
and Total Store Order. Programs written for Partial Store Order will work in Total
Store Order. Programs written for a weak model, such as RMO, may execute more
quickly when run on hardware directly supporting that model, since the model
exposes more scheduling opportunities, but use of that model may also require extra
instructions to ensure synchronization. Multiprocessor programs written for a
stronger model will behave unpredictably if run in a weaker model.

Machines that implement sequential consistency (also called strong ordering or strong
consistency) automatically support programs written for TSO. Sequential
consistency is not a SPARC V9 memory model. In sequential consistency, the loads,
stores, and atomic load-stores of all virtual processors are performed by memory in
a serial order that conforms to the order in which these instructions are issued by
individual virtual processors. A machine that implements sequential consistency
may deliver lower performance than an equivalent machine that implements TSO
order. Although particular SPARC V9 implementations may support sequential
consistency, portable software must not rely on having this model available.

Memory Model Selection

The active memory model is specified by the 2-bit value in PSTATE.mm,. The value
00, represents the TSO memory model; increasing values of PSTATE.mm indicate
increasingly weaker (less strongly ordered) memory models.

Writing a new value into PSTATE.mm causes subsequent memory reference
instructions to be performed with the order constraints of the specified memory
model.

IMPL. DEP. #119-Ms10: The effect of an attempt to write an unsupported memory
model designation into PSTATE.mm is implementation dependent; however, it
should never result in a value of PSTATE.mm value greater than the one that was
written. In the case of an UltraSPARC Architecture implementation that only
supports the TSO memory model, PSTATE.mm always reads as zero and attempts to
write to it are ignored.

Programmer-Visible Properties of the UltraSPARC
Architecture TSO Model

Total Store Order must be provided for compatibility with existing SPARC V8
programs. Programs that execute correctly in either RMO or PSO will execute
correctly in the TSO model.
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The rules for TSO, in addition to those required for self-consistency (see page 394),
are:

Loads are blocking and ordered with respect to earlier loads
Stores are ordered with respect to stores.

Atomic load-stores are ordered with respect to loads and stores.
Stores cannot bypass earlier loads.

Programming | Loads can bypass earlier stores to other addresses, which
Note | maintains processor self-consistency.

Atomic load-stores are treated as both a load and a store and can only be applied to
cacheable address spaces.

Thus, TSO ensures the following behavior:

Each load instruction behaves as if it were followed by a MEMBAR #LoadLoad
and #LoadStore.

Each store instruction behaves as if it were followed by a MEMBAR
#St oreSt ore.

Each atomic load-store behaves as if it were followed by a MEMBAR #LoadLoad,
#LoadSt or e, and #St or eSt or e.

In addition to the above TSO rules, the following rules apply to UltraSPARC
Architecture memory models:

A MEMBAR #St or eLoad must be used to prevent a load from bypassing a prior
store, if Strong Sequential Order (as defined in The UltraSPARC Architecture
Memory Model — TSO on page 396) is desired.

Accesses that have side effects are all strongly ordered with respect to each other.

A MEMBAR #Lookasi de is not needed between a store and a subsequent load to
the same noncacheable address.

Load (LDXA) and store (STXA) instructions that reference certain internal ASIs
perform both an intra-virtual processor synchronization (i.e. an implicit
MEMBAR #Sync operation before the load or store is executed) and an inter-
virtual processor synchronization (that is, all active virtual processors are brought
to a point where synchronization is possible, the load or store is executed, and all
virtual processors then resume instruction fetch and execution). The model-
specific PRM should indicate which ASIs require intra-virtual processor
synchronization, inter-virtual processor synchronization, or both.

TSO Ordering Rules

TABLE 9-2 summarizes the cases where a MEMBAR must be inserted between two
memory operations on an UltraSPARC Architecture virtual processor running in
TSO mode, to ensure that the operations appear to complete in a particular order.
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Memory operation ordering is not to be confused with processor consistency or
deterministic operation; MEMBARSs are required for deterministic operation of
certain ASI register updates.

Programming | To ensure software portability across systems, the MEMBAR
Note | rules in this section should be followed (which may be stronger
than the rules in SPARC V9).

TABLE 9-2 is to be read as follows: Reading from row to column, the first memory
operation in program order in a row is followed by the memory operation found in
the column. Symbols used as table entries:

= #— No intervening operation is required.

= M — an intervening MEMBAR #St or eLoad or MEMBAR #Sync or
MEMBAR #Meml ssue is required

= S — an intervening MEMBAR #Sync or MEMBAR #Mem ssue is required
= nc — Noncacheable
= e — Side effect

= ne — No side effect

TABLE9-2  Summary of UltraSPARC Architecture Ordering Rules (TSO Memory Model)

To Memory Operation C (column):
[3)
3]

G)I m| EI C| o &)
o |2 lo 2|5
Q o | € 1| = I I o
s|2|E|B | |d |2 | |2 |8 |8
From Memory slo|s|o |5 & | o & s |o|%
Operation R (row): | S | » | © | & o o 7] ° »n | @ o
load # # # S S # # # # S S
store M2 # # M S M # M # M S
atomic # # # M S # # # # M S
bload S S S S S S S S S S S
bstore M S M M S M S M S M S
load_nc_e # # # s s # # # # s s
store_nc_e s # # s s # # M2 # M s
load_nc_ne # # # s s # # # # s s
store_nc_ne s # # s s M> # M2 #£ M s
bload_nc S S S s S S S S S S S
bstore_nc S S S s S M S M S M S

1. This table assumes that both noncacheable operations access the same device.

2. When the store and subsequent load access the same location, no intervening MEMBAR is required.
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9.54

Hardware Primitives for Mutual Exclusion

In addition to providing memory-ordering primitives that allow programmers to
construct mutual-exclusion mechanisms in software, the UltraSPARC Architecture
provides three hardware primitives for mutual exclusion:

= Compare and Swap (CASA and CASXA)
= Load Store Unsigned Byte (LDSTUB and LDSTUBA)
= Swap (SWAP and SWAPA)

Each of these instructions has the semantics of both a load and a store in all three
memory models. They are all atomic, in the sense that no other store to the same
location can be performed between the load and store elements of the instruction.
All of the hardware mutual-exclusion operations conform to the TSO memory model
and may require barrier instructions to ensure proper data visibility.

Atomic load-store instructions can be used only in the cacheable domains (not in
noncacheable I/O addresses). An attempt to use an atomic load-store instruction to
access a noncacheable page results in a data_access_exception exception.

The atomic load-store alternate instructions can use a limited set of the ASIs. See the
specific instruction descriptions for a list of the valid ASIs. An attempt to execute an
atomic load-store alternate instruction with an invalid ASI results in a
data_access_exception exception.

9.54.1 Compare-and-Swap (CASA, CASXA)

Compare-and-swap is an atomic operation that compares a value in a virtual
processor register to a value in memory and, if and only if they are equal, swaps the
value in memory with the value in a second virtual processor register. Both 32-bit
(CASA) and 64-bit (CASXA) operations are provided. The compare-and-swap
operation is atomic in the sense that once it begins, no other virtual processor can
access the memory location specified until the compare has completed and the swap
(if any) has also completed and is potentially visible to all other virtual processors in
the system.

Compare-and-swap is substantially more powerful than the other hardware
synchronization primitives. It has an infinite consensus number; that is, it can
resolve, in a wait-free fashion, an infinite number of contending processes. Because
of this property, compare-and-swap can be used to construct wait-free algorithms
that do not require the use of locks. For examples, see Programming with the Memory
Models, contained in the separate volume UltraSPARC Architecture Application Notes.
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9542 Swap (SWAP)

SWAP atomically exchanges the lower 32 bits in a virtual processor register with a
word in memory. SWAP has a consensus number of two; that is, it cannot resolve
more than two contending processes in a wait-free fashion.

9.54.3 Load Store Unsigned Byte (LDSTUB)

LDSTUB loads a byte value from memory to a register and writes the value FF;4 into
the addressed byte atomically. LDSTUB is the classic test-and-set instruction. Like
SWAP, it has a consensus number of two and so cannot resolve more than two
contending processes in a wait-free fashion.

Memory Ordering and Synchronization

The UltraSPARC Architecture provides some level of programmer control over
memory ordering and synchronization through the MEMBAR and FLUSH
instructions.

MEMBAR serves two distinct functions in SPARC V9. One variant of the MEMBAR,
the ordering MEMBAR, provides a way for the programmer to control the order of
loads and stores issued by a virtual processor. The other variant of MEMBAR, the
sequencing MEMBAR, enables the programmer to explicitly control order and
completion for memory operations. Sequencing MEMBARs are needed only when a
program requires that the effect of an operation becomes globally visible rather than
simply being scheduled.! Because both forms are bit-encoded into the instruction, a
single MEMBAR can function both as an ordering MEMBAR and as a sequencing
MEMBAR.

The SPARCV9Y instruction set architecture does not guarantee consistency between
instruction and data spaces. A problem arises when instruction space is dynamically
modified by a program writing to memory locations containing instructions (Self-
Modifying Code). Examples are Lisp, debuggers, and dynamic linking. The FLUSH
instruction synchronizes instruction and data memory after instruction space has
been modified.

9.55.1 Ordering MEMBAR Instructions

Ordering MEMBAR instructions induce an ordering in the instruction stream of a
single virtual processor. Sets of loads and stores that appear before the MEMBAR in
program order are ordered with respect to sets of loads and stores that follow the
1-Sequencing MEMBARs are needed for some input/output operations, forcing stores into specialized stable
storage, context switching, and occasional other system functions. Using a sequencing MEMBAR when one is
not needed may cause a degradation of performance. See Programming with the Memory Models, contained in

the separate volume UltraSPARC Architecture Application Notes, for examples of the use of sequencing
MEMBARs.
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MEMBAR in program order. Atomic operations (LDSTUB(A), SWAP(A), CASA, and
CASXA) are ordered by MEMBAR as if they were both a load and a store, since they
share the semantics of both. An STBAR instruction, with semantics that are a subset
of MEMBAR, is provided for SPARC V8 compatibility. MEMBAR and STBAR
operate on all pending memory operations in the reorder buffer, independently of
their address or ASI, ordering them with respect to all future memory operations.
This ordering applies only to memory-reference instructions issued by the virtual
processor issuing the MEMBAR. Memory-reference instructions issued by other
virtual processors are unaffected.

The ordering relationships are bit-encoded as shown in TABLE 9-3. For example,
MEMBAR 014, written as “menbar #LoadlLoad” in assembly language, requires
that all load operations appearing before the MEMBAR in program order complete
before any of the load operations following the MEMBAR in program order
complete. Store operations are unconstrained in this case. MEMBAR 084

(#St or eSt or e) is equivalent to the STBAR instruction; it requires that the values
stored by store instructions appearing in program order prior to the STBAR
instruction be visible to other virtual processors before issuing any store operations
that appear in program order following the STBAR.

In TABLE 9-3 these ordering relationships are specified by the “<m” symbol, which
signifies memory order. See Appendix D, Formal Specification of the Memory Models,
for a formal description of the <m relationship.

TABLE9-3  Ordering Relationships Selected by Mask

Ordering Relation, Assembly Language  Effective Behavior Mask nmask
Earlier <m Later Constant Mnemonic  in TSO model Value Bit #
Load <m Load #LoadLoad nop 0146 0
Store <m Load #St or eLoad #St or eLoad 0244 1
Load <m Store #LoadSt ore nop 04¢ 2
Store <m Store #StoreStore nop 0814 3

Implementation | An UltraSPARC Architecture 2005 implementation that only
Note | implements the TSO memory model may implement
MEMBAR #LoadLoad, MEMBAR #LoadSt or e, and
MEMBAR #St or eSt or e as nops and MEMBAR #St or el oad
as a MEMBAR #Sync.

9.5.5.2 Sequencing MEMBAR Instructions

A sequencing MEMBAR exerts explicit control over the completion of operations.
The three sequencing MEMBAR options each have a different degree of control and
a different application.
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= Lookaside Barrier — Ensures that loads following this MEMBAR are from
memory and not from a lookaside into a write buffer. Lookaside Barrier requires
that pending stores issued prior to the MEMBAR be completed before any load
from that address following the MEMBAR may be issued. A Lookaside Barrier
MEMBAR may be needed to provide lock fairness and to support some plausible
I/0 location semantics. See the example in “Control and Status Registers” in
Programming with the Memory Models, contained in the separate volume
UltraSPARC Architecture Application Notes.

= Memory Issue Barrier — Ensures that all memory operations appearing in
program order before the sequencing MEMBAR complete before any new
memory operation may be initiated. See the example in “I/O Registers with Side
Effects” in Programming with the Memory Models, contained in the separate volume
UltraSPARC Architecture Application Notes.

= Synchronization Barrier — Ensures that all instructions (memory reference and
others) preceding the MEMBAR complete and that the effects of any fault or error
have become visible before any instruction following the MEMBAR in program
order is initiated. A Synchronization Barrier MEMBAR fully synchronizes the
virtual processor that issues it.

TABLE 9-4 shows the encoding of these functions in the MEMBAR instruction.

TABLE9-4  Sequencing Barrier Selected by Mask

Sequencing Function Assembler Tag Mask Value cmask Bit #
Lookaside Barrier #Lookasi de 1044 0
Memory Issue Barrier #Mem ssue 2016 1
Synchronization Barrier #Sync 4044 2

Implementation | In UltraSPARC Architecture 2005 implementations,
Note | MEMBAR #Lookasi de and MEMBAR #Meml ssue are
typically implemented as a MEMBAR #Sync.

For more details, see the MEMBAR instruction on page 271 of Chapter 7, Instructions.

9.5.5.3 Synchronizing Instruction and Data Memory

The SPARC V9 memory models do not require that instruction and data memory
images be consistent at all times. The instruction and data memory images may
become inconsistent if a program writes into the instruction stream. As a result,
whenever instructions are modified by a program in a context where the data (that
is, the instructions) in the memory and the data cache hierarchy may be inconsistent
with instructions in the instruction cache hierarchy, some special programmatic
action must be taken.
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The FLUSH instruction will ensure consistency between the in-flight instruction
stream and the data references in the virtual processor executing FLUSH. The
programmer must ensure that the modification sequence is robust under multiple
updates and concurrent execution. Since, in general, loads and stores may be
performed out of order, appropriate MEMBAR and FLUSH instructions must be
interspersed as needed to control the order in which the instruction data are
modified.

The FLUSH instruction ensures that subsequent instruction fetches from the
doubleword target of the FLUSH by the virtual processor executing the FLUSH
appear to execute after any loads, stores, and atomic load-stores issued by the virtual
processor to that address prior to the FLUSH. FLUSH acts as a barrier for instruction
fetches in the virtual processor on which it executes and has the properties of a store
with respect to MEMBAR operations.

IMPL. DEP. #122-V9: The latency between the execution of FLUSH on one virtual
processor and the point at which the modified instructions have replaced outdated
instructions in a multiprocessor is implementation dependent.

Programming | Because FLUSH is designed to act on a doubleword and

Note | because, on some implementations, FLUSH may trap to system
software, it is recommended that system software provide a
user-callable service routine for flushing arbitrarily sized regions
of memory. On some implementations, this routine would issue
a series of FLUSH instructions; on others, it might issue a single
trap to system software that would then flush the entire region.

On an UltraSPARC Architecture virtual processor:

= A FLUSH instruction causes a synchronization with the virtual processor, which
flushes the instruction pipeline in the virtual processor on which the FLUSH
instruction is executed.

= Coherency between instruction and data memories may or may not be
maintained by hardware. If it is, an UltraSPARC Architecture implementation
may ignore the address in the operands of a FLUSH instruction.

Programming | UltraSPARC Architecture virtual processors are not required to
Note | maintain coherency between instruction and data caches in
hardware. Therefore, portable software must do the following:

(1) must always assume that store instructions (except Block
Store with Commit) do not coherently update instruction
cache(s);

(2) must, in every FLUSH instruction, supply the address of the
instruction or instructions that were modified.

For more details, see the FLUSH instruction on page 186 of Chapter 7, Instructions.
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9.6

Nonfaulting Load

A nonfaulting load behaves like a normal load, with the following exceptions:

= A nonfaulting load from a location with side effects (TTE.e = 1) causes a
data_access_exception exception.

= A nonfaulting load from a page marked for nonfault access only (TTE.nfo =1) is
allowed; other types of accesses to such a page cause a data_access_exception
exception.

= These loads are issued with ASI _PRI MARY_NO FAULT[_LI TTLE] or
ASI _SECONDARY_NO FAULT[_LI TTLE]. A store with a NO_FAULT ASI causes a
data_access_exception exception.

Typically, optimizers use nonfaulting loads to move loads across conditional control
structures that guard their use. This technique potentially increases the distance
between a load of data and the first use of that data, in order to hide latency. The
technique allows more flexibility in instruction scheduling and improves
performance in certain algorithms by removing address checking from the critical
code path.

For example, when following a linked list, nonfaulting loads allow the null pointer
to be accessed safely in a speculative, read-ahead fashion; the page at virtual address
0,4 can safely be accessed with no penalty!. The TTE.nfo bit marks pages that are
mapped for safe access by nonfaulting loads but that can still cause a trap by other,
normal accesses.

Thus, programmers can trap on “wild” pointer references—many programmers
count on an exception being generated when accessing address 0,4 to debug
software—while benefiting from the acceleration of nonfaulting access in debugged
library routines.

9.7

Store Coalescing

Cacheable stores may be coalesced with adjacent cacheable stores within an 8 byte
boundary offset in the store buffer to improve store bandwidth. Similarly non-side-
effect-noncacheable stores may be coalesced with adjacent non-side-effect
noncacheable stores within an 8-byte boundary offset in the store buffer.

In order to maintain strong ordering for 1/O accesses, stores with side-effect
attribute (e bit set) will not be combined with any other stores.

L-Other than the impact of occupying TLB entries.
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Stores that are separated by an intervening MEMBAR #Sync will not be coalesced.
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CHAPTER 10

Address Space Identifiers (ASIs)

This appendix describes address space identifiers (ASIs) in the following sections:

= Address Space Identifiers and Address Spaces on page 407.
= ASI Values on page 407.

= ASI Assignments on page 408.

= Special Memory Access ASIs on page 422.

10.1  Address Space Identifiers and Address
Spaces

An UltraSPARC Architecture processor provides an address space identifier (ASI)
with every address sent to memory. The ASI does the following:

» Distinguishes between different address spaces
= Provides an attribute that is unique to an address space
= Maps internal control and diagnostics registers within a virtual processor

The memory management unit uses a 64-bit virtual address and an 8-bit ASI to
generate a memory, I/0O, or internal register address. This physical address space
can be accessed through virtual-to-physical address mapping or through the MMU
bypass mode.

10.2 ASI Values

The range of address space identifiers (ASIs) is 0014-FF14. That range is divided into
restricted and unrestricted portions. ASIs in the range 80,4—FF;¢ are unrestricted;
they may be accessed by software running in any privilege mode.
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ASIs in the range 00;4—7F;¢ are restricted; they may only be accessed by software
running in a mode with sufficient privilege for the particular ASI. ASIs in the range
001¢—2F may only be accessed by software running in privileged or
hyperprivileged mode and ASIs in the range 3014—7F;¢ may only be accessed by
software running in hyperprivileged mode.

SPARC V9 | In SPARC V9, the range of ASIs was evenly divided into
Compatibility | restricted (0014-7F;4) and unrestricted (8014-FF4) halves.
Note

An attempt by nonprivileged software to access a restricted (privileged or
hyperprivileged) ASI (0014-7F;4) causes a privileged_action trap.

An attempt by privileged software to access a hyperprivileged ASI (301¢,—7F;¢) also
causes a privileged_action trap.

An ASI can be categorized based on how it affects the MMU's treatment of the
accompanying address, into one of three categories:

= A Normal or Translating ASI is translated by the MMU.

= A Nontranslating ASI is not translated by the MMU; instead the address is passed
through unchanged. Nontranslating ASIs are typically used for accessing internal
registers.

= A Bypass ASI, like a nontranslating ASI, is not translated by the MMU and the
address is passed through unchanged. However, unlike a nontranslating ASI, an
access using a bypass ASI can cause exception(s) only visible in hyperprivileged
mode (such as a PA_watchpoint exception). Bypass ASIs are typically used by
privileged or hyperprivileged software for directly accessing memory using real
or physical (as opposed to virtual) addresses.

Implementation-dependent ASIs may or may not be translated by the MMU. See
implementation-specific documentation for detailed information about
implementation-dependent ASIs.

10.3  ASI Assignments

Every load or store address in an UltraSPARC Architecture processor has an 8-bit
Address Space Identifier (ASI) appended to the virtual address (VA). The VA plus
the ASI fully specify the address.

For instruction fetches and for data loads, stores, and load-stores that do not use the
load or store alternate instructions, the ASI is an implicit ASI generated by the
virtual processor.
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10.3.1

If a load alternate, store alternate, or load-store alternate instruction is used, the
value of the ASI (an "explicit ASI") can be specified in the ASI register or as an
immediate value in the instruction.

In practice, ASIs are not only used to differentiate address spaces but are also used
for other functions like referencing registers in the MMU unit.

Supported ASIs

TABLE 10-1 lists architecturally-defined ASIs; some are in all UltraSPARC Architecture
implementations and some are only present in some implementations.

An ASI marked with a closed bullet (e ) is required to be implemented on all
UltraSPARC Architecture 2005 processors.

An ASI marked with an open bullet (0) is defined by the UltraSPARC Architecture
2005 but is not necessarily implemented in all UltraSPARC Architecture 2005
processors; its implemention is optional. Across all implementations on which it is
implemented, it appears to software to behave identically.

Some ASIs may only be used with certain load or store instructions; see table
footnotes for details.

The word “decoded” in the Virtual Address column of TABLE 10-1 indicates that the
the supplied virtual address is decoded by the virtual processor.

ASIs marked "Reserved" are set aside for use in future revisions to the architecture
and are not to be used by implemenations. ASIs marked "implementation
dependent" may be used for implementation-specific purposes.

Attempting to access an address space described as “Implementation dependent” in
TABLE 10-1 produces implementation-dependent results.

TABLE10-1  UltraSPARC Architecture ASIs (1 of 13)
Virtual T/ Shared

ASI  feq'd(e) Access |Address Non-T/ |/per
Value ppt’l (O0)[ASI Name (and Abbreviation) Type(s) (VA) Bypass|strand |Description
0016~ O — 212 — — _ Implementation dependent?
0314
0444 e ASI_NUCLEUS (ASI _N) RW%*  (decoded) T —  Implicit address space,

nucleus context, TL > 0
0516~ O — 212 — — _ Implementation dependent?
0B1g
0C16 e ASI_NUCLEUS_ LI TTLE (ASI _NL) RW?%*  (decoded) T —  Implicit address space,

nucleus context, TL > 0,
little-endian
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TABLE10-1  UltraSPARC Architecture ASIs (2 of 13)
Virtual T/ Shared
ASI  feq'd(e) Access |Address Non-T/ |/per
Value ppt’l (O)[ASI Name (and Abbreviation) Type(s) (VA) Bypass|strand |Description
0Die- O _ _212 — — _ Implementation dependent?
0Fy6
1044 e ASI_AS | F_USER PRI MARY RW%%18 (decoded) T —  Primary address space, as if
(ASI _Al UP) user (nonprivileged)
1144 e ASI_AS | F_USER SECONDARY RW%%18 (decoded) T —  Secondary address space, as
(ASI _Al US) if user (nonprivileged)
1216~ O _ _212 — — _ Implementation dependent?
1316
1444 0o ASI_REAL RW%%*  (decoded) B —  Real address
1544 O ASI_REAL IOP RW?%°  (decoded) B __ Real address, noncacheable,
with side effect (deprecated)
1616 0 ASI_BLOCK_AS | F_USER PRI MARY RW?281418(decoded) T — Primary address space,
(ASI _BLK_AI UP) block load/store, as if user
(nonprivileged)
1716 0 ASI_BLOCK_AS | F_USER_SECONDAR RW?2%1418(decoded) T —  Secondary address space,
Y block load/store, as if user
(ASI _BLK_AI US) (nonprivileged)
1816 e ASI_AS | F_USER PRI MARY_LI TTLE RW%*1% (decoded) T —  Primary address space, as if
(ASI _Al UPL) user (nonprivileged), little-
endian
1944 e ASlI_AS | F_USER_SECONDARY_ RW?Z%18 (decoded) T — Secondary address space, as
LI TTLE (ASI _Al USL) if user (nonprivileged), little-
endian
1A~ O _ _212 —_ — _ Implementation dependent’
1Cq4 0 ASI_REAL_LITTLE RW %% (decoded) B —  Real address, little-endian
(ASl _REAL_L)
1Dq¢ 0O ASI_REAL 10O LITTLEP RW % (decoded) B —  Physical address,
(ASI _REAL_10 LP) noncacheable, with side
effect, little-endian
(deprecated)
1B O ASI_BLOCK_AS | F_USER PRI MARY_ RW?231418(decoded) T —  Primary address space,
LI TTLE block load/store, as if user
(ASI _BLK_AI UPL) (nonprivileged), little-endian
1Fs4 O ASI_BLOCK AS | F_USER RW?281418(decoded) T —  Secondary address space,

SECONDARY_LI TTLE
(ASI _BLK_Al US_L)

block load/store, as if user
(nonprivileged), little-endian
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TABLE10-1  UltraSPARC Architecture ASIs (3 of 13)
Virtual T/ Shared
ASI  feq'd(e) Access |Address Non-T/ |/per
Value ppt’l (O)[ASI Name (and Abbreviation) Type(s) (VA) Bypass|strand |Description
2044 0  ASI _SCRATCHPAD RW%®  (decoded; N per Privileged Scratchpad
see below) strand registers; implementation
dependent!
0 016 Scratchpad Register 0!
] 816 Scratchpad Register 1!
] 1046 " " Scratchpad Register 2!
] 1846 " " Scratchpad Register 3!
] 2014 Scratchpad Register 4!
] 2814 Scratchpad Register 5!
0 3014 Scratchpad Register 6!
0 3814 Scratchpad Register 7!
2144 O ASI_MVJ_CONTEXTI D RW%®  (decoded; N per MMU context registers
see below) strand
0 816 I/D MMU Primary
Context ID register
0 1044 I/D MMU Secondary
Context ID register
2216 g ASI_LD TWNX _AS | F_USER_ R%7H " (decoded) T _ Primary address space, 128-
PRI MARY bit atomic load twin
(ASI _LDTX_Al UP) extended word, as if user
(nonprivileged)
2344 O ASI_LD TWNX_AS | F_USER_ R%7 (decoded) T —  Secondary address space,
SECONDARY 128-bit atomic load twin
(ASI _LDTX_AI US) extended word, as if user
(nonprivileged)
2444 0 — — — — __ Implementation dependent’
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TABLE10-1  UltraSPARC Architecture ASIs (4 of 13)
Virtual T/ Shared
ASI  feq'd(e) Access |Address Non-T/ |/per
Value ppt’l (O)[ASI Name (and Abbreviation) Type(s) (VA) Bypass|strand |Description
2514 0 ASI _QUEUE (see (decoded; N per
below) see below) strand
O RW?20 3C044 ! " CPU Mondo Queue Head
Pointer
O RW?26:17 3C86 ! " CPU Mondo Queue Tail
Pointer
] RW?20 3D0;6 ! " Device Mondo Queue Head
Pointer
O RW?26:17 3D844 ! " Device Mondo Queue Tail
Pointer
O RW?20 3E0;4 ! " Resumable Error Queue
Head Pointer
O RW?26:17 3E844 ! " Resumable Error Queue Tail
Pointer
O RW?20 3F014 ! " Nonresumable Error Queue
Head Pointer
O RW?26:17 3F814 ! " Nonresumable Error Queue
Tail Pointer
2616 O ASI_LD TW NX_REAL R%7™ " (decoded) B _ 128-bit atomic twin
(ASI _LDTX_REAL) extended-word load from
ASI _QUAD_LDD REALDY real address
2716 0 ASI_LD TW NX_NUCLEUS R%7H " (decoded) T —  Nucleus context, 128-bit
(ASI _LDTX_N) atomic load twin extended-
word
281- O — —— — — — Implementation dependent’
2916
2A44 0 ASI_LD TWNX_AS | F_USER_ R%7H " (decoded) T —  Primary address space, 128-
PRI MARY_LI TTLE bit atomic load twin
(ASI _LDTX_AI UPL) extended-word, as if user
(nonprivileged), little-endian
2By O ASI_LD TWNX_AS | F_USER_ R%7™ " (decoded) T —  Secondary address space,
SECONDARY_LI TTLE 128-bit atomic load twin
(ASI _LDTX_AlUS_L) extended-word, as if user
(nonprivileged), little-endian
2Cq4 0 — _2 — — __ Implementation dependent’
2Dy4 0 — 212 — — — Implementation dependent’
2, O ASI_LD TWNX_REAL_LITTLE RZ7T (decoded) B —  128-bit atomic twin-

(AS| _LDTX_REAL_L)
ASI _QUAD_LDD REAL_LI TTLEP

extended-word load from
real address, little-endian
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TABLE10-1  UltraSPARC Architecture ASIs (5 of 13)

Virtual T/ Shared
ASI  feq'd(e) Access |Address Non-T/ |/per
Value ppt’l (O)[ASI Name (and Abbreviation) Type(s) (VA) Bypass|strand |Description
2F16 0 ASI_LD TWNX_NUCLEUS LITTLE R?%*”M  (decoded) T _ Nucleus context, 128-bit
(ASI _LDTX_NL) atomic load twin extended-
word, little-endian
301~ O _ _313 —_ — — Implementation dependent’
4016
3Dy4 0 — _31 — — — Implementation dependent’
3E¢ ° — _3 _ _ — Reserved
3Fi- O — 313 — — — Implementation dependent!
4144 O ASlI_CMI_SHARED (see (decoded; N  shared CMT control/status (shared)
below) see below)

0 R30I 0044 " " Virtual Processor (strand)
Available Register

0 R30I 1044 " " Virtual Processor (strand)
Enable Status Register

0 RW36 2044 " " Virtual Processor (strand)
Enable Register

O RW36 304 " " XIR Steering Register
Implementation dependent!
(impl. dep. #1105)

