
Spring MVC

Spring MVC Outline

Overview of MVC paradigm
The components of Spring MVC
MVC and Dependency Injection
Implementing a basic Controller
Creating a simple View
Configuring a Spring MVC application
Configuring URL mappings
Mapping views

Grouping request handling logic with MultiActionController
Handling form posts
Adding validation
Using data binding
Adding error reporting
Configuring form and success views

MVC Overview

MVC = Model-View-Controller
Clearly separates business, navigation
and presentation logic
Proven mechanism for building a thin,
clean web-tier

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

MVC Components

Three core collaborating components
Controller
• Handles navigation logic and interacts with the
service tier for business logic

Model
• The contract between the Controller and the
View
• Contains the data needed to render the View
• Populated by the Controller

View
• Renders the response to the request
• Pulls data from the model

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Motivation for MVC

Eases maintenance burden
Changes to business logic are less likely to
break the presentation logic
Vice versa

Facilitates multi-disciplined team
development
Developers can focus on creating robust
business code without having to worry
about breaking the UI
Designers can focus on building usable
and engaging UIs without worrying about
Java

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Motivation for MVC

Use the best tool for the job
Java is especially suited to creating
business logic code
Markup or templating languages are more
suited to creating HTML layouts

Ease testability
Business and navigation logic are
separated from presentation logic meaning
they can be tested separately
Practically: you can test more code
outside the servlet container

MVC in Spring

A single Front Controller servlet that
dispatches requests to individual Controllers
Proven pattern shown in Struts and Core J2EE
Patterns

Request routing is completely controlled by the
Front Controller
Individual Controllers can be used to handle many
different URLs

Controllers are POJOs
Controllers are managed exactly like any other
bean in the Spring ApplicationContext

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Core Components of Spring MVC

DispatcherServlet

Spring’s Front Controller implementation
Controller

User created component for handling
requests
Encapsulates navigation logic
Delegates to the service objects for
business logic

View

Responsible for rendering output

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Core Components of Spring MVC

ModelAndView

Created by the Controller
Stores the Model data
Associates a View to the request
• Can be a physical View implementation or a
logical View name

ViewResolver

Used to map logical View names to actual View
implementations

HandlerMapping

Strategy interface used by DispatcherServlet
for mapping incoming requests to individual
Controllers

MVC and Dependency Injection

All MVC components are configured in the
Spring ApplicationContext
As such, all MVC components can be
configured using Dependency Injection
Example:

<bean id="springCheersController" class="com....web.SpringCheersController">
<property name="methodNameResolver“ ref=“springCheersMethodResolver"/>
<property name="service" ref="service"/>
</bean>

Creating a Basic Controller

Goals
Create a thin-wrapper around the business
functionality
Keep all business processing out of the web tier
Handle only navigation logic

Process
Create the Controller class
• Implement the Controller interface

• Or extend one of the pre-built Controller
implementations

Create a setter to inject the service object
Implement the handleRequest() method

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

public class BeerListController implements Controller {
private SpringCheersService service;

public void setService(SpringCheersService service) {
this.service = service;

}

public ModelAndView handleRequest(
HttpServletRequest httpServletRequest,
HttpServletResponse httpServletResponse)

throws Exception {
List beers = this.service.findAllBeers();
return new ModelAndView("beerList", "beers", beers);

}
}

Creating a Basic Controller

View name

Model parameter name

Model parameter

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Creating a Basic Controller

What did we do?
Create a class that implements the
Controller interface

What’s left?
Configure the Spring MVC infrastructure
• Once per application

Configure the Controller
Map the Controller to one or more URLs
Create a view
Map the view name to the view

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Views in Spring MVC

Extensive support for many different view
technologies
JSP, JSTL, Velocity, FreeMarker,
JasperReports, PDF, Excel

Views are represented using logical view
names which are returned by the
Controller
Can return an actual View class from the
Controller if needed

