RED HAT :: CHICAGO :: 2009

SUMMIT

FOLLOW US§.
TWITTER.COM/REDHATSUMMIT

TWEET ABOUT US.
ADD #SUMMIT AND/OR #JBOSSWORLD TO THE END
OF YOUR EVENT-RELATED TWEET

presen ted by tr



RED HAT :: CHICAGO :: 2009

SUMIT

MRG Messaging:

A Programmer's Overview

Jonathan Robie
jonathan.robie@redhat.com

Software Engineer, Red Hat
2009-Sept-03

presen ted by t'



Red Hat MRG Messaging

@ MRG Management - Mozilla Firefox =)
File Edit View History Bookmarks Tools Help

@ v & @ « °. [Mns http://localhost:45672/index.html?frame=main.messaging.broker;main.m=messaging;main.messaging. |V| [V raleigh news observer “]

MINew MRG Bug [EMost Visitedv @ Fedora Project [e/XQuery Bugs MIMRG Messaging Bugs ™ MessagingFeatures... [ Advanced Bash-Scri... ¢ Kata Biblon Wiki Tr...

G rednhat. Overview Messaging Grid Inventory L OUESL L JOUE BEEOUDL L0 DU
IlI Broker 'localhost.localdomain:5672' AMQP Messaglng BrOker

Last Updated 22 Aug 2009 13:42 Add exchange H Ig h Speed

Messaging

. Add broker link

Version 0.5 .
padquene Reliable

Queues Exchanges Connections Broker Links Access Contrc

s AMQP Client Libraries
" Messages - bytes C++, Python, Java JMS
Act on selection:  Purge Remove

3 Items Management Console

O Name ¥ Consumers Bindings Msgs. Enqueued Msgs. Dequeued Msg. Depth
O perftestO 1 1 O/sec O/sec 8750
O topic-localhost.localdomain.20007.1 1 3 O/sec O/sec 2
O topic-localhost.localdomain.20008.1 1 5 O/sec O/sec 0
Done 1) c-;

RED HAT :: CHICAGO :: 2009

SUMIT

3 Red Hat Summit 2009 | Jonathan Robie



Why can't we all just talk to each other?

“Programs communicate by sending messages”

But how can programs in different languages and on
different platforms do this?

Java JMS API ... is just a Java API

Only for Java
No interoperable protocol — even among JMS implementations

Proprietary messaging software ... Is proprietary

Success requires good, interoperable implementations

Open Standards (AMQP)
Open Source (Apache Qpid, QpidComponents.org)
Vendor buy-in (Red Hat, Microsoft, JBoss...)

HAT :: CHICAGO :: 2009

"SUMMIT

Red Hat Summit 2009 | Jonathan Robie



Agenda

Infrastructure for Messaging
AMQP: Advanced Message Queuing Protocol

Apache Qpid APIs
MRG Messaging

Programming with MRG Messaging

C++, Python, Java JMS

Point-to-Point, Publish-Subscribe, Broadcast, Request-
Response, XML Content Routing

Advanced Features

Guaranteed Delivery, Transactions, High Availability
Messaging Clusters, Federation

Red Hat Summit 2009 | Jonathan Robie



AMQP Model: Message, Exchange, Binding, Queue

AMQP Clients AMQP Broker

D
— > Exchange
Message
Binding

Jeﬁ _"]|_‘]_t] q“euell

Message

Message
Producer

Message
Consumer

RED HAT :: CHICAGO :: 2009

SUMIT

6 Red Hat Summit 2009 | Jonathan Robie



AMQP Model

AMQP Clients AMQP Broker

-
E— > Exchange

/
Message
Message
Producer Binding
+ ]

4l<—_h L_DDD Queue

/

Message

Message

Consumer

7 Red Hat Summit 2009 | Jonathan Robie

Exchanges

Message Producers write
Messages to Exchanges

Queues

Message Consumers read
Messages from Queues

Queues store Messages until
they are read

Bindings

A Binding connects a Queue to
an Exchange, specifies
Message routing

RED HAT :: CHICAGO :: 2009

SUMIT




AMQP Message (Model View)

Message properties
- Message-ld

- Reply-to

- Content-type

- Content-encoding

- etc. Delivery properties
- Routing Key
- Time to live
- Persistence (delivery mode)
- priority
- expiration
- efc.