O RW36 504 " " Virtual Processor (strand)
Running Register, general
access

0 R3¥6A1 58, " " Virtual Processor (strand)
Running Status Register

0 W3610 60, " " Virtual Processor (strand)
Running Register, general
access. Write "1’ to set bit

0 W3610 68, n " Virtual Processor (strand)
Running Register, general
access. Write "1’ to clear bit

42,6~ QO — 313 — — — Implementation dependent!
4444

4514 ] — _31 — — _ Implementation dependent’
4616~ 0O — _31 — — — Implementation dependent’
4914 ] — _31 — — _ Implementation dependent’
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TABLE10-1  UltraSPARC Architecture ASIs (6 of 13)
Virtual T/ Shared
ASI  feq'd(e) Access |Address Non-T/ |/per
Value ppt’l (O)[ASI Name (and Abbreviation) Type(s) (VA) Bypass|strand |Description
4A1- O _ _313 — — _ Implementation dependent’
4B16
4Cqq 0  Error Status and Enable Registers Implementation dependent’
4D~ 0O — — — Implementation dependent’
4Eq4
4F 4 O  ASI _HYP_SCRATCHPAD RW36  (decoded; N per Hyperprivileged Scratchpad
see below) strand registers; implementation
dependent!
] (U Hyperprivileged Scratchpad
Register 0!
] 816 Hyperprivileged Scratchpad
Register 1!
] 1046 Hyperprivileged Scratchpad
Register 21
] 1846 Hyperprivileged Scratchpad
Register 3!
] 2014 Hyperprivileged Scratchpad
Register 4!
] 2814 Hyperprivileged Scratchpad
Register 51
] 3016 Hyperprivileged Scratchpad
Register 6!
] 3816 Hyperprivileged Scratchpad
Register 7!
5016 g ASI_I M —  (decoded; N per IMMU registers
see below) strand
O R3611 016 N per IMMU tag target register
strand
0 RW36 184 N per Instruction fault status
strand register (SFSR)
O RW36 3044 N per [ TLB tag access register
strand
5216 0O ASI_MVUJ_REAL RW3®  (see below) N per MMU registers
strand
0 10844 MMU Real Range
0 11044 MMU Real Range
0 11844 " " MMU Real Range
] 12044 " " MMU Real Range
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TABLE10-1  UltraSPARC Architecture ASIs (7 of 13)
Virtual T/ Shared
ASI  feq'd(e) Access |Address Non-T/ |/per
Value ppt’l (O)[ASI Name (and Abbreviation) Type(s) (VA) Bypass|strand |Description
0 20814 MMU Physical Address
Offset Registers
0 21014 MMU Physical Address
Offset Registers
0 21844 MMU Physical Address
Offset Registers
0 22014 MMU Physical Address
Offset Registers
5316 ] — _ 31 — — _ Implementation dependent’
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TABLE10-1  UltraSPARC Architecture ASIs (8 of 13)
Virtual T/ Shared
ASI  feq'd(e) Access |Address Non-T/ |/per
Value ppt’l (O)[ASI Name (and Abbreviation) Type(s) (VA) Bypass|strand |Description
5444 o ASl_mw (see (decoded; N per (more) MMU registers
below) see below) strand
O Wsel10 0,0 " »  1TLB data in register
O RW36 1044 " Context Zero TSB
Configuration register 0
O RW36 184 " Context Zero TSB
Configuration register 1
O RW30 2044 n Context Zero TSB
Configuration register 2
O RW3¢ 28, " Context Zero TSB
Configuration register 3
O RW30 3044 n Context Nonzero TSB
Configuration register 0
O RW3¢ 38, " Context Nonzero TSB
Configuration register 1
O RW36 4044 n Context Nonzero TSB
Configuration register 2
O RW36 48, " Context Nonzero TSB
Configuration register 3
O RW36 504 n Instruction TSB Pointer
register 0
O RW3¢ 58, " Instruction TSB Pointer
register 1
O RW30 6044 n Instruction TSB Pointer
register 2
O RW3® 684 " Instruction TSB Pointer
register 3
O RW36 7044 n Data/Unified TSB Pointer
register 0
O RW36 78, n Data/Unified TSB Pointer
register 1
O RW3® 8044 " Data/Unified TSB Pointer
register 2
O RW36 88, n Data/Unified TSB Pointer
register 3
O RW3¢ 9044 " Tablewalk Pending Control
register
O RW36 98, n Tablewalk Pending Status

register
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TABLE10-1  UltraSPARC Architecture ASIs (9 of 13)
Virtual T/ Shared
ASI  feq'd(e) Access |Address Non-T/ |/per
Value ppt’l (O)[ASI Name (and Abbreviation) Type(s) (VA) Bypass|strand |Description
5516 0 ASI_I TLB_DATA_ACCESS_REG RW3®  0,,-3F8, N per IMMU TLB data access
80014~ strand register
7FFF8¢
5616 O ASI_I TLB_TAG READ_REG R3&I 0~ N per IMMU TLB tag read register
FFFF8¢ strand
5716 O ASl_| MU_DEMAP wsel0 o, N per IMMU TLB demap
strand
5816 o ASI_DwvwJ / ASI _UWWJ (see (decoded; N _ Data or Unified MMU
below) see below) registers
O R 04 " per D/U TSB tag target register
strand
O RW36 1844 per Data error status register
strand (DSFSR)
O R0 2044 " Jeore Data error address register
(DSFAR)
O RW36 3044 " Jecore D/U TLB tag access register
O RW36 3844 per VA instruction, and PA/VA
strand data watchpoint register
0 RW36 4044 " per 1/D/U MMU hardware
strand tablewalk configuration
register
] RW36 8044 per 1/D/UMMU partition ID
strand register
5916- a — — — — —  Reserved
5C14 0 ASI_DTLB _DATA I N_REG W3610 0, N per D/U TLB data in register
strand
5Djs O ASI_DTLB_DATA ACCESS_REG RW3®  014-3F8;5, N per D/U TLB data access
80016~ strand register
7FFF814
5E;¢ O ASI_DTLB TAG READ REG R3O 06— N per D/U TLB tag read register
FFFF8:¢ strand
5F16 0 ASI_DVMUJ_DEMAP W3610 0,0 N per D/U TLB demap
strand
601~ O _ _313 — — _ Implementation dependent!
6216
6lig- O — _313 — — — Implementation dependent’
6214
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TABLE10-1  UltraSPARC Architecture ASIs (10 of 13)
Virtual T/ Shared
ASI  feq'd(e) Access |Address Non-T/ |/per
Value ppt’l (O)[ASI Name (and Abbreviation) Type(s) (VA) Bypass|strand |Description
6316 0 ASI _CMI_PER_STRAND, (see (decoded; N per CMT control/status
AS| _CMI_PER_CORE" below) see below) strand (per strand)
0 RW3® 0044 " " Virtual Processor (strand)
Interrupt ID
0 R361L 1044 " " Virtual Processor (strand) ID
6416~ 0O — 313 — — — Implementation dependent’
6716
6816~ o — AR — — —  Reserved
7F16
8016 e ASI_PRI MARY (ASI_P) RW* (decoded) T —  Implicit primary address
space
8146 e ASI_SECONDARY (ASI _S) RW* (decoded) T —  Secondary address space
8216 e ASI_PRIMARY_NO FAULT (ASI _PNF) R (decoded) T —  Primary address space, no
fault
8316 e ASI _SECONDARY_NO FAULT Ro1 (decoded) T —  Secondary address space, no
(ASI _SNF) fault
8416~ o — _16 — — — Reserved
8716
8816 e ASI_PRIMARY_LITTLE (ASI _PL) RW* (decoded) T —  Implicit primary address
space, little-endian
8916 e ASI _SECONDARY_LITTLE (ASI _SL) RW* (decoded) T —  Secondary address space,
little-endian
8A14 e ASI _PRI MARY_NO FAULT LITTLE R (decoded) T —  Primary address space, no
(ASI _PNFL) fault, little-endian
8By e ASlI _SECONDARY_NO FAULT LI TTLE R>! (decoded) T —  Physical address,
(ASI _SNFL) noncacheable, with side
effect, little-endian
8Ci— o — _16 — — —  Reserved
C044 0O ASI_PST8_PRI MARY (ASI _PST8_P) W&8I014  (decoded) T —  Primary address space, 8x8-
bit partial store
Clyg O  ASI_PST8_SECONDARY W81014  (decoded) T —  Secondary address space,
(ASI _PST8_S) 8x8-bit partial store
C244 O ASI_PST16_PRI MARY W81014  (decoded) T —  Primary address space,
(ASI _PST16_P) 4x16-bit partial store
C3144 O ASI_PST16_SECONDARY W81014  (decoded) T —  Secondary address space,
(ASI _PST16_5S) 4x16-bit partial store
(& O ASI_PST32_PRI MARY W81014  (decoded) T — Primary address space, 2x32-

(ASI _PST32_P)

bit partial store
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TABLE10-1  UltraSPARC Architecture ASIs (11 of 13)
Virtual T/ Shared
ASI  feq'd(e) Access |Address Non-T/ |/per
Value ppt’l (O)[ASI Name (and Abbreviation) Type(s) (VA) Bypass|strand |Description
C5¢ 0  ASI_PST32_SECONDARY We1014  (decoded) T —  Secondary address space,
(ASI _PST32_5S) 2x32-bit partial store
Chig— o — 15 — — _ Implementation dependent’
C86 O ASI_PST8_PRI MARY_LI TTLE W8I0 (decoded) T —  Primary address space, 8x8-
(ASI _PST8_PL) bit partial store, little-endian
C944 0 ASI_PST8_SECONDARY_LI TTLE W8I0 (decoded) T —  Secondary address space,
(ASI _PST8_SL) 8x8-bit partial store, little-
endian
CAiy [0 ASI_PST16_PRI MARY_LI TTLE W81014  (decoded) T — Primary address space, 4x16-
(ASI _PST16_PL) bit partial store, little-endian
CByy [0 ASI_PST16_SECONDARY_LI TTLE W81014  (decoded) T —  Secondary address space,
(ASI _PST16_SL) 4x16-bit partial store, little-
endian
CCis O ASI_PST32_PRI MARY_LI TTLE W81014  (decoded) T —  Primary address space,
(ASI _PST32_PL) 2x32-bit partial store, little-
endian
CDjy 1O AS|_PST32_SECONDARY_LI TTLE WeI014 (decoded) T —  Second address space, 2x32-
(ASI _PST32_SL) bit partial store, little-endian
CEig— o — 15 — — — Implementation dependent’
CFyq
D0y, O ASI_FL8_PRI MARY (ASI _FL8_P) RW814  (decoded) T — Primary address space, one
8-bit floating-point load/
store
D14 0 ASI_FL8_SECONDARY (ASI _FL8_ S) RW&!* (decoded) T —  Second address space, one 8-
bit floating-point load /store
D24 0 ASI_FL16_PRI MARY (ASI _FL16_P) RW&!* (decoded) T —  Primary address space, one
16-bit floating-point load /
store
D344 0  ASI_FL16_SECONDARY RW&4  (decoded) T —  Second address space, one
(ASI _FL16_S) 16-bit floating-point load/
store
Ddig— o — _15 — — — Implementation dependent!
D736
D84 0 ASI_FL8_PRI MARY_LI TTLE RW8T4  (decoded) T —  Primary address space, one
(ASI _FL8_PL) 8-bit floating point load/
store, little-endian
D934 O ASI_FL8_SECONDARY_LI TTLE RW814  (decoded) T —  Second address space, one 8-

(ASI _FL8_SL)

bit floating point load/store,
little-endian
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TABLE10-1  UltraSPARC Architecture ASIs (12 of 13)
Virtual T/ Shared
ASI  feq'd(e) Access |Address Non-T/ |/per
Value ppt’l (O)[ASI Name (and Abbreviation) Type(s) (VA) Bypass|strand |Description
DA 0O ASI_FL16_PR MARY_LI TTLE RW&4  (decoded) T —  Primary address space, one
(ASI _FL16_PL) 16-bit floating-point load /
store, little-endian
DBy, O ASI_FL16_SECONDARY_LI TTLE RW&4  (decoded) T —  Second address space, one
(ASI _FL16_SL) 16-bit floating point load/
store, little-endian
DCqg ° — _15 —_ — — Implementation dependent’
-DFy4
EO1g— o — 15 — — —  Reserved
Elqyg
E2;¢ 0 ASI_LD TW NX_PRI MARY RY (decoded) T —  Primary address space, 128-
(ASI _LDTX_P) bit atomic load twin
extended word
E316 0 ASI_LD_TW NX_SECONDARY R (decoded) T —  Secondary address space,
(ASI _LDTX_S) 128-bit atomic load twin
extended-word
Edi.— o — _5 — — — Implementation dependent’
E96
EAq 0 ASI_LD_TW NX_PRI MARY_LI TTLE R" (decoded) T —  Primary address space, 128-
(ASI _LDTX_PL) bit atomic load twin
extended word, little endian
EByg 0  ASI_LD_TW NX_SECONDARY_LI TTLE R" (decoded) T —  Secondary address space,
(ASI _LDTX_SL) 128-bit atomic load twin
extended word, little endian
ECis— O — _5 — — — Implementation dependent’
EFy6
FOy4 0 ASI_BLOCK_PRI MARY RW8T®  (decoded) T —  Primary address space, 8x8-
(ASI _BLK_P) byte block load/store
Flyg O ASI_BLOCK_SECONDARY RW8T®  (decoded) T _  Secondary address space,
(ASI _BLK_S) 8x8- byte block load/store
F216—- o — _15 — — _ Implementation dependent!
F514
F616—- o — — — — — Implementation dependent’
F716
F816 0 ASI_BLOCK_PRI MARY_LI TTLE RW8T4  (decoded) T —  Primary address space, 8x8-

(ASI _BLK_PL)

byte block load/store, little
endian
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TABLE10-1  UltraSPARC Architecture ASIs (13 of 13)
Virtual T/ Shared
ASI  feq'd(e) Access |Address Non-T/ |/per
Value ppt’l (O)[ASI Name (and Abbreviation) Type(s) (VA) Bypass|strand |Description
F934 0 ASI_BLOCK _SECONDARY_ LI TTLE RW&4  (decoded) T —  Secondary address space,
(ASI _BLK_SL) 8x8- byte block load/store,
little endian
FAi6— o — _15 — — — Implementation dependent’
FDq4
FEig— o — 15 — — — Implementation dependent’
FFq¢

This ASI name has been changed, for consistency; although use of this name is
deprecated and software should use the new name, the old name is listed here for
compatibility.

This ASI was named ASI _DEVI CE_I| D+SERI AL_I| D in older documents.

Implementation dependent ASI (impl. dep. #29); available for use by implementors.
Software that references this ASI may not be portable.

An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in nonprivileged mode causes a privileged_action exception.

An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in nonprivileged mode or privileged mode causes a
privileged_action exception.

May be used with all load alternate, store alternate, atomic alternate and prefetch
alternate instructions (CASA, CASXA, LDSTUBA, LDTWA, LDDFA, LDFA, LDSBA,
LDSHA, LDSWA, LDUBA, LDUHA, LDUWA, LDXA, PREFETCHA, STBA, STTWA,
STDFA, STFA, STHA, STWA, STXA, SWAPA).

May be used with all of the following load alternate and store alternate instructions:
LDTWA, LDDFA, LDFA, LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, LDUWA, LDXA,
STBA, STTWA, STDFA, STFA, STHA, STWA, STXA. Use with an atomic alternate or
prefetch alternate instruction (CASA, CASXA, LDSTUBA, SWAPA or PREFETCHA)
causes a data_access_exception exception.

May only be used in a LDXA or STXA instruction for RW ASIs, LDXA for read-only ASIs
and STXA for write-only ASIs. Use of LDXA for write-only ASIs, STXA for read-only
ASIs, or any other load alternate, store alternate, atomic alternate or prefetch alternate
instruction causes a data_access_exception exception.

May only be used in an LDTXA instruction. Use of this ASI in any other load alternate,
store alternate, atomic alternate or prefetch alternate instruction causes a
data_access_exception exception.

May only be used in a LDDFA or STDFA instruction for RW ASIs, LDDFA for read-only
ASIs and STDFA for write-only ASIs. Use of LDDFA for write-only ASIs, STDFA for
read-only ASIs, or any other load alternate, store alternate, atomic alternate or prefetch
alternate instruction causes a data_access_exception exception.
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May be used with all of the following load and prefetch alternate instructions: LDTWA,
LDDFA, LDFA, LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, LDUWA, LDXA,
PREFETCHA. Use with an atomic alternate or store alternate instruction causes a
data_access_exception exception.

Write(store)-only ASI; an attempted load alternate, atomic alternate, or prefetch alternate
instruction to this ASI causes a data_access_exception exception.

Read(load)-only ASI; an attempted store alternate or atomic alternate instruction to this
ASI causes a data_access_exception exception.

An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in privileged mode or hyperprivileged mode causes a
data_access_exception exception.

An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in hyperprivileged mode causes a data_access_exception
exception if this ASI is not implemented by the specific implementation.

An attempted access to this ASI may cause an exception (see Special Memory Access ASIs
on page 422 for details).

An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in any mode causes a data_access_exception exception if this ASI
is not implemented by the model dependent implementation.

An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to a reserved ASI in any mode causes a data_access_exception exception.
The Queue Tail Registers (ASI 25¢4) are read-only by privileged software and read-write
by hyperprivileged software. An attempted write to the Queue Tail Registers by
privileged software causes a data_access_exception exception

An access to a privileged page (TTE.p = 1) using an ASI _*AS_| F_USER* ASI causes a
data_access_exception exception.

104  Special Memory Access ASIs

This section describes special memory access ASIs that are not described in other
sections.

10.4.1 ASIs 1016’ 1116’ 1616’ 1716 and 1816
(ASI _*AS | F_USER *)

These ASI are intended to be used in accesses from privileged and hyperprivileged
mode, but are processed as if they were issued from nonprivileged mode. Therefore,
they are subject to privilege-related exceptions. They are distinguished from each
other by the context from which the access is made, as described in TABLE 10-2.
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10.4.2

When one of these ASIs is specified in a load alternate or store alternate instruction,
the virtual processor behaves as follows:

= In nonprivileged mode, a privileged_action exception occurs
= In any other privilege mode:

« If U/DMMU TTE.p =1, a data_access_exception (privilege violation)
exception occurs

= Otherwise, the access occurs and its endianness is determined by the current
privileged mode and the U/DMMU TTE.ie bit. In hyperprivileged mode, the
access is always made in big-endian byte order. In privileged mode, if U/
DMMU TTE.ie = 0, the access is big-endian; otherwise, it is little-endian.

TABLE 10-2 Privileged ASI _*AS | F_USER * ASIs

Addressing
ASI Names (Context) Endianness of Access
1076 ASI _AS_I F_USER PRI MARY (ASI _Al UP) Virtual
(Primary) In nonprivileged or

privileged mode:
Big-endian when
114 ASI_AS_| F_USER_SECONDARY (ASI _Al US) Virtual | y/DMMU

(Secondary) |TTE.ie = 0;
little-endian when

1614 ASI _BLOCK_AS_| F_USER PRI MARY Virtual ~|U/DMMU
(ASI _BLK_Al UP) (Primary) |TTE.i€e=1
In nyperprivileged
mode: always big-
1756 ASI _BLOCK_AS_| F_USER_SECONDARY Virtual | andian.
(ASI _BLK_AI US) (Secondary)

ASIs 1816/ 1916/ 1E16/ and 1F16
(ASI_*AS | F_USER * LI TTLE)

These ASIs are little-endian versions of ASIs 1014, 1114, 1614, and 1744

(ASI _AS_I F_USER _*), described in section 10.4.1. Each operates identically to the
corresponding non-little-endian ASI, except that if an access occurs its endianness is
the opposite of that for the corresponding non-little-endian ASI.

These ASI are intended to be used in accesses from privileged and hyperprivileged
mode, but are processed as if they were issued from nonprivileged mode. Therefore,
they are subject to privilege-related exceptions. They are distinguished from each
other by the context from which the access is made, as described in TABLE 10-3.

When one of these ASIs is specified in a load alternate or store alternate instruction,
the virtual processor behaves as follows:

= In nonprivileged mode, a privileged_action exception occurs
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10.4.3

10.4.4

= In any other privilege mode:

« If U/DMMU TTE.p =1, a data_access_exception (privilege violation)
exception occurs

= Otherwise, the access occurs and its endianness is determined by the U/
DMMU TTE.ie bit. If U/DMMU TTE.ie =0, the access is little-endian;
otherwise, it is big-endian.

TABLE 10-3 Privileged ASI _*AS | F_USER * LI TTLE ASIs

Addressing Endianness of
ASI Names (Context) Access
1814 ASI_AS_| F_USER PRI MARY_LI TTLE Virtual ) )
(ASI _Al UPL) (Primary) |Little-endian
when U/
1916 ASI _AS_| F_USER_SECONDARY_LI TTLE Virtual DMMU
(ASI _Al USL) (Secondary) |TTE.ie = 0;
1E;, ASI _BLOCK_AS | F_USER_PRI MARY_LI TTLE Virtual big-endian
(ASI _BLK_AI UP) (Primary) |When U/
DMMU
1F1, ASI _BLOCK_AS_| F_USER_SECONDARY_LI TTLE Virtual TTEje=1
(ASI _BLK_AI USL) (Secondary)

ASI 14, (ASI _REAL)

When ASI _REAL is specified in any load alternate, store alternate or prefetch
alternate instruction, the virtual processor behaves as follows:

= In nonprivileged mode, a privileged_action exception occurs
= In any other privilege mode:
= VA is passed through to RA
= During the address translation, context values are disregarded.
= The endianness of the access is dertermined by the U/DMMU TTE.ie bit; if U/
DMMU TTE.ie = 0, the access is big-endian, otherwise it is little-endian.

Even if data address translation is disabled, an access with this ASI is still a
cacheable access.

ASI 15,4 (ASI _REAL_I O)

Accesses with AS|I _REAL_| Obypass the external cache and behave as if the side
effect bit (TTE.e bit) is set. When this ASI is specified in any load alternate or store
alternate instruction, the virtual processor behaves as follows:

= In nonprivileged mode, a privileged_action exception occurs

» If used with a CASA, CASXA, LDSTUBA, SWAPA, or PREFETCHA instruction, a
data_access_exception exception occurs
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10.4.5

10.4.6

10.4.7

» Used with any other load alternate or store alternate instuction, in privileged
mode or hyperprivileged mode:

= VA is passed through to RA
= During the address translation, context values are disregarded.

= The endianness of the access is dertermined by the U/DMMU TTE.ie bit; if U/
DMMU TTE.ie = 0, the access is big-endian, otherwise it is little-endian.

ASI 1C1¢ (ASI _REAL_LI TTLE)

ASI _REAL_LI TTLE is a little-endian version of ASI 1444 (ASI _REAL). It operates
identically to ASI _REAL, except if an access occurs, its endianness the opposite of
that for ASI _REAL.

ASI 1Dy (ASI_REAL_| O LI TTLE)

ASI _REAL_I O LI TTLE is a little-endian version of ASI 154 (ASI _REAL_| O). It
operates identically to ASI _REAL_| O, except if an access occurs, its endianness the
opposite of that for ASI _REAL_I O.

ASIs 2216, 2316, 2716, 2A16, 2B16, 2F1
(Privileged Load Integer Twin Extended
Word)

ASIs 2214, 2314, 2716, 2A14, 2B1g and 2F 4 exist for use with the (nonportable)
LDTXA instruction as atomic Load Integer Twin Extended Word operations (see Load
Integer Twin Extended Word from Alternate Space on page 263). These ASIs are
distinguished by the context from which the access is made and the endianness of
the access, as described in TABLE 10-4.
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10.4.8

TABLE 10-4 Privileged Load Integer Twin Extended Word / Block Store Init ASIs

Addressing Endianness of
ASI Names (Context) Access
2216 ASI _LD_TW NX_AS_| F_USER_PRI MARY Virtual Big-endian
(ASI _LDTX_Al UP) (Primary) when U/
. DMMU
2316 ASI _LD_TW NX_AS_| F_USER_SECONDARY Virtual TTE.ie = 0;
(ASI _LDTX_AI US) (Secondary) little-endian
2716 ASI _LD_TW NX_NUCLEUS (ASI _LDTX_N) Virtual}  when U/
(Nucleus) DMMU
TTE.ie=1
2A14 ASI _LD TWNX_AS | F_USER PRI MARY_LI TTL Virtual Little-endian
E (ASI_LDTX_ Al UP_L) (Primary) when U/
2B ASI _LD_TW NX_AS_| F_USER_SECONDARY_ Virtual ?_IF/IIEI\iAeU: 0:
LI TTLE (ASI _LDTX_AlUS_L) (Secondary) .. " .
big-endian
2F1¢ ASI _LD_TW NX_NUCLEUS_LI TTLE Virtual}  when U/
(ASI _LDTX_NL) (Nucleus) DMMU
TTE.ie=1

I In hyperprivileged mode, this ASI uses Physical addressing

When these ASIs are used with LDTXA, a mem_address_not_aligned exception is
generated if the operand address is not 16-byte aligned.

If these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-
Store Alternate, or PREFETCHA instruction, a data_access_exception exception is
always generated and mem_address_not_aligned is not generated.

Compatibility | These ASIs replaced ASIs 2414 and 2Cy4 used in earlier
Note | UltraSPARC implementations; see the detailed Compatibility Note
on page 433 for details.

ASIs 2614 and 2E¢ (Privileged Load Integer Twin
Extended Word, Real Addressing)

ASIs 2614 and 2E4 exist for use with the LDTXA instruction as atomic Load Integer
Twin Extended Word operations using Real addressing (see Load Integer Twin
Extended Word from Alternate Space on page 263). These two ASlIs are distinguished by
the endianness of the access, as described in TABLE 10-5.
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10.4.9

TABLE 10-5 Load Integer Twin Extended Word (Real) ASIs

Addressing
ASI Name (Context) Endianness of Access
2616 ASI _LD_TW NX_REAL Real Big-endian when U/DMMU

(ASI _LDTX REAL) TTE.ie = 0; little-endian when U/

=) DMMU TTE.ie=1

Little-endian when U/DMMU
—) TTE.ie = 0; big-endian when U/
DMMU TTE.ie=1

2E;¢ ASI_LD TW NX_REAL_LI TTLE

(ASI _LDTX_REAL_L) Real

When these ASIs are used with LDTXA, a mem_address_not_aligned exception is
generated if the operand address is not 16-byte aligned.

If these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-
Store Alternate, or PREFETCHA instruction, a data_access_exception exception is
always generated and mem_address_not_aligned is not generated.

Compatibility | These ASIs replaced ASIs 34,4 and 3C44 used in earlier
Note | UltraSPARC implementations; see the Compatibility Note on
page 433 for details.

ASIs 3044, 3114, 3614 3816 3916 3E16
(ASI _AS I F_PRIV_*)

These ASI are intended to be used in accesses from hyperprivileged mode, but are
processed as if they were issued from privileged mode These ASIs are distinguished
by the context from which the access is made and the endianness of the access, as
described in TABLE 10-6.

When one of these ASIs is specified in a load alternate or store alternate instruction,
the virtual processor behaves as follows:

= In nonprivileged or privileged mode, a privileged_action exception occurs

= In hyperprivileged mode:

= The endianness of the access is determined by the U/DMMU TTE.ie bit; if U/
DMMU TTE.ie = 0, the access is big-endian; otherwise, it is little-endian.
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TABLE 10-6 Hyperprivileged AS_| F_PRI V_* ASIs

Addressing Endianness of
ASI Names (Context) Access
301 ASI _AS_|I F_PRIV_PRI MARY (ASI _Al PP) Virtual Big-endian
(Primary) when U/
3114 ASI _AS_| F_PRI V_SECONDARY Virtual DMMU
(ASI_AI PS) (Secondary) J11E1€=0;
- little-endian
361 ASI _AS_| F_PRI V_NUCLEUS (ASI _Al PN) Virtual when U/
(Nucleus) DMMU
TTE.ie=1
381 ASI _AS_I F_PRIV_PRI MARY_LI TTLE Virtual Little-endian
(ASI _Al PP_L) (Primary) when U/
. DMMU
3916 ASI _AS_ | F_PRI V_SECONDARY_LI TTLE Virtual . .
(ASI _AIPS L) (Secondary) TTE.ie = 0; big-
- - endian when
3E1¢ ASI_AS | F_PRI V_NUCLEUS_LI TTLE Virtual U/DMMU
(ASI _Al PN_L) (Nucleus) TTE.ie=1

10.4.10  ASIs E2;¢, E31, EAqs EByg

(Nonprivileged Load Integer Twin Extended

Word)

ASIs E244, E314, EAq4, and EBq4 exist for use with the (nonportable) LDTXA
instruction as atomic Load Integer Twin Extended Word operations (see Load Integer
Twin Extended Word from Alternate Space on page 263). These ASIs are distinguished
by the address space accessed (Primary or Secondary) and the endianness of the

access, as described in TABLE 10-7.
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TABLE 10-7 Load Integer Twin Extended Word ASIs

Addressing Endianness of
ASI Names (Context) Access
E2;4 ASI _LD_TW NX_PRI MARY ( ASI _LDTX_P) Virtual Big-endian
(Primary) when U/
E31¢ ASI _LD TW NX_SECONDARY ?_IF/IIEI\./IGU_ 0
(ASI_LDTX_S) o=
Virtual little-endian
(Secondary) when U/
DMMU
TTE.ie=1
EAjq ASI _LD_TW NX_PRI MARY_LI TTLE Virtual Little-endian
(ASI _LDTX_PL) (Primary) when U/
EBig ASI _LD TW NX_SECONDARY_LI TTLE ?‘?/él\i/[eU— 0
(ASI _LDTX_SL) Lo
Virtual big-endian
(Secondary) when U/
DMMU
TTE.ie=1

When these ASIs are used with LDTXA, a mem_address_not_aligned exception is
generated if the operand address is not 16-byte aligned.

If these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-
Store Alternate, or PREFETCHA instruction, a data_access_exception exception is
always generated and mem_address_not_aligned is not generated.

Block Load and Store ASIs

ASlIs 1616' 1716/ 1E16' 1F16’ F016' F116' F816, and F916 exist for use with LDDFA and
STDFA instructions as Block Load (LDBLOCKF) and Block Store (STBLOCKF)
operations (see Block Load on page 245 and Block Store on page 328).

When these ASIs are used with the LDDFA (STDFA) opcode for Block Load (Store),
a mem_address_not_aligned exception is generated if the operand address is not 64-
byte aligned.

If a Block Load or Block Store ASI is used with any other Load Alternate, Store
Alternate, Atomic Load-Store Alternate, or PREFETCHA instruction, a
data_access_exception exception is always generated and
mem_address_not_aligned is not generated.
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10.4.13

Partial Store ASIs

ASIs C014—C5;4 and C814—CDy exist for use with the STDFA instruction as Partial
Store (STPARTIALF) operations (see Store Partial Floating-Point on page 341).

When these ASIs are used with STDFA for Partial Store, a
mem_address_not_aligned exception is generated if the operand address is not 8-
byte aligned and an illegal_instruction exception is generated if i = 1 in the
instruction and the ASI register contains one of the Partial Store ASIs.

If one of these ASIs is used with a Store Alternate instruction other than STDFA, a
Load Alternate, Store Alternate, Atomic Load-Store Alternate, or PREFETCHA
instruction, a data_access_exception exception is generated and
mem_address_not_aligned, LDDF_mem_address_not_aligned, and
illegal_instruction (for i = 1) are not generated.

ASIs C074-C57¢ and C815—CD4 are only defined for use in Partial Store operations
(see page 341). None of them should be used with LDDFA; however, if any of those
ASIs is used with LDDFA, the resulting behavior is specified in the LDDFA
instruction description on page 254.

Short Floating-Point Load and Store ASIs

ASIs D01s-D316 and D8s-DB4 exist for use with the LDDFA and STDFA
instructions as Short Floating-point Load and Store operations (see Load Floating-
Point on page 249 and Store Floating-Point on page 332).

When ASI D244, D314, DA14, or DBy is used with LDDFA (STDFA) for a 16-bit Short
Floating-point Load (Store), a mem_address_not_aligned exception is generated if
the operand address is not halfword-aligned.

If any of these ASIs are used with any other Load Alternate, Store Alternate, Atomic
Load-Store Alternate, or PREFETCHA instruction, a data_access_exception
exception is always generated and mem_address_not_aligned is not generated.

10.5

ASI-Accessible Registers

In this section the Data Watchpoint registers, scratchpad registers, and CMT registers
are described.

A list of UltraSPARC Architecture 2005 ASIs is shown in TABLE 10-1 on page 409.
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10.5.1

Privileged Scratchpad Registers
(ASI _SCRATCHPAD)

An UltraSPARC Architecture virtual processor includes eight Scratchpad registers
(64 bits each, read/write accessible) (impl.dep. #302-U4-Cs10). The use of the
Scratchpad registers is completely defined by software.

For conventional uses of Scratchpad registers, see “Scratchpad Register Usage” in
Software Considerations, contained in the separate volume UltraSPARC Architecture
Application Notes.

The Scratchpad registers are intended to be used by performance-critical trap
handler code.

The addresses of the privileged scratchpad registers are defined in TABLE 10-8.

TABLE 10-8  Scratchpad Registers

Privileged Scratchpad
Assembly Language ASI Name ASI #  Virtual Address Register #

0016 0
0816
1044
1814
2016
2816
3046
3814

ASI _SCRATCHPAD 2016

N O G s W N =

IMPL. DEP. #404-S10: The degree to which Scratchpad registers 4-7 are accessible to
privileged software is implementation dependent. Each may be

(1) fully accessible,

(2) accessible, with access much slower than to scratchpad registers 0-3 (emulated
by data_access_exceptiontrap to hyperprivileged software), or

(3) inaccessible (cause a data_access_exception).

V9 Compatibility | Privileged scratchpad registers are an UltraSPARC Architecture
Note | extension to SPARC V9.
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10.5.2  Hyperprivileged Scratchpad Registers
(ASI _HYP_SCRATCHPAD)

An UltraSPARC Architecture virtual processor includes eight hyperprivileged
Scratchpad registers (64 bits each, read /write accessible). The use of the
hyperprivileged Scratchpad registers is completely defined by software.

The hyperprivileged Scratchpad registers are intended to be used in hyperprivileged
trap handler code.

The hyperprivileged Scratchpad registers are accessed with Load Alternate and
Store Alternate instructions, using the ASIs and addresses listed in TABLE 10-9.

IMPL. DEP. #407-S10: It is implementation dependent whether any of the
hyperprivileged Scratchpad registers are aliased to the corresponding privileged
Scratchpad register or is an independent register.

TABLE 10-9  Hyperprivileged Scratchpad Registers

Hyperprivileged
Assembly Language ASI Name ASI #  Virtual Address  Scratchpad Register #

0016 0
0814
1044
1814
2044
2814
3044
3814

ASI _HYP_SCRATCHPAD 4F ¢

N O G W N -

V9 Compatibility
Note

Hyperprivileged Scratchpad registers are an UltraSPARC
Architecture extension to SPARC V9.