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

View Resolution in Spring MVC

View names are mapped to actual view
implementations using ViewResolvers

ViewResolvers are configured in the
web-tier ApplicationContext
Automatically detected by
DispatcherServlet

Can configure multiple, ordered
ViewResolvers

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

ViewResolver Implementations

• InternalResourceViewResolver
Uses RequestDispatcher to route requests to internal
resources such as JSPs
Model data is placed in request scope for access in the
view

• FreeMarkerViewResolver
Uses FreeMarkerView to render the response using the
FreeMarker template engine

• VelocityViewResolver
Uses VelocityView to render the response using the
FreeMarker template engine

• BeanNameViewResolver
Maps the view name to the name of a bean in the
ApplicationContext.
Allows for view instances to be explicitly configured

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Creating a View with JSP and JSTL

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>

<html>
<head><title>Beer List</title></head>
<body>
<table border="0">
<c:forEach items="${beers}" var="beer">
<tr>
<td><c:out value="${beer.id}"/></td>
<td><c:out value="${beer.brand}"/></td>

</tr>
</c:forEach>
</table>
</body>

</html>

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Configuring a Spring MVC Application

Configure the DispatcherServlet in
web.xml
Configure ContextLoaderListener or
ContextLoaderServlet to load the business
tier and data tier ApplicationContexts

Create the web-tier ApplicationContext
configuration file
Configure Controllers
Map URLs to Controllers
Map logical view names to view
implementations

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Configuring a Spring MVC Application

DispatcherServlet
(awaiting incoming HttpServletRequests)

WebApplicationContext
(containing controllers, view resolvers,

locale resolvers and
other web -related beans)

WebApplication
Context(s)

(containing middle-tier
services, datasources,

etcetera)

WebApplication
Context(s)

(containing middle-tier
services, datasources,

etcetera)

WebApplication
Context(s)

(containing middle-tier
services, datasources,

etcetera)

Controllers

ViewResolver

HandlerMapping
Controllers

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Configuring DispatcherServlet

<servlet>
<servlet-name>springcheers</servlet-name>
<servlet-class>

o.s.web.servlet.DispatcherServlet
</servlet-class>
<load-on-startup>2</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>springcheers</servlet-name>
<url-pattern>*.htm</url-pattern>

</servlet-mapping>

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Configuring ContextLoaderListener

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>/WEB-INF/applicationContext.xml</param-value>

</context-param>

<listener>
<listener-class>

o.s.web.context.ContextLoaderListener
</listener-class>

</listener>

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Configuring a Spring MVC
Application
Creating the web-tier ApplicationContext
configuration:
Naming is important – follows the
pattern /WEB-INF/<servlet_name>-
servlet.xml

DispatcherServlet will automatically load
this file when setting up its
ApplicationContext

In our example this would be /WEB-
INF/springcheers-servlet.xml

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Configuring BeerListController

<bean id="beerListController"
class="com.springcheers.web.BeerListController">

<property name="service" ref="service"/>
</bean>

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Mapping URLs to Controllers

Mapping request (URLs) to Controller
Controlled by implementations of the
HandlerMapping interface
Useful out-of-the-box implementations
BeanNameUrlHandlerMapping
• Uses the Controller bean name as the URL
mapping

SimpleUrlHandlerMapping
• Define a set of URL pattern to bean mappings
Most out of the box implementations
support Ant-style path matching

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Configure a HandlerMapping

<bean id="urlMapping"
class="o.s.web.servlet.handler.SimpleUrlHandlerMapping">
<property name="mappings">
<props>
<prop key="/list.htm">springCheersController</prop>
<prop key="/view.htm">springCheersController</prop>
<prop key="/edit.htm">customerForm</prop>
<prop key="/create.htm">customerForm</prop>
<prop key="/beer/list.htm">beerListController</prop>

</props>
</property>

</bean>

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Configuring the ViewResolver

<bean id="viewResolver"
class=“o.s.w.servlet.view.InternalResourceViewResolver">

<property name="prefix" value="/WEB-INF/jsp/"/>
<property name="suffix" value=".jsp"/>

