

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 1 of 25

OpenStack Cloud Deployment on Cisco UCS C200 M2 Servers

This Tech Note steps through setting up an OpenStack Cloud (Cactus release),

comprising a cluster of compute and storage nodes each running Ubuntu 10.10. Each

node is a Cisco UCS C200 M2 High-Density Rack-Mount Server. This document builds

on installation instructions described in OpenStack Compute and Storage

Administration Guides, but is not meant to supersede those documents.

Table of Contents

Introduction .. 3

Cisco UCS C200 M2 High-Density Rack-Mount Server ... 3

Cluster Topology... 3

OpenStack Compute Installation .. 4

Installation on the Cloud Controller .. 4

Configuring the bridge ... 4

Running the Installation Script ... 5

Post Script Installation ... 6

Network Configuration using FlatDHCPManager ... 7

Testing the Installation by Publishing and Starting an Image ... 9

Installing Compute Nodes ...11

Configuring the Bridge ...11

Running the Installation Script ..12

Post Script Installation ..12

Testing the Installation on this Node ..13

OpenStack Dashboard Installation ..13

OpenStack Storage Installation ...14

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 2 of 25

Install and Configure the Packages ..14

Install Swift-proxy Service..15

Create the Account, Container and Object Rings:...15

Installing and Configuring the Auth Node ...16

Installing and Configuring the Storage Nodes ..17

Install Storage Node Packages ..17

Create OpenStack Object Storage admin Account and Verify the Installation21

Troubleshooting Tips ...21

Compute ..21

Not Able to Pull the Latest Cactus Release ..21

Not Able to Upgrade from Bexar to Cactus ..22

How to Create a New Network (and Delete the Existing One) ..22

Not Able to Publish an Image (Getting an Invalid Cert Error) ...22

Running Instance Hangs in the “Scheduling” State...23

UEC Image Instance Can Be Pinged, But Cannot Ssh ..23

Socket Time Out Error During Dashboard Installation ...24

Storage...25

Storage Services Do Not Start on the Storage Node..25

Unable to Start the Account Server on the Storage Node ..25

Table of Figures

Figure 1: OpenStack Cloud Deployment on a C200 cluster ... 4
Figure 2: OpenStack Dashboard..13

Figure 3: OpenStack Storage Deployment on a C200 cluster ..14

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 3 of 25

Introduction
OpenStack is a collection of open source technologies that provide massively scalable open
source cloud computing software. This Tech Note documents our experience in setting up an
OpenStack Cloud (Cactus release), comprising a cluster of compute and storage nodes with each
running Ubuntu 10.10). Each node is a Cisco UCS C200 M2 High-Density Rack-Mount Server.

This document can be used as a reference for deploying a similar cluster. It builds on installation
instructions described in OpenStack Compute and Storage Administration Guides

1
, but is a more

streamlined method that is specific to our deployment. We also attempt to provide additional
details where the original documentation is short. We hope the reader finds our troubleshooting

and workaround tips useful if problems develop during and after deployment. Please note that
this document is not meant to supersede the official OpenStack installation and administration
document. We encourage the reader to first consult that documentation to understand the
OpenStack concepts and installation procedure.

Cisco UCS C200 M2 High-Density Rack-Mount Server2
The Cisco UCS C200 M2 Server is a high-density, 2-socket, 1 rack unit (RU) rack-mount server

built for production-level network infrastructure, web services, and mainstream data center,
branch, and remote-office applications. The configuration of each server used in our deployment
is as follows:

 2 x Intel(R) Xeon(R) CPU E5620 @ 2.40GHz

 4 internal SAS or SATA disk drives; each 2 terabytes (TB)

 24 GB of industry-standard double data rate (DDR3) main memory

 4 Gigabit Ethernet ports

Cluster Topology
Our deployment consists of a cluster of four C200 servers. One server serves as the OpenStack
Cloud Controller. The other three servers are configured as compute nodes. We recommend
setting up the deployment such that the OpenStack management/control network is separate from
the data network. (By management/control network, we imply the network which is used to

access the servers, and on which the OpenStack processes exchange messages. By data network,
we imply the network on which the virtual machines instantiated by OpenStack communicate
with each other.) We leverage two network ports on each of these servers, such that one port is
on the management/control network, and the other one is on the data network. Please note that

the standard OpenStack installation process uses only one network for all communications.
Figure 1 shows the topology.

1
 http://docs.openstack.org/

2
 http://www.cisco.com/en/US/products/ps10891/index.html

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 4 of 25

Figure 1: OpenStack Cloud Deployment on a C200 cluster3

OpenStack Compute Installation
The scripted installation works well for installing OpenStack, both on the Cloud Controller, and

also on the other compute nodes. We will follow that approach for the installation. In our
installation, we will run all the services on the Cloud Controller, and only the nova-compute
service on the compute nodes. Note that in this set up, the Cloud Controller also serves as one of
the compute nodes. We suggest this approach since you can get started running and testing

virtual machine instances even with installing just the Cloud Controller, and adding one or more
compute nodes later as required.

Installation on the Cloud Controller

Configuring the bridge

The virtual machine instances running on this node will communicate with the data network by
connecting to a Linux bridge. We will f irst need to configure this bridge. We will use the eth1
port on our server for the data network (and we will configure it as a slave of br100). Our

/etc/network/interfaces file looks like this:

This file describes the network interfaces available on your system

and how to activate them. For more information, see interfaces(5).

The loopback network interface

auto lo

iface lo inet loopback

The primary network interface

auto eth0

iface eth0 inet static

address 171.x.y.96

gateway 171.x.y.1

netmask 255.255.254.0

auto br100

iface br100 inet static

 bridge_ports eth1

 bridge_stp off

 bridge_maxwait 0

 bridge_fd 0

3
 We have masked some of the digits on the 171. addresses used in this document with characters „x‟ and „y‟

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 5 of 25

Restart networking:

/etc/init.d/networking restart

An IP address will get automatically assigned to the bridge when we run the nova-network
service. In this case, the first IP address in the range specified for the network will be used

(i.e.; 10.0.0.1). Currently, there does not seem to be a way to configure this.

