
Red Hat Summit 2009 | Jonathan Robie1

Red Hat Summit 2009 | Jonathan Robie2

MRG Messaging:

A Programmer's Overview

Jonathan Robie
jonathan.robie@redhat.com
Software Engineer, Red Hat
2009-Sept-03

Red Hat Summit 2009 | Jonathan Robie3

Red Hat MRG MessagingRed Hat MRG Messaging

AMQP Messaging Broker

High speed

Reliable

AMQP Client Libraries

C++, Python, Java JMS

Management Console

Red Hat Summit 2009 | Jonathan Robie4

Why can't we all just talk to each other?

“Programs communicate by sending messages”

But how can programs in different languages and on
different platforms do this?

Java JMS API ... is just a Java API

Only for Java

No interoperable protocol – even among JMS implementations

Proprietary messaging software ... is proprietary

Success requires good, interoperable implementations

Open Standards (AMQP)

Open Source (Apache Qpid, QpidComponents.org)

Vendor buy-in (Red Hat, Microsoft, JBoss...)

Red Hat Summit 2009 | Jonathan Robie5

Agenda

Infrastructure for Messaging

AMQP: Advanced Message Queuing Protocol

Apache Qpid APIs

MRG Messaging

Programming with MRG Messaging

C++, Python, Java JMS

Point-to-Point, Publish-Subscribe, Broadcast, Request-
Response, XML Content Routing

Advanced Features

Guaranteed Delivery, Transactions, High Availability
Messaging Clusters, Federation

Red Hat Summit 2009 | Jonathan Robie6

AMQP Model: Message, Exchange, Binding, Queue

Red Hat Summit 2009 | Jonathan Robie7

AMQP Model

Exchanges

Message Producers write
Messages to Exchanges

Queues

Message Consumers read
Messages from Queues

Queues store Messages until
they are read

Bindings

A Binding connects a Queue to
an Exchange, specifies
Message routing

Red Hat Summit 2009 | Jonathan Robie8

AMQP Message (Model View)

Red Hat Summit 2009 | Jonathan Robie9

AMQP Message (Session View)

Red Hat Summit 2009 | Jonathan Robie10

AMQP Layers

Red Hat Summit 2009 | Jonathan Robie11

AMQP Layers: Model

“Abstract API”

Language independent

C++, Python, Java JMS APIs map to the AMQP Model

Java JMS mapping preserves JMS semantics

Components

Message, Exchange, Binding, Queue, etc...

Commands

Create Queue, Bind Queue to Exchange, Send Message,
etc ...

Datatypes

Language and platform-independent types

Red Hat Summit 2009 | Jonathan Robie12

AMQP Layers: Session

Session defines interaction
between client and server

Supports replay,
synchronization, error
handling

Translates AMQP
commands to frames for
network

Red Hat Summit 2009 | Jonathan Robie13

AMQP Layers: Transport

Transport transfers
bytes/packets across
the network

MRG Messaging network
protocols

TCP/IP

Infiniband

Red Hat Summit 2009 | Jonathan Robie14

AMQP Exchange Types

Direct Exchange

Routes to queue if
message's routing key
matches binding key

Point-to-Point

Request/Response

Default Exchange

Routes to queue if
message's routing key
matches queue name

Same use cases as Direct
Exchange

Fanout Exchange

Routes to every bound
queue

Broadcast

Topic Exchange

Matches message's
routing key against
binding key, using
wildcards

Publish/Subscribe

Header Exchange

Custom Exchanges

Red Hat Summit 2009 | Jonathan Robie15

Apache Qpid APIs

Programming APIs for AMQP
Clients

C++, Python APIs closely
based on AMQP Model

Java already has a messaging
API – Java JMS

Java JMS client uses URLs to
address AMQP components

Interoperable with C++,
Python

Red Hat Summit 2009 | Jonathan Robie16

C++ and Python APIs

Apache Qpid C++ API

Summary
http://www.ibiblio.org/jwrobie/blog/?p=18

Reference (Doxygen)
http://qpid.apache.org/docs/api/cpp/html/index.html

Apache Qpid Python API

Summary
http://www.ibiblio.org/jwrobie/blog/?p=29

Reference (Epydoc)
http://qpid.apache.org/docs/api/python/html/index.html

http://www.ibiblio.org/jwrobie/blog/?p=18
http://www.ibiblio.org/jwrobie/blog/?p=29

