
ROSCon 2013

Stuttgart, 12th May 2013

Introducing rosc







Synapticon DYNARC Platform



Steps towards Embedded ROS

Common architecture supported by ROS today

Navigation / 
Motion 

Planning

Perception

Motion Control
( ROS Proxy )

Fieldbus 
Protocol Stack

Motor Control

M
incl. Sensors

Fieldbus 
Protocol Stack

Motor Control

S
e.g. KinectUSB

M
incl. Sensors

Non-ROS

ROS



Steps towards Embedded ROS

Common architecture supported by ROS today

Navigation / 
Motion 

Planning

Perception

Motion Control
( ROS Proxy )

Fieldbus 
Protocol Stack

Motor Control

M
incl. Sensors

Fieldbus 
Protocol Stack

Motor Control

S
e.g. KinectUSB

M
incl. Sensors

Non-ROS

ROS

Established, but has some drawbacks:

• Control loops being closed over fieldbuses

 1 kHz / 10 axes is mostly the limit

 Safety-criticality

• Motion Control fights against all the rest on the PC

 Bad motion control quality

 Less resources for higher intelligence



Steps towards Embedded ROS

Architecture requested (and delivered by rosc & µROSnode)

Navigation / 
Motion 

Planning

Perception

Motor Control

M
incl. Sensors

Motor Control

S
e.g. Kinect

M
incl. Sensors

Preprocessing/
Compression

Motion Control
( ROS Proxy )

Non-ROS

ROS



Steps towards Embedded ROS

Navigation / 
Motion 

Planning

Perception

Motor Control

M
incl. Sensors

Motor Control

S
e.g. Kinect

M
incl. Sensors

Preprocessing/
Compression

Motion Control

Motion Control

Non-ROS

ROS

Architecture requested (and delivered by rosc & µROSnode)



moving straight

wheels rotate in same direction

moving sideways

wheels rotate in opposite directions

moving diagonally

two diagonally opposite wheels stand still

two others rotate in same direction

rotate around central axis

wheels on one side rotate in opposite

direction to wheels on other side

Meccanum wheel

with passive rollers

Instantaneous superposition of platform translation and rotation

Pictures courtesy of KUKA Laboratories



Industry Default: Centralized Motion Control Architecture

500 rpm!

800 rpm!

350 rpm!

1200 rpm!

Centralized
Dynamics 

Model & Control
using a PC

Pictures courtesy of KUKA Laboratories



Advanced Alternative: Distributed Motion Control Architecture

Abstract translation commands: 
„Move to X,Y + a° + mm/s !“

Dynamics
Model & Control

running on Motor 
Control Level

Pictures courtesy of KUKA Laboratories



Steps towards Embedded ROS

„Embedded“

• ARM Cortex A (32bit): Beagle, Panda, Raspi, ODROID, Phytec

• Intel Atom (64bit): Congatec, Kontron

„Small Embedded“

• ARM Cortex M (32bit): mbed

• AVR (8-32bit): Arduino

• XMOS (32bit): Synapticon SOMANET

Control & Data 
Acquisition

Perception & 
Intelligence



Steps towards Embedded ROS

rosc

• ROS client library for Small Embedded devices

• XML-RPC

• TCPROS

• Light-weight (< 32 kB memory on XMOS*)

• No dependencies

• ANSI C (99)



Steps towards Embedded ROS

rosc

• ROS client library for Small Embedded devices

• XML-RPC

• TCPROS

• Light-weight (< 32 kB memory on XMOS*)

• No dependencies

• ANSI C (99)

* XMOS Arch:

• 32bit

• Multicore (4-32)

• 125 Mhz/Core

• 64kB RAM/Tile

• Hard real-time



µROSnode & rosc

Aspect µROSnode rosc

Background University project Commercial open-source

Status Working demos available 70% of first release

Long-term No certain plans Aims to be major ROS 
Industrial/Products client lib

Memory Compact 
(1 MB reference device)

As small as possible
(64 kB reference device)

