

SSSCCCAAA SSSeeerrrvvviiiccceee CCCooommmpppooonnneeennnttt AAArrrccchhhiiittteeeccctttuuurrreee

JMS Binding Specification

SCA Version 1.00, March 21 2007

Technical Contacts: Rajith Attapattu Red Hat

 Henning Blohm SAP AG

Simon Holdsworth IBM Corporation

 Eric Johnson TIBCO Software Inc.

 Anish Karmarkar Oracle

Michael Rowley BEA Systems, Inc.

JMS Binding Specification V1.00 March 2007 ii

Copyright Notice

© Copyright BEA Systems, Inc., Cape Clear Software, International Business Machines Corp, Interface21, IONA
Technologies, Oracle, Primeton Technologies, Progress Software, Red Hat, Rogue Wave Software, SAP AG., Siemens
AG., Software AG., Sun Microsystems, Inc., Sybase Inc., TIBCO Software Inc., 2005, 2007. All rights reserved.

License

The Service Component Architecture Specification is being provided by the copyright holders under
the following license. By using and/or copying this work, you agree that you have read, understood
and will comply with the following terms and conditions:

Permission to copy, display and distribute the Service Component Architecture Specification and/or
portions thereof, without modification, in any medium without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the Service Component Architecture
Specification, or portions thereof, that you make:

1. A link or URL to the Service Component Architecture Specification at this location:

• http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

2. The full text of the copyright notice as shown in the Service Component Architecture Specification.

BEA, Cape Clear, IBM, Interface21, IONA, Oracle, Primeton, Progress Software, Red Hat, Rogue
Wave, SAP, SIEMENS AG, Software AG., Sun Microsystems, Sybase, TIBCO (collectively, the
“Authors”) agree to grant you a royalty-free license, under reasonable, non-discriminatory terms
and conditions to patents that they deem necessary to implement the Service Component
Architecture Specification.

THE Service Component Architecture SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS
MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS
SPECIFICATION AND THE IMPLEMENTATION OF ITS CONTENTS, INCLUDING, BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT
OR TITLE.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF THE
Service Components Architecture SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including advertising or
publicity pertaining to the Service Component Architecture Specification or its contents without
specific, written prior permission. Title to copyright in the Service Component Architecture
Specification will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

JMS Binding Specification V1.00 March 2007 iii

Status of this Document

This specification may change before final release and you are cautioned against relying on the
content of this specification. The authors are currently soliciting your contributions and suggestions.
Licenses are available for the purposes of feedback and (optionally) for implementation.

IBM is a registered trademark of International Business Machines Corporation in the United States,
other countries, or both.

BEA is a registered trademark of BEA Systems, Inc.

Cape Clear is a registered trademark of Cape Clear Software

IONA and IONA Technologies are registered trademarks of IONA Technologies plc.

Oracle is a registered trademark of Oracle USA, Inc.

Progress is a registered trademark of Progress Software Corporation

Primeton is a registered trademark of Primeton Technologies, Ltd.

Red Hat is a registered trademark of Red Hat Inc.

Rogue Wave is a registered trademark of Quovadx, Inc

SAP is a registered trademark of SAP AG.

SIEMENS is a registered trademark of SIEMENS AG

Software AG is a registered trademark of Software AG

Sun and Sun Microsystems are registered trademarks of Sun Microsystems, Inc.

Sybase is a registered trademark of Sybase, Inc.

TIBCO is a registered trademark of TIBCO Software, Inc.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Table of Contents

SCA Service Component Architecture... i
Copyright Notice .. ii
License... ii
Status of this Document ...iii
Table of Contents.. i
1 Messaging and JMS Bindings.. 1
1.1 Introduction .. 1
1.2 Operation Selection and Data Binding ... 1
1.3 Messaging Bindings .. 1
1.4 JMS Binding Schema .. 2
1.5 Default Operation Selection and Data Binding behavior.. 5
1.5.1 Default Operation Selection... 5
1.5.2 Default Data Binding.. 5
1.6 Policy ... 6
1.7 Callback and Conversation Protocol .. 6
1.7.1 JMS User Properties ... 6
1.7.2 Callbacks ... 6
1.7.3 Conversations ... 6
1.8 Examples.. 7
1.8.1 Minimal Binding Example.. 7
1.8.2 URI Binding Example ... 8
1.8.3 Binding with Existing Resources Example .. 8
1.8.4 Resource Creation Example... 8
1.8.5 Request/Response Example .. 9
1.8.6 Use of Predefined Definitions Example .. 9
1.8.7 Policy Set Example .. 10
2 JMS Binding Schema .. 12
3 References.. 15

SCA Service Component Architecture

JMS Binding Specification V1.00 March 2007 1

1 Messaging and JMS Bindings 1

 2

1.1 Introduction 3

This document defines the concept and behavior of a messaging binding, and a concrete JMS-4
based [1] binding that provides that behavior. 5

