3D Mapping with OctoMap

http://octomap.github.io

Armin Hornung

IBURG

-2
=Y

¢ , Humanoid
Ch Robots Lab

Joint work with K.M. Wurm, M. Bennewitz, C. Stachniss, W. Burgard — University of Freiburg

Robots in 3D Environments

EU project ROVINA

Eric J. Tilford, US Navy

Requirements on a 3D
Representation

= Probabilistic representation to
= Handle sensor noise and dynamic changes
= Fuse multiple sensors

= Representation of free and unknown areas
= Collision-free navigation only in free space
= Exploration of unmapped areas

= Efficiency
= Compact in memory and on disk
= Efficient access and queries

Octree

Tree-based data structure

Recursive subdivision of
space into octants

Volumes allocated
as needed

Multi-resolution

Octrees for 3D Occupancy Maps

= Store occupancy probability in nodes
= Volumetric 3D model

= Probabilistic integration

= Memory-efficient

= Flexible extension of mapped area

Point cloud Elevation- / MLS-map Octree / 3D grid

OctoMap Framework

= Based on octrees

= Probabilistic representation of occupancy
including free and unknown areas

= Supports multi-resolution map queries
= L ossless compression
= Compact map files

X0

N
o0

OctoMap Framework

Open source (BSD) implementation as C++
library available at octomap.github.io

Fully documented
Stand-alone, self-contained library for
Linux, Mac, and Windows

Pre-built Debian packages for ROS electric
to hydro, see www.ros.org/wiki/octomap

ROS integration in packages octomap_ros,
octomap_msgs, and octomap_server

Collision checks in FCL / Movelt!

OctoMap Framework

= Details in publication:

A. Hornung, K.M. Wurm,

M. Bennewitz, C. Stachniss, e

and W. Burgard:

"OctoMap: An Efficient
Probabilistic 3D Mapping
Framework Based on
Octrees"

in Autonomous Robots

Vol 34, 2013

..........

= Preprint available on
octomap.github.io

Probabilistic Map Update

= Occupancy modeled as recursive
binary Bayes filter [Moravec '85]

P(n ‘ Zl:t) —
1—P(n|z) 1—P(n|z2:4-1) Pm)]

YT TPz POl zie1) 1-P(n)

= Efficient update using log-odds
L(n|z14) = L(n|z14-1) + L(n | 2)

Map Update

= Clamping policy ensures updatability rvguel '07]
L(n) € [Imin, Imax]

= Update of inner nodes enables

multi-resolution queries

L(n) = max L(n,)

= Compression by pruning
a node’s identical children

[Kraetzschmar '04] 10

Sensor Model for Single Rays

= Ray casting from sensor origin to end point
= Mark last voxel as occupied, all other voxels

on ray as free

= Measurements are integrated

probabilistically

= Implemented in OcTree: :computeRay(...)
and OcTree::insertRay(...)

4

V

s)

end point

sensor origin

11

Sensor Model for 3D Scans

= Sweeping sensor, discretization into voxels

= Planes observed at shallow angle may
disappear in a volumetric map

= Solution: Update each voxel of a point cloud
at most once, preferring occupied endpoints

= Implemented in OcTree::insertScan(...)

Accessing Map Data

= Traverse nodes with iterators

for (OcTree::leaf iterator it = octree.begin leafs(),
end=octree.end leafs(); 1it!= end; ++1t)

{ // access node, e.g.:

std::cout << "Node center: " << it.getCoordinate();

std::cout << " wvalue: " << it->getValue() << "\n";
}

= Ray intersection queries
" octree.castRay(...)

= Access single nodes by searching

OcTreeNode* n = octree.search(x,vy,z);
it (n) {

std::cout << "Value: " << n->getValue() << "\n";

13

Occupancy and Sensor Model

= Set occupancy parameters in octree

" octree.setOccupancyThres (0.5);
" octree.setProbHit (0.7); // ...setProbMiss (0.3)
" octree.setClampingThresMin(0.1); / ...Max(0.95)

= Check if a node is free or occupied

= octree.1sNodeOccupied(n);

= Check if a node is “clamped”
" octree.isNodeAtThreshold (n) ;

14

Implementation Details

AbstractOcTree

A

_____ NodeType:T

OcTreeBase|

root: T*
[=m—== === L

NodeType:T,

OccupancyOcTreeEia's'e] T

A

|
OcTree

ColorOcTree

OcTreeDataNode]

DataType:Tl1

value: T

childPtr: OcTreeDataNode <T>** je@p————

OcTreeNode
root: OcTreeNode* |.—|7
value: float

A

A

root: ColorOcTreeNode* j«@»

ColorOcTreeNode
color: ColorRGB

0

1

!