8 Red Hat Summit 2009 | Jonathan Robie

RED HAT :: CHICAGO :: 2009

SUMIT




AMQP Message (Session View)

Frame

- Segment EE
‘ Assembly % e
| Segment ~ Frame

9 Red Hat Summit 2009 | Jonathan Robie



AMQP Layers

10

Application
I API Calls

AMQP

Model

I Commands
Session

I Frames
Transport

I bytes/packets
Network

Red Hat Summit 2009 | Jonathan Robie




AMQP Layers: Model

11

“Abstract API”

Language independent

C++, Python, Java JMS APIs map to the AMQP Model

Java JMS mapping preserves JMS semantics
Components

Message, Exchange, Binding, Queue, etc...
Commands

Create Queue, Bind Queue to Exchange, Send Message,
etc ...

Datatypes

Language and platform-independent types

Red Hat Summit 2009 | Jonathan Robie




AMQP Layers: Session

Application Session defines interaction
I API Calls between client and server
Model Supports replay,

| Commands synchronization, error

AMQP L_>ession handling
Frames
1 Translates AMQP
Transport
1 commands to frames for
1 pbytes/packets network

Network

12 Red Hat Summit 2009 | Jonathan Robie



AMQP Layers: Transport

Transport transfers

Application|

T API Calls bytes/packets across
v the network

Model _
I Commands MRG Messaging network

AMQP Session protocols
| Frames TCP/IP
T Infiniband

1 pytes/packets
Network

13 Red Hat Summit 2009 | Jonathan Robie



AMQP Exchange Types

Direct Exchange Fanout Exchange
Routes to queue If Routes to every bound
message's routing key queue

matches binding key Broadcast

Point-to-Point Topic Exchange

Request/Response |
Matches message's
Default Exchange routing key against
Routes to queue if b'_”d'ng key, using
message's routing key wildcards
matches gueue name Publish/Subscribe

Same use cases as Direct Header Exchange

Exchange Custom Exchanges

14 Red Hat Summit 2009 | Jonathan Robie




Apache Qpid APIs

AMQP Clients

AMQP Broker

1

Message

—l<—_5

> Exchange

; + ]

N

Message Message

Consumer

15

Red Hat Summit 2009 | Jonathan Robie

Programming APIs for AMQP
Clients

C++, Python APIs closely
based on AMQP Model

Java already has a messaging
APl — Java JMS

Java JMS client uses URLs to
address AMQP components

Interoperable with C++,
Python




C++ and Python APIs
Apache Qpid C++ API

Summary
http://www.ibiblio.org/jwrobie/blog/?p=18

Reference (Doxygen)
http://gpid.apache.org/docs/api/cpp/html/index.html

Apache Qpid Python API

Summary
http://www.ibiblio.org/jwrobie/blog/?p=29

Reference (Epydoc)
http://qpid.apache.org/docs/api/python/html/index.html

16 Red Hat Summit 2009 | Jonathan Robie


http://www.ibiblio.org/jwrobie/blog/?p=18
http://www.ibiblio.org/jwrobie/blog/?p=29

A Simple C++ Messaging Program

#include <gpid/client/Connection.h>
#include <gpid/client/Session.h>
#include <gpid/client/Message.h>

using namespace qpid::client;
using namespace qpid::framing;

int main() {
const char* host = "127.0.0.1";
int port = 5672;

Connection connection;
try {
connection.open(host, port);
Session session = connection.newSession();

Message message;
message.getDeliveryProperties().setRoutingKey("routing_key");
message.setData("Hi, Mom!");

session.messageTransfer(arg: :content=message,
arg: :destination="amq.direct");
connection.close();
} catch(const std::exception& error) {
std::cout << error.what() << std::endl;
}

