DISTRIBUTED
PATTERNS IN
ACTION

http://git.10/MYrjpQ

»
Eric Redmond @

@coderoshi basho

http://git.io/MYrjpQ
http://git.io/MYrjpQ

best superpower ever

Thursday, July 25, 13

Thursday, July 25, 13

RESOURCE EXPANSION
(SOLUTION: SHARDING)

SHARDING INCREASES RISK

FAULT-TOLERANCE
(SOLUTION: REPLICATION)

REPLICATION IS I'Fi8
OO OF ALL EVIE

\ .

NETWGORK PARTITIONS

Thursday, July 25, 13

THE CAP THEOREM SUCKS

« Consistent
* Available

* Partition-lolerant®

* http://codahale.com/you-cant-sacrifice-partition-tolerance

http://codahale.com/you-cant-sacrifice-partition-tolerance/
http://codahale.com/you-cant-sacrifice-partition-tolerance/

DON'T DISTRIBUTE DATASTORES,
STORE DISTRIBUTED DATA

IF IT CAN HAPPEN,
AT SCALE IT WILL HAPPEN

h = NaiveHash.new(("A".."J").to_a)
tracknodes = Array.new(100000)

100000.times do |i]
tracknodes[i] = h.node(1i)
end

h.add("K")

misses = 0
100000.times do |il|
misses += 1 if tracknodes[i] != h.node(1i)

end

puts "misses: #{(misses.to f/100000) * 100}%"

misses: 90.922%

Thursday, July 25, 13

7 160 ~ 0
"-..- — a single partition

) 4 \
4)
| |
. ring with 32 partitions I
i i
\ 7

Y, L

‘Q.-_"’ ™ SHA1(Key)
!

2|60/2

Thursday, July 25, 13

2I60\ /O

‘-.. a single partition
2 Node 0
{ \
. INg wit artitions l
l‘ ring with 32 p '.
S /. o3

‘Q.-_"’ ™ SHA1(Key)
1

2|60/2

Thursday, July 25, 13

SHA1BITS = 160
class PartitionedConsistentHash
def initialize(nodes=[], partitions=32)
@partitions = partitions
@nodes, @ring = nodes.clone.sort, {}
@power = SHA1BITS - Math.log2(partitions).to i
@partitions.times do |i]
@ring[range(i)] = @nodes[@]
@nodes << @nodes.shift
end
@nodes.sort!
end

def range(partition)
(partition*(2**@power)..(partition+1)*(2**@power)-1)
end

def hash(key)
Digest::SHAl.hexdigest(key.to s).hex
end

def add(node)
@nodes << node
partition_pow = Math.log2(@partitions)
pow = SHA1BITS - partition_pow.to_i
(0..@partitions).step(@nodes.length) do |i|
@ring[range(i, pow)] = node
end
end

def node(keystr)
return nil if @ring.empty?
key = hash(keystr)
@ring.each do |range, node|

return node if range.cover?(key)

end

end

end

h = PartitionedConsistentHash.new(("A".."J").to _a)
nodes = Array.new(100000)
100000.times do |i]

nodes[i] = h.node(i)

end
puts "add K"
h.add("K")

misses = 0
100000.times do |i]
misses += 1 if nodes[i] != h.node(i)
end
puts "misses: #{(misses.to f/100000) * 100}%\n"

misses: 9.473%

Thursday, July 25, 13

@name = name

@data = {}

@ring = ConsistentHash.new(nodes, partitions)

def put(key, value)
if @name == @ring.node(key)

@data[@ring.hash(key)] = value
end
end

Thursday, July 25, 13

nodeA = Node.new('A', ['A', 'B',
nodeB = Node.new('B', ['A', 'B',
nodeC = Node.new('C', ['A', 'B',

nodeA.put("foo", "bar")
p nodeA.get("foo") # nil

nodeB.put("foo", "bar")
p nodeB.get(II_FOOII) # "bar"

nodeC.put("foo", "bar")
p nodeC.get("foo") # nil

Thursday, July 25, 13

Client

Request

Service

Reply

H

Thursday, July 25, 13

module Services
def connect(port=2200, ip="127.0.0.1")
ctx = ZMQ: :Context.new
sock = ctx.socket(ZMQ::REQ)
sock.connect("tcp://#{ip}:#{port}")
sock
end

def service(port)

ctx = ZMQ: :Context.new
rep = ctx.socket(ZMQ: :REP)
rep.bind("tcp://127.0.0.1:#{port}")
while line = rep.recv
msg, payload = line.split(' ', 2)
send(msg.to sym, rep, payload) # EVVVIILLLL!!!
end

end

end

Thursday, July 25, 13

class Node
include Configuration

include Threads “‘Z
include Services

)
def start() . / (f‘f‘.'

