
Armin Hornung

3D Mapping with OctoMap

http://octomap.github.io

Joint work with K.M. Wurm, M. Bennewitz, C. Stachniss, W. Burgard

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAA

Robots in 3D Environments

E
ri
c
 J

.
T
il
fo

rd
,

U
S
 N

a
v
y

E
U

 p
ro

je
c
t

R
O

V
IN

A

2

Requirements on a 3D
Representation

3

 Probabilistic representation to

 Handle sensor noise and dynamic changes

 Fuse multiple sensors

 Representation of free and unknown areas

 Collision-free navigation only in free space

 Exploration of unmapped areas

 Efficiency

 Compact in memory and on disk

 Efficient access and queries

Octree

 Tree-based data structure

 Recursive subdivision of

space into octants

 Volumes allocated

as needed

 Multi-resolution

4

Octrees for 3D Occupancy Maps

 Store occupancy probability in nodes

 Volumetric 3D model

 Probabilistic integration

 Memory-efficient

 Flexible extension of mapped area

5
Point cloud Elevation- / MLS-map Octree / 3D grid

OctoMap Framework

 Based on octrees

 Probabilistic representation of occupancy

including free and unknown areas

 Supports multi-resolution map queries

 Lossless compression

 Compact map files

6

OctoMap Framework

 Open source (BSD) implementation as C++
library available at octomap.github.io

 Fully documented

 Stand-alone, self-contained library for

Linux, Mac, and Windows

 Pre-built Debian packages for ROS electric

to hydro, see www.ros.org/wiki/octomap

 ROS integration in packages octomap_ros,

octomap_msgs, and octomap_server

 Collision checks in FCL / MoveIt!

7

OctoMap Framework

 Details in publication:

A. Hornung, K.M. Wurm,
M. Bennewitz, C. Stachniss,
and W. Burgard:

"OctoMap: An Efficient
Probabilistic 3D Mapping
Framework Based on
Octrees"
in Autonomous Robots
Vol 34, 2013

 Preprint available on
octomap.github.io

8

Probabilistic Map Update

 Occupancy modeled as recursive

binary Bayes filter [Moravec '85]

 Efficient update using log-odds

9

Map Update

 Clamping policy ensures updatability [Yguel '07]

 Update of inner nodes enables

multi-resolution queries

 Compression by pruning

a node’s identical children

10 [Kraetzschmar '04]

Sensor Model for Single Rays

end point

sensor origin

 Ray casting from sensor origin to end point

 Mark last voxel as occupied, all other voxels
on ray as free

 Measurements are integrated
probabilistically

 Implemented in OcTree::computeRay(...)
and OcTree::insertRay(...)

11

Sensor Model for 3D Scans

 Sweeping sensor, discretization into voxels

 Planes observed at shallow angle may
disappear in a volumetric map

 Solution: Update each voxel of a point cloud
at most once, preferring occupied endpoints

 Implemented in OcTree::insertScan(...)

12

Accessing Map Data

 Traverse nodes with iterators
 for(OcTree::leaf_iterator it = octree.begin_leafs(),

 end=octree.end_leafs(); it!= end; ++it)

 { // access node, e.g.:

 std::cout << "Node center: " << it.getCoordinate();

 std::cout << " value: " << it->getValue() << "\n";

}

 Ray intersection queries
 octree.castRay(...)

 Access single nodes by searching
 OcTreeNode* n = octree.search(x,y,z);

 if (n){

 std::cout << "Value: " << n->getValue() << "\n";

 }

13

Occupancy and Sensor Model

 Set occupancy parameters in octree
 octree.setOccupancyThres(0.5);

 octree.setProbHit(0.7); // ...setProbMiss(0.3)

 octree.setClampingThresMin(0.1); / ...Max(0.95)

 Check if a node is free or occupied
 octree.isNodeOccupied(n);

 Check if a node is “clamped”
 octree.isNodeAtThreshold(n);

14

Implementation Details

15

Writing Map Files (Serialization)

 Full probabilities encoded in

.ot file format

 octree.write(file);

 Maximum-likelihood map

stored as compact

bitstream in .bt file

 Occupied, free, and
unknown areas

 Small file sizes

 octree.writeBinary(file);

2 byte

16

Reading Map Files (Deserialization)

 Read from .ot file (any kind of octree):
AbstractOcTree* tree = AbstractOcTree::read(filename);

if(tree){ // read error returns NULL

 OcTree* ot = dynamic_cast<OcTree*>(tree);

 if (ot){ // cast succeeds if correct type

 // do something....

