SCA Service Component Architecture

JMS Binding Specification

SCA Version 1.00, March 21 2007

Technical Contacts: Rajith Attapattu Red Hat
Henning Blohm SAP AG
Simon Holdsworth IBM Corporation
Eric Johnson TIBCO Software Inc.
Anish Karmarkar Oracle

Michael Rowley BEA Systems, Inc.



Copyright Notice

© Copyright BEA Systems, Inc., Cape Clear Software, International Business Machines Corp, Interface21, IONA
Technologies, Oracle, Primeton Technologies, Progress Software, Red Hat, Rogue Wave Software, SAP AG., Siemens
AG., Software AG., Sun Microsystems, Inc., Sybase Inc., TIBCO Software Inc., 2005, 2007. All rights reserved.

License

The Service Component Architecture Specification is being provided by the copyright holders under
the following license. By using and/or copying this work, you agree that you have read, understood
and will comply with the following terms and conditions:

Permission to copy, display and distribute the Service Component Architecture Specification and/or
portions thereof, without modification, in any medium without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the Service Component Architecture
Specification, or portions thereof, that you make:

1. Alink or URL to the Service Component Architecture Specification at this location:

e http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

2. The full text of the copyright notice as shown in the Service Component Architecture Specification.

BEA, Cape Clear, IBM, Interface21, IONA, Oracle, Primeton, Progress Software, Red Hat, Rogue
Wave, SAP, SIEMENS AG, Software AG., Sun Microsystems, Sybase, TIBCO (collectively, the
“Authors”) agree to grant you a royalty-free license, under reasonable, non-discriminatory terms
and conditions to patents that they deem necessary to implement the Service Component
Architecture Specification.

THE Service Component Architecture SPECIFICATION IS PROVIDED "AS 1S," AND THE AUTHORS
MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS
SPECIFICATION AND THE IMPLEMENTATION OF ITS CONTENTS, INCLUDING, BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT
OR TITLE.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF THE
Service Components Architecture SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including advertising or
publicity pertaining to the Service Component Architecture Specification or its contents without
specific, written prior permission. Title to copyright in the Service Component Architecture
Specification will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

JMS Binding Specification V1.00 i March 2007


http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

Status of this Document

This specification may change before final release and you are cautioned against relying on the
content of this specification. The authors are currently soliciting your contributions and suggestions.
Licenses are available for the purposes of feedback and (optionally) for implementation.

IBM is a registered trademark of International Business Machines Corporation in the United States,
other countries, or both.

BEA is a registered trademark of BEA Systems, Inc.

Cape Clear is a registered trademark of Cape Clear Software

IONA and IONA Technologies are registered trademarks of IONA Technologies plc.
Oracle is a registered trademark of Oracle USA, Inc.

Progress is a registered trademark of Progress Software Corporation

Primeton is a registered trademark of Primeton Technologies, Ltd.

Red Hat is a registered trademark of Red Hat Inc.

Rogue Wave is a registered trademark of Quovadx, Inc

SAP is a registered trademark of SAP AG.

SIEMENS is a registered trademark of SIEMENS AG

Software AG is a registered trademark of Software AG

Sun and Sun Microsystems are registered trademarks of Sun Microsystems, Inc.
Sybase is a registered trademark of Sybase, Inc.

TIBCO is a registered trademark of TIBCO Software, Inc.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

JMS Binding Specification V1.00 iii March 2007



Table of Contents

SCA Service ComponNent ArCRITECTUNE . .. ... ettt eaaaaeees i
(©07'9)Y2 4 T | a1 1 1 Lo )« o = ii
T = 0 = ii
Status Of ThiS DOCUMENT . ...ttt et ettt et ettt ettt et et et e ettt e et e et eaneeeanees iii
JLIES 1 L= 01 SO0 01 (=7 g 1P i
1 Messaging and JMS BiNOINGS. . ...ttt ettt ettt ettt et et et as 1
1.1 Y Ao U ox 1] o PP 1
1.2 Operation Selection and Data BiNAiNg ....c.ooriiiiiii et e e e e e e e eaaneeeeann 1
1.3 Y oESIST=To 1 g Te [ =11 g o [1a o = 1
1.4 1Y LS =11 a o 1T T RS od o 11 o o F- 2
1.5 Default Operation Selection and Data Binding behavior...........ccoiiiiiii i 5
1.5.1 Default Operation SEIECTION.. ... ... et aaaeee 5
1.5.2 (BT 7= 10| = = =1 o 11 o [ 5
1.6 0 T Y P 6
1.7 Callback and Conversation ProtOCO! .........ooeioi ittt et aneeeas 6
1.7.1 1Y ST 0 ==l = ] o 1= o T 6
1.7.2 L0721 | 10 = Tod 2 N 6
1.7.3 1070 gLV =T =T A0 [ PP 6
1.8 D= 10 8] o 1= 7
1.8.1 Minimal Binding EXamDIe .. ...t 7
1.8.2 (0] I =] o T T 0= U a aT o ] 1= 8
1.8.3 Binding with EXisting ResoUurces EXampPle ... et e e 8
1.8.4 Resource Creation EXample. ... ... e 8
1.8.5 ReqUEST/RESPONSE EXAMIPIE ...t e ettt e e e e aaaneeean 9
1.8.6 Use of Predefined Definitions EXample ... e 9
1.8.7 POlICY St EXAMPI ... et 10
2 LY ISR = 11 o 1 T S od g 11 o 2 = 12

