
Interested in learning
more about security?

SANS Institute
InfoSec Reading Room
This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

OpenVPN and the SSL VPN Revolution
True SSL VPNs are beginning to appear in the market. One of the best, and definitely the least expensive, is
the open source SSL VPN, OpenVPN. IPSec VPNs are either too expensive or too difficult to use securely. IPSec
is dense and contains too many options to be configured and administered securely by non-expert personnel. It
also operates in kernel space providing the opportunity for catastrophic failure. OpenVPN rejects the
complexity of IPSec by using the battle tested SSL/TLS protocol and cryptographic libraries t...

Copyright SANS Institute
Author Retains Full Rights

AD

http://www.sans.org/info/36923
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading_room/images/click.php?id=358

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

OpenVPN and the SSL
VPN Revolution

Charlie Hosner 8.8.2004

GSEC v.1.4b

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

TABLE OF CONTENTS

INTRODUCTION .. 3
QUICK INTRO TO CRYPTOGRAPHY... 5

Symmetric Ciphers – Confidentiality .. 5
Message Digests – Integrity.. 5
Asymmetric Ciphers – Everything Else... 6

VPN IN A NUTSHELL.. 7
WHAT THE HECK IS IPSEC?.. 7
SO HOW DO THESE THINGS WORK?.. 9
SSL/TLS TO THE RESCUE. .. 11
OPENVPN INSTALLATION ... 12
OPENVPN CONFIGURATION... 13

User nobody.. 14
chroot the server ... 14
TLS-auth.. 15
Adjust the MTU... 15
Route ... 15

OPENVPN FEATURES .. 16
Throughput/Performance.. 16
NAT Traversal... 16
X509 Authentication.. 17
Ease of Configuration ... 17
Load Balancing... 17
Failover... 18
Central Management .. 18

OPENVPN SECURITY ... 18
Key Generation ... 18
Key Derivation/Exchange ... 19
Symmetric Ciphers .. 21
HMAC/Hashing .. 23
Additional OpenVPN Add-ons .. 25

OPENVPN FUTURE ... 25
Single UDP port, config file and TUN interface... 25
Pseudo DHCP improvements.. 25

OTHER SSL VPNS .. 26
The Four Horsemen of SSL VPNs... 26
Security Issues... 28

CONCLUSION... 30
GLOSSARY.. 31
WORK CITED ... 35
BIBLIOGRAPHY .. 36

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Abstract

True SSL VPNs are beginning to appear in the market. One of the best, and definitely
the least expensive, is the open source SSL VPN, OpenVPN.

IPSec VPNs are either too expensive or too difficult to use securely. IPSec is dense and
contains too many options to be configured and administered securely by non-expert
personnel. It also operates in kernel space providing the opportunity for catastrophic
failure. OpenVPN rejects the complexity of IPSec by using the battle tested SSL/TLS
protocol and cryptographic libraries to provide equal or better function in a simpler
package. OpenVPN also operates in user-space increasing security and stability.

Many of the products that claim to be SSL VPNs are actually just SSL gateways
operating under the guise of a true VPN. Many of these products open the unsuspecting
user to serious security issues. OpenVPN is the first real SSL VPN to provide the same
function and security as its IPSec predecessors.

Introduction

“IPSec VPNs protect IP packets exchanged between
remote networks or hosts and an IPSec gateway
located at the edge of your private network. SSL VPN
products protect application streams from remote
users to an SSL gateway. In other words, IPSec
connects hosts to entire private networks, while SSL
VPNs connect users to services and applications
inside those networks.”[Phi03]

The above statement is totally wrong. The myth that Secure Socket Layer
(SSL) Virtual Private Network devices (VPNs) are used to connect applications
together is not true. The commercial SSL VPN market has falsely labored under
this misdirected paradigm, but it is a mishandling of terms and represents an
untrue statement. This document covers the emerging trend of SSL based
VPNs. It is important to be absolutely clear that when this document refers to a
VPN, it is not referring to an application level access to a remote network’s
application. A VPN is a site-to-site tunnel. Let me say that one more time, a
VPN is a site-to-site tunnel. There is a terrible misunderstanding in the industry
right now that pigeon-holes SSL VPNs into the same category with SSL enabled
web servers and proxy servers. People hear SSL and immediately think of a
protocol that encrypts traffic for an application, or for several applications, one at
a time via proxying, application translation, or port forwarding. This is NOT a
VPN. It is an application level gateway, a firewall, or an SSL gateway, but it is
not a VPN. A VPN, or Virtual Private Network, refers to simulating a private

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

network over the public Internet by encrypting communications between the two
private end-points. This provides the same connectivity and privacy you would
find on a typical local private network. A VPN device is used to create an
encrypted, non-application oriented tunnel between two machines that allows
these machines or the networks they service to exchange a wide range of traffic
regardless of application or protocol. This exchange is not done on an
application by application basis. It is done on the entire link between the two
machines or networks and arbitrary traffic may be passed over it. See the
section on other SSL VPNs at the bottom of this document for more information
on this issue.

In the past, the method for creating such a site-to-site tunnel was to use the
Internet Protocol Security (IPSec) standard. IPSec was not chosen due to its
great strength as a protocol. It was chosen because it was the only game in
town. IPSec has received much criticism for its unnecessary complexity and tight
coupling with the OS kernel [SF99], but due to its monopoly on function, it has
enjoyed widespread implementation.

Enter OpenVPN. OpenVPN is a user-space SSL-based VPN that illustrates the
ease of use and simplicity of SSL VPNs while providing protection and function
equivalent, and in some cases superior, to IPSec. OpenVPN does away with the
complexities of IPSec from an installation, configuration, and management
perspective. Security’s worst enemy is complexity and OpenVPN defeats this
enemy. Unlike IPSec, OpenVPN holds true to the secure OS Ring Architecture
philosophy of non-interference with kernel space or keeping applications out of
Ring 0, which we will discuss more shortly. Adherence to this philosophy gives
OpenVPN the ability to operate more safely today and provide greater protection
against unknown attacks of tomorrow.

Note: The IETF has taken over development and management
duties for SSL and have renamed it Transport Layer Security
(TLS). For the rest of this document you may see it referred to as
SSL, TLS, or SSL/TLS. Unless otherwise noted, all of these refer
to the latest version of TLS.

SSL/TLS is the most widely deployed security protocol in the world [Res01]. As
such, it has undergone extensive scrutiny and has yet to be degraded by any
known weakness. This does not mean it is guaranteed secure for the future, but
it does mean that many of the brightest minds in cryptography and mathematics
have been unable to find any holes in its cryptographic armor. In the past,
SSL/TLS was a general protocol that would be tightly coupled with specific
applications, thus the extreme confusion about what an SSL VPN really is. It
would be used to secure session communication between two hosts using a
single application or protocol at a time. The most well known use of SSL is in the
HTTPS protocol to enable secure web-based ecommerce. SSL is the default

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

security solution for application to application needs, but it has never been
implemented to handle arbitrary multiple protocols at the same time, until now.

Before jumping into OpenVPN, we need to cover a couple general issues on
Cryptography, VPNs and IPSec.

Quick Intro to Cryptography

In order to talk about VPNs we must know a little bit about cryptography. VPNs
rely heavily on cryptography to maintain a tunnel between end points and to
securely build this tunnel. Cryptography is very complex and easy to do wrong,
so its a good thing there are products like OpenVPN that have it already
implemented for us.

There are four cryptographic primitives that relate to our discussion on VPNs:
symmetric ciphers, asymmetric ciphers, message digests, and digital signatures.
There are also four goals we have with information security: Confidentiality,
Integrity, Authentication, and Non-repudiation. The trick is to assemble our
four primitives to achieve our four goals.

Symmetric Ciphers – Confidentiality

In order to keep our data secure from prying eyes, we must encrypt it.
Symmetric encryption uses a very fast block level algorithm to encrypt and
decrypt data and is the primary primitive used to protect data confidentiality.
Both sides of the tunnel will use the same encrypt/decrypt key which presents us
with the primary weakness of symmetric ciphers, key distribution. Common
symmetric ciphers are DES, 3DES, Blowfish, AES (Rijndael), RC5, RC6,
Serpent, and IDEA.

Message Digests – Integrity

With VPNs we are sending our sensitive data over the public Internet. This
uncontrolled network subjects our data to all sorts of malicious and accidental
tampering and modification. We want to make sure what we send is the same as
what the other side receives, and vice versa. To maintain this integrity, we use
message digests. A message digest is an irreversible mathematical function
that takes a message of any size and encodes it as a fixed length block of cipher
text. This fixed length cipher is called the digest. It is essentially a cryptographic
“summary” of the message. Every message has only one digest and ideally, no
two messages should ever create the same digest. If even one letter of our
message is changed, the entire message digest will be different.

Before we send our message, we run it through a message digest function and
get our fixed length block of cipher text. We then send this cipher text along with

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

the message. When the other side of our communication receives our message,
they will run the same message digest function on the text of our data and
compare the result to our attached message digest. If they are the same, the
receiver knows the message has not been changed since we sent it.