The binding specified in this document applies to an SCA composite’s services and references. 6
The binding is especially well suited for use by services and references of composites that are 7
directly deployed, as opposed to composites that are used as implementations of higher-level 8
components. Services and references of deployed composites become system-level services and 9
references, which are intended to be used by non-SCA clients. 10

Further work is needed for specifying the simplifications that are possible for messaging bindings 11
used for SCA wires (see section 3: Open Issues). 12

The messaging binding describes a common pattern of behavior that may be followed by 13
messaging-related bindings, including the JMS binding. In particular it describes the manner in 14
which operations are selected based on message content, and the manner in which messages are 15
mapped into the runtime representation. These are specified in a language-neutral manner. 16

The JMS binding provides JMS-specific details of the connection to the required JMS resources. It 17
supports the use of Queue and Topic type destinations. 18

1.2 Operation Selection and Data Binding 19

In general messaging providers deal with message formats and destinations. There is not 20
usually a built-in concept of “operation” that corresponds to that defined in a WSDL port type 21
[3]. Messages have a format which corresponds in some way to the schema of an input or 22
output message of an operation in the interface of a service or reference, however some means 23
is required in order to identify the specific operation and map the message information in to the 24
required form. 25

No standard means for service providers and consumers to declare and exchange message 26
format information is provided. 27

The process of identifying the operation to be invoked is operation selection; that of mapping 28
message information to the required runtime form is data binding. The JMS binding defines 29
default operation selection and data binding behavior; SCA providers may provide extensions for 30
custom behavior. 31

1.3 Messaging Bindings 32

Messaging bindings form a category of SCA bindings that represent the interaction of SCA 33
composites with messaging providers. It is felt that documenting, and following this pattern is 34
beneficial for implementers of messaging bindings, although it is not strictly necessary. 35

This pattern is embodied in the JMS binding, described later. 36

Messaging bindings utilize operation selector and data binding components to provide the 37
mapping from the native messaging format to an invocation on the target component. A default 38
operation selection and data binding behavior is identified, along with any associated properties. 39

SCA Service Component Architecture

JMS Binding Specification V1.00 March 2007 2

In addition, each operation may have specific properties defined, that may influence the way 40
native messages are processed depending on the operation being invoked. 41

1.4 JMS Binding Schema 42

The JMS binding element is defined by the following schema. 43

<binding.jms correlationScheme=”string”? 44
 initialContextFactory=”xs:anyURI”? 45
 jndiURL=”xs:anyURI”? 46
 requestConnection=”QName”? 47
 responseConnection=”QName”? 48
 operationProperties=”QName”? 49
 ... > 50
 <destination name=”xs:anyURI” type=”string”? create=”string”?> 51
 <property name=”NMTOKEN” type=”NMTOKEN”>* 52
 </destination>? 53
 <connectionFactory name=”xs:anyURI” create=”string”?> 54
 <property name=”NMTOKEN” type=”NMTOKEN”>* 55
 </connectionFactory>? 56
 <activationSpec name=”xs:anyURI” create=”string”?> 57
 <property name=”NMTOKEN” type=”NMTOKEN”>* 58
 </activationSpec>? 59
 60
 <response> 61
 <destination name=”xs:anyURI” type=”string”? create=”string”?> 62
 <property name=”NMTOKEN” type=”NMTOKEN”>* 63
 </destination>? 64
 <connectionFactory name=”xs:anyURI” create=”string”?> 65
 <property name=”NMTOKEN” type=”NMTOKEN”>* 66
 </connectionFactory>? 67
 <activationSpec name=”xs:anyURI” create=”string”?> 68
 <property name=”NMTOKEN” type=”NMTOKEN”>* 69
 </activationSpec>? 70
 </response>? 71
 72
 <resourceAdapter name=”NMTOKEN”>? 73
 <property name=”NMTOKEN” type=”NMTOKEN”>* 74
 </resourceAdapter>? 75
 76
 <headers JMSType=”string”? 77
 JMSCorrelationId=”string”? 78
 JMSDeliveryMode=”string”? 79
 JMSTimeToLive=”int”? 80
 JMSPriority=”string”?> 81
 <property name=”NMTOKEN” type=”NMTOKEN”>* 82
 </headers>? 83
 84
 <operationProperties name=”string” nativeOperation=”string”?> 85
 <property name=”NMTOKEN” type=”NMTOKEN”>* 86
 <headers JMSType=”string”? 87
 JMSCorrelationId=”string”? 88
 JMSDeliveryMode=”string”? 89
 JMSTimeToLive=”int”? 90
 JMSPriority=”string”?> 91
 <property name=”NMTOKEN” type=”NMTOKEN”>* 92
 </headers>? 93
 </operationProperties>* 94