3 [ S] 11 =] 8 (075N 15



=

w

PR RPRRR RBPR R
O~N OURAW NP OCOONO O A

19

20
21
22
23
24
25

26
27

28
29
30
31

32

33
34
35

36

37
38
39

SCA Service Component Architecture

1 Messaging and JMS Bindings

1.1 Introduction

This document defines the concept and behavior of a messaging binding, and a concrete JMS-
based [1] binding that provides that behavior.

The binding specified in this document applies to an SCA composite’s services and references.
The binding is especially well suited for use by services and references of composites that are
directly deployed, as opposed to composites that are used as implementations of higher-level
components. Services and references of deployed composites become system-level services and
references, which are intended to be used by non-SCA clients.

Further work is needed for specifying the simplifications that are possible for messaging bindings
used for SCA wires (see section 3: Open Issues).

The messaging binding describes a common pattern of behavior that may be followed by
messaging-related bindings, including the JMS binding. In particular it describes the manner in
which operations are selected based on message content, and the manner in which messages are
mapped into the runtime representation. These are specified in a language-neutral manner.

The JMS binding provides JMS-specific details of the connection to the required JMS resources. It
supports the use of Queue and Topic type destinations.

1.2 Operation Selection and Data Binding

In general messaging providers deal with message formats and destinations. There is not
usually a built-in concept of “operation” that corresponds to that defined in a WSDL port type
[3]. Messages have a format which corresponds in some way to the schema of an input or
output message of an operation in the interface of a service or reference, however some means
is required in order to identify the specific operation and map the message information in to the
required form.

No standard means for service providers and consumers to declare and exchange message
format information is provided.

The process of identifying the operation to be invoked is operation selection; that of mapping
message information to the required runtime form is data binding. The JMS binding defines
default operation selection and data binding behavior; SCA providers may provide extensions for
custom behavior.

1.3 Messaging Bindings

Messaging bindings form a category of SCA bindings that represent the interaction of SCA
composites with messaging providers. It is felt that documenting, and following this pattern is
beneficial for implementers of messaging bindings, although it is not strictly necessary.

This pattern is embodied in the JMS binding, described later.

Messaging bindings utilize operation selector and data binding components to provide the
mapping from the native messaging format to an invocation on the target component. A default
operation selection and data binding behavior is identified, along with any associated properties.

JMS Binding Specification V1.00 1 March 2007



40
41

42

43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

SCA Service Component Architecture

In addition, each operation may have specific properties defined, that may influence the way

native messages are processed depending on the operation being invoked.

1.4 JMS Binding Schema

The JMS binding element is defined by the following schema.

<binding.jms correlationScheme="string”?
initialContextFactory="xs:anyURI”?
JndiURL="xs:anyURI”?
requestConnection="QName”’?
responseConnection="QName”’?
operationProperties="QName”?
>

<destination name="xs:anyURI” type="string”? create=""string”’?>

<property name="NMTOKEN” type="NMTOKEN”>*
</destination>?
<connectionFactory name="xs:anyURI” create="string”?>
<property name="NMTOKEN” type=""NMTOKEN>>*
</connectionFactory>?
<activationSpec name="xs:anyURI” create="string”’?>
<property name="NMTOKEN” type="NMTOKEN”>*
</activationSpec>?

<response>

<destination name="xs:anyURI” type="string”? create="string”’?>

<property name="NMTOKEN” type="NMTOKEN”’>*
</destination>?
<connectionFactory name="xs:anyURI” create="string”?>
<property name="NMTOKEN” type="NMTOKEN”>*
</connectionFactory>?
<activationSpec name="xs:anyURI” create="string”?>
<property name="NMTOKEN” type=""NMTOKEN>>*
</activationSpec>?
</response>?

