
OSOA Collaboration | 30th May 2007

An Introduction to SCA & SDO: How to
Build Business applications
Jeff Mischkinsky

Director, Oracle Fusion Middleware and Web Services Standards

Introduction to SCA and SDO

OSOA Collaboration

Agenda

SOA -The Business Drivers
The SOA Vision - Model and Characteristics
SCA/SDO - An Overview
SCA - Details and Example
Summary

OSOA Collaboration | 30th May 2007

SOA - The Business Drivers

Introduction to SCA and SDO

OSOA Collaboration

Traditional Business*

Today’s World-Class Business*

*Sources: CBDi

Economics: globalization demands greater
flexibility

Global supply chain integration

Business processes:
daily changes vs. yearly changes

Growth through flexibility is at
the top of the CEO agenda

Reusable assets can cut costs
by up to 20%

Crucial for flexibility and becoming
an On Demand Business

Flexible business requires flexible IT

Business Drivers

Introduction to SCA and SDO

OSOA Collaboration

What We have Today

Complexity
Rigid, brittle architectures
Inability to evolve

Introduction to SCA and SDO

OSOA Collaboration

What we want to get to

• Well-defined interfaces with business-level semantics
• Standardized communication protocols
• Flexible recombination of services to enhance software

flexibility

Service-Oriented Architecture is one of the key technologies to enable
flexibility and reduce complexity

+

OSOA Collaboration | 30th May 2007

The SOA Vision:
Model and Characteristics

Introduction to SCA and SDO

OSOA Collaboration

Service Oriented Architecture
Characteristics

Service model for business functions
Services are coarse-grained and network-facing

Characteristics
Flexibility

• Autonomous services are highly reusable
Non predictive patterns of use

Productivity
• High level of abstraction

Comprehension
• Well-understood system architecture and behavior

Introduction to SCA and SDO

OSOA Collaboration

The SOA Programming Model (1)
SOA Programming Model derives from the basic concept of
a service:

• A service is an abstraction that encapsulates a software
function.

Developers build services, use services and develop solutions
that aggregate services.

• Composition of services into integrated solutions is a key
activity

Introduction to SCA and SDO

OSOA Collaboration

The SOA Programming Model (2)

Core Elements:
Service Assembly

technology- and language- independent representation of composition of
services

Service Components
technology- and language-independent representation of composable service

implementation

Service Data Objects
technology- and language-Independent representation of service data entity

OSOA Collaboration | 30th May 2007

SCA/SDO:
An Overview

Introduction to SCA and SDO

OSOA Collaboration

Service Component Architecture (SCA): A
Simplified Programming/Deployment
Model for SOA

A model for building components, assembling them into
applications, and deploying them to various runtime
environments

Components can be built from new or existing code using
SOA principles
vendor-neutral – supported across the industry
language-neutral – components written using any language
technology-neutral – use any communication protocols and
infrastructure to link components

Introduction to SCA and SDO

OSOA Collaboration

What is SCA?
executable model for assembly of service components into
business solutions

simplified component programming model for implementation of
services:

• Business services implemented in any of a variety of
technologies

e.g. EJBs, Java POJOs, BPEL process, COBOL,
C++, PHP …

Introduction to SCA and SDO

OSOA Collaboration

SCA: What is it NOT

Does not model individual workflows
use BPEL or other workflow languages

Is not Web services
SCA can use / may use Web services, but can also build solutions
with no Web services content

Is not tied to a specific runtime environment
distributed, hetergeneous, large, small

Does not force use of specific programming languages and
technologies

aims to encompass many languages, technologies

Introduction to SCA and SDO

OSOA Collaboration

Key benefits of SCA

Loose Coupling: Components integrate without needing to know how other components are implemented

Flexibility: Components can easily be replaced by other components

Services can be easily invoked either synchronously or asynchronously

Composition of solutions: clearly described

Productivity: Easier to integrate components to form composite application

Heterogeneity:
multiple implementation languages / different frameworks
multiple communication mechanisms

Declarative application of infrastructure services
WSDL is the contract language

Simplification of development experience for all developers, integrators and application
deployers

Introduction to SCA and SDO

OSOA Collaboration

SCA – High Level View

Unified declarative model describing service assemblies
dependency resolution and configuration

declarative policies for infrastructure services
• Security, Transactions, Reliable messaging

Business-level model for implementing services
service components with service interfaces

no technical APIs like JDBCTM, JCATM, JMSTM, …

Binding model for multiple access methods and infrastructure
services

WSDL, SOAP over HTTP, JMSTM/messaging, JavaTM RMI/IIOP…
Interaction Model for connected and disconnected services

