
  



  

Red Hat Enterprise Linux 6 
Security Feature Overview

Steve Grubb
Principal Engineer, Red Hat
June 23, 2010



Overview

● Minimal Platform Install

● Libcap-ng

● OpenSCAP

● FIPS-140

● Stronger Hashes

● Common Criteria



Minimal Platform Install

● Goals
● Reduce Attack Surface
● Minimize package count
● Add back things needed for secure operation



Minimal Platform Install



Minimal Platform Install



Minimal Platform Install

RHEL5 (5.5 used for testing)

● Packages - 879

● Setuid - 33

● Setgid - 11

● Daemons - 44

● Networked services - 18

● Space – 2.2 Gb

● Notes: Boots into X even though no packages checked



Minimal Platform Install



Minimal Platform Install

RHEL5 (5.5 used for testing)

● Packages - 437

● Setuid - 29

● Setgid - 9

● Daemons - 39

● Networked services – 16

● Space –  1006 Mb

● Notes: Boots to runlevel 3



Minimal Platform Install



Minimal Platform Install



Minimal Platform Install

RHEL6 (pre-beta2)

● Packages - 347

● Setuid - 22

● Setgid - 8

● Daemons - 18

● Networked services – 18 (all rpc except postfix & sshd)

● Space –  772 Mb

● Notes: Boots to runlevel 3 very quickly



Minimal Platform Install - Summary

Packages Setuid Setgid Daemons Network 
Services

Space

RHEL5 879 33 11 44 18 2200

RHEL5 
base

437 29 9 39 16 1006

RHEL6 347 22 8 18 18 772



Libcap-ng

● Wanted to reduce attack surface for RHEL6

● Capabilities can be used to make root daemons less 
powerful

● Libcap is tedious to use
● Changing uid while retaining capabilities takes about 60 

lines of code

● RHEL6 kernel has bounding set, which is not 
addressed by libcap

● RHEL6 kernel has file system based capabilities



Libcap-ng

● Unix Capabilities were added to separate the powers 
of root. Few examples:

● CAP_CHOWN - this overrides the restriction of 
changing file ownership and group   ownership.

● CAP_NET_RAW - Allow use of RAW sockets, allow use 
of PACKET sockets.

● CAP_NET_BIND_SERVICE - Allows binding to 
TCP/UDP sockets below 1024.



Libcap-ng

● Use Cases:
● Drop all capabilities
● Keep one capability
● Keep several capabilities
● Check if you have any capabilities
● Check for certain capabilities
● Retain capabilities across a uid change



Libcap-ng

Initialize

Modify

Apply

Clear / Fill

Thread

File

Add

Drop

Thread

Change UID

File



Libcap-ng

● Keep one capability
capng_clear(CAPNG_SELECT_BOTH);

capng_update(CAPNG_ADD, CAPNG_EFFECTIVE|CAPNG_PERMITTED, CAP_CHOWN);

capng_apply(CAPNG_SELECT_BOTH);

● Check if you have any capabilities
if (capng_have_capabilities(CAPNG_SELECT_CAPS) > CAPNG_NONE)

        do_something();

● Retain capabilities across a uid change
capng_clear(CAPNG_SELECT_BOTH);

capng_update(CAPNG_ADD, CAPNG_EFFECTIVE|CAPNG_PERMITTED, CAP_CHOWN);

if (capng_change_id(99, 99, CAPNG_DROP_SUPP_GRP | CAPNG_CLEAR_BOUNDING))

        error();



Libcap-ng

● New tools to check apps:
● Pscap – lists all applications with capabilities
● Netcap – list all networked apps with capabilities
● Filecap – display or set file based capabilities

● We dropped capabilities in a number of daemons to 
reduce the attack surface.

● We changed file permissions on important things to 
require CAP_DAC_OVERRIDE to write to it.



Libcap-ng

[root ~]# netcap
ppid  pid   acct       command          type port  capabilities
1     1765  nobody     dnsmasq          tcp  53    net_admin, net_raw +
1     1652  root       sshd             tcp  22    full 
1     1449  root       cupsd            tcp  631   full 
1     1652  root       sshd             tcp6 22    full 
1     1449  root       cupsd            tcp6 631   full 
1     1449  root       cupsd            udp  631   full 
1     8515  root       vpnc             udp  4500  full 
1     1765  nobody     dnsmasq          udp  53    net_admin, net_raw +
1     1765  nobody     dnsmasq          udp  67    net_admin, net_raw +



OpenSCAP

● SCAP – Security Content Automation Protocol

● Assist users with configuring IT systems

● Used to automate:
● Configuring systems
● Verifying system hasn't changed
● Verifying a vulnerability
● Response to new threat



OpenSCAP

● Suite of Standards
● Extensible Configuration Checklist Description Format XCCDF

● Open Vulnerability and Assessment Language OVAL

● Common Platform Enumeration CPE

● Common Vulnerabilities and Exposures CVE

● Common Configuration Enumeration CCE

● Common Vulnerability Scoring System CVSS



OpenSCAP
Remembering the acronyms

What IT systems do I have in 
my Enterprise?