If we add a key to our message before running the message digest we get even
better protection. We will discuss this later under the HMAC section below.
Commonly used message digest algorithms are MD5 and SHA-1.

Asymmetric Ciphers – Everything Else

We have two goals left to cover, authenticity and non-repudiation. We want to
guarantee that the entity we are talking to is the entity we think we are talking to.
To authenticate this fact we use asymmetric encryption, or public key
cryptography. This involves the creation of a key pair. These two keys are
mathematically related is a very useful way. Data encrypted with one key can
only be decrypted with the other key in the pair, and vice versa. One key is
labeled the public key and it is distributed to the world. The other key is the
private key and it is kept secret. We can use this system to authenticate the
entity by checking that it has something that no other entity should have, its
private key. In order to check this, we have the entity send us a message
encrypted with this private key. Since the entities public key is available to the
world, we can use it to decrypt the message. If this works, we know the entity is
who they claim to be. This gets a bit more complex below.

We also want to make sure that everyone is held accountable. In order to hold
entities accountable we need to make it impossible for someone to send traffic
and later claim that they did not, non-repudiation. Again, since the only person
who knows an entity’s private key is the entity itself, we can use this to gain non-
repudiation. Just as in the above case, if an entity encrypts its message with its
private key, we can decrypt the message using the public key and assure that
the sender is the only entity that could have sent the message, meaning they can
not later claim that someone else forged it.

In actual practice, we use digital signatures. When an entity needs to send a
message, they will run a message digest for it. They will then digitally sign the
message digest by encrypting it with their private key. The whole package is
bundled up and run through symmetric encryption for confidentiality. This gets
sent to the other end of our communication tunnel where the symmetric
encryption is decrypted. The receiver then decrypts the message digest using
the sender’s public key. If it works, we have authentication and non-repudiation.
The receiver then runs a message digest and compares it to the one it received.
If they match, the receiver knows the data has not been altered, thus we have
integrity. The most commonly used asymmetric algorithm is RSA.

We will talk about each of the above primitives in much greater detail as we go.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

VPN in a Nutshell

VPN stands for Virtual Private Network. VPN is the term used to refer to any
device that is capable of creating a semi-permanent encrypted tunnel over the
public network between two private machines or networks to pass non-protocol
specific, or arbitrary, traffic. This tunnel can carry all forms of traffic between
these two machines meaning it is encrypting on a link basis, not on a per
application basis. VPNs are useful in situations where an entity is paying for
dedicated leased lines due to security concerns or the need to provide layer two
communications over a WAN link via transparent bridging, WINS servers, or
other broadcast repeaters. The VPN allows the end points to connect to the
Internet and have this same functionality without the need for expensive leased
lines. The other common use for VPNs is to provide dial-up access or network
extension for remote employees. Instead of making expensive calls and
maintaining access servers with modem banks, a remote user can dial up and
connect to the Internet locally, then use the VPN to access the main site securely
over the Internet. This allows for reduction in phone bills and elimination of
expensive and hard to secure modem banks and access servers.

One of the key elements of VPNs is encryption. To protect sensitive or non-
routable data as it passes over the public Internet, we need to create a virtual
private tunnel. This tunnel is built by encrypting the packets or frames and then
encapsulating these in regular IP traffic between the two hosts or networks. The
protection and encapsulation of these packets is vital to the function of a VPN
and one of the most complex pieces to get right.

What the heck is IPSec?

In November of 1998 the Internet Engineering Task Force (IETF) came out
with a series of Request for Comments (RFC’s) defining the protocols
necessary to create VPNs. Specifically, RFC 2401-2412 represent the backbone
of the technologies that have come to be known collectively as IPSec. IPSec is a
standard set of protocols and rules for their use that allow the creation of VPNs.
The theory was if vendors implement IPSec to create their VPN products, they
would interoperate with other vendor’s products. This has had varying success
as IPSec allows for significant latitude in design choices and often leads to IPSec
compliant products from different vendors that do not interoperate. Some of the
highlights of this series of RFC’s are: RFC 2401 (IPSec), RFC 2402
(Authentication Header), RFC 2406 (Encapsulating Security Payload), RFC 2408
(ISAKAMP), and RFC 2409 (IKE). For a comprehensive collection of IPSec
related RFC’s see Pete Loshin’s book Big Book of IPSec RFC’s.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

IPSec creates a secure tunnel by first using a handshake protocol called Internet
Key Exchange (IKE). IKE authenticates the end points of the tunnel to each
other, and then follows a secure procedure to exchange the necessary
information to create a more permanent tunnel using symmetric encryption.
Once this tunnel is in place, any arbitrary traffic sent between these two end
points will be passed through the protected tunnel. This tunnel can be used by
any application or protocol and is semi-permanent, meaning it will stay up
indefinitely provided both end points continue to desire its existence.

IPSec was created by a committee and some believe this process added more
functionality, bloat, and complexity than is needed or reasonable. The committee
approach has received criticism as a viable way to develop security standards.
The preferred method is to use contests like the one used to choose the new
Advanced Encryption Standard or AES. As Bruce Schneier and Niels Ferguson
put it, “IPSec is too complex to be secure” [SF99]. Be that as it may, IPSec is
used to create a majority of the VPN products found today. Checkpoint VPN-1,
Cisco PIX, and the open source FreeS/WAN are all examples of commonly used
VPN solutions that implement IPSec. So in the past, if you wanted a VPN, you
suffered with the complexity of IPSec.

Note: The FreeS/WAN project is now dead. Its original charter was
to secure the Internet using ubiquitous Opportunistic Encryption
[Free04]. Failing to make progress in that direction, they closed
their doors. The excellent code base they left behind has continued
to develop in the form of OpenS/WAN and StrongS/WAN.

In addition to configuration complexity, IPSec has strayed from the secure OS
Ring Architecture design principle of non-interference with kernel space. This
principle breaks out the OS into rings of privilege. Ring0 is reserved for the
kernel and other essential processes. Ring1 for other system processes that
need low level access to hardware. As you move outward in rings, the privilege
of the process is decreased. Ring3 is where most user processes are found.
The architecture rules state that processes in higher numbered rings can not
interfere with processes in lower numbered rings. This provides greatly
enhanced stability and security in our applications and allows for multi-user,
multithreaded systems.

“The part of the OS that needs to access the
hardware and provides the basic metaphors of
processes, memory and devices, run in ring0, some
system tasks run in ring 1 etc... The normal user
processes run in the ring with the lowest privileges.
This means a process running in a certain ring cannot
harm the processes in a ring with more privilege.
Multics was the OS that brought this idea to us, and

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

formed the base for all later operating systems up to
now. This architecture offers …. a lot more stability
and security than the earlier architectures, and is able
to provide multitasking and multi-user facilities.”
[Dum97]

 To reduce the impact of application failure on the stability and security of the
system, non-essential processes should not interfere with the kernel. In order to
gain the level of control needed to secure traffic over the interface link, IPSec
needs to be tightly integrated into the OS kernel, in Ring0. This violates our
design principle and puts the entire operating system at risk. This violation also
makes installation difficult and puts up road blocks to developing client and
server applications for other platforms.

Anyone who has installed FreeS/WAN on Linux understands the degree of
coupling necessary under IPSec. Having to install touchy, kernel specific code
hacks can definitely be discouraging, especially for security conscious
administrators who upgrade their kernels on a regular basis. Additionally, even
though IPSec is touted to be interoperable between vendors; the reality is if you
have a vendor’s VPN product on one side of the tunnel, you often need to use
the same vendor’s client or server on the other end. This reduces the flexibility of
many products as they don’t make clients for Windows or have a hard time
installing with the existing Windows IPSec VPN client. This issue of variation in
implementation results in many headaches that eliminate the benefit of using an
open standard in the first place.

So how do these things work?

VPNs work by creating a virtual tunnel over the public Internet. In order to create
this tunnel, symmetric encryption is used. Both sides of the tunnel share
common encryption and decryption keys and use them to encrypt all traffic in
both directions. Symmetric encryption is very fast and there are many solid
algorithms available to implement this (Blowfish, AES, 3DES). There are two
problems with symmetric encryption. First, how do we get these common keys to
both sides of the tunnel? This is called key exchange or key agreement.
Second, how do we know we are exchanging keys with the correct entity? This
is called authentication.

There are many ways to exchange keys, some elegant and some barbaric. One
way to exchange keys is to call the administrator on the other end of the tunnel
and read them the key over the phone. Another way is to send them the key in
an email using Pretty Good Privacy (PGP) to encrypt the exchange. Both of
these methods will work, but they are not very effective. This is referred to as a
pre-shared secret and it does not scale well or provide us with perfect forward
secrecy, which we will talk more about in a minute.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

A foundation of solid cryptography is that you change your encryption keys on a
“regular” basis. The definition of “regular” is pretty broad. I have seen
philosophies that say the lifespan of a key should be less than the time it takes to
break that key. The literal interpretation of this strikes me as kind of silly.
Imagine an attacker had a system that could break a DES key in 1 hour (not that
far from reality). If you change your DES key every hour, all this means is your
attacker needs to archive your traffic and get to work breaking it. They will begin
seeing unencrypted traffic one hour after that traffic is sent, so all you’ve really
done is add a one hour delay to the compromise of your data. I feel the true
spirit of this philosophy is to change your keys as often as you can without
putting an unreasonable resource load on your system or administrators. This
frequent change also provides what is called Perfect Forward Secrecy meaning
if your key is broken for one series of transactions, it does not compromise any
future series.