10.5.3  CMT Registers Accessed Through ASIs

All chip-level multithreading (CMT) registers are accessed through ASIs. See
Accessing CMT Registers on page 515, for descriptions of ASI registers used to control
CMT functions.

10.5.4  ASI Changes in the UltraSPARC Architecture

The following Compatibility Notes summarize the UltraSPARC ASI changes in
UltraSPARC Architecture.
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Compatibility
Note

Compatibility
Note

The names of several ASIs used in earlier UltraSPARC
implementations have changed in UltraSPARC Architecture. Their
functions have not changed; just their names have changed.

ASI# Previous UltraSPARC UltraSPARC Architecture
141, ASI _PHYS_USE_EC AS| _REAL
15,4 ASI _PHYS_BYPASS_EC W TH EBI T ASI_REAL_I O
1Cy¢ ASI _PHYS USE_EC LI TTLE ASI _REAL_LI TTLE
(ASI _PHYS_USE_EC L)
1Dy ASI _PHYS BYPASS EC W TH_ ASI _REAL_| O LI TTLE
EBI T_LI TTLE

(ASI _PHY_BYPASS EC W TH EBI T_L)

The names and ASI assignments (but not functions) changed
between earlier UltraSPARC implementations and UltraSPARC
Architecture, for the following ASIs:

Previous UltraSPARC __UltraSPARC Architecture
ASI# Name ASI# Name
241, ASI _NUCLEUS_QUAD LDD 27;¢ ASI_LD TW NX_NUCLEUS
(ASI _LDTX_N)

2Cq6 ASI _NUCLEUS_QUAD LDD_ 2F;4 ASI_LD TW NX_NUCLEUS_
LI TTLE LI TTLE
(ASI _NUCLEUS_QUAD _LDD L) (ASI _LDTX_NL)

3414 ASI_QUAD LDD PHYS 261, ASI_LD TW NX_REAL

(ASI _LDTX_REAL)

3C;s ASI_QUAD LDD LITTLE  2E;, ASI_LD TW NX_
REAL_LI TTLE
(ASI _QUAD_LDD L) (ASI _LDTX_REAL_L)
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CHAPTER 11

Performance Instrumentation

(contents to be supplied in a later revision)
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CHAPTER 12

Traps

A trap is a vectored transfer of control to software running in a privilege mode (see
page 438) with (typically) greater privileges. A trap in nonprivileged mode can be
delivered to privileged mode or hyperprivileged mode. A trap that occurs while
executing in privileged mode can be delivered to privileged mode or
hyperprivileged mode. A trap that occurs while executing in hyperprivileged mode
can only be delivered to hyperprivileged mode.

The actual transfer of control occurs through a trap table that contains the first eight
instructions (32 instructions for clean_window, fast_instruction_access_ MMU_miss,
fast_data_access_MMU_miss, fast_data_access_protection, window spill, and
window fill, traps) of each trap handler. The virtual base address of the trap table for
traps to be delivered in privileged mode is specified in the Trap Base Address (TBA)
register. The physical base address of the trap table for traps to be delivered in
hyperprivileged mode is specified in the Hyperprivileged Trap Base Address
(HTBA) register. The displacement within either table is determined by the trap type
and the current trap level (TL). One-half of each table is reserved for hardware traps;
the other half is reserved for software traps generated by Tcc instructions.

A trap behaves like an unexpected procedure call. It causes the hardware to do the
following;:

1. Save certain virtual processor state (such as program counters, CWP, ASI, CCR,
PSTATE, and the trap type) on a hardware register stack.

2. Enter privileged execution mode with a predefined PSTATE, or enter
hyperprivileged mode with a predefined PSTATE and HPSTATE.

3. Begin executing trap handler code in the trap vector.

When the trap handler has finished, it uses either a DONE or RETRY instruction to
return.

A trap may be caused by a Tcc instruction, an instruction-induced exception, a reset,
an asynchronous error, or an interrupt request not directly related to a particular
instruction. The virtual processor must appear to behave as though, before executing
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each instruction, it determines if there are any pending exceptions or interrupt
requests. If there are pending exceptions or interrupt requests, the virtual processor
selects the highest-priority exception or interrupt request and causes a trap.

Thus, an exception is a condition that makes it impossible for the virtual processor to
continue executing the current instruction stream without software intervention. A
trap is the action taken by the virtual processor when it changes the instruction flow
in response to the presence of an exception, interrupt, reset, or Tcc instruction.

V9 Compatibility | Exceptions referred to as “catastrophic error exceptions” in the
Note | SPARC V9 specification do not exist in the UltraSPARC
Architecture; they are handled using normal error-reporting
exceptions. (impl. dep. #31-V8-Cs10)

An interrupt is a request for service presented to a virtual processor by an external
device.

Traps are described in these sections:

= Virtual Processor Privilege Modes on page 438.

= Virtual Processor States, Normal Traps, and RED_st at e Traps on page 440.
= Trap Categories on page 445.

= Trap Control on page 451.

= Trap-Table Entry Addresses on page 452.

= Trap Processing on page 470.

= Exception and Interrupt Descriptions on page 481.

= Register Window Traps on page 491.

12.1  Virtual Processor Privilege Modes

An UltraSPARC Architecture virtual processor is always operating in a discrete
privilege mode. The privilege modes are listed below in order of increasing
privilege:

= Nonprivileged mode (also known as “user mode”)

= Privileged mode, in which supervisor (operating system) software primarily
operates

» Hyperprivileged mode, in which hypervisor software operates, serving as a layer
between the supervisor software and the underlying virtual processor
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The virtual processor’s operating mode is determined by the state of two mode bits,
as shown in TABLE 12-1.

TABLE 12-1 Virtual Processor Privilege Modes

HPSTATE.hpriv.  PSTATE priv Virtual Processor Privilege Mode

0 0 Nonprivileged
0 1 Privileged
1 — Hyperprivileged

A trap is delivered to the virtual processor in either privileged mode or
hyperprivileged mode; in which mode the trap is delivered depends on:

= Its trap type
= The trap level (TL) at the time the trap is taken
= The privilege mode at the time the trap is taken

Traps detected in nonprivileged and privileged mode can be delivered to the virtual
processor in privileged mode or hyperprivileged mode. Traps detected in
hyperprivileged mode are either delivered to the virtual processor in
hyperprivileged mode or may be masked. If masked, they are held pending.

TABLE 12-4 on page 459 indicates in which mode each trap is processed, based on the
privilege mode at which it was detected.

A trap delivered to privileged mode uses the privileged-mode trap vector, based
upon the TBA register. See Trap-Table Entry Address to Privileged Mode on page 453 for
details. A trap delivered to hyperprivileged mode uses the hyperprivileged mode
trap vector address, based upon the HTBA register. See Trap-Table Entry Address to
Hyperprivileged Mode on page 454 for details.

The maximum trap level at which privileged software may execute is MAXPTL
(which, on an virtual processor, is 2). Therefore, if TL = MAXPTL and a trap occurs that
would normally be delivered in privileged mode, it is instead delivered in
hyperprivileged mode; the trap table offset for watchdog_reset (40;¢) is used, and
the priority and trap type of the original exception is retained. This is referred to as
a “guest_watchdog” trap (so named because it uses watchdog_reset’s trap table
offset).

Notes | Execution in nonprivileged or privileged mode with
TL > MAXPTL is an invalid condition that hyperprivileged
software should never allow to occur.

Execution in nonprivileged mode with TL > 0 is an invalid
condition that privileged and hyperprivileged software should
never allow to occur.
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FIGURE 12-1 shows how a virtual processor transitions between privilege modes,
excluding transitions that can occur due to direct software writes to PSTATE.priv or
HPSTATE.hpriv. In this figure, indicates a “trap destined for privileged mode”
and indicates a “trap destined for hyperprivileged mode”.

@ TL = MAXPTL (2), or

@ TL < MAXPTL (2)

Nonprivileged Privileged

DONE!,RETRY!

L if ((HTSTATE[TL].HPSTATE.hpriv = 0) 2 if ((HTSTATE[TL].HPSTATE.hpriv = 0) 3 if ((HTSTATEITLL.HPSTATE.hpriv =1)
and (TSTATE[TL].PSTATE.priv = 0) ) and (TSTATE[TL].PSTATE.priv =1))

FIGURE 12-1 Virtual Processor Privilege Mode Transition Diagram

12.2 Virtual Processor States, Normal Traps,
and RED_st at e Traps

An UltraSPARC Architecture virtual processor is always in one of three discrete
states:
= execut e_st at e, which is the normal execution state of the virtual processor

= RED st at e (Reset, Error, and Debug state), which is a restricted execution state
reserved for processing traps that occur when TL = MAXTL — 1, and for processing
hardware- and software-initiated resets

= error_state, which is a transient state that is entered as a result of a non-reset
trap, SIR, or XIR when TL = MAXTL

The values of TL and HPSTATE.red affect the generated trap vector address. TL also
determines where (that is, into which element of the TSTATE and HTSTATE arrays)
the states are saved..
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12.2.1

Traps processed in execut e_st at e are called normal traps. Traps processed in
RED_st at e are called RED_st at e traps.

V9 Compatibility | RED_st at e traps were called “special traps” in the SPARC V9
Note | specification. The name was changed to clarify the terminology.

FIGURE 12-2 shows the virtual processor state transition diagram.

([nR1] or SIR) @ TL = MAXTL

@ ([xT]or SIR) @
TL = MAXTL-1, TL = MAXTL

SIR @
TL < MAXTL,

red « 1

execute_state RED state error_state

DONE,

TL < MAXTL

e @

TL < MAXTL-1 XIR

Any State
(Including Power Off)

FIGURE 12-2 Virtual Processor State Diagram (“[NRT]” = “non-reset trap”)

RED st ate

RED_st at e is an acronym for Reset, Error, and Debug state. The virtual processor
enters RED_st at e under any one of the following conditions:

= A non-reset trap is taken when TL = MAXTL -1.

» A POR or WDR reset occurs.

= An SIR reset occurs when TL < MAXTL.

= An XIR reset occurs when TL < MAXTL.

= System software sets HPSTATE.red = 1. For this condition, no other machine state
or operation is modified as a side-effect of the write to HPSTATE; software must
set the appropriate machine state.

RED_st at e serves two purposes:

» During trap processing, it indicates that no more trap levels are available; that is,
while executing in RED_st at e with TL = MAXTL, if another nested non-reset trap,
SIR, or XIR is taken, the virtual processor will enter error _state. RED_state
provides system software with a restricted execution environment.
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= It provides the execution environment for all reset processing.

RED_st at e is indicated by HPSTATE.red. When this bit is set to 1, the virtual
processor is in RED_st at e; when this bit is zero, the virtual processor is not in
RED_st at e, independent of the value of TL. Executing a DONE or RETRY
instruction in RED_st at e restores the stacked copy of the HPSTATE register, which
zeroes the HPSTATE.red flag if it was zero in the stacked copy. System software can
also directly write 1 or 0 to HPSTATE.red with a WRHPR instruction, which forces
the virtual processor to enter or exit RED_st at e, respectively. In this case, the
WRHPR instruction should be placed in the delay slot of a jump instruction so that
the PC can be changed in concert with the state change.

When RED_st at e is entered due to a reset or a trap, the execution environment is
altered in four ways:

» Address translation is disabled in the MMU, for both instruction and data
references.

= Watchpoints are disabled.

= The trap vector for the traps occurring in RED_st at e is based on the RED_st at e
Trap Table.

= The virtual processor enters hyperprivileged mode (HPSTATE.hpriv — 1).

Programming | Setting TL — MAXTL with a WRHPR instruction does not also set
Note | HPSTATE.red — 1, nor does it alter any other machine state.
The values of HPSTATE.red and TL are independent.

Setting HPSTATE.red with a WRHPR instruction causes the
virtual processor to execute in RED_st at e. This results in the
execution environment defined in RED_st at e Execution
Environment on page 442. However, it is different from a
RED_st at e trap in the sense that there are no trap-related
changes in the machine state (for example, TL does not change).

The trap table organization for RED_st at e traps is described in RED_st at e Trap
Table Organization on page 456.

12.2.1.1 RED_st at e Execution Environment

In RED_st at e, the virtual processor is forced to execute in a restricted environment
by overriding the values of some virtual processor control and state registers.

The values are overridden, not set, allowing them to be switched atomically.

Some of the characteristics of RED_st at e include:

= Memory accesses in RED_st at e are by default noncacheable, so there must be
noncacheable scratch memory somewhere in the system.

= The D-cache watchpoints and DMMU/UMMU can be enabled by software in
RED_st at e, but any trap will disable them again.
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The caches continue to snoop and maintain coherence in RED_st at e if DMA or
other virtual processors are still issuing cacheable accesses.

IMPL. DEP. #115-V9: A processor’s behavior in RED_st at e is implementation
dependent.

Programming | When RED_st at e is entered because of component failures,
Note | trap handler software should attempt to recover from
potentially fatal error conditions or to disable the failing
components. When RED_st at e is entered after a reset, the
software should create the environment necessary to restore the
system to a running state.

12.2.1.2 RED_st at e Entry Traps

The following reset traps are processed in RED_st at e:

Power-on reset (POR) — POR causes the virtual processor to start execution at
this trap table entry.

Watchdog reset (WDR) — While in er r or _st at e, the virtual processor
automatically invokes a watchdog reset to enter RED_st at e (impl. dep. #254-U3-
Cs10).

Externally initiated reset (XIR) — This trap is typically used as a nonmaskable
interrupt for debugging purposes. If TL < MAXTL when an XIR occurs, the reset
trap is processed in RED st at e ; if TL = MAXTL when an XIR occurs, the virtual
processor transitions directly to error _st at e.

Software-initiated reset (SIR) If TL < MAXTL when an SIR occurs, the reset trap
is processed in RED_st at e; if TL = MAXTL when an SIR occurs, the virtual
processor transitions directly to er r or _st at e.

Non-reset traps that occur when TL = MAXTL — 1 also set HPSTATE.red = 1; that is,
any non-reset trap handler entered with TL = MAXTL runs in RED_st at e.

Any non-reset trap that sets HPSTATE.red = 1 or that occurs when HPSTATE.red = 1
branches to a special entry in the RED_st at e trap vector at RSTVADDR + A0q4. Reset
traps are described in Reset Traps on page 449.
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12.2.2

12.2.1.3 RED_st at e Software Considerations

In effect, RED_st at e reserves one level of the trap stack for recovery and reset
processing. Hyperprivileged software should be designed to require only MAXTL -1
trap levels for normal processing. That is, any trap that causes TL = MAXTL is an
exceptional condition that should cause entry to RED_st at e.

Programming | To log the state of the virtual processor, RED_st at e-handler
Note | software needs either a spare register or a preloaded pointer to a
save area. To support recovery, the operating system might
reserve one of the hyperprivileged scratchpad registers for use
in RED state.

12.2.1.4 Usage of Trap Levels

If MAXPTL = 2 and MAXTL = 5 in an UltraSPARC Architecture implementation, the trap
levels might be used as shown in TABLE 12-2.

TABLE 12-2 Typical Usage for Trap Levels

Corresponding

TL Execution Mode Usage
0 Nonprivileged =~ Normal execution
1 Privileged System calls; interrupt handlers; instruction emulation
2 Privileged Window spill/fill handler
3 Hyperprivileged Real address TLB miss handler
4 Hyperprivileged Reserved for error handling
5 Hyperprivileged RED_st at e handler

error_state

The virtual processor enters err or _st at € when a trap occurs while the virtual
processor is already at its maximum supported trap level — that is, it enters
error_stat e when a trap occurs while TL = MAXTL. No other conditions cause
entry into error _st at e on an UltraSPARC Architecture virtual processor. (impl.
dep. #39-V8-Cs10)

IMPL. DEP. #40-V8: Effects when er r or _st at e is entered are implementation-
dependent, but it is recommended that as much processor state as possible be
preserved upon entry to er r or _st at e. In addition, an UltraSPARC Architecture
virtual processor may have other er r or _st at e entry traps that are implementation
dependent.

Upon entering er r or _st at e, a virtual processor automatically generates a
watchdog_reset (WDR) (impl. dep. #254-U3-Cs10), which causes entry into
RED_st at e.
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12.3

12.3.1

12.3.2

Trap Categories

An exception, error, or interrupt request can cause any of the following trap types:

= Precise trap

» Deferred trap

= Disrupting trap
= Reset trap

Precise Traps

A precise trap is induced by a particular instruction and occurs before any program-
visible state has been changed by the trap-inducing instructions. When a precise trap
occurs, several conditions must be true:

= The PC saved in TPCJ[TL] points to the instruction that induced the trap and the
NPC saved in TNPC[TL] points to the instruction that was to be executed next.

= All instructions issued before the one that induced the trap have completed
execution.

= Any instructions issued after the one that induced the trap remain unexecuted.
Among the actions that trap handler software might take when processing a precise
trap are:

= Return to the instruction that caused the trap and reexecute it by executing a
RETRY instruction (PC < old PC, NPC —~ old NPC).

= Emulate the instruction that caused the trap and return to the succeeding
instruction by executing a DONE instruction (PC ~ old NPC,
NPC < old NPC + 4).

» Terminate the program or process associated with the trap.

Deferred Traps

A deferred trap is also induced by a particular instruction, but unlike a precise trap, a
deferred trap may occur after program-visible state has been changed. Such state
may have been changed by the execution of either the trap-inducing instruction
itself or by one or more other instructions.

There are two classes of deferred traps:

» Termination deferred traps — The instruction (usually a store) that caused the trap
has passed the retirement point of execution (the TPC has been updated to point
to an instruction beyond the one that caused the trap). The trap condition is an
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error that prevents the instruction from completing and its results becoming
globally visible. A termination deferred trap has high trap priority, second only to
the priority of resets.

Programming | Not enough state is saved for execution of the instruction stream
Note | to resume with the instruction that caused the trap. Therefore,
the trap handler must terminate the process containing the
instruction that caused the trap.

= Restartable deferred traps — The program-visible state has been changed by the
trap-inducing instruction or by one or more other instructions after the trap-
inducing instruction.

SPARC V9 | A restartable deferred trap is the “deferred trap” defined in the
Compatibility | SPARC V9 specification.
Note

The fundamental characteristic of a restartable deferred trap is that the state of the
virtual processor on which the trap occurred may not be consistent with any precise
point in the instruction sequence being executed on that virtual processor. When a
restartable deferred trap occurs, TPC[TL] and TNPC[TL] contain a PC value and an
NPC value, respectively, corresponding to a point in the instruction sequence being
executed on the virtual processor. This PC may correspond to the trap-inducing
instruction or it may correspond to an instruction following the trap-inducing
instruction. With a restartable deferred trap, program-visible updates may be
missing from instructions prior to the instruction to which TPC[TL] refers. The
missing updates are limited to instructions in the range from (and including) the
actual trap-inducing instruction up to (but not including) the instruction to which
TPC[TL] refers. By definition, the instruction to which TPC[TL] refers has not yet
executed, therefore it cannot have any updates, missing or otherwise.

With a restartable deferred trap there must exist sufficient information to report the
error that caused the deferred trap. If system software can recover from the error
that caused the deferred trap, then there must be sufficient information to generate a
consistent state within the processor so that execution can resume. Included in that
information must be an indication of the mode (nonprivileged, privileged, or
hyperprivileged) in which the trap-inducing instruction was issued.

How the information necessary for repairing the state to make it consistent state is
maintained and how the state is repaired to a consistent state are implementation
dependent. It is also implementation dependent whether execution resumes at the
point of the trap-inducing instruction or at an arbitrary point between the trap-
inducing instruction and the instruction pointed to by the TPC[TL], inclusively.

Associated with a particular restartable deferred trap implementation, the following
must exist:

= An instruction that causes a potentially outstanding restartable deferred trap
exception to be taken as a trap
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12.3.3

= Instructions with sufficient privilege to access the state information needed by
software to emulate the restartable deferred trap-inducing instruction and to
resume execution of the trapped instruction stream.

Programming | Resuming execution may require the emulation of instructions
Note | that had not completed execution at the time of the restartable
deferred trap, that is, those instructions in the deferred-trap
queue.

Software should resume execution with the instruction starting at the instruction to
which TPC[TL] refers. Hardware should provide enough information for software to
recreate virtual processor state and update it to the point just before execution of the
instruction to which TPC[TL] refers. After software has updated virtual processor

state up to that point, it can then resume execution by issuing a RETRY instruction.

IMPL. DEP. #32-V8-Ms10: Whether any restartable deferred traps (and, possibly,
associated deferred-trap queues) are present is implementation dependent.

Among the actions software can take after a restartable deferred trap are these:

» Emulate the instruction that caused the exception, emulate or cause to execute
any other execution-deferred instructions that were in an associated restartable
deferred trap state queue, and use RETRY to return control to the instruction at
which the deferred trap was invoked.

» Terminate the program or process associated with the restartable deferred trap.

A deferred trap (of either of the two classes) is always delivered to the virtual
processor in hyperprivileged mode.

Disrupting Traps

12.3.3.1 Disrupting versus Precise and Deferred Traps

A disrupting trap is caused by a condition (for example, an interrupt) rather than
directly by a particular instruction. This distinguishes it from precise and deferred
traps.

When a disrupting trap has been serviced, trap handler software normally arranges
for program execution to resume where it left off. This distinguishes disrupting traps
from reset traps, since a reset trap vectors to a unique reset address and execution of
the program that was running when the reset occurred is generally not expected to
resume.

When a disrupting trap occurs, the following conditions are true:

1. The PC saved in TPC[TL] points to an instruction in the disrupted program
stream and the NPC value saved in TNPCJ[TL] points to the instruction that was
to be executed after that one.
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2. All instructions issued before the instruction indicated by TPC[TL] have
retired.

3. The instruction to which TPC[TL] refers and any instruction(s) that were
issued after it remain unexecuted.

A disrupting trap may be due to an interrupt request directly related to a
previously-executed instruction; for example, when a previous instruction sets a bit
in the SOFTINT register.

12.3.3.2 Causes of Disrupting Traps

A disrupting trap may occur due to either an interrupt request or an error not
directly related to instruction processing. The source of an interrupt request may be
either internal or external. An interrupt request can be induced by the assertion of a
signal not directly related to any particular virtual processor or memory state, for
example, the assertion of an “I/O done” signal.

A condition that causes a disrupting trap persists until the condition is cleared.

12.3.3.3 Conditioning of Disrupting Traps

How disrupting traps are conditioned is affected by:

= The privilege mode in effect when the trap is outstanding, just before the trap is
actually taken (regardless of the privilege mode that was in effect when the
exception was detected).

» The privilege mode for which delivery of the trap is destined

Outstanding in Nonprivileged or Privileged mode, destined for delivery in
Privileged mode. An outstanding disrupting trap condition in either
nonprivileged mode or privileged mode and destined for delivery to privileged
mode is held pending while the Interrupt Enable (ie) field of PSTATE is zero
(PSTATE.ie = 0). interrupt_level_n interrupts are further conditioned by the Processor
Interrupt Level (PIL) register. An interrupt is held pending while either

PSTATE.ie = 0 or the condition’s interrupt level is less than or equal to the level
specified in PIL. When delivery of this disrupting trap is enabled by PSTATE.ie =1,
it is delivered to the virtual processor in privileged mode if TL < MAXPTL (2, in
UltraSPARC Architecture 2005 implementations) or in hyperprivileged mode if

TL = MAXPTL.

Outstanding in Hyperprivileged mode, destined for delivery in Privileged
mode. An outstanding disrupting trap condition detected while in
hyperprivileged mode and destined for delivery in privileged mode is held pending
while in hyperprivileged mode (HPSTATE.priv = 1), regardless of the values of TL
and PSTATE.ie.
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Outstanding in Nonprivileged or Privileged mode, destined for delivery in
Hyperprivileged mode. An outstanding disrupting trap condition detected while
in either nonprivileged mode or privileged mode and destined for delivery in
hyperprivileged mode is never masked; it is delivered immediately.

Outstanding in Hyperprivileged mode, destined for delivery in
Hyperprivileged mode. An outstanding disrupting trap condition detected in
hyperprivileged mode and destined to be delivered in hyperprivileged mode is
masked and held pending while PSTATE.ie = 0.

The above is summarized in TABLE 12-3.
TABLE 12-3 Conditioning of Disrupting Traps

Disposition of Disrupting Traps, based on privilege

Type of Disrupting  Current Virtual Processor mode in which the trap is destined to be delivered

Trap Condition Privilege Mode Privileged Hyperprivileged
Nonprivileged or Held pending while —
Interrupt_level_n Privileged PSTATE.ie =0 or
interrupt level < PIL
Hyperprivileged Held pending while —

HPSTATE.hpriv =1

All other disrupting| Nonprivileged or Held pending while = Delivered
traps Privileged PSTATE.ie =0 immediately
Hyperprivileged Held pending while =~ Held pending while

HPSTATE.hpriv=1 PSTATE.ie =0

12.3.3.4 Trap Handler Actions for Disrupting Traps
Among the actions that trap-handler software might take to process a disrupting
trap are:

= Use RETRY to return to the instruction at which the trap was invoked
(PC < old PC, NPC - old NPC).

» Terminate the program or process associated with the trap.

12.3.4 Reset Traps

A reset trap occurs when hyperprivileged software or the implementation’s hardware
determines that the machine must be reset to a known state. Reset traps differ from
disrupting traps in that:

= They are not maskable.
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= Trap handler software for resets is generally not expected to resume execution of
the program that was running when the reset trap occurred. After an SIR or XIR,
execution of the interrupted program may resume.

All reset traps are delivered to the virtual processor in hyperprivileged mode.

IMPL. DEP. #37-V8: Some of a virtual processor’s behavior during a reset trap is
implementation dependent. See RED_st at e Trap Processing on page 474 for details.

The following reset traps are defined by the SPARC V9 architecture:

= Power-on reset (POR) — Used for initialization purposes (for example, when
power is applied or reapplied to the virtual processor).

= Watchdog reset (WDR) — Initiated when the virtual processor enters
error_state (impl. dep. #254-U3-Cs10). The WDR reset trap is taken instead of
the trap request that caused entry to err or _st at e at TL = MAXTL.
TSTATE[MAXTL], TPC[MAXTL], TNPC[MAXTL] and TT[MAXTL] observed after a WDR
reset trap are those associated with the trap request that caused entry to
error_state. The value of TT[MAXTL] indicates the trap type of this trap.
Machine state is consistent; however, software should not resume normal
instruction processing at the address in TPC[TL] after the WDR reset trap. The
values in TSTATE[MAXTL], TPC[MAXTL], TNPC[MAXTL] and TT[MAXTL] are accurate
and are intended for debug purposes.

= Externally initiated reset (XIR) — Initiated in response to a signal or event that is
external to the virtual processor. This reset trap is normally used for critical
system events, such as power failure. The XIR reset trap is treated as an interrupt
and processed similarly to a disrupting trap (but without masking). Software can
resume the interrupted program at the conclusion of trap handler
execution.triggers

= Software-initiated reset (SIR) — Initiated by software by executing the SIR
instruction in hyperprivileged mode. In nonprivileged and privileged mode, the
SIR instruction causes an illegal_instruction exception (which results in a trap to
hyperprivileged mode). The SIR reset trap is processed similar to a precise trap.
The PC saved in TPC[TL] points to the SIR instruction. If the SIR reset is detected
when TL =, the enters error _st at e and triggers a WDR reset.

12.3.5  Uses of the Trap Categories

The SPARC V9 trap model stipulates the following:

1. Reset traps (except software_initiated_reset traps) occur asynchronously to
program execution.

2. When recovery from an exception can affect the interpretation of subsequent
instructions, such exceptions shall be precise. See TABLE 12-4, TABLE 12-5, and
Exception and Interrupt Descriptions on page 481 for identification of which traps
are precise.
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In an UltraSPARC Architecture implementation, all exceptions that occur as the
result of program execution, except for errors on store instructions that occur after
the store instruction that has passed the retirement point, are precise (impl. dep.
#33-V8-Cs10).

An error detected after the initial access of a multiple-access load instruction (for
example, LDTX or LDBLOCKEF) should be precise. Thus, a trap due to the second
memory access can occur. However, the processor state should not have been
modified by the first access.

Exceptions caused by external events unrelated to the instruction stream, such as
interrupts, are disrupting.

A deferred trap may occur one or more instructions after the trap-inducing
instruction is dispatched.

12.4

Trap Control

Several registers control how any given exception is processed, for example:

The interrupt enable (ie) field in PSTATE and the Processor Interrupt Level (PIL)
register control interrupt processing. See Disrupting Traps on page 447 for details.

The enable floating-point unit (fef) field in FPRS, the floating-point unit enable
(pef) field in PSTATE, and the trap enable mask (tem) in the FSR control floating-
point traps.

The hyperprivileged mode bit (hpriv) field in the HPSTATE register, which can
affect how a trap is delivered. See Conditioning of Disrupting Traps on page 448 for
details.

The TL register, which contains the current level of trap nesting, controls whether
a trap causes entry to execut e_st ate, RED_state, or error_state. It also
affects whether the trap is processed in privileged mode or hyperprivileged
mode.

For a trap delivered to the virtual processor in privileged mode, PSTATE.tle
determines whether implicit data accesses in the trap handler routine will be
performed using big-endian or little-endian byte order. A trap delivered to the
virtual processor in hyperprivileged mode always uses a default byte order of
big-endian.

Between the execution of instructions, the virtual processor prioritizes the
outstanding exceptions, errors, and interrupt requests. At any given time, only the
highest-priority exception, error, or interrupt request is taken as a trap. When there
are multiple interrupts outstanding, the interrupt with the highest interrupt level is
selected. When there are multiple outstanding exceptions, errors, and/or interrupt
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requests, a trap occurs based on the exception, error, or interrupt with the highest
priority (numerically lowest priority number in TABLE 12-5). See Trap Priorities on
page 469.

12.4.1 PIL Control

When an interrupt request occurs, the virtual processor compares its interrupt
request level against the value in the Processor Interrupt Level (PIL) register. If the
interrupt request level is greater than PIL and no higher-priority exception is
outstanding, then the virtual processor takes a trap using the appropriate
interrupt_level_n trap vector.

12.4.2 FSR.tem Control

The occurrence of floating-point traps of type IEEE_754_exception can be controlled
with the user-accessible trap enable mask (tem) field of the FSR. If a particular bit of
FSR.tem is 1, the associated IEEE_754_exception can cause an
fp_exception_ieee_754 trap.

If a particular bit of FSR.tem is 0, the associated IEEE_754_exception does not cause
an fp_exception_ieee_754 trap. Instead, the occurrence of the exception is recorded
in the FSR’s accrued exception field (aexc).

If an IEEE_754_exception results in an fp_exception_ieee_754 trap, then the
destination F register, FSR.fccn, and FSR.aexc fields remain unchanged. However,
if an IEEE_754_exception does not result in a trap, then the F register, FSR.fccn, and
FSR.aexc fields are updated to their new values.

12.5  Trap-Table Entry Addresses

Traps are delivered to the virtual processor in either privileged mode or
hyperprivileged mode, depending on the trap type, the value of TL at the time the
trap is taken, and the privilege mode at the time the exception was detected. See
TABLE 12-4 on page 459 and TABLE 12-5 on page 465 for details.

Unique trap table base addresses are provided for traps being delivered in
privileged mode and in hyperprivileged mode.
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12.5.1 Trap-Table Entry Address to Privileged Mode

Privileged software initializes bits 63:15 of the Trap Base Address (TBA) register (its
most significant 49 bits) with bits 63:15 of the desired 64-bit privileged trap-table
base address.

At the time a trap to privileged mode is taken:

= Bits 63:15 of the trap vector address are taken from TBA{63:15}.

= Bit 14 of the trap vector address (the “TL>0" field) is set based on the value of TL
just before the trap is taken; that is, if TL = 0 then bit 14 is set to 0 and if TL >0
then bit 14 is set to 1.

= Bits 13:5 of the trap vector address contain a copy of the contents of the TT
register (TT[TL]).

= Bits 4:0 of the trap vector address are always 0; hence, each trap table entry is at
least 2° or 32 bytes long. Each entry in the trap table may contain the first eight
instructions of the corresponding trap handler.

