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RESOURCE EXPANSION
(SOLUTION: SHARDING)




SHARDING INCREASES RISK




FAULT-TOLERANCE
(SOLUTION: REPLICATION)




REPLICATION IS I'Fi8
OO OF ALL EVIE




\ .

NETWGORK PARTITIONS
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THE CAP THEOREM SUCKS

« Consistent
* Available

* Partition-lolerant®

* http://codahale.com/you-cant-sacrifice-partition-tolerance
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DON'T DISTRIBUTE DATASTORES,
STORE DISTRIBUTED DATA




IF IT CAN HAPPEN,
AT SCALE IT WILL HAPPEN










h = NaiveHash.new(("A".."J").to_a)
tracknodes = Array.new(100000)

100000.times do |i]
tracknodes[i] = h.node(1i)
end

h.add("K")

misses = 0
100000.times do |il|
misses += 1 if tracknodes[i] != h.node(1i)

end

puts "misses: #{(misses.to f/100000) * 100}%"

misses: 90.922%
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SHA1BITS = 160
class PartitionedConsistentHash
def initialize(nodes=[], partitions=32)
@partitions = partitions
@nodes, @ring = nodes.clone.sort, {}
@power = SHA1BITS - Math.log2(partitions).to i
@partitions.times do |i]
@ring[range(i)] = @nodes[@]
@nodes << @nodes.shift
end
@nodes.sort!
end

def range(partition)
(partition*(2**@power)..(partition+1)*(2**@power)-1)
end

def hash(key)
Digest::SHAl.hexdigest(key.to s).hex
end

def add(node)
@nodes << node
partition_pow = Math.log2(@partitions)
pow = SHA1BITS - partition_pow.to_i
(0..@partitions).step(@nodes.length) do |i|
@ring[range(i, pow)] = node
end
end

def node(keystr)
return nil if @ring.empty?
key = hash(keystr)
@ring.each do |range, node|

return node if range.cover?(key)

end

end

end

h = PartitionedConsistentHash.new(("A".."J").to _a)
nodes = Array.new(100000)
100000.times do |i]

nodes[i] = h.node(i)

end
puts "add K"
h.add("K")

misses = 0
100000.times do |i]
misses += 1 if nodes[i] != h.node(i)
end
puts "misses: #{(misses.to f/100000) * 100}%\n"

misses: 9.473%
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@name = name

@data = {}

@ring = ConsistentHash.new(nodes, partitions)

def put(key, value)
if @name == @ring.node(key)

@data[ @ring.hash(key) ] = value
end
end
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nodeA = Node.new( 'A', ['A', 'B',
nodeB = Node.new( 'B', ['A', 'B',
nodeC = Node.new( 'C', ['A', 'B',

nodeA.put( "foo", "bar" )
p nodeA.get( "foo" ) # nil

nodeB.put( "foo", "bar" )
p nodeB.get( II_FOOII ) # "bar"

nodeC.put( "foo", "bar" )
p nodeC.get( "foo" ) # nil
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Client

Request

Service

Reply

H
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module Services
def connect(port=2200, ip="127.0.0.1")
ctx = ZMQ: :Context.new
sock = ctx.socket( ZMQ::REQ )
sock.connect( "tcp://#{ip}:#{port}" )
sock
end

def service(port)

ctx = ZMQ: :Context.new
rep = ctx.socket( ZMQ: :REP )
rep.bind( "tcp://127.0.0.1:#{port}" )
while line = rep.recv
msg, payload = line.split(' ', 2)
send( msg.to sym, rep, payload ) # EVVVIILLLL!!!
end

end

end
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class Node
include Configuration

include Threads “‘Z
include Services

)
def start() . / (f‘f‘.'

service( config("port") )

WCC‘"
b (rz«ltks )

def remote call(name, message)

req = connect(config("port", name), config("ip", name))
resp = req.send(message) && req.recv
reqg.close
resp
end
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def put(socket, payload)
seealitles = payload.split(' ', 2)
socket.send( do put(key, value).to s )
end

def do_put(key, value)
node = @ring.node(key)
if node == @name

@data[@ring.hash(key)] = value
else
remote call(node, "put #{key} #{value}" )
end
end
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$ ruby node.rb A
$ ruby node.rb B
$ ruby node.rb C

name = ARGV.first
node = Node.new(name, ['A','B','C'])
node.start()

'-.--II----------------------------------

req = ctx.socket(ZMQ: :REQ)
req.connect( "tcp://127.0.0.1:2200" )

1000.times do |i]
req.send( "put key#{i} value#{i}" ) && reg.recv
end

1000.times do |i]
req.send( "get key#{i}" ) && req.recv
end
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Subscriber

Publisher Subscriber

Subscriber
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def coordinate cluster(pub_port )

ctx = ZMQ: :Context.new
pub = ctx.socket( ZMQ::PUB )
pub.bind( "tcp://*:#{pub_port}" )

nodes = @ring.nodes

@ring.cluster(nodes)

pub.send( "ring " + nodes.join(',"'))

end
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def track cluster(sub port)

sub = ctx.socket( ZMQ::SUB )
sub.connect( "tcp://127.0.0.1:#{sub_port}" )
sub.setsockopt( ZMQ: :SUBSCRIBE, "ring" )

while line = sub.recv
redes = line.split(" ', 2)
nodes = nodes.split(',"').map{|x| x.strip}
@ring.cluster( nodes )

end

end
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def replicate(message, n)
list = @ring.pref _list(n)
gesliilies = ]
while replicate node = list.shift
results << remote call(replicate node, message)

end

results
end ' ‘?\ﬁk
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WHAI TO EAT FOR DINNER?