<resourceAdapter name="NMTOKEN”>?
<property name="NMTOKEN” type=""NMTOKEN>>*
</resourceAdapter>?

<headers JMSType=""string”?
JMSCorrelationld="string”?
JMSDeliveryMode="string?
JMSTimeToLive="int”?
JMSPriority="string”?>
<property name="NMTOKEN” type=""NMTOKEN">*
</headers>?

<operationProperties name="string” nativeOperation="string”’?>

<property name="NMTOKEN” type=""NMTOKEN”>*

<headers JMSType=""string”?
JMSCorrelationld="string”?
JMSDeliveryMode="string’?
JMSTimeToLive="int”?
JMSPriority="string”?>

<property name="NMTOKEN” type=""NMTOKEN"'>*
</headers>?

</operationProperties>*

JMS Binding Specification V1.00 2

March 2007



95
96

97
98

99

100
101
102

103
104

105

106
107
108
109
110
111
112

113

114
115
116

117
118

119
120
121
122

123
124
125

126
127
128
129

130
131

132
133
134

135
136

137
138
139
140

SCA Service Component Architecture

</binding. jms>

The binding can be used in one of two ways, either identifying existing JMS resources using JNDI
names, or providing the required information to enable the JMS resources to be created.

The binding.jms element has the following attributes:

/binding.jms — This is the generic JMS binding type. The type is extensible so that JMS
binding implementers can add additional JMS provider-specific attributes and elements
although such extensions are not guaranteed to be portable across runtimes.

/binding.jms/@uri — (from binding) URI that identifies the destination, connection factory
or activation spec, and other properties to be used to send/receive the JMS message

The URI has the following format:

0 jms:<jms-dest>?
connectionFactoryName=<Connection-Factory-Name> &
destinationType={queue]|topic}
deliveryMode=<Delivery-Mode> &
timeToLive=<Time-To-Live> &
priority=<Priority> &

<User-Property>=<User-Property-Value> & ...

When the URI is used, it is assumed that the referenced resources already exist.

/binding.jms/@correlationScheme — identifies the correlation scheme used when sending
reply or callback messages. Valid values are “RequestMsglDToCorrellD” (the default),
“RequestCorrellDToCorrellD”, and “None”.

/binding.jms/@initialContextFactory — the name of the JNDI initial context factory.
/binding.jms/@jndiURL — the URL for the JNDI provider.

/binding.jms/@requestConnection — identifies a binding.jms element that is present in a
definition document, whose destination, connectionFactory, activationSpec and
resourceAdapter children are used to define the values for this binding. In this case the
corresponding elements must not be present within this binding element.

/binding.jms/@responseConnection — identifies a binding.jms element that is present in
a definition document, whose response child element is used to define the values for this
binding. In this case no response element must be present within this binding element.

/binding.jms/@operationProperties — identifies a binding.jms element that is present in
a definition document, whose operationProperties children are used to define the values for
this binding. In this case no operationProperties elements must be present within this binding
element.

/binding.jms/destination — identifies the destination that is to be used to process requests
by this binding.

/binding.jms/destination/@type - the type of the request destination. Must take one of
the values “queue” or “topic”. The default value is “queue”. When “topic” is specified, then
all the operations in the interface that corresponds to the binding must be one-way.

/binding.jms/destination/@name — the name of the destination to which the binding is
connected. This may be a JNDI name or a plain destination name.

/binding.jms/destination/@create — indicates whether the destination should be created
when the containing composite is deployed. Valid values are “always”, “never” and
“ifnotexist”. The default value is “ifnotexist”. If “always” is specified and the corresponding

resource already exists, then this should be considered an error.

JMS Binding Specification V1.00 3 March 2007



141
142

143
144
145
146

147
148
149
150

151
152

153
154

155
156
157
158

159
160
161
162

163
164
165

166
167
168

169
170

171
172
173
174
175
176
177

178
179

180

181
182

183
184

185
186
187

SCA Service Component Architecture

/binding.jms/destination/property — defines properties to be used to create the
destination, if required.

/binding.jms/connectionFactory — identifies the connection factory that the binding uses
to process request messages. This may be a JNDI name or a plain connection factory name.
The attributes of this element follow those defined for the destination element. This element
is mutually exclusive with the activationSpec element.

/binding.jms/activationSpec — identifies the activation spec that the binding uses to
connect to a JMS destination to process request messages. This may be a JNDI name or a
plain activation spec name. The attributes of this element follow those defined for the
destination element.

/binding.jms/response — defines the resources used for handling response messages
(receiving responses for a reference, and sending responses from a service).