Synchronous, Asynchronous and Conversational services relationships

Introduction to SCA and SDO

OSOA Collaboration

Service Data Objects (SDO): Simplified
Data Handling for SOA

A simplified programming model for access to business
data

Uniform model for data formats
Uniform model for data access

Independent of form of data (source and target)
Data stored in wide variety of formats
RDBMS
XML formats
Unstructured

Interaction style designed for SOA
Disconnected, optimistic-update policy

• Read, manipulate, update

OSOA Collaboration | 30th May 2007

SCA:
Details and Example

Introduction to SCA and SDO

OSOA Collaboration

SCA Elements

Assembly Model
how to define structure of composite applications

Client & Implementation specifications
how to write business services in particular languages
Java, C++, BPEL, PHP….

Binding specifications
how to use access methods
Web services, JMS, RMI-IIOP, REST…

Policy Framework
how to add infrastructure services to solutions
Security, Transactions, Reliable messaging…

Introduction to SCA and SDO

OSOA Collaboration

Basic Assembly Elements

Component
configured instance of implementation
provides and consumes services
sets implementation properties

Composite
combines collections of components
wires references to services
selects bindings, endpoints
applies policies

Introduction to SCA and SDO

OSOA Collaboration

SCA Bindings

Specific to particular:
Access Method / Protocol / Transport

Serialization

Framework

Apply to services and references

Typically added during deployment

Currently defined bindings:
Web services binding

JMS binding

JCA binding

EJB (RMI-IIOP) binding

Introduction to SCA and SDO

OSOA Collaboration

SCA Client and Implementation
Specifications

Specify how service components and service clients are built

Specific to a particular language or framework or language- or
framework-specific APIs

Extensible

Currently defined C&I specifications:
BPEL
Java
Spring Framework
EJB
JAX-WS
C++
(PHP)

Introduction to SCA and SDO

OSOA Collaboration

SCA Policies and Infrastructure
Capabilities

Infrastructure has many configurable capabilities
Security: Authentication and Authorization

Security: Privacy, Encryption, Non-Repudiation

Transactions, Reliable messaging, etc.

Complex sets of configurations across multiple domains of concern

SCA abstracts out complexity with a declarative model
no implementation code impact

simplify usage via declarative policy intents

simple to apply, modify

complex details held in PolicySets

Introduction to SCA and SDO

OSOA Collaboration

SCA Policy Framework

Framework consists of:

SCA policy intent
• Each represent a single abstract QoS intent
• E.g. reliable messaging

SCA policy sets
• Represent a collection of concrete policies to realize an abstract

QoS intent

WS-Policy
• A syntax for concrete policies in policy sets
• others possible…

Introduction to SCA and SDO

OSOA Collaboration

SCA Composite

Composite A

Component
AService

Binding
Web Service
SCA
JCA
JMS
SLSB
…

Binding
Web Service
SCA
JCA
JMS
SLSB
…

Component
B

Service
- Java interface
- WSDL PortType

Reference
- Java interface
- WSDL PortType

Wire
PromotePromote

Reference

Property
setting

Properties

Implementation
- Java
- BPEL
- C++
- PHP
- Composite
…

Introduction to SCA and SDO

OSOA Collaboration

Example Composite

bigbank.accountcomposite

AccountService
Component

Service
AccountService

Reference
StockQuote
Service

AccountData
Service
Component

bigbank.accountcomposite

AccountService
Component

Service
AccountService

Reference
StockQuote
Service

AccountData
Service
Component

Introduction to SCA and SDO

OSOA Collaboration

Warehouse
Service

WarehouseComposite

Warehouse
Broker

Component
Warehouse
Component

EventLog
Component

Order
Processing
Service

OrderProcessing
Component

EventLog
Reference

External
Warehouse

Reference

Payments
Component

Payment
Service

AccountsComposite
External
Banking

Reference

Accounts
Ledger

Component

Example SCA Assembly

OSOA Collaboration | 30th May 2007

Summary

Introduction to SCA and SDO

OSOA Collaboration

Summary

Fundamental Service Oriented Architecture value prop
less expensive integration, more flexibility

SCA models systems built using a SOA

SDO provides the ideal data manipulation layer

SCA is key enabler for SOA

Maybe “THE” key enabler

OSOA Collaboration | 30th May 2007

Thank you!

Questions?