ChildArray

15

Writing Map Files (Serialization)

= Full probabilities encoded in
.ot file format

" octree.write(file);

= Maximume-likelihood map s oz
stored as compact *_T
bitstream in .bt file ST T
= Occupied, free, and ﬁT : :
unknown areas Lo
. Small file sizes SERITT S e
" octree. writeBinary (flle) : ...%..99..}}....(Q%..%...?.Q...l!?...é..ﬁ

01 00 00 00 10 00 00 0O

16

Reading Map Files (Deserialization)

= Read from .ot file (any kind of octree):

AbstractOcTree* tree = AbstractOcTree::read(filename);
if (tree){ // read error returns NULL

OcTree* ot = dynamic cast<OcTree*>(tree);

if (ot){ // cast succeeds if correct type

// do something....
}

= Read from .bt file (OcTree):

OcTree* octree = new OcTree (filename) ;

17

(De-)Serialization in ROS

octomap_msgs/Octomap.msg contains
binary stream and header information

Use octomap_msgs/conversions.h to
convert between octrees and messages

Serialize:

octomap msgs::0ctomap map msg, bmap msg;
octomap msgs::fullMapToMsg (octree, map msg); // (.ot)
octomap msgs::binaryMapToMsg (octree, bmap msg); // (.bt)

Deserialize:
AbstractOcTree* tree = octomap msgs::msgToMap (map msqg) ;
OcTree octree* = dynamic cast<OcTree*>(tree);

if (octree){ // can be NULL

18

Map Visualization

= Native OctoMap
visualization:
octovis

= RViz:
= MarkerArray display from octomap_server
= octomap_rviz_displays
= Movelt planning scene

19

3D Mapping in ROS (Outline)

Build maps incrementally from point clouds with
octomap_server

Remap topic “cloud_in" to your sensor’s PointCloud?2
Requires tf from map frame to sensor frame
Example launch file in octomap_server

V 4

[Maier et al., HUMANOIDS '12] 20

OctoMap for Navigation

= OctoMap is a mapping framework,
expecting registered sensor poses
= Converts point clouds into 3D occupancy maps
= Not an integrated 3D SLAM solution

= Requires tf from sensor to map frame

= Example sources: localization, good odometry,
rgbdslam, or any other SLAM package

21

Using OctoMap in Your Project

= Standard CMake (stand-alone or in ROS)
= In CMakelists.txt:

find package (octomap REQUIRED)
include directories (${OCTOMAP INCLUDE DIRS})
link libraries (S{ PROJECT NAME } S {OCTOMAP LIBRARIES})

= For ROS:

= manifest.xml (rosbuild): <rosdep name="octomap" />

= package.xml (catkin):
<build depend>octomap</build depend>
<run depend>octomap</run depend>

= Additional ROS packages for integration
= octomap_msgs: ROS messages & serialization
= octomap_ros: conversions from native ROS types

22

PI Documentation

= | atest released version online:
ttp://octomap.github.io/octomap/doc

= Generate from source: "make docs”

A2 @ octomap: Octomap - Mozilla Firefox o & B
File Edit Wiew History Bookmarks Tools Help
| octomap: Octormap || + |

Qi | octormap. sourceforge.net/doxygen, - @ |“'V

octomap 142

Main Page Namespaces | Data Structures Files Q Search

— I \
| o
Cctomap P
[Data Structures
octomap: abstractOcTres

octomap: ColorDcTreeMode:Calor [} The Octomap library implements a 30 occupancy grid mapping approach, Ik provides data structures
and mapping algorithms. The map is implemented using an Octree. It is designed to meet the
following reguirements:

Introduction

octomap:: ColorOcTree

octomap:: ColorocTreeode
octomap: CountingDcTree * Full 3D model. The map is able to model arbitrary environments without prior assumptions
ahout it. The representation models ocoupied areas as well as free space. If no infarmation is
available about an area {commonly denoted as undnown areas), this information is encoded
octomap: equal_keys as well, ¥hile the distinction between free and occupied space is essential for safe robot
sty [ews navigation, information about unknown areas is impartant, e.g., for autonomous exploration
- of an enviranment.

Updatable. It is possible to add new information or sensor readings at any time. Modeling
octomap:: OcTreekey: KeyHash and updating is done in a probabiistic fashion, This accounts for sensor noise or
measurements which result from dynamic changes in the environment, e.g., because of
dynamic objects, Furthermore, multiple robots are able to contribute to the same map and a
octomap:: OcTreeBase« MODE >::leaf previously recorded map is extendable when new areas are explored,

octomap:: CountingOcTreeMode

octomap::
octomap:: OcTreeBase< NODE =::iter.

octomap: KeyRay

octomap:: CcTreeBase< NODE =::leaf] . . .