/binding.jms/response/destination — identifies the destination that is to be used to
process responses by this binding. Attributes are as for the parent’s destination element.

/binding.jms/response/connectionFactory — identifies the connection factory that the
binding uses to process response messages. This may be a JNDI name or a plain connection
factory name. The attributes of this element follow those defined for the destination element.
This element is mutually exclusive with the activationSpec element.

/binding.jms/response/activationSpec — identifies the activation spec that the binding
uses to connect to a JMS destination to process response messages. This may be a JNDI
name or a plain activation spec name. The attributes of this element follow those defined for
the destination element.

/binding.jms/headers — this element allows JMS headers to be set to the given values for
all operations. These values apply to requests from a reference and responses from a
service.

/binding.jms/headers/@JMSType, @JMSCorrelationlD, @JMSDeliveryMode,
@JIMSTimeTolLive, @IJMSPriority — specifies the value to use for the JMS header property.
If these attributes are specified they must not appear in the URI.

/binding.jms/headers/property — specifies the value to use for the specified JMS user
property.

/binding.jms/resourceAdapter — specifies name, type and properties of the Resource
Adapter Java bean. This is required when the JMS resources are to be created for a JCA 1.5-
compliant JMS provider [4], and is ignored otherwise. There may be a restriction, depending
on the deployment platform, about specifying properties of the RA Java Bean. For non-JCA
1.5-compliant JMS providers, information necessary for resource creation must be done in
provider-specific elements or attributes allowed by the extensibility of the binding.jms
element.

/binding.jms/operationProperties — specifies various properties that are specific to the
processing of a particular operation.

/binding.jms/operationProperties/@name — The name of the operation in the interface.

/binding.jms/operationProperties/@nativeOperation — The name of the native
operation that corresponds to this operation in the interface.

/binding.jms/operationProperties/property — specifies properties specific to this
operation.
/binding.jms/operationProperties/headers — this element allows JMS headers to be set

to the given values for the given operation. These values apply to requests from a reference
and responses from a service.

JMS Binding Specification V1.00 4 March 2007



188
189
190
191

192
193

194
195

196

197

198
199
200
201
202

203
204

205
206

207

208
209
210

211
212
213

214
215

216

217

218
219
220
221

222
223

224
225

226

227
228

229
230

SCA Service Component Architecture

e /binding.jms/operationProperties/headers/@JMSType, @IJMSCorrelationlD,
@JIMSDeliveryMode, @IMSTimeTolLive, @JMSPriority — specifies the value to use for the
JMS header property. Values specified for particular operations take precedence over those
defined on the binding or via the URI.

e /binding.jms/operationProperties/headers/property — specifies the value to use for
the specified JMS user property.

e /binding.jms/@{any?} - this is an extensibility mechanism to allow extensibility via
attributes.

e /binding.jms/any — this is an extensibility mechanism to allow extensibility via elements.

1.5 Default Operation Selection and Data Binding behavior

This section describes the default behavior for operation selection and data binding for a JMS
binding.

1.5.1 Default Operation Selection

When receiving a request at a service, or a callback at a reference, the native operation name is
determined as follows:

o If there is only one operation on the service’s interface, then that operation is assumed as
the native operation name.

e Otherwise, if the JMS user property “scaOperationName” is present, then its value is used as
the native operation name.

e Otherwise, the native operation name is assumed to be “onMessage”.

The native operation name may then be mapped to an operation in the service’s interface via a
matching operation element in the JMS binding. If there is no matching element, the operation
name is assumed to be the same as the native operation name.

When sending a request from a reference, or a callback from a service, if the interface includes
more than one operation then the “scaOperationName” JMS user property is set to the operation
being invoked.

To support any other means of function selection, the SCA runtime may provide the means for
supplying and identifying alternative function selection behaviors.

1.5.2 Default Data Binding

The default data binding behavior maps between a JMSMessage and the object(s) expected by
the component implementation. We encourage component implementers to avoid exposure of
JMS APIs to component implementations, however in the case of an existing implementation that
expects a JMSMessage, this provides for simple reuse of that as an SCA component.

The message body is mapped to the parameters or return value of the target operation as
follows:

o If there is a single parameter or return value that is a JMSMessage, then the JMSMessage is
passed as is.

e Otherwise, the JIMSMessage must be a JMS text message containing XML.

o If there is a single parameter, or for the return value, the JMS text XML payload is the XML
serialization of that parameter according to the WSDL schema for the message.

e If there are multiple parameters, then they are encoded in XML using the document wrapped
style, according to the WSDL schema for the message.

