
T U T O R I A L

Rails GIS Hacks
Berlin | Germany

Shoaib Burq | Kashif Rasul
Monday, September 17, 2007
13:30 – 17:00

01
Using Geocoders

What is it?

Geocoding

• “the heart of most mapping
applications” Google Maps Apps. with Rails and Ajax by A. Lewis, et al.

• Convert any information to geographic
identifiers for plotting on your map

Example

Geocoding

• “Torstraße 104, 10119, Berlin, Germany”
> lat = 52.530051, lng = 13.403495

• “85.178.26.159” > Berlin, Germany

Complications

Geocoding

• Geographic information system has to be
updated regularly

• Distinguishing between ambiguous
addresses needs increasing information

Services

Geocoding

• Google Maps

• Yahoo! Maps

• Geocoder.us & Geocoder.ca

Intro to Yahoo! Maps with AJAX

$ rails yahoo

$ cd yahoo

$ ruby script/generate controller intro

app/views/intro/map.rhtml
<html>
 <head>
 <script type="text/javascript"
 src="http://api.maps.yahoo.com/ajaxymap?
v=3.7&appid=pPDCgjnV34FJ3TxysU9K.FpFYQ3A_QYJ4VrAJQuyFcFv91Hf0r3PU5tr3SYBhMvOoM__">
 </script>

 <script type="text/javascript">
 function load () {
 // Create a map object
 var map = new YMap(document.getElementById('map'));

 // Add map type control
 map.addTypeControl();

 // Set map type to either of: YAHOO_MAP_SAT,
! ! ! ! // YAHOO_MAP_HYB, YAHOO_MAP_REG
 map.setMapType(YAHOO_MAP_HYB);

 // Display the map centered on a geocoded location
 map.drawZoomAndCenter("Berlin", 3);
 }
 </script>
 </head>

http://api.maps.yahoo.com/ajaxymap?v=3.7&appid=pPDCgjnV34FJ3TxysU9K.FpFYQ3A_QYJ4VrAJQuyFcFv91Hf0r3PU5tr3SYBhMvOoM__
http://api.maps.yahoo.com/ajaxymap?v=3.7&appid=pPDCgjnV34FJ3TxysU9K.FpFYQ3A_QYJ4VrAJQuyFcFv91Hf0r3PU5tr3SYBhMvOoM__
http://api.maps.yahoo.com/ajaxymap?v=3.7&appid=pPDCgjnV34FJ3TxysU9K.FpFYQ3A_QYJ4VrAJQuyFcFv91Hf0r3PU5tr3SYBhMvOoM__
http://api.maps.yahoo.com/ajaxymap?v=3.7&appid=pPDCgjnV34FJ3TxysU9K.FpFYQ3A_QYJ4VrAJQuyFcFv91Hf0r3PU5tr3SYBhMvOoM__

app/views/intro/map.rhtml

 <body onload="load()">

 <div id="map" style="width: 500px; height: 500px"></div>

 </body>

</html>

Using REST web services

Geocoding

• Format a REST query

• Use OpenURI to send the query

• Parse the XML response to extract geo
information using REXML

Google Maps’ REST Geocoder

http://maps.google.com/maps/geo?q=Torstra%C3%9Fe

+104,+Berlin,

+Germany&output=xml&key=ABQIAAAAwWqh7sPpuhNCdGZ0pieS

hBTJQa0g3IQ9GZqIMmInSLzwtGDKaBQOJH6Tw4jIlz7bMDU6qtLF

_9TSHQ

http://maps.google.com/maps/geo?q=Torstra%C3%9Fe+104,+Berlin,+Germany&output=xml&key=ABQIAAAAwWqh7sPpuhNCdGZ0pieShBTJQa0g3IQ9GZqIMmInSLzwtGDKaBQOJH6Tw4jIlz7bMDU6qtLF_9TSHQ
http://maps.google.com/maps/geo?q=Torstra%C3%9Fe+104,+Berlin,+Germany&output=xml&key=ABQIAAAAwWqh7sPpuhNCdGZ0pieShBTJQa0g3IQ9GZqIMmInSLzwtGDKaBQOJH6Tw4jIlz7bMDU6qtLF_9TSHQ
http://maps.google.com/maps/geo?q=Torstra%C3%9Fe+104,+Berlin,+Germany&output=xml&key=ABQIAAAAwWqh7sPpuhNCdGZ0pieShBTJQa0g3IQ9GZqIMmInSLzwtGDKaBQOJH6Tw4jIlz7bMDU6qtLF_9TSHQ
http://maps.google.com/maps/geo?q=Torstra%C3%9Fe+104,+Berlin,+Germany&output=xml&key=ABQIAAAAwWqh7sPpuhNCdGZ0pieShBTJQa0g3IQ9GZqIMmInSLzwtGDKaBQOJH6Tw4jIlz7bMDU6qtLF_9TSHQ
http://maps.google.com/maps/geo?q=Torstra%C3%9Fe+104,+Berlin,+Germany&output=xml&key=ABQIAAAAwWqh7sPpuhNCdGZ0pieShBTJQa0g3IQ9GZqIMmInSLzwtGDKaBQOJH6Tw4jIlz7bMDU6qtLF_9TSHQ
http://maps.google.com/maps/geo?q=Torstra%C3%9Fe+104,+Berlin,+Germany&output=xml&key=ABQIAAAAwWqh7sPpuhNCdGZ0pieShBTJQa0g3IQ9GZqIMmInSLzwtGDKaBQOJH6Tw4jIlz7bMDU6qtLF_9TSHQ
http://maps.google.com/maps/geo?q=Torstra%C3%9Fe+104,+Berlin,+Germany&output=xml&key=ABQIAAAAwWqh7sPpuhNCdGZ0pieShBTJQa0g3IQ9GZqIMmInSLzwtGDKaBQOJH6Tw4jIlz7bMDU6qtLF_9TSHQ
http://maps.google.com/maps/geo?q=Torstra%C3%9Fe+104,+Berlin,+Germany&output=xml&key=ABQIAAAAwWqh7sPpuhNCdGZ0pieShBTJQa0g3IQ9GZqIMmInSLzwtGDKaBQOJH6Tw4jIlz7bMDU6qtLF_9TSHQ
http://maps.google.com/maps/geo?q=Torstra%C3%9Fe+104,+Berlin,+Germany&output=xml&key=ABQIAAAAwWqh7sPpuhNCdGZ0pieShBTJQa0g3IQ9GZqIMmInSLzwtGDKaBQOJH6Tw4jIlz7bMDU6qtLF_9TSHQ
http://maps.google.com/maps/geo?q=Torstra%C3%9Fe+104,+Berlin,+Germany&output=xml&key=ABQIAAAAwWqh7sPpuhNCdGZ0pieShBTJQa0g3IQ9GZqIMmInSLzwtGDKaBQOJH6Tw4jIlz7bMDU6qtLF_9TSHQ