If you want to change your keys once an hour, or even once a day, you can see
how the phone call or PGP method is not really practical. Especially if you have
80 VPN users with whom you need to exchange keys.

To overcome this cumbersome key exchange issue, VPNs often use
certificates. Certificates use Public Key Cryptography, meaning a host
generates a public and private key pair that are mathematically related to one
another. Any data encrypted with the public key can only be decrypted with the
private key, and vice versa. Each end system has its own public/private key pair.
The public key is given out to the world to encrypt traffic bound for the system,
and the private key is kept secret to decrypt this traffic. The private key can also
be used to prove that data was actually sent by a specific entity, which is called
non-repudiation. If I encrypt something with my private key you can confirm it is
really me by decrypting it with my public key. The problem with this is I will need
a copy of every host’s public key that I want to connect with. If I have 100 hosts
I’m keeping VPN connections with, this again becomes a scalability problem.

The solution is to use a certificate authority (CA). A certificate authority looks
over an entity’s credentials and certifies that they are who they say they are.
Once an entity is certified, the certificate authority will sign the entity’s public key
with the CA’s private key. Now, in order to prove that your entity is really the
entity you want to talk to, you just need to prove that they have been approved by
your CA. We essentially are saying “We trust the CA and anyone the CA trusts
we will trust too”. To prove that our CA trusts this entity all we need is the CA’s
public key. When you get a certificate from the entity, it should have a signature
created by the CA’s private key. You use the CA’s public key to decrypt this
signature to make sure the certificate is valid. Now you can have 100 hosts who
have all been preapproved by your CA. You can authenticate these hosts by
checking the CA signature on their certificates with the CA’s public key, and only

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

need to keep one key on your system, the CA’s public key. This solves our
scalability problem.

SSL/TLS to the Rescue.

The new kid in town is the user-space SSL/TLS based VPN. SSL has been in
existence since the early 90’s. SSL was initially developed by Netscape and was
eventually joined by another similar code branch created by Microsoft. In the late
90’s the IETF created TLS is an attempt to consolidate the different SSL
branches into a common, open standard. TLS is essentially SSLv3 with some
minor fixes and enhancements.

User-space SSL VPNs use the highly mature and widespread SSL/TLS protocol
to handle the tunnel creation and cryptographic elements necessary to create a
VPN. We are going to focus mostly on an open source SSL VPN, OpenVPN.
There are other commercial products available to create SSL VPNs, but most if
not all of them miss the mark on creating a usable site-to-site VPN. For a
detailed explanation of this see the section below on other SSL VPNs.

OpenVPN is a user-space VPN that uses the well tested and mature SSL/TLS
infrastructure to create the same site-to-site connection functionality found in
IPSec VPNs. OpenVPN is referred to as a user-space VPN because it does not
require sophisticated intertwining with the OS’s kernel to function. It operates in
Ring3 of our secure OS Ring Architecture, which is right where we want it.
Usually, in order to do link encryption, an application must be intertwined with the
kernel to provide low level access to the interface where the link is found. User-
space VPNs use a “virtual interface” they control and access without this kernel
dependence. This gives user-space VPNs a more secure starting point than
standard IPSec devices, as well as provided more flexibility in porting to other
operating systems and ease of installation and maintenance. The flexibility of
this architecture even allows it to exist on the same box with IPSec VPNs. You
can install OpenVPN on Windows machines without any conflicts between it and
the Windows IPSec client which, as anyone who has tried to install a third party
IPSec client on Windows knows is a pretty big plus. In fact, you can run an
IPSec VPN from your Windows machine, and still have an SSL/TLS based VPN
running at the same time.

SSL/TLS is a standard protocol for encrypting Internet traffic. It is very mature
and has been widely implemented and tested for vulnerabilities. As long as no
one figures out how to factor large pseudo-prime numbers in a hurry, SSL/TLS
appears to be in good shape to provide security for quite some time to come.
SSL/TLS is much easier to implement than IPSec and provides a platform that is
solid, simple, and well-tested.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

It is important to note that SSL/TLS based VPNs are able to encrypt link traffic for
site-to-site connectivity just like IPSec VPNs. The RSA handshake (or DH) is
used exactly as IKE in IPSec, and the SSL crypto library is used to secure the
symmetric tunnel after that, again using similar encryption techniques to those
protecting IPSec tunnels. This tunnel can pass arbitrary traffic, just like an IPSec
VPN. No restrictions, no tricks.

Note: One downside to SSL/TLS is in packet drop performance.
IPSec will inspect and drop a packet at a lower level in the protocol
stack than SSL/TLS which will take it higher and process it more
before rejecting it. This could be an issue with DoS attacks and
some very high capacity usage scenarios. In most cases this is not
a problem.

OpenVPN Installation

OpenVPN is built with portability in mind and currently runs on most OS’s
including windows 2000/XP, Linux, Solaris, BSD, and Mac OS X. Since it runs in
user-space instead of as a kernel module, installation is a breeze. There are
highly detailed installation documents available on the OpenVPN website. I will
not repeat those instructions here, but will give a quick over view and touch on
areas I feel are important to highlight. For comprehensive, step-by-step
instructions please see the Source Forge OpenVPN project link in the work cited
section [Yon04].

On Windows, OpenVPN installs just like any other program. It comes bundled up
as an executable and all you need to do it double click on the installer. It’s that
simple. You will still need to see the next section for configuration issues, but for
the most part installation is complete with this single step. To automate the
starting and stopping of OpenVPN at reboot, you will need to run OpenVPN as a
Windows service. This is also very easy to do following the simple instructions
on the OpenVPN site. Total installation of the Windows client takes about 10
minutes including configuration. For anyone who has tried to configure the built-
in Windows IPSec client that should be impressive. For people who have tried to
install and configure third party IPSec clients, that number should be shocking!

On Linux, installation is just about as simple. Most distributions have OpenVPN
as part of their package system. Gentoo has an OpenVPN ebuild and Redhat
has RPM’s available. OpenVPN uses the TAP and TUN virtual drivers. If you
are using Linux kernel 2.4.x or greater, and you should be, these drivers are
already bundled with your kernel. If you are using Linux kernels earlier than
2.4.x, shame on you, but you can still download and install the TAP/TUN drivers
quite easily. You can also install OpenVPN from source which isn’t much more

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

difficult than installing from one of the various package systems. Again, the
complete documentation is available on the OpenVPN site [Yon04].

OpenVPN has a pretty long list of installation options, but the only one I found
really essential is the --enable-pthreads option. This option is very important as it
allows for multithreading to create a different control channel over which new key
exchanges are done. The default rekeying period is one hour, so pthreads
allows you to eliminate hourly latency by rekeying over a separate channel and
switching over to the new keying material seamlessly.

Those concerned about bandwidth may also want to look into the LZO
compression library which compresses data before it is encrypted. As I’m sure
we all know it is important to view with suspicion any product that says it
compresses encrypted data. Compression works by identifying common
patterns in our data and replacing them with smaller place holders. One of the
characteristics of a quality encryption algorithm is a flat histogram, meaning the
encrypted text does not have any common patterns and thus can not be
compressed.

OpenVPN Configuration

OpenVPN is configured like most UNIX services using a config file. One of the
blessings of OpenVPN is the fact that the config file format is almost exactly the
same for all platforms. There are a couple minor differences, but for the most
part, the config files are portable. This is a really important feature considering
the rather dramatic differences found between Windows and the various *NIX
variants.

OpenVPN tunnels traffic over UDP port 5000. As of the 2.0 release, multiple
connections will use the same UDP port on the server, as opposed to 1.6 and
earlier which required one UDP port per connection. If you are wondering why
UDP is used instead of TCP, there are problems when you tunnel TCP over
TCP. TCP keeps track of packet sequence and packet loss and requests that
missing packets be resent, which is a good thing when you only have one layer
of TCP. It also has adaptive timers that dictate how long it will wait before it
requests resends. This interval changes and basically increases exponentially
as failures to receive packets continue. If you have TCP riding on top of TCP,
you now have two flow control layers that are each providing timers and resend
requests. If things line up poorly, for instances the “lower TCP layer” has a
longer interval than your “higher layer” you can get a build up of requests from
above that cause an internal meltdown in your flow control system. You end up
slowing your TCP connection down to a crawl as redundant layers of flow control
work against each other in an attempt to get packets resent.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

OpenVPN works in two modes. Either it uses the TUN driver to pass IP traffic or
it uses the TAP driver to pass Ethernet traffic. I found it easiest to use the TUN
driver and set up a WINS server on the other end to handle layer two broadcasts,
so that is the configuration I am going to focus on. Configuring the TUN driver is
very easy and only requires a couple of commands and a one line entry into
modules.conf that is probably already there. Again, excellent instructions are
found on the Source Forge site.