JMS Binding Specification V1.00 5 March 2007



231
232

233

234
235
236
237

238
239

240
241
242

243

244
245
246

247
248

249

250
251

252
253

254

255
256

257
258
259
260

261
262
263
264
265
266

267

268
269
270
271

SCA Service Component Architecture

To support any other type of IMS message, the SCA runtime should provide the means for
supplying and identifying alternative data binding behaviors.

1.6 Policy

The JMS binding provides attributes that control the sending of messages, requests from
references and replies from services. These values can be set directly on the binding element for
a particular service or reference, or they can be set using policy intents. An example of setting
these via intents is shown later.

JMS binding implementations may natively provide support for some standard intents, as defined
by the JMS binding’s bindingType:

<bindingType type="binding.jms”
alwaysProvides="jms”
mayProvide="atLeastOnce atMostOnce ordered conversation”/>

1.7 Callback and Conversation Protocol

This section describes the protocol that is used to support callbacks and conversational behavior
when using the JMS binding. These apply to a JMS binding on a service or reference with a
bidirectional interface.

1.7.1 JMS User Properties
This protocol assigns specific behavior to JMS user properties:

"scaCallbackQueue" holds the name of the queue to which callback messages are sent.

e '"scaConversationStart" indicates that a conversation is to be started, its value is the identifier
for the conversation.

e '"scaConversationMaxldleTime" defines the maximum time that should be allowed between
operations in the conversation.

e "scaConversationld" holds the identifier for the conversation.

1.7.2 Callbacks
A callback is the invocation of an operation on a service’s callback interface.

When an SCA component with a reference with a bidirectional interface and JMS binding ("the
sender") invokes an operation on that interface, the JMS message that is sent may identify the
target for callbacks using the "scaCallbackQueue" user property, or for one-way operations the
JMS replyTo header.

The invoked SCA component (“the receiver") can only invoke operations on the callback interface
during the execution of the target operation for such a message, or when the service's callback
binding identifies a fixed callback queue. The sender’s callback queue can be specified on the
reference's JMS callback binding, or it can be left to the runtime to provide one, by omitting the
callbackService element, the JMS callback binding, or omitting the uri and destination from the
JMS callback binding.

1.7.3 Conversations

A conversation is a sequence of operations between two parties that have a common context.
The conversation may include a mixture of operations in either direction between the two parties.
Interfaces must be marked as conversational in order to ensure that the runtime manages the
lifecycle of this context.

JMS Binding Specification V1.00 6 March 2007



272
273
274
275
276

277
278
279
280
281
282

283
284
285
286
287

288
289
290
291
292
293
294

295
296

297
298
299
300
301
302
303
304

305
306

307

308
309
310

311

312
313

314
315
316
317
318
319

SCA Service Component Architecture

Either the sender or receiver must start a conversation when an operation is invoked on a
conversational interface and there is no active conversation with the other party. This is done by
including the “scaConversationStart” user property in the JMS message with the value set to the
required conversation identifier. A new runtime context is associated with the conversation
identifier in both the sender and receiver.

The message that starts the conversation may also include the “scaConversationMaxldleTime”
user property; if not present the maximum idle time for the conversation is derived by
subtracting the current time from the value of the JMSExpiration property, unless the
JMSEXxpiration property value is zero, in which case the maximum idle time is unlimited. The
sender may provide a specific callback queue for the identified conversation by including a value
for the “scaCallbackQueue” user property.

Subsequent operations between the sender and receiver that are part of this conversation must
include the “scaConversationld” user property in the JMS message, set to the conversation
identifier. The message may also include an updated value of the “scaConversationMaxldleTime”
property. The value of “scaCallbackQueue” is ignored within a conversation in messages after
the one that starts the conversation.

When an operation is invoked either by the sender or receiver that is marked as
“endsConversation”, or the maximum idle time is exceeded, then the conversation identifier and
associated context is discarded after the operation has been processed. The idle time is defined
within the sender and receiver as the amount of time since the sender/receiver last completed
processing of an operation that is part of the conversation. There may be times when the sender
or receiver ends the conversation before the other does. In that case if one party does invoke an
operation on the other, it is treated as being after the conversation has ended and is an error.

Operations invoked on other parties must not be considered part of this conversation and must
use different conversation identifiers.

Messages received containing a conversation identifier that does not correspond to a started
conversation, or containing a start conversation property with a conversation identifier that
matches an active conversation, should be treated as errors and should not be processed.
Conversation identifiers may be reused. In particular, runtimes do not have to guarantee unique
conversation identifiers and do not have to be able to identify an ended conversation indefinitely,
although they may do for some period after the conversation ends. Due to the long-running
nature of conversations, runtimes should ensure conversation context is available across server
restarts, although they may choose to treat a restart as implicitly ending the conversation.