XML response
<?xml version="1.0" encoding="UTF-8"?>

<kml xmlns="http://earth.google.com/kml/2.0">

 <Response>

 <name>Torstraße 104, Berlin, Germany</name>
 <Status>

 <code>200</code>

 <request>geocode</request>

 </Status>

 <Placemark id="p1">

 <address>Torstraße 104, 10119 Mitte, Berlin, Germany</address>
 <AddressDetails xmlns="urn:oasis:names:tc:ciq:xsdschema:xAL:2.0" Accuracy="8">

 <Country>

 <CountryNameCode>DE</CountryNameCode>
 <AdministrativeArea>

 <AdministrativeAreaName>Berlin</AdministrativeAreaName>

 <SubAdministrativeArea>

 <SubAdministrativeAreaName>Berlin</SubAdministrativeAreaName>

 <Locality>

 <LocalityName>Berlin</LocalityName>

 <DependentLocality>

 <DependentLocalityName>Mitte</DependentLocalityName>
 <Thoroughfare>

 <ThoroughfareName>Torstraße 104</ThoroughfareName>
 </Thoroughfare>

 <PostalCode>

 <PostalCodeNumber>10119</PostalCodeNumber>
 </PostalCode>

 </DependentLocality>

 </Locality>

 </SubAdministrativeArea>

 </AdministrativeArea>

 </Country>

 </AddressDetails>

 <Point>

 <coordinates>13.403424,52.529717,0</coordinates>
 </Point>

 </Placemark>

 </Response>

</kml>

http://earth.google.com/kml/2.0
http://earth.google.com/kml/2.0

An initial comparison

Rails plugins

• GeoKit

• Graticule & acts_as_geocodable

• ActsAsLocatable

• YM4R

GeoKit install

$ rails geokit

$ cd geokit

$ ruby script/plugin install

svn://rubyforge.org/var/svn/geokit/trunk

API keys in config/envirnoment.rb

This is your yahoo application key for the Yahoo Geocoder.

See http://developer.yahoo.com/faq/index.html#appid

and http://developer.yahoo.com/maps/rest/V1/geocode.html

GeoKit::Geocoders::yahoo =

'pPDCgjnV34FJ3TxysU9K.FpFYQ3A_QYJ4VrAJQuyFcFv91Hf0r3PU5tr3SYBhMvOoM__'

This is your Google Maps geocoder key.

See http://www.google.com/apis/maps/signup.html

and http://www.google.com/apis/maps/documentation/#Geocoding_Examples

GeoKit::Geocoders::google =

'ABQIAAAAwWqh7sPpuhNCdGZ0pieShBTJQa0g3IQ9GZqIMmInSLzwtGDKaBQOJH6Tw4jIlz

7bMDU6qtLF_9TSHQ'

http://developer.yahoo.com/faq/index.html#appid
http://developer.yahoo.com/faq/index.html#appid
http://developer.yahoo.com/maps/rest/V1/geocode.html
http://developer.yahoo.com/maps/rest/V1/geocode.html
http://www.google.com/apis/maps/signup.html
http://www.google.com/apis/maps/signup.html
http://www.google.com/apis/maps/documentation/#Geocoding_Examples
http://www.google.com/apis/maps/documentation/#Geocoding_Examples

Geocoding from multiple
providers

GeoKit::Geocoders::provider_order = [:yahoo, :google]

Test it out
$ ruby script/console

Loading development environment.

>> include GeoKit::Geocoders

=> Object

>> home = MultiGeocoder.geocode("Torstrasse 104, 10119, Berlin,

Germany")

=> #<GeoKit::GeoLoc:0x35de820 @lat=52.530051, @state="Germany",

@street_address="Torstrasse 104", @country_code="DE",

@provider="yahoo", @precision="address", @zip=nil,

@lng=13.403495, @city="10119 Mitte", @success=true>

>> home.lat

=> 52.530051

>> home.lng

=> 13.403495

In memory calculations
>> office = MultiGeocoder.geocode("Lepsiusstrasse 70, Steglitz, Berlin,

Germany")

=> #<GeoKit::GeoLoc:0x341e5f8 @lat=52.460126, @state="Germany",

@street_address="Lepsiusstrasse 70", @country_code="DE", @provider="yahoo",

@precision="address", @zip=nil, @lng=13.316571, @city="12163 Steglitz",

@success=true>

>> office.distance_to(home, :units => :kms)