SCA Service Component Architecture

JMS Binding Specification V1.00 March 2007 3

</binding.jms> 95
 96

The binding can be used in one of two ways, either identifying existing JMS resources using JNDI 97
names, or providing the required information to enable the JMS resources to be created. 98

The binding.jms element has the following attributes: 99

• /binding.jms – This is the generic JMS binding type. The type is extensible so that JMS 100
binding implementers can add additional JMS provider-specific attributes and elements 101
although such extensions are not guaranteed to be portable across runtimes. 102

• /binding.jms/@uri – (from binding) URI that identifies the destination, connection factory 103
or activation spec, and other properties to be used to send/receive the JMS message 104

The URI has the following format: 105

o jms:<jms-dest>? 106
connectionFactoryName=<Connection-Factory-Name> & 107
destinationType={queue|topic} 108
deliveryMode=<Delivery-Mode> & 109
timeToLive=<Time-To-Live> & 110
priority=<Priority> & 111
 <User-Property>=<User-Property-Value> & … 112

When the URI is used, it is assumed that the referenced resources already exist. 113

• /binding.jms/@correlationScheme – identifies the correlation scheme used when sending 114
reply or callback messages. Valid values are “RequestMsgIDToCorrelID” (the default), 115
“RequestCorrelIDToCorrelID”, and “None”. 116

• /binding.jms/@initialContextFactory – the name of the JNDI initial context factory. 117

• /binding.jms/@jndiURL – the URL for the JNDI provider. 118

• /binding.jms/@requestConnection – identifies a binding.jms element that is present in a 119
definition document, whose destination, connectionFactory, activationSpec and 120
resourceAdapter children are used to define the values for this binding. In this case the 121
corresponding elements must not be present within this binding element. 122

• /binding.jms/@responseConnection – identifies a binding.jms element that is present in 123
a definition document, whose response child element is used to define the values for this 124
binding. In this case no response element must be present within this binding element. 125

• /binding.jms/@operationProperties – identifies a binding.jms element that is present in 126
a definition document, whose operationProperties children are used to define the values for 127
this binding. In this case no operationProperties elements must be present within this binding 128
element. 129

• /binding.jms/destination – identifies the destination that is to be used to process requests 130
by this binding. 131

• /binding.jms/destination/@type - the type of the request destination. Must take one of 132
the values “queue” or “topic”. The default value is “queue”. When “topic” is specified, then 133
all the operations in the interface that corresponds to the binding must be one-way. 134

• /binding.jms/destination/@name – the name of the destination to which the binding is 135
connected. This may be a JNDI name or a plain destination name. 136

• /binding.jms/destination/@create – indicates whether the destination should be created 137
when the containing composite is deployed. Valid values are “always”, “never” and 138
“ifnotexist”. The default value is “ifnotexist”. If “always” is specified and the corresponding 139
resource already exists, then this should be considered an error. 140

SCA Service Component Architecture

JMS Binding Specification V1.00 March 2007 4

• /binding.jms/destination/property – defines properties to be used to create the 141
destination, if required. 142

• /binding.jms/connectionFactory – identifies the connection factory that the binding uses 143
to process request messages. This may be a JNDI name or a plain connection factory name. 144
The attributes of this element follow those defined for the destination element. This element 145
is mutually exclusive with the activationSpec element. 146

• /binding.jms/activationSpec – identifies the activation spec that the binding uses to 147
connect to a JMS destination to process request messages. This may be a JNDI name or a 148
plain activation spec name. The attributes of this element follow those defined for the 149
destination element. 150

• /binding.jms/response – defines the resources used for handling response messages 151
(receiving responses for a reference, and sending responses from a service). 152

• /binding.jms/response/destination – identifies the destination that is to be used to 153
process responses by this binding. Attributes are as for the parent’s destination element. 154

• /binding.jms/response/connectionFactory – identifies the connection factory that the 155
binding uses to process response messages. This may be a JNDI name or a plain connection 156
factory name. The attributes of this element follow those defined for the destination element. 157
This element is mutually exclusive with the activationSpec element. 158

• /binding.jms/response/activationSpec – identifies the activation spec that the binding 159
uses to connect to a JMS destination to process response messages. This may be a JNDI 160
name or a plain activation spec name. The attributes of this element follow those defined for 161
the destination element. 162

• /binding.jms/headers – this element allows JMS headers to be set to the given values for 163
all operations. These values apply to requests from a reference and responses from a 164
service. 165

• /binding.jms/headers/@JMSType, @JMSCorrelationID, @JMSDeliveryMode, 166
@JMSTimeToLive, @JMSPriority – specifies the value to use for the JMS header property. 167
If these attributes are specified they must not appear in the URI. 168