Component implementation specifications define the manner in which the context that is
associated with the conversation identifier is made available to component implementations.

1.8 Examples

The following snippets show the sca.composite file for the MyValueComposite file containing the
service element for the MyValueService and a reference element for the StockQuoteService. Both
the service and the reference use a JMS binding.

1.8.1 Minimal Binding Example

The following example shows the JMS binding being used with no further attributes or elements.
In this case, it is left to the deployer to identify the resources to which the binding is connected.

<?xml version="1.0" encoding="ASCII’?>
<composite xmIns="http://www.osoa.org/xmlns/sca/1.0”
name="MyValueComposite’>

<service name="MyValueService”>
<interface.java interface="services.myvalue_MyValueService”/>

JMS Binding Specification V1.00 7 March 2007



SCA Service Component Architecture

320 <binding. jms/>

321 </service>

322

323 <reference name="StockQuoteService”>

324 <interface.java interface="services.stockquote.StockQuoteService”/>
325 <binding. jms/>

326 </reference>

327 </composite>

328

329 1.8.2 URI Binding Example

330 The following example shows the JMS binding using the URI attribute to specify the connection
331 type and its information:

332 <?xml version="1.0" encoding="ASCII7?>

333 <composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

334 name=""MyValueComposite’>

335

336 <service name="MyValueService’”>

337 <interface.java interface="services.myvalue.MyValueService”/>
338 <binding.jms uri="jms:MyValueServiceQueue?

339 activationSpecName=MyValueServiceAS&
340 Y

341 </service>

342

343 <reference name="’StockQuoteService”>

344 <interface.java interface="services.stockquote.StockQuoteService”/>
345 <binding.jms uri="jms:StockQuoteServiceQueue?

346 connectionFactoryName=StockQuoteServiceQCF&
347 deliveryMode=1&

348 ... />

349 </reference>

350 </composite>

351

352 1.8.3 Binding with Existing Resources Example

353 The following example shows the JMS binding using existing resources:

354 <?xml version="1.0" encoding="ASCI17?>

355 <composite xmIns="http://www.osoa.org/xmlns/sca/1.0”

356 name=""MyValueComposite’>

357

358 <service name="MyValueService”>

359 <interface.java interface="services.myvalue_MyValueService”/>
360 <binding.jms>

361 <destination name="MyValueServiceQ” create="never”/>

362 <activationSpec name="MyValueServiceAS” create="never’’/>
363 </binding. jms>

364 </service>

365 </composite>

366

367 1.8.4 Resource Creation Example

368 The following example shows the JMS binding providing information to create JMS resources
369 rather than using existing ones:

370 <?xml version="1.0" encoding="ASCII17?>

371 <composite xmlns="http://www.osoa.org/xmlns/sca/1.0”

372 name=""MyValueComposite’>

373

JMS Binding Specification V1.00 8 March 2007



374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

394

395

396
397
398

399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

424

425
426

427
428

SCA Service Component Architecture

<service name="MyValueService”>
<interface.java interface="services.myvalue_MyValueService”/>
<binding.jms>
<destination name="MyValueServiceQueue” create="always”>
<property name="propl” type="string’>XYZ</property>
</destination>
<activationSpec name="MyValueServiceAS”/ create="always”>
<resourceAdapter name="com.example.JMSRA’/>
</binding. jms>
</service>

<reference name=’StockQuoteService”>
<interface.java interface="services.stockquote.StockQuoteService”/>
<binding. jms>
<destination name=""StockQuoteServiceQueue”/>
<connectionFactory name="StockQuoteServiceQCF”/>
<resourceAdapter name="com.example.JMSRA”/>
</binding.jms>
</reference>
</composite>

1.8.5 Request/Response Example

The following example shows the JMS binding using existing resources to support
request/response operations. The service uses the replyTo queue in response messages, and
does not specify a response queue:

<?xml version="1.0" encoding="ASCII7?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
name=""MyValueComposite’>

<service name="MyValueService’”>
<interface.java interface="services.myvalue.MyValueService”/>
<binding.jms correlationScheme="RequestMsgldToCorrelld”>
<destination name="MyValueServiceQ” create="never”/>
<activationSpec name="MyValueServiceAS” create=""never”/>
</binding.jms>
</service>

<reference name=’StockQuoteService”>
<interface. java interface="services.stockquote.StockQuoteService”/>
<binding.jms correlationScheme="RequestMsgldToCorrelld”>
<destination name=""StockQuoteServiceQueue”/>
<connectionFactory name="StockQuoteServiceQCF’/>
<response>
<destination name="MyValueResponseQueue”/>
<activationSpec name="MyValueResponseAS”/>
</response>
</binding. jms>
</reference>
</composite>

1.8.6 Use of Predefined Definitions Example

This example shows the case where there is common connection information shared by more
than one reference.