</bean>

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Understanding MultiActionController

One controller to handle different tasks
Multiple handler methods
• Each method handles a different request

MethodNameResolver determines method
• Based on parameter or other criteria

Can use a delegate to come up with
ModelAndView

Good for grouping related tasks into a
single class

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Creating a MultiActionController
public class SpringCheersController extends MultiActionController {

private SpringCheersService service;

/** setter ommitted */

public ModelAndView handleCustomerList(
HttpServletRequest request, HttpServletResponse response) {

return new ModelAndView("customerList",
"customers", this.service.getCustomerList());

}

public ModelAndView handleViewCustomer(
HttpServletRequest request, HttpServletResponse response)

throws Exception {
long id = RequestUtils.getRequiredLongParameter(request, "customerId");
return new ModelAndView("viewCustomer",

"customer", this.service.getCustomer(id));
}

}

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Configuring a MultiActionController

<bean id="springCheersController"
class="com.springcheers.web.SpringCheersController">
<property name="methodNameResolver"

ref="springCheersControllerResolver"/>
<property name="service" ref="service"/>

</bean>

<bean id="springCheersControllerResolver"
class="o.s.w.servlet.mvc.multiaction.PropertiesMethodNameResolver">
<property name="mappings">
<props>
<prop key="/list.htm">handleCustomerList</prop>
<prop key="/view.htm">handleViewCustomer</prop>

</props>
</property>

</bean>

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Unit Testing a Controller

Test with mock request, response and
service
Glass-box testing
Ensure that the service is invoked as
desired
Fits well with a TDD approach

Test a variety of interactions
Controller with the request and response
Controller with the service

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Unit Testing a Controller
private SpringCheersController controller;
private SpringCheersService service;
private MockControl serviceControl;

public void setUp() {
this.controller = new SpringCheersController();
this.serviceControl =

MockControl.createControl(SpringCheersService.class);
this.service =

(SpringCheersService) this.serviceControl.getMock();

this.controller.setService(this.service);
}

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Unit Testing a Controller

public void testHandleViewCustomer() throws Exception{
MockHttpServletRequest request = new MockHttpServletRequest();
MockHttpServletResponse response = new MockHttpServletResponse();

request.addParameter("customerId", "1");

Customer dummyCustomer = new Customer();
this.service.getCustomer(1);
this.serviceControl.setReturnValue(dummyCustomer);
this.serviceControl.replay();

ModelAndView mv = this.controller.handleViewCustomer(request, response);

assertNotNull("ModelAndView should not be null", mv);
assertEquals("Invalid view name", "viewCustomer", mv.getViewName());

Customer customer = (Customer)mv.getModel().get("customer");

assertNotNull("Customer should not be null", customer);
assertEquals("Invalid customer returned", dummyCustomer, customer);

}

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Integration Testing
public class BeerListControllerIntegrationTests

extends AbstractControllerIntegrationTests {
private BeerListController beerListController;

public void setBeerListController(BeerListController beerListController) {
this.beerListController = beerListController;

}

public void testListBeers() throws Exception {
MockHttpServletRequest request = new MockHttpServletRequest();
MockHttpServletResponse response = new MockHttpServletResponse();

ModelAndView mv = this.beerListController.handleRequest(request,
response);

assertEquals("Incorrect view name", "beerList", mv.getViewName());

List beers = (List) mv.getModel().get("beers");

assertNotNull("Beer list not in model", beers);

int count = jdbcTemplate.queryForInt("select count(0) from beers");
assertEquals("Incorrect number of beers in list", count, beers.size());

}
}

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Handling Form Posts with
SimpleFormController

Create the custom SimpleFormController

Create the form view
Adding data binding logic to the form view
Add error display logic to the form view
Create the success view
Define a command object for the form
Add on submit logic
Optionally
Add validation logic
Hook in custom data binding logic

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Request Workflow of
SimpleFormController
GET request displays the form
POST request submits the form
Both have distinct workflow
GET does not need validation
POST does not need form view
...