Once the TUN interface is set, it’s smooth sailing. OpenVPN uses a config file
that is very easy to work with. Example config files and suggested changes are
available on the website. There are a couple changes you will want to make to
get the most out of the security and performance OpenVPN provides.

User nobody

An essential item to a security conscious administrator is the user the OpenVPN
daemon runs under. The config file has this set of options:

Downgrade UID and GID to
"nobody" after initialization
for extra security.
;user nobody
;group nobody

It is imperative that you uncomment these bottom two lines. This will cause
OpenVPN to initialize, then downgrade to operate as user and group “nobody”.
For those of you unfamiliar with UNIX, “nobody” is an unprivileged user with just
enough permission to operate OpenVPN, but not enough to access much else. If
an attacker somehow finds a vulnerability that breaks OpenVPN, the best they
will be able to achieve is the permissions of the user OpenVPN is running under.
If this user is “nobody”, the attacker will have extremely limited ability to do
further damage to the machine. At very least, this will slow intruders down and
give you more time to detect the intrusion.

Note: The user “nobody” option does not make sense on Windows
machines unless you first create a user and group “nobody”. In
UNIX, these accounts already exist and are often used by other
services in a similar way.

chroot the server

If you’re using a UNIX variant, right after the user “nobody” lines, you should add
the following option:

chroot /usr/local/openvpn {directory you want to “jail” OpenVPN to)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

This option will lock the OpenVPN process into the OpenVPN directory (or
whatever you specify) and not allow it to access the rest of the system. This
provides another layer of defense against any future vulnerability that allows
compromise of the OpenVPN daemon. Use chroot in combination with user
“nobody” and you provide a level of proactive protection against many unknown
attacks that could appear in the future.

TLS-auth

And if the above options aren’t enough to make you feel secure, OpenVPN
includes the tls-auth option. With the tls-auth option enabled, OpenVPN will use
a second level of authentication by creating an HMAC key for use in the TLS
handshake process. This feature does incorporate some administrative
overhead as all connecting machines must have this extra pre-shared secret, but
it provides a high level of protection against attacks like the buffer overflows we
found last year in OpenSSL. With tls-auth enabled, an attacker scanning the
Internet for SSL enabled devices will not even be able to initiate a TLS
handshake without the proper HMAC signature.

Adjust the MTU

The expected tunnel size and the actual tunnel size on either end of the
connection may be different. This will give you an error message in your log files
telling you that the actual remote options do not match the expected remote
options. When you read this message closely you will see that the link-mtu or
the tun-mtu do not match on both sides. This is caused by the headers
increasing packet size to larger than expected and can cause fragmentation and
performance degradation. This one can be tricky to find as OpenVPN will still run
correctly and not let you know there is a problem, your only clue will be
decreased performance which you may only discover under extreme load. You
must look in your logs to find this. The suggested fix is to use the tun-mtu
options and the mss-fix options in the configuration file. I suggest

tun-mtu 1500
mss-fix 1400

These values should eliminate the mismatch errors and fragmentation. You may
need to fiddle with the values a bit to get it working perfectly on your
implementation. Season to taste.

Route

Just a quick comment on the route command. Since you are connecting to a
remote network you will probably need to use the route command to get traffic
over the VPN tunnel. You will most likely have something like 192.168.1.x on
one side of the tunnel and 192.168.2.x on the other side. This means you need

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

to tell your routing table to use the VPN’s TUN/TAP device to access this private
network. Windows and UNIX use route just a little bit differently so when you
make your config files you will need to make sure you use the correct format.
This is one of the few platform specific changes you will need to make to your
config files. As a quick example,

route add –net 10.1.0.0/24 gw 10.2.0.1 format for UNIX

route 10.1.0.0 255.255.255.0 10.2.0.1 format for Windows

OpenVPN Features

When comparing VPN products, there are several items that most people look
for. OpenVPN excels at many of these points. We will talk about OpenVPN’s
security model and features in the next section so for now, let’s just assume we
are talking about products that provide similar security.

Throughput/Performance

VPNs require encryption/decryption of traffic and that takes CPU cycles. One of
the important measures of a VPN is its throughput or the amount of data is can
pass before it is unable to keep up with the decrypt/encrypt activities. With
hardware VPNs this is an easy number to find, but with software products like
OpenVPN, your throughput will depend a lot on your hardware. For this
document, OpenVPN was tested with a Pentium III 1Ghz machine with 512K
RAM running Gentoo Linux. The other end of the tunnel was a Pentium IV 2.7
GHz machine running Windows XP. The link between these two machines
max’s out at 3 Mbps and OpenVPN was able to keep up with this load without
any degradation in throughput. The processor loads on both sides were
miniscule and while one should not expect OpenVPN to scale linearly, it should
handle enough throughput to service most small to medium-sized
implementations, and with load balancing or more serious hardware, it could
handle many larger implementations as well. Additionally, there is the very real
possibility that OpenVPN can benefit from the myriad of hardware SSL
accelerator cards out there as it is using the standard SSL/TLS functions. (Check
the OpenVPN user mailing list for more information). OpenVPN does not have a
hard limit to the number of tunnels it can sustain.

NAT Traversal

One of the serious drawbacks to IPSec VPNs is their inability to function behind a
device that does NAT. The Authentication Header (AH) mode in IPSec hashes
the source address as part of its authentication process. If NAT changes this
source address, as it always does, the VPN on the other end of the tunnel will get
a different hash when it checks the packet integrity and drop the packet thinking

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

it has been tampered with. The solution for this problem in IPSec is to run in
tunnel mode using only Encapsulating Security Payload (ESP). This keeps
the source address from being hashed in the packet integrity check. OpenVPN,
or more accurately SSL/TLS, does not run authentication on the packet source
address so it can successfully traverse a NAT device.

Note: It is my belief that Authentication Header (AH) was developed
to verify and protect the source of a message back in the late 90’s
when this was more of an issue. I feel this relic has an uncertain
place in modern networking. Most addresses are NAT’ed, which
accomplishes the same source address masking, and verification of
the origin address is of limited value.

X509 Authentication

This refers to using certificates to handle initial authentication as we described
above. The alternative to using certificates to handle authentication is to use pre-
shared secrets which are described as having problems with key distribution,
non-repudiation, and lack of Perfect Forward Secrecy. OpenVPN allows you to
use pre-shared secrets, or X509 certificates for authentication, as should all other
quality VPN products. The more secure and robust solution is to use certificates.

Ease of Configuration

One of the biggest problems with IPSec VPNs is their complexity. This
complexity provides many opportunities for administrators to undermine the
security of their devices. Do you want tunnel mode or transport mode? Should
you use Authentication Header or Encapsulating Security Payload, or both? The
more combinations available that can yield insecure configurations, the more
likely one will be chosen. OpenVPN provides strong simple default
configurations that fit most implementation needs. OpenVPN can be configured
and installed by someone with basic security knowledge while still maintaining a
high level of security.

Load Balancing

Load Balancing allows high capacity links to handle large amounts of traffic by
sharing the load between several identical servers. This activity is transparent to
the end applications and users. OpenVPN does not have built in features to
handle load balancing but this can be done quite easily using IPtables. A simple
rule can send traffic to a range of addresses in a round robin fashion essentially
creating a load balanced environment. The OpenVPN mailing list archives have
specific instructions on creating this type of set up. The 2.0 release of OpenVPN
addresses this issue further.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Failover

Another important feature for larger enterprises is failover. When your VPN box
dies, can your connections be serviced by another device? Again, OpenVPN
does not have built in features to handle this but with a little extra cabling and a
floating static route you can create a secondary path to another OpenVPN box
and create a poor man’s failover system without too much hassle.

Central Management

When we start to talk about really large implementations, centralized
management becomes a feature many administrators require. A console that
enables monitoring and configuration of multiple VPN devices from a central
location is a feature found in some of the large commercial products like the high-
end products from Cisco, Checkpoint, or NetScreen. OpenVPN does not offer
any such capability, but I’m sure James Yonan would just love it if some
programmer out there wanted to contribute to an open source project by
designing such a feature.

OpenVPN Security

OpenVPN is built on a solid security foundation. Its core crypto system,
SSL/TLS, is the most wide spread system in the industry. It has survived heavy
scrutiny without showing any known weaknesses. Properly implemented,
SSL/TLS gives the best security currently available. OpenVPN’s creator, James
Yonan, has done an excellent job of implementing SSL/TLS. But he didn’t stop
there. OpenVPN also has added features that increase its ability to cope with
unknown vulnerabilities that may crop up in either OpenVPN or the SSL/TLS
core.