=> 9.75995820357575

>> heading = home.heading_to(office) # result is in degrees, 0 is north

=> 217.15430202928

>> endpoint = home.endpoint(90, 2) # given a heading (east) and distance

=> #<GeoKit::LatLng:0x33f6878 @lat=52.5300414818178, @lng=13.4510238774836>

>> midpoint = home.midpoint_to(office)

=> #<GeoKit::LatLng:0x33f08b0 @lat=52.4950964615994, @lng=13.3599984433113>

Auto geocoding a model’s address
on create

class CreateLocations < ActiveRecord::Migration

 def self.up

 create_table :locations do |t|

 t.column :address, :string, :limit => 100

 t.column :lat, :decimal, :precision => 15, :scale => 10

 t.column :lng, :decimal, :precision => 15, :scale => 10

 end

 end

 def self.down

 drop_table :locations

 end

end

app/models/location.rb

class Location < ActiveRecord::Base

 acts_as_mappable :auto_geocode => true

end

Testing this out
>> Location.find :all

=> []

>> Location.create(:address => "Torstrasse 104, Berlin, Germany")

=> #<Location:0x344d074 @errors=#<ActiveRecord::Errors:0x341c99c @errors=

{}, @base=#<Location:0x344d074 ...>>, @attributes={"id"=>4,

"lng"=>13.403495, "lat"=>52.530051, "address"=>"Torstrasse 104, Berlin,

Germany"}, @new_record=false>

>> home = Location.find :first

=> #<Location:0x3416e34 @attributes={"lng"=>#<BigDecimal:

3416e5c,'0.13403495E2',12(16)>, "id"=>"4", "lat"=>#<BigDecimal:

3416e84,'0.52530051E2',12(16)>, "address"=>"Torstrasse 104, Berlin,

Germany"}>

>> Location.create(:address => "Lepsiusstrasse 70, Berlin, Germany")

=> #<Location:0x3413608 @errors=#<ActiveRecord::Errors:0x33e52f8 @errors=

{}, @base=#<Location:0x3413608 ...>>, @attributes={"id"=>5,

"lng"=>13.316571, "lat"=>52.460126, "address"=>"Lepsiusstrasse 70, Berlin,

Germany"}, @new_record=false>

Sort by distance
>> locs = Location.find :all

=> [
! #<Location:0x3375d90
! ! @attributes={"lng"=>#<BigDecimal:3375f20,'0.13403495E2',12(16)>, "id"=>"4",
"lat"=>#<BigDecimal:3375f48,'0.52530051E2',12(16)>, "address"=>"Torstrasse 104,
Berlin, Germany"}>,

! #<Location:0x3375d68
! ! @attributes={"lng"=>#<BigDecimal:3375e94,'0.13316571E2',12(16)>, "id"=>"5",
"lat"=>#<BigDecimal:3375ea8,'0.52460126E2',12(16)>, "address"=>"Lepsiusstrasse 70,
Berlin, Germany"}>,

! #<Location:0x3375d40
! ! @attributes={"lng"=>#<BigDecimal:3375e1c,'0.13365749E2',12(16)>, "id"=>"6",
"lat"=>#<BigDecimal:3375e30,'0.5249112E2',12(16)>, "address"=>"Crellestrasse 23,
Berlin, Germany"}>,

! #<Location:0x3375d18
! ! @attributes={"lng"=>#<BigDecimal:3375da4,'0.13386817E2',12(16)>, "id"=>"7",
"lat"=>#<BigDecimal:3375db8,'0.52510553E2',12(16)>, "address"=>"Mauerstrasse 65,
Berlin, Germany"}>
]

sort_by_distance_from
>> locs.sort_by_distance_from(home)

=> [
! #<Location:0x3375d90 @distance=0.0,
! ! @attributes={"lng"=>#<BigDecimal:3375f20,'0.13403495E2',12(16)>, "id"=>"4",
"lat"=>#<BigDecimal:3375f48,'0.52530051E2',12(16)>, "address"=>"Torstrasse 104,
Berlin, Germany"}>,

! #<Location:0x3375d18 @distance=1.52043248966975,
! ! @attributes={"lng"=>#<BigDecimal:3375da4,'0.13386817E2',12(16)>, "id"=>"7",
"lat"=>#<BigDecimal:3375db8,'0.52510553E2',12(16)>, "address"=>"Mauerstrasse 65,
Berlin, Germany"}>,

! #<Location:0x3375d40 @distance=3.12676959370349,
! ! @attributes={"lng"=>#<BigDecimal:3375e1c,'0.13365749E2',12(16)>, "id"=>"6",
"lat"=>#<BigDecimal:3375e30,'0.5249112E2',12(16)>, "address"=>"Crellestrasse 23,
Berlin, Germany"}>,

! #<Location:0x3375d68 @distance=6.06585345156976,
! ! @attributes={"lng"=>#<BigDecimal:3375e94,'0.13316571E2',12(16)>, "id"=>"5",
"lat"=>#<BigDecimal:3375ea8,'0.52460126E2',12(16)>, "address"=>"Lepsiusstrasse 70,
Berlin, Germany"}>
]

AR drops the distance column

>> locs = Location.find :all, :origin=>home, :within=>5, :order=>'distance'

=> [

! #<Location:0x3362268 @attributes={"lng"=>#<BigDecimal:

3362394,'0.13403495E2',12(16)>, "id"=>"4", "lat"=>#<BigDecimal:

33623bc,'0.52530051E2',12(16)>, "address"=>"Torstrasse 104, Berlin, Germany",

"distance"=>"0"}>,

! #<Location:0x3362240 @attributes={"lng"=>#<BigDecimal:

33622f4,'0.13386817E2',12(16)>, "id"=>"7", "lat"=>#<BigDecimal:

3362308,'0.52510553E2',12(16)>, "address"=>"Mauerstrasse 65, Berlin, Germany",

"distance"=>"1.52043248966975"}>,

! #<Location:0x3362218 @attributes={"lng"=>#<BigDecimal:

336227c,'0.13365749E2',12(16)>, "id"=>"6", "lat"=>#<BigDecimal:

3362290,'0.5249112E2',12(16)>, "address"=>"Crellestrasse 23, Berlin, Germany",

"distance"=>"3.1267695948189"}>

]

GeoKit::Bounds

>> bounds = GeoKit::Bounds.new(sq_sw_point,

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! sq_ne_point)

>> locs = Location.find :all, :bounds => bounds

Eager Loading

>> locs = Location.find :all,

! ! ! ! ! ! ! ! ! ! ! ! :origin => home,

! ! ! ! ! ! ! ! ! ! ! ! :include => [:reviews],

! ! ! ! ! ! ! ! ! ! ! ! :within => 5,

! ! ! ! ! ! ! ! ! ! ! ! :order => 'distance'

IP address geocoding

>> location = GeoKit::Geocoders::IpGeocoder.geocode('85.178.26.159')

=> #<GeoKit::GeoLoc:0x3756fe0 @lat=52.5, @state=nil,

@street_address=nil, @country_code="DE", @provider="hostip",

@precision="unknown", @zip=nil, @lng=13.4167, @city="Berlin",

@success=true>

Cached IP location in
app/controllers/application.rb

class ApplicationController < ActionController::Base
 # Pick a unique cookie name to distinguish our session
 # data from others'
 session :session_key => '_geokit_session_id'

 # Auto-geocode the user's ip address and store
 # it in the session.
 geocode_ip_address

 def loc
 # @location is a GeoLoc instance.
 @location = session[:geo_location]
 end
end

and its Rails plugin

Graticule

• Automatically geocodes your models
when they are saved

• Comes as a gem plus a plugin for your
Rails app

Inital config

$ ruby script/generate geocodable_migration

add_geocodable_tables

$ rake db:migrate

Multi geocoder & key in
config/envirnoment.rb

Geocode.geocoder = Graticule.service(:multi).new (

 Graticule.service(:yahoo).new (

! 'pPDCgjnV34FJ3TxysU9K.FpFYQ3A_QYJ4VrAJQuyFcFv91Hf0r3

PU5tr3SYBhMvOoM__'

),

 Graticule.service(:google).new (

! 'ABQIAAAAwWqh7sPpuhNCdGZ0pieShBTJQa0g3IQ9GZqIMmInSLz

wtGDKaBQOJH6Tw4jIlz7bMDU6qtLF_9TSHQ'

)

)

Model with required attributes
class CreateLocations < ActiveRecord::Migration

 def self.up
 create_table :locations do |t|

 t.column "street", ! ! :string
 t.column "locality", ! :string

 t.column "region", ! ! :string
 t.column "postal_code", :string

 t.column "country", !! :string
 end

 end

 def self.down
 drop_table :locations

 end
end

app/model/location.rb

class Location < ActiveRecord::Base

 acts_as_geocodable

end

Again we test it out
$ ruby script/console

Loading development environment.

>> Location.find :all

=> []

>> conf = Location.create :street => "Friedrichstrasse 151", :locality => "Berlin"

=> #<Location:0x357ec40 @geocoding=#<Geocoding:0x356e9a8

@errors=#<ActiveRecord::Errors:0x356dd78 @errors={}, @base=#<Geocoding:

0x356e9a8 ...>>, @geocode=#<Geocode:0x357490c @attributes={"postal_code"=>nil,

"latitude"=>#<BigDecimal:35749d4,'0.5251818E2',12(20)>, "region"=>"Germany",

"country"=>"DE", "id"=>"2", "locality"=>"10117 Mitte", "street"=>"Friedrichstrasse

151", "query"=>"Friedrichstrasse 151\nBerlin, ", "longitude"=>#<BigDecimal:

35749ac,'0.13388423E2',12(20)>}>, @attributes={"geocodable_type"=>"Location", "id"=>4,

"geocodable_id"=>4, "geocode_id"=>2}, @new_record=false>,

@errors=#<ActiveRecord::Errors:0x357ccd8 @errors={}, @base=#<Location:0x357ec40 ...>>,

@attributes={"postal_code"=>nil, "region"=>"Germany", "country"=>"DE", "id"=>4,

"locality"=>"Berlin", "street"=>"Friedrichstrasse 151"}, @new_record=false>

>> conf.geocode.latitude

=> #<BigDecimal:35749d4,'0.5251818E2',12(20)>

>> conf.geocode.longitude

=> #<BigDecimal:35749ac,'0.13388423E2',12(20)>

distance_to
>> prevConf = Location.create :street => "777 NE Martin Luther King, Jr.

Blvd.", :locality => "Portland", :region => "Oregon", :postal_code => 97232

=> #<Location:0x355c924 @geocoding=#<Geocoding:0x3555e6c

@errors=#<ActiveRecord::Errors:0x355578c @errors={}, @base=#<Geocoding:

0x3555e6c ...>>, @geocode=#<Geocode:0x3557cd0 @attributes=

{"postal_code"=>"97232-2742", "latitude"=>#<BigDecimal:

3557d98,'0.45528468E2',12(20)>, "region"=>"OR", "country"=>"US", "id"=>"1",

"locality"=>"Portland", "street"=>"777 Ne M L King Blvd", "query"=>"777 NE

Martin Luther King, Jr. Blvd.\nPortland, Oregon 97232",

"longitude"=>#<BigDecimal:3557d70,'-0.122661895E3',12(20)>}>, @attributes=

{"geocodable_type"=>"Location", "id"=>5, "geocodable_id"=>5,

"geocode_id"=>1}, @new_record=false>, @errors=#<ActiveRecord::Errors:

0x355b894 @errors={}, @base=#<Location:0x355c924 ...>>, @attributes=

{"postal_code"=>97232, "region"=>"Oregon", "country"=>"US", "id"=>5,

"locality"=>"Portland", "street"=>"777 NE Martin Luther King, Jr. Blvd."},

@new_record=false>

>> conf.distance_to prevConf

=> 5185.541406646

search by location

>> Location.find(:all, :within => 50, :origin =>

"Torstrasse 104, Berlin, Germany")

=> [#<Location:0x35239f8 @readonly=true, @attributes=

{"postal_code"=>nil, "region"=>"Germany",

"country"=>"DE", "id"=>"4", "locality"=>"Berlin",

"street"=>"Friedrichstrasse 151",

"distance"=>"1.03758608910963"}>]

IP geocoding

def index

 @nearest = Location.find(!:nearest,

! ! ! ! ! ! ! ! ! ! ! !:origin => remote_location)

! ! ! ! ! if remote_location

 @locations = Location.find(:all)

end

02
Location data in

ActiveRecord
(PostGIS/PostgreSQL)

Overview

GeoRails Stack

YM4R

Spatial Adapter

GeoRuby

PostGIS Database

Installing PostGIS

Prerequisites

• Install PostgreSQL without PostGIS
extension

• Install PostGIS separately

• Ensures you get the latest PostGIS
release

template_postgis

Prerequisites

• create a clone of template1

• add pl/pgsql language

• install the postgis functions/libraries

• grant role-based permissions

• vacuum freeze

template_postgis code
\c template1

CREATE DATABASE template_postgis with template = template1;

-- set the 'datistemplate' record in the 'pg_database' table for

-- 'template_postgis' to TRUE indicating its a template

UPDATE pg_database SET datistemplate = TRUE where datname = 'template_postgis';

\c template_postgis

CREATE LANGUAGE plpgsql;

\i /usr/share/postgresql/contrib/lwpostgis.sql

\i /usr/share/postgresql/contrib/spatial_ref_sys.sql

-- set role based permissions in production env.

GRANT ALL ON geometry_columns TO PUBLIC;

GRANT ALL ON spatial_ref_sys TO PUBLIC;

-- vacuum freeze: it will guarantee that all rows in the database are

-- "frozen" and will not be subject to transaction ID wraparound

-- problems.

VACUUM FREEZE;

GeoRuby

Prequisites

• Data structs to hold Spatial Data from
PostGIS/MySQL-Spatial

• Based on OGC Simple Features Spec

• No geometry operations or reprojections

• Allows geo-data I/O into a number of
useful formats

GeoRuby

$ sudo gem install georuby -y

What’s so special about spatial?

Geospatial Domain

• Point, Line, Polygon, Multi*

OGC simple features

Vector data
http://www.ngdc.noaa.gov/mgg/shorelines

http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html
http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html

What’s so special about spatial?

Geospatial Domain

• Point, Line, Polygon, Multi*

• Raster Data

Raster data
http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html

http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html
http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html

What’s so special about spatial?

Geospatial Domain

• Point, Line, Polygon, Multi*

• Raster Data

• Spatial Reference System (SRS), SRIDs

• Spatial Indices

• Map Projections

Free desktop GIS (uDig)
http://udig.refractions.net

http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html
http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html

Free desktop GIS (uDig)
http://udig.refractions.net

http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html
http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html

Spatial Adapter
(database connection)

$ rails railsconfeu07_gis
$ cd railsconfeu07_gis/

$ ruby script/plugin install
svn://rubyforge.org/var/svn/georuby/SpatialAdapter/
trunk/spatial_adapter

$ createdb -O sab -T template_postgis
railsconfeu07_gis_development

$ createdb -O sab -T template_postgis
railsconfeu07_gis_test

RESTful location

$ ruby script/generate scaffold_resource Location

! ! geom!! ! ! :point

! ! name!! ! ! :string

! ! category! ! :string

! ! description! :text

Migrations with spatial data

def self.up

 create_table :locations do |t|

 t.column :geom, :point, :null => false,

 :srid => 4326, :with_z => true

 t.column :name, :string, :null => false

 t.column :category, :string, :null => false

 t.column :description, :text

 end

end

SRID explained

$ psql -d template_postgis

template_postgis=# \x -- to turn on expanded display

template_postgis=# SELECT * from spatial_ref_sys where srid = 4326;

-[RECORD 1]--

srid | 4326

auth_name | EPSG

auth_srid | 4326

srtext | GEOGCS["WGS 84",DATUM["WGS_1984",

! SPHEROID["WGS 84",6378137,298.25722 3563, AUTHORITY["EPSG","7030"]],

! TOWGS84[0,0,0,0,0,0,0], AUTHORITY["EPSG","6326"]],

! PRIMEM["Greenwich",0, AUTHORITY["EPSG","8901"]],

! UNIT["degree",0.01745329251994328, AUTHORITY["EPSG","9122"]],

! AUTHORITY["EPSG","4326"]]

! proj4text | +proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs

Spatial indices

$ ruby script/generate migration

add_index_to_locations

def self.up

 add_index :locations, :geom, :spatial => true

end

def self.down

 remove_index :locations, :geom

end

Spatial data migrations (points)

$ ruby script/generate migration add_locations_data

def self.up

 Location.create

 :geom => Point.from_x_y_z(67.1069627266882,

! ! ! ! ! ! 24.9153581895111,

! ! ! ! ! ! 3,

! ! ! ! ! ! 4326),

 :name => "ALLADIN WATER PARK",

 :category => "AMUSEMENT PARK",

 :description => "A new amusement park built on

! ! ! ! ! ! the main Rashid Minhas Road is

! ! ! ! ! ! the latest attraction of Karachi..."