17 Red Hat Summit 2009 | Jonathan Robie

RED HAT :: CHICAGO :: 2009

SUMIT



Using Java JMS with MRG Messaging

Configure Queues, Exchanges — several possible ways
Using JNDI properties (see following slide)
Using the MRG Management Console
Using Low Level Java API
Using programs in C++ or Python
Use vanilla Java JMS for messaging once configured

18 Red Hat Summit 2009 | Jonathan Robie




Configuring Java JMS via JNDI Properties

connectionfactory.<jndiname>
The Connection URL used by the connection factory to
create connections.

gueue.<jndiname>
A JMS gqueue, implemented as an amg.direct exchange.

topic.<jndiname>
A JMS topic, which is implemented as an amg.topic
exchange.

destination.<jndiname>
Can be used to define any amg destination, using a
“Binding URL".

19 Red Hat Summit 2009 | Jonathan Robie



Example JNDI properties file for Java JMS

# JNDI properties file

java.naming.factory.initial =
org.apache.qpid.jndi.PropertiesFileInitialContextFactory

# register some connection factories
# connectionfactory.[jndiname] = [ConnectionURL]
# See MRG Messaging Tutorial for ConnectionURL format

connectionfactory.qpidConnectionfactory =
amqp://quest:guest@clientid/test?brokerlist="tcp://localhost:5672'

# Register an AMQP destination in JNDI
# destination.[jndiName] = [BindingURL]
# See MRG Messaging Tutorial for BindingURL format

destination.directQueue =
direct://amq.direct//message_queue?routingkey='routing_key'

RED HAT :: CHICAGO :: 2009

SUMIT

20 Red Hat Summit 2009 | Jonathan Robie



Using JNDI to create Java JMS Session,
Connection, Destination

// Load JNDI properties

Properties properties = new Properties();
properties.load(this.getClass().getResourceAsStream("direct.properties”

));
// Create the JNDI initial context using JNDI properties

Context ctx = new InitialContext(properties);
// Look up Java JMS destination and connection factory
Destination destination = (Destination)ctx.lookup("directQueue");

ConnectionFactory connFact =
(ConnectionFactory)ctx.lookup("gpidConnectionfactory");

// Create Java JMS connection and the session using this
// connection factory

Connection connection = connFact.createConnection();

Session session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE) ;

RED HAT :: CHICAGO :: 2009

SUMIT

21 Red Hat Summit 2009 | Jonathan Robie



Once configured, use the Java JMS API

// Using standard Java JMS to send a message

MessageProducer messageProducer = session.createProducer(destination);
TextMessage message;

message = session.createTextMessage("This is a text, this is only a
text ...");

messageProducer.send(message, getDeliveryMode(),
Message.DEFAULT_PRIORITY,
Message.DEFAULT_TIME_TO_LIVE);

RED HAT :: CHICAGO :: 2009

SUMIT

22 Red Hat Summit 2009 | Jonathan Robie



Direct Exchange:

Point-to-Point

>

AMQP Broker

Direct

Exchange

Binding

binding key = "orders"

AMQP Clients
routing key = "orders"”
D
Message
Message
Producer
D
<
/
Message Message
Consumer

23 Red Hat Summit 2009 | Jonathan Robie

RED HAT :: CHICAGO :: 2009

SUMIT




Point-to-Point: Declaring a Queue and Binding

// arg::queue specifies the queue name
session.queueDeclare(arg: :queue="message_queue");
// bind "message_queue" to "amq.direct" exchange

session.exchangeBind(arg: :exchange="amq.direct",
arg: :queue="message_queue",
arg: :bindingKey="routing_key");

RED HAT :: CHICAGO :: 2009

SUMIT

24 Red Hat Summit 2009 | Jonathan Robie



Point-to-Point: Sending Messages

Message message;
// Set routing key
message.getDeliveryProperties().setRoutingKey("routing_key");
// Send some messages
for (int 1i=0; i<10; i++) {

stringstream message_data;

message_data << "Message " << i;

message.setData(message_data.str());
session.messageTransfer(arg: :content=message,
arg::destination="amq.direct");
}

message.setData("That's all, folks!");
session.messageTransfer(arg: :content=message,
arg: :destination="amq.direct");

