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Overview

● Minimal Platform Install

● Libcap-ng

● OpenSCAP

● FIPS-140

● Stronger Hashes

● Common Criteria



Minimal Platform Install

● Goals
● Reduce Attack Surface
● Minimize package count
● Add back things needed for secure operation



Minimal Platform Install
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Minimal Platform Install

RHEL5 (5.5 used for testing)

● Packages - 879

● Setuid - 33

● Setgid - 11

● Daemons - 44

● Networked services - 18

● Space – 2.2 Gb

● Notes: Boots into X even though no packages checked



Minimal Platform Install



Minimal Platform Install

RHEL5 (5.5 used for testing)

● Packages - 437

● Setuid - 29

● Setgid - 9

● Daemons - 39

● Networked services – 16

● Space –  1006 Mb

● Notes: Boots to runlevel 3



Minimal Platform Install
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Minimal Platform Install

RHEL6 (pre-beta2)

● Packages - 347

● Setuid - 22

● Setgid - 8

● Daemons - 18

● Networked services – 18 (all rpc except postfix & sshd)

● Space –  772 Mb

● Notes: Boots to runlevel 3 very quickly



Minimal Platform Install - Summary

Packages Setuid Setgid Daemons Network 
Services

Space

RHEL5 879 33 11 44 18 2200

RHEL5 
base

437 29 9 39 16 1006

RHEL6 347 22 8 18 18 772



Libcap-ng

● Wanted to reduce attack surface for RHEL6

● Capabilities can be used to make root daemons less 
powerful

● Libcap is tedious to use
● Changing uid while retaining capabilities takes about 60 

lines of code

● RHEL6 kernel has bounding set, which is not 
addressed by libcap

● RHEL6 kernel has file system based capabilities



Libcap-ng

● Unix Capabilities were added to separate the powers 
of root. Few examples:

● CAP_CHOWN - this overrides the restriction of 
changing file ownership and group   ownership.

● CAP_NET_RAW - Allow use of RAW sockets, allow use 
of PACKET sockets.

● CAP_NET_BIND_SERVICE - Allows binding to 
TCP/UDP sockets below 1024.



Libcap-ng

● Use Cases:
● Drop all capabilities
● Keep one capability
● Keep several capabilities
● Check if you have any capabilities
● Check for certain capabilities
● Retain capabilities across a uid change



Libcap-ng
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Libcap-ng

● Keep one capability
capng_clear(CAPNG_SELECT_BOTH);

capng_update(CAPNG_ADD, CAPNG_EFFECTIVE|CAPNG_PERMITTED, CAP_CHOWN);

capng_apply(CAPNG_SELECT_BOTH);

● Check if you have any capabilities
if (capng_have_capabilities(CAPNG_SELECT_CAPS) > CAPNG_NONE)

        do_something();

● Retain capabilities across a uid change
capng_clear(CAPNG_SELECT_BOTH);

capng_update(CAPNG_ADD, CAPNG_EFFECTIVE|CAPNG_PERMITTED, CAP_CHOWN);

if (capng_change_id(99, 99, CAPNG_DROP_SUPP_GRP | CAPNG_CLEAR_BOUNDING))

        error();



Libcap-ng

● New tools to check apps:
● Pscap – lists all applications with capabilities
● Netcap – list all networked apps with capabilities
● Filecap – display or set file based capabilities

● We dropped capabilities in a number of daemons to 
reduce the attack surface.

● We changed file permissions on important things to 
require CAP_DAC_OVERRIDE to write to it.



Libcap-ng

[root ~]# netcap
ppid  pid   acct       command          type port  capabilities
1     1765  nobody     dnsmasq          tcp  53    net_admin, net_raw +
1     1652  root       sshd             tcp  22    full 
1     1449  root       cupsd            tcp  631   full 
1     1652  root       sshd             tcp6 22    full 
1     1449  root       cupsd            tcp6 631   full 
1     1449  root       cupsd            udp  631   full 
1     8515  root       vpnc             udp  4500  full 
1     1765  nobody     dnsmasq          udp  53    net_admin, net_raw +
1     1765  nobody     dnsmasq          udp  67    net_admin, net_raw +



OpenSCAP

● SCAP – Security Content Automation Protocol

● Assist users with configuring IT systems

● Used to automate:
● Configuring systems
● Verifying system hasn't changed
● Verifying a vulnerability
● Response to new threat



OpenSCAP

● Suite of Standards
● Extensible Configuration Checklist Description Format XCCDF

● Open Vulnerability and Assessment Language OVAL

● Common Platform Enumeration CPE

● Common Vulnerabilities and Exposures CVE

● Common Configuration Enumeration CCE

● Common Vulnerability Scoring System CVSS



OpenSCAP
Remembering the acronyms

What IT systems do I have in 
my Enterprise?