Running the Installation Script

Download the installation script:

wget --no-check-certificate https://github.com/dubsquared/OpenStack-NOVA-Installer-

Script/raw/master/nova-CC-install-v1.1.sh

Ensure you can execute the script by modifying the permissions on the script file:

sudo chmod 755 nova-CC-install-v1.1.sh

Run the script with root permissions:

sudo ./nova-CC-install-v1.1.sh

You will be guided through the following prompts:

Step 1: Setting up the database.

mySQL User Config

#################

Desired mySQL Password:

Verify password:

Please enter a password for the “root” user on the MySQL database. Note this password as it

might be required later during troubleshooting to access the MySQL database using MySQL
client.

Next, you will be asked to enter the IP address for different services which run on the Cloud
Controller.

S3 Host IP (Default is 10.0.0.3 -- ENTER to accept):171.x.y.96

RabbitMQ Host IP (Default is 10.0.0.3 -- ENTER to accept): 171.x.y.96

Cloud Controller Host IP (Default is 10.0.0.3 -- ENTER to accept): 171.x.y.96

mySQL Host IP (Default is 10.0.0.3 -- ENTER to accept): 171.x.y.96

Note that we have entered the IP address of the Cloud Controller on the management/controller
network.

Next, you will be prompted for details about the project that will serve as the isolated resource

container for your activities.

Nova project user name:<some_username>

Nova project name:test01

Desired network + CIDR for project (normally x.x.x.x/24):10.0.0.0/24

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 6 of 25

How many networks for project:1

How many availible IPs per project network:256

Make a note of the username and the project name that you enter here.

Currently only one network is supported per project.

Next you will be asked to enter details for the bridge configuration:

Please enter your local server IP (Default is 10.0.0.1 -- ENTER to accept):

Please enter your broadcast IP (Default is 10.0.0.255 -- ENTER to accept):

Please enter your netmask (Default is 255.255.255.0 -- ENTER to accept):

Please enter your gateway (Default is 171.x.y.1 -- ENTER to accept):10.0.0.1

We have used the IP addresses on the data network for this configuration. In our case, the
defaults suggested by the script were correct (since we had already assigned an IP address to our
br100 earlier). However, if you do not see these defaults, enter the appropriate IP address details

as per the addressing scheme you have chosen for your data network.

Next, you will be prompted for the default name server.

Please enter your default nameserver (Default is 171.x.y.183 -- ENTER to accept):

The default is being suggested from your eth0 configuration. We accept that.

At this point, the script will start installing all the packages. Wait for it to complete successfully.
If successful, the installation will also start all the services. Check by doing the following:

#ps -eaf | grep nova

root 31750 31742 0 07:42 ? 00:00:00 /usr/bin/python /usr/bin/nova-objectstore --uid

117 --gid 65534 --pidfile /var/run/nova/nova-objectstore.pid --flagfile=/etc/nova/nova.conf --

nodaemon --logfile=/var/log/nova/nova-objectstore.log

nova 32323 1 0 Apr19 ? 00:00:00 su -c nova-network --flagfile=/etc/nova/nova.conf

nova

nova 32340 32323 1 Apr19 ? 00:28:43 /usr/bin/python /usr/bin/nova-network --

flagfile=/etc/nova/nova.conf

nova 32393 1 0 Apr19 ? 00:00:00 su -c nova-compute --flagfile=/etc/nova/nova.conf

nova

nova 32410 32393 1 Apr19 ? 00:28:59 /usr/bin/python /usr/bin/nova-compute --

flagfile=/etc/nova/nova.conf

nova 32454 1 0 Apr19 ? 00:00:00 su -c nova-api --flagfile=/etc/nova/nova.conf

nova

nova 32489 32454 0 Apr19 ? 00:00:15 /usr/bin/python /usr/bin/nova-api --

flagfile=/etc/nova/nova.conf

nova 32501 1 0 Apr19 ? 00:00:00 su -c nova-scheduler --

flagfile=/etc/nova/nova.conf nova

nova 32508 32501 1 Apr19 ? 00:21:55 /usr/bin/python /usr/bin/nova-scheduler --

flagfile=/etc/nova/nova.conf

Post Script Installation

Once the installation has completed successfully, you will see that a /root/creds/novarc file has
been created.

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 7 of 25

The novarc file will look like this:

NOVA_KEY_DIR=$(pushd $(dirname $BASH_SOURCE)>/dev/null; pwd; popd>/dev/null)

export EC2_ACCESS_KEY="<some_actual_key_here>:test01"

export EC2_SECRET_KEY="<some_actual_key_here>"

export EC2_URL="http://171.x.y.96:8773/services/Cloud"

export S3_URL="http://171.x.y.96:3333"

export EC2_USER_ID=42 # nova does not use user id, but bundling requires it

export EC2_PRIVATE_KEY=${NOVA_KEY_DIR}/pk.pem

export EC2_CERT=${NOVA_KEY_DIR}/cert.pem

export NOVA_CERT=${NOVA_KEY_DIR}/cacert.pem

export EUCALYPTUS_CERT=${NOVA_CERT} # euca-bundle-image seems to require this set

alias ec2-bundle-image="ec2-bundle-image --cert ${EC2_CERT} --privatekey ${EC2_PRIVATE_KEY} --

user 42 --ec2cert ${NOVA_CERT}"

alias ec2-upload-bundle="ec2-upload-bundle -a ${EC2_ACCESS_KEY} -s ${EC2_SECRET_KEY} --url

${S3_URL} --ec2cert ${NOVA_CERT}"

export NOVA_API_KEY="<some_actual_key_here>"

export NOVA_USERNAME="<username>"

export NOVA_URL=http://171.x.y.96:8774/v1.0/

Append the contents of this file to your profile file (eg: ~/.bashrc) and source it for this session.

cat /root/creds/novarc >> ~/.bashrc

source ~/.bashrc

You will also find some .pem files in the /root/creds/ directory. These .pem files have to be
copied to the $NOVA_KEY_DIR path. (You will see these .pem files being referenced in the
novarc file at that path.)

Create a “nova” group, so you can set permissions on the configuration file:

sudo addgroup nova

The nova.config file should have its owner set to root:nova, and mode set to 0640, since the file
contains your MySQL server‟s username and password.

chown -R root:nova /etc/nova

chmod 640 /etc/nova/nova.conf

These are the commands you run to ensure the database schema is current, and then set up a user

and project:

/usr/bin/nova-manage db sync

/usr/bin/nova-manage user admin <user_name>

/usr/bin/nova-manage project create <project_name><user_name>

Note that we had earlier used the project name “test01”, so we would have used that here.