Key Generation

Just a quick note on key usage. Once the SSL/TLS handshake has
authenticated both ends, it will generate four different keys; an HMAC send key,
an HMAC receive key, an encrypt/decrypt send key, and an encrypt/decrypt
receive key. You should never use the same key for more than one security
primitive (asymmetric, symmetric, hash, or digital signature) and OpenVPN holds
true to this philosophy.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Note: When we are using pre-shared keys in OpenVPN we only
have two keys. HMAC send and receive are the same and the
encrypt/decrypt keys are the same on each side! This is not ideal. I
know this is splitting hairs, but it does violate our one key per
primitive rule. To fix this, you can use the --secret option and set
the direction parameter like this
secret extra_key d=1 {where extra_key is the file containing
an additional key to be used}

Key Derivation/Exchange

If you remember from the above sections, in order to protect our data, we need to
encrypt it with symmetric encryption. To do this we need to have the same
symmetric key on each end of the connection. This requires a key
derivation/exchange protocol. IPSec uses a system called Internet Key
Exchange (IKE) to exchange keys. This system consists of six messages back
and forth that eventually lead to the authentication of each system and
generation or exchange of symmetric keys. OpenVPN uses the standard
RSA/DHE handshake with client authentication to accomplish the same goal.
Below is a quick breakdown of the handshake.

Client Server
 Message 1
 Client Hello

 Message 2
 Server Hello
 Certificate
 Certificate request
 Server Hello Done

 Message 3
 Certificate
 Client Key Exchange
 Certificate Verify
 Change Cipher Spec
 HMAC Finish (encrypted)

 Message 4
 Change Cipher Spec
 HMAC Finish (encrypted)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Let’s go through each of these messages and talk about what purpose they
serve.

Message 1
The client sends a hello greeting starting the handshake. Included in its greeting
is a list of ciphers it supports as well as one of the parameters to the RSA or
Diffie-Hellmann key generation.

Message 2
The server chooses a cipher from the client’s list and sends it back along with the
server’s certificate which includes the server’s public key digitally signed by our
certificate authority’s private key. This is an important step. When we get this
certificate, we will use our copy of our certificate authority’s public key to verify
that the signature on the certificate was really created with our certificate
authority’s private key. If this works, we are assured we are dealing with an
authentic end point. Not doing this step leaves us wide open to man in the
middle attacks. We also get the server’s half of the RSA or Diffie-Hellmann key
generation parameter and a request from the server for our certificate.

Message 3
At message three, the client sends over its certificate, also digitally signed with
the certificate authority’s private key. The server will use its copy of our
certificate authority’s public key to verify this certificate’s authenticity. The client
also generates and sends what is called a pre-master secret; this is called the
Client Key Exchange. This is the pivotal step in the handshake and is the whole
purpose of the other steps. If this step goes wrong, your security is blown. The
pre-master secret is the last parameter in the key derivation/exchange function
(RSA or Diffie-Hellmann) and is encrypted with the server’s public key. Once the
server gets this parameter, both sides will have the necessary information to
compute equivalent symmetric keys. This pre-master secret can only be
decrypted by an entity with the server’s private key and if everything is going
correctly, the only entity with that key is the server we are trying to connect to.

At the end of this message we see the Change Cipher Spec which means we are
now shifting into the encryption scheme we agreed on in Message 2 and all
future communications will be encrypted. The HMAC finish step here is very
important. In this step, the client sends a hash value of the entire handshake.
This guarantees that both sides are on the same page. A common attack is for a
hostile entity to intercept the cipher lists and remove all the strong ciphers,
causing the connection to establish a weak cipher that can be broken. The
HMAC finish step will detect such an omission and close down the connection.

Key Generation
At this point, both sides generate the symmetric keys necessary to begin our
protected communication. Our pre-master secret is used to generate our master
secret. The master secret is the same on both sides of the tunnel and is

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

expanded using multiple hash concatenations to produce a long key block that is
chopped into the appropriate sized keys. All keys are generated from sections of
this key block.

Message 4
The server is doing its Change Cipher Spec here to switch to the encryption
scheme agreed upon in Message 2. It is also doing an HMAC finish to make
sure both sides agree that everything was sent and received correctly. We now
have an encrypted tunnel using symmetric encryption between our two end
points.

Symmetric Ciphers

Once we are to this point, the protection we get from IPSec and SSL/TLS is
pretty much the same. It is reliant on the encryption ciphers we select and most
implementations of IPSec allow us to select from a variety of algorithms.
OpenVPN certainly gives us a good list to choose from but provides us with a
very good default using bf-cbc and sha1.

When selecting a symmetric cipher, we want to avoid any scheme that includes
DES. DES only uses a 56-bit key which is no longer considered secure. We
also want to avoid algorithms with 3DES as their symmetric cipher. 3DES, with
its effective key length of 112 bits, is still considered secure, but it requires
significant processor overhead as it just runs the DES algorithm three times.
There are many algorithms out there that are stronger and faster and you should
not have to rely on 3DES any more.

We also want to use an encryption mode that continues to change our cipher text
in random ways. If an attacker can get enough cipher text encrypted with a
common key, they may be able to eventually weaken the key to the point of
compromise. This is very hard to do and often requires an enormous amount of
cipher text, but if you have a long duration tunnel between two networks, you can
generate a lot of cipher text over time. When not using pre shared secrets,
OpenVPN changes its keys every hour by default but to add shorter term
protection, we want to use Cipher Block Chaining mode (CBC). This mode
takes input from each proceeding block of encrypted text and uses it to modify
(XOR) the next block of test. This way no amount of cipher text can leak
information about our key. The first block of text is modified by a random string
of characters called an initialization vector (IV). Generation of a random or
hard to predict IV is vital to the effective function of CBC.

OpenVPN defaults to using bf-cbc for its symmetric cipher. This refers to
Blowfish in its Cipher Block Chaining mode using a 128-bit key. Blowfish is a
very strong algorithm with no known weaknesses. Its 128-bit key provides us
with a large enough key space to make brute force key attacks impossible in
polynomial time. Blowfish is not only very secure, it is also one of the faster

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

algorithms available. On Linux you can run an OpenSSL speed check to see the
relative speed of algorithms on your hardware.

Spiritwrack root #openssl speed

The 'numbers' are in 1000s of bytes per second processed.
Type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
md2 781.82k 1658.54k 2302.72k 2551.81k 2646.65k
mdc2 2303.33k 2601.19k 2691.07k 2713.26k 2722.47k
md4 8088.59k 28497.81k 81425.75k 152377.69k 204186.28k
md5 6658.93k 23101.61k 64989.44k 119329.11k 154162.52k
hmac(md5) 7759.01k 26624.06k 72236.29k 125175.13k 156237.06k
sha1 6341.00k 19797.27k 46929.07k 71337.98k 84077.23k
rmd160 5810.05k 16892.76k 36562.60k 51938.65k 59072.51k
rc4 90142.04k 103726.75k 109965.65k 111563.43k 112017.41k
des cbc 20494.70k 21585.24k 21716.22k 21814.97k 21749.76k
des ede3 7474.74k 7685.31k 7816.62k 7852.37k 7858.86k
idea cbc 15655.19k 16604.78k 16738.56k 16802.47k 16826.37k
rc2 cbc 8038.72k 8356.65k 8447.32k 8468.48k 8467.80k
rc5-32/12 cbc 57561.14k 64905.50k 66914.74k 67767.64k 68263.94k
blowfish cbc 32069.08k 34651.74k 34664.70k 34956.07k 35124.57k
cast cbc 22870.35k 24536.13k 25176.06k 25432.19k 25384.28k
aes-128 cbc 20298.75k 20858.41k 21088.09k 21236.53k 21181.78k
aes-192 cbc 17338.95k 17913.43k 18051.93k 18111.83k 18128.90k
aes-256 cbc 15485.55k 15934.95k 16042.58k 16142.21k 16100.01k

Note: some unrelated output omitted. System is Dell PIII 1Ghz
512K RAM running Gentoo Linux.

The above numbers will help us understand which algorithms are good options.
Let’s just look at the 64-byte numbers so we have a common reference. We
aren’t going to use DES, but its good to have it included in the speed
comparisons; DES can encrypt/decrypt roughly 22M per second. DES-ede3 is
the symbol used to represent 3DES and it is not surprising to see it coming in
around 7.5M per second. This is roughly one third of DES, which makes sense
as 3DES is really just DES run three times. Now look at Blowfish, nearly 35M
per second, which is over 50% faster than DES and almost 500% faster than
3DES. The Advanced Encryption Standard (AES) in 128-bit mode is also an
excellent choice for block ciphers running about 21M per second. If you are
paranoid and have the extra processing power, AES provides a 192-bit and 256-
bit key space with throughputs of 17M/s and 15M/s respectively.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Note: RC4 is a stream cipher and is not practical for use with the
block level data we would most likely want to transfer. RC4 would
be good for streaming media like audio or video, but is not a good
solution for a tunnel designed to pass a variety of undetermined
media types.