 }

}

 Read from .bt file (OcTree):
OcTree* octree = new OcTree(filename);

17

(De-)Serialization in ROS

 octomap_msgs/Octomap.msg contains
binary stream and header information

 Use octomap_msgs/conversions.h to
convert between octrees and messages

 Serialize:
 octomap_msgs::Octomap map_msg, bmap_msg;

octomap_msgs::fullMapToMsg(octree, map_msg); // (.ot)

octomap_msgs::binaryMapToMsg(octree, bmap_msg); // (.bt)

 Deserialize:
 AbstractOcTree* tree = octomap_msgs::msgToMap(map_msg);

 OcTree octree* = dynamic_cast<OcTree*>(tree);

 if (octree){ // can be NULL

 ...

 }

18

Map Visualization

 Native OctoMap
visualization:
octovis

 RViz:

 MarkerArray display from octomap_server

 octomap_rviz_displays

 MoveIt planning scene

19

3D Mapping in ROS (Outline)

 Build maps incrementally from point clouds with
octomap_server

 Remap topic “cloud_in” to your sensor’s PointCloud2

 Requires tf from map frame to sensor frame

 Example launch file in octomap_server

[Maier et al., HUMANOIDS '12] 20

OctoMap for Navigation

 OctoMap is a mapping framework,
expecting registered sensor poses

 Converts point clouds into 3D occupancy maps

 Not an integrated 3D SLAM solution

 Requires tf from sensor to map frame

 Example sources: localization, good odometry,
rgbdslam, or any other SLAM package

21

Using OctoMap in Your Project

 Standard CMake (stand-alone or in ROS)

 In CMakeLists.txt:
 find_package(octomap REQUIRED)

 include_directories(${OCTOMAP_INCLUDE_DIRS})

 link_libraries(${PROJECT_NAME} ${OCTOMAP_LIBRARIES})

 For ROS:
 manifest.xml (rosbuild): <rosdep name="octomap" />

 package.xml (catkin):

<build_depend>octomap</build_depend>

<run_depend>octomap</run_depend>

 Additional ROS packages for integration

 octomap_msgs: ROS messages & serialization

 octomap_ros: conversions from native ROS types

 22

API Documentation

 Latest released version online:
http://octomap.github.io/octomap/doc

 Generate from source: “make docs”

23

Example Data Sets

 Data set repository at
http://ais.informatik.uni-freiburg.de/
projects/datasets/octomap/

 Source data (3D laser scans) and final
occupancy maps for evaluation

 In- and outoor, small and large scale

24

Example: Office Building

 FR-079 corridor (44 x 18 x 3 m³, 5 cm resolution)

Octree in memory: 42 MB
Octree file: 16 MB (0.67 MB .bt)
3D Grid: 79 MB 25

Example: Large Outdoor Areas

 Freiburg campus (292 x 167 x 28 m³, 20 cm resolution)

Octree in memory: 130 MB
Octree file: 50 MB (2 MB .bt)
3D Grid: 649 MB

26

Example: Large Outdoor Areas

 New College (250 x 161 x 33 m³, 20 cm resolution)

Octree in memory: 51 MB
Octree file: 19 MB (1 MB .bt)
3D Grid: 633 MB

27

Example: Indoor Environment

 RGBD freiburg1_360 (8 x 7 x 5 m³, 2 cm resolution)

Octree in memory: 46 MB
Octree file: 22 MB (0.5 MB .bt)
3D Grid: 253 MB

28

Memory Usage (Freiburg campus)

29

Update and Query Times

Map update
(Avg. over 100000 points)

Traverse all leaf nodes

30

Application: Localization

 6D pose of a humanoid robot estimated
in OctoMap

 Monte Carlo localization based on
laser, IMU, and joint angle data

 Sensor model: ray casting in
OctoMap

[Hornung et al., IROS '10] 31

Application: Tabletop Manipulation

 collider package in ROS fuerte

 Directly integrated in MoveIt!

 OctoMap as probabilistic collision map

 Updates map from stereo and laser data

 Enables dynamic updates of the collision map

[Chitta et al., Robotics & Automation '12] 33

Application: Navigation in Clutter

 Collision map and obstacle avoidance for
mobile manipulation

 Enables moving through narrow passages and
docking tables

 Mapping in octomap_server

 Search-based planning
with motion primitives
and 2D / 3D collision
checks in 3d_navigation
stack

[Hornung et al., ICRA '12] 34

Extensions

Octree Hierarchies

 Local submaps with
different resolution
and origin

3D Distance Maps
 Incremental updates based on

change detection on OctoMap

 Available in OctoMap:
dynamicEDT3D

[Wurm et al., IROS '11]

[Lau et al., Robotics and Autonomous Systems '12]

36

Summary

 Memory-efficient map data structure
based on Octrees

 Volumetric representation of occupied,
free, and unknown space

 Implementation of common map
functionality: sensor updates, raycasting

 Open source code with integration into
ROS and MoveIt!

 Can be used for localization, obstacle
avoidance, manipulation, ...

37

Thanks for your attention!

YOUR OCTOMAP

NEEDS YOU
octomap.github.io: Fork & contribute new features,

report issues, discuss on the mailing list