Red Hat Summit 2009 | Jonathan Robie17

A Simple C++ Messaging Program
#include <qpid/client/Connection.h>

#include <qpid/client/Session.h>
#include <qpid/client/Message.h>

using namespace qpid::client;
using namespace qpid::framing;

int main() {
 const char* host = "127.0.0.1";

int port = 5672;

 Connection connection;
 try {
 connection.open(host, port);
 Session session = connection.newSession();

 Message message;
 message.getDeliveryProperties().setRoutingKey("routing_key");
 message.setData("Hi, Mom!");

 session.messageTransfer(arg::content=message,
 arg::destination="amq.direct");
 connection.close();
 } catch(const std::exception& error) {
 std::cout << error.what() << std::endl;
 }
}

Red Hat Summit 2009 | Jonathan Robie18

Using Java JMS with MRG Messaging

Configure Queues, Exchanges – several possible ways

Using JNDI properties (see following slide)

Using the MRG Management Console

Using Low Level Java API

Using programs in C++ or Python

Use vanilla Java JMS for messaging once configured

Red Hat Summit 2009 | Jonathan Robie19

Configuring Java JMS via JNDI Properties

connectionfactory.<jndiname>
The Connection URL used by the connection factory to
create connections.

queue.<jndiname>
A JMS queue, implemented as an amq.direct exchange.

topic.<jndiname>
A JMS topic, which is implemented as an amq.topic
exchange.

destination.<jndiname>
Can be used to define any amq destination, using a
“Binding URL”.

Red Hat Summit 2009 | Jonathan Robie20

Example JNDI properties file for Java JMS

JNDI properties file

java.naming.factory.initial =
org.apache.qpid.jndi.PropertiesFileInitialContextFactory

register some connection factories
connectionfactory.[jndiname] = [ConnectionURL]
See MRG Messaging Tutorial for ConnectionURL format

connectionfactory.qpidConnectionfactory =
amqp://guest:guest@clientid/test?brokerlist='tcp://localhost:5672'

Register an AMQP destination in JNDI
destination.[jndiName] = [BindingURL]
See MRG Messaging Tutorial for BindingURL format

destination.directQueue =
direct://amq.direct//message_queue?routingkey='routing_key'

Red Hat Summit 2009 | Jonathan Robie21

Using JNDI to create Java JMS Session,
Connection, Destination

// Load JNDI properties

Properties properties = new Properties();
properties.load(this.getClass().getResourceAsStream("direct.properties"
));

// Create the JNDI initial context using JNDI properties

Context ctx = new InitialContext(properties);

// Look up Java JMS destination and connection factory

Destination destination = (Destination)ctx.lookup("directQueue");

ConnectionFactory connFact =
(ConnectionFactory)ctx.lookup("qpidConnectionfactory");

// Create Java JMS connection and the session using this
// connection factory

Connection connection = connFact.createConnection();

Session session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE);

Red Hat Summit 2009 | Jonathan Robie22

Once configured, use the Java JMS API

// Using standard Java JMS to send a message

MessageProducer messageProducer = session.createProducer(destination);
TextMessage message;

message = session.createTextMessage("This is a text, this is only a
text ...");

messageProducer.send(message, getDeliveryMode(),
Message.DEFAULT_PRIORITY,
Message.DEFAULT_TIME_TO_LIVE);

Red Hat Summit 2009 | Jonathan Robie23

Direct Exchange: Point-to-Point

Red Hat Summit 2009 | Jonathan Robie24

Point-to-Point: Declaring a Queue and Binding

// arg::queue specifies the queue name

session.queueDeclare(arg::queue="message_queue");

// bind "message_queue" to "amq.direct" exchange

session.exchangeBind(arg::exchange="amq.direct",
 arg::queue="message_queue",
 arg::bindingKey="routing_key");

Red Hat Summit 2009 | Jonathan Robie25

Point-to-Point: Sending Messages

Message message;

// Set routing key

message.getDeliveryProperties().setRoutingKey("routing_key");