Network Configuration using FlatDHCPManager

Edit the /etc/nova/nova.conf to change the network manager to FlatDHCPManager. For our
setup, the nova.conf looks like this:
--dhcpbridge_flagfile=/etc/nova/nova.conf

--dhcpbridge=/usr/bin/nova-dhcpbridge

--logdir=/var/log/nova

--state_path=/var/lib/nova

--lock_path=/var/lock/nova

--verbose

--s3_host=171.x.y.96

--rabbit_host=171.x.y.96

--cc_host=171.x.y.96

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 8 of 25

--ec2_url=http://171.x.y.96:8773/services/Cloud

--FAKE_subdomain=ec2

--routing_source_ip=171.x.y.96

--verbose

--sql_connection=mysql://root:password@171.x.y.96/nova

--network_manager=nova.network.manager.FlatDHCPManager

--network_size=256

--fixed_range=10.0.0.0/24

--flat_network_dhcp_start=10.0.0.11

Note that in the above configuration, we are indicating the VM instances should start getting
allocated with IPs starting from 10.0.0.11, since we want to reserve IPs 10.0.0.0 (network), and

10.0.0.1 to 10.0.0.10 for the bridges on the Cloud Controller and one or more compute nodes.
(However, configuring this file does not ensure that this configuration is correctly reflected in the
DB. Instructions to ensure that are provided later in this section.)

Check the MySQL DB if a network entries has already been created during the scripted
installation process.

mysql -uroot -p<password> nova -e 'select * from networks;'

If you see one or more entries, then do the following:

mysql -uroot -p<password> nova -e 'delete from networks where id > 0;'

mysql -uroot -p<password> nova -e 'delete from fixed_ips where id > 0;'

This will remove any previous network configuration from your DB.

Now create the network:

usr/bin/nova-manage network create 10.0.0.0/24 1 255

This should populate two tables in the DB, the networks table and the fixed_ips table.

Check the networks table:

mysql -uroot -p<password> nova -e 'select * from networks;'

+---------------------+------------+------------+---------+----+----------+-------------+--------

-------+--------+----------+------------+------+------+--------------------+-----------------+---

------------------+------------+------------+-------------+---------+------------+-------+-------

-----+

| created_at | updated_at | deleted_at | deleted | id | injected | cidr | netmask

| bridge | gateway | broadcast | dns | vlan | vpn_public_address | vpn_public_port |

vpn_private_address | dhcp_start | project_id | host | cidr_v6 | gateway_v6 | label |

netmask_v6 |

+---------------------+------------+------------+---------+----+----------+-------------+--------

-------+--------+----------+------------+------+------+--------------------+-----------------+---

------------------+------------+------------+-------------+---------+------------+-------+-------

-----+

| 2011-04-08 20:19:18 | NULL | NULL | 0 | 1 | 0 | 10.0.0.0/24 |

255.255.255.0 | br100 | 10.0.0.1 | 10.0.0.255 | NULL | NULL | NULL |

NULL | NULL | 10.0.0.11 | test01 | openstack01 | NULL | NULL | NULL

| NULL |

+---------------------+------------+------------+---------+----+----------+-------------+--------

-------+--------+----------+------------+------+------+--------------------+-----------------+---

------------------+------------+------------+-------------+---------+------------+-------+-------

-----+

Specifically, check that the cidr, netmask, bridge, gateway, broadcast, dhcp_start, project_id ,
and host fields are correctly populated.

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 9 of 25

If any of the fields are not correctly populated, set them by doing:

mysql -uroot -p<password> nova -e 'update networks set <column_name> = “<value>” where id =

<id_number>;’

After setting the fields, check that the changes have taken effect.

Next, you need to set reserve the IPs (10.0.0.0 to 10.0.0.10). This is done by setting the reserved
field in the fixed_ips table for the relevant rows:

mysql -uroot –p<password> nova -e 'update fixed_ips set reserved = 1 where address = “10.0.0.1”;’

Do this for all IP addresses you want to reserve.

After setting the fields, check that the changes have taken effect.

Stop any running instances of dnsmasq which are listening on the 10.0.0.1 address:

#ps -eaf | grep dns

nobody 24784 1 0 Apr17 ? 00:00:00 dnsmasq --strict-order --bind-interfaces --conf-

file= --domain=novalocal --pid-file=/var/lib/nova/networks/nova-br100.pid --listen-

address=10.0.0.1 --except-interface=lo --dhcp-range=10.0.0.11,static,120s --dhcp-

hostsfile=/var/lib/nova/networks/nova-br100.conf --dhcp-script=/usr/bin/nova-dhcpbridge --

leasefile-ro

root 24785 24784 0 Apr17 ? 00:00:00 dnsmasq --strict-order --bind-interfaces --conf-

file= --domain=novalocal --pid-file=/var/lib/nova/networks/nova-br100.pid --listen-

address=10.0.0.1 --except-interface=lo --dhcp-range=10.0.0.11,static,120s --dhcp-

hostsfile=/var/lib/nova/networks/nova-br100.conf --dhcp-script=/usr/bin/nova-dhcpbridge --

leasefile-ro

#kill -9 24784 24785

Restart all the services:

service libvirt-bin restart; service nova-network restart; service nova-compute restart; service

nova-api restart; service nova-objectstore restart; service nova-scheduler restart

Use the „euca-authorize‟ command to enable ping and ssh access to all the VMs:

euca-authorize -P icmp -t -1:-1 default

euca-authorize -P tcp -p 22 default

If you want to use Ubuntu Enterprise Cloud images, you need the following iptables
configuration so that UEC images can get metadata info:
#iptables -t nat -A PREROUTING -d 169.254.169.254/32 -p tcp -m tcp --dport 80 -j DNAT --to-

destination $NOVA_API_IP:8773

Bind this IP to the bridge interface so that any additional compute nodes in this cluster can get an

arp response and resolve the 169.254.169.254 address to this machine:

ip addr add 169.254.169.254/32 dev br100

Testing the Installation by Publishing and Starting an Image

Once you have an installation, you want to get images that you can use in your Compute cloud.
Download a sample Ubuntu image, and then use uec-publish-tarball to publish it:

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 10 of 25

image="ubuntu1010-UEC-localuser-image.tar.gz"

wget http://c0179148.cdn1.cloudfiles.rackspacecloud.com/ubuntu1010-UEC-localuser-image.tar.gz

uec-publish-tarball $image [bucket-name] [hardware-arch]

Here's an example of what this command looks like with data:

uec-publish-tarball ubuntu1010-UEC-localuser-image.tar.gz dub-bucket x86_64

The command in return should output three references: emi, eri and eki. You need to use the emi

value (for example, “ami-zqkyh9th″) for the euca-run-instances command.