• /binding.jms/headers/property – specifies the value to use for the specified JMS user 169
property. 170

• /binding.jms/resourceAdapter – specifies name, type and properties of the Resource 171
Adapter Java bean. This is required when the JMS resources are to be created for a JCA 1.5-172
compliant JMS provider [4], and is ignored otherwise. There may be a restriction, depending 173
on the deployment platform, about specifying properties of the RA Java Bean. For non-JCA 174
1.5-compliant JMS providers, information necessary for resource creation must be done in 175
provider-specific elements or attributes allowed by the extensibility of the binding.jms 176
element. 177

• /binding.jms/operationProperties – specifies various properties that are specific to the 178
processing of a particular operation. 179

• /binding.jms/operationProperties/@name – The name of the operation in the interface. 180

• /binding.jms/operationProperties/@nativeOperation – The name of the native 181
operation that corresponds to this operation in the interface. 182

• /binding.jms/operationProperties/property – specifies properties specific to this 183
operation. 184

• /binding.jms/operationProperties/headers – this element allows JMS headers to be set 185
to the given values for the given operation. These values apply to requests from a reference 186
and responses from a service. 187

SCA Service Component Architecture

JMS Binding Specification V1.00 March 2007 5

• /binding.jms/operationProperties/headers/@JMSType, @JMSCorrelationID, 188
@JMSDeliveryMode, @JMSTimeToLive, @JMSPriority – specifies the value to use for the 189
JMS header property. Values specified for particular operations take precedence over those 190
defined on the binding or via the URI. 191

• /binding.jms/operationProperties/headers/property – specifies the value to use for 192
the specified JMS user property. 193

• /binding.jms/@{any} - this is an extensibility mechanism to allow extensibility via 194
attributes. 195

• /binding.jms/any – this is an extensibility mechanism to allow extensibility via elements. 196

1.5 Default Operation Selection and Data Binding behavior 197

This section describes the default behavior for operation selection and data binding for a JMS 198
binding. 199

1.5.1 Default Operation Selection 200

When receiving a request at a service, or a callback at a reference, the native operation name is 201
determined as follows: 202

• If there is only one operation on the service’s interface, then that operation is assumed as 203
the native operation name. 204

• Otherwise, if the JMS user property “scaOperationName” is present, then its value is used as 205
the native operation name. 206

• Otherwise, the native operation name is assumed to be “onMessage”. 207

The native operation name may then be mapped to an operation in the service’s interface via a 208
matching operation element in the JMS binding. If there is no matching element, the operation 209
name is assumed to be the same as the native operation name. 210

When sending a request from a reference, or a callback from a service, if the interface includes 211
more than one operation then the “scaOperationName” JMS user property is set to the operation 212
being invoked. 213

To support any other means of function selection, the SCA runtime may provide the means for 214
supplying and identifying alternative function selection behaviors. 215

 216

1.5.2 Default Data Binding 217

The default data binding behavior maps between a JMSMessage and the object(s) expected by 218
the component implementation. We encourage component implementers to avoid exposure of 219
JMS APIs to component implementations, however in the case of an existing implementation that 220
expects a JMSMessage, this provides for simple reuse of that as an SCA component. 221

The message body is mapped to the parameters or return value of the target operation as 222
follows: 223

• If there is a single parameter or return value that is a JMSMessage, then the JMSMessage is 224
passed as is. 225

• Otherwise, the JMSMessage must be a JMS text message containing XML. 226

• If there is a single parameter, or for the return value, the JMS text XML payload is the XML 227
serialization of that parameter according to the WSDL schema for the message. 228

• If there are multiple parameters, then they are encoded in XML using the document wrapped 229
style, according to the WSDL schema for the message. 230

SCA Service Component Architecture

JMS Binding Specification V1.00 March 2007 6

To support any other type of JMS message, the SCA runtime should provide the means for 231
supplying and identifying alternative data binding behaviors. 232

1.6 Policy 233

The JMS binding provides attributes that control the sending of messages, requests from 234
references and replies from services. These values can be set directly on the binding element for 235
a particular service or reference, or they can be set using policy intents. An example of setting 236
these via intents is shown later. 237

JMS binding implementations may natively provide support for some standard intents, as defined 238
by the JMS binding’s bindingType: 239

<bindingType type=”binding.jms” 240
 alwaysProvides=”jms” 241
 mayProvide=”atLeastOnce atMostOnce ordered conversation”/> 242

1.7 Callback and Conversation Protocol 243

This section describes the protocol that is used to support callbacks and conversational behavior 244
when using the JMS binding. These apply to a JMS binding on a service or reference with a 245
bidirectional interface. 246

1.7.1 JMS User Properties 247

This protocol assigns specific behavior to JMS user properties: 248

• "scaCallbackQueue" holds the name of the queue to which callback messages are sent. 249