Note: RC5-32/12 is listed in this output but is not an available
cipher for TLS in OpenVPN. It has better performance numbers
than Blowfish, but that is partially due to the low number of rounds
of permutation it uses. It is also starting to show some
cryptanalysis weakness particularly with this lower number of
rounds. The 12 in the cipher name refers to the number of rounds
of permutation done and analysis has shown that 18 is the number
needed to ensure good encryption with RC5 [LDH03]. Several
smaller key variants of it have also been cracked using
mathematical weakness in the algorithm, including RC5-32/12/6 to
RC5-32/12/8 [RSA04]. While the TLS implementation is RC5-
32/12/128, it is not available in OpenVPN. It seems prudent to use
Blowfish or AES.

Note: I often wondered why Rijndael was chosen over Twofish
(striped down Blowfish) to receive the NIST’s title of Advanced
Encryption Standard (AES) considering the speed advantages of
Twofish. For those of you familiar with the AES competition, you
know that it also required an algorithm to perform well on a variety
of hardware including small, low energy smart cards. Apparently
Rijndael was better overall and performs quite well in the very
restricted environment of low-energy devices [LDH03]. Since the
competition, there has been a lot of noise about the XSL algebraic
attack on AES. This attack theoretically weakens AES to a point
where it may be prematurely broken. At this point, the attack is just
academic as it is still to large a key space to be tested, but one may
be wise to assume that the XSL attack or one like it will cause a
premature retirement of AES over the next couple decades
[Cou04].

HMAC/Hashing

Once we have our keys exchanged and are using a symmetric algorithm to
secure our tunnel, we can start sending data. There are two things we want to
accomplish with data transfer. First, we want to make sure that what we sent is
the same as what is received on the other end. Attackers may not be able to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

read our messages as they cross the public network, but the can still go in and
randomly change data. The attacker won’t know what they have changed, but it
could have negative effects when it reaches the other side. Protection against
data corruption or tampering is referred to as data integrity. Second, we want a
way to ensure that when someone sends something, they can not go back later
and say they did not send it. This is called non-repudiation.

To ensure data integrity, we use what is called a hash. We run the text of our
message through a one way function that creates a fixed length string (128 bits
for MD5 and 160 bits for SHA1) of characters and letters that represents our
message. We send our message along with this cryptographic summary
attached at the end. When our message is received at the other end, the
receiver runs our message through the same one way function and compares the
results. If the strings match, then the receiver knows the message has not been
changed in route. This is how we guarantee data integrity.

So what is stopping an attacker from simply removing our hash string, changing
the message, and making a new hash string? We use what is called HMAC.
Before we run our message through our one-way function, we will attach a secret
key to the front of it. This key will get hashed along with our message. When the
message is received at the other end of the tunnel, the receiver will open the
message and make sure it has our key attached to the front of it. This HMAC
key, by the way, is one of the keys we exchanged above during our Key
Derivation/Exchange step. If an attacker changes our messages and attaches a
new hash, they will be unable to reproduce our key and thus the receiver will
know the message did not come from us.

A pleasant side effect of using an HMAC is we have a way to achieve non-
repudiation. Since we require the presences of a key that only our sender
knows, we can now prove they did indeed send this message. They can not go
back and deny the messages origin. This is an important feature for ecommerce,
but is just a nice touch with VPNs.

OpenVPN selects by default the only hashing algorithm that we should use,
SHA-1. MD5 is in wide spread use, but has begun to crack. The strength of a
hash algorithm is equal to one half the actual size of the key space due to what is
called the birthday paradox. So, MD5’s 128-bit key really only provides 264
protection, which is approaching a level that can be brute forced. Also pseudo
collisions have been found in MD5 that may weaken it even more [RSA96].
Expect MD5 to fall apart over the next decade, so conservative approaches will
use the SHA-1 hashing algorithm. SHA-1 uses a 160-bit key for a 280 effective
key space making it about 65000 times harder to brute force than MD5. SHA-1
has not been weakened by mathematical attacks. Our speed chart above shows
23M per second for MD5 and 20M per second for SHA-1. We can probably live
with 20M per second in most implementations.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Additional OpenVPN Add-ons

We mentioned some of these above but they deserve another mention under this
section. OpenVPN doesn’t stop with the security provided by SSL/TLS. It goes
several steps further in providing better security today as well as a level of
proactive security for unknown exploits in the future.

OpenVPN can be set up to run as user “nobody” on UNIX/Linux as well as
chrooted to its home directory. These together create a powerful sandbox effect
that dramatically slows or completely neutralizes the effect an attacker will have
when compromising the OpenVPN daemon. Even before the attacker can
access the daemon, OpenVPN has the tls-auth option. This feature allows you
to have an additional pre-shared secret. This key is checked before the TLS
handshake is even initiated. This provides tremendous protection against
unknown buffer overflows or other problems in SSL/TLS itself and provides one
more level to our defense-in-depth. OpenVPN also provides certificate
revocation list ability with the --crl-verify option to stop compromised certificates
from accessing the server.

OpenVPN Future

OpenVPN development is alive and very active. The project is run by James
Yonan and is continuing to improve all the time. The current stable version is
1.60 but 2.0 beta is now available. The 2.0 version includes some significant
enhancements to move OpenVPN further ahead of the alternatives. Following
are a couple of the more important improvements.

Single UDP port, config file and TUN interface

In versions 1.6 and lower, you need to use a separate UDP port, configuration
file, and TUN/TAP interface for each connection you want to make to the VPN.
This can be a bit of a maintenance issue in larger implementations. As of 2.0 this
goes away. You will now be able to run multiple connections over a single UDP
port, using a single TUN/TAP interface, and a single configuration file. Your
config file will obviously be a bit more complex, but management will be
dramatically improved with this enhancement.

Pseudo DHCP improvements

Using the --ifconfig-pool, --push, and --pull options you can send out remote
addresses, and push or pull many configuration options to further simplify set up
and maintenance of remote machines. This is a huge advantage for users with
many external clients, or road warriors who are connecting from changing IP
addresses.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Other SSL VPNs

The current state of commercial SSL VPNs is disturbing at best. The term “SSL
VPN” is in my opinion being badly distorted by almost all the vendors claiming to
offer the product. What they are really offering is an SSL gateway which is quite
a different product. Again the definition of a VPN is a device that provides a site-
to-site encrypted tunnel between two end point hosts or networks that allows
arbitrary traffic to pass between them. For the most part, the SSL VPN products
on the market fall short of this mark while claiming they meet it.

The term VPN carries with it an expectation of the highest level of security.
When someone looks at a product labeled a VPN, they believe that the
protections we have been discussing thus far are in place to some degree. Many
commercial SSL VPNs are carrying this label without including the above
protections. The architectures they are suggesting have serious security
problems.

The Four Horsemen of SSL VPNs

SSL gateways provide access to corporate applications on an application by
application basis, which violates are definition of a VPN right from the start. They
use four methods to do this: proxying, application translation, port forwarding,
and network extension. Network extension is the only one of these methods that
actually creates a VPN. Few of the SSL VPNs provide this feature, and fewer
still provide a working version of it.

The business push on commercial SSL VPNs is their ability to function without a
client. This is confusing at best and irresponsibly deceptive at worst. What these
vendors are really claiming is that you can access corporate applications using
the universal client, the Web browser. They are trying to sell simplicity and
flexibility, eliminating client installation for remote users, or (gasp) allowing mobile
users to “VPN” to the corporate network from public machines like kiosks. What
they aren’t in a hurry to tell you is that Web browsers only work on the first two
levels of access, proxying and application translation. In order to do port
forwarding, and particularly network extension, you need a client, which often
requires administrative access to the machine you are using. So much for
clientless VPN and so much for using public kiosks.

Proxying

Proxying is simply providing an intermediary between an external and internal
application. This intermediary usually pretends to be the end point for both sides
of the connection and accepts the client request, rewrites it and sends it to the
server. Return traffic is handled the same way. Application Level Gateway
(ALG) is a common name for devices that do this, or in simpler situations, just a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Web Proxy. Many ALG’s make sure the client request is well formed before they
forward traffic to ensure proper resource usage. Regardless, the application
request is completed and sent back to the client over the SSL connection. This
method of mediating traffic is slightly slower than normal as the gateway must
decode/encode the packets an extra time as well as inspect the contents. It
works well with Web based protocols but struggles beyond that. A common use
would be to couple the proxy with authentication and allow access to a private
intranet website for remote users. It also requires a special proxy for each and
every protocol. This system does not provide site-to-site connectivity for arbitrary
traffic and requires new coding for any addition protocols that come up.

Application Translation

Some applications, like FTP and other file sharing services, can adapt to
translation. This means the internal protocol is translated to HTTP and HTML for
delivery to the client’s Web browser. This works in some circumstances, but is
hard to get right with some protocols, like the black magic that is Windows file
sharing. It also destroys the look and feel of applications as they are limited to
the display capabilities of HTML. This translation needs to be done on a protocol
by protocol basis and can not handle many services. It requires a special
translator for each and every protocol. This system does not provide site-to-site
connectivity for arbitrary traffic and requires new coding and analysis for any
addition protocol that come up.