The common connection information is defined in a separate resource file:
<?xml version="1.0" encoding="ASCII17?>

JMS Binding Specification V1.00 9 March 2007



429
430
431
432
433
434
435

436

437
438
439
440
441
442
443
444
445
446

447

448

449
450
451

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

476

477

478
479
480
481
482
483

SCA Service Component Architecture

<definitions targetNamespace="http://acme.com”
xmIns="http://www.osoa.org/xmlns/sca/1.0">
<binding.jms name="StockQuoteService”>
<destination name=""StockQuoteServiceQueue” create="never’”/>
<connectionFactory name="StockQuoteServiceQCF” create=""never”/>
</binding. jms>
</definitions>
Any binding.jms element may then refer to that definition:

<?xml version="1.0" encoding="ASCI17?>

<composite xmIns="http://www.osoa.org/xmlns/sca/1.0”
xmlns:acme="http://acme.com”
name=""MyValueComposite’>

<reference name="MyValueService”>
<interface.java interface="services.myvalue_MyValueService”/>
<binding.jms requestConnection="acme:StockQuoteService”/>
</reference>
</composite>

1.8.7 Policy Set Example

A policy set defines the manner in which intents map to JMS binding properties. The following
illustrates an example of a policy set that defines values for the “priority” attribute using the
“priority” intent, and also allows setting of a value for a user JMS property using the “log” intent.

<policySet name="JMSPolicy”
provides="priority log”
appliesTo="binding.jms”>

<intentMap provides="priority” default="medium’>
<qualifier name="high”>
<headers JMSPriority="9"/>
</qualifier>
<qualifier name="medium’”>
<headers JMSPriority="4"/>
</qualifier>
<qualifier name="low”>
<headers JMSPriority="0"/>
</qualifier>
</intentMap>

<intentMap provides="log”>
<qualifier>
<headers>
<property name=""user_example_log”>logged</property>
</headers>
</qualifier>
</intentMap>
</policySet>

Given this policy set, the intents can be required on a service or reference:

<reference name="StockQuoteService” requires="priority._high log”>
<interface.java interface=""services.stockquote.StockQuoteService”/>
<binding.jms>
<destination name="StockQuoteServiceQueue’/>
<connectionFactory name="StockQuoteServiceQCF’/>
</binding. jms>

JMS Binding Specification V1.00 10 March 2007



SCA Service Component Architecture

484 </reference>
485

JMS Binding Specification V1.00 11 March 2007



486
487

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541

SCA Service Component Architecture

2 JMS Binding Schema

<?xml version="1.0" encoding=""UTF-8"7?>

<I-- (c) Copyright SCA Collaboration 2006 -->

<schema xmIns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.osoa.org/xmlns/sca/1.0"

xmIns:sca="http:

//www.osoa.org/xmlns/sca/1.0"

elementFormDefault="qualified">

<include schemalLocation="sca-core.xsd"/>

<complexType name="JMSBinding'>

<complexContent>

<extension base='"sca:Binding'>

<sequence>
<element
<element

<element
<element
<element

<element

<element

name=""destination" type="sca:Destination’” minOccurs="0"/>
name="'connectionFactory" type='sca:ConnectionFactory"
minOccurs="0"/>

name="‘activationSpec"™ type='sca:ActivationSpec"
minOccurs="0"/>

name="'response' type="'sca:Response' minOccurs="0"/>
name=""headers" type="'sca:Headers'" minOccurs="0"/>
name=""resourceAdapter’ type="'sca:ResourceAdapter’’
minOccurs="0"/>

name=""operationProperties" type="sca:OperationProperties"
minOccurs="0" maxOccurs="unbounded"/>

<any namespace=""##other' processContents="l1ax"
minOccurs="0" maxOccurs=""unbounded/>

</sequence>

<attribute name="correlationScheme"

default="RequestMsglDToCorrel ID">

<simpleType>
<restriction base="string >
<enumeration value="RequestMsglDToCorrellD"/>
<enumeration value="RequestCorrellDToCorrellD"/>
<enumeration value="None"/>

</restriction>
</simpleType>
</attribute>
<attribute name="initialContextFactory" type="anyURI"/>
<attribute name="jndiURL" type="anyURI"/>
<attribute name="requestConnection™ type="QName"/>