OS ChibiOS & POSIX reference Bare-metal reference

Transport OS driver (LWIP) Modular transport layer
concept



Components of rosc

Your (ROS 

compatible)

code

rosc main

Ethernet

rosc bare-metal

comm pkg

rosc Arch

support pkg

rosc OS support pkg



Building a node with rosc

Your (ROS 

compatible)

code

rosc main

Ethernet

rosc bare-metal

comm pkg

rosc Arch

support pkg

rosc OS support pkg

Executable

Flashable

binary



The XML-RPC pain



The XML-RPC pain

XML-RPC

What common
developers think about it

What embedded
developers think about it

[animated GIF]
[animated GIF]



Current features of rosc (1)

HTTP/XML Parser

• Size: < 10 kB (on XMOS)
• Time for parsing: 139µs 

(publisherUpdate msg on XMOS, 125MHz, 100 byte buffer)
• Features/Limitations:

• Streaming Parser 
(parsing on demand, fully variable buffersize 1 Byte - XXX Bytes)

• Almost fully validating
(unknown tags can not be validated)

• Does not support any encoding
(e.g. gzip, due to it's streaming nature)

• Maximum depth for tags: 20 
(can be set to any value by #define)



XML-RPC Message Generator

• Size: < 7 kB (on XMOS)

Port Interface Handling (Services, Topics, XML-RPC)

• Limitations on bare-metal systems:
Fixed amount of ports and thus a limited amount
of possible connections

ROS msg Header/Source Generation

TCPROS (Un-)Marshalling

Current features of rosc (2)

+ Future dev towards ROS Industrial/Products



Non-ROS

ROS

Steps towards Industrial/Product ROS

Navigation / 
Motion 

Planning

Perception

Motor Control

M
incl. Sensors

Motor Control

S
e.g. Kinect

M
incl. Sensors

Preprocessing/
Compression

Motion Control

Motion Control

Real-time 
would be

nice!

Solution requested (and delivered by rosc & µROSnode)



Non-ROS

ROS

Steps towards Industrial/Product ROS

ROS on all levels (not possible using today‘s ROS!)

Navigation / 
Motion 

Planning

Perception

Motor Control

M
incl. Sensors

Motor Control

S
e.g. Kinect

M
incl. Sensors

Preprocessing/
Compression

Motion Control

Motion Control

Real-time 
required!



Requirements for a future-proof (Embedded) ROS

• Transport-independent (TCP/IP not required)

• Standard application protocols & reference architectures
(Compatibility)

• Real-time capable (msg queues, transport)

• Replacement of XML-RPC (by JSON, or even ROSRPC?…)

• No master anymore (at least multi-master support)

• Model-based toolchain support

• Long-term support by foundation & suppliers

• Quality metrics & automated QA process



Requirements for a future-proof (Embedded) ROS

• Transport-independent (TCP/IP not required)

• Standard application protocols & reference architectures
(Compatibility)

• Real-time capable (msg queues, transport)

• Replacement of XML-RPC (by JSON, or even ROSRPC?…)

• No master anymore (at least multi-master support)

• Model-based toolchain support

• Long-term support by foundation & suppliers

• Quality metrics & automated QA process



Draft for a RT-capable, master-free rosc

Your Code Your Codee.g. OROCOS

Master Comm
(XML-RPC)

Process Comm
(TCP/UDPROS)

Message Handling

Another Node Master

Mainly ROS is not RT-
capable because of:

• IP transport

• Client implementations 
not supporting RTOS 
mechanisms



Draft for a RT-capable, master-free rosc

Your Code Your Codee.g. OROCOS

Master Comm
(Protocol tbd)

Soft-RT enabled
UDPROS

RT
Message Handling
(Process Comm)

Broadcast 
Channel

Non-RT 
Message Handling

(Master Comm)

CoEROS
(EtherCAT CoE)

CANROS
(CANopen)

LocalROS
(inter-process)

Another Node

RT-capable ROS MW 
needs to support RT

• Multi-threading

• Scheduling

• Transport



synapticon.com

Synapticon GmbH, Hohlbachweg 2, 73344 Gruibingen, Germany

Contacts: Nikolai Ensslen, nensslen@synapticon.com, +49 7335 186 999 16
Christian Holl, choll@synapticon.com, +49 7335 186 999 11 

www.ros.org/wiki/rosc

ROS Industrial & Products Meet-up @ Columbus, Sunday 7 pm