 CPE

What vulnerabilities do I need 
to worry about?

 CVE

What vulnerabilities do I need 
to worry about right now?

 CVSS

How do I configure my 
systems securely?

 CCE

How do I define a policy of 
secure configurations?

 XCCDF

How can I be sure my 
systems conform to policy?

 OVAL



OpenSCAP

Lock 
down 
Policy

Automation 
Tool

Report

SCAP 
XML

SCAP allows the creation of text checklists as well as system reports.



OpenSCAP

NSA SNAC 
Guide

Baseline 
Security 

Configuration

XCCDF 
Content

New CCE 
assignments

OpenSCAP 
Project

Higher Level 
Tools

SCAP 
Validation

RHEL 6



OpenSCAP

● Open source library

● Free to integrate under LGPL

● Cross Platform

● Multiple languages supported

● Unicode tested

● SE Linux friendly design

● Easily extended to new platforms with plugins



OpenSCAP

● Project Goals
● Make the standards easier to implement through open 

source libraries and code samples.
● Work with tool communities to build SCAP standards 

and models into their offerings.
● Barriers to writing SCAP tools

● OVAL ~400 pages
● XCCDF 132 pages
● Certification



OpenSCAP

CVSS CPE CCE OVAL XCCDF

Operating System

OpenSCAP

Scanner
Config 
Tool

Vulnerability 
Assessment



OpenSCAP

● XCCDF to Kickstart

● XCCDF to Puppet

● Policy Editors

● System Integrity Scanning
● At bootup
● At network connect
● During VM startup

● Adhoc query tool

● Systems Management Integration



Stronger Hashes

● MD5 was being used in many places for integrity or 
password hashes

● Attacks against MD5 have been getting better

● NIST's Policy on Hash Functions:
● Federal agencies should stop using SHA-1 for digital 

signatures, digital time stamping and other applications that 
require collision resistance as soon as practical, and must use 
the SHA-2 family of hash functions for these applications after 
2010.

● Needed to adjust all tools that touch software from 
source code to system verification.



Stronger Hashes

● Started Project for Fedora 11

● Changed:
● Rpm, koji, spacewalk, yum, createrepo, pungi, satellite, 

RHN, yaboot
● Shadow-utils, glibc, pam, authconfig were done during 

RHEL5
● To do:

● Changes for grub password hash expected in 6.1



Common Criteria

● RHEL5 was certified under LSPP at EAL4+

● No regressions in capabilities for RHEL6

● Challenges around protection profiles
● NIAP – CAPP, LSPP, MRPP, GPOSPP
● BSI - OSPP



Common Criteria

Base OS PP

Roles

Advanced 
Audit

Advanced 
Crypto

Directory 
Server Based 
I&A

Labeled 
Security

Integrity 
Verification

Trusted 
Boot

Virtualization



Common Criteria

● Advanced Audit
● Some updates regarding remote logging, performance on 

large files, and search by regular expression

● Advanced Crypto
● Cryptography must be in separate address space from 

application that is using it.

● Virtualization
● VM's must be separated by MAC or UID
● Auditing: guest start/stop/pause/crash, change in resources, 

Qemu server accepting connections and authentication use
● AMTU



FIPS-140

● FISMA  ->  SP800-53  requires FIPS certified crypto 
mechanism

● RHEL5
● Data at rest: kernel (dm-crypt)
● Data in transit: openssl, libgcrypt, nss, openssh, 

openswan



FIPS-140

● Libgcrypt needed strict FSM

● Needed Deterministic RNG in kernel

● Needed Power Up self tests in all places

● Needed RNG test for duplicate answer

● Needed key zeroization in openssh / openswan

● Integrity verification using sha256hmac

● Increased DSA key size for module verification

● Disallow some crypto algorithms in FIPS mode



FIPS-140

● On RHEL5, to put into FIPS-140 mode, the crypto 
officer must regenerate the initrd using the following 
command:

● mkinitrd --with-fips -f /boot/initrd-$(uname -r).img $(uname -r)

● Add “fips=1” to grub kernel boot line

● Reboot

● To verify FIPS mode:

● cat /proc/sys/crypto/fips_enabled

● Some other cautions in Security Policies – please read them



FIPS-140

● 2010 brings some changes (SP800-57 part1)
● Ssh v2 protocol is no longer allowed as key distribution 

method
● Diffie-Hellman key exchange must have self test
● 112 bits of entropy required in RNG
● Recommended key sizes almost double 1024->2048
● Recommends some algorithms be replaced:

● 2 key Triple DES -> 128 bit AES
● SHA1 -> SHA2



FIPS-140

● Other crypto changes: GPOSPP, FIPS-140-3
● Audit requirements
● Non-debugability
● No implementations in scripting languages
● Separation of application and key material



Odds and Ends

● Added pam_ssh_agent_auth for remote use of 
smartcards

● Added scrub for secure disk erasing

● NetworkManager and Openswan integration

● Key Escrow system for encrypted disk partitions



Questions?

sgrubb@redhat.com

mailto:sgrubb@redhat.com


  