Now you can schedule, launch and connect to the instance, which you do with tools from the
Euca2ools on the command line. Create the emi value from the uec-publish-tarball command,

and then you can use the euca-run-instances command.

One thing to note here is once you publish the tarball, it has to untar before you can launch an
image from it. Using the euca-describe-images command, wait until the state turns to "available"

from "untarring."

Depending on the image that you're using, you need a public key to connect to it. Some images
have built-in accounts already created. Images can be shared by many users, so it is dangerous to

put passwords into the images. Nova therefore supports injecting ssh keys into instances before
they are booted. This allows a user to login to the instances that he or she creates securely.
Generally, the first thing that a user does when using the system is to create a key pair. Key pairs
provide secure authentication to your instances. As part of the first boot of a virtual image, the

private key of your key pair is added to root‟s authorized_keys file. Nova generates a public and
private key pair, and sends the private key to the user. The public key is stored so that it can be
injected into instances.

Key pairs are created through the api and you use them as a parameter when launching an
instance. They can be created on the command line using the euca2ools script euca-add-keypair.
Refer to the main page for the available options. Example usage:

euca-add-keypair test > test.pem

chmod 600 test.pem

Now, you can run the instances:

euca-run-instances -k test -t m1.tiny ami-zqkyh9th

Here's a description of the parameters used above:

-t what type of image to create
-k name of the key to inject in to the image at launch

Optionally, you can use the -n parameter to indicate how many images of this type to launch.

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 11 of 25

Check the status of the instance by using the euca-describe-instances command. The instance
will go from “launching” to “running” in a short time, and you should be able to connect via
SSH using the 'ubuntu' account, with the password 'ubuntu': (replace $ipaddress with the one you

got from euca-describe-instances):

ssh ubuntu@$ipaddress

Installing Compute Nodes
Once the Cloud Controller is installed successfully you can add more compute nodes to the

cluster. (Note that if you have followed the instructions above for the installation, you have
already installed one compute node on the Cloud Controller itself.)

As indicated in the OpenStack Compute Administration guide, there are many different ways in

which just the OpenStack compute service can be installed on the nodes other than the Cloud
Controller. One of the simpler approaches is to run the installation script like we did on the
Cloud Controller. This will install some additional packages than what is required just for the
nova-compute.

Configuring the Bridge

The virtual machine instances running on this node will communicate with the data network by

connecting to a Linux bridge. We will first need to configure this bridge. We will use the eth1
port on our server for the data network (and we will configure it as a slave of br100). Our
/etc/network/interfaces file looks like this (Note that in this case, we are also setting the IP
address of the bridge manually):

This file describes the network interfaces available on your system

and how to activate them. For more information, see interfaces(5).

The loopback network interface

auto lo

iface lo inet loopback

The primary network interface

auto eth0

iface eth0 inet static

address 171.x.y.96

gateway 171.x.y.1

netmask 255.255.254.0

auto br100

iface br100 inet static

 bridge_ports eth1

 bridge_stp off

 bridge_maxwait 0

 bridge_fd 0

address 10.0.0.2

 netmask 255.255.255.0

 broadcast 10.0.0.255

gateway 10.0.0.1

Restart networking:

/etc/init.d/networking restart

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 12 of 25

Running the Installation Script

Download the installation script:

wget --no-check-certificate https://github.com/dubsquared/OpenStack-NOVA-Installer-

Script/raw/master/nova-CC-install-v1.1.sh

Ensure you can execute the script by modifying the permissions on the script file:

sudo chmod 755 nova-CC-install-v1.1.sh

Run the script with root permissions:

sudo ./nova-CC-install-v1.1.sh

Enter the same values, as in section 0 until you reach the bridge configuration. In the bridge
configuration, enter the IP address of the bridge on this machine.

Once the installation script completes successfully, stop all OpenStack services which were
started by the installation script. (We will restart them later after completing the configuration on
this node.):

service libvirt-bin stop; service nova-network stop; service nova-compute stop; service nova-api

stop; service nova-objectstore stop; service nova-scheduler stop

Post Script Installation

Copy the contents of the /root/creds/novarc file on the Cloud Controller, and append them to
your profile file (eg: ~/.bashrc). Source the .bashrc for this session:

source ~/.bashrc

Copy the *.pem files from the /root/creds/ directory on the Cloud Controller to the
$NOVA_KEY_DIR path on this node.

Create a “nova” group, so you can set permissions on the configuration file:

sudo addgroup nova

The nova.config file should have its owner set to root:nova, and mode set to 0640, since the file
contains your MySQL server‟s username and password:

chown -R root:nova /etc/nova

chmod 640 /etc/nova/nova.conf

Replace the contents of the /etc/nova/nova.conf file on this node with the contents of the
/etc/nova/nova.conf file on the Cloud Controller.

Restart the nova-compute service:

service nova-compute restart

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 13 of 25

Testing the Installation on this Node

On the Cloud Controller, check the MySQL DB by running:

mysql -uroot –p<password> nova -e 'select * from services;'

You should see that nova-compute is also running on this freshly installed host. (Also, check that
this is the only service listed running on this node.)

As described in section 0, start another VM instance from the Cloud Controller:

euca-run-instances -k test -t m1.tiny ami-zqkyh9th

The nova-scheduler service decides on which node to instantiate the new VM. Running
euca-describe-instances will tell you if the VM is running on this freshly installed compute node.

If you see the VM running on this node, try to ssh to it. If ssh is successful, the installation and
configuration has worked. You now have an OpenStack cluster working.

OpenStack Dashboard Installation
The OpenStack dashboard in this deployment in installed on the Cloud Controller. The
instructions provided in the OpenStack Compute Administration Guide should be followed to

perform this installation. You might experience some problems with installing certain packages
due to time out issues. Please refer to the troubleshooting section of this document to see how
you can workaround those problems.

Shown below is a snapshot of the dashboard in our deployment after the user is logged in. At this

instant when the snapshot was taken, four VM instances were running across this cluster.

Figure 2: OpenStack Dashboard

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 14 of 25

OpenStack Storage Installation
Our deployment consists of a cluster of four C200 Servers. One server serves as the OpenStack
Proxy and Auth node. The other three servers are configured as Storage nodes. As before, we
recommend setting up the deployment such that the OpenStack management/control network is
separate from the data network. (By management/control network, we imply the network which

is used to access the servers, and on which the OpenStack processes exchange messages. By data
network, we imply the network on which the virtual machines instantiated by OpenStack
communicate with each other.) The figure below shows the topology.