<attribute
<attribute

name=""responseConnection’ type="QName'/>
name=""operationProperties" type="QName'/>

<anyAttribute/>

</extension>
</complexContent>
</complexType>

<simpleType name="CreateResource'>

<restriction base=

"'string">

<enumeration value="always"/>
<enumeration value="never"'/>
<enumeration value=""ifnotexist'"/>

</restriction>

JMS Binding Specification V1.00 12 March 2007



542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600

SCA Service Component Architecture

</simpleType>

<complexType name="Destination>
<sequence>
<element name="property"” type="'string"
minOccurs="0" maxOccurs=""unbounded"/>
</sequence>
<attribute name="name" type="anyURI" use="'required'/>
<attribute name=""type" use="optional’” default="queue'>
<simpleType>
<restriction base="string">
<enumeration value="queue"/>
<enumeration value="topic"/>
</restriction>
</simpleType>
</attribute>
<attribute name='create" type="'sca:CreateResource"
use=""optional" default=""ifnotexist"/>
</complexType>

<complexType name="ConnectionFactory'>
<sequence>
<element name="property" type="string"
minOccurs="0" maxOccurs="unbounded*/>
</sequence>
<attribute name="name" type="anyURI" use="‘required'/>
<attribute name='create" type="'sca:CreateResource"
use=""optional" default=""ifnotexist"/>
</complexType>

<complexType name="ActivationSpec'>
<sequence>
<element name="property' type="string"
minOccurs="0" maxOccurs="unbounded*/>
</sequence>
<attribute name="name" type="‘anyURI" use="‘required'/>
<attribute name='create" type="'sca:CreateResource"
use=""'optional" default=""ifnotexist"/>
</complexType>

<complexType name="Response'’>
<sequence>
<element name="'destination' type="'sca:Destination'" minOccurs="0"/>
<element name="connectionFactory' type="sca:ConnectionFactory"’
minOccurs="0"/>
<element name="activationSpec" type="'sca:ActivationSpec” minOccurs="0"/>
</sequence>
</complexType>

<complexType name="Headers'>

<sequence>

<element name="property' type="string"

minOccurs="0" maxOccurs="unbounded"/>

</sequence>
<attribute name="JMSType" type="string"/>
<attribute name="JMSCorrelationlD" type="string'/>
<attribute name="JMSDeliveryMode"™ type="'string"/>
<attribute name="JMSTimeToLive" type="int"/>
<attribute name="JMSPriority" type="string'/>

JMS Binding Specification V1.00 13 March 2007



601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

SCA Service Component Architecture

</complexType>

<complexType name="ResourceAdapter’>
<sequence>
<element name="property"” type="'string"
minOccurs="0" maxOccurs=""unbounded"/>
</sequence>
<attribute name="name" type="'string" use="'required'/>
</complexType>

<complexType name="OperationProperties>
<sequence>
<element name="property" type="'string"
minOccurs="0" maxOccurs="unbounded*/>
<element name="headers' type="sca:Headers"/>
</sequence>
<attribute name="name'" type="'string" use="'required'/>
<attribute name="nativeOperation" type="string"/>
</complexType>

<element name="binding.jms"™ type="'sca:JMSBinding"

substitutionGroup="'sca:binding"/>
</schema>

JMS Binding Specification V1.00 14

March 2007



624
625

626
627

628

629
630

631
632
633

634
635

636
637

SCA Service Component Architecture

3 References

[1] JMS Specification
http://java.sun.com/products/jms/

[2] Java Enterprise Edition 1.4 specification
http://java.sun.com/j2ee/1.4/

[3] WSDL Specification
WSDL 1.1: http://www.w3.0rg/TR/wsdl
WSDL 2.0: http://www.w3.orqg/TR/wsdl20/

[4] Java Connector Architecture Specification Version 1.5

http://java.sun.com/j2ee/connector/

JMS Binding Specification V1.00

15

March 2007


http://java.sun.com/products/jms/
http://java.sun.com/j2ee/1.4/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20/
http://java.sun.com/j2ee/connector/

	Introduction
	Operation Selection and Data Binding
	Messaging Bindings
	JMS Binding Schema
	Default Operation Selection and Data Binding behavior
	Default Operation Selection
	Default Data Binding

	Policy
	Callback and Conversation Protocol
	JMS User Properties
	Callbacks
	Conversations

	Examples
	Minimal Binding Example
	URI Binding Example
	Binding with Existing Resources Example
	Resource Creation Example
	Request/Response Example
	Use of Predefined Definitions Example
	Policy Set Example