• "scaConversationStart" indicates that a conversation is to be started, its value is the identifier 250
for the conversation. 251

• "scaConversationMaxIdleTime" defines the maximum time that should be allowed between 252
operations in the conversation. 253

• "scaConversationId" holds the identifier for the conversation. 254

1.7.2 Callbacks 255

A callback is the invocation of an operation on a service’s callback interface. 256

When an SCA component with a reference with a bidirectional interface and JMS binding ("the 257
sender") invokes an operation on that interface, the JMS message that is sent may identify the 258
target for callbacks using the "scaCallbackQueue" user property, or for one-way operations the 259
JMS replyTo header. 260

The invoked SCA component ("the receiver") can only invoke operations on the callback interface 261
during the execution of the target operation for such a message, or when the service's callback 262
binding identifies a fixed callback queue. The sender's callback queue can be specified on the 263
reference's JMS callback binding, or it can be left to the runtime to provide one, by omitting the 264
callbackService element, the JMS callback binding, or omitting the uri and destination from the 265
JMS callback binding. 266

1.7.3 Conversations 267

A conversation is a sequence of operations between two parties that have a common context. 268
The conversation may include a mixture of operations in either direction between the two parties. 269
Interfaces must be marked as conversational in order to ensure that the runtime manages the 270
lifecycle of this context. 271

SCA Service Component Architecture

JMS Binding Specification V1.00 March 2007 7

Either the sender or receiver must start a conversation when an operation is invoked on a 272
conversational interface and there is no active conversation with the other party. This is done by 273
including the “scaConversationStart” user property in the JMS message with the value set to the 274
required conversation identifier. A new runtime context is associated with the conversation 275
identifier in both the sender and receiver. 276

The message that starts the conversation may also include the “scaConversationMaxIdleTime” 277
user property; if not present the maximum idle time for the conversation is derived by 278
subtracting the current time from the value of the JMSExpiration property, unless the 279
JMSExpiration property value is zero, in which case the maximum idle time is unlimited. The 280
sender may provide a specific callback queue for the identified conversation by including a value 281
for the “scaCallbackQueue” user property. 282

Subsequent operations between the sender and receiver that are part of this conversation must 283
include the “scaConversationId” user property in the JMS message, set to the conversation 284
identifier. The message may also include an updated value of the “scaConversationMaxIdleTime” 285
property. The value of “scaCallbackQueue” is ignored within a conversation in messages after 286
the one that starts the conversation. 287

When an operation is invoked either by the sender or receiver that is marked as 288
“endsConversation”, or the maximum idle time is exceeded, then the conversation identifier and 289
associated context is discarded after the operation has been processed. The idle time is defined 290
within the sender and receiver as the amount of time since the sender/receiver last completed 291
processing of an operation that is part of the conversation. There may be times when the sender 292
or receiver ends the conversation before the other does. In that case if one party does invoke an 293
operation on the other, it is treated as being after the conversation has ended and is an error. 294

Operations invoked on other parties must not be considered part of this conversation and must 295
use different conversation identifiers. 296

Messages received containing a conversation identifier that does not correspond to a started 297
conversation, or containing a start conversation property with a conversation identifier that 298
matches an active conversation, should be treated as errors and should not be processed. 299
Conversation identifiers may be reused. In particular, runtimes do not have to guarantee unique 300
conversation identifiers and do not have to be able to identify an ended conversation indefinitely, 301
although they may do for some period after the conversation ends. Due to the long-running 302
nature of conversations, runtimes should ensure conversation context is available across server 303
restarts, although they may choose to treat a restart as implicitly ending the conversation. 304

Component implementation specifications define the manner in which the context that is 305
associated with the conversation identifier is made available to component implementations. 306

1.8 Examples 307

The following snippets show the sca.composite file for the MyValueComposite file containing the 308
service element for the MyValueService and a reference element for the StockQuoteService. Both 309
the service and the reference use a JMS binding. 310

1.8.1 Minimal Binding Example 311

The following example shows the JMS binding being used with no further attributes or elements. 312
In this case, it is left to the deployer to identify the resources to which the binding is connected. 313

<?xml version=”1.0” encoding=”ASCII”?> 314
<composite xmlns=”http://www.osoa.org/xmlns/sca/1.0” 315
 name=”MyValueComposite”> 316
 317
 <service name=”MyValueService”> 318
 <interface.java interface=”services.myvalue.MyValueService”/> 319

SCA Service Component Architecture

JMS Binding Specification V1.00 March 2007 8

 <binding.jms/> 320
 </service> 321
 322
 <reference name=”StockQuoteService”> 323
 <interface.java interface=”services.stockquote.StockQuoteService”/> 324
 <binding.jms/> 325
 </reference> 326
</composite> 327