FIGURE 12-3 illustrates the trap vector address for a trap delivered to privileged
mode. In FIGURE 12-3, the “TL>0" bit is 0 if TL = 0 when the trap was taken, and 1 if
TL > 0 when the trap was taken. This implies, as detailed in the following section,
that there are two trap tables for traps to privileged mode: one for traps from TL =0
and one for traps from TL > 0.

from TBA{63:15} (TBA.tba_high49) | TL>O| TT[TL]| 00000 |
63 15 14 13 54 0

FIGURE 12-3 Privileged Mode Trap Vector Address
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12.5.2  Privileged Trap Table Organization

The layout of the privileged-mode trap table (which is accessed using virtual
addresses) is illustrated in FIGURE 12-4.

Value Software Hardware Trap Table

of TL Trap Trap Type Offset
(tigg;e Type (TTITLD) (from TBA)  Contents of Trap Table
— 000,6—07F16 0,6— FEO,6 | Hardware traps
_ — 08046—0FF;5  1000,6—1FEO0q¢ | Spill / fill traps

=0 016— 7F16 100,-17F¢ 20004—2FEO;¢ | Software traps to Privileged level
— 180,4-1FF,;  3000,6-3FE015 | unassigned
— 000,6—07F1¢  4000,6—4FEO;5 | Hardware traps

TL =1 — 080,—0FF;5  500016—5FEQ.g | Spill/ fill traps

(TL = 016— 7F16 10046-17F1g  6000,6—6FEQ;5 | Software traps to Privileged level

waeol) 180,5-1FFy;  7000;4—7FEO;q | unassigned

FIGURE 12-4 Privileged-mode Trap Table Layout

The trap table for TL = 0 comprises 512 thirty-two-byte entries; the trap table for
TL > 0 comprises 512 more thirty-two-byte entries. Therefore, the total size of a full
privileged trap table is 2 x 512 x 32 bytes (32 Kbytes). However, if privileged
software does not use software traps (Tcc instructions) at TL > 0, the table can be
made 24 Kbytes long.

12.5.3  Trap-Table Entry Address to Hyperprivileged
Mode

Hyperprivileged software initializes bits 63:14 of the Hyperprivileged Trap Base
Address (HTBA) register (its most significant 50 bits) with bits 63:14 of the desired
64-bit hyperprivileged trap table base address.

At the time a trap to hyperprivileged mode is taken:

= Bits 63:14 of the trap vector address are taken from HTBA{63:14}.

= Bits 13:5 of the trap vector address contain a copy of the contents of the TT
register (TT[TL]).

= Bits 4:0 of the trap vector address are always 0; hence, each trap table entry is at
least 2° or 32 bytes long. Each entry in the trap table may contain the first eight
instructions of the corresponding trap handler.
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12.5.4

12.5.5

FIGURE 12-5 illustrates the trap vector address used for a trap delivered to
hyperprivileged mode.

from TBA{63:14} (TBA.tba_high50) | TTITL] | 0 0000 |

63 14 13 54 0

FIGURE 12-5 Hyperprivileged Mode Trap Vector Address

Hyperprivileged Trap Table Organization

The layout of the hyperprivileged-mode trap table (which is accessed using physical
addresses) is illustrated in FIGURE 12-6.

Software  Hardware Trap Table
Trap Trap Type Offset
Type (TT[TL])  (from HTBA) Contents of Trap Table

— 000,6—07F16 06— FEO;5 | Hardware traps
— 08016—0FF15  100016—1FEQy¢ | Spill / fill traps

Software traps from hyperprivileged

016~ 7F16 10016-17F16 2000,6-2FE016 level to hyperprivileged level

80,5— FF14 180,¢-1FF1  3000,4—3FEOQ;¢ | Software traps to hyperprivileged level

FIGURE 12-6 Hyperprivileged-mode Trap Table Layout

The hyperprivileged trap table comprises 512 thirty-two-byte entries. Therefore, the
total size of a full hyperprivileged trap table is 512 x 32 bytes (16 Kbytes).

Trap Table Entry Address to RED_st at e

Traps occurring in RED_st at e or traps that cause the virtual processor to enter
RED_st at e use an abbreviated trap vector, called the RED_st at e trap vector.

The RED_st at e trap vector is located at the following address, referred to as
RSTVADDR (impl. dep. #114-V9-Cs10):
Physical Address RSTVADDR = FFFF FFFF FO00 000044
(highest 256 MB of physical address space)

In an implementation that implements fewer than 64 bits of physical addressing,
unimplemented high-order bits of the above RSTVADDR are ignored.
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FIGURE 12-7 illustrates the trap vector address used for a trap delivered to
RED_st at e (in hyperprivileged mode).

FFFF g | FFFF1g | FFFF1g | 00 |TTrTL]| 00000 |
63 48 47 32 31 16 15 14 13 5 4 0

FIGURE 12-7 RED_st at e Trap Vector Address

12.5.6 RED_st at e Trap Table Organization

The RED_st at e trap table is constructed so that it can overlay the hyperprivileged
trap table (see FIGURE 12-6) if necessary. For a trap to RED_st at e, the trap table
offset is added to the base address contained in RSTVADDR to yield the RED_st at e
trap vector. FIGURE 12-8 illustrates the layout of the RED_st at e trap table.

Hardware Jrap Table
Trap Type Offset (from
(TT[TL]) RSTVADDR)  contents of Trap Table
0046 Reserved
1 2046 Power-on reset (POR)
TTf 4046 Watchdog reset (WDR)
3or TTH 6046 Externally initiated reset (XIR)
4 8016 Software-initiated reset (SIR)
T A0 All other exceptions in RED_st at e

t TT = trap type of the exception that caused entry into error _stat e

TT =3 if an externally_initiated_reset (XIR) occurs while the virtual processor is not in
error_state; TT = trap type of the exception that caused entry into error_state if the
externally initiated reset occurs in err or _st at e.

* TT = trap type of the exception. See TABLE 12-4 on page 459.

FIGURE 12-8 RED_st at e Trap Table Layout

12.5.7 Trap Type (TT)

When a normal trap occurs, a value that uniquely identifies the type of the trap is

written into the current 9-bit TT register (TT[TL]) by hardware. Control is then

transferred into the trap table to an address formed by one of the following,

depending on the trap’s destination privilege mode:

= The TBA register, (TL > 0), and TT[TL] (see Trap-Table Entry Address to Privileged
Mode on page 453)

» The HTBA register and TT[TL] (see Trap-Table Entry Address to Hyperprivileged
Mode on page 454)
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Programming | The spill_n_*, fill_n_*, clean_window, and MMU-related traps
Note | (fast_instruction_access_ MMU_miss,
fast_data_access_MMU_miss, and
fast_data_access_protection) are spaced such that their trap-
table entries are 128 bytes (32 instructions) long in the
UltraSPARC Architecture. This length allows the complete code
for one spill/fill routine, a clean_window routine, or a normal
MMU miss handling routine to reside in one trap-table entry.

When a RED_st at e trap occurs, the TT register is set as described in RED_st at e on
page 441. Control is then transferred into the RED_st at e trap table at an address
formed by RSTVADDR and an offset depending on the condition.

TT values 000,,—0FF;4 are reserved for hardware traps. TT values 100,4—-17F4 are
reserved for software traps (caused by execution of a Tcc instruction) to privileged-
mode trap handlers. TT values 180,4-1FF;¢ are used for software traps to trap
handlers operating in hyperprivileged mode.

IMPL. DEP. #35-V8-Cs20: TT values 0604 to 07F;4 were reserved for
implementation_dependent_exception_n exceptions in the SPARC V9 specification,
but are now all defined as standard UltraSPARC Architecture exceptions. See
TABLE 12-4 for details.
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The assignment of TT values to traps is shown in TABLE 12-4; TABLE 12-5 provides the
same list, but sorted in order of trap priority. The key to both tables follows:

Symbol

Meaning

HY

-X-

(ie)

(nm)

(pend)

This trap type is associated with a feature that is architecturally required in an
implementation of UltraSPARC Architecture 2005. Hardware must detect this
exception or interrupt, trap on it (if not masked), and set the specified trap type
value in the TT register.

This trap type is associated with a feature that is architecturally defined in
UltraSPARC Architecture 2005, but its implementation is optional.

Trap is taken via the Privileged trap table, in Privileged mode (PSTATE.priv = 1)

Trap is taken via the Hyperprivileged trap table, in Hyperprivileged mode
(HSTATE.hpriv = 1)

Trap is taken via the Hyperprivileged trap table, in Hyperprivileged mode
(HSTATE.hpriv = 1). However, the trap is unexpected. While hardware can
legitimately generate this trap, it should not do so unless there is a programming
error or some other error. Therefore, occurrence of this trap indicates an actual
error to hyperprivileged software.

Not possible. Hardware cannot generate this trap in the indicated running mode.
For example, all privileged instructions can be executed in both privileged and
hyperprivileged modes, therefore a privileged_opcode trap cannot occur in
privileged or hyperprivileged mode.

This trap is reserved for future use.

Always Masked — when the condition occurs in this privilege mode, it is always
masked out (but remains pending).

When the outstanding disrupting trap condition occurs in this privilege mode, it
may be conditioned (masked out) by PSTATE.ie = 0 (but remains pending).

Never Masked — when the condition occurs in this running mode, it is never
masked out and the trap is always taken.

Held Pending — the condition can occur in this running mode, but can’t be
serviced in this mode. Therefore, it is held pending until the mode changes to
one in which the exception can be serviced.

458 UltraSPARC Architecture 2005 « Draft D0.8.7, 27 Mar 2006



TABLE 12-4  Exception and Interrupt Requests, by TT Value (1 of 6)
Mode in which Trap is
Delivered (and
o Conditioning Applied),
Priority based on Current
UA-2005 T (0= Privilege Mode
® =Req'd. (Trap Trap High-
0=0pt’l Exception or Interrupt Request Type) Category est) NP Priv HP
— Reserved 00014 — — — — —
. power_on_reset 00144 reset 0 H H H
(nm) (m) (nm)
. watchdog_reset TT* reset 1.2 H H H
(nm) (nm) (nm)
. externally_initiated_reset 00314 reset 1.1 H H H
(nm) (nm) (nm)
. software_initiated_reset 00414 reset 1.3 -X- -X- H
(nm)
— Reserved 00514 — — — — —
° RED_state_exception T precise L) H H H
(nm) (nm) (nm)
— implementation-dependent 00614 — — — — —
O store_error 00714 deferred 2.01 H H H
(nm) (nm) (nm)
. instruction_access_exception 00814 precise 3 H H HY
(nm) (nm) (nm)
. instruction_access_MMU_miss’ 00914 precise 2.08 H H -X-
(nm) (nm)
. instruction_access_error 00A 14 precise 4 H H H
(nm) (nm) (nm)
— Reserved 00B¢— — — — — —
00Dq¢
— Reserved 00D ¢ — — — — —
00Eq¢
— Reserved 00F14 — — — — —
. illegal_instruction 01014 precise 6.2 H H H
(nm) (nm) (nm)
. privileged_opcode 01144 precise 7 p -X- -X-
(nm)
— Reserved 01214 — — — — —
01314
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TABLE 12-4  Exception and Interrupt Requests, by TT Value (2 of 6)

Mode in which Trap is
Delivered (and
Conditioning Applied),

Priority based on Current
UA-2005 T 0= Privilege Mode
® =Req’d. (Trap Trap High-
=0pt’l Exception or Interrupt Request Type) Category est) NP Priv HP
— Reserved 014B¢4- — — — — —
01714
— Reserved 01814~ — — — — —
01F¢
. fp_disabled 02014 precise 8 P P HY
(nm) (nm) (nm)
O fp_exception_ieee_754 02144 precise 111 P P HY
(nm) (nm) (nm)
0 fp_exception_other 02244 precise 11.1 P P HY
(nm) (nm) (nm)
. tag_overflow? 02314 precise 14 P P HY
(nm) (nm) (nm)
. clean_window 02416t precise  10.1 P P HY
(nm) (nm) (nm)
— Reserved 02514~ — — — — —
02714
. division_by_zero 02814 precise 15 P p HY
(nm) (nm) (nm)
O internal_processor_error 02916 precise . H H H
(nm) (nm) (nm)
O instruction_invalid_TSB_entry 02A1¢ precise 2.10 H H -X-
(nm)  (nm)
g data_invalid_TSB_entry 02B1¢ precise 12.03 H H H
(nm) (nm) (nm)
— Reserved 02Cq¢ — — — — —
— Reserved 02Dy4- — — — — —
02F ¢
. data_access_exception 03014 precise 12.01 H H HY
(nm) (nm) (nm)
. data_access_MMU_miss’ 03144 precise 12.03 H H H
(nm) (nm) (nm)
O data_access_error 03214 precise 12.10 H H H
(nm) (nm) (nm)
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TABLE 12-4  Exception and Interrupt Requests, by TT Value (3 of 6)

Mode in which Trap is
Delivered (and
Conditioning Applied),

Priority based on Current
UA-2005 T 0= Privilege Mode
® =Req'd. (Trap Trap High-
0=0pt’l Exception or Interrupt Request Type) Category est) NP Priv HP
— data_access_protection 03314 precise 12.07 H H H
(nm) (nm) (nm)
° mem_address_not_aligned 03414 precise 10.2 H H HY
(nm)  (nm) (nm)
. LDDF_mem_address_not_aligned 03514 precise 10.1 H H HY
(nm) (nm) (nm)
° STDF_mem_address_not_aligned 03614 precise 10.1 H H HY
(nm)  (nm) (nm)
. privileged_action 03714 precise 1.1 H H -X-
(nm) (nm)
O LDQF_mem_address_not_aligned 03814 precise 10.1 H H HY
(nm)  (nm)  (nm)
O STQF_mem_address_not_aligned 03916 precise 10.1 H H HY
(nm) (nm) (nm)
— Reserved 03A1¢ — — — — —
— Reserved 03B1¢ — — — — —
— Reserved 03B14- — — — — —
03D14
° instruction_real_translation_miss 03Eq1g precise 2.08 H H -X-
(nm) (nm)
. data_real_translation_miss 03F14 precise 12.03 H H H
(nm) (nm) (nm)
— Reserved 04044 — — — — —
. interrupt_level_n (n = 1-15) 04114 - disrupting  32-n P P (pend)
04F14 (31to  (ie) (ie)
17)
— Reserved 05016~ — — — — —
05Dq¢
. hstick_match 05Eq¢ disrupting  16.01 H H H
(nm) (nm)  (ie)
. trap_level_zero 05F14 disrupting  2.02 H H -X-
— Reserved 06014 — — — — —
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TABLE 12-4  Exception and Interrupt Requests, by TT Value (4 of 6)

Mode in which Trap is
Delivered (and
Conditioning Applied),

Priority based on Current
UA-2005 T 0= Privilege Mode
® =Req'd. (Trap Trap High-
=0pt’l Exception or Interrupt Request Type) Category est) NP Priv HP
O PA_watchpoint (RA_watchpoint) 06114 precise 12.09 H H H
(nm) (nm) (nm)
— Reserved 06214 — — — — —
d VA_watchpoint 06214 precise 11.2 p p -X-
(nm) (nm)
. fast_instruction_access_MMU_miss 06416jE precise 2.08 H H -X-
(nm) (nm)
— Reserved 06516~ — — — — —
06716
. fast_data_access_MMU_miss 06816jE precise 12.03 H H H
(nm) (nm) (nm)
— Reserved 06916~ — — — — —
06B1¢
. fast_data_access_protection 06C161' precise 12.07 H H H
(nm) (nm) (nm)
— Reserved 06D14— — — — — —
06Fq¢
O implementation_dependent_exception_n 07014 — O — — —
(impl. dep. #35-V8-Cs20) 07516
. instruction_breakpoint 07616 precise 6.1 H H H
O implementation_dependent_exception_n 077 — O — — —
(impl. dep. #35-V8-Cs20)
O implementation_dependent_exception_n 07914 — O — — —
(impl. dep. #35-V8-Cs20) 07B1¢
— Reserved 07916 — — — — —
. cpu_mondo 07Cq¢ disrupting  16.08 P P (pend)
(ie) (ie)
. dev_mondo 07D1¢ disrupting  16.11 p P (pend)
(ie) (ie)
. resumable_error 07Eq1¢ disrupting  33.3 P P (pend)
(ie) (ie)
g implementation_dependent_exception_15  07Fq¢ — O — — —

(impl. dep. #35-V8-Cs20)
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TABLE 12-4  Exception and Interrupt Requests, by TT Value (5 of 6)
Mode in which Trap is
Delivered (and
o Conditioning Applied),
Priority based on Current
UA-2005 T 0= Privilege Mode
® =Req'd. (Trap Trap High-
0=0pt’l Exception or Interrupt Request Type) Category est) NP Priv HP
— nonresumable_error 07F1¢ — — — — —
(generated by hyperprivileged software,
not by hardware)
. spill_n_normal (n = 0-7) 08014+ precise 9 P P HY
09Cq¢t (nm) (nm) (nm)
. (reserved for use by spill_7_normal; 09D 46— — — — — —
see footnote for trap type 09Cq¢) 09F14
. spill_n_other (n = 0-7) 0A0;¢H- precise 9 P P HY
0BCq¢t (nm) (nm) (nm)
. (reserved for use by spill_7_other 0BD14— — — — — —
see footnote for trap type 0BCq¢) 0BF14
. fill_n_normal (n = 0-7) 0COjg-  precise 9 P P HY
0DCq4t (nm) (nm) (nm)
. (reserved for use by fill_7_normal; 0DDq6- — — — — —
see footnote for trap type 0DCqg) 0DFq¢
. fill_n_other (n = 0-7) 0EO14+ precise 9 P P HY
0FCq¢t (nm) (nm) (nm)
. (reserved for use by fill_7_other O0FDq6- — — — — —
see footnote for trap type 0FCq¢) OFF1¢
. trap_instruction 10014— precise 16.02 p p HY
17F1¢ (nm) (nm) (nm)
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TABLE 12-4  Exception and Interrupt Requests, by TT Value (6 of 6)

Mode in which Trap is
Delivered (and
o Conditioning Applied),
Priority based on Current

UA-2005 T 0= Privilege Mode
® =Req'd. (Trap Trap High-
=0pt’l Exception or Interrupt Request Type) Category est) NP Priv HP
. htrap_instruction 18014— precise 16.02  -x- H HY
1FFq¢ (nm) (nm)
° guest_watchdog 4 B precise or o H H -X-
disrupting<> (nm) (nm)

" Although these trap priorities are reccommended, all trap priorities are implementation dependent (impl. dep. #36-V8 on page
469), including relative priorities within a given priority level.

¥ This exception type is only used in UltraSPARC Architecture 2005 implementations that support hardware MMU table walking.
See description of this exception in Exception and Interrupt Descriptions on page 481.

1 The trap vector entry (32 bytes) for this trap type plus the next three trap types (total of 128 bytes) are permanently reserved for
this exception.

¢ The guest_watchdog trap is caused when TL = MAXPTL and any precise or disrupting trap occurs that is destined for privileged
mode. guest_watchdog shares a trap table offset with watchdog_reset (40,¢), but retains the trap type (TT) value and priority
of the exception that caused the trap.

« watchdog_reset uses the trap vector entry for trap type 0024 (trap table offset 4014), but retains the trap type (TT) value of the
exception that caused entry into error_state .

# RED_state_exception uses the trap vector entry for trap type 00514 (trap table offset A0;4), but retains the trap type (TT) value
and priority of the exception that caused the trap.

¢ The priority of internal_processor_error is implementation dependent (impl. dep. # 402-S10)
0 The priority of an implementation_dependent_exception_n trap is implementation dependent (impl. dep. # 35-V8-Cs20)

D This exception is deprecated, because the only instructions that can generate it have been deprecated.
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TABLE 12-5  Exception and Interrupt Requests, by Priority (1 of 4)

Mode in which Trap is
Delivered and (and

UA-2005 o Conditioning Applied),
® =Req'd. Priority  pased on Current
=Opt’l T (0= Privilege Mode
O.=Impl- (Trap Trap High-
Specific Exception or Interrupt Request Type) Category est) NP Priv HP
. power_on_reset 00144 reset 0 H H H
(nm) (nm) (nm)
. externally_initiated_reset 00316 reset 1.1 H H H
(nm) (nm) (nm)
. watchdog_reset TT* reset 1.2 H H H
(nm) (nm) (nm)
. software_initiated_reset 00414 reset 1.3 -X- -X- H
(nm)
d store_error 00714 deferred  2.01 H H H
(nm) (nm) (nm)
. trap_level_zero 05Fq¢ disrupting  2.02 H H -X-
. instruction_real_translation_miss 03E1g precise H H -X-
(nm) (nm)
. instruction_access_MMU_miss’ 00916 precise 208 H H -X-
’ (nm) (nm)
. fast_instruction_access_ MMU_miss 06416¢ precise H H -X-
(nm) (nm)
O instruction_invalid_TSB_entry 02A14 precise 2.10 H H -X-
(nm) (nm)
. instruction_access_exception 00814 precise 3 H H HY
(nm) (nm) (nm)
. instruction_access_error 00A1¢ precise 4 H H H
(nm) (nm) (nm)
. instruction_breakpoint 07616 precise 6.1 H H H
. illegal_instruction 01044 precise 6.2 H H H
(nm) (nm) (nm)
. privileged_opcode 01144 precise 7 P -X- -X-
(nm)
. fp_disabled 02016 precise 8 P P HY

(nm) (nm) (nm)
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TABLE12-5  Exception and Interrupt Requests, by Priority (2 of 4)

Mode in which Trap is
Delivered and (and

UA-2005 ~ Conditioning Applied),
® =Req'd. Priority  pased on Current
O=0pt'l T (0= Privilege Mode
O.=Impl- (Trap Trap High-
Specific Exception or Interrupt Request Type) Category est) NP Priv HP
. spill_n_normal (n = 0-7) 080141 precise P P HY
09C; 6t (nm) (nm) (nm)
. spill_n_other (n = 0-7) 0A014f-  precise P P HY
0BCqgt (nm) (nm) (nm)
9
. fill_n_normal (n = 0-7) 0C0;5t-  precise P P HY
0DCqgt (nm) (nm) (nm)
. fill_n_other (n = 0-7) 0EO14+ precise p p HY
OFCq¢t (nm) (nm) (nm)
e clean_window 02446t precise P P HY
(nm) (nm) (nm)
. LDDF_mem_address_not_aligned 03516 precise H H HY
(nm) (nm) (nm)
. STDF_mem_address_not_aligned 03614 precise 101 H H HY
’ (nm) (nm) (nm)
0 LDQF_mem_address_not_aligned 03816 precise H H HY
(nm) (nm) (nm)
0 STQF_mem_address_not_aligned 03914 precise H H HY
(nm) (nm) (nm)
. mem_address_not_aligned 03414 precise 10.2 H H HY
(nm) (nm) (nm)
O  fp_exception_other 02214 precise P P HY
(nm) (nm) (nm)
O fp_exception_ieee_754 02144 precise P P HY
11.1 | (am) (nm) (nm)
. privileged_action 03716 precise H H -X-
(nm) (nm)
d VA_watchpoint 06214 precise 11.2 p p -X-
(nm) (nm)
. data_access_exception 03016 precise 1201 H H HY
(nm) (nm) (nm)
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TABLE 125  Exception and Interrupt Requests, by Priority (3 of 4)
Mode in which Trap is
Delivered and (and
UA-2005 ~ Conditioning Applied),
® =Req'd. Priority  pased on Current
O=0pt'l T (0= Privilege Mode
O.=Impl- (Trap Trap High-
Specific Exception or Interrupt Request Type) Category est) NP Priv HP
. data_real_translation_miss 03Fq¢4 precise H H H
(nm) (nm) (nm)
. data_access_ MMU_miss? 03144 precise H H H
(nm) (nm) (nm)
12.03
. fast_data_access_MMU_miss 06816¢ precise H H H
(nm) (nm) (nm)
O data_invalid_TSB_entry 02B1¢ precise H H H
(nm) (nm) (nm)
. fast_data_access_protection O6C161t precise H H H
(nm) (nm) (nm)
12.07
— data_access_protection 03316 precise H H H
(nm) (nm) (nm)
O PA_watchpoint (RA_watchpoint) 06114 precise 12.09 H H H
(nm) (nm) (nm)
o data_access_error 03214 precise 1210 H H H
(nm) (nm) (nm)
e tag_overflowP 02314 precise 14 P P HY
(nm) (nm) (nm)
. division_by_zero 02814 precise 15 P P HY
(nm) (nm) (nm)
. hstick_match 05Eq¢ disrupting 16.01 H H H
(nm) (nm) (ie)
. trap_instruction 10014— precise p p H
17F1¢ (nm) (nm) (nm)
16.02
e htrap_instruction 18014- precise x- H HY
1FFq¢ (nm) (nm)
. cpu_mondo 07C14 disrupting 16.08 P P (pend)
(ie)  (ie)
. dev_mondo 07D14 disrupting  16.11 P P (pend)

(ie)  (ie)
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TABLE12-5  Exception and Interrupt Requests, by Priority (4 of 4)
Mode in which Trap is
Delivered and (and
UA-2005 ~ Conditioning Applied),
® =Req'd. Priority  pased on Current
O=0pt'l T (0= Privilege Mode
O.=Impl- (Trap Trap High-
Specific Exception or Interrupt Request Type) Category est) NP Priv HP
. interrupt_level_n (n = 1-15) 04114~ disrupting  32-n P P (pend)
04Fq¢ (31to (ie) (ie)
17)
. resumable_error 07E1¢g disrupting  33.3 P P (pend)
(ie) (ie)
° guest_watchdog 0 o precise or ¢ H H -X-
TT . .0
disrupting (nm) (nm)
o RED_state_exception TT* precise & H H H
(nm) (nm) (nm)
| internal_processor_error 02916 precise + H H H
(nm) (nm) (nm)
O implementation_dependent_exception_n 0704 — — O — — —
(impl. dep. #35-V8-Cs20) 07514,
07716,
07916 —
07B1g,
07F1¢
— nonresumable_error 07F1¢ — — — — —

(generated by hyperprivileged software,
not by hardware)

* Although these trap priorities are recommended, all trap priorities are implementation dependent (impl. dep. #36-V8 on
page 469), including relative priorities within a given priority level.

¥ This exception type is only used in UltraSPARC Architecture 2005 implementations that support hardware MMU table
walking. See description of this exception in Exception and Interrupt Descriptions on page 481.

The trap vector entry (32 bytes) for this trap type plus the next three trap types (total of 128 bytes) are permanently reserved
for this exception.

¢ The guest_watchdog trap is caused when TL = MAXPTL and any precise or disrupting trap occurs that is destined for privi-
leged mode. guest_watchdog shares a trap table offset with watchdog_reset (4044), but retains the trap type (TT) value
and priority of the exception that caused the trap.

& watchdog_reset uses the trap vector entry for trap type 00214 (trap table offset 401¢), but retains the trap type (TT) value of
the exception that caused entry into error_state .

# RED_state_exception uses the trap vector entry for trap type 0054 (trap table offset AOy4), but retains the trap type (TT)
value and priority of the exception that caused the trap.

¢ The priority of internal_processor_error is implementation dependent (impl. dep. # 402-510)

0 The priority of an implementation_dependent_exception_n trap is implementation dependent (impl. dep. # 35-V8-Cs20)

D This exception is deprecated, because the only instructions that can generate it have been deprecated.

468 UltraSPARC Architecture 2005 « Draft D0.8.7, 27 Mar 2006



12.5.8

12.5.7.1 Trap Type for Spi 1l1/Fill Traps

The trap type for window spill /fill traps is determined on the basis of the contents of
the OTHERWIN and WSTATE registers as described below and shown in
FIGURE 12-9.

Bit Field Description
8:6 spill_or_fill 010, for spill traps; 011, for fill traps
5 other (OTHERWIN # 0)
4:2 wtype If (other) then WSTATE.other; else WSTATE.normal
Trap Type spill_or_fill other wtype 0 0
8 6 5 4 2 1 0

FIGURE 12-9 Trap Type Encoding for Spill/Fill Traps

Trap Priorities

TABLE 12-4 on page 459 and TABLE 12-5 on page 465 show the assignment of traps to
TT values and the relative priority of traps and interrupt requests. A trap priority is
an ordinal number, with 0 indicating the highest priority and greater priority
numbers indicating decreasing priority; that is, if x <y, a pending exception or
interrupt request with priority x is taken instead of a pending exception or interrupt
request with priority y. Traps within the same priority class (0 to 33) are listed in
priority order in TABLE 12-5 (impl. dep. #36-V8).

IMPL. DEP. #36-V8: The relative priorities of traps defined in the UltraSPARC
Architecture are fixed. However, the absolute priorities of those traps are
implementation dependent (because a future version of the architecture may define
new traps). The priorities (both absolute and relative) of any new traps are
implementation dependent.

However, the TT values for the exceptions and interrupt requests shown in
TABLE 12-4 and TABLE 12-5 must remain the same for every implementation.

The trap priorities given above always need to be considered within the context of
how the virtual processor actually issues and executes instructions. For example, if
an instruction_access_error occurs (priority 3), it will be taken even if the instruction
is an SIR (priority 1). This situation occurs because the virtual processor detects
instruction_access_error during instruction fetch and never actually issues or
executes the instruction, so the SIR instruction is never seen by the execution units of
the virtual processor. This is an obvious case, but there are other more subtle cases.
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12.6

Trap Processing

The virtual processor’s action during trap processing depends on various virtual
processor states, including the trap type, the current level of trap nesting (given in
the TL register), HPSTATE, and PSTATE. When a trap occurs, the GL register is
normally incremented by one (described later in this section), which replaces the set
of eight global registers with the next consecutive set.

The following traps are processed in RED_st at e:
= POR, XIR, and WDR reset requests

= SIR reset request when TL < MAXTL

= Non-reset traps taken when TL = MAXTL -1

= Traps taken when the virtual processor is in RED_st at e
All other traps are handled in execut e_st at e using normal trap processing.

During normal operation, the virtual processor is in execut e_st at e. It processes
traps in execut e_st at e and continues.

When a nonreset trap or software-initiated reset (SIR) occurs with TL = MAXTL, there
are no more levels on the trap stack, so the virtual processor enters the transitory
state er r or _st at e. The virtual processor remains in err or _st at e for an
implementation-dependent duration, then generates a WDR reset (impl. dep. #254-
U3-Cs10) to effect a change from error _st at e to RED_st at e.

Traps processed in RED_st at e use a special trap vector and a special trap-vectoring
algorithm. RED_st at e vectoring and the setting of the TT value for RED_st at e
traps are described in RED_st at e Trap Table Organization on page 456.

Traps that occur with TL = MAXTL — 1 are processed in RED_st at e. In addition, reset
traps are also processed in RED_st at e. Reset trap processing is described in
RED_st at e Trap Processing on page 474. Finally, software can force the processor
into RED_st at e by setting the HPSTATE.red bit to 1.

Once the virtual processor has entered RED_st at e, no matter how it got there, all
subsequent traps are processed in RED_st at e until software returns the virtual
processor to execut e_st at e or a normal or SIRtrap is taken with TL = MAXTL,
which puts the virtual processor in err or _st at e.
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TABLE 12-6, TABLE 12-7, and TABLE 12-8 describe the virtual processor mode and trap-
level transitions involved in handling traps.

TABLE 12-6

Trap Received While in execut e_st ate

New State, After Receiving Trap Type

TL = MAXTL

TL = MAXTL

TL = MAXTL

TL = MAXTL

Original State Nonreset Trap POR XIR WDR SIR
or Interrupt
execute_state execute_state RED_st at e RED st ate ¥ RED st ate
TL < MAXTL -1 TL -« TL+1 TL = MAXTL TL « TL+1 TL « TL+1
execute_state RED state RED st ate RED state ¥ RED state
TL = MAXTL-1 TL = MAXTL TL = MAXTL TL = MAXTL TL = MAXTL
execute_state’ error_state RED_st at e RED st ate ¥ error_state

TL = MAXTL

* This state occurs when software changes TL to MAXTL and leaves HPSTATE.red = O, or if software sets HPSTATE.red ~ 0 while

TL = MAXTL.

I WDR can only be generated from er r or _st at e.

TABLE 12-7 Trap Received While in RED_st at e

New State, After Receiving Trap Type

Original State Nonreset Trap POR XIR WDR SIR
or Interrupt
RED state RED state RED state RED st ate ¥ RED st ate
TL < MAXTL-1 TL - TL+1 TL = MAXTL TL - TL+1 TL - TL+1
RED st at e RED_st at e RED st at e RED_st at e ¥ RED_st at e
TL = MAXTL-1 TL = MAXTL TL = MAXTL TL = MAXTL TL = MAXTL
RED state error_state RED state RED st ate ¥ error_state
TL = MAXTL TL = MAXTL TL = MAXTL TL = MAXTL TL = MAXTL
1 WDR can only be generated from err or _st at e.
TABLE 12-8 Reset Received While in error _st ate
New State, After Receiving Trap Type
Original State Nonreset Trap POR XIR WDR SIR
or Interrupt
error_state — RED state RED st ate RED state —
TL = MAXTL TL = MAXTL TL = MAXTL

TL = MAXTL

The virtual processor does not recognize interrupts while it is in error _st at e.

