

Security implications of the Internet transition to IPv6

Eric VYNCKE Cisco

Session ID: ASEC-209 Session Classification: Intermediate

Agenda

- There is no place for doubts: IPv6 is there
- Impact in the Data Center
- Impact on applications and their security
- What about logging?
- Call for action

There is no place for doubts: IPv6 is there

No Doubt Anymore: IPv4 is Out

addresses must demonstrate how an organisation is using the new, replacement, addressing scheme.

Europe's stock of old-style net addresses has effectively run dry. ig for quite some time," states Raúl Echeberría, the five RIRs. "The future of the Internet is in IPv6.

RSACONFERENCE

cisco

GETTY/IMAGES

IPv6 in One Slide

- IPv6 is IPv4 with larger addresses
 - 128 bits vs. 32 bits
 - NAT no more needed => easier for applications
 - Simpler hence more security
- Data-link layer unchanged: Ethernet, xDSL, ...
- Transport layer unchanged: UDP, TCP, …
- Applications "unchanged": HTTP, SSL, SMTP, …
- IPv6 is not really BETTER than IPv4 because it is 'new'
 - IPv6 has been specified in 1995...
 - IPsec is identical in IPv4 & IPv6
 - Only benefit is a much larger address space

Service Providers Dual-Stack (IPv6 + IPv4) with SP IPv4 NAT

RSACONFERENCE

2012

- IPv6 being available all the way to the consumer
- SP core and customer has to use IPv4 NAT due to v4 depletion

ılıılı cısco

Users in Dual-Stack Selecting IPv4 or IPv6

IPv4

RSACONFERENCE

EUROPE

2012

-RFC 6555: Happy Eyeball, try both and keep the fastest

-RFC 6724: local policy, usually IPv6 is preferred

cisco

Impact in the Data Center

Innocent W2K3 -to- W2K8 Upgrade

Windows 2003

C:\>ping svr-01

```
Pinging svr-01.example.com [10.121.12.25] with 32 bytes of data:
Reply from 10.121.12.25: bytes=32 time<1ms TTL=128
```

Upgraded Host to Windows 2008

C:\>ping svr-01

```
Pinging svr-01 [fe80::c4e2:f21d:d2b3:8463%15] with 32 bytes of data:
Reply from fe80::c4e2:f21d:d2b3:8463%15: time<1ms
Reply from fe80::c4e2:f21d:d2b3:8463%15: time<1ms
Reply from fe80::c4e2:f21d:d2b3:8463%15: time<1ms
Reply from fe80::c4e2:f21d:d2b3:8463%15: time<1ms</pre>
```

ALL recent OS have IPv6 enabled by default and prefer it...

=> Enable IPv6 host security and IPv6 IPS

cisco

IPv6 in the IPv4 Data Center Don't be Blind

IPv6 traffic by default, using link-local addresses

cisco

Impact on Application Security

Reputation of Shared IPv4 Address

- Every IPv4 address has a reputation
 - Either blacklist or more sophisticated (senderbase.org)
 - Used to detect spam, botnet members, …
- It is fine as long as:
 - One IPv4 == One legal entity (subscriber)
- What if
 - One IPv4 == 10.000 entities/subscribers through SP NAT?

ıılıılıı cısco

Shared IPv4 Address and DoS Mitigation

- Usual way to block a Denial of Service (DoS) against a server is to block the source IPv4 address(es)
 - Before SP NAT: ok because it blocks only the attacker
 - With SP NAT: will block the attacker but also 9.999 potential users/customers

Shared IPv4 Address and Rate Limiting

Applications throttle use per IPv4 address

- When address is sharing by 1000's of people the usage threshold is crossed
- And rate limiters are triggered even for legit traffic
- Example with AT&T using NAT for mobile phones

http://www.goog	gle.com/m/search	?q=stig+Vena.
sorry.google.	com/sorr 🖒	Google

To continue, please type the characters below:

lori	-		
dan	70		
04		- 3	

About this page

Our systems have detected unusual traffic from your computer network. This page checks to see if it's really you sending the requests, and not a robot. Why did this happen?