Figure 3: OpenStack Storage Deployment on a C200 cluster

In the following sub-sections, we describe how OpenStack Object Storage can be installed on the
above cluster. Most of these instructions follow the process described in the OpenStack Storage

Administration Guide. However, there are areas where we provide more details and others where
we have corrected discrepancies in the OpenStack guide. Keeping the reader‟s convenience in
mind, we outline the installation process in its entirety here.

Install and Configure the Packages

Install common OpenStack Object Storage software and pre-requisites:

apt-get install python-software-properties

add-apt-repository ppa:swift-core/ppa

apt-get update

apt-get install swift openssh-server

Create and populate configuration directories on all nodes:

mkdir -p /etc/swift

chown -R swift:swift /etc/swift/

Create /etc/swift/swift.conf:

[swift-hash]

random unique string that can never change (DO NOT LOSE)

swift_hash_path_suffix = <changeme>

It is assumed that all commands are run as the root user.

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 15 of 25

Install Swift-proxy Service

On the Proxy node,

apt-get install swift-proxy memcached

Create self-signed cert for SSL:

cd /etc/swift

openssl req -new -x509 -nodes -out cert.crt -keyout cert.key

Modify memcached to listen on the default interfaces. Preferably, this should be on a local, non-

public network. Edit the following line in /etc/memcached.conf, changing:

-l 127.0.0.1

to

-l <10.0.0.1>

Restart the memcached server:

service memcached restart

Create /etc/swift/proxy-server.conf:

[DEFAULT]

cert_file = /etc/swift/cert.crt

key_file = /etc/swift/cert.key

bind_port = 8080

workers = 8

user = swift

[pipeline:main]

pipeline = healthcheck cache auth proxy-server

[app:proxy-server]

use = egg:swift#proxy

allow_account_management = true

[filter:auth]

use = egg:swift#auth

ssl = true

[filter:healthcheck]

use = egg:swift#healthcheck

[filter:cache]

use = egg:swift#memcache

memcache_servers = <10.0.0.1>:11211

Create the Account, Container and Object Rings:

On the Proxy node:

cd /etc/swift

swift-ring-builder account.builder create 18 3 1

swift-ring-builder container.builder create 18 3 1

swift-ring-builder object.builder create 18 3 1

For every storage device, on each node, add entries to each ring:

swift-ring-builder account.builder add z1-10.0.0.2:6002/sdd1 100

swift-ring-builder container.builder add z1-10.0.0.2:6001/sdd1 100

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 16 of 25

swift-ring-builder object.builder add z1-10.0.0.2:6000/sdd1 100

swift-ring-builder account.builder add z2-10.0.0.3:6002/sdd1 100

swift-ring-builder container.builder add z2-10.0.0.3:6001/sdd1 100

swift-ring-builder object.builder add z2-10.0.0.3:6000/sdd1 100

swift-ring-builder account.builder add z3-10.0.0.4:6002/sdd1 100

swift-ring-builder container.builder add z3-10.0.0.4:6001/sdd1 100

swift-ring-builder object.builder add z3-10.0.0.4:6000/sdd1 100

In our case, there are three zones, z1(10.0.0.2), z2(10.0.0.3), and z3(10.0.04).

Verify the ring contents for each ring:

swift-ring-builder account.builder

swift-ring-builder container.builder

swift-ring-builder object.builder

Rebalance the rings:

swift-ring-builder account.builder rebalance

swift-ring-builder container.builder rebalance

swift-ring-builder object.builder rebalance

Rebalancing rings can take some time.

Copy the account.ring.gz, container.ring.gz, and object.ring.gz files to each of the Storage nodes
in /etc/swift.

Make sure all the config files are owned by the swift user:

chown -R swift:swift /etc/swift

Start Proxy services:

swift-init proxy start

Installing and Configuring the Auth Node

On the Proxy node:

Install swift-auth service:

apt-get install swift-auth

Create /etc/swift/auth-server.conf:

[DEFAULT]

cert_file = /etc/swift/cert.crt

key_file = /etc/swift/cert.key

user = swift

[pipeline:main]

pipeline = auth-server

[app:auth-server]

use = egg:swift#auth

default_cluster_url = https://<openstack01>:8080/v1

Highly recommended to change this key to something else!

super_admin_key = devauth

Start Auth services:

swift-init auth start

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 17 of 25

chown swift:swift /etc/swift/auth.db

swift-init auth restart # 1.1.0 workaround because swift creates auth.db owned as root

Installing and Configuring the Storage Nodes

OpenStack Object Storage should work on any modern file system that supports Extended
Attributes (XATTRS). We currently recommend XFS as it demonstrated the best overall

performance for the swift use case after considerable testing and benchmarking at Rackspace. It
is also the only filesystem that has been thoroughly tested.

Install Storage Node Packages

On each of the three Storage nodes, perform all the steps in the sub-section:

apt-get install swift-account swift-container swift-object xfsprogs

Set up the XFS volume on the storage device (follow the commands and input in the following
snippet):

root@openstack03:~# fdisk /dev/sdd

Device contains neither a valid DOS partition table, nor Sun, SGI or OSF disklabel

Building a new DOS disklabel with disk identifier 0x45a10b80.

Changes will remain in memory only, until you decide to write them.

After that, of course, the previous content won't be recoverable.

Warning: invalid flag 0x0000 of partition table 4 will be corrected by w(rite)

WARNING: DOS-compatible mode is deprecated. It's strongly recommended to

 switch off the mode (command 'c') and change display units to

 sectors (command 'u').

Command (m for help): n

Command action

 e extended

 p primary partition (1-4)

p

Partition number (1-4): 1

First cylinder (1-243201, default 1):

Using default value 1

Last cylinder, +cylinders or +size{K,M,G} (1-243201, default 243201):

Using default value 243201

Command (m for help): p

Disk /dev/sdd: 2000.4 GB, 2000398934016 bytes

255 heads, 63 sectors/track, 243201 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x45a10b80

 Device Boot Start End Blocks Id System

/dev/sdd1 1 243201 1953512001 83 Linux

Command (m for help): w

The partition table has been altered!

Calling ioctl() to re-read partition table.