Implement template methods to
customize behavior

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

GET request – Form Display

formBackingObject()

Retrieve the command object
Allows for pre-population of the form

initBinder()

Register custom editors
referenceData()

Load reference data needed for displaying the form
showForm()

Completes ModelAndView and returns

Command object stored in session if configured
Renders the actual form

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

POST request – form submission

formBackingObject()
Retrieve the command object
• Maybe from session, maybe from database

initBinder()
Register custom editors
Binding of request parameters to form

onBind()
Called after bind but before validation
Allows you to manually bind request parameters to the command
object before validation

Validation done using Validators
onBindAndValidate()
Called after bind and validate
Allows you to bind parameters to the command that don’t need
validation

If validation fails then add errors to the ModelAndView and show
the form again
If validation succeeds call onSubmit() callbacks and show the
success view

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Creating the Form View
<html>
<head>
<title>Spring Cheers</title>
</head>
<body>
<h1>Update Customer</h1>
<form name="editCustomer" method="POST">
<table border="0">
<tr>
<td>Name: </td>
<td>
<input type="text" size="30" name=“command.name”/>

</td>
</tr>
<tr>
<td colspan="2"> </td>
<td><input type="submit" value="Save"/></td>

</tr>
</table>
</form>
</body>
<html>

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Adding Data Binding to the Form

<spring:bind path="command.name">

<td>

<input type="text" size="30"

name="<c:out value='${status.expression}'/>"

value="<c:out value='${status.displayValue}' />"

/>

</td>

</spring:bind>

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Adding Error Handling to the
Form
<spring:bind path="command.name">

<td>
<input type="text" size="30"

name="<c:out value='${status.expression}'/>"
value="<c:out value='${status.displayValue}' />"

/>
</td>
<td>
<c:if test="${status.error}">
<div class="error">
<c:forEach items="${status.errorMessages}" var="error">
<c:out value="${error}"/>

</c:forEach>
</div>

</c:if>
</td>

</spring:bind>

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Creating the CustomerForm
Controller

public class CustomerForm extends SimpleFormController {

private SpringCheersService service;

public void setService(SpringCheersService service) {
this.service = service;

}

protected Object formBackingObject(HttpServletRequest request)
throws Exception {

long id = RequestUtils.getLongParameter(request, "customerId", -1);
return (id > 0) ? this.service.getCustomer(id) : new Customer();

}

protected void doSubmitAction(Object customer) throws Exception {
this.service.saveCustomer((Customer) customer);

}
}

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Validation Architecture

Not tied to the HttpServletRequest

Not tied to the web-tier
• Validation of domain objects
• Input from remote clients also needs validation
• Can easy be tested outside of the container

Implementation independence

Conversion errors are non-fatal

• java.lang.Long property
• Typing in nothing (converts to null)
• Typing in ‘foo’
• No difference with respect to validation!!

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Creating a Validator

public class CustomerValidator implements Validator {

public boolean supports(Class cls) {
return (cls == Customer.class);

}

public void validate(Object obj, Errors errors) {
Customer customer = (Customer) obj;

ValidationUtils.rejectIfEmptyOrWhitespace(errors,
"name", "required", "required");

}
}

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Configuring the CustomerForm
Controller

<bean id="customerForm"
class="com.springcheers.web.CustomerForm">

<property name="formView" value="editCustomer"/>

<property name="successView" value="redirect:list.htm"/>

<property name="service" ref="service"/>

<property name="validator" ref="customerValidator"/>

</bean>

Copyright 2004-2005, Interface21 Ltd. - Copying, publishing, or distributing without expressed written permission is prohibited.

Summary

Spring MVC provides a sophisticated MVC
implementation
Interface-based for easy testing
Fully integrated with Spring IOC
Comprehensive view technology
integration
• JSP & JSTL
• Velocity
• FreeMarker
• PDF
• Excel