IP address: <u>166.205.139.102</u> Time: 2010-12-06T22:41:57Z URL: http://www.google.com/m/search? q=stig+Venaas&ie=UTF-8&oe=UTF-8&hl=en&client=safari

ıılıılı cısco

Penetration testing must be done over IPv6 PCI DSS Compliance is achievable with IPv6 (even w/o NAT)

....... **CISCO**

Rate Limiting IPv6

IPv4 is easy:

.......

CISCO

- One subscriber is 32-bit IPv4 address
- Rate limit per 32-bit: scalable
- IPv6 could be more complex
 - Rate limit per 128-bit: does not scale
 - One subscriber is /48 to /64
 - You may want to rate limit per 48-bit entries or 64-bit entries
- The industry has yet to learn how to do it!

Adding Reputation to IPv6

- Not a lot of data until now...
- Chicken and egg issue

- No reputation DB => nobody filters content over IPv6
- Nobody filtering content over IPv6 => no data added to IPv6
- Geolocation was an issue with IPv6
 - Compliance often restricts access based on country
 - Getting better now (at least at country level)
 - Use of tunnels (for transition) often hides the real country...

The IPsec IPv6 Myth: IPsec End-to-End will Save the World and TLS is Dead

- RFC 6434 "IPsec SHOULD be supported by all IPv6 nodes" (no more a MUST)
- IPsec in IPv6 will be use in the same way as in IPv4
 - Need to trust endpoints and end-users because the network cannot secure the traffic: no IPS, no ACL, no firewall
 - Network telemetry is blinded: NetFlow of little use

SSL will still be used in IPv6 in the same way as in IPv4 for VPN and application security

IPsec use case limited to VPN

IPv6 Attacks with Strong IPv4 Similarities

Application layer attacks

Good news IPv4 IPS signatures can be reused

- The majority of vulnerabilities on the Internet today are at the application layer, something that IPSec will do nothing to prevent
- Man-in-the-Middle Attacks (MITM)
 - Without strong mutual authentication, any attacks utilizing MITM will have the same likelihood in IPv6 as in IPv4
- Sniffing
 - IPv6 is no more or less likely to fall victim to a sniffing attack than IPv4

cisco

SQLMAP Works over IPv6

\$ python sqlmap.py -u http://6lab.cisco.com/stats/cible.php?country=FR sqlmap/1.0-dev - automatic SQL injection and database takeover tool ... [20:29:05] [INFO] testing connection to the target url [20:29:06] [INFO] testing if the url is stable, wait a few seconds [20:29:08] [INFO] url is stable [20:29:08] [INFO] url is stable [20:29:08] [INFO] testing if GET parameter 'country' is dynamic [20:29:09] [WARNING] GET parameter 'country' appears to be not dynamic [20:29:09] [WARNING] reflective value(s) found and filtering out [20:29:09] [WARNING] heuristic test shows that GET parameter 'country'

[2a02:578:X:Y:Z/-]:62754 - - [18/Sep/2012:13:27:40 -0500] "GET /stats/cible.php?country=FR%29%20AND%204025%3D5454%20AND%20%285900%3D5900 HTTP/1.1" 200 2111

[2a02:578:X:Y:Z/-]:62755 - - [18/Sep/2012:13:27:41 -0500] "GET /stats/cible.php?country=FR%29%20AND%203881%3D3881%20AND%20%284387%3D4387 HTTP/1.1" 200 2109

cisco

Dual-Stack IPS Engines Service HTTP

🏐 Home 쵫 Configuration <u></u> E	vent Monitoring 🚮 Reports	Help						cisco
Event Monitoring 급 무	Event Monitoring > Event M	1onitoring > Event Views						
💠 New 📋 Delete	🍓 View Settings							H Video Help
Event Views	Filter Group By Cold	r Rules Fields General					🔚 Sa	ive As 🔄 Re:
E P INI VIEWS	Filter Name: Basic Filter							
	Packet Parameters		R	ating and Action Pa	rameters	Other	Parameters	
	Attacker IP:			verity: 🔽	High 🔽 Medium 🔽 Low	✓ Info. Sensor	Name(s):	
	Victim IP:			sk Rating:	Reputation:		Sensor:	
	Circulture Name //Dr			in un un	M Kepacadon (
	Signature Name/10:			ireat Rating:		Status:	INew	
	Victim Port:		2 A	tion(s) Taken:		Vict. Lo	cality:	
	Pause Event Severity Date	Show All Details 4 Filter	Sign Name	Stop Attacker	Tools Attacker IP	her -	Vicitm Port	Threat Rating
	Jow 06/11/2009	17:06:56 4240-munsec	Dot Dot Slash in URI	5256/0	192.168.200.46	192.168.200.38	80	5
	Q low 06/11/2009	17:07:14 4240-munsec	Dot Dot Slash in URI	5256/0	2001:db8:0:0:0:0:0:46	2001:db8:0:0:0:0:0:38	80	4

