SUMMIT JBoss WORLD

PRESENTED BY RED HAT

LEARN. NETWORK. EXPERIENCE OPEN SOURCE.

www.theredhatsummit.com

Red Hat Enterprise Linux 6 Security Feature Overview

Steve Grubb Principal Engineer, Red Hat June 23, 2010

Overview

- Minimal Platform Install
- Libcap-ng
- OpenSCAP
- FIPS-140
- Stronger Hashes
- Common Criteria

- Goals
 - Reduce Attack Surface
 - Minimize package count
 - Add back things needed for secure operation

The default installation of Red Hat Enterprise Linux Server includes a set of software applicable for general internet usage. What additional tasks would you like your system to include support for?
Software Development
□ Virtualization
You can further customize the software selection now, or after install via the software management application.
Customize fater Customize now <u>Back</u>

RHEL5 (5.5 used for testing)

- Packages 879
- Setuid 33
- Setgid 11
- Daemons 44
- Networked services 18
- Space 2.2 Gb
- Notes: Boots into X even though no packages checked

RHEL5 (5.5 used for testing)

- Packages 437
- Setuid 29
- Setgid 9
- Daemons 39
- Networked services 16
- Space 1006 Mb
- Notes: Boots to runlevel 3

RED HAT' ENTERPRISE LINUX' 6	🧶
The default installation of Red Hat Enterprise Linux is a basic server install. You can optionally select a different set of software now.	
 Software Development Workstation 	
Minimal	
Please select any additional repositories that you want to use for software installation. ✓ ClusteredStorage ✓ HighAvailability ✓ LargeFileSystem ✓ Leadelease ✓ Add additional software repositories	
You can further customize the software selection now, or after install via the software management application. Customize later O Customize now	▶ <u>N</u> ext

RHEL6 (pre-beta2)

- Packages 347
- Setuid 22
- Setgid 8
- Daemons 18
- Networked services 18 (all rpc except postfix & sshd)
- Space 772 Mb
- Notes: Boots to runlevel 3 very quickly

Minimal Platform Install - Summary

	Packages	Setuid	Setgid	Daemons	Network Services	Space
RHEL5	879	33	11	44	18	2200
RHEL5 base	437	29	9	39	16	1006
RHEL6	347	22	8	18	18	772

- Wanted to reduce attack surface for RHEL6
- Capabilities can be used to make root daemons less powerful
- Libcap is tedious to use
 - Changing uid while retaining capabilities takes about 60 lines of code
- RHEL6 kernel has bounding set, which is not addressed by libcap
- RHEL6 kernel has file system based capabilities

- Unix Capabilities were added to separate the powers of root. Few examples:
 - CAP_CHOWN this overrides the restriction of changing file ownership and group ownership.
 - CAP_NET_RAW Allow use of RAW sockets, allow use of PACKET sockets.
 - CAP_NET_BIND_SERVICE Allows binding to TCP/UDP sockets below 1024.

- Use Cases:
 - Drop all capabilities
 - Keep one capability
 - Keep several capabilities
 - Check if you have any capabilities
 - Check for certain capabilities
 - Retain capabilities across a uid change

Keep one capability

capng_clear(CAPNG_SELECT_BOTH); capng_update(CAPNG_ADD, CAPNG_EFFECTIVE|CAPNG_PERMITTED, CAP_CHOWN); capng_apply(CAPNG_SELECT_BOTH);

Check if you have any capabilities

Retain capabilities across a uid change

capng_clear(CAPNG_SELECT_BOTH); capng_update(CAPNG_ADD, CAPNG_EFFECTIVE|CAPNG_PERMITTED, CAP_CHOWN); if (capng_change_id(99, 99, CAPNG_DROP_SUPP_GRP | CAPNG_CLEAR_BOUNDING)) error();

- New tools to check apps:
 - Pscap lists all applications with capabilities
 - Netcap list all networked apps with capabilities
 - Filecap display or set file based capabilities
- We dropped capabilities in a number of daemons to reduce the attack surface.
- We changed file permissions on important things to require CAP_DAC_OVERRIDE to write to it.

[root	~]#	netcap	
ppid	pid	acct	command
1	1765	nobody	dnsmasq
1	1652	root	sshd
1	1449	root	cupsd
1	1652	root	sshd
1	1449	root	cupsd
1	1449	root	cupsd
1	8515	root	vpnc
1	1765	nobody	dnsmasq
1	1765	nobody	dnsmasq

type	port	capabiliti	es	
tcp	53	net_admin,	net_raw	+
tcp	22	full		
tcp	631	full		
tcp6	22	full		
tcp6	631	full		
udp	631	full		
udp	4500	full		
udp	53	net_admin,	net_raw	+
udp	67	net_admin,	net_raw	+

- SCAP Security Content Automation Protocol
- Assist users with configuring IT systems
- Used to automate:
 - Configuring systems
 - Verifying system hasn't changed
 - Verifying a vulnerability
 - Response to new threat