Port Forwarding

Port forwarding is what firewalls do. Traffic to a port on one IP address (usually
your gateway) is simply redirected to the same (or sometimes different) port on
another machine. If the packet qualifies, the gateway simply passes the traffic
without inspecting its contents. This works well for some common services that
use predictable ports. However, many protocols do not use a fixed port, instead
using a range of ports or random ephemeral ports. It also requires individual
forwarding for each service or port, one at a time. This system does not provide
site-to-site connectivity for arbitrary traffic and requires new coding for any
addition protocols that come up. It also requires that software be installed on the
client machine; if you think that sounds like a “client” you are correct! For this
client to work correctly, it requires administrative access on the box. Again, so
much for clientless VPN, and so much for public kiosks.

Network Extension

Of The Four Horsemen of the SSL VPNs, the only one that provides true VPN
service is network extension. As with traditional IPSec VPNs, the devices that
handle network extension create a site-to-site tunnel that can handle arbitrary
traffic. No surprise, this configuration requires a client in all cases. On top of
that, it requires administrative access to the host or gateway machine, which you

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

are not going to get on public machine (I hope). This is going to sound like a
broken record, but so much for clientless VPNs and so much for public kiosks.
Few of the commercial devices claim to do network extension and of those that
claim to do it, few actually do it correctly [Sny04]. For those select few
(Checkpoint, NetScreen, OpenVPN), we reserve the name SSL VPN.

Hybrids

Some of the devices listed as SSL VPNs actually just provide SSL access to web
based applications, and then use IPSec access for network extension (Cisco). I
would suggest that labeling this device an SSL VPN is a misnomer at best.

Security Issues

For all the rest of the commercial SSL VPN market, shame on you. I don’t know
if this phrase is already claimed, but if it isn’t, I’m labeling it Hosner’s Lament:

“The one thing worse than bad security is bad security
that creates the illusion of good security”

VPNs are an extension of your network. Hence the term network extension
above. They represent your LAN at a location outside your company. Most of
the commercial SSL VPN products focus heavily on “clientless VPN” as an
obvious marketing feature. The following quote is taken directly from the
marketing material of one of these vendors:

“The biggest difference between SSL VPNs and
traditional IP Security remote access VPNs is that the
IPSec standard requires installation of client code on
the end user's system, while SSL VPNs focus on
making applications available through any Web
browser.”

This is not only deceptive, it is dangerous. Either these companies lack an
understanding of security and VPNs, or they are unethically presenting a product
to unknowing users that gives them the impression of safety with the well know
label of VPN without the security features that are traditionally associated with
this label. Here is another marketing snippet that affirms this strategy:

“We ruled out changes to client systems as
unacceptable and not in the spirit of SSL VPNs' goal
of security with ease of use.”

That philosophy would be fine if it were true. The real situation is security is
being compromised for the sake of ease of use. Imagine this, one of these SSL

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

VPNs allows "clientless access" from public kiosk machines. Your user goes to
one of these kiosks where a 14 year old has installed a keystroke logger. Your
user connects to your “VPN”, authenticates to your network with their username
and password, and accesses a bunch of material. Your 14 year old now knows
your users username and password plus a large amount of data about your
internal applications. Or worse yet a trojan on the kiosk starts a worm attack on
your network through the SSL tunnel. Now you have a worm hammering the soft
underbelly of your network through a trusted tunnel. Public clients are by
definition untrusted clients. VPNs work on the foundation that both sides of the
connection are trusted. If you are providing an application gateway, maybe this
is acceptable, but if you are using a VPN, you must have trusted and
authenticated hosts on both ends of the connection. The following quote says it
all.

“Your VPN--IPSec or SSL--is only as secure as the
laptops, PCs or PDAs connected to it.”[Phi03]

How about cookies, temporary files, browser history, and session information?
Many of these vendors claim to have programs that clean these areas up after
use. Unfortunately, to use these features, you need to have administrative rights
on the machine. If a kiosk lets you have admin access to it, you can bet it is
already infected with a keystroke logger, remote control software and enough
bugs and viruses to make the Amazon jungle jealous. This feature is most
important on public machines, which are the most unlikely to provide the
permissions necessary to allow this sort of scrubbing.

Ever heard of a man in the middle attack? How do these so called SSL VPNs
defend against that? Do the users remember a 1024-bit certificate that they type
into the password box at authentication challenge? How do we know the server
is really the machine we want to connect to and not some hostile intermediary?
What we have here is a cotton shirt claiming to be suit of armor. Both devices
provide access to internal corporate resources. The difference is only devices
that deal with trusted and authenticated end points using installed client software
are actually capable of creating a VPN. All other current claimants are
charlatans and very dangerous ones at that. These companies put their name
and the label of VPN on these products which give the unknowing IT manager a
sense of security. This sense will stay until a terribly damaging breach occurs
that could wipe out the company, and definitely the IT manager’s career. Will
these “SSL VPN” corporations bear this responsibility? Of course not. I imagine
if you look at their user license agreement you will find text absolving them of any
responsibility for compromise related to their product. Use commercial SSL VPN
solutions with extreme care!!! Just to give you a taste of the lack of security
knowledge some of these vendors have, here is a quote that represents their
level of understanding, again taken directly from marketing material. Company
name removed to protect the guilty.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

“The XXX Server is protected against any kind of web
server, password or other hacking attempts.”

Anyone who has spent more than 5 minutes in the computer security field knows
the above statement is ridiculous and a common indicator that we are dealing
with an entity with little experience in security. For anyone interested in more
information on these products plus some excellent comparisons and product
information please see the reference at the end of this document [Sny04].

Conclusion

IPSec VPNs are unnecessarily complex. The IPSec protocol is dense and
confusing providing many opportunities to compromise its security by
implementing it incorrectly. As Bruce Schneier says:

“We strongly discourage the use of IPSec in its
current form for protection of any kind of valuable
information …… however, we …. recommend IPSec
when the alternative is an insecure network.”[SF99]

Vendor IPSec packages are expensive and most open source variations are hard
to install and configure. But now we have a choice.

OpenVPN is an SSL/TLS-based user-space VPN that provides industry tested
security with tremendous ease of use. It is available on most modern operating
systems and gives you the flexibility to work in a variety of modes that are easy
to understand and hard to make insecure.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Glossary

Application Level Gateway – (ALG) Usually a component of a firewall, an ALG
acts as an intermediary between an external client and an internal service.

Asymmetric Encryption – System for encrypting/decrypting and digitally signing
messages. Uses different keys (public/private) on either side of the connection.
Does not perform well for bulk encryption when compared to symmetric
encryption.

Authentication – Determining an entity’s identity and possibly the level of
access they are allowed to have.

Authentication Header – (AH) A component of IPSec that allows masking and
protection of the original source address of packets. Its value is questioned as
ESP and NAT do most of its functions with the exception of source address
verification, which has limited use.

Broadcast repeater – A networking device that regenerates OSI level 2
broadcasts onto a different network segment

Certificate – An electronic data structure that contains identification information
on an entity as well as that entity’s public key. This public key is usually signed
by a certificate authority.

Certificate authority – (CA) An entity that does physical validation of other
entities and then signs these other entity’s keys to prove they are who they claim
to be.

Cipher Block Chaining – (CBC) A method of randomizing cipher text to reduce
the amount of available cipher text encrypted using a common key.

Confidentiality – Keeping information private between only those who need to
know it.

Cryptographic Primitive – Refers to the basic building blocks of a crypto
system. Symmetric ciphers, Asymmetric ciphers, message digests and digital
signatures are all primitives.

Digital Signature – Using a private key to sign a cryptographic hash of a
message to guarantee authorship and integrity of the message.

Ebuild – Package management system used by Gentoo Linux for distributing
and installing applications.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Encapsulating Security Payload – (ESP) A component of IPSec that enables
the encryption and protection of a message.

Hosner’s Lament – The one thing worse than bad security is bad security that
creates the illusion of good security.

Initialization Vector – (IV) Random or hard to predict string of characters used
to modify the first block of a Cipher Block Chaining mode encryption session or
any other encryption requiring pseudo-random seeding.

Integrity – A guarantee that the information sent is the same as the information
received.

Internet Engineering Task Force – (IETF) Group organized to design and
disseminate technical standards for the Internet. The keepers of the fabled
RFC’s.

Internet Key Exchange – (IKE) Handshake protocol used by IPSec. Uses a 6
message format to authenticate tunnel end points and exchange session keys to
build and maintain an IPSec VPN tunnel.

IPSec – Internet Protocol Security. IPSec is a standard for creating VPNs.
Primarily defined by RFC’s 2401-2412. IPSec has received much criticism for its
complexity.

Key Agreement – A process by which two entities can calculate the same key
over a public network without eavesdroppers also being able to calculate the key.
The oldest and most wide spread algorithm for key agreement is Diffie-Hellmann.

Key Distribution – System for moving cryptographic key material between
entities over a secure medium.

Key Exchange – System for transferring cryptographic key material between
entities, usually over an insecure medium. RSA and Diffie-Hellmann are
examples.

Message Digest – A cryptographic summary of a message. If any character in a
message is changed, all of the message digest will change.