service(config("port"))

WCC‘"
b (rz«ltks)

def remote call(name, message)

req = connect(config("port", name), config("ip", name))
resp = req.send(message) && req.recv
reqg.close
resp
end

Thursday, July 25, 13

def put(socket, payload)
seealitles = payload.split(' ', 2)
socket.send(do put(key, value).to s)
end

def do_put(key, value)
node = @ring.node(key)
if node == @name

@data[@ring.hash(key)] = value
else
remote call(node, "put #{key} #{value}")
end
end

Thursday, July 25, 13

$ ruby node.rb A
$ ruby node.rb B
$ ruby node.rb C

name = ARGV.first
node = Node.new(name, ['A','B','C'])
node.start()

'-.--II----------------------------------

req = ctx.socket(ZMQ: :REQ)
req.connect("tcp://127.0.0.1:2200")

1000.times do |i]
req.send("put key#{i} value#{i}") && reg.recv
end

1000.times do |i]
req.send("get key#{i}") && req.recv
end

Thursday, July 25, 13

Subscriber

Publisher Subscriber

Subscriber

Thursday, July 25, 13

def coordinate cluster(pub_port)

ctx = ZMQ: :Context.new
pub = ctx.socket(ZMQ::PUB)
pub.bind("tcp://*:#{pub_port}")

nodes = @ring.nodes

@ring.cluster(nodes)

pub.send("ring " + nodes.join(',"'))

end

Thursday, July 25, 13

def track cluster(sub port)

sub = ctx.socket(ZMQ::SUB)
sub.connect("tcp://127.0.0.1:#{sub_port}")
sub.setsockopt(ZMQ: :SUBSCRIBE, "ring")

while line = sub.recv
redes = line.split(" ', 2)
nodes = nodes.split(',"').map{|x| x.strip}
@ring.cluster(nodes)

end

end

Thursday, July 25, 13

def replicate(message, n)
list = @ring.pref _list(n)
gesliilies =]
while replicate node = list.shift
results << remote call(replicate node, message)

end

results
end ' ‘?\ﬁk

Thursday, July 25, 13

WHAI TO EAT FOR DINNER?

» Adam wants Pizza
{value:"pizza", vclock:{adam:1}}
» Barb wants Tacos
{value:"tacos", vclock:{barb:1}}
» Adam gets the value, the system can't resolve, so he gets bolth

[{value:*pizza”, vclock:{adam:l}},
{value:"tacos", vclock:{barb:1}}]

« Adam resolves the value however he wants

{value:"taco pizza”, vclock:{adam:2, barb:1}}

Thursday, July 25, 13

req.send('put 1 foo {"B":1} hellol') && req.recv
req.send('put 1 foo {"C":1} hello2') && req.recv
puts reqg.send("get 2 foo") && req.recv

sleep 5

req.send('put 2 foo {"B":3} hellol') && req.recv
puts reqg.send("get 2 foo") && req.recv

Thursday, July 25, 13

CONFLICT RESOLUTION

* choose a value at random

* siblings (user resolution)

e ihed Fesolution (eg. CRD)

Thursday, July 25, 13

20’

"l‘: i -’—.— \“‘

: ’ f -l v .
; /'i 17y
r : “l p

3‘\’(’7/* // v 2y g

Thursday, July 25, 13

‘FL TREE

* Thanks Joe Blomstedt

Thursday, July 25, 13

" EACH SEGMENT IS LIST OF
KEY-HASH PAIRS

Thursday, July 25, 13

HASH OF HASHES IN
SEGMENT

Thursday, July 25, 13

Thursday, July 25, 13

Thursday, July 25, 13

g TOP HASHES DON’T
MATCH -
SOMETHING IS

/ \ DIFFERENT

Thursday, July 25, 13

NARROVW DOVVN
THE DIVERGENT
SEGMENT

Thursday, July 25, 13

NARROVW DOVVN
THE DIVERGENT
Z S SEGMENT CONT...