RED HAT :: CHICAGO :: 2009

SUMIT

25 Red Hat Summit 2009 | Jonathan Robie



Point-to-Point: Receiving Messages (Listener)

// Create a Listener, Derived from MessagelListener

class Listener : public MessagelListener {
private:
SubscriptionManager& subscriptions;

Public:
Listener (SubscriptionManager& subscriptions);
virtual void received(Message& message);

};
// Implement constructor
Listener: :Listener (SubscriptionManageré& subs) : subscriptions(subs) {}
// Implement Listener::received()

void Listener::received(Message& message) {
std::cout << "Message: " << message.getData() << std::endl;

if (message.getData() == "That's all, folks!") {
std: :cout << "Shutting down listener for "
<< message.getDestination()

<< std::endl;

subscriptions.cancel(message.getDestination());

}
}

26 Red Hat Summit 2009 | Jonathan Robie

RED HAT :: CHICAGO :: 2009

SUMIT




Point-to-Point: Receiving Messages (Listener)

// Subscribe Listener to "message_queue"

SubscriptionManager subscriptions(session);
Listener listener(subscriptions);
subscriptions.subscribe(listener, "message_queue");

// Receive messages until Listener::received() cancels subscription

subscriptions.run();

RED HAT :: CHICAGO :: 2009

SUMIT

27 Red Hat Summit 2009 | Jonathan Robie



Default Exchange

>

AMQP Broker

Default

Exchange

Binding

AMQP Clients
routing key = "orders"
AN
Message
Message
Producer
D
<
/
Message Message
Consumer

28 Red Hat Summit 2009 | Jonathan Robie

queue name

RED HAT :: CHICAGO :: 2009

SUMIT




Default Exchange vs. Direct Exchange

Default Exchange automatically gets a binding for each
gueue, routing key = queue name

Same use cases, very similar to program

Less code than Direct Exchange — but less expilicit
// Default Exchange vs Bireet—Exehange

session.queueDeclare(arg: :queue="message_queue");
1 1 " . ' 1

message.getDeliveryProperties().setRoutingKey("routing_key");
session.messageTransfer(arg: :content=message,

- 11 . II);

RED HAT :: CHICAGO :: 2009

SUMIT

29 Red Hat Summit 2009 | Jonathan Robie



Fanout Exchange

AMQP Clients

/

Message
Producer

4

Message
Consumer

30

AMQP Server

N Fanout

Exchange

Message

L ALV

<« = Y[ [ ] queue

Message

Bindib "All Queues"

Red Hat Summit 2009 | Jonathan Robie

RED HAT :: CHICAGO :: 2009

SUMIT




Fanout Exchange: Publisher

// Same as direct, except for the destination

session.messageTransfer(arg: :content=message,
arg: :destination="amq.fanout");

31 Red Hat Summit 2009 | Jonathan Robie

RED HAT :: CHICAGO :: 2009

SUMIT



Fanout Exchange: Subscriber

// Exclusive autodelete queue using Session ID as nhame
std: :string myQueue=session.getId().getName();

session.queueDeclare(arg: :queue=myQueue,
arg: :exclusive=true,
arg: :autoDelete=true);

session.exchangeBind(arg: :exchange="amq. fanout",
arg: :queue=myQueue);

// Create a listener and subscribe it to the queue.