 328

1.8.2 URI Binding Example 329

The following example shows the JMS binding using the URI attribute to specify the connection 330
type and its information: 331

<?xml version=”1.0” encoding="ASCII”?> 332
<composite xmlns=”http://www.osoa.org/xmlns/sca/1.0” 333
 name=”MyValueComposite”> 334
 335
 <service name=”MyValueService”> 336
 <interface.java interface=”services.myvalue.MyValueService”/> 337
 <binding.jms uri=”jms:MyValueServiceQueue? 338
 activationSpecName=MyValueServiceAS& 339
 ... "/> 340
 </service> 341
 342
 <reference name=”StockQuoteService”> 343
 <interface.java interface=”services.stockquote.StockQuoteService”/> 344
 <binding.jms uri=”jms:StockQuoteServiceQueue? 345
 connectionFactoryName=StockQuoteServiceQCF& 346
 deliveryMode=1& 347
 ... ”/> 348
 </reference> 349
</composite> 350

 351

1.8.3 Binding with Existing Resources Example 352

The following example shows the JMS binding using existing resources: 353

<?xml version=”1.0” encoding=”ASCII”?> 354
<composite xmlns=”http://www.osoa.org/xmlns/sca/1.0” 355
 name=”MyValueComposite”> 356
 357
 <service name=”MyValueService”> 358
 <interface.java interface=”services.myvalue.MyValueService”/> 359
 <binding.jms> 360
 <destination name=”MyValueServiceQ” create=”never”/> 361
 <activationSpec name=”MyValueServiceAS” create=”never”/> 362
 </binding.jms> 363
 </service> 364
</composite> 365

 366

1.8.4 Resource Creation Example 367

The following example shows the JMS binding providing information to create JMS resources 368
rather than using existing ones: 369

<?xml version=”1.0” encoding=”ASCII”?> 370
<composite xmlns=”http://www.osoa.org/xmlns/sca/1.0” 371
 name=”MyValueComposite”> 372
 373

SCA Service Component Architecture

JMS Binding Specification V1.00 March 2007 9

 <service name=”MyValueService”> 374
 <interface.java interface=”services.myvalue.MyValueService”/> 375
 <binding.jms> 376
 <destination name=”MyValueServiceQueue” create=”always”> 377
 <property name=”prop1” type=”string”>XYZ</property> 378
 </destination> 379
 <activationSpec name=”MyValueServiceAS”/ create=”always”> 380
 <resourceAdapter name=”com.example.JMSRA”/> 381
 </binding.jms> 382
 </service> 383
 384
 <reference name=”StockQuoteService”> 385
 <interface.java interface=”services.stockquote.StockQuoteService”/> 386
 <binding.jms> 387
 <destination name=”StockQuoteServiceQueue”/> 388
 <connectionFactory name=”StockQuoteServiceQCF”/> 389
 <resourceAdapter name=”com.example.JMSRA”/> 390
 </binding.jms> 391
 </reference> 392
</composite> 393

 394

1.8.5 Request/Response Example 395

The following example shows the JMS binding using existing resources to support 396
request/response operations. The service uses the replyTo queue in response messages, and 397
does not specify a response queue: 398

<?xml version=”1.0” encoding=”ASCII”?> 399
<composite xmlns=”http://www.osoa.org/xmlns/sca/1.0” 400
 name=”MyValueComposite”> 401
 402
 <service name=”MyValueService”> 403
 <interface.java interface=”services.myvalue.MyValueService”/> 404
 <binding.jms correlationScheme=”RequestMsgIdToCorrelId”> 405
 <destination name=”MyValueServiceQ” create=”never”/> 406
 <activationSpec name=”MyValueServiceAS” create=”never”/> 407
 </binding.jms> 408
 </service> 409
 410
 <reference name=”StockQuoteService”> 411
 <interface.java interface=”services.stockquote.StockQuoteService”/> 412
 <binding.jms correlationScheme=”RequestMsgIdToCorrelId”> 413
 <destination name=”StockQuoteServiceQueue”/> 414
 <connectionFactory name=”StockQuoteServiceQCF”/> 415
 <response> 416
 <destination name=”MyValueResponseQueue”/> 417
 <activationSpec name=”MyValueResponseAS”/> 418
 </response> 419
 </binding.jms> 420
 </reference> 421
</composite> 422
 423

1.8.6 Use of Predefined Definitions Example 424

This example shows the case where there is common connection information shared by more 425
than one reference. 426

The common connection information is defined in a separate resource file: 427

<?xml version=”1.0” encoding=”ASCII”?> 428

SCA Service Component Architecture

JMS Binding Specification V1.00 March 2007 10

<definitions targetNamespace=”http://acme.com” 429
 xmlns=”http://www.osoa.org/xmlns/sca/1.0”> 430
 <binding.jms name=”StockQuoteService”> 431
 <destination name=”StockQuoteServiceQueue” create=”never”/> 432
 <connectionFactory name=”StockQuoteServiceQCF” create=”never”/> 433
 </binding.jms> 434
</definitions> 435