Thursday, July 25, 13

ITER FINAL LIST OF
HASHES TO FIND
7 S DIVERGENT KEYS

Thursday, July 25, 13

REPAIR (RE-INDEX)
= KEYS THAT ARE
g DIVERGENT (RED)

Thursday, July 25, 13

Thursday, July 25, 13

array = [{value:1l},{value:3},{value:5}]

mapped = array.map{|obj| obj[:value]}
[1, 3, 5]

mapped.reduce(0){|sum,value| sum + value}
9

Thursday, July 25, 13

def mr(socket, payload)
map_func, reduce func = payload.split(/\;\s+reduce/, 2)

reduce_func = "reduce#{reduce func}"
socket.send(Reduce.new(reduce func, call maps(map_func)).call.to s)
end

Thursday, July 25, 13

def call maps(map_func)
gestibes = []
nodes = @ring.nodes - [@nhame]
nodes.map {|node|
Thread.new do
res = remote call(node, "map #{map_ func}")
results += eval(res)
end
}.each{|w| w.join}
results += Map.new(map_ func, @data).call
end

Thursday, July 25, 13

map{|k,v| [1]};

Thursday, July 25, 13

reduce{|vs| vs.length}

Thursday, July 25, 13

ONE FINAL IMPROVEMENT

- C
A

. P!

N/R/W

- N! # of Nodes to replicate a value to (in total)
* R! # of nodes to Read a value from (before success)

* W! # of nodes to Write a value to (before success)

Thursday, July 25, 13

N=3 Write an Object

’

r_] v
Nl

P Ll

' 4
L

repITcate

w=2 Write e,zn Object

C&D
respond first

A\

m m [Node CJ [Node DJ (Node EJ
v
%

-
‘ N\

' d

g eventually

~-" replicate to
replicate to

R=2 Read an Object

C&E
respond first

5—'

request from

Thursday, July 25, 13

EVENTUALLY CONSISTENT

Le mieux est ['ennemi du bien

* How Eventual!

* How Consistent!?

Probabillistically Bounded Staleness

N=3, R=1,W=2

P(Consistency)

0.980 /
0.960
0.940
0.920
0.0 5.0 10.0 15.0 20.0 25.0
Time After Commit (ms)
(Plot isn‘t monotonically increasing? Increase the accuracy.)
You have at least a 90.32 percent chance of reading the last written version 0 ms after it commits.
You have at least a 97.2 percent chance of reading the last written version 10 ms after it commits.
You have at least a 99.96 percent chance of reading the last written version 100 ms after it commits.
Replica Configuration Tolerable Staleness: 1 version
N:) 3 Read Latency: Median 8.47 ms, 99.9th %ile 36.45 ms Q
R: () 1 Write Latency: Median 16.77 ms, 99.9th %ile 60.43 ms Accuracy: 2500 iterations/point
W:] 2 O

* http://pbs.cs.berkeley.edu

Thursday, July 25, 13

http://pbs.cs.berkeley.edu
http://pbs.cs.berkeley.edu

N=3R=2,W=2

P(Consistency)
1.0100
1.0050
1.0000
0.9950
0.9800
0.00 0.50 1.00 1.50 2.00 2.50
Time After Commit (ms)
(Plot isn‘t monotonically increasing? Increase the accuracy.)
You are guaranteed to read the last written version 0 ms after it commits.
You are guaranteed to read the last written version 10 ms after it commits.
You are guaranteed to read the last written version 100 ms after it commits.
Replica Configuration Tolerable Staleness: 1 version
N: ¢) 3 Read Latency: Median 16.85 ms, 99.9th %ile 58.73 ms Q
R: ! -2 Write Latency: Median 16.87 ms, 99.9th %ile 63.16 ms Accuracy: 2500 iterations/point
W: O 2 —@

Thursday, July 25, 13

A

http://git.io/MYrjpQ @
((:

YOU KNOW;”

* thanks |D

http://git.io/MYrjpQ
http://git.io/MYrjpQ

K |
Preference List Al

Vector Clocks

Distributed Hash Ring

sriak

el eE Node Gossip

Request/
Response

@I (counters, more coming) Read Repair

Thursday, July 25, 13

The -
Pragmatic
ograminers

Seven Databases
in Seven Weeks

A Guide to Modern Databases
and the NoSQL Movement

Eric Redmond

and Jim R. Wilson
Edited by Jacquelyn Carter

http://pragprog.com/book/rwdata http://littleriakbook.com

Thursday, July 25, 13

https://github.com/coderoshi/little_riak_book
https://github.com/coderoshi/little_riak_book
http://pragprog.com/book/rwdata
http://pragprog.com/book/rwdata