SubscriptionManager subscriptions(session);
Listener listener(subscriptions);
subscriptions.subscribe(listener, myQueue);
subscriptions.run();

32 Red Hat Summit 2009 | Jonathan Robie

RED HAT :: CHICAGO :: 2009

SUMIT



Direct Exchange: Request /| Response Apps

routing key = "request” AMQP Broker
replyTo = sessionlD

! N Direct
> Exchange

/

client.cpp
Binding
routing key = replyTo ™ '
—n replyTo ¢ ‘
<  — D D "request”

/

server.cpp

RED HAT :: CHICAGO :: 2009

SUMIT

33 Red Hat Summit 2009 | Jonathan Robie



Request /| Response Client

// Exclusive autodelete queue using Session ID as name
stringstream response_queue;
response_queue << "client" << session.getId().getName();

session.queueDeclare(arg: :queue=response_gqueue.str()
arg: :exclusive=true,
arg: :autoDelete=true);

session.exchangeBind(arg: :exchange="amq.direct",
arg: :queue=response_queue.str(),
arg: :bindingKey=response_queue.str());

// Create a listener for the response queue and listen for responses

SubscriptionManager subscriptions(session);
Listener listener(subscriptions);
subscriptions.subscribe(listener, response_queue.str());

// Use name of the response queue as the Reply To for requests

Message request;
request.setData("ping!");
request.getDeliveryProperties().setRoutingKey("request");
request.getMessageProperties().setReplyTo(ReplyTo("amq.direct",
response_queue.str()));

subscriptions.run();

RED HAT :: CHICAGO :: 2009

SUMIT

34 Red Hat Summit 2009 | Jonathan Robie



Request /| Response Server

// Create a request queue for clients to use
string request_queue = "request";
session.queueDeclare(arg: :queue=request_queue);

session.exchangeBind(arg: :exchange="amq.direct",
arg: :queue=request_queue,
arg: :bindingKey=request_queue);

// Create a listener and subscribe it to the request queue
SubscriptionManager subscriptions(session);

Listener listener(subscriptions, session);
subscriptions.subscribe(listener, request_queue);
subscriptions.run();

35 Red Hat Summit 2009 | Jonathan Robie

RED HAT :: CHICAGO :: 2009

SUMIT




Request /| Response Server — Listener::received()

void Listener::received(Message& request) {
Message response;

// Routing key for response is in request's replyTo
string routingKey;
if (request.getMessageProperties().hasReplyTo()) {

routingKey =

request.getMessageProperties().getReplyTo().getRoutingKey();
1} else {

std::cout << "Error: " << "No replyTo ..." << std::endl;

return;

// Send response to the client
response.setData("pong!");
response.getDeliveryProperties().setRoutingKey(routingKey);
asyncSession.messageTransfer(arg: :content=response,

arg: :destination="amq.direct");

RED HAT :: CHICAGO :: 2009

SUMIT

36 Red Hat Summit 2009 | Jonathan Robie



Topic Exchanges

AMQP Clients AMQP Broker
routing key = "usa.news"
B\ Topic
> Exchange
/
Message
Message
Producer Binding binding key = "#.news"
|
1 A 4 |
Y
. < - Queue
/
Message Message
Consumer

RED HAT :: CHICAGO :: 2009

SUMIT

37 Red Hat Summit 2009 | Jonathan Robie



Topic Exchange: Wildcard Syntax

Routing Keys are divided into “words”

IS a delimiter
“usa.news” has two words
“usa.news.breaking” has three words

Binding Keys can have wildcards

“*” matches any one word
“#” matches one or more words

Examples

“usa.news” matches “usa.news”, “*.news”, “usa.*”, “usa.#”

“‘usa.news.breaking” matches “usa.#” but not “usa.*”

: CHICAGO :: 2009

"SUMMIT

38 Red Hat Summit 2009 | Jonathan Robie



Topic Exchange: Subscriber

// Exclusive autodelete queue using Session ID as nhame

std: :string myQueue=session.getId().getName();
session.queueDeclare(arg: :queue=myQueue,
arg: :exclusive=true,
arg: :autoDelete=true);

session.exchangeBind(arg: :exchange="amq.topic",
arg: :queue=myQueue,
arg: :bindingKey="usa.*");

// Create a listener and subscribe it to the queue.