// Send some messages

for (int i=0; i<10; i++) {
 stringstream message_data;
 message_data << "Message " << i;

 message.setData(message_data.str());
 session.messageTransfer(arg::content=message,
 arg::destination="amq.direct");
}

message.setData("That's all, folks!");
session.messageTransfer(arg::content=message,
 arg::destination="amq.direct");

Red Hat Summit 2009 | Jonathan Robie26

Point-to-Point: Receiving Messages (Listener)
// Create a Listener, Derived from MessageListener

class Listener : public MessageListener {
 private:
 SubscriptionManager& subscriptions;

 Public:
 Listener(SubscriptionManager& subscriptions);
 virtual void received(Message& message);
};

// Implement constructor

Listener::Listener(SubscriptionManager& subs) : subscriptions(subs) {}

// Implement Listener::received()

void Listener::received(Message& message) {
 std::cout << "Message: " << message.getData() << std::endl;

 if (message.getData() == "That's all, folks!") {
 std::cout << "Shutting down listener for "
 << message.getDestination()
 << std::endl;

 subscriptions.cancel(message.getDestination());
 }
}

Red Hat Summit 2009 | Jonathan Robie27

Point-to-Point: Receiving Messages (Listener)

// Subscribe Listener to "message_queue"

SubscriptionManager subscriptions(session);
Listener listener(subscriptions);
subscriptions.subscribe(listener, "message_queue");

// Receive messages until Listener::received() cancels subscription

subscriptions.run();

Red Hat Summit 2009 | Jonathan Robie28

Default Exchange

Red Hat Summit 2009 | Jonathan Robie29

Default Exchange vs. Direct Exchange

Default Exchange automatically gets a binding for each
queue, routing key = queue name

Same use cases, very similar to program

Less code than Direct Exchange – but less explicit
// Default Exchange vs Direct Exchange

 session.queueDeclare(arg::queue="message_queue");
 session.exchangeBind(arg::exchange="amq.direct",

 arg::queue="message_queue",
 arg::bindingKey="routing_key");

 message.getDeliveryProperties().setRoutingKey("routing_key");
 session.messageTransfer(arg::content=message,
 arg::destination="amq.direct");

Red Hat Summit 2009 | Jonathan Robie30

Fanout Exchange

Red Hat Summit 2009 | Jonathan Robie31

Fanout Exchange: Publisher

// Same as direct, except for the destination

session.messageTransfer(arg::content=message,
 arg::destination="amq.fanout");

Red Hat Summit 2009 | Jonathan Robie32

Fanout Exchange: Subscriber

// Exclusive autodelete queue using Session ID as name

std::string myQueue=session.getId().getName();

session.queueDeclare(arg::queue=myQueue,
arg::exclusive=true,
arg::autoDelete=true);

session.exchangeBind(arg::exchange="amq.fanout",
arg::queue=myQueue);

// Create a listener and subscribe it to the queue.

SubscriptionManager subscriptions(session);
Listener listener(subscriptions);
subscriptions.subscribe(listener, myQueue);
subscriptions.run();

Red Hat Summit 2009 | Jonathan Robie33

Direct Exchange: Request / Response Apps

Red Hat Summit 2009 | Jonathan Robie34

Request / Response Client
// Exclusive autodelete queue using Session ID as name

stringstream response_queue;
response_queue << "client" << session.getId().getName();

session.queueDeclare(arg::queue=response_queue.str()
arg::exclusive=true,
arg::autoDelete=true);

session.exchangeBind(arg::exchange="amq.direct",
arg::queue=response_queue.str(),
arg::bindingKey=response_queue.str());

// Create a listener for the response queue and listen for responses

SubscriptionManager subscriptions(session);
Listener listener(subscriptions);
subscriptions.subscribe(listener, response_queue.str());

// Use name of the response queue as the Reply To for requests

Message request;
request.setData("ping!");
request.getDeliveryProperties().setRoutingKey("request");
request.getMessageProperties().setReplyTo(ReplyTo("amq.direct",

response_queue.str()));

subscriptions.run();