Suite of Standards

- Extensible Configuration Checklist Description Format XCCDF
- Open Vulnerability and Assessment Language
 OVAL
- Common Platform Enumeration CPE
 Common Vulnerabilities and Exposures CVE
 Common Configuration Enumeration CCE
- Common Vulnerability Scoring System
 CVSS

Remembering the acronyms				
What IT systems do I have in my Enterprise?	CPE			
What vulnerabilities do I need to worry about?	CVE			
What vulnerabilities do I need to worry about right now?	CVSS			
How do I configure my systems securely?	CCE			
How do I define a policy of secure configurations?	XCCDF			
How can I be sure my systems conform to policy?	OVAL			

SCAP allows the creation of text checklists as well as system reports.

- Open source library
- Free to integrate under LGPL
- Cross Platform
- Multiple languages supported
- Unicode tested
- SE Linux friendly design
- Easily extended to new platforms with plugins

- Project Goals
 - Make the standards easier to implement through open source libraries and code samples.
 - Work with tool communities to build SCAP standards and models into their offerings.
- Barriers to writing SCAP tools
 - OVAL ~400 pages
 - XCCDF 132 pages
 - Certification

 \mathbf{S}

PRESENTED BY RED HAT

- XCCDF to Kickstart
- XCCDF to Puppet
- Policy Editors
- System Integrity Scanning
 - At bootup
 - At network connect
 - During VM startup
- Adhoc query tool
- Systems Management Integration

Stronger Hashes

- MD5 was being used in many places for integrity or password hashes
- Attacks against MD5 have been getting better
- NIST's Policy on Hash Functions:
 - Federal agencies should stop using SHA-1 for digital signatures, digital time stamping and other applications that require collision resistance as soon as practical, and must use the SHA-2 family of hash functions for these applications after 2010.
- Needed to adjust all tools that touch software from source code to system verification.

Stronger Hashes

- Started Project for Fedora 11
- Changed:
 - Rpm, koji, spacewalk, yum, createrepo, pungi, satellite, RHN, yaboot
 - Shadow-utils, glibc, pam, authconfig were done during RHEL5
- To do:
 - Changes for grub password hash expected in 6.1

Common Criteria

- RHEL5 was certified under LSPP at EAL4+
- No regressions in capabilities for RHEL6
- Challenges around protection profiles
 - NIAP CAPP, LSPP, MRPP, GPOSPP
 - BSI OSPP

PRESENTED BY RED HAT

Common Criteria

- Advanced Audit
 - Some updates regarding remote logging, performance on large files, and search by regular expression
- Advanced Crypto
 - Cryptography must be in separate address space from application that is using it.
- Virtualization
 - VM's must be separated by MAC or UID
 - Auditing: guest start/stop/pause/crash, change in resources, Qemu server accepting connections and authentication use
 - AMTU

- FISMA -> SP800-53 requires FIPS certified crypto mechanism
- RHEL5
 - Data at rest: kernel (dm-crypt)
 - Data in transit: openssl, libgcrypt, nss, openssh, openswan

- Libgcrypt needed strict FSM
- Needed Deterministic RNG in kernel
- Needed Power Up self tests in all places
- Needed RNG test for duplicate answer
- Needed key zeroization in openssh / openswan
- Integrity verification using sha256hmac
- Increased DSA key size for module verification
- Disallow some crypto algorithms in FIPS mode

- On RHEL5, to put into FIPS-140 mode, the crypto officer must regenerate the initrd using the following command:
 - mkinitrd --with-fips -f /boot/initrd-\$(uname -r).img \$(uname -r)
 - Add "fips=1" to grub kernel boot line
 - Reboot
- To verify FIPS mode:
 - cat /proc/sys/crypto/fips_enabled
- Some other cautions in Security Policies please read them

- 2010 brings some changes (SP800-57 part1)
 - Ssh v2 protocol is no longer allowed as key distribution method
 - Diffie-Hellman key exchange must have self test
 - 112 bits of entropy required in RNG
 - Recommended key sizes almost double 1024->2048
 - Recommends some algorithms be replaced:
 - 2 key Triple DES -> 128 bit AES
 - SHA1 -> SHA2

- Other crypto changes: GPOSPP, FIPS-140-3
 - Audit requirements
 - Non-debugability
 - No implementations in scripting languages
 - Separation of application and key material

Odds and Ends

- Added pam_ssh_agent_auth for remote use of smartcards
- Added scrub for secure disk erasing
- NetworkManager and Openswan integration
- Key Escrow system for encrypted disk partitions

Questions?

sgrubb@redhat.com

FOLLOW US ON TWITTER

www.twitter.com/redhatsummit

TWEET ABOUT IT

#summitjbw

READ THE BLOG http://summitblog.redhat.com/

SUMIT