	1 2 cuir signature 📲 create Rule 🔀					
	Sig. Name	Sig. ID	Attacker IP	Victim IP	Vicitm Port	Tŀ
с	Dot Dot Slash in URI	5256/0	192.168.200.46	192.168.200.38	80	
с	Dot Dot Slash in URI	5256/0	2001:db8:0:0:0:0:0:46	2001:db8:0:0:0:0:0:38	80	

What about Logging

Shared IPv4 Address and Forensic

- SP will have to keep all the translation log (data retention)
 - <time, subscriber internal IP, subscriber internal TCP/UDP port, subscriber external TCP/UDP port, Internet IP, Internet TCP/UDP port>
 - <10:23:02 UTC, 10.1.2.3, 6543, 23944, 91.121.200.122, 80>
- AND, the server will have to extend the log to include the TCP/UDP port
 - See also RFC 6302 "Internet-Facing Server Logging"
- "At 10:23:02 who was using the shared port 23944?"

Logging IPv6 Addresses

- IPv6 addresses stored as string = 39 chars
 - If stored in a 15 chars field (for IPv4), then you
 - Crash
 - Loose important information
- If doing protocol translation at Server Load Balancers
 - Configure SLB64 to insert "X-Forwarded-For" HTTP header

Augmented Logging in Apache 2.4

LogFormat "[%h/%{X-Forwarded-For}i]:%{remote}p %l %u %t \"%r\" %>s %b" common

[220.181.108.X/-]:53958 - - [09/Sep/2011:10:10:26 +0200] "GET /nav/ HTTP/1.1" 200 7112

[10.0.0.1/2001:700:700:20:221:X:Y:Z]:47191- - [09/Sep/2011:10:10:27 +0200] "GET /nav/nav.js HTTP/1.1" 200 33519

```
[2001:6f8:1468:X::Z/-]:3268 - - [09/Sep/2011:10:10:49 +0200] "GET /ping_ws.php HTTP/1.0" 200 53
```


On the Other Hand...

- NAT is obfuscating a lot...
- Some may believe it is useful to be hidden...
 - Security by obscurity
- NAT also makes
 - audit-trail more complex
 - Keeping ACL up-to-date an daunting task!
- IPv6 does not have NAT, easier to audit-trail

RSACONFERENCE

Multiple Facets to IPv6 Addresses

- Every host can have multiple IPv6 addresses simultaneously
 - Need to do correlation!
 - Alas, no Security Information and Event Management (SIEM) supports IPv6
 - Usually, a customer is identified by its /48 [©]
- Every IPv6 address can be written in multiple ways
 - 2001:0DB8:0BAD::0DAD
 - 2001:DB8:BAD:0:0:0:0:DAD
 - 2001:db8:bad::dad (this is the canonical RFC 5952 format)
 - => Grep cannot be used anymore to sieve log files...

RSACONFERENCE EUROPE 2012

Perl Grep6

```
#!/usr/bin/perl -w
use strict ;
use Socket ;
use Socket6 ;
my (@words, $word, $binary address, $address) ;
$address = inet pton AF INET6, $ARGV[0] ;
if (! $address) { die "Wrong IPv6 address passed as argument" ; }
## go through the file one line at a time
while (my $line = <STDIN>) {
         @words = split / [ \n () []] /, $line ;
         foreach $word (@words) {
                 $binary address = inet pton AF INET6, $word ;
                 if ($binary address and $binary address eq $address) {
                          print $line ;
                          next ;
         }
```

ıılıılı cısco

Call for Action

Apply Slide

- Enable source port logging per RFC 6302
- Learn more about IPv6 and its security
 - In short: 99% as IPv4 ;-)
- Increase size of address logging fields to 39 chars

32

RSACONFERENCE

- Review/audit critical security pieces
 - Audit-trail
 - Rate-limiting
 - Access control / reputation
 - Penetration test

ılıılı cısco