end

http://localhost:3000/locations/1

http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html
http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html

Spatial data migrations (polygon)

loc = Location.new(:name => "Jinnah's Tomb",

 :geom => Polygon.from_coordinates(

 [[

 [67.04331636428833, 24.87680084533657],

 [67.03837037086487, 24.876956578914644],

 [67.03658938407898, 24.87328705430993],

 [67.04217910766602, 24.87241102436732],

 [67.04331636428833, 24.87680084533657]

]], 3, 4326)

)

Tests (fixtures)

one:

 id: 1

 geom: <%= Point.from_x_y_z(67.0665783392958,

! ! ! ! ! ! ! ! ! ! ! ! ! 24.9357149717549,

! ! ! ! ! ! ! ! ! ! ! ! ! 3,

! ! ! ! ! ! ! ! ! ! ! ! ! 4326

! ! ! ! ! ! ! ! ! ! ! ! !).to_fixture_format %>

 name: !! ! ! "GULBERG POLICE STATION"

 category: !! "POLICE"

 description: "Yet another well regarded police

! ! ! ! ! ! ! station in Karach"

Tests (unit/functional)
def test_should_create_location

 old_count = Location.count

 post :create, :location => {

 :geom => Point.from_x_y_z(67.0665783392958,

! ! ! ! ! ! ! ! ! ! ! ! 24.9357149717549, 3, 4326),

 :name ! ! ! => "GULBERG POLICE STATION",

 :category ! ! => "POLICE",

 :description! => "Yet another well regarded police

! ! ! ! ! ! ! ! ! station in Karachi"

 }

 assert_equal old_count+1, Location.count

 assert_redirected_to location_path(assigns(:location))

end

Tests (unit/functional)

$ rake test:units

$ rake test:functionals

http://www.flickr.com/photo_zoom.gne?id=317182464&size=l

http://www.flickr.com/photo_zoom.gne?id=317182464&size=l
http://www.flickr.com/photo_zoom.gne?id=317182464&size=l

Tests (JavaScript)

$ ruby script/plugin install

http://dev.rubyonrails.org/svn/rails/plugins/

javascript_test

$ ruby script/generate javascript_test application

http://dev.rubyonrails.org/svn/rails/plugins/javascript_test
http://dev.rubyonrails.org/svn/rails/plugins/javascript_test
http://dev.rubyonrails.org/svn/rails/plugins/javascript_test
http://dev.rubyonrails.org/svn/rails/plugins/javascript_test

Tests (JavaScript)
new Test.Unit.Runner({

 setup: function() {
 $('sandbox').innerHTML =
! ! ! ! "<div id='123_a' style='display:none;'></div>";
 },

 teardown: function() {
 },

 testTruth: function() { with(this) {
 assert(true);
 }}

}, "testlog");

Tests (JavaScript)

$ rake test:javascripts

GeoRails Stack
What do we have so far?

GeoRails Stack: YM4R

$ ruby script/plugin install

svn://rubyforge.org/var/svn/ym4r/Plugins/GM/

trunk/ym4r_gm

$RAILS_ROOT/config/gmaps_api_key.yml

The complete stack

GeoRails Stack

YM4R

Spatial Adapter

GeoRuby

PostGIS Database

CRUD location: show (helper)

def show_map rec

 @map = GMap.new("map#{rec.id}_div")

 @map.control_init!:large_map => true,

! ! ! ! ! ! ! ! :map_type => true

 @map.center_zoom_init([rec.geom.y,rec.geom.x], 16)

 @map.set_map_type_init(GMapType::G_SATELLITE_MAP)

 @map.overlay_init(GMarker.new([rec.geom.y,rec.geom.x],

 !! :title => rec.name,

 !! :info_window => rec.description))

end

CRUD location: index (helper)

def show_maps recs

 @maps = Hash.new

 recs.each do |rec|

 map = GMap.new("map#{rec.id}_div", "map#{rec.id}")

 map.control_init(:small_map => true, :map_type => true)

 map.center_zoom_init([rec.geom.y, rec.geom.x], 16)

 map.set_map_type_init(GMapType::G_SATELLITE_MAP)

 map.overlay_init(GMarker.new([rec.geom.y, rec.geom.x],

 :title => rec.name,

 :info_window => rec.catagory))

 @maps[rec.id] = map

 end

end

http://localhost:3000/locations/1

http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html
http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html

CRUD location:
index (view template)

def show_maps recs

 @maps = Hash.new

 recs.each do |rec|

 map = GMap.new("map#{rec.id}_div", "map#{rec.id}")

 map.control_init(:small_map => true, :map_type => true)

 map.center_zoom_init([rec.geom.y, rec.geom.x], 16)

 map.set_map_type_init(GMapType::G_SATELLITE_MAP)

 map.overlay_init(GMarker.new([rec.geom.y, rec.geom.x],

 :title => rec.name,

 :info_window => rec.catagory))

 @maps[rec.id] = map

 end

end

CRUD location:
index (view template)

<%= GMap.header %>

<% show_maps @locations %>

<% @maps.each_value do |map| %>

 <%= map.to_html %>

<% end %>

...