SubscriptionManager subscriptions(session);
Listener listener(subscriptions);
subscriptions.subscribe(listener, myQueue);

subscriptions.run();

39 Red Hat Summit 2009 | Jonathan Robie

RED HAT :: CHICAGO :: 2009

SUMIT



Topic Exchange: Publisher

Message message;
message.setData('"Glaciers have returned to Italy and Texas!");
// Send the same message wherever relevant

message.getDeliveryProperties().setRoutingKey("usa.news");
session.messageTransfer(arg: :content=message,
arg: :destination="amq. topic");

message.getDeliveryProperties().setRoutingKey("usa.weather");
session.messageTransfer(arg: :content=message,
arg: :destination="amq.topic");

message.getDeliveryProperties().setRoutingKey("europe.news");
session.messageTransfer(arg: :content=message,
arg: :destination="amq. topic");

message.getDeliveryProperties().setRoutingKey("europe.weather");
session.messageTransfer(arg: :content=message,
arg: :destination="amq.topic");

RED HAT :: CHICAGO :: 2009

SUMIT

40 Red Hat Summit 2009 | Jonathan Robie



XML Exchange — a Custom Exchange

AMQP Clients

AMQP Broker

binding key =
“./msg/header/dest = 'orders'"

<msg>
<header>

<dest>orders</dest>
</header>
<body>

AN XML
> Exchange
/
Message XML
Producer Message Binding
]
D A 4
< — _1 _1 _1 Queue
/
Message XML
Consumer Message

41

Red Hat Summit 2009 | Jonathan Robie

</body>
</msg>

RED HAT :: CHICAGO :: 2009

SUMIT




XML Content Routing with the XML Exchange

# XML Exchange is a custom exchange - must be declared
session.exchangeDeclare(arg: :exchange="xml", arg::type="xml");
session.queueDeclare(arg: :queue="message_queue");

# XML Bindings are written in XQuery
FieldTable binding;

binding.setString("xquery", "./msg/header/dest = 'orders'");

session.exchangeBind(arg: :exchange="xml",
arg: :queue="message_queue",
arg: :bindingKey="content_feed",
arg: :arguments=binding);

RED HAT :: CHICAGO :: 2009

SUMIT

42 Red Hat Summit 2009 | Jonathan Robie



Message Flow

Drinking from the firehose - how many messages or bytes
can your client accept?

SubscriptionManager sends infinite messages / bytes by
default.

SubscriptionManager.setFlowControl() sets limits on
what should be sent to a client - “credit”

How many messages?
How many bytes?
Ask for more credit when you want more

If “window=true”, acknowledging messages allocates
credit automatically

43 Red Hat Summit 2009 | Jonathan Robie



Message Flow

SubscriptionManager subscriptions(session);
Listener listener(subscriptions);
subscriptions.subscribe(listener, myQueue);

// Accept up to 100 messages, 10,000 bytes, enable windowing

subscriptions.setFlowControl("myQueue", 100, 10000, true);

subscriptions.run();

RED HAT :: CHICAGO :: 2009

SUMIT

44 Red Hat Summit 2009 | Jonathan Robie



Guaranteed Delivery

AMQP Clients

AMQP Server

I

Message

Message

Producer

> Exchange

D
(_
/

Message
Consumer

Message

45

Red Hat Summit 2009 | Jonathan Robie

Durable Queues are
maintained on disk

Persistent messages are
written to journal before
delivery

Sent message Is written to
journal before ack is sent
to Message Producer

Message Is deleted from
the queue after Message
Consumer acknowledges

RED HAT :: CHICAGO :: 2009

SUMIT




Guaranteed Delivery

Il Declare the queue to be durable
session.queueDeclare(arg::queue=name, arg::durable=true);
Il Choose PERSISTENT deliver mode for message

message.getDeliveryProperties().setDeliveryMode(PERSISTENT);

46 Red Hat Summit 2009 | Jonathan Robie

RED HAT :: CHICAGO :: 2009

SUMIT



Transactions
Transaction semantics cover enqueues and dequeues

session.txSelect();
session.txCommit();
session.txRollback();

Publishing messages in a transaction

Commit: messages are placed on queues.
Rollback: messages are discarded.