A non-reset trap causes the following state changes to occur:
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= If the virtual processor is already in RED_st at e, the new trap is processed in
RED_st at e unless TL = MAXTL. See Nonreset Traps When the Virtual Processor Is in
RED_st at e on page 480.

= If the virtual processor is in execut e_st at e and the trap level is one less than
its maximum value, that is, TL = MAXTL-1, then the virtual processor enters
RED_st at e. See RED_st at e on page 441 and Nonreset Traps with TL = MAXTL — 1
on page 474.

= If the virtual processor is in either execut e_st at e or RED_st at e and the trap
level is already at its maximum value, that is, TL = MAXTL, then the virtual
processor enters err or _st at e. See error _st at e on page 444.

Otherwise, the trap uses normal trap processing, described in the following section
on Normal Trap Processing.

12.6.1 Normal Trap Processing

Normal traps comprise all traps processed in execut e_st at e; that is, all non-
RED_st at e and non-er r or _st at e traps.

A trap is delivered in either privileged mode or hyperprivileged mode, depending
on the type of trap, the trap level (TL), and the privilege mode in effect when the
exception was detected.

During normal trap processing, the following state changes occur (conceptually, in
this order):

» The trap level is updated. This provides access to a fresh set of privileged trap-
state registers used to save the current state, in effect, pushing a frame on the trap
stack.

TL ~ TL+1 // note that if TL = MAXTL — 1 before this trap,
// trap would have been processed in
// RED_st at e, not here using normal trap
// processing.

= Existing state is preserved.
TSTATE[TL].gl ~ GL
TSTATE[TL].ccr ~ CCR
TSTATE[TL].asi ~ ASI
TSTATE[TL].pstate — PSTATE
TSTATE[TL].cwp ~ CWP
TPC[TL] ~ PC // (upper 32 bits zeroed if PSTATE.am =1)
TNPCI[TL] ~ NPC // (upper 32 bits zeroed if PSTATE.am = 1)
HTSTATE[TL].hpstate — HPSTATE //even for traps to privileged mode

= The trap type is preserved.
TT[TL] « the trap type

= The Global Level register (GL) is updated. This normally provides access to a
fresh set of global registers:
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if (the trap is being delivered in privileged mode)

then GL « min (GL + 1, MAXPGL)

else (trap is being delivered in hyperprivileged mode)
GL « min (GL + 1, MAXGL)

endif

» The PSTATE register is updated to a predefined state (even for traps to
hyperprivileged mode):

PSTATE.mm is unchanged

PSTATE.pef  ~ 1 // if an FPU is present, it is enabled

PSTATE.am  ~ 0 // address masking is turned off

if (the trap is being delivered in privileged mode)

then PSTATE.priv — 1 // the virtual processor enters privileged mode
PSTATE.cle — PSTATE.tle //set endian mode for traps

else // trap is being delivered in hyperprivileged mode
PSTATE.priv — 0
PSTATE.cle ~ 0

endif

PSTATE.ie ~ 0 // interrupts are disabled
PSTATE.tle  is unchanged
PSTATE.tct ~ 0 // trap on CTI disabled
= The HPSTATE register is updated:
if (the trap is to hyperprivileged mode)
then HPSTATE.red —~ 0
HPSTATE.hpriv — 1 // enter hyperprivileged mode
HPSTATE.ibe 0 disable instruction breakpoints
HPSTATE.tlz is unchanged
endif
= For a register-window trap (clean_window, window spill, or window fill) only,
CWP is set to point to the register window that must be accessed by the trap-
handler software, that is:
if TT[TL] = 0244 // a clean_window trap
then CWP ~ CWP +1
endif
if (08014 < TT[TL] < 0BF4) // window spill trap
then CWP ~ CWP + CANSAVE +2
endif
if (0C0y4 < TT[TL] < 0FF4) // window fill trap
then CWP ~ CWP -1
endif

For non-register-window traps, CWP is not changed.
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= Control is transferred into the trap table:

// Note that at this point, TL has already been incremented (above)
if ( (trap is to privileged mode) and (TL < MAXPTL) )
then
/ /the trap is handled in privileged mode
/ /Note: The expression “(TL > 1)” below evaluates to the
/ /value 0, if TL was 0 just before the trap (in which
//case, TL = 1 now, since it was incremented above,
//during trap entry). “(TL > 1)” evaluates to 1, if
//TL was > 0 before the trap.
PC ~ TBA{63:15} :: (TL > 1) :: TT[TL] :: 0 0000,
NPC — TBA{63:15} :: (TL > 1) :: TT[TL] :: 0 0100,
else if ( (trap is to privileged mode) and (TL > MAXPTL) )
then  // this is the guest_watchdog case; the trap is handled in
// hyperprivileged mode using trap table offset 404.
PC — HTBA{63:14} :: 00, :: 04044
NPC — HTBA{63:14} :: 00, :: 04444
else { trap is handled in hyperprivileged mode }
PC — HTBA{63:14} :: TT[TL] :: 0 0000,
NPC — HTBA{63:14} :: TT[TL] :: 0 0100,
endif

Interrupts are ignored as long as PSTATE.ie = 0.

Programming | State in TPC[n], TNPC[n], TSTATE[n], and TT[n] is only
Note | changed autonomously by the processor when a trap is taken
while TL = n —1; however, software can change any of these
values with a WRPR instruction when TL = n.

12.6.2 RED_st at e Trap Processing

The following conditions invoke RED_st at e trap processing, and cause the trap to
be delivered in hyperprivileged mode:

» Traps taken with TL = MAXTL -1

= Power-on reset traps

= Watchdog reset traps

= Externally initiated reset traps

= Software-initiated reset traps

» Traps taken when the virtual processor is already in RED_st at e

IMPL. DEP. #38-V8: Implementation-dependent registers may or may not be
affected by the various reset traps.

12.6.2.1 Nonreset Traps with TL = MAXTL -1

Nonreset traps that occur when TL = MAXTL — 1 are processed in RED_st at e.
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The following state changes occur (conceptually, in this order) during a nonreset
trap that occurs when TL = MAXTL - 1:
= The trap level is advanced.

TL « MAXTL

= Existing state is preserved.
TSTATE[TL].gl ~ GL
TSTATE[TL].ccr ~ CCR
TSTATE[TL].asi ~ ASI
TSTATE[TL].pstate — PSTATE
TSTATE[TL].cwp ~ CWP
TPC[TL] « PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPC[TL] « NPC // (upper 32 bits zeroed if PSTATE.am = 1)

HTSTATE[TL].hpstate —~ HPSTATE
= The trap type is preserved.

TT[TL] ~ the trap type
= The Global Level register is updated.

GL ~ min (GL + 1, MAXGL)

= The PSTATE register is set as follows:
PSTATE.mm ~ 00, // TSO
PSTATE.pef  ~ 1 // if an FPU is present, it is enabled
PSTATE.am  ~ 0 // address masking is turned off
PSTATE.priv.  — 0 // entering hyperprivileged mode
PSTATE.ie ~ 0 // interrupts are disabled
PSTATE.cle  — 0 // big-endian is default for hyperprivileged mode
PSTATE.tle  is unchanged // (was unspecified in SPARC V9 specification)
PSTATE.tct ~ 0 // trap on CTI disabled

» The HPSTATE register is updated:

HPSTATE.red ~ 1 // enter RED state
HPSTATE.hpriv — 1 // enter hyperprivileged mode

HPSTATE.ibe ~ 0 // disable instruction breakpoints
HPSTATE.tlz ~ 0 // disable trap_level_zero exceptions

= For a register-window trap only, CWP is set to point to the register window that
must be accessed by the trap-handler software, that is:

If TT[TL] = 02444 // a clean_window trap
then CWP ~ CWP +1
endif

If (08014 < TT[TL] < 0BFy¢) // window spill trap
then CWP ~ CWP + CANSAVE + 2
endif
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If (0C01 < TT[TL] < OFF1¢) // window fill trap
then CWP ~ CWP-1
endif
For non-register-window traps, CWP is not changed.
» Implementation-specific state changes; for example, disabling an MMU.

= Control is transferred into the RED_st at e trap table. See Trap Table Entry Address
to RED_st at e on page 455 for further details of RSTVADDR.
PC ~ RSTVADDR{63:8} :: 1010 0000,
NPC ~ RSTVADDR({63:8} :: 1010 0100,

12.6.2.2 Power-On Reset (POR) Traps

A POR trap occurs when power is applied to the virtual processor. If the virtual
processor is in er r or _st at e, a POR brings the virtual processor out of
error_state and places it in RED_st at e. See Chapter 16, Resets for further
details.

Virtual processor state is undefined after POR, except for the following;:

= The trap level is set.

TL « MAXTL

= The trap type is set.
TT[TL] ~ 00144

= The Global Level register is updated.
GL < MAXGL

» The PSTATE register is set as follows:

PSTATE.mm ~ 00, // TSO

PSTATE.pef ~ 1 // if an FPU is present, it is enabled

PSTATE.am ~ 0 // address masking is turned off

PSTATE.priv  ~ 0 // entering hyperprivileged mode

PSTATE.ie ~ 0 // interrupts are disabled

PSTATE.cle  ~ 0 // big-endian is default for hyperprivileged mode
PSTATE.tle ~ 0 // big-endian mode for traps

PSTATE.tct ~ 0 // trap on CTI disabled

» The HPSTATE register is updated:

HPSTATE.red ~ 1 // enter RED state
HPSTATE.hpriv — 1 // enter hyperprivileged mode
HPSTATE.ibe « 0 // disable instruction breakpoints
HPSTATE.tlz ~ 0 // disable trap_level_zero exceptions

= The TICK register is protected.
TICK.npt ~ 1 // TICK is unreadable by nonprivileged software

» Implementation-specific state changes; for example, disabling an MMU.
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= Control is transferred into the RED_st at e trap table.
PC — RSTVADDR({63:8} :: 0010 0000,
NPC ~ RSTVADDR({63:8} :: 0010 0100,

12.6.2.3 Watchdog Reset (WDR) Traps

Entry to err or _st at e is caused by occurrence of a trap when TL = MAXTL (impl.
dep. #39-V8-Cs10). See er r or _st at e on page 444.

To recover from er r or _st at e, the UltraSPARC Architecture provides
watchdog_reset (WDR), which causes a transition from err or _st at e to
RED_st at e (impl. dep. #254-U3-Cs10).

The following virtual processor state changes occur during WDR (conceptually, in
this order):

= The trap level is updated.
TL « min (TL + 1, MAXTL)

= Existing state is preserved.
TSTATE[TL].gl ~ GL
TSTATE[TL].ccr — CCR
TSTATE[TL].asi — ASI
TSTATE[TL].pstate — PSTATE
TSTATE[TL].cwp ~ CWP
TPC[TL] ~ PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPCITL] « NPC // (upper 32 bits zeroed if PSTATE.am =1)
HTSTATE[TL].hpstate ~ HPSTATE

= The trap type is set.

TT[TL] « the trap type that caused the WDR
= The Global Level register is updated.
GL ~ min (GL + 1, MAXGL)

» The PSTATE register is set as follows:

PSTATE.mm  ~ 00, // TSO

PSTATE.pef ~ 1 // if an FPU is present, it is enabled

PSTATE.am ~ 0 // address masking is turned off

PSTATE.priv  ~ 0 // entering hyperprivileged mode

PSTATE.ie « 0 // interrupts are disabled

PSTATE.cle  ~ 0 // big-endian is default for hyperprivileged mode
PSTATE.tle  is unchanged // (was unspecified in SPARC V9 specification)
PSTATE.tct ~ 0 // trap on CTI disabled

= The HPSTATE register is updated:
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HPSTATE.red ~ 1 // enter RED st ate
HPSTATE.hpriv — 1 // enter hyperprivileged mode
HPSTATE.ibe ~ 0 // disable instruction breakpoints
HPSTATE.tlz ~ 0 // disable trap_level_zero exceptions

» Implementation-specific state changes; for example, disabling an MMU.
» Control is transferred into the RED_st at e trap table.

PC ~ RSTVADDR{63:8} :: 0100 0000,

NPC «~ RSTVADDR({63:8} :: 0100 0100,

12.6.2.4 Externally Initiated Reset (XIR) Traps

XIR traps are initiated by an external signal. They behave like an interrupt that
cannot be masked by PSTATE.ie = 0 or PIL. Typically, XIR is used for critical system
events such as power failure, reset button pressed, failure of external components
that does not require a WDR (which aborts operations), or systemwide reset in a
multiprocessor. See Chapter 16, Resets for further details.

If TL = MAXTL, then the virtual processor enters er r or _st at e. The following
virtual processor state changes occur during XIR (conceptually, in this order):

= The trap level is updated:
TL « min (TL + 1, MAXTL)

= Existing state is preserved.
TSTATE[TL].gl ~ GL
TSTATE[TL].ccr ~ CCR
TSTATE[TL].asi ~ ASI
TSTATE[TL].pstate — PSTATE
TSTATE[TL].cwp ~ CWP
TPC[TL] « PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPCITL] ~ NPC // (upper 32 bits zeroed if PSTATE.am = 1)
HTSTATE[TL].hpstate — HPSTATE

= The trap type is set.

TT[TL] ~ 00344
= The Global Level register is updated.
GL ~ min (GL + 1, MAXGL)

= The PSTATE register is set as follows:

PSTATE.mm ~ 00, // TSO

PSTATE.pef 1 // if an FPU is present, it is enabled

PSTATE.am  ~ 0 // address masking is turned off

PSTATE.priv.  — 0 // entering hyperprivileged mode

PSTATE.ie ~ 0 // interrupts are disabled

PSTATE.cle  — 0 // big-endian is default for hyperprivileged mode
PSTATE.tle  is unchanged // (was unspecified in SPARC V9 specification)
PSTATE.tct ~ 0 // trap on CTI disabled
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» The HPSTATE register is updated:
HPSTATE.red ~ 1 // enter RED state
HPSTATE.hpriv — 1 // enter hyperprivileged mode
HPSTATE.ibe « 0 // disable instruction breakpoints
HPSTATE.tlz ~ 0 // disable trap_level_zero exceptions

» Implementation-specific state changes; for example, disabling an MMU.

= Control is transferred into the RED_st at e trap table.
PC ~ RSTVADDR({63:8} :: 0110 0000,
NPC ~ RSTVADDR{63:8} :: 0110 0100,

See Externally Initiated Reset (XIR) on page 547 and the documentation for specific
processor implementations for more information.

12.6.2.5 Software-Initiated Reset (SIR) Traps

A software-initiated reset trap is initiated by execution of an SIR instruction in
hyperprivileged mode. Hyperprivileged software uses the SIR trap as a panic
operation or a metahypervisor trap. See Chapter 16, Resets for further details.

If TL = MAXTL, then the virtual processor enters err or _st at e.

Otherwise, TL < MAXTL as trap processing begins and the following virtual processor
state changes occur (conceptually, in this order):

= The trap level is updated.
TL <~ TL+1

= Existing state is preserved.
TSTATE[TL].gl ~ GL
TSTATE[TL].ccr ~ CCR
TSTATE[TL].asi ~ ASI
TSTATE[TL].pstate — PSTATE
TSTATE[TL].cwp ~ CWP
TPC[TL] « PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPCITL] ~ NPC // (upper 32 bits zeroed if PSTATE.am = 1)
HTSTATE[TL].hpstate — HPSTATE

» The trap type is set.

TT[TL] ~ 0444
= The Global Level register is updated.
GL ~ min (GL + 1, MAXGL)

= The PSTATE register is set as follows:

PSTATE.mm 00, // TSO

PSTATE.pef  ~ 1 // if an FPU is present, it is enabled
PSTATE.am  ~ 0 // address masking is turned off
PSTATE.priv.  — 0 // entering hyperprivileged mode
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PSTATE.ie ~ 0 // interrupts are disabled
PSTATE.cle  ~ 0 // big-endian is default for hyperprivileged mode
PSTATE.tle  is unchanged // (was unspecified in SPARC V9 specification)
PSTATE.tct ~ 0 // trap on CTI disabled
» The HPSTATE register is updated:
HPSTATE.red ~ 1 // enter RED state
HPSTATE.hpriv — 1 // enter hyperprivileged mode
HPSTATE.ibe « 0 // disable instruction breakpoints
HPSTATE.tlz ~ 0 // disable trap_level_zero exceptions

» Implementation-specific state changes; for example, disabling an MMU.

» Control is transferred into the RED_st at e trap table.
PC ~ RSTVADDR{63:8} :: 1000 0000,
NPC ~ RSTVADDR{63:8} :: 1000 0100,

See Software-Initiated Reset (SIR) on page 548 and the documentation for specific
processor implementations for more information.

12.6.2.6 Nonreset Traps When the Virtual Processor Is in
RED state

When a nonreset trap occurs while the virtual processor is in RED_st at e, if
TL = MAXTL, then the virtual processor enters err or _st at e.

Otherwise, TL < MAXTL as trap processing begins, the virtual processor remains in
RED_st at e, and the following virtual processor state changes occur (conceptually,
in this order):

= The trap level is updated.
TL < TL+1

= Existing state is preserved.
TSTATE[TL].gl ~ GL
TSTATE[TL].ccr ~ CCR
TSTATE[TL].ASI — ASI
TSTATE[TL].pstate — PSTATE
TSTATE[TL].cwp — CWP
TPC[TL] ~ PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPCJ[TL] ~ NPC // (upper 32 bits zeroed if PSTATE.am = 1)
HTSTATE[TL].hpstate ~ HPSTATE

= The trap type is preserved.
TT[TL] ~ trap type
= The Global Level register is updated.
GL ~ min (GL + 1, MAXGL)
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= The PSTATE register is set as follows:

PSTATE.mm ~ 00, // TSO

PSTATE.pef 1 // if an FPU is present, it is enabled

PSTATE.am  ~ 0 // address masking is turned off

PSTATE.priv.  — 0 // entering hyperprivileged mode

PSTATE.ie ~ 0 // interrupts are disabled

PSTATE.cle  — 0 // big-endian is default for hyperprivileged mode
PSTATE.tle ~ unchanged // (was unspecified in SPARC V9 specification)
PSTATE.tct ~ 0 // trap on CTI disabled

» The HPSTATE register is updated:
HPSTATE.red ~ 1 // enter RED state
HPSTATE.hpriv — 1 // enter hyperprivileged mode
HPSTATE.ibe ~ 0 // disable instruction breakpoints
HPSTATE.tlz is unchanged
= For a register-window trap only, CWP is set to point to the register window that
must be accessed by the trap-handler software, that is:
If TT[TL] = 02444 // a clean_window trap
then CWP ~ CWP +1
endif
If (08016 < TT[TL] < OBF;¢) // window spill trap
then CWP ~ CWP + CANSAVE +2
endif
If (0C0q4 < TT[TL] < 0FFq¢) // window fill trap
then CWP ~ CWP -1
endif
= For non-register-window traps, CWP is not changed.
» Implementation-specific state changes; for example, disabling an MMU.
= Control is transferred into the RED_st at e trap table.
PC «~ RSTVADDR({63:8} :: 1010 0000,
NPC ~ RSTVADDR({63:8} :: 1010 0100,

12.7  Exception and Interrupt Descriptions

The following sections describe the various exceptions and interrupt requests and
the conditions that cause them. Each exception and interrupt request describes the
corresponding trap type as defined by the trap model.
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All other trap types are reserved.

Note | The encoding of trap types in the UltraSPARC Architecture
differs from that shown in The SPARC Architecture Manual-
Version 9. Each trap is marked as precise, deferred, disrupting, or
reset. Example exception conditions are included for each
exception type. Chapter 7, Instructions, enumerates which traps
can be generated by each instruction.

The following traps are generally expected to be supported in all UltraSPARC
Architecture 2005 implementations. A given trap is not required to be supported in
an implementation in which the conditions that cause the trap can never occur.

= clean_window [TT =024,,—-027;4] (Precise) — A SAVE instruction discovered
that the window about to be used contains data from another address space; the
window must be cleaned before it can be used.

IMPL. DEP. #102-V9: An implementation may choose either to implement
automatic cleaning of register windows in hardware or to generate a
clean_window trap, when needed, so that window(s) can be cleaned by software.
If an implementation chooses the latter option, then support for this trap type is
mandatory.

= cpu_mondo [TT = 07Cy4] (Disrupting) — This interrupt is generated when
another virtual processor has enqueued a message for this virtual processor. It is
used to deliver a trap in privileged mode, to inform privileged software that an
interrupt report has been appended to the virtual processor’s CPU mondo queue.
A direct message between virtual processors is sent via a CPU mondo interrupt,
which is generated through software calls to hyperprivileged software. The
standard software interface (API) to hyperprivileged software allows 64 bytes of
data to be sent to one or more target virtual processors. When the CPU mondo
queue has a valid entry, a cpu_mondo exception is sent to the target virtual
processor.

= data_access_error [TT = 03244] (Precise) — A hardware error occurred during a
data access.

=« data_access_exception [TT = 030¢4] (Precise) — An exception occurred on an

attempted data access. Detailed information regarding the error is logged into the

ft field of the DSFSR (Data Synchronous Fault Status register, ASI 584,

VA = 184¢).

The conditions that may cause a data_access_exception exception are:

= Privilege Violation — An attempt to access a privileged page (TTE.p = 1) by
any type of load, store, or load-store instruction when executing in
nonprivileged mode (PSTATE.priv = 0). This includes the special case of an
access by privileged software using one of the
ASI _AS_| F_USER_PRI MARY[_LI TTLE] or
ASI _AS_| F_USER_SECONDARY[_LI TTLE] ASIs.
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= Illegal Access to Noncacheable Page — An access to a noncacheable page
(TTE.cp = 0) (including cases with the TLB disabled) was attempted by an
atomic load-store instruction (CASA, CASXA, SWAP, SWAPA, LDSTUB, or
LDSTUBA) or an LDTXA instruction.

= Illegal Access to Page That May Cause Side Effects — An attempt was made
to access a page which may cause side effects (TTE.e = 1) (including cases with
the TLB disabled) by any type of load instruction with nonfaulting ASI.

= Invalid ASI — An attempt was made to execute an invalid combination of
instruction and ASI. See the instruction descriptions in Chapter 7 for a detailed
list of valid ASIs for each instruction that can access alternate address spaces.
The following invalid combinations of instruction, ASI, and virtual address
cause a data_access_exception exception:

« A load, store, load-store, or PREFETCHA instruction with either an invalid
ASI or an invalid virtual address for a valid ASI.

» A disallowed combination of instruction and ASI (see Block Load and Store
ASIs on page 429 and Partial Store ASIs on page 430). This includes the
following:

= An attempt to use a Load Twin Extended Word (LDTXA) ASI (see ASIs 1014,
1144, 1614, 1715 and 1815 ASI _* AS_I F_USER_*) on page 422) with any load
alternate opcode other than LDTXA’s (which is shared by LDTWA)

= An attempt to use a nontranslating ASI value with any load or store alternate
instruction other than LDXA, LDDFA, STXA, or STDFA

= An attempt to read from a write-only ASI-accessible register
= An attempt to write to a read-only ASI-accessible register

= Illegal Access to Non-Faulting-Only Page — An attempt was made to access a
non-faulting-only page (TTE.nfo = 1) by any type of load, store, or load-store
instruction with an ASI other than a nonfaulting ASI
(PRI MARY_NO_FAULT[_LI TTLE] or SECONDARY_NO FAULT[_LI TTLE]).

Forward | The next revision of the UltraSPARC Architecture is expected to
Compatibility | replace data_access_exception with several more specific
Note | exceptions — one for each condition that currently can cause a
data_access_exception. This will support slightly faster trap
handling for these exceptions and allow elimination of the D-
SFSR register.

= data_access_MMU_miss [TT = 031y4] (Precise) — During an attempted data
access to memory,
(1) hardware tablewalk is enabled,
(2) the MMU detects that a translation lookaside buffer did not contain a
translation for the data’s virtual address, and
(3) the required TTE was not found in the configured TSBs.
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= data_invalid_TSB _entry [TT = 02B;¢] (Precise) — During an attempted data

access,

(1) hardware tablewalk was enabled,

(2) the MMU detected that a translation lookaside buffer did not contain a
translation for the virtual address, and

(3) the required TTE was found in the configured TSBs to be a real address,
requiring real-to-physical address translation, and

(4) the real address cannot be translated to a physical address by hardware.

= data_real_translation_miss [TT = 03F;¢] (Precise) — During an attempted real
address data access, the MMU detected that a translation lookaside buffer (TLB)
did not contain a translation for the real address (that is, a TLB miss occurred).

= dev_mondo [TT = 07Dqg4] (Disrupting) — This interrupt causes a trap to be
delivered in privileged mode, to inform privileged software that an interrupt
report has been appended to its device mondo queue. When a virtual processor
has appended a valid entry to a target virtual processor’s device mondo queue, it
sends a dev_mondo exception to the target virtual processor. The interrupt report
contents are device specific.

= division_by_zero [TT = 02844] (Precise) — An integer divide instruction
attempted to divide by zero.

= externally_initiated_reset (XIR) [TT = 003;¢] (Reset) — An external signal was
asserted. This trap is used for catastrophic events such as power failure, reset
button pressed, and system-wide reset in multiprocessor systems.

« fast_data_access_MMU_miss [TT = 068;¢] (Precise) — During an attempted
data access to memory,
(1) hardware tablewalk was disabled (or is not implemented) and
(2) the MMU detected that a translation lookaside buffer did not contain a
translation for the virtual address.
Four trap vectors are allocated for this trap, allowing a TLB miss handler of up to
32 instructions to fit within the trap vector area.

« fast_data_access_protection [TT = 06C4] (Precise) — During an attempted
data write access (by a store or load-store instruction), the instruction had
appropriate access privilege but the MMU signalled that the location was write-
protected (write to a read-only location (TTE.w = 0)). Four trap vectors are
allocated for this trap, allowing a trap handler of up to 32 instructions to fit
within the trap vector area.

Note that on an UltraSPARC Architecture virtual processor, an attempt to read or
write to a privileged location while in nonprivileged mode causes the higher-
priority instead of this exception.

= fast_instruction_access_MMU_miss [TT = 064¢4] (Precise) — During an
attempted instruction virtual address access,
(1) hardware tablewalk was disabled (or is not implemented) and
(2) the MMU detected a TLB miss.
Four trap vectors are allocated for this trap, allowing a trap handler of up to 32
instructions to fit within the trap vector area.
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fill_n_normal [TT = 0C0;,—0DF;¢] (Precise)
fill_n_other [TT = 0E0;4—0FF;¢] (Precise)

A RESTORE or RETURN instruction has determined that the contents of a
register window must be restored from memory.

fp_disabled [TT = 0204] (Precise) — An attempt was made to execute an FPop, a
floating-point branch, or a floating-point load /store instruction while an FPU was
disabled (PSTATE.pef =0 or FPRS.fef = 0).

fp_exception_ieee_754 [TT = 021;¢] (Precise) — An FPop instruction generated
an IEEE_754_exception and its corresponding trap enable mask (FSR.tem) bit was
1. The floating-point exception type, IEEE_754_exception, is encoded in the
FSRftt, and specific IEEE_754_exception information is encoded in FSR.cexc.

fp_exception_other [TT = 02244] (Precise) — An FPop instruction generated an
exception other than an IEEE_754_exception. Examples: the FPop is
unimplemented or execution of an FPop requires software assistance to complete.
The floating-point exception type is encoded in FSRftt.

guest_watchdog [TT = (see text)] (Precise, Disrupting) — The virtual processor
was in nonprivileged or privileged mode, TL was = MAXPTL, and a precise or
disrupting exception to privileged mode occurred. guest_watchdog uses the same
trap table entry (table offset 040,4) as watchdog_reset. When a guest_watchdog
trap occurs, the trap type (TT) value and priority of the exception that caused the
trap are retained.

hstick_match [TT = 05E¢] (Disrupting) —This interrupt indicates that a match
between the System Tick (STICK) and the Hypervisor System Tick Compare
(HSTICK_CMPR) register has occurred. The event is recorded in the
hstick_match_pending (hsp) bit of the Hypervisor Interrupt Pending (HINTP)
register. The hstick_match disrupting trap is recognized when HINTP.hsp =1 and
PSTATE.ie =1 or HPSTATE.hpriv = 0; otherwise, it remains pending. HINTP.hsp
provides a mechanism for hyperprivileged software to determine that an
hstick_match trap is pending while PSTATE.ie = 0 and to clear the condition
without actually having to take the hstick_match trap.

htrap_instruction [TT = 180;¢—1FF4] (Precise) — A Tcc instruction was executed
in privileged or hyperprivileged mode, the trap condition evaluated to TRUE, and
the software trap number was greater than 127. The trap is delivered in
hyperprivileged mode, using the hyperprivileged mode trap base address
(HTBA). See also trap_instruction on page 489.

illegal_instruction [TT = 010¢4] (Precise) — An attempt was made to execute an
ILLTRAP instruction, an instruction with an unimplemented opcode, an
instruction with invalid field usage, or an instruction that would result in illegal
processor state.

Note | An unimplemented FPop instruction generates an
fp_exception_other exception with ftt = 3, instead of an
illegal_instruction exception.

Examples of cases in which illegal_instruction is generated include the following:
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= An instruction encoding does not match any of the opcode map definitions (see
Appendix A, Opcode Maps).

= A non-FPop instruction is not implemented in hardware.
« A reserved instruction field in Tcc instruction is nonzero.

If a reserved instruction field in an instruction other than Tcc is nonzero, an
illegal_instruction exception should be, but is not required to be, generated.
(See Reserved Opcodes and Instruction Fields on page 132.)

= An illegal value is present in an instruction i field.

= Anillegal value is present in a field that is explicitly defined for an instruction,
such as cc2, ccl, ccO, fcn, impl, op2 (IMPDEP2A, IMPDEP2B), rcond, or opf_cc.

» Illegal register alignment (such as odd rd value in a doubleword load
instruction).

= Illegal rd value for LDXFSR, STXFSR, or the deprecated instructions LDFSR or
STFSR.

» ILLTRAP instruction.
« DONE or RETRY when TL = 0.

All causes of an illegal_instruction exception are described in individual
instruction descriptions in Chapter 7, Instructions.

= instruction_access_error [TT = 00A 4] (Precise) — A hardware error occurred
during an instruction access.

= instruction_access_MMU_miss [TT = 009¢4] (Precise) — During an attempted
instruction access (instruction fetch) from memory,
(1) hardware tablewalk was enabled,
(2) the MMU detected that a translation lookaside buffer did not contain a
translation for the virtual address (that is, a TLB miss occurred), and
(3) the required TTE was not found in the configured TSBs.

= instruction_access_exception [TT = 008;¢] (Precise) — An exception occurred

on an instruction access. The conditions that may cause an

instruction_access_exception exception are:

= Privilege Violation — An attempt to fetch an instruction from a privileged
memory page (TTE.p = 1) while the virtual processor was executing in
nonprivileged mode.

= Unauthorized Access — An attempt to fetch an instruction from a memory
page which was missing “execute” permission (TTE.ep = 0).

= No-Fault Only Access — An attempt to fetch an instruction from a memory
page which was marked for access only by nonfaulting loads (TTE.nfo = 1).

= instruction_breakpoint [TT = 07614] (Precise) — This exception is generated if
HPSTATE.ibe = 1 and the processor has detected a breakpoint condition based on
the values in the Instruction Breakpoint Control register for the current
instruction. As part of the trap, the HPSTATE.ibe bit is cleared (set to 0).
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instruction_invalid_TSB_entry [TT = 02A4] (Precise) — During an attempted
instruction access (instruction fetch), (1) hardware tablewalk was enabled, (2) the
MMU detected that a translation lookaside buffer did not contain a translation for
the virtual address, (3) the required TTE was found in the configured TSBs to be a
real address, requiring real-to-physical address translation, and (4) the real
address cannot be translated to a physical address by hardware.

instruction_real_translation_miss [TT = 03E;¢] (Precise) — During an
attempted real address instruction access (instruction fetch), the MMU detected a
TLB miss.

internal_processor_error [TT = 029¢¢] (Precise) — A serious internal error
occurred in the virtual processor.