Syncing disks.

root@openstack03:~# partprobe

root@openstack03:~# fdisk -l

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 18 of 25

WARNING: GPT (GUID Partition Table) detected on '/dev/sdc'! The util fdisk doesn't support GPT.

Use GNU Parted.

Disk /dev/sdc: 2000.4 GB, 2000398934016 bytes

255 heads, 63 sectors/track, 243201 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x00000000

 Device Boot Start End Blocks Id System

/dev/sdc1 1 243202 1953514583+ ee GPT

Disk /dev/sdd: 2000.4 GB, 2000398934016 bytes

255 heads, 63 sectors/track, 243201 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x45a10b80

 Device Boot Start End Blocks Id System

/dev/sdd1 1 243201 1953512001 83 Linux

Disk /dev/sde: 2000.4 GB, 2000398934016 bytes

255 heads, 63 sectors/track, 243201 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0xbbbab9b8

Disk /dev/sde doesn't contain a valid partition table

Disk /dev/sdf: 2000.4 GB, 2000398934016 bytes

255 heads, 63 sectors/track, 243201 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0xbbbab9b8

Disk /dev/sdf doesn't contain a valid partition table

root@openstack03:~# cat /proc/partitions

major minor #blocks name

 8 32 1953514584 sdc

 8 33 1024 sdc1

 8 34 1881237504 sdc2

 8 35 72274944 sdc3

 8 48 1953514584 sdd

 8 49 1953512001 sdd1

 8 64 1953514584 sde

 8 80 1953514584 sdf

root@openstack03:~# mkfs.xfs -i size=1024 /dev/sdd1

meta-data=/dev/sdd1 isize=1024 agcount=4, agsize=122094500 blks

 = sectsz=512 attr=2

data = bsize=4096 blocks=488378000, imaxpct=5

 = sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0

log =internal log bsize=4096 blocks=238465, version=2

 = sectsz=512 sunit=0 blks, lazy-count=1

realtime =none extsz=4096 blocks=0, rtextents=0

root@openstack03:~# echo "/dev/sdd1 /srv/node/sdd1 xfs noatime,nodiratime,nobarrier,logbufs=8 0

0" >> /etc/fstab

root@openstack03:~# mkdir -p /srv/node/sdd1

root@openstack03:~# mount /srv/node/sdd1

root@openstack03:~# chown -R swift:swift /srv/node

Create /etc/rsyncd.conf:

uid = swift

gid = swift

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 19 of 25

log file = /var/log/rsyncd.log

pid file = /var/run/rsyncd.pid

address = <STORAGE_LOCAL_NET_IP, either one of 10.0.0.2/3/4>

[account]

max connections = 2

path = /srv/node/

read only = false

lock file = /var/lock/account.lock

[container]

max connections = 2

path = /srv/node/

read only = false

lock file = /var/lock/container.lock

[object]

max connections = 2

path = /srv/node/

read only = false

lock file = /var/lock/object.lock

Edit the following line in /etc/default/rsync:

RSYNC_ENABLE = true

Start rsync daemon:

service rsync start

Create /etc/swift/account-server.conf:

[DEFAULT]

bind_ip = <STORAGE_LOCAL_NET_IP, either one of 10.0.0.2/3/4>

workers = 2

[pipeline:main]

pipeline = account-server

mount_check = false

[account-server]

use = egg:swift#account

[account-replicator]

[account-auditor]

[account-reaper]

Create /etc/swift/container-server.conf:

[DEFAULT]

bind_ip = <STORAGE_LOCAL_NET_IP, either one of 10.0.0.2/3/4>

workers = 2

[pipeline:main]

pipeline = container-server

[container-server]

use = egg:swift#container

[container-replicator]

[container-updater]

[container-auditor]

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 20 of 25

Create /etc/swift/object-server.conf:

[DEFAULT]

bind_ip = <STORAGE_LOCAL_NET_IP, either one of 10.0.0.2/3/4>

workers = 2

[pipeline:main]

pipeline = object-server

[object-server]

use = egg:swift#object

[object-replicator]

[object-updater]

[object-auditor]

Start the storage services:

swift-init object-server start

swift-init object-replicator start

swift-init object-updater start

swift-init object-auditor start

swift-init container-server start

swift-init container-replicator start

swift-init container-updater start

swift-init container-auditor start

swift-init account-server start

swift-init account-replicator start

swift-init account-auditor start

Check that the storage services have indeed started:

ps -eaf | grep swift

swift 13873 1 0 Apr15 ? 00:00:00 /usr/bin/python /usr/bin/swift-account-auditor

/etcswift/account-server.conf

swift 13874 1 0 Apr15 ? 00:00:00 /usr/bin/python /usr/bin/swift-account-server

/etc/swift/account-server.conf

swift 13875 1 0 Apr15 ? 00:00:02 /usr/bin/python /usr/bin/swift-container-auditor

/etc/swift/container-server.conf

swift 13876 1 0 Apr15 ? 00:01:35 /usr/bin/python /usr/bin/swift-container-

replicator /etc/swift/container-server.conf

swift 13877 1 0 Apr15 ? 00:00:00 /usr/bin/python /usr/bin/swift-container-server

/etc/swift/container-server.conf

swift 13878 1 0 Apr15 ? 00:00:04 /usr/bin/python /usr/bin/swift-container-updater

/etc/swift/container-server.conf

swift 13879 1 0 Apr15 ? 00:00:00 /usr/bin/python /usr/bin/swift-object-auditor

/etc/swift/object-server.conf

swift 13880 1 0 Apr15 ? 00:00:00 /usr/bin/python /usr/bin/swift-object-server

/etc/swift/object-server.conf

swift 13881 1 0 Apr15 ? 00:05:57 /usr/bin/python /usr/bin/swift-object-replicator

/etc/swift/object-server.conf

swift 13882 1 0 Apr15 ? 00:00:02 /usr/bin/python /usr/bin/swift-object-updater

/etc/swift/object-server.conf

swift 13924 13880 0 Apr15 ? 00:00:40 /usr/bin/python /usr/bin/swift-object-server

/etc/swift/object-server.conf

swift 13925 13880 0 Apr15 ? 00:00:40 /usr/bin/python /usr/bin/swift-object-server

/etc/swift/object-server.conf

swift 13931 13877 0 Apr15 ? 00:00:54 /usr/bin/python /usr/bin/swift-container-server

/etc/swift/container-server.conf

swift 13932 13877 0 Apr15 ? 00:00:53 /usr/bin/python /usr/bin/swift-container-server

/etc/swift/container-server.conf

swift 13934 13874 0 Apr15 ? 00:00:01 /usr/bin/python /usr/bin/swift-account-server

/etc/swift/account-server.conf

swift 13935 13874 0 Apr15 ? 00:00:01 /usr/bin/python /usr/bin/swift-account-server

/etc/swift/account-server.conf

If you do not see that all the services have started, please refer to the troubleshooting section to
debug this issue.