<% for location in @locations %>

 <%= @maps[location.id].div !:width => 240,

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! :height => 160 %>

<% end %>

http://localhost:3000/locations

http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html
http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html

CRUD location:
new (JavaScript application.js)

function create_draggable_editable_marker()

{

 // intialize the values in form fields to 0

 document.getElementById("lng").value = 0;

 document.getElementById("lat").value = 0;

 var currMarker;

 // if the user click on an existing marker remove it

 GEvent.addListener(map, "click", function(marker, point) {

 if (marker) {

 if (confirm("Do you want to delete marker?")) {

 map.removeOverlay(marker);

 }

 }

CRUD location:
new (JavaScript application.js)

 // if the user clicks somewhere other than existing marker

 else {

 // remove the previous marker if it exists

 if (currMarker) { map.removeOverlay(currMarker); }

 currMarker = new GMarker(point, {draggable: true});

 map.addOverlay(currMarker);

 // update the form fields

 document.getElementById("lng").value = point.x;

 document.getElementById("lat").value = point.y;

 }

 // Similarly drag event is used to update the form fields

 GEvent.addListener(currMarker, "drag", function() {

 document.getElementById("lng").value = currMarker.getPoint().lng();

 document.getElementById("lat").value = currMarker.getPoint().lat();

 });

 });

}

CRUD location:
new (layouts/locations.rb)

<%= javascript_include_tag :defaults %>

CRUD location: new (helper)

def new_map

 @map = GMap.new("map_div")

 @map.control_init(:large_map => true, :map_type => true)

 @map.center_zoom_init([0,0],2)

 @map.record_init('create_draggable_editable_marker();')

end

CRUD location:
new (view template)

<%= GMap.header %>

<% new_map %>

<%= @map.to_html %>

 ...

<%= @map.div :width => 600, :height => 400 %>

Lat: <%= text_field_tag :lat -%>

Lng: <%= text_field_tag :lng -%>

CRUD location: new (controller)

def create

 @location = Location.new(params[:location])

 geom = Point.from_x_y_z(params[:lng],

 !! ! ! ! ! ! ! ! ! ! params[:lat], 3, 4326)

 @location.geom = geom

 ...

end

http://localhost:3000/locations/new

http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html
http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html

http://localhost:3000/locations/new

http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html
http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html

CRUD location: edit (JavaScript)
function create_draggable_marker_for_edit(lng, lat) {

 // initalize form fields

 document.getElementById('lng').value = lng;

 document.getElementById('lat').value = lat;

 // initalize marker

 var currMarker = new GMarker(new GLatLng(lat, lng),

! ! ! ! ! ! ! ! ! ! {draggable: true});

 map.addOverlay(currMarker);

 // Handle drag events to update the form text fields

 GEvent.addListener(currMarker, 'drag', function() {

 document.getElementById('lng').value = currMarker.getPoint().lng();

 document.getElementById('lat').value = currMarker.getPoint().lat();

 });

 }

CRUD location: edit (helper)

def edit_map rec

 @map = GMap.new("map_div")

 @map.control_init(:large_map => true,:map_type => true)

 @map.set_map_type_init(GMapType::G_SATELLITE_MAP)

 @map.center_zoom_init([rec.geom.y, rec.geom.x], 12)

 @map.record_init(

 "create_draggable_marker_for_edit(#{rec.geom.x},

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! #{rec.geom.y});"

)

end

CRUD location:
edit (view template)

<%= GMap.header %>

<% edit_map @location %>

<%= @map.to_html %>

 ...

<%= @map.div :width => 600, :height => 400 %>

Lat: <%= text_field_tag :lat -%>

Lng: <%= text_field_tag :lng -%>

CRUD location: edit (controller)

def update

 @location = Location.find(params[:id])

 geom = Point.from_x_y_z(params[:lng],

 params[:lat],

 3, 4326)

 @location.geom = geom

 ...

end

http://localhost:3000/locations/7;edit

http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html
http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html

http://localhost:3000/locations/7;edit

http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html
http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html

03
Supporting New
Content Types

Content-type

RESTful Design

• KML (Google Earth)

• GeoRSS

KML – Google Earth
(registering new MIME-type)

Mime::Type.register

"application/vnd.google-earth.kml+xml", :kml

KML – Google Earth (controller)

def index

 ...

 respond_to do |format|

 ...

 format.kml { render :action =>'index_kml',

 :layout => false }

 end

end

KML – Google Earth (controller)

def show

 ...

 respond_to do |format|

 ...

 format.kml { render :action => 'show_kml',

 :layout => false }

 end

end

KML – Google Earth
(show RXML template)

xml.kml("xmlns" => KML_NS) do

 xml.tag! "Document" do

 xml.tag! "Style", :id => "myStyle" do

 xml.tag! "PointStyle" do

 xml.color "ffff0000" #format is aabbggrr

 xml.outline 0

 end

 end

 xml.tag! "Placemark" do

 xml.description @location.description

 xml.name @location.name

 xml.styleUrl "#myStyle"

 xml << @location.geom.as_kml

 end

 end

end

KML – Google Earth
(index RXML template)

xml.kml("xmlns" => KML_NS) do

 xml.tag! "Document" do

 xml.tag! "Style", :id => "myStyle" do

 xml.tag! "PointStyle" do

 xml.color "ffff0000" #format is aabbggrr

 xml.outline 0

 end

 end

 @locations.each do |location|

 xml.tag! "Placemark" do

 xml.description location.description

 xml.name location.name

 xml.styleUrl "#myStyle"

 xml << location.geom.as_kml

 end

 end

 end

end

KML (formatted URL
helpers – index.rhtml)

<h1>

 Listing locations

 <%= link_to image_tag(

 "/images/google_earth_link.gif"),

 formatted_locations_path(:kml) %>

</h1>

KML (formatted URL
helpers – show.rhtml)

<%= link_to image_tag(

 "/images/google_earth_link.gif"),

 formatted_location_path(@location, :kml) %>

GeoRSS
(registering new MIME-type)

Mime::Type.register "application/georss+xml",

! ! ! ! ! ! ! ! ! ! :georss

GeoRSS (getting recent locations)

$ ruby script/generate migration add_date_fields

add_column :locations, :created_at, :datetime

add_column :locations, :updated_at, :datetime

GeoRSS (getting recent locations)

$ rake db:migration VERSION=00

$ rake db:migration

GeoRSS (model)

def self.recent

 self.find :all,

! ! ! ! ! ! !:limit => 5,

! ! ! ! ! ! ! :order => "updated_at DESC"

end

GeoRSS
(controller index action)

...

format.georss {

! ! ! ! ! ! ! ! @recent_locations = Location.recent

 render :action => 'index_georss',

 :layout => false

! ! ! ! ! ! ! }

...