IMPL. DEP. #402-S10: The trap priority of the internal_processor_error exception
is implementation dependent. Furthermore, its priority may vary within an
implementation, based on the cause of the error being reported.

interrupt_level_n [TT = 04114—04F;¢] (Disrupting) — SOFTINT{n} was set to 1 or
an external interrupt request of level n was presented to the virtual processor and
n> PIL.
Implementation | interrupt_level_14 can be caused by (1) setting SOFTINT{14}
Note | to 1, (2) occurrence of a "TICK match", or (3) occurrence of a
"STICK match" (see SOFTINT? Register (ASRs 20, 21, 22) on
page 80).

LDDF_mem_address_not_aligned [TT = 0354] (Precise) — An attempt was
made to execute an LDDF or LDDFA instruction and the effective address was not
doubleword aligned. (impl. dep. #109)

mem_address_not_aligned [TT = 0344¢] (Precise) — A load/store instruction
generated a memory address that was not properly aligned according to the
instruction, or a JMPL or RETURN instruction generated a non-word-aligned
address. (See also Special Memory Access ASIs on page 422.)

nonresumable_error [TT = 07F4] (Disrupting) — There is a valid entry in the
nonresumable error queue. This interrupt is not generated by hardware, but is
used by hyperprivileged software to inform privileged software that an error
report has been appended to the nonresumable error queue.

PA_watchpoint [TT = 061;¢] (Precise) — The virtual processor has detected a load
or store to a physical address specified by the PA Watchpoint register while PA
watchpoints are enabled. Hyperprivileged software may reflect this trap back to
privileged software as a synthetic RA_watchpoint exception.

pic_overflow [TT = 04F4] (Disrupting) — A performance counter has overflowed
and PIL < 15. Note that this exception shares a trap type, 04F4, with
interrupt_level_15. The disrupting trap caused by pic_overflow is conditioned by
PSTATE.ie.

If PSTATE.ie = 1 and PIL < 15 when the possible counter overflow is detected and
depending on the event being monitored by the counter, the disrupting trap may
be reported prior to retirement of the instruction that incremented the counter to
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cause the possible counter overflow. Upon entry to the trap handler, TPC points
to an instruction that increments the performance counter and the counter is
within some epsilon of overflow.

If PSTATE.ie = 0 or PIL = 15 when the possible overflow is detected, the trap
remains pending and will be taken on the first instruction for which

PSTATE.ie = 1 and PIL < 15. In this case, TPC may not point to an instruction that
increments the counter.

= power_on_reset (POR) [TT = 00114] (Reset) — An external signal was asserted.
This trap is issued to bring a system reliably from the power-off to the power-on
state.

= privileged_action [TT = 037:¢] (Precise) — An action defined to be privileged has

been attempted while in nonprivileged mode (PSTATE.priv =0 and

HPSTATE.hpriv = 0), or an action defined to be hyperprivileged has been

attempted while in nonprivileged or privileged mode (HPSTATE.hpriv = 0).

Examples:

= A data access by nonprivileged software using a restricted (privileged or
hyperprivileged) ASI, that is, an ASI in the range 0014 to 7F¢ (inclusively)

= A data access by nonprivileged or privileged software using a hyperprivileged
AS], that is, an ASI in the range 3044 to 7F;¢ (inclusively)

= Execution by nonprivileged software of an instruction with a privileged
operand value

= An attempt to read the TICK register by nonprivileged software when
TICK.npt=1

= An attempt to access the PIC register (using RDPIC or WRPIC) while
PSTATE.priv =0 and PCR.priv=1

= An attempt to execute a nonprivileged instruction with an operand value
requiring more privilege than available in the current privilege mode.

= privileged_opcode [TT = 01114] (Precise) — An attempt was made to execute a
privileged instruction while PSTATE.priv = 0.

= RED_state_exception [TT = (see text)] (Precise) — Caused when TL = MAXTL — 1
and a trap occurs, an event that brings the virtual processor into RED_st at e.
Uses the trap vector entry reserved for trap type 0054, but the trap type recorded
in TT is the trap type of the original exception that triggered
RED_state_exception.

= resumable_error [TT = 07E 4] (Disrupting) — There is a valid entry in the
resumable error queue. This interrupt is used to inform privileged software that
an error report has been appended to the resumable error queue, and the current
instruction stream is in a consistent state so that execution can be resumed after
the error is handled.

= software_initiated_reset (SIR) [TT = 004;¢] (Precise) — Caused by the execution
of the SIR instruction. It allows system software to reset the virtual processor.

= spill_n_normal [TT = 08014—09F;¢] (Precise)
= spill_n_other [TT = 0A0,,—0BF;4] (Precise)
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A SAVE or FLUSHW instruction has determined that the contents of a register
window must be saved to memory.

STDF_mem_address_not_aligned [TT = 0364¢] (Precise) — An attempt was
made to execute an STDF or STDFA instruction and the effective address was not
doubleword aligned. (impl. dep. #110)

store_error [TT = 0074] (Deferred) — An error has been detected on a store
instruction that prevents it from completing, but the error was detected after the
store had passed its instruction retirement point. Since the store cannot be made
globally visible, the software thread that issued the store must be terminated.
Therefore, this is a termination deferred trap.

sw_recoverable_error [TT = 040;¢] (Disrupting) — Indicates that one or more
potentially recoverable errors have been detected in the virtual processor. A
single sw_recoverable_error exception may indicate multiple errors and may
occur asynchronously to instruction execution. When sw_recoverable_error
causes a trap, the TPC and TNPC stacked by the trap do not necessarily indicate
the instruction or data access that caused the error. (impl. dep. #31-V8-Cs10, #218-
U3-Cs10)

IMPL. DEP. #218-U3-Cs10: Whether sw_recoverable_error exception is
implemented is implementation dependent. If it does exist, it indicates that an
error is detected in a processor core and its trap type is 404¢.

SPARC V9 | The sw_recoverable_error exception was called
Compatibility | async_data_error in the SPARC V9 specification, which in turn
Note | superseded the less general SPARC V8 data_store_error
exception.

tag_overflow [TT = 0234] (Precise) (deprecated ) — A TADDccTV or
TSUBccTV instruction was executed, and either 32-bit arithmetic overflow
occurred or at least one of the tag bits of the operands was nonzero.

trap_instruction [TT = 100,4—17F4] (Precise) — A Tcc instruction was executed
and the trap condition evaluated to TRUE, and the software trap number operand
of the instruction is 127 or less.

trap_level_zero [TT = 05F4] (Disrupting) — This exception indicates a

simultaneous existence of three conditions:

= trap_level_zero exceptions are enabled (HPSTATE.tlz = 1),

= the virtual processor is in nonprivileged or privileged mode
(HPSTATE.hpriv = 0), and

= the trap level (TL) register’s value is zero (TL = 0)
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Upon entry to the trap handler for trap_level_zero, TPC points to the instruction
that was about to be executed when all three of these conditions were met.

Programming | The purpose of this trap is to improve efficiency when de-

Note | scheduling a virtual processor. When a descheduling event
occurs and the virtual processor is executing in privileged mode
at TL > 0, hyperprivileged software can choose to enable the
trap_level_zero exception (set HPSTATE.tlz — 1) and return to
privileged mode, enabling privileged software to complete its
TL > 0 processing. When privileged code returns to TL = 0, this
exception enables the hyperprivileged code to regain control
and deschedule the virtual processor with low overhead.

= unimplemented_LDTW [TT = 01244] (Precise) — An attempt was made to execute
an LDTW instruction that is not implemented in hardware on this
implementation (impl. dep. #107-V9).

= unimplemented_STTW [TT = 0134¢] (Precise) — An attempt was made to execute
an STTW instruction that is not implemented in hardware on this implementation
(impl. dep. #108-V9).

= watchdog_reset (WDR) [TT = 002;¢] (Reset) — This trap occurs in error _st at e
and causes a transition to RED_st at e (impl. dep. #254-U3-Cs10).

= VA_watchpoint [TT = 062;¢4] (Precise) — The virtual processor has detected an
attempt to access a virtual address specified by the VA Watchpoint register, while
VA watchpoints are enabled and the address is being translated from a virtual
address to a physical address. If the load or store address is not being translated
from a virtual address (for example, the address is being treated as a real
address), then a VA_watchpoint exception will not be generated even if a match is
detected between the VA Watchpoint register and a load or store address. This
exception is always masked in hyperprivileged mode; therefore, a VA_watchpoint
trap cannot occur in hyperprivileged mode (even if memory is accessed using
ASl _AS | F_USER PRI MARY or AS| _AS_| F_USER_SECONDARY).

12.7.1 SPARC V9 Traps Not Used in UltraSPARC
Architecture 2005

The following traps were optional in the SPARC V9 specification and are not used in
UltraSPARC Architecture 2005:

= async_data_error [TT = 040,4] (Disrupting) — This exception was superseded by
the sw_recoverable_error exception.

= data_access_protection [TT = 033;¢] (Precise or Deferred) — This exception is
generally superseded by fast_data_access_protection (see page 484).
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IMPL. DEP. #fast_ECC_error [TT = 07014] (Precise) — A single-bit or multiple-bit
ECC error was detected. 202-U3: Whether or not a fast_ECC_error trap exists is
implementation dependent. If it does exist, it indicates that an ECC error was
detected in an external cache and its trap type is 0704¢.

= implementation_dependent_exception_n [TT = 07714 - 07A1¢] This range of
implementation-dependent exceptions has been replaced by a set of
architecturally-defined exceptions. (impl.dep. #35-V8-Cs20)

=« LDQF_mem_address_not_aligned [TT = 038;4] (Precise) — An attempt was
made to execute an LDQF instruction and the effective address was word aligned
but not quadword aligned. Use of this exception is implementation dependent
(impl. dep. #111-V9-Cs10). A separate trap entry for this exception supports fast
software emulation of the LDQF instruction when the effective address is word
aligned but not quadword aligned. See Load Floating-Point on page 249. (impl. dep.
#111)

= STQF_mem_address_not_aligned [TT = 039¢4] (Precise) — An attempt was
made to execute an STQF instruction and the effective address was word aligned
but not quadword aligned. Use of this exception is implementation dependent
(impl. dep. #112-V9-Cs10). A separate trap entry for the exception supports fast
software emulation of the STQF instruction when the effective address is word
aligned but not quadword aligned. See Store Floating-Point on page 332. (impl. dep.
#112)

12.8

12.8.1

Register Window Traps

Window traps are used to manage overflow and underflow conditions in the register
windows, support clean windows, and implement the FLUSHW instruction.

Window Spill and Fill Traps

A window overflow occurs when a SAVE instruction is executed and the next
register window is occupied (CANSAVE = 0). An overflow causes a spill trap that
allows privileged software to save the occupied register window in memory, thereby
making it available for use.

A window underflow occurs when a RESTORE instruction is executed and the
previous register window is not valid (CANRESTORE = 0). An underflow causes a
fill trap that allows privileged software to load the registers from memory.
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12.8.2

12.8.3

clean_window Trap

The virtual processor provides the clean_window trap so that system software can
create a secure environment in which it is guaranteed that data cannot inadvertently
leak through register windows from one software program to another.

A clean register window is one in which all of the registers, including uninitialized
registers, contain either 0 or data assigned by software executing in the address
space to which the window belongs. A clean window cannot contain register values
from another process, that is, from software operating in a different address space.

Supervisor software specifies the number of windows that are clean with respect to
the current address space in the CLEANWIN register. This number includes register
windows that can be restored (the value in the CANRESTORE register) and the
register windows following CWP that can be used without cleaning. Therefore, the
number of clean windows available to be used by the SAVE instruction is

CLEANWIN - CANRESTORE

The SAVE instruction causes a clean_window exception if this value is 0. This
behavior allows supervisor software to clean a register window before it is accessed
by a user.

Vectoring of Fill/Spill Traps

To make handling of fill and spill traps efficient, the SPARC V9 architecture provides
multiple trap vectors for the fill and spill traps. These trap vectors are determined as
follows:

= Supervisor software can mark a set of contiguous register windows as belonging
to an address space different from the current one. The count of these register
windows is kept in the OTHERWIN register. A separate set of trap vectors
(fill_n_other and spill_n_other) is provided for spill and fill traps for these register
windows (as opposed to register windows that belong to the current address
space).

= Supervisor software can specify the trap vectors for fill and spill traps by
presetting the fields in the WSTATE register. This register contains two subfields,
each three bits wide. The WSTATE.normal field determines one of eight spill (fill)
vectors to be used when the register window to be spilled (filled) belongs to the
current address space (OTHERWIN = 0). If the OTHERWIN register is nonzero, the
WSTATE.other field selects one of eight fill_n_other (spill_n_other) trap vectors.

See Trap-Table Entry Addresses on page 452, for more details on how the trap address
is determined.
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12.8.4

12.8.5

CWP on Window Traps

On a window trap, the CWP is set to point to the window that must be accessed by
the trap handler, as follows.

Note | All arithmetic on CWP is done modulo N_REG_WINDOWS.

If the spill trap occurs because of a SAVE instruction (when CANSAVE = 0), there
is an overlap window between the CWP and the next register window to be
spilled:

CWP ~ (CWP + 2) mod N_REG_WINDOWS

If the spill trap occurs because of a FLUSHW instruction, there can be unused
windows (CANSAVE) in addition to the overlap window between the CWP and
the window to be spilled:

CWP ~ (CWP + CANSAVE + 2) mod N_REG_WINDOWS

Implementation | All spill traps can set CWP by using the calculation:
Note | CWP —~ (CWP + CANSAVE + 2) mod N_REG_WINDOWS
since CANSAVE is 0 whenever a trap occurs because of a SAVE
instruction.
On a fill trap, the window preceding CWP must be filled:
CWP ~ (CWP - 1) mod N_REG_WINDOWS
On a clean_window trap, the window following CWP must be cleaned. Then
CWP ~ (CWP + 1) mod N_REG_WINDOWS

Window Trap Handlers

The trap handlers for fill, spill, and clean_window traps must handle the trap
appropriately and return, by using the RETRY instruction, to reexecute the trapped
instruction. The state of the register windows must be updated by the trap handler,
and the relationships among CLEANWIN, CANSAVE, CANRESTORE, and
OTHERWIN must remain consistent. Follow these recommendations:

= A spill trap handler should execute the SAVED instruction for each window that

it spills.

= A fill trap handler should execute the RESTORED instruction for each window

that it fills.

= A clean_window trap handler should increment CLEANWIN for each window that

it cleans:
CLEANWIN « (CLEANWIN + 1)
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CHAPTER 13

TTTTIITITIITIITIITIITIITITITIITIITITIITITIITITITIITITIITITIIIIIrS

/ / Note: This chapter is undergoing final review; please check 4
/ back later for a copy of UltraSPARC Architecture ;
/ 2005 containing the final version of this chapter. /

’IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIA

Interrupt Handling

Virtual processors and I/O devices can interrupt a selected virtual processor by
assembling and sending an interrupt packet. The contents of the interrupt packet are
defined by software convention. Thus, hardware interrupts and cross-calls can have
the same hardware mechanism for interrupt delivery and share a common software
interface for processing.

The interrupt mechanism is a two-step process:

» sending of an interrupt request (through an implemenation-specific hardware
mechanism) to an interrupt queue of the target virtual processor

= receipt of the interrupt request on the target virtual processor and scheduling
software handling of the interrupt request

Privileged software running on a virtual processor can schedule interrupts to itself
(typically, to process queued interrupts at a later time) by setting bits in the
privileged SOFTINT register (see Software Interrupt Register (SOFTINT) on page 496).

Programming | An interrupt request packet is sent by an interrupt source

Note | (through an implementation-specific mechanism) and is
received by the specified target in an interrupt queue. Upon
receipt of an interrupt request packet, a special trap is invoked
on the target virtual processor. The trap handler software
invoked in the target virtual processor then schedules itself to
later handle the interrupt request by posting an interrupt in the
SOFTINT register at the desired interrupt level.

In the following sections, the following aspects of interrupt handling are described:
= Interrupt Packets on page 496.
= Software Interrupt Register (SOFTINT) on page 496.
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= Interrupt Queues on page 497.
= Interrupt Traps on page 500.
= Strand Interrupt ID Register (STRAND_INTR_ID) on page 501.

13.1  Interrupt Packets

Each interrupt is accompanied by data, referred to as an “interrupt packet”. An
interrupt packet is 64 bytes long, consisting of eight 64-bit doublewords. The
contents of these data are defined by software convention.

13.2  Software Interrupt Register (SOFTINT)

To schedule interrupt vectors for processing at a later time, privileged software
running on a virtual processor can send itself signals (interrupts) by setting bits in
the privileged SOFTINT register. Similarly, hyperprivileged software can schedule
interrupt vectors for privileged software running on the same virtual processorby
setting bits in SOFTINT.

See SOFTINT? Register (ASRs 20, 21, 22) on page 80 for a detailed description of the
SOFTINT register.

Programming | The SOFTINT register (ASR 164¢4) is used for communication

Note | from nucleus (privileged, TL > 0) software to privileged software
running with TL = 0. Interrupt packets and other service
requests can be scheduled in queues or mailboxes in memory by
the nucleus, which then sets SOFTINT{n} to cause an interrupt
at level n.

Programming | The SOFTINT mechanism is independent of the “mondo”
Note | interrupt mechanism mentioned in Interrupt Queues on page 497.
The two mechanisms do not interact.
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13.2.1

13.2.2

Setting the Software Interrupt Register

SOFTINT{n} is set to 1 by executing a WRSOFTINT_SETY instruction (WRasr using
ASR 20) with a ‘1’ in bit n of the value written (bit # corresponds to interrupt level
n). The value written to the SOFTINT_SET register is effectively ored into the
SOFTINT register. This approach allows the interrupt handler to set one or more
bits in the SOFTINT register with a single instruction.

See SOFTINT_SET? Pseudo-Register (ASR 20) on page 82 for a detailed description of
the SOFTINT_SET pseudo-register.

Clearing the Software Interrupt Register

When all interrupts scheduled for service at level n have been serviced, kernel
software executes a WRSOFTINT_CLRF instruction (WRasr using ASR 21) with a ‘1’
in bit n of the value written, to clear interrupt level n (impl. dep. 34-V8a). The
complement of the value written to the SOFTINT_CLR register is effectively anded
with the SOFTINT register. This approach allows the interrupt handler to clear one
or more bits in the SOFTINT register with a single instruction.

Programming | To avoid a race condition between operating system kernel
Note | software clearing an interrupt bit and nucleus software setting
it, software should (again) examine the queue for any valid
entries after clearing the interrupt bit.

See SOFTINT_CLR? Pseudo-Register (ASR 21) on page 82 for a detailed description of
the SOFTINT_CLR pseudo-register.

13.3

Interrupt Queues

Interrupts are indicated to privileged mode via circular interrupt queues, each with
an associated trap vector. There are 4 interrupt queues, one for each of the following
types of interrupts:

= Device mondos!
» CPU mondos
» Resumable errors

= Nonresumable errors

* “mondo” is a historical term, referring to the name of the original UltraSPARC 1 bus transaction in which
these interrupts were introduced
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New interrupt entries are appended to the tail of a queue (by hardware or by
hyperprivileged software) and privileged software reads them from the head of the
queue.

Programming | Software conventions for cooperative management of interrupt
Note | queues and the format of queue entries are specified in the
separate Hypervisor API Specification document.

13.3.1 Interrupt Queue Registers

The active contents of each queue are delineated by a 64-bit head register and a 64-
bit tail register.

IMPL. DEP. #421-S10: It is implementation dependent whether interrupt queue
head and tail registers (a) are datatype-agnostic “scratch registers” used for
communication between privileged and hyperprivileged software, in which case
their contents are defined purely by software convention, or (b) are maintained to
some degree by virtual processor hardware, imposing a fixed meaning on their
contents.

Programming | If the contents of Queue Head and Tail registers are set only by

Note | software convention in a given implementation, software could
place any type of data in them (such as addresses, address
offsets, or index values).

It is expected that Queue Head and Tail registers will typically
contain a byte offset from the base of an appropriately-aligned
queue region in memory.

The interrupt queue registers are accessed through ASI ASI _QUEUE (25:4). The ASI
and address assignments for the interrupt queue registers are provided in TABLE 13-1.
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TABLE 13-1 Interrupt Queue Register ASI Assignments

o Hyper-

Virtual Privileged privileged

ASI mode
Address Access mode
Register Access
CPU Mondo Queue Head 2514 (ASI _QUEUE) 3C044 RW R/W
CPU Mondo Queue Tail 2514 (ASI _QUEUE) 3C81s RorRWt R/W
Device Mondo Queue Head 2516 (ASI _QUEUE)  3D0q4 RW R/W
Device Mondo Queue Tail 2516 (ASI _QUEUE) 3D8;4 RorRWt R/W
Resumable Error Queue Head 251 (ASI _QUEUE) 3E04¢ RW R/W
Resumable Error Queue Tail 2514 (ASI _QUEUE) 3E814 Ror RWt R/W
Nonresumable Error Queue Head 254 (ASI _QUEUE) 3F044 RW R/W
(

Nonresumable Error Queue Tail 2514 (ASI _QUEUE) 3F81¢ RorRWt R/W

t seeIMPL.DEP.#422-S10

IMPL. DEP. #422-S10: It is implementation dependent whether tail registers are
writable in privileged mode. If a tail register is read-only in privileged mode, an
attempt to write to it causes a data_access_exception exception. If a tail register is
writable in privileged mode, an attempt to write to it results in undefined behavior.

Implementation | Although Queue Head and Tail registers behave as registers,
Note | they may or may not be implemented using actual hardware
registers. For example, they may reside in memory, mapped by
a mechanism visible only to hyperprivileged software. In any
case, the means by which Queue Head and Tail registers are
implemented is not visible to privileged software.

The status of each queue is reflected by its head and tail registers:

= A Queue Head Register indicates the location of the oldest interrupt packet in the
queue

= A Queue Tail Register indicates the location where the next interrupt packet will
be stored

An event that results in the insertion of a queue entry causes the tail register for that
queue to refer to the following entry in the circular queue. Privileged code is
responsible for updating the head register appropriately when it removes an entry
from the queue.

A queue is empty when the contents of its head and tail registers are equal. A queue
is full when the insertion of one more entry would cause the contents of its head and
tail registers to become equal.
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Programming | By current convention, the format of a Queue Head or Tail
Note | register is as follows:

head/tail offset \ oooooo|
63 6 5 0

Under this convention:

= updating a Queue Head register involves incrementing it by
64 (size of a queue entry, in bytes)

» Queue Head and Tail registers are updated using modular
arithmetic (modulo the size of the circular queue, in bytes)

= bits 5:0 always read as zeros, and attempts to write to them are
ignored

» the maximum queue offset for an interrupt queue is
implementation dependent

= behavior when a queue register is written with a value larger
than the maximum queue offset (queue length minus the
length of the last entry) is undefined

This is merely a convention and is subject to change.

13.4  Interrupt Traps

The following interrupt traps are defined in the UltraSPARC Architecture 2005:
cpu_mondo, dev_mondo, resumable_error, and nonresumable_error. The first three
(cpu_mondo, dev_mondo, and resumable_error) are all generated by hardware,
while nonresumable_error is generated by hyperprivileged software. See

Chapter 12, Traps, for details.

UltraSPARC Architecture 2005 also supports the interrupt_level_n traps defined in
the SPARC V9 specification.

How interrupts are delivered is implementation-specific; see the relevant
implementation-specific Supplement to this specification for details.
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13.5  Strand Interrupt ID Register
(STRAND_INTR_ID)

The STRAND_INTR_ID per-virtual-processor register allows software to assign a 16-
bit interrupt ID to a virtual processor that is unique within the system. This is
important, to enable virtual processors to receive interrupts. See Strand Interrupt ID
Register (STRAND_INTR_ID) on page 520 for details.
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CHAPTER 14

Memory Management

An UltraSPARC Architecture Memory Management Unit (MMU) conforms to the
requirements set forth in the SPARC V9 Architecture Manual. In particular, it supports
a 64-bit virtual address space, simplified protection encoding, and multiple page
sizes.

In UltraSPARC Architecture 2005, memory management is implementation-specific.
Basic concepts are described in this chapter, but see the relevant processor-specific
Supplement to this specification for a detailed description of a particular processor’s
memory management facilities.

This appendix describes the Memory Management Unit, as observed by
hyperprivileged software, in these sections:

Virtual Address Translation on page 503.

TSB Translation Table Entry (TTE) on page 505.
Translation Storage Buffer (TSB) on page 508.
Faults and Traps on page 509.

14.1

Virtual Address Translation

The MMUs may support up to four page sizes: 8 KBytes, 64 KBytes, 4 MBytes, and
256 MBytes 8-KByte, 64-KByte and 4- MByte page sizes must be supported; other
page sizes are optional.

Each MMU consists of one or more Translation Lookaside Buffers (TLBs), and may
include micro-TLB structures. Separate Instruction and Data MMUs (IMMU and
DMMU, respectively) may be provided to enable concurrent virtual-to-physical
address translations for instruction and data.

IMPL. DEP. #222-U3: TLB organization is implementation dependent.

Privileged software manages virtual-to-real address translations. Hyperprivileged
software manages real-to-physical address translations.
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Privileged software maintains translation information in an arbitrary data structure,
called the software translation table.

The Translation Storage Buffer (TSB) is an array of Translation Table Entries which
serves as a cache of the software translation table, used to quickly reload the TLB in
the event of a TLB miss.

The MMU TLBs act as independent caches of the software translation table,
providing appropriate concurrency for virtual-to-physical address translation.

Hyperprivileged software maintains translation information for real-to-physical
translations.

During a memory access, one or more TLBs are searched for a VA (or RA)
translation. A TLB hit is indicated when the virtual address, context ID, and
partition ID (or real address and partition ID) match an entry in the TLB.

A TLB miss is indicated when no such match occurs, and the MMU immediately
traps to hyperprivileged software for TLB miss processing. The TLB miss handler can
fill the TLB by any available means, but it is likely to take advantage of the TLB miss
support features provided by the MMU, since the TLB miss handler is time-critical
code.

A conceptual view of privileged-mode memory management the MMU is shown in
FIGURE 14-1. The TLBs, which are part of the MMU hardware, are small and fast. The
software translation table is likely to be large and complex. The translation storage
buffer (TSB), which acts like a direct-mapped cache, is the interface between the
software translation table and the underlying memory management hardware. The
TSB can be shared by all processes running on a virtual processor or can be process
specific; the hardware does not require any particular scheme. There can be several
TSBs.

The UltraSPARC Architecture provides a memory partitioning mechanism that
allows for multiple partitions, each containing its own real address space.
Hyperprivileged software provides real address to physical address translations.
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FIGURE 14-1 Conceptual View of the MMU

Aliasing of multiple virtual addresses to the same physical address is supported.
However, the reverse case of multiple mappings from one virtual address to
multiple physical addresses producing a multiple TLB match is detected in hardware
as a multiple tag hit TLB error.

14.2

TTE
Tag

TTE
Data

TSB Translation Table Entry (TTE)

The Translation Storage Buffer (TSB) Translation Table Entry (TTE) is the equivalent
of a page table entry as defined in the Sundv Architecture Specification; it holds
information for a single page mapping. The TTE is divided into two 64-bit words
representing the tag and data of the translation. Just as in a hardware cache, the tag
is used to determine whether there is a hit in the TSB; if there is a hit, the data are
used by either the hardware tablewalker or privileged software.

The TTE configuration is illustrated in FIGURE 14-2 and described in TABLE 14-1.

context_id 000000 va
63 48 47 42 41 0
v | nfo soft2 taddr ie [e |cp | cv]p ep | w | soft | sz
63 62 61 56 55 13 12 11 10 9 8 7 6 5 43 0

FIGURE 14-2 Translation Storage Buffer (TSB) Translation Table Entry (TTE)
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TABLE 14-1

TSB TTE Bit Description (1 of 3)

Bit

Field

Description

Tag— 63:48
Tag— 47:42
Tag- 41:0

context_id

va

The 16-bit context ID associated with the TTE.
These bits must be zero for a tag match.

Bits 63:22 of the Virtual Address (the virtual page number). Bits 21:13 of the VA
are not maintained because these bits index the minimally sized, direct-mapped
TSBs.

Data - 63

Data — 62

Data — 61:56

Data - 55:13

Data — 12

nfo

soft2

t_addr

ie

Valid. If v = 1, then the remaining fields of the TTE are meaningful, and the TTE
can be used; otherwise, the TTE cannot be used to translate a virtual address.

Programming | The explicit Valid bit is (intentionally) redundant with the
Note | software convention of encoding an invalid TTE with an unused
context ID. The encoding of the context_id field is necessary to
cause a failure in the TTE tag comparison, while the explicit
Valid bit in the TTE data simplifies the TTE miss handler.

No Fault Only. If nfo = 1, loads with ASI _PRI MARY_NO_FAULT{ _LI TTLE} or
AS| _SECONDARY_NO FAULT{ _LI TTLE} are translated. Any other data access
with the D/UMMU TTE.nfo = 1 will trap with a data_access_exception (with
SFSR.ft = 1014). An instruction fetch access to a page with the IMMU TTE.nfo = 1
results in an instruction_access_exception exception.

Software-defined field, provided for use by the operating system. The soft2 field
can be written with any value in the TSB. Hardware is not required to maintain
this field in any TLB (or uTLB), so when it is read from the TLB (uTLB), it may
read as zero.

Target address from TSB (Real Address {55:13} or Physical Address {55:13}).
UltraSPARC Architecture TLBs store physical addresses, not real addresses.
Hyperprivileged code is responsible for translation between real and physical
addresses. Whether this field contains a Real or Physical address is determined
by the bit in the corresponding MMU TSB Configuration register.

IMPL. DEP. #224-U3: Physical address width support by the MMU is
implementation dependent in the UltraSPARC Architecture; minimum PA width
is 40 bits.

IMPL. DEP. #238-U3: When page offset bits for larger page sizes are stored in
the TLB, it is implementation dependent whether the data returned from those
fields by a Data Access read is zero or the data previously written to them.

Invert Endianness. If ie =1 for a page, accesses to the page are processed with

inverse endianness from that specified by the instruction (big for little, little for
big).

Note: This bit is intended to be set to 1 primarily for noncacheable accesses. The
performance of cacheable accesses may be degraded as if the access missed the

D-cache.

IMPL. DEP. #__: The ie bit in the IMMU is ignored during ITLB operation. It is
implementation dependent if it is implemented and how it is read and written.

506 UltraSPARC Architecture 2005 ¢ Draft D0.8.7, 27 Mar 2006



TABLE 14-1

TSB TTE Bit Description (2 of 3)

Bit

Field

Description

Data — 11

Data — 10
Data -9

Data - 8

Data -7

e

cp,
cv

ep

Side effect. If the side-effect bit is set to 1, loads with ASI _PRI MARY_NO_FAULT,
AS| _SECONDARY_NO _FAULT, and their * _LI TTLE variations will trap for
addresses within the page, noncacheable memory accesses other than block
loads and stores are strongly ordered against other e-bit accesses, and
noncacheable stores are not merged. This bit should be set to 1 for pages that
map I/O devices having side effects. Note, also, that the e bit causes the prefetch
instruction to be treated as a nop, but does not prevent normal (hardware)
instruction prefetching.

Note: The e bit does not force a noncacheable access. It is expected, but not
required, that the cp and cv bits will be set to 0 when the e bit is set to 1. If both
the cp and cv bits are set to 1 along with the e bit, the result is undefined.
Note: The e bit and the nfo bit are mutually exclusive; both bits should never be
set to 1 in any TTE.

The cacheable-in-physically-indexed-cache bit and cacheable-in-virtually-
indexed-cache bit determine the cacheability of the page. Given an
implementation with a physically indexed instruction cache, a virtually indexed
data cache, and a physically indexed unified second-level cache, the following
table illustrates how the cp and cv bits could be used:

Cacheable Meaning of TTE when placed in:

(cp, cv) I-TLB (Instruction Cache PA-indexed) D-TLB (Data Cache VA-indexed)
00, 01 Noncacheable Noncacheable

10 Cacheable L2-cache, I-cache Cacheable L2-cache

11 Cacheable L2-cache, I-cache Cacheable L2-cache, D-cache

The MMU does not operate on the cacheable bits but merely passes them
through to the cache subsystem. The cv bit in the IMMU is read as zero and
ignored when written.

IMPL. DEP. #226-U3: Whether the cv bit is supported in hardware is
implementation dependent in the UltraSPARC Architecture. The cv bit in
hardware should be provided if the implementation has virtually indexed
caches, and the implementation should support hardware unaliasing for the
caches.

Privileged. If p = 1, only privileged software can access the page mapped by the
TTE. If p =1 and an access to the page is attempted by nonprivileged mode
(PSTATE.priv = 0), then the MMU signals aninstruction_access_exception
exception ordata_access_exception exception.