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 21 of 25

Create OpenStack Object Storage admin Account and Verify the
Installation

Run these commands from the Proxy node (which also runs the Auth service).

Create a user with administrative privileges (account = system, username = root, password =
testpass). Make sure to replace devauth in the swift-auth-add-user command below with
whatever super_admin key you assigned in the auth-server.conf file above. None of the values of
account, username, or password are special. They can be anything.

swift-auth-add-user -K devauth -a system root testpass

Get an X-Storage-Url and X-Auth-Token:

curl -k -v -H 'X-Storage-User: system:root' -H 'X-Storage-Pass: testpass'

https://<openstack01>:11000/v1.0

Check that you can HEAD the account:

curl -k -v -H 'X-Auth-Token: <token-from-x-auth-token-above>' <url-from-x-storage-url-above>

Check that st works:

st -A https://<AUTH_HOSTNAME>:11000/v1.0 -U system:root -K testpass stat

Use st to upload a few files named „text[1-2].txt‟ to a container named „myfiles‟:

st -A https://<openstack01>:11000/v1.0 -U system:root -K testpass upload myfiles test1.txt

st -A https://<openstack01>:11000/v1.0 -U system:root -K testpass upload myfiles test2.txt

Use st to download all files from the „myfiles‟ container:

st -A https://<openstack01>:11000/v1.0 -U system:root -K testpass download myfiles

If you are able to successfully retrieve the files test1.txt and test2.txt along with their contents,
you have successfully configured OpenStack Object Storage.

Troubleshooting Tips

Compute

Not Able to Pull the Latest Cactus Release

If you are running the scripted installation, you will not run into this problem. If you are doing a
manual installation based on the instructions provided in the OpenStack Compute Administration
Guide, you might see this problem. This is because the following instruction

sudo add-apt-repository ppa:nova-core/trunk

points to the older repository.

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 22 of 25

In case you have already run the above command, you need to remove this repos itory from your
repository list:

rm -rf /etc/apt/sources.list.d/nova-core-trunk-maverick.list

rm -rf /etc/apt/sources.list.d/nova-core-trunk-maverick.list.save

And, add the correct repository:

sudo add-apt-repository ppa:nova-core/release

Not Able to Upgrade from Bexar to Cactus

This is similar to the earlier issue. If you already have an earlier installation and you are trying to
upgrade your installation from Bexar to Cactus by doing:

sudo apt-get dist-upgrade

you will still get the Bexar release. To get the Cactus release, you need to point to a different
repository. Follow the instructions in the earlier sub-section to do this, then run the upgrade as

above. After running the upgrade, sync the DB:

/usr/bin/nova-manage db sync

How to Create a New Network (and Delete the Existing One)

If you already have a network created and you want to create a new one, you will first need to
remove the earlier network. The only way to do this is by cleaning the relevant entries in the DB.
Assuming that you are not interested in keeping the currently running instances, you can do the

following to clean the DB:

mysql -uroot -pc3l123 nova -e 'delete from instances where id > 0;'

mysql -uroot -pc3l123 nova -e 'delete from security_group_instance_association where id > 0;'

mysql -uroot -pc3l123 nova -e 'delete from fixed_ips where id > 0;'

mysql -uroot -pc3l123 nova -e 'delete from networks where id > 0;'

After cleaning the DB, follow the instructions given earlier on how to create a new network.

Not Able to Publish an Image (Getting an Invalid Cert Error)

When you run:

uec-publish-tarball ubuntu1010-UEC-localuser-image.tar.gz dub-bucket x86_64

if you see the following error,

Tue Apr 19 00:27:23 PDT 2011: ====== extracting image ======

Warning: no ramdisk found, assuming '--ramdisk none'

kernel : maverick-server-uec-amd64-vmlinuz-virtual

ramdisk: none

image : maverick-server-uec-amd64.img

Tue Apr 19 00:27:46 PDT 2011: ====== bundle/upload kernel ======

failed to bundle kernel maverick-server-uec-amd64-vmlinuz-virtual

failed: euca-bundle-image --destination /tmp/uec-publish-image.Qi26aw --arch i386 --image

/tmp/uec-publish-image.Qi26aw/.rename.zoWGb4/maverick-server-uec-amd64-vmlinuz-virtual --kernel

true

i386

Invalid certfailed to upload kernel

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 23 of 25

it is most likely because you do not have the /root/creds/*.pem files in the $NOVA_KEY_DIR
path. Do the following and check if you see the *.pem files:

ls -ltr $NOVA_KEY_DIR/*.pem

 If you don‟t see these files, copy them to this directory.

Running Instance Hangs in the “Scheduling” State

If you do an euca-describe-instances and see that the newly created instance is stuck in the
“scheduling” state, it is most likely because the nova-scheduler process in not running on your

Cloud Controller. Check:

ps –eaf | grep nova-scheduler

and, if you do not see it running, do:

service nova-scheduler start

UEC Image Instance Can Be Pinged, But Cannot Ssh

As a part of the booting process, the image tries to contact a metadata service to get the keys for
this instance. If the instance is not able to reach this metadata service, the boot up process is not
complete. Hence, you cannot ssh to this virtual machine instance. To see if the boot up process

has completed, you need to check the console output of the instance.