 CPE

What vulnerabilities do I need 
to worry about?

 CVE

What vulnerabilities do I need 
to worry about right now?

 CVSS

How do I configure my 
systems securely?

 CCE

How do I define a policy of 
secure configurations?

 XCCDF

How can I be sure my 
systems conform to policy?

 OVAL



OpenSCAP
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SCAP allows the creation of text checklists as well as system reports.



OpenSCAP
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OpenSCAP

● Open source library

● Free to integrate under LGPL

● Cross Platform

● Multiple languages supported

● Unicode tested

● SE Linux friendly design

● Easily extended to new platforms with plugins



OpenSCAP

● Project Goals
● Make the standards easier to implement through open 

source libraries and code samples.
● Work with tool communities to build SCAP standards 

and models into their offerings.
● Barriers to writing SCAP tools

● OVAL ~400 pages
● XCCDF 132 pages
● Certification



OpenSCAP
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OpenSCAP

● XCCDF to Kickstart

● XCCDF to Puppet

● Policy Editors

● System Integrity Scanning
● At bootup
● At network connect
● During VM startup

● Adhoc query tool

● Systems Management Integration



Stronger Hashes

● MD5 was being used in many places for integrity or 
password hashes

● Attacks against MD5 have been getting better

● NIST's Policy on Hash Functions:
● Federal agencies should stop using SHA-1 for digital 

signatures, digital time stamping and other applications that 
require collision resistance as soon as practical, and must use 
the SHA-2 family of hash functions for these applications after 
2010.

● Needed to adjust all tools that touch software from 
source code to system verification.



Stronger Hashes

● Started Project for Fedora 11

● Changed:
● Rpm, koji, spacewalk, yum, createrepo, pungi, satellite, 

RHN, yaboot
● Shadow-utils, glibc, pam, authconfig were done during 

RHEL5
● To do:

● Changes for grub password hash expected in 6.1



Common Criteria

● RHEL5 was certified under LSPP at EAL4+

● No regressions in capabilities for RHEL6

● Challenges around protection profiles
● NIAP – CAPP, LSPP, MRPP, GPOSPP
● BSI - OSPP



Common Criteria
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Common Criteria

● Advanced Audit
● Some updates regarding remote logging, performance on 

large files, and search by regular expression

● Advanced Crypto
● Cryptography must be in separate address space from 

application that is using it.

● Virtualization
● VM's must be separated by MAC or UID
● Auditing: guest start/stop/pause/crash, change in resources, 

Qemu server accepting connections and authentication use
● AMTU



FIPS-140

● FISMA  ->  SP800-53  requires FIPS certified crypto 
mechanism

● RHEL5
● Data at rest: kernel (dm-crypt)
● Data in transit: openssl, libgcrypt, nss, openssh, 

openswan



FIPS-140

● Libgcrypt needed strict FSM

● Needed Deterministic RNG in kernel

● Needed Power Up self tests in all places

● Needed RNG test for duplicate answer

● Needed key zeroization in openssh / openswan

● Integrity verification using sha256hmac

● Increased DSA key size for module verification

● Disallow some crypto algorithms in FIPS mode



FIPS-140

● On RHEL5, to put into FIPS-140 mode, the crypto 
officer must regenerate the initrd using the following 
command:

● mkinitrd --with-fips -f /boot/initrd-$(uname -r).img $(uname -r)

● Add “fips=1” to grub kernel boot line

● Reboot

● To verify FIPS mode:

● cat /proc/sys/crypto/fips_enabled

● Some other cautions in Security Policies – please read them



FIPS-140

● 2010 brings some changes (SP800-57 part1)
● Ssh v2 protocol is no longer allowed as key distribution 

method
● Diffie-Hellman key exchange must have self test
● 112 bits of entropy required in RNG
● Recommended key sizes almost double 1024->2048
● Recommends some algorithms be replaced:

● 2 key Triple DES -> 128 bit AES
● SHA1 -> SHA2



FIPS-140

● Other crypto changes: GPOSPP, FIPS-140-3
● Audit requirements
● Non-debugability
● No implementations in scripting languages
● Separation of application and key material



Odds and Ends

● Added pam_ssh_agent_auth for remote use of 
smartcards

● Added scrub for secure disk erasing

● NetworkManager and Openswan integration

● Key Escrow system for encrypted disk partitions



Questions?

sgrubb@redhat.com

mailto:sgrubb@redhat.com


  