Network Address Translation – (NAT) Usually a component of a firewall. NAT
allows multiple internal clients to share external addresses. NAT (actually PAT)
maps private internal addresses to ports on an external address allowing public
address space conservation and source address masking.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Network Extension – This refers to extending the boundary of the corporate
network to include remote machines that are connected over the public Internet.
This is the primary purpose of VPNs.

Non-repudiation – The inability of the sender to later deny they sent the
message. Achieved using digital signatures.

OS Ring Architecture – Operating system design philosophy that breaks the OS
into rings of privilege starting with Ring0. Kernel processes and all essential
system components run at Ring0 or Ring1. User applications run at Ring3. The
philosophy states that processes at higher rings can not interfere with processes
at lower rings thus creating a more secure, stable, multi-user environment.

Perfect Forward Secrecy – This philosophy states that if a key is compromised
for one section of an encrypted communication, it will only allow access to that
section. Future sections of the communication are protected differently (different
key) and will not be compromised.

Polynomial Time – Means the function can be computed in a reasonable time.
This is in comparison to exponential time meaning as the function adds
complexity, the time to crack it increases exponentially, quickly surpassing the
reasonable time measure.

Pretty Good Privacy – (PGP) A system for protecting information. Uses the
IDEA cipher to encrypt data and incorporates public key cryptography using a
web of trust. Common system for protecting email communications between
trusted entities.

Public Key Cryptography – System of using public and private key pairs to
protect data and authenticate entities. Includes certificate authorities.

Redhat Package Management – (RPM) Package management system used by
Redhat Linux for distributing and installing applications.

Request For Comment – (RFC) Standard system for communicating technical
standards for the Internet. RFC’s are created and maintained by the IETF.

Secure Socket Layer – (SSL) Protocol and crypto libraries used to protect
communication over the Internet. Used primarily in e-commerce, SSL is making
headway into link encryption environments like VPNs. Originally developed by
Netscape in the early 1990’s.

Symmetric Encryption – System for encrypting/decrypting traffic using the
same key on both sides of the connection. Very fast when compared to
asymmetric encryption.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

TAP Virtual Driver – A driver interface that allows Ethernet bridging. The TAP
interface communicates with the actual physical interface eliminating some
complexity and rigidity.

Transparent Bridging – Using a device that connects two different subnets
together and allows traffic to pass between them without routing. Stores MAC
addresses of each network in a table and uses this data to bridge networks.

Transport Layer Security – (TLS) To condense the code trees of SSL and
centralize management and development of the protocol, the IETF developed
TLS. TLS is essentially the latest version of SSL and is really just SSLv3 with
some minor improvements. Often abbreviated SSL/TLS.

TUN Virtual Driver - A driver interface used for IP traffic. The TUN interface
communicates with the actual physical interface eliminating some complexity and
rigidity.

Virtual Private Network – (VPN) A device that is capable of creating a semi-
permanent encrypted tunnel over the public network between two private
machines or networks to pass non-protocol specific, or arbitrary, traffic.

Windows Internet Name Service Server – (WINS) Device that maps NetBIOS
names to IP addresses allowing machines on different subnets to still use
services like Windows file sharing. Samba is able to act as a WINS Server.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Work Cited

[Cou04] Courtois, Nicholas T (2004). Is AES a Secure Cipher? Retrieved
August 1st, 2004 from http://www.cryptosystem.net/aes/

[Dum97] Dumon, Pieter (1997). OS Kernels: A Little Overview and
Comparison. Retrieved August 3rd, 2004 from
http://tunes.org/~unios/oskernels.html#rings

[Free04] FreeS/WAN. FreeS/WAN home page. Retrieved July 28th, 2004
from http://www.freeswan.org/

[LDH03] Law Y., Doumen J., Hartel P. (2003) Survey and Benchmark of
Block Ciphers for Wireless Sensor Networks. Retrieved August 4th, 2004
from http://www.ub.utwente.nl/webdocs/ctit/1/000000eb.pdf

[Phi03] Phifer, Lisa (2003). VPN: Tunnel Vision. Information Security
Magazine Online. Retrieved July 26th, 2004 from
http://infosecuritymag.techtarget.com/ss/0,295796,sid6_iss21_art83,00.html

[Res01] Rescorla, Eric (2001). SSL and TLS: Designing and Building Secure
Systems. Indianapolis, IN: Addison-Wesley.

[RSA96] RSA Laboratories (1996). The Status of MD5 After a Recent Attack.
CryptoBytes. Retrieved July 23rd, 2004 from
ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto2n2.pdf

[RSA04] RSA Laboratories (2004). Retrieved August 2nd, 2004 from
http://www.rsasecurity.com/rsalabs/node.asp?id=2103

[SF99] Schneier, B Ferguson, N. (1999). A Cryptographic Evaluation of
IPSec. Retrieved July 10th, 2004 from http://www.schneier.com/paper-
ipsec.pdf

[Sny04] Snyder, Joel (2004). SSL VPN Gateways. Network World Fusion
Online. Retrieved July 25th, 2004 from
http://www.nwfusion.com/reviews/2004/0112revmain.html

[Yon04] Yonan, James (2004). OpenVPN Source Forge home page.
Retrieved August 1st, 2004 from http://openvpn.net

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Bibliography

Kolesnikov O., Hatch B. (2003). Building Linux Virtual Private Networks.
Indianapolis, IN: New Riders.

Loshin, Peter (2002). Big Book of IPsec RFC’s. San Diego, CA: Academic
Press.

Northcutt, S et al. (2003). Inside Network Perimeter Security. Indianapolis,
IN: New Riders.

Rescorla, Eric (2001). SSL and TLS: Designing and Building Secure
Systems. Indianapolis, IN: Addison-Wesley.

Ruixi Y., Strayer T. (2001). Virtual Private Networks: Technologies and
Solutions. New York, New York: Addison Wesley.

Schneier, Bruce (1996). Applied Cryptography: Protocols, Algorithms, and
Source Code in C. New York, New York: John Wiley and Sons, Inc.

Viega J., Messier M., Chandra P. (2002). Network Security with OpenSSL.
Sebastopol, CA: O’Reilly.

Last Updated: June 23rd, 2010

Upcoming SANS Training
Click Here for a full list of all Upcoming SANS Events by Location

SANS AUD521 Egypt 2010 Cairo, Egypt Jul 05, 2010 - Jul 06, 2010 Live Event

20 Critical Controls with Eric Cole PhD Singapore, Singapore Jul 08, 2010 - Jul 09, 2010 Live Event

SANS What Works in Forensics and Incident Response Summit
2010

Washington, DC Jul 08, 2010 - Jul 15, 2010 Live Event

SANS Canberra 2010 Canberra, Australia Jul 09, 2010 - Jul 17, 2010 Live Event

SANS Rocky Mountain 2010 Denver, CO Jul 12, 2010 - Jul 17, 2010 Live Event

SANS Tokyo Summer 2010 Tokyo, Japan Jul 12, 2010 - Jul 17, 2010 Live Event

SANS Boston 2010 Boston, MA Aug 02, 2010 - Aug 09, 2010 Live Event

SANS WhatWorks in Virtualization and Cloud Computing
Summit 2010

Washington, DC Aug 19, 2010 - Aug 22, 2010 Live Event

SANS Portland 2010 Portland, OR Aug 23, 2010 - Aug 28, 2010 Live Event

SANS Virginia Beach 2010 Virginia Beach, VA Aug 29, 2010 - Sep 03, 2010 Live Event

The 2010 European Digital Forensics and Incident Response
Summit

London, United
Kingdom

Sep 08, 2010 - Sep 09, 2010 Live Event

SANS Network Security 2010 Las Vegas, NV Sep 19, 2010 - Sep 27, 2010 Live Event

SANS IMPACT: Malaysia 2010 OnlineMalaysia Jun 28, 2010 - Jul 10, 2010 Live Event

SANS OnDemand Books & MP3s Only Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=22093
http://www.sans.org/egypt-2010
http://www.sans.org/link.php?id=22358
http://www.sans.org/singapore-critical-controls-2010
http://www.sans.org/link.php?id=20714
http://www.sans.org/forensics-incident-response-summit-2010
http://www.sans.org/link.php?id=20849
http://www.sans.org/canberra-2010
http://www.sans.org/link.php?id=20854
http://www.sans.org/rocky-mountain-2010
http://www.sans.org/link.php?id=21983
http://www.sans.org/tokyo-summer-2010
http://www.sans.org/link.php?id=21239
http://www.sans.org/boston-2010
http://www.sans.org/link.php?id=20782
http://www.sans.org/virtualization-cloud-computing-summit-2010
http://www.sans.org/link.php?id=21808
http://www.sans.org/portland-2010
http://www.sans.org/link.php?id=21458
http://www.sans.org/virginia-beach-2010
http://www.sans.org/link.php?id=22298
http://www.sans.org/eu-digital-forensics-incident-response-summit-2010
http://www.sans.org/link.php?id=21967
http://www.sans.org/network-security-2010
http://www.sans.org/link.php?id=20923
http://www.sans.org/impact-malaysia-2010
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