®) # Flexible. The extent of the map does not have to be known in advance. Instead, the map is
actomap::MapCallections< MAPNODE dynamically expanded as needed. The map is multi-resolution so that, for instance, a
actomap::Maphode< TREETYPE = high-evel planner is able to use a coarse map, while a local planner may operate using a fine

resolution. This also allows far efficient visualizations which scale from coarse overviews to
detailed dose-up views.

Compact. The is stored efficiently, both in memory and on disk. It is possible to generate
actoman: OcTreeBases MODE = = compressed files for later usage or convenient exchange hetween robots even under

T Db bandwidth constraints.

octomap: CccupancyOcTreebase< NG

octomap: OcTres

-

Generated on Wed Apr 25 2012 10:42:03 for octomnap by G!L@Ay‘ge 1.7.4

Example Data Sets

= Data set repository at
nttp://ais.informatik.uni-freiburg.de/
projects/datasets/octomap/

= Source data (3D laser scans) and final
occupancy maps for evaluation

= In- and outoor, small and large scale N

Example: Office Building

= FR-079 corridor (44 x 18 x 3 m3, 5 cm resolution)

2
7 -
L% 2
l".:? 4

¢ i
I, = 2 -
- i
» .

Octree file: 16 MB (0.67 MB .bt)
3D Grid: 79 MB 5t

} 4 % Octree in memory: 42 MB

Example: Large Outdoor Areas

= Freiburg campus (292 x 167 x 28 m3, 20 cm resolution)

—— T ‘ o

R RGBT 2E 25 = T ETEN

23da,

Octree in memory: 130 MB
Octree file: 50 MB (2 MB .bt)
3D Grid: 649 MB

Example: Large Outdoor Areas

= New CoIIege (250 x 161 x 33 m3, 20 cm resolution)

Octree in memory: 51 MB
Octree file: 19 MB (1 MB .bt)

3D Grid: 633 MB
27

Example: Indoor Environment

= RGBD freiburgl_ 360 (8 x 7 x 5 m3, 2 cm resolution)

5

Memory Usage (Freiburg campus)

Memory [MB]

|]
—a— Full 3D grid

- @ - No compression
—a— (Jctree compression
-« -+ ML Octree compression
*.. . .
| | -
0.1 0.2 0.4 0.8 1

Resolution [m]

29

Update and Query Times

—+— Freiburg campus 50 —+— Freiburg campus (20 cm)
1 - 4 = Freiburg campus, trunc. | | - 4 = New College (20cm)
=—t— FR-079 corridor 40 —+— FR-079 corridor (5cm)
«««p .- FR-079 corridor, trunc. .
= 2
5 = 30
£ & .
a = o201 *
10 |- =
0.2 0.4 0.6 0.8 1 0 1 2 3 4
Resolution [m] Depth cutoff
Map update Traverse all leaf nodes

(Avg. over 100000 points)

30

Application: Localization

= 6D pose of a humanoid robot estimated
in OctoMap

= Monte Carlo localization based on
laser, IMU, and joint angle data

= Sensor model: ray casting in
OctoMap

:

[Hornung et al., IROS '10] 31

Application: Tabletop Manipulation

= collider package in ROS fuerte I
= Directly integrated in Movelt! >M0th'
= OctoMap as probabilistic collision map

= Updates map from stereo and laser data
= Enables dynamic updates of the collision map

33

Application: Navigation in Clutter

= Collision map and obstacle avoidance for
mobile manipulation

= Enables moving through narrow passages and
docking tables

= Mapping in octomap_server

= Search-based planning
with motion primitives
and 2D / 3D collision
checks in 3d_navigation
stack

[Hornung et al., ICRA '12] 34

Extensions

Octree Hierarchies

= Local submaps with
different resolution
and origin

[Wurm et al., IROS '11]

3D Distance Maps

= Incremental updates based on
change detection on OctoMap

= Available in OctoMap:
dynamicEDT3D

[Lau et al., Robotics and Autonomous Systems '12]
36

Summary

Memory-efficient map data structure
based on Octrees

Volumetric representation of occupied,
free, and unknown space

Implementation of common map
functionality: sensor updates, raycasting

Open source code with integration into
ROS and Movelt!

Can be used for localization, obstacle
avoidance, manipulation, ...

37

Thanks for your attention!

" YOUR OCTOMAP |

4

| |
-
_ NEeDS YOU

octomap.github.io: Fork & contribute new features,
report issues, discuss on the mailing list