Any binding.jms element may then refer to that definition: 436

<?xml version=”1.0” encoding=”ASCII”?> 437
<composite xmlns=”http://www.osoa.org/xmlns/sca/1.0” 438
 xmlns:acme=”http://acme.com” 439
 name=”MyValueComposite”> 440
 441
 <reference name=”MyValueService”> 442
 <interface.java interface=”services.myvalue.MyValueService”/> 443
 <binding.jms requestConnection=”acme:StockQuoteService”/> 444
 </reference> 445
</composite> 446

 447

1.8.7 Policy Set Example 448

A policy set defines the manner in which intents map to JMS binding properties. The following 449
illustrates an example of a policy set that defines values for the “priority” attribute using the 450
“priority” intent, and also allows setting of a value for a user JMS property using the “log” intent. 451

<policySet name=”JMSPolicy” 452
 provides=”priority log” 453
 appliesTo=”binding.jms”> 454
 455
 <intentMap provides=”priority” default=”medium”> 456
 <qualifier name=”high”> 457
 <headers JMSPriority=”9”/> 458
 </qualifier> 459
 <qualifier name=”medium”> 460
 <headers JMSPriority=”4”/> 461
 </qualifier> 462
 <qualifier name=”low”> 463
 <headers JMSPriority=”0”/> 464
 </qualifier> 465
 </intentMap> 466
 467
 <intentMap provides=”log”> 468
 <qualifier> 469
 <headers> 470
 <property name=”user_example_log”>logged</property> 471
 </headers> 472
 </qualifier> 473
 </intentMap> 474
</policySet> 475

 476

Given this policy set, the intents can be required on a service or reference: 477

<reference name=”StockQuoteService” requires=”priority.high log”> 478
 <interface.java interface=”services.stockquote.StockQuoteService”/> 479
 <binding.jms> 480
 <destination name=”StockQuoteServiceQueue”/> 481
 <connectionFactory name=”StockQuoteServiceQCF”/> 482
 </binding.jms> 483

SCA Service Component Architecture

JMS Binding Specification V1.00 March 2007 11

</reference> 484
 485

SCA Service Component Architecture

JMS Binding Specification V1.00 March 2007 12

2 JMS Binding Schema 486

 487

<?xml version="1.0" encoding="UTF-8"?> 488
<!-- (c) Copyright SCA Collaboration 2006 --> 489
<schema xmlns="http://www.w3.org/2001/XMLSchema" 490
 targetNamespace="http://www.osoa.org/xmlns/sca/1.0" 491
 xmlns:sca="http://www.osoa.org/xmlns/sca/1.0" 492
 elementFormDefault="qualified"> 493
 494
 <include schemaLocation="sca-core.xsd"/> 495
 496
 <complexType name="JMSBinding"> 497
 <complexContent> 498
 <extension base="sca:Binding"> 499
 <sequence> 500
 <element name="destination" type="sca:Destination" minOccurs="0"/> 501
 <element name="connectionFactory" type="sca:ConnectionFactory" 502
 minOccurs="0"/> 503
 <element name="activationSpec" type="sca:ActivationSpec" 504
 minOccurs="0"/> 505
 <element name="response" type="sca:Response" minOccurs="0"/> 506
 <element name="headers" type="sca:Headers" minOccurs="0"/> 507
 <element name="resourceAdapter" type="sca:ResourceAdapter" 508
 minOccurs="0"/> 509
 <element name="operationProperties" type="sca:OperationProperties" 510
 minOccurs="0" maxOccurs="unbounded"/> 511
 <any namespace="##other" processContents="lax" 512
 minOccurs="0" maxOccurs="unbounded"/> 513
 </sequence> 514
 <attribute name="correlationScheme" 515
 default="RequestMsgIDToCorrelID"> 516
 <simpleType> 517
 <restriction base="string"> 518
 <enumeration value="RequestMsgIDToCorrelID"/> 519
 <enumeration value="RequestCorrelIDToCorrelID"/> 520
 <enumeration value="None"/> 521
 </restriction> 522
 </simpleType> 523
 </attribute> 524
 525
 <attribute name="initialContextFactory" type="anyURI"/> 526
 <attribute name="jndiURL" type="anyURI"/> 527
 <attribute name="requestConnection" type="QName"/> 528
 <attribute name="responseConnection" type="QName"/> 529
 <attribute name="operationProperties" type="QName"/> 530
 <anyAttribute/> 531
 </extension> 532
 </complexContent> 533
 </complexType> 534
 535
 <simpleType name="CreateResource"> 536
 <restriction base="string"> 537
 <enumeration value="always"/> 538
 <enumeration value="never"/> 539
 <enumeration value="ifnotexist"/> 540
 </restriction> 541