GeoRSS
(controller show action)

...

format.georss {

 !! render :action => 'show_georss',

! ! ! ! ! ! ! ! :layout => false

! ! ! ! ! ! ! }

...

GeoRSS (show RXML template)

xml.rss(:version => "2.0", "xmlns:georss" => GEORSS_NS) do

 xml.channel do

 xml.title "Demo feed for RailsConf Europe 2007"

 xml.link(locations_url)

 xml.description "Coming live from the conf floor!"

 xml.item do

 xml.title @location.name

 xml.link(location_url(@location))

 xml.description @location.description

 xml << @location.geom.as_georss

 end

 end

end

GeoRSS (index RXML template)

xml.rss(:version => "2.0", "xmlns:georss" => GEORSS_NS) do

 xml.channel do

 xml.title "Demo feed for RailsConf Europe 2007"

 xml.link(locations_url)

 xml.description "Coming live from the conf floor!"

 xml.pubDate(@location.created_at.strftime("%a, %d %b %Y %H:%M:%S %z"))

 @recent_locations.each do |location|

 xml.item do

 xml.title location.name

 xml.link(location_url(location))

 xml.description location.description

 xml << location.geom.as_georss

 end

 end

 end

end

04
Free Libraries

Credentials

GDAL Ruby Bindings

• GDAL is Raster Data IO library

• X/MIT style license

• Google Earth uses it

Why do we need it?

GDAL

• Too many geospatial data formats

• Abstraction layer

• Google Earth uses it!

The data model

GDAL

• Dataset

• Raster Band

• Coordinate/Spatial Reference System
(CRS/SRS)

• Affine GeoTransform

• Ground Control Points (GCP)

A look at the GDAL dataset

require 'gdal/gdal'

require 'gdal/gdalconst'

include Gdal

src_file = 'data/bhtmref.img'

dataset = Gdal::Gdal.open(src_file)

GDAL raster band

• Holds the data

• One or more (e.g. RGB, Multi/
Hyperspectral)

GDAL raster band

dataset.RasterCount

=> 6

band = dataset.get_raster_band(1)

band.XSize

=> 512

band.YSize

=> 512

GDAL data type

Gdal::Gdal.get_data_type_name(band.DataType)

=> "Byte"

Reading raster data

scanline = band.read_raster(0, 0,

! ! ! ! ! ! ! ! ! dataset.RasterXSize, 1)

data = scanline.unpack('n'*dataset.RasterXSize)

Geo-Transform

gt = dataset.get_geo_transform()

=> [274785.0, 30.0, 0.0, 4906905.0, 0.0, -30.0]

gt(0) !! ! X Origin (top left corner)

gt(1) !! ! X pixel size (W-E pixel resolution)

gt(2) !! ! Rotation (0 if north is up)

gt(3) !! ! Y Origin (top left corner)

gt(4) !! ! Rotation (0 if north is up)

gt(5) !! ! "Y pixel size (N-S pixel resolution)

Image-pix to geo-coords

Xgeo = GT(0) + Ximg x GT(1) + Yimg x GT(2)

Ygeo = GT(3) + Yimg x GT(4) + Ximg x GT(5)

gt(0) !! ! X Origin (top left corner)

gt(1) !! ! X pixel size (W-E pixel resolution)

gt(2) !! ! Rotation (0 if north is up)

gt(3) !! ! Y Origin (top left corner)

gt(4) !! ! Rotation (0 if north is up)

gt(5) !! ! "Y pixel size (N-S pixel resolution)

Free library:
OSR (spatial reference)

require 'gdal/osr'

srs = Gdal::Osr::SpatialReference.new()

srs.import_from_wkt(dataset.get_projection)

=> 0

OSR in action
srs.export_to_pretty_wkt

'PROJCS["UTM Zone 13, Northern Hemisphere",

 GEOGCS["WGS 84",

 DATUM["WGS_1984",

 SPHEROID["WGS 84",6378137,298.257223563,

 AUTHORITY["EPSG","7030"]],

 TOWGS84[0,0,0,0,0,0,0],

 AUTHORITY["EPSG","6326"]],

 PRIMEM["Greenwich",0,

 AUTHORITY["EPSG","8901"]],

 UNIT["degree",0.0174532925199433,

 AUTHORITY["EPSG","9108"]],

 AXIS["Lat",NORTH],

 AXIS["Long",EAST],

 AUTHORITY["EPSG","4326"]],

 PROJECTION["Transverse_Mercator"],

 PARAMETER["latitude_of_origin",0],

 PARAMETER["central_meridian",-105],

 PARAMETER["scale_factor",0.9996],

 PARAMETER["false_easting",500000],

 PARAMETER["false_northing",0],

UNIT["Meter",1]]'

Creating Files using GDAL

driver = Gdal::Gdal.get_driver_by_name(format)

metadata = driver.get_metadata_dict

metadata["DCAP_CREATE"]

=> "YES"

metadata["DCAP_CREATECOPY"]

=> "YES"

Creating a copy of dataset

src_file = 'data/36q_dtm.tif'

dst_file = 'copy_of_36q_dtm.tif'

src_ds = Gdal::Gdal.open(src_file)

dst_ds = driver.create_copy(dst_file, src_ds, 0,
! ! ! ! ! ! ['TILED=YES','COMPRESS=PACKBITS'])

dst_ds = 0

QGIS

