
Configuring Logging

Configuring application logging with the
LoggingConfigurator class.

Overview

> The LoggingConfigurator Class

> Configuring Formatters

> Configuring Channels

> Configuring Loggers

The LoggingConfigurator Class

> The Poco::Util::LoggingConfigurator class sets up and connects
formatters, channels and loggers using configuration information
from a Poco::Util::AbstractConfiguration.

> Poco::Util::Application automatically initializes a
LoggingConfigurator with its configuration.

> All configuration properties for logging must be under the
"logging" key.

Configuring Formatters

> Formatters are configured with the "logging.formatters"
property.

> Every formatter has an internal name, which is only used for
configuration purposes, to connect the formatter to a channel.
The name becomes part of the property name.

> The mandatory "class" property specifies the class implementing
the formatter.

> All other properties are passed to the formatter object's
setProperty() method.

logging.formatters.f1.class = PatternFormatter
logging.formatters.f1.pattern = %s: [%p] %t
logging.formatters.f1.times = UTC

> A channel is configured using the "logging.channels" property.

> As with Formatters, every channel has an internal name, which is
used during configuration only. The name becomes part of the
property name.

> Every channel has a mandatory "class" property, which specifies
the actual class implementing the channel. Any other properties
are passed on to the formatter by calling its setProperty()
method.

Configuring Channels

Configuring Channels (cont'd)

> For convenience, the "formatter" property of a channel is treated
specifically.

> The "formatter" property can either be used to refer to an already
defined formatter, or it can be used to specify an "inline"
formatter definition. In either case, when a "formatter" property
is present, the channel is automatically "wrapped" in a
FormattingChannel object.

> Similarly, a channel supports also a "pattern" property, which
results in the automatic instantiation of a FormattingChannel
object with a connected PatternFormatter.

External Formatter
logging.channels.c1.class = ConsoleChannel
logging.channels.c1.formatter = f1

Inline Formatter
logging.channels.c2.class = FileChannel
logging.channels.c2.path = ${system.tempDir}/sample.log
logging.channels.c2.formatter.class = PatternFormatter
logging.channels.c2.formatter.pattern = %Y-%m-%d %H:%M:%S %s: [%p] %t

Inline PatternFormatter
logging.channels.c3.class = ConsoleChannel
logging.channels.c3.pattern = %s: [%p] %t

> A logger is configured using the "logging.loggers" property.

> Like with channels and formatters, every logger has an internal
name, which, however, is only used to ensure the uniqueness of
the property names. Note that this name is different from the
logger's full name, which is used to access the logger at runtime.

> Every logger except the root logger has a mandatory "name"
property which is used to specify the logger's full name.

Configuring Loggers

Configuring Loggers (cont'd)

> A "channel" property is supported, which can either refer to a
named channel, or which can contain an inline channel
definition.

External Channel
logging.loggers.root.channel = c1
logging.loggers.root.level = warning

Inline Channel with PatternFormatter
logging.loggers.l1.name = logger1
logging.loggers.l1.channel.class = ConsoleChannel
logging.loggers.l1.channel.pattern = %s: [%p] %t
logging.loggers.l1.level = information

SplitterChannel
logging.channels.splitter.class = SplitterChannel
logging.channels.splitter.channels = l1,l2
logging.loggers.l2.name = logger2
logging.loggers.l2.channel = splitter

Copyright © 2006-2010 by Applied Informatics Software Engineering GmbH.
Some rights reserved.

www.appinf.com | info@appinf.com
T +43 4253 32596 | F +43 4253 32096