SCA Service Component Architecture

JMS Binding Specification V1.00 March 2007 13

 </simpleType> 542
 543
 <complexType name="Destination"> 544
 <sequence> 545
 <element name="property" type="string" 546
 minOccurs="0" maxOccurs="unbounded"/> 547
 </sequence> 548
 <attribute name="name" type="anyURI" use="required"/> 549
 <attribute name="type" use="optional" default="queue"> 550
 <simpleType> 551
 <restriction base="string"> 552
 <enumeration value="queue"/> 553
 <enumeration value="topic"/> 554
 </restriction> 555
 </simpleType> 556
 </attribute> 557
 <attribute name="create" type="sca:CreateResource" 558
 use="optional" default="ifnotexist"/> 559
 </complexType> 560
 561
 <complexType name="ConnectionFactory"> 562
 <sequence> 563
 <element name="property" type="string" 564
 minOccurs="0" maxOccurs="unbounded"/> 565
 </sequence> 566
 <attribute name="name" type="anyURI" use="required"/> 567
 <attribute name="create" type="sca:CreateResource" 568
 use="optional" default="ifnotexist"/> 569
 </complexType> 570
 571
 <complexType name="ActivationSpec"> 572
 <sequence> 573
 <element name="property" type="string" 574
 minOccurs="0" maxOccurs="unbounded"/> 575
 </sequence> 576
 <attribute name="name" type="anyURI" use="required"/> 577
 <attribute name="create" type="sca:CreateResource" 578
 use="optional" default="ifnotexist"/> 579
 </complexType> 580
 581
 <complexType name="Response"> 582
 <sequence> 583
 <element name="destination" type="sca:Destination" minOccurs="0"/> 584
 <element name="connectionFactory" type="sca:ConnectionFactory" 585
 minOccurs="0"/> 586
 <element name="activationSpec" type="sca:ActivationSpec" minOccurs="0"/> 587
 </sequence> 588
 </complexType> 589
 590
 <complexType name="Headers"> 591
 <sequence> 592
 <element name="property" type="string" 593
 minOccurs="0" maxOccurs="unbounded"/> 594
 </sequence> 595
 <attribute name="JMSType" type="string"/> 596
 <attribute name="JMSCorrelationID" type="string"/> 597
 <attribute name="JMSDeliveryMode" type="string"/> 598
 <attribute name="JMSTimeToLive" type="int"/> 599
 <attribute name="JMSPriority" type="string"/> 600

SCA Service Component Architecture

JMS Binding Specification V1.00 March 2007 14

 </complexType> 601
 602
 <complexType name="ResourceAdapter"> 603
 <sequence> 604
 <element name="property" type="string" 605
 minOccurs="0" maxOccurs="unbounded"/> 606
 </sequence> 607
 <attribute name="name" type="string" use="required"/> 608
 </complexType> 609
 610
 <complexType name="OperationProperties"> 611
 <sequence> 612
 <element name="property" type="string" 613
 minOccurs="0" maxOccurs="unbounded"/> 614
 <element name="headers" type="sca:Headers"/> 615
 </sequence> 616
 <attribute name="name" type="string" use="required"/> 617
 <attribute name="nativeOperation" type="string"/> 618
 </complexType> 619
 620
 <element name="binding.jms" type="sca:JMSBinding" 621
 substitutionGroup="sca:binding"/> 622
</schema> 623

SCA Service Component Architecture

JMS Binding Specification V1.00 March 2007 15

3 References 624

 625

[1] JMS Specification 626
http://java.sun.com/products/jms/ 627

 628

[2] Java Enterprise Edition 1.4 specification 629
http://java.sun.com/j2ee/1.4/ 630

 631

[3] WSDL Specification 632

WSDL 1.1: http://www.w3.org/TR/wsdl 633

WSDL 2.0: http://www.w3.org/TR/wsdl20/ 634
 635

[4] Java Connector Architecture Specification Version 1.5 636
http://java.sun.com/j2ee/connector/ 637

http://java.sun.com/products/jms/
http://java.sun.com/j2ee/1.4/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20/
http://java.sun.com/j2ee/connector/

	Introduction
	Operation Selection and Data Binding
	Messaging Bindings
	JMS Binding Schema
	Default Operation Selection and Data Binding behavior
	Default Operation Selection
	Default Data Binding

	Policy
	Callback and Conversation Protocol
	JMS User Properties
	Callbacks
	Conversations

	Examples
	Minimal Binding Example
	URI Binding Example
	Binding with Existing Resources Example
	Resource Creation Example
	Request/Response Example
	Use of Predefined Definitions Example
	Policy Set Example