Executable. If ep =1, the page mapped by this TTE has execute permission
granted. Instructions may be fetched and executed from this page. If ep =0, an
attempt to execute an instruction from this page results in an
instruction_access_exception exception.

IMPL. DEP. #___: Some UltraSPARC Architecture ITLB implementations may
not implement the ep bit, and present the instruction_access_exception
exception if there is an attempt to load an ITLB entry with ep = 0 during a
hardware tablewalk. In this case, the MMU miss trap handler software must also
detect the ep = 0 case when the IMMU miss is handled by software.
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TABLE 14-1

TSB TTE Bit Description (3 of 3)

Bit

Field

Description

Data -6

Data — 5:4

Data — 3:0

w

soft

Sz

Writable. If w = 1, the page mapped by this TTE has write permission granted.
Otherwise, write permission is not granted, and the MMU causes a
fast_data_access_protection trap if a write is attempted.

IMPL. DEP. #___: The w bit in the IMMU is ignored during ITLB operation. It is
model dependent if the bit is implemented and how it is written and read.

Software-defined field, provided for use by the operating system. The soft field
can be written with any value in the TSB. Hardware is not required to maintain
this field in any TLB (or uTLB), so when it is read from the TLB (or uTLB), it may

read as zero.

The page size of this entry, encoded as shown below.

SZ

Page Size

0000
0001
0010
0011
0100
0101
0110
0111

8 Kbyte
64 Kbyte
Reserved

4 Mbyte
Reserved
256 Mbyte
Reserved
Reserved

1000-1111  Reserved

14.3

14.3.1

Translation Storage Buffer (TSB)

The Translation Storage Buffer (TSB) is an array of Translation Table Entries
managed entirely by privileged software. It serves as a cache of the software
translation table, used to quickly reload the TLB in the event of a TLB miss.

Inclusion of the TLB entries in the TSB is not required; that is, translation
information that is not present in the TSB can exist in the TLB.

TSB Indexing Support

Hardware TSB indexing support via TSB pointers should be provided for the TTEs.
Hardware tablewalk uses the TSB pointers. If the hardware tablewalk is disabled,
the TLB miss handler software can use the TSB pointers.
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14.3.2

14.3.3

TSB Cacheability

The TSB exists as a data structure in memory and therefore can be cached. Indeed,
the speed of the TLB miss handler relies on the TSB accesses hitting the level-2 cache
at a substantial rate. This policy may result in some conflicts with normal instruction
and data accesses, but the dynamic sharing of the level-2 cache resource will provide
a better overall solution than that provided by a fixed partitioning.

TSB Organization

The TSB is arranged as a direct-mapped cache of TTEs.

In each case, 1 least significant bits of the respective virtual page number are used as
the offset from the TSB base address, with n equal to log base 2 of the number of
TTEs in the TSB.

The TSB organization is illustrated in FIGURE 14-3. The constant 7 is determined by
the size field in the TSB register; it can range from 512 to an implementation-
dependent number.

Tagl (8 bytes) A Datal (8 bytes)

2" Lines in TSB

Tag2" (8 bytes) v Data2" (8 bytes)

FIGURE 14-3 TSB Organization

14.4

Faults and Traps

The traps recorded by the MMU are listed in TABLE 14-2. For a detailed description of
each trap, see Chapter 12, Traps. All listed traps are precise traps.
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TABLE14-2  MMU Trap Types, Causes, and Stored State Register Update Policy

Registers Updated
(Stored State in MMU)

D/
IMMU UMMU # of Trap
Tag Tag Trap  Vectors
Ref # Trap Name Trap Cause Access D-SFAR Access Type Used
1. fast_instruction_access_ MMU_miss I-TLB miss X 6414 4
2. instruction_access_exception Several (see below) X 0816 1
3. fast_data_access_MMU_miss D-TLB miss X X 6816 4
4. data_access_exception Several (see below) X xt 3046 1
5. fast_data_access_protection Protection violation X X 6C1p 4
6.  privileged_action Use of privileged ASI X 3716 1
7. PA_watchpoint Watchpoint hit X 6114 1
7b.  VA_watchpoint Watchpoint hit X 6214 1
8. mem_address_not_aligned, Misaligned memory impl. dep. 3516, 1
*_mem_address_not_aligned operation #237-U3 3616,
3816,
3916

* The contents of the context_id field of the DMMU Tag Access register are undefined after a data_access_exception.
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CHAPTER 15

Chip-Level Multithreading (CMT)

An UltraSPARC Architecture 2005 processor may include multiple virtual processors
on the same processor module to provide a dense, high-throughput system. This
may be achieved by having a combination of multiple physical processor cores and/
or multiple strands (threads) per physical processor core.

This chapter specifies a common interface between hardware and software for such
products, referred to here as chip-level multithreaded processors (CMTs). It
addresses issues common to CMT processors, regardless of the microarchitecture of
the individual physical processor cores, in the following sections:

= Overview of CMT on page 511.

= Accessing CMT Registers on page 515.

= CMT Registers on page 518.

» Disabling and Parking Virtual Processors on page 522.

= Reset and Trap Handling on page 532.

= Error Handling in CMT Processors on page 535.

= Additional CMT Software Interfaces on page 540.

= Performance Issues for CMT Processors on page 541.

= Recommended Subset for Single-Strand Processors on page 541.
= Machine State Summary on page 543.

15.1

Overview of CMT

A broad range of designs may fall under the definition of CMT. The interface
specified here is intended to provide a set of common behaviors to enable operating
system software and other privileged software to be common across UltraSPARC
Architecture 2005 processors. This interface is not complete, as a range of
implementation dependent features will exist to configure and control these
processors.
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The CMT Programming Model describes a set of privileged registers that are used
for identification and configuration of CMT processors. Equally important, the CMT
Programming Model describes certain behavior that is common across CMT
implementations. The set of registers and the common behavior are covered in the
following sections, grouped by topic.

UltraSPARC Architecture 2005 processors that are not CMT processors (are single-
threaded) should implement a subset of the CMT interface. This enables those
virtual processors to be more easily integrated into products that may also contain
CMT processors and also enables more consistent software to be deployed across
future products. See Recommended Subset for Single-Strand Processors on page 541 for
additional information on non-CMT processor implementations.

15.1.1 CMT Definition

An UltraSPARC Architecture 2005 CMT processor is defined by its externally-visible
nature and not by its internal organization. Note that this definition is not fully
consistent with the common hardware definition of CMT. The following section
gives some background terminology, followed by a description of the CMT
definition.

15.1.1.1 Background Terminology

Thread. Historically, the term thread is overused and ambiguous; software and
hardware have used it differently. From a software (operating system) perspective,
the term “thread” refers to an entity that:

= Can be executed on underlying hardware

» Is scheduled

= May or may not be actively running on hardware at any given time
= May migrate around the hardware of a system.

From the hardware perspective, the term “multithreaded processor” refers to a
processor that can run multiple software threads simultaneously.

To avoid confusion, the term “thread” in UltraSPARC Architecture 2005 is used
exclusively in the manner that it is used by software (specifically, the operating
system). A thread can be viewed in a practical sense as a Solaris™ process or
lightweight process (LWP).

Strand. The term strand is used to identify the state that hardware must maintain
in order to execute a software thread. Specifically, a “strand” is the software-visible
architected state (PC, NPC, general-purpose registers, floating-point registers,

condition codes, status registers, ASRs, etc.) of a thread plus any microarchitecture
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state required by hardware for its execution. “Strand” replaces the ambiguous term
“hardware thread.” The number of strands in a processor defines the number of
threads that an operating system can schedule on that processor at any given time.

Pipeline. The term pipeline refers to an execution pipeline. It is a loose term for the
basic collection of hardware needed to execute instructions. A pipeline may be used
by one or more strands, in order to execute instruction from one or more
threads.Synonym: microcore.

Physical Core. The term physical processor core, or just physical core, is similar to the
term “pipeline” but represents a broader collection of hardware. A physical core
includes one or more execution pipelines and associated structures, such as caches,
that are required for executing instructions from one or more software threads. A
physical core contains one or more strands. The physical core provides the necessary
resources for the threads on each strand to make forward progress at a reasonable
rate. A multistranded physical core can execute multiple software threads by time-
multiplexing resources, partitioning resources, or any combination thereof.

The delineations among the terms strand, pipeline, and physical core are not precise.
Among different microarchitecture organizations the scope of the terms may vary. In
general, in a specific microarchitecture it will be apparent what constitutes a physical
core. A physical core will be a highly integrated unit with a clearly defined interface
to more distant levels of the memory hierarchy and the system interface unit. A
physical core will contain a defined number of strands, that is, a maximum number
of software threads that may be scheduled on it at any given time.

Processor. A processor is the unit on which a shared interface is provided to control
the configuration and execution of a collection of strands. A processor contains one
or more physical cores, each of which contains one or more strands. Physically, a
processor is a physical module that plugs into a system. A processor is expected to
appear logically as a single agent on the system interconnect fabric.

Therefore, a simple processor that can only execute one thread at a time (for
example, an UltraSPARC I processor) would contain a single physical core which is
single-stranded. A processor that follows the academic model of simultaneous
multithreading (SMT) would contain a single physical core, where that physical core
supports multiple strands in order to execute multiple simultaneous threads (multi-
stranded physical core). A processor that follows the academic model of a chip
multi-processor (CMP) would be a processor with multiple physical cores, each
supporting only a single strand. A processor may also contain multiple physical
cores, where each physical core is multi-stranded.

Virtual Processor. The term virtual processor is used to identify each strand in a
processor. Each virtual processor corresponds to a specific strand on a specific
physical core, where multiple physical cores, each with multiple strands, may exist.
In most respects a virtual processor appears to the system and to operating system
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software as a processing unit equivalent to a traditional single-stranded processor
(as in UltraSPARC I). Each virtual processor is capable of having interrupts directed
specifically to it. At any given time, an operating system can have a different thread
scheduled on each virtual processor.

The UltraSPARC Architecture 2005 CMT architecture (software interface) described
in this chapter is independent of the specific method by which multiple virtual
processors are implemented. The term “virtual processor” is generally used instead
of “strand” because “strand” is commonly associated with multistranded physical
cores.

CPU. The term CPU is ambiguous in reference to processors with multiple virtual
processors. The term could potentially refer to a virtual processor or to an entire
processor. Therefore, the term “CPU” is considered ambiguous and will not be used
in this document.

CMT. CMT is an abbreviation for “Chip MultiThreaded” or “Chip
MultiThreading” (depending on context). A CMT processor is one containing one or
more virtual processors.

15.1.1.2 CMT Definition

CMT, as defined in UltraSPARC Architecture 2005, applies to all SPARC virtual
processors. A processor containing a single virtual processor (strand) is a special
case, covered in Recommended Subset for Single-Strand Processors on page 541. The
CMT interface is the same whether multiple strands are provided by multiple
physical cores, a single physical core with multiple strands, or multiple physical
cores each with multiple strands.

A virtual processor is a processing entity that can execute a software thread. A virtual
processor has a number of key characteristics and includes all the architecturally
visible state, as defined elsewhere in this specification, to execute a thread (general
purpose registers, floating-point registers, process state, status registers, condition
codes, etc.). A virtual processor is the smallest unit to which an interrupt can be
delivered. The addressability of interrupts to individual virtual processors is a very
important aspect of the CMT programming interface. An UltraSPARC Architecture
2005 implementation must provide sufficient resources so that every virtual
processor within the processor makes forward progress at a reasonable rate.

Each virtual processor contains a separate instance of all user-visible architected
state; that is, nonprivileged architected state is per-virtual processor.

The privileged and hyperprivileged architected state of a processor falls into four
classes (described in Classes of CMT Registers on page 516), based on the degree of
sharing among virtual processors.
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15.1.2

Implementation | The UltraSPARC Architecture 2005 applies to a single physical
Note | processor chip. In a multiple-chip system, the UltraSPARC
Architecture 2005 applies to each processor chip.

General CMT Behavior

In general, each virtual processor of a CMT processor behaves functionally as if it
was an independent processor. This is an important aspect of CMT processors
because user code running on a virtual processor does not need to know whether or
not that virtual processor is part of a CMT processor. At a high level, most
privileged code in an operating system can treat virtual processors of a CMT
processor as if each was an independent processor. Some software (for example,
boot, error, and diagnostic) must be aware that it is executing on a CMT processor.
This chapter deals chiefly with the interface between this software and a CMT
processor.

Each virtual processor of a CMT processor obeys the same memory model semantics
as if it was an independent processor. All software designed to run in a
multiprocessing environment, including thread libraries, must be able to operate on
a CMT processor without modification.

There are significant performance implications of CMT processors, especially when
shared resources (such as caches) exist within a CMT processor. The virtual
processors’ proximity will potentially mean drastically different costs for
communicating between two virtual processors on the same CMT processor
compared to communicating between two virtual processors on different CMT
processors. This adds another degree of non-uniform memory access (NUMA) to a
system. For high performance, the operating system, and even some user
applications, will want to program specifically for the NUMA nature of CMT
processors. There may also be resource contention issues between virtual processors
on the same CMT processor. Performance Issues for CMT Processors on page 541
discusses some key performance issues related to CMT processors.

15.2

Accessing CMT Registers

A key part of the CMT Programming Model is a set of privileged registers. This
section covers how these registers are organized and accessed. The registers can be
accessed by software running on a virtual processor of the CMT processor.
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CMT-specific registers can be accessed by privileged software running on a virtual
processor, using Load and Store Alternate (notably, LDXAs and STXAs) instructions
that provide an address space identifier value and a (virtual) address. The CMT
Programming Model defines address space identifiers and associated virtual
addresses (VAs) for accessing the CMT-specific registers.

15.2.1 Classes of CMT Registers

Nonprivileged architected state, including registers visible to nonprivileged
software, is (or at least appears to be) per-virtual-processor.

Privileged architected state, including registers visible to privileged software, is (or
at least appears to be) per-virtual-processor.

The hyperprivileged architected state of a processor falls into four categories:

» Per-virtual-processor (per-strand) registers, of which each virtual processor has a
private (not shared) copy

= Subset-shared registers, where a copy of each register is shared by a non-
overlapping subset of virtual processors'.

= Per-physical-core shared registers (a special case of subset-shared registers),
where a copy of each register is shared by all virtual processors contained within
a physical core.

= Processor-shared CMT registers, in which a single copy of each register is shared
by all virtual processors in the processor

Registers that are read-only in privileged mode (for example, TICK) need not be
strictly implemented as per-virtual-processor registers; they may be implemented in
one of the “shared” categories above, such that their shared nature is not visible to
privileged software.

CMT-specific registers of all classes can be accessed as ASI-mapped registers
through hyperprivileged software running on a virtual processor. Software running
on a given virtual processor can access:

= all the per-virtual processor registers belonging to the virtual processor on which
it is running

= the per-physical-core shared registers belonging to the physical core on which it is
running

= subset-shared registers for any group of virtual processors to which the virtual
processor on which it is running belongs

= all processor-shared registers

1. Currently, no architectural CMT registers fall into this category. It is defined here for completeness, because
registers in this category may need to exist as implementation-specific registers
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15.2.2

In nonprivileged or privileged mode, it is normally not possible for a virtual
processor on one physical core to address (much less, read) the per-physical-core
registers of another physical core. On some implementations it may be possible for
a virtual processor on one physical core to address the per-physical-core registers of
another physical core, but only in hyperprivileged mode or if hyperprivileged
software grants such privileges to software running at a lower privilege level.

The semantics for accessing the CMT registers through the ASI interface are
described in Accessing CMT Registers Through ASIs on page 517.

Accessing CMT Registers Through ASIs

Each CMT-specific register is accessible through a restricted ASI (accessible only in
hyperprivileged software). The ASI number and virtual address corresponding to
each CMT register are described later in this chapter.

Each virtual processor can access the per-physical-core CMT registers associated
with that virtual processor. The implementation must guarantee that accesses to per-
physical-core registers follow sequential semantics on the virtual processor with
which they are associated.

Each virtual processor can access all the per-processor shared CMT registers on its
processor. An update to a per-processor shared register from one virtual processor
will be visible to all other virtual processors that share that register. The ordering of
accesses to per-processor shared registers from different virtual processors is not
defined, but an implementation must guarantee that:

= Accesses to a shared register from the same virtual processor follow sequential
semantics.

= If multiple virtual processors attempt to store to a shared CMT register at the
same time, the value observed in (readable from) the register will always be that
written by one of those stores. That is, a store to a CMT register must be
performed atomically on all bits of the register. In the case of the
STRAND_RUNNING register, there is a third option — a write to the register may
be dropped (ignored) entirely in certain situations (for details, see Simultaneous
Updates to the STRAND_RUNNING Register on page 528).

There may be additional implementation-enforced restrictions on updates to some
CMT registers.

All CMT registers are 64-bit registers, although some of the bits of individual
registers can be reserved or defined to contain a fixed value in a given
implementation. Reserved register fields should always be written by software with
values of those fields previously read from that register or with zeroes and they
should read as zero in hardware (see Reserved Opcodes and Instruction Fields on page

CHAPTER 15 « Chip-Level Multithreading (CMT) 517



132). Software intended to run on future versions of CMTs should not assume that
these fields will read as 0 or any other particular value. This convention simplifies
future expansion of the CMT interface.

A CMT register is accessed through load and store instructions, using a defined ASI
number and virtual address. CMT registers can only be accessed in hyperprivileged
mode. An attempt to access a CMT register in nonprivileged or privileged mode
results in a privileged_action exception.

Only the LDXA or LDDFA instruction can be used to read a CMT register. Only the
STXA or STDFA instruction can be used to store to a CMT register. An attempt to
access a CMT register with any other instruction results in a data_access_exception
exception. An attempt to write to a read-only CMT register with a STXA instruction
results in a data_access_exception (invalid ASI) exception.

15.3  CMT Registers

In this section, the registers used to control operation of a processor in a CMT
implementation are described. For each register defined in this document, a six-
column quick-reference table is provided that specifies the key attributes of the
register, as follows:

Column Heading Meaning of collumn contents
Register Name The name of the CMT register
ASI # (Name) The address space identifier number used for accessing the register

from software running on the CMT processor (and the recommended
ASI name for use in assembly-language hyperprivileged software)

VA The virtual address used for accessing the register from software
running on the CMT processor

Scope The scope of sharing for the register — whether the register is a “per-
virtual processor” (per-strand) register, or a single instance of a
register that is “shared” among the virtual processors within a
physical core (per-core), “shared” among a subset of virtual processors
within a physical core (per-subset), or “shared” among all the virtual
processors within a processor (per-proc).

Access Whether software access to the register is read /write (RW), read-only
(R only), write-only (W only), Write-1-to-Set (W1S), or Write-1-to-Clear
(W1Q)

Note Any additional information
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15.3.1

Strand ID Register (STRAND_ID)

Register Name ASI # (Name) VA Scope Access  Note
STRAND_ID 6316 1014 per- R only
(ASI _CMI_PER_STRAND) strand
STRAN D_ID — max_strand_id_per_core — max_strand_id — strand_id
63 38 37 32 31 22 21 16 15 6 5 0

FIGURE 15-1 STRAND_ID Register

STRAND_ID is a read-only, per-virtual processor register that holds the ID value
assigned by hardware to each implemented virtual processor. The ID value is unique
within the CMT processor.

As shown above, the STRAND_ID register has three fields:

1. strand_id, which represents this virtual processor’s number, as assigned by
hardware. The strand ID is encoded in 6 bits.

2. max_strand_id, which is the bit-position index (bit number) of the most
significant ‘1" bit in the STRAND_AVAILABLE register. This is the Strand ID of the
highest-numbered implemented virtual processor in this CMT processor.

3. max_strand_id_per_core, which specifies the number of strands minus one that
are implemented on each physical core. For a single-stranded processor,
max_strand_id_per_core will be 0.

Many other CMT-specific registers provide a bit mask in which each bit corresponds
to an individual virtual processor. For these registers, the strand_id field indicates
which bit of a bit mask corresponds to this specific virtual processor.

Strand Numbering Convention. The numbering of virtual processors (strands)
may or may not be contiguous; system software may only assume that each strand
ID is unique within a CMT processor. In general, virtual processors should be
numbered in a sequential, contiguous series starting with strand number 0. When
numbering the virtual processors within a CMT processor, this convention appears
straightforward. There are cases, however, where this might not be so simple. This
numbering convention is recommended but not required.

In a CMT processor designed with many virtual processors, some physical cores in a
manufactured CMT processor may fail to function correctly. It is likely that there
would be a desire to salvage a partially good CMT processor (one where a subset of
the virtual processors and all the common area function correctly) and use it as a
CMT processor with fewer than the maximum number of functional virtual
processors. In such a case, it would be possible that the functional strands be
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numbered contiguously, starting from 0, and that the STRAND_ID.max_strand_id
field be set to the highest-numbered functional virtual processor. This requires some
way to reassign the identity of individual virtual processors after manufacturing. If
this is not practical, the functioning virtual processors may not be contiguously
numbered.

15.3.1.1 Exposing Stranding

If a processor implements multiple strands per physical core, the stranding is
exposed in STRAND_ID.max_strand_id_per_core. This field encodes one less than
the number of strands that are implemented on the physical processor core; for
example, on a physical core with 4 strands,

STRAND_ID.max_strand_id_per_core = 3. Every virtual processor within the
physical core must observe the same value of max_strand_id_per_core. An
implementation defines and count strands and physical processor cores as
appropriate for that implementation.

When STRAND_ID.max_strand_id_per_core is nonzero, there are additional
constraints on the numbering of virtual processors. virtual processors that
correspond to strands on the same physical processor core must have contiguous
STRAND_ID.strand_id values, with the lowest numbered virtual processor on a
physical core having a strand_id value that is a multiple of the number of strands on
each physical core.

It is important to expose stranding to software. From a performance standpoint,

stranding must be exposed for the operating system to understand resource sharing
and contention issues and to optimally schedule software threads on the processor.
From a power management perspective, knowledge of stranding enables the facility
to park or disable all strands on a physical core to obtain significant power savings.

15.3.2 Strand InterruptID Register (STRAND_INTR_ID)

Register Name ASI # (Name) VA Scope Access  Note
STRAND_INTR_ID 6344 0016 per- RW
(ASI _CMI_PER_STRAND) strand
STRAND_INTR_ID Reserved int_id
63 16 15 0

FIGURE 15-2 STRAND_INTR_ID Register

The STRAND_INTR_ID register allows software to assign a 16-bit interrupt ID,
unique within a system, to each virtual processor. This is necessary in order to
enable virtual processors to receive interrupts. The identifier in this register is used
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by other virtual processors (on the same and different CMT processors) and other
bus agents to address interrupts to this specific virtual processor. It can also be used
by this virtual processor to identify itself as the source of an interrupt it sends to
other virtual processors and bus agents.

This register is Read/Write, accessible only in hyperprivileged mode
(HPSTATE.hpriv = 1). It is expected that it will be modified only at boot or
reconfiguration time. An attempt to access this register in privileged mode or
nonprivileged mode results in a privileged_action exception.

The STRAND_INTR_ID register has only one field, a 16-bit interrupt ID field, named
int_id.

If an implementation uses fewer than 16 bits for its interrupt ID, the unused bits
read as zero and writes to them are ignored.

IMPL. DEP. #: It is implementation dependent whether any portion of the int_id field
of the STRAND_INTR_ID register is read-only (see following subsection, Assigning an
Interrupt ID).

15.3.2.1 Assigning an Interrupt ID

When assigning the interrupt ID to a virtual processor, software must be aware of
interrupt routing conventions used in the system. Some portion of the interrupt ID
might be required to follow a hardware convention to enable the interrupt to be
correctly routed through the system interconnect. In some implementations, a part of
the interrupt ID can be fixed by the processor to correspond to the strand ID. This
portion of the interrupt ID can be read-only in the STRAND_INTR_ID register. Such
requirements are both processor- and system-platform-specific.

Each virtual processor in the CMT processor must have an interrupt ID that is
unique within the system. If the interrupt ID of multiple virtual processors in the
same system are set to the same value, the behavior of the processor is undefined
when an interrupt specifying that ID is sent or received.

15.3.2.2 Dispatching and Receiving Interrupts

The mechanisms used to dispatch and receive interrupts must work with the
interrupt ID register. A processor’s interrupt dispatch mechanism must be able to
specify the interrupt ID of the destination virtual processor to which the interrupt is
to be delivered. When a destination interrupt ID is specified, the interrupt must be
delivered to the virtual processor that has the matching ID in its STRAND_INTR_ID
register.
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15.3.2.3 Updating the Strand Interrupt ID Register

It is expected that the interrupt ID register of a virtual processor will be written once
by software, when a virtual processor is initially booted. It is assumed that while a
virtual processor is being booted, there will be no interrupt traffic in the system.

The latency from when software writes to STRAND_INTR_ID to when the write takes
effect is implementation dependent. Use of a MEMBAR #Sync instruction after a
write to STRAND_INTR_ID will cause the write to become visible before any
instructions after the MEMBAR are executed on the virtual processor.

Updates to STRAND_INTR_ID are atomic: if STRAND_INTR_ID is written, the value
observed at any time will be either the old value or the new value; no transient value
will be observed. If an interrupt is issued to a virtual processor while its interrupt ID
register is being updated (addressed either to its old or new interrupt ID), the
interrupt may or may not be received by the virtual processor. Once a virtual
processor acknowledges an interrupt using its new interrupt ID, it will not
acknowledge any interrupts addressed to the old interrupt ID.

If an interrupt is issued to a system, addressed to an interrupt ID that does not
match any virtual processors or other system agents, the interrupt will not be
acknowledged and will be dropped.

154 Disabling and Parking Virtual
Processors

The CMT programming model provides the ability to disable virtual processors and
temporarily suspend (park) virtual processors. This section describes the interface
for probing what virtual processors are available, enabled, and running (not parked).
This section also describes the interface for enabling/disabling virtual processors
and parking/unparking virtual processors.
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15.4.1

Strand Available Register (STRAND_AVAILABLE)

15.4.2

Register Name ASI # (Name) VA Scope Access Note
STRAND_AVAILABLE 414 (ASI _CMI_SHARED) 0044 per-proc R only
STRAND AVAILABLE Strand-Available bits
63 0

FIGURE 15-3 STRAND_AVAILABLE Register

The STRAND_AVAILABLE register is a shared (one per processor) register that
indicates which virtual processors are available for use (that is, are present and
functional) in a CMT implementation.

The STRAND_AVAILABLE register is read-only, comprising a single 64-bit field. As
illustrated in FIGURE 15-3, bit n corresponds to virtual processor n; therefore up to 64
virtual processors are supported per CMT. If a bit in the register is 1, the
corresponding virtual processor is available for use in the CMT. If a bit in the
register is 0, the corresponding virtual processor is not available for use. An
“available” virtual processor is one that is present and functional, therefore can be
enabled and used.

Enabling and Disabling Virtual Processors

The CMT programming model allows virtual processors to be enabled and disabled.
Enabling or disabling a virtual processors is a heavyweight operation that in most
cases requires either a power_on_reset (POR) or a warm_reset. (WRM) for updates.
A disabled virtual processor produces no architectural effects observable by other
virtual processors, and does not participate in cache coherency. The behavior of any
transaction (such as an interrupt) issued to a disabled virtual processor is undefined.

IMPL. DEP. #322-U4: Whether disabling a virtual processor reduces the power used
by a CMT is implementation dependent. It is recommended that a disabled virtual
processor consume a minimal amount of power.

IMPL. DEP. #423-S10: Whether disabling a virtual processor increases the
performance of other virtual processors in the CMT is implementation dependent.
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15.4.2.1 Strand Enable Status Register
(STRAND_ENABLE_STATUS)

Register Name ASI # (Name) VA Scope Access  Note

STRAND_ENABLE_STATUS 41, (ASI _CMT_SHARED) 10,4 per-proc R only

STRAND_ENABLE_STATUS Strand Enable Status bits
63 0
FIGURE 15-4 STRAND_ENABLE_STATUS Register

The STRAND_ENABLE_STATUS register is a shared (one per processor) register
that indicates which virtual processors are currently enabled. The register is a read-
only register, in which each bit corresponds to a virtual processor.

As shown in FIGURE 15-4, bit nn corresponds to virtual processor #. If a bit in the
STRAND_ENABLE_STATUS register is 1, the corresponding virtual processor is
available and enabled. A virtual processor indicated as “not available” in the
STRAND_AVAILABLE register cannot be enabled, and its corresponding enabled bit
in this register will be 0. An available, enabled virtual processor that is parked is still
considered enabled.

Programming | Hyperprivileged software should never set bit
Note | STRAND_ENABLE({n} to 1 if STRAND_AVAILABLE{n} = 0.

State After Reset. The STRAND_ENABLE_STATUS register changes due to a
power_on_reset. (POR) or a warm_reset. (WRM). During a power_on_reset, the
contents of its STRAND_AVAILABLE register are copied to the
STRAND_ENABLE_STATUS register. During a warm_reset reset, the contents of
the STRAND_ENABLE register are copied to the STRAND_ENABLE_STATUS
register.

15.4.2.2 Strand Enable Register (STRAND_ENABLE)

Register Name ASI # (Name) VA Scope Access Note

STRAND_ENABLE 4144 20q¢ per-proc RW Changes take effect during reset
(ASI _CMT_SHARED)

STRAND_ENABLE | Strand Enable bits

63 0
FIGURE 15-5 STRAND_ENABLE Register
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The STRAND_ENABLE register is a shared (one per processor) register, used by
software to enable and disable a CMT’s virtual processors. When disabled, a virtual
processor and any structures private to that virtual processor behave as though they
were not present.

Programming | When re-enabled, per-strand architectural state that existed
Note | when the virtual processor was previously enabled should be
assumed to be lost. Therefore, hyperprivileged software must
initialize any needed per-strand architectural state each time a
virtual processor is enabled.

Changing a bit in the STRAND_ENABLE register does not take effect (cause a virtual
processor to be enabled/disabled) immediately. Instead, it indicates a pending
change to the STRAND_ENABLE_STATUS register, which will not take effect until
the next warm_reset. (WRM) reset — at which time, the contents of the
STRAND_ENABLE register are copied to the STRAND_ENABLE_STATUS register.
A change in the STRAND_ENABLE register may also take place at some other
implementation-dependent time (see Dynamically Enabling/Disabling Virtual
Processors on page 526 (impl. dep. #__).

As shown in FIGURE 15-5, the STRAND_ENABLE register contains one bit per
possible virtual processor, with bit n corresponding to virtual processor n. If bit n is
1, then virtual processor n should be enabled after the next warm reset (if that
virtual processor is available). If bit n is 0, then virtual processor n should be
disabled after the next warm reset.

When bit n in the STRAND_AVAILABLE register is 0 (the virtual processor is
unavailable), the corresponding bit (bit n) in the STRAND_ENABLE register is
forced to 0 and attempts to write “1” to bit n in the STRAND_ENABLE register are
ignored.

Restrictions on Updating the STRAND_ENABLE Register.

IMPL. DEP. #323-U4: Whether an implementation provides a restriction that
prevents software from writing a value of all zeroes (or zeroes corresponding to all
available virtual processors) to the STRAND_ENABLE register is implementation
dependent. This restriction avoids the dangerous case where all virtual processors
become disabled and the only way to enable any virtual processor is a hard
power_on_reset (a warm reset would not suffice). If such a restriction is
implemented and software running on any virtual processor attempts to write a
value of all zeroes (or zeroes corresponding to all available virtual processors) to the
STRAND_ENABLE register, hardware forces the STRAND_ENABLE register to an
implementation-dependent value which enables at least one of the available virtual
processors.
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15.4.3

State After Reset. Upon assertion of power_on_reset, the value of the
STRAND_AVAILABLE register is copied to the STRAND_ENABLE register. The
STRAND_ENABLE register does not change during any other reset, including
system (or equivalent) resets.

15.4.2.3 Dynamically Enabling/Disabling Virtual Processors

IMPL. DEP. #424-S10: Whether a CMT implementation provides the ability to
dynamically enable and disable virtual processors is implementation dependent. It is
tightly coupled to the underlying microarchitecture of a specific CMT
implementation. This feature is implementation dependent because any
implementation-independent interface would be too inefficient on some
implementations.

Parking and Unparking Virtual Processors

Parking is a way to temporarily suspend the operation of a virtual processor,
intended for use by critical diagnostic and recovery code. A parked virtual processor
can be later unparked to allow it to resume running. A virtual processor can be
parked or unparked at arbitrary times using the STRAND_RUNNING register and a
WMR or POR reset is not required for parking/unparking to become effective. The
STRAND_RUNNING_STATUS register can be used to determine whether a virtual
processor that has been directed to park has completed the process of parking.