Consuming messages in a transaction

Commit: acked messages are removed from the queue
Rollback: message acks are discarded

Rollback does not release message - must explicitly release to
return it to the queue

RED HAT :: CHICAGO :: 2009

SUMIT

47 Red Hat Summit 2009 | Jonathan Robie



High Availability Messaging Clusters

Cluster

AMQP Broker

» Exchange

AMQP Clients
4| ]
f
/
Message
Message
Producer
D
<—
/
Message Message
Consumer

48

Red Hat Summit 2009 | Jonathan Robie

RED HAT :: CHICAGO :: 2009

SUMIT




High Availability Messaging Clusters

49

Goal: High Availability
Any broker can continue work for a failed broker

Does not increase throughput or performance
Built on AlS Closed Process Groups (CPG)

State Is replicated to all brokers in a cluster

Messages
Queues
Exchanges
Use with Red Hat Clustering Services (RHCS)

Eliminates “split-brain” (two independent subclusters due
to network failure)

Red Hat Summit 2009 | Jonathan Robie




Client Failover in Messaging Clusters

Connection failure is detected when broker is crashes or

IS killed

If heartbeat Is enabled, failure is also detected when

broker hangs, the machine running t
down, or the network connection to t

In-doubt messages

ne broker goes
ne broker falls

Messages that have been sent by the client, but not yet

acknowledged as delivered

Messages that have been read by the client, but not

acknowledged

50 Red Hat Summit 2009 | Jonathan Robie




Client Failover in Messaging Clusters (C++)

FailoverManager class supports reconnection

MessageReplayTracker class supports replay of in-
doubt messages

Heartbeat is configured with connection settings

HAT :: CHICAGO :: 2009

"SUMMIT

51 Red Hat Summit 2009 | Jonathan Robie



Client Failover in Messaging Clusters (Java)

Set heartbeat in the connection URL

connectionfactory.qpidConnectionfactory =
amqp://gquest:guest@clientid/test?brokerlist=&#39; tcp://localhost:

5672&#39;,1dle_timeout=3

The Java JMS client automatically connects to another
broker when it receives such an exception.

Handling of in-doubt messages by Java client library

Any messages that have been sent by the client, but not
yet acknowledged as delivered, are resent
automatically.

Any messages that have been read by the client, but not
acknowledged, are delivered to the client automatically.

HAT :: CHICAGO :: 2009

"SUMMIT

52 Red Hat Summit 2009 | Jonathan Robie



Federation

53

cluster_host1:6672

cluster_host2:6672

B e

AMOQP Broker P AMQP Broker
Binding
> Exchange — > Exchange
Link
Binding Binding

n

e

Red Hat Summit 2009 | Jonathan Robie

RED HAT :: CHICAGO :: 2009

SUMIT



Federation

Large messaging networks can be built using multiple
brokers, using tools or API

Each destination broker is a client of the source broker

Links distribute messages based on application
architecture

Geography

Service Type

SLA

Reliability of connections

Federation links can be reconfigured without affecting
client code

54 Red Hat Summit 2009 | Jonathan Robie




Summary

Infrastructure for Messaging
AMQP: Advanced Message Queuing Protocol

Apache Qpid APIs
MRG Messaging

Programming with MRG Messaging

C++, Python, Java JMS

Point-to-Point, Publish-Subscribe, Broadcast, Request-
Response, XML Content Routing

Advanced Features

Guaranteed Delivery, Transactions, High Availability
Messaging Clusters, Federation

55 Red Hat Summit 2009 | Jonathan Robie




QUESTIONS?

TELL US WHAT YOU THINK:
REDHAT.COM/SUMMIT-SURVEY



References

Red Hat MRG Messaging

http://www.redhat.com/mrg/messaging/

Red Hat MRG Messaging Documentation
http://www.redhat.com/docs/en-US/Red_Hat_ Enterprise. MRG/

Apache Qpid
http://gpid.apache.org

AMQP
http://amqp.org

RED HAT :: CHICAGO :: 2009

SUMIT

57 Red Hat Summit 2009 | Jonathan Robie