» Adam wants Pizza
{value:"pizza", vclock:{adam:1}}
» Barb wants Tacos
{value:"tacos", vclock:{barb:1}}
» Adam gets the value, the system can't resolve, so he gets bolth

[{value:*pizza”, vclock:{adam:l}},
{value:"tacos", vclock:{barb:1}}]

« Adam resolves the value however he wants

{value:"taco pizza”, vclock:{adam:2, barb:1}}
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req.send('put 1 foo {"B":1} hellol') && req.recv
req.send('put 1 foo {"C":1} hello2') && req.recv
puts reqg.send("get 2 foo") && req.recv

sleep 5

req.send('put 2 foo {"B":3} hellol') && req.recv
puts reqg.send("get 2 foo") && req.recv
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CONFLICT RESOLUTION

* choose a value at random

* siblings (user resolution)

e ihed Fesolution (eg. CRD )
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* Thanks Joe Blomstedt
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" EACH SEGMENT IS LIST OF
KEY-HASH PAIRS
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HASH OF HASHES IN
SEGMENT
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g TOP HASHES DON’T
MATCH -
SOMETHING IS

/ \ DIFFERENT
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NARROVW DOVVN
THE DIVERGENT
SEGMENT
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NARROVW DOVVN
THE DIVERGENT
Z S SEGMENT CONT...
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ITER FINAL LIST OF
HASHES TO FIND
7 S DIVERGENT KEYS
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REPAIR (RE-INDEX)
= KEYS THAT ARE
g DIVERGENT (RED)
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array = [{value:1l},{value:3},{value:5}]

mapped = array.map{|obj| obj[:value]}
# [1, 3, 5]

mapped.reduce(0){|sum,value| sum + value}
# 9
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def mr(socket, payload)
map_func, reduce func = payload.split(/\;\s+reduce/, 2)

reduce_func = "reduce#{reduce func}"
socket.send( Reduce.new(reduce func, call maps(map_func)).call.to s )
end
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def call maps(map_func)
gestibes = [ ]
nodes = @ring.nodes - [@nhame]
nodes.map {|node|
Thread.new do
res = remote call(node, "map #{map_ func}")
results += eval(res)
end
}.each{|w| w.join}
results += Map.new(map_ func, @data).call
end

Thursday, July 25, 13



map{|k,v| [1]};
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reduce{|vs| vs.length}
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ONE FINAL IMPROVEMENT

- C
A

. P!




N/R/W

- N! # of Nodes to replicate a value to (in total)
* R! # of nodes to Read a value from (before success)

* W! # of nodes to Write a value to (before success)
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N=3 Write an Object

’

r_] v
Nl

P Ll

' 4
L

repITcate

w=2 Write e,zn Object

C&D
respond first
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m m [Node CJ [Node DJ (Node EJ
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-
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g eventually

~-" replicate to
replicate to

R=2 Read an Object

C&E
respond first

5—'

request from
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EVENTUALLY CONSISTENT

Le mieux est ['ennemi du bien

* How Eventual!

* How Consistent!?




Probabillistically Bounded Staleness

N=3, R=1,W=2

P(Consistency)

0.980 /
0.960
0.940
0.920
0.0 5.0 10.0 15.0 20.0 25.0
Time After Commit (ms)
(Plot isn‘t monotonically increasing? Increase the accuracy.)
You have at least a 90.32 percent chance of reading the last written version 0 ms after it commits.
You have at least a 97.2 percent chance of reading the last written version 10 ms after it commits.
You have at least a 99.96 percent chance of reading the last written version 100 ms after it commits.
Replica Configuration Tolerable Staleness: 1 version
N: ) 3 Read Latency: Median 8.47 ms, 99.9th %ile 36.45 ms Q
R: () 1 Write Latency: Median 16.77 ms, 99.9th %ile 60.43 ms Accuracy: 2500 iterations/point
W: ] 2 O

* http://pbs.cs.berkeley.edu
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N=3R=2,W=2

P(Consistency)
1.0100
1.0050
1.0000
0.9950
0.9800
0.00 0.50 1.00 1.50 2.00 2.50
Time After Commit (ms)
(Plot isn‘t monotonically increasing? Increase the accuracy.)
You are guaranteed to read the last written version 0 ms after it commits.
You are guaranteed to read the last written version 10 ms after it commits.
You are guaranteed to read the last written version 100 ms after it commits.
Replica Configuration Tolerable Staleness: 1 version
N: ¢ ) 3 Read Latency: Median 16.85 ms, 99.9th %ile 58.73 ms Q
R: ! -2 Write Latency: Median 16.87 ms, 99.9th %ile 63.16 ms Accuracy: 2500 iterations/point
W: O 2 —@
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A

http://git.io/MYrjpQ @
(( :

YOU KNOW;”

* thanks |D
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K |
Preference List Al

Vector Clocks

Distributed Hash Ring

sriak

el eE Node Gossip

Request/
Response

@I (counters, more coming) Read Repair
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The -
Pragmatic
ograminers

Seven Databases
in Seven Weeks

A Guide to Modern Databases
and the NoSQL Movement

Eric Redmond

and Jim R. Wilson
Edited by Jacquelyn Carter

http://pragprog.com/book/rwdata http://littleriakbook.com
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