A parked virtual processor does not execute instructions and does not initiate any
transactions on its own. If any portion of the memory system resides in a parked
virtual processor, it will continue to be updated as necessary for it to remain
coherent with the rest of the memory system while the virtual processor is parked.

When a virtual processor is unparked, it continues execution with the instruction
that was next to be executed when the virtual processor was parked. It is transparent
to software running on a virtual processor that it was ever parked (except for
observable timing considerations).

While a virtual processor is parked, the STICK register continues to count.

IMPL. DEP. #425-S10: It is implementation dependent whether the TICK register
continues to count while a virtual processor is parked.

Using the TICK or STICK counter to detect the parking of a virtual processor is not
recommended.

An interrupt to a parked virtual processor behaves the same as if the virtual
processor was too busy to accept the interrupt.
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IMPL. DEP. #324-U4: It is implementation dependent whether parking a virtual
processor reduces the power used by a CMT. It is recommended that a parked
virtual processor use a reduced amount of power.

Parking a virtual processor should, when appropriate, reduce the contention for
shared resources and enable other virtual processors to potentially run faster.

IMPL. DEP. #426-S10: The degree to which parking a virtual processor impacts the
performance of other virtual processors is implementation dependent.

Implementation | One possible way to implement virtual processor parking is to
Note | disable instruction fetching in a parked virtual processor. In
such an implementation, after a virtual processor is parked, it
will execute the instructions currently in its pipeline, complete
pending transactions (such as draining the store queue), and
then become idle.

15.4.3.1 Strand Running Register (STRAND_RUNNING)

Register Name ASI # (Name) VA Scope Access  Note

STRAND_RUNNING_RW 414 (ASI _CMI_SHARED) 50,4 per-proc RW General RW access
STRAND_RUNNING_W1S 41,4 (ASI _CMI_SHARED) 60,5, per-proc W1S Write 1s to set bits
STRAND_RUNNING_W1C 41,4 (ASI _CMI_SHARED) 68;, per-proc W1C Write 1s to clear bits

STRAND_RUNNING | Strand Running bits
63 0

FIGURE 15-6 STRAND_RUNNING Register

STRAND_RUNNING is a shared (one per processor) register, used by software to
park and unpark selected virtual processors in a CMT implementation. When a
virtual processor is parked, the virtual processor stops executing new instructions
and will not initiate new transactions except in response to a coherency transaction
initiated by another virtual processor.

IMPL. DEP. #427-S10: There may be an arbitrarily long, but bounded, delay (“skid”)
from the time when a virtual processor is directed to park or unpark (via an update
to the STRAND_RUNNING register) until the corresponding virtual processor(s)
actually park or unpark.

Multiple access methods are provided for writing bits in the STRAND_RUNNING
register, distinguished by the virtual address used (listed above):
= STRAND_RUNNING_RW, for normal reading and writing of the entire register

= STRAND_RUNNING_W1S (“Write 1 to Set”), where writing ‘1’ to a bit sets the
destination bit to ‘1" and writing ‘0" to a bit leaves the destination bit unchanged
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= STRAND_RUNNING_WI1C (“Write 1 to Clear”), where writing ‘1" to a bit sets the
destination bit to ‘0" (clears it) and writing ‘0" to a bit leaves the destination bit
unchanged

A specific value can be atomically written to all bits of the STRAND_RUNNING
register, using STRAND_RUNNING_RW, or bits can be individually modified, using
STRAND_RUNNING_W1S or STRAND_RUNNING_W1C. When a virtual processor
parks itself, software should write to STRAND_RUNNING_W1C. When a virtual
processor wants to become the only active virtual processor (parking all other
virtual processors in the CMT), it is more appropriate to write the desired value
directly to STRAND_RUNNING_RW. A direct write eliminates the need to perform
separate set and clear operations to write a specific value to the register.

As shown in FIGURE 15-6, the STRAND_RUNNING register contains one bit per
possible virtual processor, with bit n corresponding to virtual processor n. Writing a
value of 1 to bit position n activates (unparks) virtual processor n for normal
execution, while writing a value of 0 to bit n parks virtual processor . If bit n in the
STRAND_ENABLE_STATUS register is 0 (not enabled), hardware forces the
corresponding bit in the STRAND_RUNNING register to 0 and attempts to write to
that bit are ignored.

Updating the STRAND_RUNNING Register. When a virtual processor parks
itself by updating the STRAND_RUNNING register and follows the update with a
FLUSH instruction, no instruction after the FLUSH instruction will be executed until
the virtual processor is unparked. The virtual address specified in the FLUSH
instruction is not important. The FLUSH instruction may be executed either before
parking takes effect or after the virtual processor is unparked. The FLUSH can,
therefore, enable software to bound when parking takes effect, in the case when a
virtual processor parks itself.

IMPL. DEP. #428-S10: When a virtual processor writes to the STRAND_RUNNING
register to park itself, the method by which completion of parking is assured
(instructions stop being issued) is implementation dependent.

Simultaneous Updates to the STRAND_RUNNING Register. Hardware is not
required to provide a mechanism for handling simultaneous updates from different
strands to the STRAND_RUNNING register.
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Programming | It is the responsibility of hyperprivileged software to insure that

Note | a livelock condition, resulting from simultaneous updates from
different strands to the STRAND_RUNNING register, does not
occur.

After writing to STRAND_RUNNING with a STXA instruction,
hyperprivileged software should check the
STRAND_RUNNING_STATUS register to verify when the
attempted parking/unparking of virtual processor(s) actually
completed.

At Least One Virtual Processor Must Remain Unparked. Hardware enforces
the restriction that an update to the STRAND_RUNNING register by software
running on one of the virtual processors cannot cause all of the enabled virtual
processors to become parked. This restriction is important to avoid the dangerous
situation where all virtual processors become parked and there is no way to
reactivate any of the virtual processors (without a warm reset or power-on reset).

IMPL. DEP. #429-S10: If an update to the STRAND_RUNNING register would cause
all enabled virtual processors to become parked, it is implementation dependent
which virtual processor is automatically unparked by hardware. The preferred
implementation is that when an update to the STRAND_RUNNING register (STXA
instruction) would cause all virtual processors to become parked, hardware silently
ignores (discards) that STXA instruction.

Implementation | It is important that when a virtual processor attempts to issue an

Note | update to the STRAND_RUNNING register that would cause all
virtual processors to become parked, that virtual processor is not
parked. A virtual processor updating the STRAND_RUNNING
register will be executing a section of software (error diagnostic
or other special code) that is aware of the behavior and
implications of parking. When an attempt is made to park all
virtual processors, automatically unparking an arbitrary virtual
processor would be problematic, because a virtual processor in
the midst of running nonprivileged code could become the only
unparked virtual processor. If this were to happen, the only
active virtual processor in the CMT would be unaware of the
state of the CMT and would not know to check the running
status of other virtual processors.

At Least One Virtual Processor Must Remain Unparked — Multiprocessor
Configuration. When there are multiple processors (chips) in the configuration,
there is still a requirement to have at least one virtual processor unparked on each
processor. However, from a testing point of view, it is desirable to be able to unpark
all but one virtual processor in the entire multiprocessor configuration.
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IMPL. DEP. #430-S10: In a multiprocessor configuration, whether all but one virtual
processor can be parked is implementation dependent.

State After Reset. Upon power-on reset or warm reset, the STRAND_RUNNING
register by default is initialized such that all the virtual processors are parked except
for the lowest-numbered enabled virtual processor. This provides a default on-chip
“boot master” virtual processor, reducing BootBus contention.

Note | For systems that use a system reset pin, the value of the
STRAND_RUNNING register is updated upon assertion of the
warm reset signal.

15.4.3.2 Strand Running Status Register
(STRAND_RUNNING_STATUS)

Register Name ASI # (Name) VA Scope Access  Note

STRAND_RUNNING_STATUS 41,4 5814 per-proc R only
(ASI _CMT_SHARED)

STRAND_RUNNING_STATUS | Strand Running Status bits

63 0

FIGURE 15-7 STRAND_RUNNING_STATUS Register

STRAND_RUNNING_STATUS is a shared (one per processor) register. It indicates
whether a virtual processor is still active (running) or has actually become parked. It
is needed because there may be a delay between the time when a virtual processor is
directed to park (via the STRAND_RUNNING register) and the time when it actually
becomes parked. The STRAND_RUNNING_STATUS register is a shared, read-only
register in which bit n indicates if strand # is active.

There is an implementation-dependent delay from the time virtual processor 7 is
directed to park by writing 0 to bit n of the STRAND_RUNNING register until it
actually becomes parked (impl. dep. #427-510).

As shown in FIGURE 15-7, the STRAND_RUNNING_STATUS register has one 64-bit
field (one bit per possible virtual processor), with bit n corresponding to virtual
processor 1.

= If virtual processor #n is enabled (STRAND_ENABLE_STATUS{n} = 1):

= avalue of 0 in bit n of the STRAND_RUNNING_STATUS register indicates that
virtual processor 7 is truly parked and will not execute any additional
instructions or initiate new transactions until it is unparked.
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= A value of 1 in bit n of the STRAND_RUNNING_STATUS register indicates that
a virtual processor is active and can execute instructions and initiate
transactions. All virtual processors that have a 1 in the STRAND_RUNNING
register must have a 1 in the STRAND_RUNNING_STATUS register.

= If virtual processor n is disabled (STRAND_ENABLE_STATUS{n} = 0), bit n of the
STRAND_RUNNING_STATUS register must be 0.

The STRAND_RUNNING_STATUS register indicates when a virtual processor that has
been directed to park has actually parked, that is, is no longer executing instructions
or initiating any transactions (except in response to coherency transactions generated
by other virtual processors).

IMPL. DEP. #431-S10: The criteria used for determining whether a virtual processor
is fully parked (corresponding bit set to ‘1" in the STRAND_RUNNING_STATUS
register) are implementation dependent.

After bit n in the STRAND_RUNNING register has been changed from 1 to 0,
hardware must guarantee that only a single transition from 1 to 0 in bit n of the
STRAND_RUNNING_STATUS register will be observed.

State After Reset. The value of the STRAND_RUNNING_STATUS register is the
same as the value of the STRAND_RUNNING register at the end of a system reset.

Virtual Processor Standby (or Wait) State

IMPL. DEP. #432-S10: Whether an implementation implements a St andby (or
Wi t) state for virtual processors, how that state is controlled, and how that state is
observed are implementation-dependent.

In a St andby state, the virtual processor is suspended for a predetermined period of
time and/or until an external interrupt is received. A St andby state may appear
similar to a Par ked state, but virtual processor St andby state (if implemented)
must be completely orthogonal to parking. The details of the software interface to
and implementation of St andby /Wi t state is beyond the scope of this
specification.

With respect to parking, the virtual processor is either Runni ng or not running
(Par ked), as indicated in the STRAND_RUNNING_STATUS register. With respect to
standby, the virtual processor is either in St andby or Nor mal state. Since these
features are independent, the virtual processor can be in any of the four possible
combinations of these states. A virtual processor is still considered running if it is in
a St andby mode but is not Par ked. If a virtual processor is in a St andby mode
and becomes Par ked, it will remain Par ked even if an event causes it to change
from St andby to Nor mal mode; it will not execute instructions until it is later
unparked.
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Implementing a St andby mode may provide performance and/or power-
consumption benefits. A virtual processor in St andby mode may cause less
resource contention with other running virtual processors and may consume less
power.

15.5  Reset and Trap Handling

In a CMT, some resets apply globally to all virtual processors, some apply to an
individual virtual processor, and some apply to an arbitrary subset of virtual
processors. The following sections address how each type of reset affects the virtual
processors in a CMT.

The reset nomenclature used in this section is generally consistent with that used for
UltraSPARC Architecture 2005 processors. If future processors classify resets
differently, this model should be extended appropriately to the new classifications.

Traps (as opposed to resets) apply to individual virtual processors and are discussed
in Traps on page 437.

15.5.1 Per-Strand Resets (SIR and WDR Resets)

The only resets that affect only a single virtual processor are those that are internally
generated by a virtual processor, such as software initiated reset (SIR) and watchdog
reset (WDR). These resets are generated by an individual virtual processor and are
not propagated to the other virtual processors in a CMT.

15.5.2 Full-Processor Resets (POR and WRM Resets)

There is a class of resets that are generated by an external agent and apply to all the
virtual processors within a processor. This class includes all resets associated with
fundamental CMT reconfigurations.

power_on_reset (POR) is one case of full-processor reset. Warm reset is another
example of such a reset (warm reset may be either processor or physical strand-
specific, depending on the implementation). Full-processor reset is required for
certain reconfigurations of the processor.

Power-on reset and warm reset (or their equivalents in future processors) are global
resets, sent to all strands in a CMT processor.
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15.5.2.1 Boot Sequence

As discussed in Strand Running Register (STRAND_RUNNING) on page 527, the
default boot sequence is for all virtual processors except one (nominally, the lowest-
numbered enabled virtual processor) to be set to Par ked state at the beginning of
full-processor reset. The single unparked virtual processor is the master virtual
processor, which should arbitrate for the BootBus (if multiple CMT processors share
the same BootBus). The master virtual processor (or service processor) should
unpark the other virtual processors in the processor at the appropriate time in the
booting process.

Partial Processor Resets (XIR Reset)

There is a class of resets, referred to here as “partial-processor resets,” that are
generated by an external agent and affect an arbitrary subset of virtual processors
within a processor. The subset may be anything from all virtual processors to no
virtual processors (impl. dep. #433-510).

Externally-initiated reset (XIR) is a partial-processor reset. XIR is intended to reset a
specific virtual processor in a system, primarily for diagnostic and recovery
purposes.

IMPL. DEP. #433-S10: A mechanism must exist to specify which subset of virtual
processors in a processor should be reset when a partial-processor reset (for
example, XIR) occurs. The specific mechanism is implementation-dependent.

Possible methods of specifying the subset include the following:

1. Before the partial-processor reset occurs, set up a steering register that specifies
the subset of virtual processors that should be affected. For systems using an XIR
reset, the XIR Steering register described in XIR Steering Register
(XIR_STEERING) on page 534 should be used.

2. Specify the subset of virtual processors concurrently with the reset request, across
the same interface used for communicating the reset. This method would require
that the interface used for communicating resets supports sending packets of
information along with the resets.

In an implementation that replaces the XIR reset with a different set of resets, the
following rules apply for extending this CMT programming interface:

= FEach partial-processor reset may use an interface where the set of virtual
processors to reset is communicated along with the reset request.

= For partial-processor resets for which the set of virtual processors to be reset is not
communicated along with the reset request:

= The highest priority virtual processor will use the XIR_STEERING register to
determine the subset of virtual processors to be reset.
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= Each subsequent lower-priority virtual processor can either use the
XIR_STEERING register or use an additional steering register (comparable to
XIR_STEERING), specifically associated with that reset. Each additional
steering register will be accessed using the same ASI number (41;4) as the
XIR_STEERING register but with a distinct virtual address.

15.5.3.1 XIR Steering Register (XIR_STEERING)

Register Name ASI # (Name) VA Scope Access Note
XIR_STEERING 41,4 (ASI _CMTI_SHARED) 3044 per-proc  RW General access
XIR_STEERING | XIR Steering bits
63 0

FIGURE 15-8 XIR_STEERING Register

An externally initiated reset (XIR) can be steered to an arbitrary subset of virtual
processors, using the XIR_STEERING register. The XIR_STEERING register is
shared across virtual processors and is used by software to control which virtual
processor(s) within a processor will receive the XIR reset signal when XIR is asserted
for the processor module.

As shown in FIGURE 15-8, the XIR_STEERING register has one 64-bit field (one bit
per possible virtual processor), in which bit n corresponds to virtual processor .

When an external reset is asserted for the CMT, if bit n in the XIR_STEERING
register is 1, virtual processor n receives an XIR reset; if bit # in the XIR_STEERING
register is 0, virtual processor n continues execution, unaware of the external reset
asserted for the CMT.

A virtual processor that is parked when it receives an XIR reset remains parked and
will handle the XIR reset immediately after being unparked.

IMPL. DEP. #325-U4a: Whether XIR_STEERING(n} is a read-only bit or a read/
write bit is implementation dependent. If XIR_STEERING({n} is read-only, then (1)
writes to XIR_STEERING({n} are ignored and (2) XIR_STEERING({n} is set to 1 if
virtual processor n is available and to 0 if it is not available (that is,
XIR_STEERING{n} reads the same as STRAND_AVAILABLE({n}.

It may be desirable for an XIR to effectively unpark and reset all virtual processors
in a CMT. If so, that effect can be generated by having the first action of software on
virtual processor receiving an XIR to unpark all other virtual processors in the CMT.
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State After Reset.

During power_on_reset, the contents of the STRAND_AVAILABLE register are
copied to the XIR_STEERING register. During a warm reset, the contents of the
STRAND_ENABLE register are copied to the XIR_STEERING register. This provides
for a default condition in which all enabled virtual processors receive an XIR reset
when an external reset is asserted for the processor. (impl. dep. #325-U4b)

15.6

15.6.1

Error Handling in CMT Processors

Errors in a structure private to a virtual processor are considered virtual-
processor(strand)-specific and are reported to that virtual processor using its error-
reporting mechanism.

When an error in a structure shared among virtual processors occurs:

» If the virtual processor initiating the request that caused or detected the error can
be identified, the error is considered virtual-processor-specific and is reported
back to the originating virtual processor.

» If the virtual processor initiating the request that caused or detected the error
cannot be identified, the error is considered non-virtual-processor-specific.

= All virtual processors that share a structure are considered to be part of the error-
handling group for that structure. This implies that any virtual processor in the
group can be assigned to handle error traps associated with the structure and
have diagnostic access to the structure for error recovery.

The following sections describe how a CMT processor handles both virtual-
processor-specific and non-virtual-processor-specific errors.

Virtual-Processor-Specific Error Reporting

Errors specific to a particular virtual processor are reported to the virtual processor
associated with the error, using the virtual processor’s error reporting mechanism. A
virtual-processor-specific error can be either synchronous or asynchronous. It may
be an error that occurred in a shared structure but is traceable to the originating
virtual processor. It is the responsibility of error handling software to recognize the
implication of errors in shared structures and take appropriate action.
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15.6.2  Reporting Errors on Shared Structures

Errors in shared structures are more complicated than virtual-processor-specific
errors. When a non-virtual-processor-specific error occurs, it must be recorded and
an exception must be generated on one of the virtual processors within the CMP to
deal with the error. More precisely, the virtual processor that reports the exception
must be part of the error-handling group for the shared structure in which the error
was detected. The following subsections describe where the error should be
recorded and in which virtual processor the exception should be generated.

15.6.2.1 Error Steering

When an error occurs in a shared resource, the error must be reported to a virtual
processor that shares that resource and is part of its error-handling group. That
virtual processor has the capability of issuing diagnostic reads and writes to the
structure for diagnosis, correction, and error-clearing purposes. Error steering
registers are used to determine which virtual processor will handle the error.
Software configures an error steering register to specify which virtual processor
should handle the error(s) associated with that error steering register. That is, an
error steering register defines in which virtual processor an exception will be
generated, to report and handle the error.

A given CMT implementation may contain resources shared by all the virtual
processors of the CMT processor or shared by a subset of two or more virtual
processors.

IMPL. DEP. #434-S10: Because of the range of implementation, the number of,
organization of, and ASI assignments for error steering registers in a CMT processor
are implementation dependent.

Error steering registers may be provided per shared resource or per level of sharing.
In the case that all shared resources are shared by all virtual processors, it is
recommended that a single error steering register be used and that error steering
register should follow the behavior of the ERROR_STEERING register defined in
Error Steering Register (ERROR_STEERING) on page 538. If a mechanism is used
where error steering registers are used per level of sharing, it is recommended that
the ERROR_STEERING register be used for the level at which all virtual processors
share and provide error-handling groups.

General Guidelines for Error Steering Registers. An error steering register
controls which virtual processor handles non-virtual-processor-specific errors. Such
an error is recorded using the virtual processor’s asynchronous error reporting
mechanism (as relevant to the error) and generates an appropriate exception.

An error steering register is accessed through an ASI or a memory-mapped address.
It must be accessible for both reading and writing by software (using load and store
alternate instructions).
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A processor contains one or more error steering registers. The number of error
steering registers needed depends on how resources are shared and the ability of a
virtual processor to diagnose errors in a resource it does not share.

An error steering register specifies a virtual processor by an encoded field, target_id,
that corresponds to the strand_id of the targeted virtual processor. Use of an
encoded representation guarantees that only one virtual processor can be specified.
An error steering register should contain only one field, the target_id field, that
encodes the strand_id of the virtual processor that should be informed of non-
virtual-processor-specific errors in its sharing group.

IMPL. DEP. #326-U4-Cs10a: The number of implemented bits of
ERROR_STEERING.target_id is nominally six, but is implementation dependent
and must be sufficient to encode the highest implemented virtual processor ID.

It is the responsibility of software to ensure that an error steering register identifies
an appropriate virtual processor for handling the error(s) assigned to it. If an error
steering register identifies a virtual processor that is not available (per
STRAND_AVAILABLE) or is disabled (per STRAND_ENABLE_STATUS), none of
the enabled virtual processors in the error-handling group will be affected by the
reporting of a non-virtual-processor-specific error to the disabled virtual processor.
However, the behavior of the specified disabled virtual processor is undefined; for
example, the error status register in the disabled virtual processor may or may not
be observed to have been updated.

If an error steering register identifies a virtual processor that is not part of the error-
handling group, operation is also undefined. An example would be if the error
steering register identifies a virtual processor in another error-handling group for a
virtual-processor-specific error. To avoid this case, an error steering register should
be assigned on a core basis for core errors that are non-virtual-processor-specific.

If an error steering register identifies a virtual processor that is parked, the non-
virtual-processor-specific error is reported to that virtual processor and the virtual
processor will observe the appropriate exception, but not until after it is unparked.

When an error steering register is written by software, the update becomes visible
after an unspecified delay. If a store to the register is followed by a MEMBAR
synchronization barrier instruction, it is guaranteed that the write to the error
steering register will complete by the time the execution of the MEMBAR instruction
completes.

When a non-virtual-processor-specific error occurs, the corresponding error steering
register is consulted. The error is reported to and an exception is generated in the
virtual processor indicated by the error steering register.

If a non-virtual-processor-specific error occurs and at the same time target_id is
being changed in the corresponding error steering register, the subsequent error
report and the generated exception will occur together on the same virtual processor,
either the virtual processor indicated by the old value in the error steering register or
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the one indicated by the new value. That is, for non-virtual-processor-specific
errors, the generation of an error report plus an exception is atomic with respect to
changes to the contents of the error steering register.

State of Error Steering Register After Reset.

The target_id field of an error steering register is initialized during a power-on-reset
and warm reset. After a power-on-reset, the value in the target_id field of an error
steering register should refer to the lowest-numbered available virtual processor (as
indicated by the STRAND_AVAILABLE register) that corresponds to the resource(s)
covered by the steering register. After a warm reset, the value in the target_id field of
an error steering register should refer to the lowest-numbered enabled virtual
processor (as indicated by the STRAND_ENABLE register) that corresponds to the
resource(s) covered by the steering register.

Error Steering Register (ERROR_STEERING). The ERROR_STEERING
register is the recommended mechanism for specifying which virtual processor in an
error-handling group should handle non-virtual-processor-specific errors in
resources shared by all virtual processors of the error-handling group.
ERROR_STEERING is a shared register, accessible from all virtual processors in the
error-handling group.

When a non-virtual-processor-specific error occurs, the error is recorded using the
asynchronous error reporting mechanism in the virtual processor indicated by
ERROR_STEERING. The appropriate exception is generated in that same virtual

processor.
Register Name ASI # (Name) VA Scope Access Note
ERROR_STEERING per-proc  RW

The Error Steering register has only one field that encodes the strand ID of the
strand that should be informed of non-virtual-processor-specific errors. When an
error is detected that cannot be traced back to a specific virtual processor, the error
is recorded in, and a trap is sent to, the virtual processor identified by the Error
Steering register.

ERROR_STEERING Reserved target_id

63 n n-1 0
FIGURE 15-9 ERROR_STEERING Register

IMPL. DEP. #435-S10: Although the ERROR_STEERING register is the
recommended mechanism for steering non-virtual-processor-specific errors to a
virtual processor for handling, the actual mechanism used in a given
implementation is implementation dependent.
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The ERROR_STEERING register contains one field, target_id, that encodes the
virtual processor ID of the virtual processor that should be informed of non-virtual-
processor-specific errors (see FIGURE 15-9).

IMPL. DEP. #436-S10: The width of the target_id field of the ERROR_STEERING
register is implementation dependent.

The target_id field (refer to FIGURE 15-9) must be wide enough to encode the strand

ID of the highest-numbered implemented virtual processor. If n bits of this field are
implemented, the unused most-significant bits numbered 5 to 6-n read as zero and

writes to those bits are ignored.

IMPL. DEP. #437-S10: An implementation may provide multiple target_id fields in
an ERROR_STEERING register for different types of non-virtual-processor-specific
errors.

15.6.2.2 Reporting Non-Virtual-Processor-Specific Errors

Before an exception can be generated for a non-virtual-processor-specific error, the
error must be recorded. Non-virtual-processor-specific errors are recorded using the
asynchronous error reporting mechanism of the virtual processor specified by the
ERROR_STEERING register. The mechanism used is the same as that for reporting
vitual processor-specific errors.

Each asynchronous error is defined as either virtual-processor-specific or non-
virtual-processor-specific. If the same error can occur as either a virtual-processor-
specific error or a non-virtual-processor-specific error, the two cases must be
reported as two identifiably distinct errors.

IMPL. DEP. #438-S10: It is implementation dependent whether the error-reporting
structures for errors in shared resources appear within a virtual processor in per-
virtual-processor registers or are contained within shared registers associated with
the shared structures in which the errors may occur.

IMPL. DEP. #439-S10: The type of exception generated in a virtual processor to
handle each type of non-virtual-processor-specific error is implementation
dependent. A virtual processor can choose to use the same exceptions used for
corresponding virtual-processor-specific asynchronous errors or it can choose to
generate different exceptions.
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15.7

15.7.1

15.7.2

15.7.3

15.7.4

Additional CMT Software Interfaces

Diagnostic/RAS Registers

The CMT software interface defines how virtual processors are disabled or parked
(for diagnostic and error recovery) and how errors are reported in a CMT processor.
It is up to the implementation to provide appropriate diagnostic and recovery
mechanisms, which are not specified here.

A future extension of the CMT Programming Model may include more common
features for diagnostics and RAS. Increasing commonality without significantly
limiting the implementation options is best.

Configuration Registers

Given the broad range of possible implementations, no common configuration
interface is defined here.

At this time the CMT Programming Model does not specify any common
configuration registers. A future extension of the CMT Programming Model may
include some. Increasing commonality without significantly limiting the
implementation options is best.

Performance Registers

At this time, no common performance registers are specified. A future extension of
the CMT Programming Model may include some.

This is a specifically important area to have common features. A range of software
tools rely on the performance registers and common features will enable software
tools to be more quickly deployed on new architectures with less work.

Booting Support

Some of the registers previously described can be used by firmware for booting
support. See Strand Running Register (STRAND_RUNNING) on page 527 for an
example of such a register.

During a power-on-reset, only one enabled virtual processor per processor will be
unparked. Only this virtual processor will begin fetching instructions after the reset.
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IMPL. DEP. #440-S10: Which virtual processor is unparked during POR and
whether it is unparked by processor hardware or by a service processor is
implementation dependent. Conventionally, the virtual processor with the lowest-
numbered strand_id is unparked.

In a recommended booting sequence, software determines when virtual processors
become unparked after reset. The default behavior is for only one virtual processor
to be unparked when the system reset signal is removed. That virtual processor, in
turn, configures common registers and then unparks other virtual processors one at
a time. This is only one possible boot sequence; software is free to implement other
boot sequences.

15.8

Performance Issues for CMT Processors

Which resources are shared among which virtual processors in a CMT processor is
implementation-dependent. Resources such as caches, TLBs, and even execution
pipelines may be shared by virtual processors. From a performance perspective,
there are significant issues that result from this sharing. In this section,
hyperprivileged software issues of thread scheduling and configuration of inactive
virtual processors is discussed. Issues of how to develop algorithms and approaches
to take advantage of the low communication latencies between virtual processors are
not covered here.

To understand and take advantage of performance issues in a CMT processor
requires some knowledge of the underlying implementation. The existence of
implementation dependencies is unavoidable, but hopefully abstract representations
and general approaches can reduce the degree of implementation dependence in
hyperprivileged software.

15.9

Recommended Subset for Single-Strand
Processors

It is recommended that single-strand UltraSPARC Architecture 2005 processors
implement a subset of the CMT interface. This enables them to more easily integrate
into systems that may also contain CMT processors and enables more consistent
software to be deployed across those and other future systems.

Single-strand UltraSPARC Architecture 2005 processors should implement all of the
CMT registers described in this chapter, as follows:
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= The Strand Interrupt ID register (STRAND_INTR_ID) should be fully
implemented.

= All other registers can be implemented as read-only registers containing fixed
values, writes to which are ignored.

TABLE 15-1 summarizes the recommended implementation of CMT registers for a
single-strand processor implementation:

TABLE15-1  Recommended CMT Register Set for Single-Strand Processors

ASI VA Register Name Type Note
4156 0044 STRAND_AVAILABLE R only Read value of 014
1044 STRAND_ENABLE_STATUS R only Read value of 0144
2046 STRAND_ENABLE R only Read value of 014
3014 XIR_STEERING R only Read value of 0144
5014 STRAND_RUNNING_RW R only Read value of 0144
5816 STRAND_RUNNING_STATUS R only Read value of 0144
6016 STRAND_RUNNING_W1S W only (ignored)  Access (write) ignored
6816 STRAND_RUNNING_W1C W only (ignored)  Access (write) ignored
6315 0046 STRAND_INTR_ID RW Software assigned unique interrupt ID
for virtual processor (read/write)
1044 STRAND_ID R only Read value of 004
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15.10

Machine State Summary

TABLE 15-2 describes the ASI extensions that support CMT registers. The states of
CMT registers after resets are enumerated in TABLE 16-2 on page 552.

TABLE 15-2  ASI Extensions

ASI VA Register Name Scope Type Description

411 0044 STRAND_AVAILABLE per-proc R Bit mask of implemented virtual
processors

1044 STRAND_ENABLE_STATUS per-proc R Bit mask of enabled virtual processors

2014 STRAND_ENABLE per-proc  RW Bit mask of virtual processors to enable
after next reset (read/write)

3014 XIR_STEERING per-proc  RW Bit mask of virtual processors to
propagate XIR to (read/write)

5014 STRAND_RUNNING_RW per-proc  RW Bit mask to control which virtual
processors are active and which are
parked (read/write): 1= active, 0 =
parked

5814 STRAND_RUNNING_STATUS per-proc R Bit mask of virtual processors that are
currently active: 1 = active, 0 = parked

6014 STRAND_RUNNING_W1S per-proc  W1S Pseudo-register for write-one-to-set
access to STRAND_RUNNING

6814 STRAND_RUNNING_W1C per-proc = W1C Pseudo-register for write-one-to-clear
access to STRAND_RUNNING

6316 0044 STRAND_INTR_ID per- RwW Software assigned unique interrupt ID
strand for virtual processor (read/write)

1046 STRAND_ID per- R Hardware assigned ID for virtual

strand processor (read-only)

4014 and  Reserved per- Impl. Reserved for implementation-specific

greater strand Dep. per-strand registers
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CHAPTER 16

Resets

16.1

Resets

The UltraSPARC Architecture 2005 defines 5 types of resets. Reset priorities, listed
in order from highest to lowest, are as follows:

= power-on reset (POR)

= warm reset (WMR)

= externally initiated reset (XIR)
= watchdog reset (WDR), and

= software-initiated reset (SIR)

POR, WMR, and XIR resets are initiated external to the processor (chip). WDR and
SIR resets are initiated by the virtual processor itself, in response to specific
conditions.

POR resets are processor-wide (affect all virtual processors on the chip). WDR and
SIR resets are directed to a specific virtual processor. XIR resets are directed to the
virtual processor(s) indicated by the XIR_STEERING register. WMR resets are
implementation dependent and may be either processor-wide or directed to specific
virtual processor(s).

Resets are used to initialize a virtual processor and place it in an operating state, to
attempt recovery of a failing or stuck virtual processor, to attempt recovery of failing
operating system privileged software, and for debug purposes. The defined states
for each reset show an increasing amount of resource reset, such that, for example, a
XIR, WDR or SIR reset will leave most architectural and