Red Hat Summit 2009 | Jonathan Robie35

Request / Response Server

// Create a request queue for clients to use

string request_queue = "request";

session.queueDeclare(arg::queue=request_queue);

session.exchangeBind(arg::exchange="amq.direct",
arg::queue=request_queue,
arg::bindingKey=request_queue);

// Create a listener and subscribe it to the request queue

SubscriptionManager subscriptions(session);

Listener listener(subscriptions, session);
subscriptions.subscribe(listener, request_queue);
subscriptions.run();

Red Hat Summit 2009 | Jonathan Robie36

Request / Response Server – Listener::received()

void Listener::received(Message& request) {
 Message response;

 // Routing key for response is in request's replyTo
 string routingKey;
 if (request.getMessageProperties().hasReplyTo()) {
 routingKey =
 request.getMessageProperties().getReplyTo().getRoutingKey();
 } else {
 std::cout << "Error: " << "No replyTo ..." << std::endl;
 return;
 }

 // Send response to the client
 response.setData("pong!");
 response.getDeliveryProperties().setRoutingKey(routingKey);
 asyncSession.messageTransfer(arg::content=response,

arg::destination="amq.direct");
}

Red Hat Summit 2009 | Jonathan Robie37

Topic Exchanges

Red Hat Summit 2009 | Jonathan Robie38

Topic Exchange: Wildcard Syntax

Routing Keys are divided into “words”

“.” is a delimiter

“usa.news” has two words

“usa.news.breaking” has three words

Binding Keys can have wildcards

“*” matches any one word

“#” matches one or more words

Examples

“usa.news” matches “usa.news”, “*.news”, “usa.*”, “usa.#”

“usa.news.breaking” matches “usa.#” but not “usa.*”

Red Hat Summit 2009 | Jonathan Robie39

Topic Exchange: Subscriber

// Exclusive autodelete queue using Session ID as name

std::string myQueue=session.getId().getName();
session.queueDeclare(arg::queue=myQueue,

arg::exclusive=true,
arg::autoDelete=true);

session.exchangeBind(arg::exchange="amq.topic",
arg::queue=myQueue,
arg::bindingKey="usa.*");

// Create a listener and subscribe it to the queue.

SubscriptionManager subscriptions(session);
Listener listener(subscriptions);
subscriptions.subscribe(listener, myQueue);

subscriptions.run();

Red Hat Summit 2009 | Jonathan Robie40

Topic Exchange: Publisher

Message message;

message.setData("Glaciers have returned to Italy and Texas!");

// Send the same message wherever relevant

message.getDeliveryProperties().setRoutingKey("usa.news");
session.messageTransfer(arg::content=message,
 arg::destination="amq.topic");

message.getDeliveryProperties().setRoutingKey("usa.weather");
session.messageTransfer(arg::content=message,
 arg::destination="amq.topic");

message.getDeliveryProperties().setRoutingKey("europe.news");
session.messageTransfer(arg::content=message,
 arg::destination="amq.topic");

message.getDeliveryProperties().setRoutingKey("europe.weather");
session.messageTransfer(arg::content=message,
 arg::destination="amq.topic");

Red Hat Summit 2009 | Jonathan Robie41

XML Exchange – a Custom Exchange

Red Hat Summit 2009 | Jonathan Robie42

XML Content Routing with the XML Exchange

XML Exchange is a custom exchange – must be declared

session.exchangeDeclare(arg::exchange="xml", arg::type="xml");

session.queueDeclare(arg::queue="message_queue");

XML Bindings are written in XQuery
FieldTable binding;

binding.setString("xquery", "./msg/header/dest = 'orders'");

session.exchangeBind(arg::exchange="xml",
arg::queue="message_queue",
arg::bindingKey="content_feed",
arg::arguments=binding);

Red Hat Summit 2009 | Jonathan Robie43

Message Flow

Drinking from the firehose - how many messages or bytes
can your client accept?

SubscriptionManager sends infinite messages / bytes by
default.

SubscriptionManager.setFlowControl() sets limits on
what should be sent to a client - “credit”

How many messages?

How many bytes?