You can get the console output of the instance by running:

euca-get-console-output <instance id as seen in euca-describe-images>

If you see the following lines in the console output:

[0.507752] Freeing unused kernel memory: 308k freed^M

[0.509535] Freeing unused kernel memory: 1612k freed^M

init: plymouth main process (49) killed by SEGV signal^M

init: plymouth-splash main process (281) terminated with status 2^M cloud-init start-local

running: Mon, 11 Apr 2011 09:49:42 +0000. up 1.52 seconds no instance data found in start-local

init: cloud-init-local main process (270) terminated with status 1^M cloud-init start running:

Mon, 11 Apr 2011 09:49:42 +0000. up 1.77 seconds

2011-04-11 09:49:42,989 - DataSourceEc2.py[WARNING]: waiting for metadata service at

http://169.254.169.254/2009-04-04/meta-data/instance-id

2011-04-11 09:49:42,990 - DataSourceEc2.py[WARNING]: 09:49:42 [1/100]: http error [500]

2011-04-11 09:49:44,031 - DataSourceEc2.py[WARNING]: 09:49:44 [2/100]: http error [500]

the likely problem is that you are not able reach the metadata service at 169.254.169.254. Make
sure that you are able to ping the address 169.254.169.254 from the compute node on which this

virtual machine instance is running. If your ping is not successful, you are most probably missing
the following iptables configuration on the Cloud Controller :

#iptables -t nat -A PREROUTING -d 169.254.169.254/32 -p tcp -m tcp --dport 80 -j DNAT --to-

destination $NOVA_API_IP:8773

http://169.254.169.254/2009-04-04/meta-data/instance-id

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 24 of 25

Also, bind this IP to the bridge interface so that any additional compute nodes in this cluster can
get an arp response and resolve the 169.254.169.254 address to this machine:

ip addr add 169.254.169.254/32 dev br100

Socket Time Out Error During Dashboard Installation

While running the command:
python tools/install_venv.py ../../django-nova/trunk

if you see the following message:

Downloading/unpacking Django==1.2.3 (from -r /home/c3l123/openstack/src/openstack-

dashboard/trunk/openstack-dashboard/tools/pip-requires (line 3))

 Downloading Django-1.2.3.tar.gz (6.3Mb): 1.2Mb downloaded

Exception:

Traceback (most recent call last):

 File "/home/c3l123/openstack/src/openstack-dashboard/trunk/openstack-dashboard/.dashboard-

venv/lib/python2.6/site-packages/pip-1.0-py2.6.egg/pip/basecommand.py", line 126, in main

 self.run(options, args)

 File "/home/c3l123/openstack/src/openstack-dashboard/trunk/openstack-dashboard/.dashboard-

venv/lib/python2.6/site-packages/pip-1.0-py2.6.egg/pip/commands/install.py", line 223, in run

 requirement_set.prepare_files(finder, force_root_egg_info=self.bundle, bundle=self.bundle)

 File "/home/c3l123/openstack/src/openstack-dashboard/trunk/openstack-dashboard/.dashboard-

venv/lib/python2.6/site-packages/pip-1.0-py2.6.egg/pip/req.py", line 955, in prepare_files

 self.unpack_url(url, location, self.is_download)

 File "/home/c3l123/openstack/src/openstack-dashboard/trunk/openstack-dashboard/.dashboard-

venv/lib/python2.6/site-packages/pip-1.0-py2.6.egg/pip/req.py", line 1072, in unpack_url

 return unpack_http_url(link, location, self.download_cache, only_download)

 File "/home/c3l123/openstack/src/openstack-dashboard/trunk/openstack-dashboard/.dashboard-

venv/lib/python2.6/site-packages/pip-1.0-py2.6.egg/pip/download.py", line 441, in unpack_http_url

 download_hash = _download_url(resp, link, temp_location)

 File "/home/c3l123/openstack/src/openstack-dashboard/trunk/openstack-dashboard/.dashboard-

venv/lib/python2.6/site-packages/pip-1.0-py2.6.egg/pip/download.py", line 366, in _download_url

 chunk = resp.read(4096)

 File "/usr/lib/python2.6/socket.py", line 377, in read

 data = self._sock.recv(left)

 File "/usr/lib/python2.6/httplib.py", line 542, in read

 s = self.fp.read(amt)

 File "/usr/lib/python2.6/socket.py", line 377, in read

 data = self._sock.recv(left)

timeout: timed out

Storing complete log in /home/c3l123/.pip/pip.log

Command "/home/c3l123/openstack/src/openstack-dashboard/trunk/openstack-

dashboard/tools/with_venv.sh pip install -E /home/c3l123/openstack/src/openstack-

dashboard/trunk/openstack-dashboard/.dashboard-venv -r /home/c3l123/openstack/src/openstack-

dashboard/trunk/openstack-dashboard/tools/pip-requires" failed.

None

you need to first independently install that package in the appropriate virtualenv:

cd /home/c3l123/openstack/src/openstack-dashboard/trunk/openstack-dashboard/.dashboard-venv

source bin/activate

wget -O Django-1.2.3.tar.gz http://www.djangoproject.com/download/1.2.3/tarball/

pip install -E /home/c3l123/openstack/src/openstack-dashboard/trunk/openstack-

dashboard/.dashboard-venv Django-1.2.3.tar.gz

deactivate

and then retry running the earlier command.

http://www.djangoproject.com/download/1.2.3/tarball/

Technical Note

©2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Inf ormation. Page 25 of 25

Storage

Storage Services Do Not Start on the Storage Node

The stdout stream of the swift-init scripts is directed to /dev/null. So, you will not know if a
particular service errors out and dies immediately after you start it.

In case you are not able to see any of your services running, you need to try to start that service

individually, and check the output. For instance, there was an error in our container-server.conf
file, and to debug it, we run that server individually:

root@openstack02:/etc/swift# swift-container-server /etc/swift/container-server.conf

Traceback (most recent call last):

 File "/usr/bin/swift-container-server", line 25, in <module>

 if not c.read(sys.argv[1]):

 File "/usr/lib/python2.6/ConfigParser.py", line 286, in read

 self._read(fp, filename)

 File "/usr/lib/python2.6/ConfigParser.py", line 510, in _read

 raise e

ConfigParser.ParsingError: File contains parsing errors: /etc/swift/container-server.conf

[line 17]: '~ \n'

Unable to Start the Account Server on the Storage Node

As described in the previous sub-section, start the account server individually, and check if you

see the error as below:

root@openstack04:/etc/swift# swift-account-server /etc/swift/account-server.conf

Traceback (most recent call last):

 File "/usr/bin/swift-account-server", line 28, in <module>

 conf = dict(c.items('account-server'))

 File "/usr/lib/python2.6/ConfigParser.py", line 565, in items

 raise NoSectionError(section)

ConfigParser.NoSectionError: No section: 'account-server'

If you do see the above trace, then there is an error in the account-server.conf file. If you copied
the contents of this file from the OpenStack Storage Administration Guide, you will see the
strings “app:” prefixed to the string “account-server”. Apparently, the prefix should not be
present. We have provided the corrected config files in the earlier installation section of this

document.

The same fix applies to the configuration files of the Container and Object servers as well.

Printed in USA 02/11