Ask for more credit when you want more

If “window=true”, acknowledging messages allocates
credit automatically

Red Hat Summit 2009 | Jonathan Robie44

Message Flow

SubscriptionManager subscriptions(session);
Listener listener(subscriptions);
subscriptions.subscribe(listener, myQueue);

// Accept up to 100 messages, 10,000 bytes, enable windowing

subscriptions.setFlowControl("myQueue", 100, 10000, true);

subscriptions.run();

Red Hat Summit 2009 | Jonathan Robie45

Guaranteed Delivery

Durable Queues are
maintained on disk

Persistent messages are
written to journal before
delivery

Sent message is written to
journal before ack is sent
to Message Producer

Message is deleted from
the queue after Message
Consumer acknowledges

Red Hat Summit 2009 | Jonathan Robie46

Guaranteed Delivery

// Declare the queue to be durable

session.queueDeclare(arg::queue=name, arg::durable=true);

// Choose PERSISTENT deliver mode for message

message.getDeliveryProperties().setDeliveryMode(PERSISTENT);

Red Hat Summit 2009 | Jonathan Robie47

Transactions

Transaction semantics cover enqueues and dequeues

session.txSelect();

session.txCommit();

session.txRollback();

Publishing messages in a transaction

Commit: messages are placed on queues.

Rollback: messages are discarded.

Consuming messages in a transaction

Commit: acked messages are removed from the queue

Rollback: message acks are discarded

Rollback does not release message - must explicitly release to
return it to the queue

Red Hat Summit 2009 | Jonathan Robie48

High Availability Messaging Clusters

Red Hat Summit 2009 | Jonathan Robie49

High Availability Messaging Clusters

Goal: High Availability

Any broker can continue work for a failed broker

Does not increase throughput or performance

Built on AIS Closed Process Groups (CPG)

State is replicated to all brokers in a cluster

Messages

Queues

Exchanges

Use with Red Hat Clustering Services (RHCS)

Eliminates “split-brain” (two independent subclusters due
to network failure)

Red Hat Summit 2009 | Jonathan Robie50

Client Failover in Messaging Clusters

Connection failure is detected when broker is crashes or
is killed

If heartbeat is enabled, failure is also detected when
broker hangs, the machine running the broker goes
down, or the network connection to the broker fails

In-doubt messages

Messages that have been sent by the client, but not yet
acknowledged as delivered

Messages that have been read by the client, but not
acknowledged

Red Hat Summit 2009 | Jonathan Robie51

Client Failover in Messaging Clusters (C++)

FailoverManager class supports reconnection

MessageReplayTracker class supports replay of in-
doubt messages

Heartbeat is configured with connection settings

Red Hat Summit 2009 | Jonathan Robie52

Client Failover in Messaging Clusters (Java)

Set heartbeat in the connection URL
connectionfactory.qpidConnectionfactory =

amqp://guest:guest@clientid/test?brokerlist='tcp://localhost:
5672',idle_timeout=3

The Java JMS client automatically connects to another
broker when it receives such an exception.

Handling of in-doubt messages by Java client library

Any messages that have been sent by the client, but not
yet acknowledged as delivered, are resent
automatically.

Any messages that have been read by the client, but not
acknowledged, are delivered to the client automatically.

Red Hat Summit 2009 | Jonathan Robie53

Federation

Red Hat Summit 2009 | Jonathan Robie54

Federation

Large messaging networks can be built using multiple
brokers, using tools or API

Each destination broker is a client of the source broker

Links distribute messages based on application
architecture

Geography

Service Type

SLA

Reliability of connections

Federation links can be reconfigured without affecting
client code

Red Hat Summit 2009 | Jonathan Robie55

Summary

Infrastructure for Messaging

AMQP: Advanced Message Queuing Protocol

Apache Qpid APIs

MRG Messaging

Programming with MRG Messaging

C++, Python, Java JMS

Point-to-Point, Publish-Subscribe, Broadcast, Request-
Response, XML Content Routing

Advanced Features

Guaranteed Delivery, Transactions, High Availability
Messaging Clusters, Federation

Red Hat Summit 2009 | Jonathan Robie56

Red Hat Summit 2009 | Jonathan Robie57

References

Red Hat MRG Messaging
http://www.redhat.com/mrg/messaging/

Red Hat MRG Messaging Documentation
http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/

Apache Qpid
http://qpid.apache.org

AMQP
http://amqp.org

