
Talend ESB Infrastructure Services
Configuration Guide

5.1

Talend ESB Infrastructure Services: Configuration Guide

Publication date 3 May 2012
Copyright © 2011-2012 Talend Inc.

Copyleft

This documentation is provided under the terms of the Creative Commons Public License (CCPL). For more information about what you can
and cannot do with this documentation in accordance with the CCPL, please read: http://creativecommons.org/licenses/by-nc-sa/2.0/

This document may include documentation produced at The Apache Software Foundation which is licensed under The Apache License 2.0.

Notices

Talend and Talend ESB are trademarks of Talend, Inc.

Apache CXF, CXF, Apache Karaf, Karaf, Apache Camel, Camel, Apache Maven, Maven, Apache Archiva, Archiva are trademarks of The
Apache Foundation.

Eclipse Equinox is a trademark of the Eclipse Foundation, Inc. SoapUI is a trademark of SmartBear Software. Hyperic is a trademark of
VMware, Inc. Nagios is a trademark of Nagios Enterprises, LLC.

All other brands, product names, company names, trademarks and service marks are the properties of their respective owners.

Talend ESB Infrastructure Services Configuration Guide

Table of Contents
1. Introduction .. 1

1.1. Prerequisites to using Talend ESB ... 1
1.2. Installation directory .. 1
1.3. Other manuals .. 2

2. Service Locator Installation ... 3
2.1. Download .. 3
2.2. Standalone Operation ... 3
2.3. Start using command line ... 4
2.4. Running a Replicated Service Locator .. 4
2.5. Running Apache Zookeeper as an OSGI bundle ... 5
2.6. Maintaining a Service Locator ... 5
2.7. Enabling Service Locator usage in CXF .. 6
2.8. Service Locator SOAP Service .. 6
2.9. Service Locator REST Service ... 11

3. Service Locator configuration .. 15
3.1. Service Locator Provider configuration .. 15
3.2. Service Locator Consumer configuration ... 16
3.3. Additional Metadata .. 17
3.4. Service Locator endpoint selection strategy configuration 18
3.5. Properties file ... 19
3.6. Service Locator for RESTful services ... 20

4. Service Activity Monitoring (SAM) .. 23
4.1. Introduction .. 23
4.2. Architecture ... 25
4.3. Installation ... 26
4.4. Configuration ... 32
4.5. Running and Testing .. 35
4.6. Event Structure ... 38
4.7. EVENTS_CUSTOMINFO Structure ... 39

5. Using STS with the Talend Runtime ... 40
5.1. Deploying the STS into the Talend Runtime container .. 40
5.2. Deploying the STS into a Servlet Container (Tomcat) .. 41
5.3. Security Token Service (STS) Configuration .. 41
5.4. Data Service Configuration for using STS .. 43
5.5. Creating keys for the Security Token Service ... 44

6. Apache Archiva and the Talend Artifact Repository ... 47
6.1. Overview ... 47
6.2. More information .. 48
6.3. Downloading and installing Archiva ... 48
6.4. Browsing repositories ... 49
6.5. Configuring Maven to use an Archiva repository ... 50
6.6. Deploying to a Repository .. 52

Talend ESB Infrastructure Services Configuration Guide

List of Figures
6.1. A repository with some Talend artifacts already deployed ... 49
6.2. Default Archiva Repositories ... 52

Talend ESB Infrastructure Services Configuration Guide

List of Examples
2.1. Service Locator standalone configuration .. 4
2.2. Replicated Service Locator configuration .. 4
3.1. Service Locator Feature configuration for endpoint .. 16
3.2. Service Locator Feature configuration for client .. 17
3.3. Service Locator enabled endpoint with additional metadata ... 18
3.4. Service Locator enabled client with additional metadata requirements 18
3.5. Service Locator Feature RESTful service provider configuration 21
3.6. Service Locator RESTful service consumer configuration ... 22

Talend ESB Infrastructure Services Configuration Guide

Chapter 1. Introduction
This guide covers runtime installation and configuration information for Talend ESB services. Topics covered
include installation and configuration of the Service Locator, Service Activity Monitoring and the Security Token
Service.

1.1. Prerequisites to using Talend ESB
Compatible software versions

There are a number of software and hardware prerequisites you should be aware of, prior to starting
the installation of Talend ESB software.

For a complete list of compatible software and software versions:

• If you are using Talend Enterprise ESB Studio or Talend Enterprise ESB, see Talend Enterprise
ESB Installation Guide.

• If you are using Talend Open Studio for ESB or Talend ESB Standard Edition, see the link
to the Installation Guide on the Talend ESB download page (http://www.talend.com/
download.php).

1.2. Installation directory
We use the term <Talend.runtime.dir> for the directory where Talend Runtime is installed. This is
typically the full path of either Runtime_ESBSE or Talend-ESB-V5.1.x, depending on the version of the
software that is being used. Please substitute appropriately.

Introduction

Talend ESB Infrastructure Services Configuration Guide 2

For instance, the Talend Runtime examples are in the <Talend.runtime.dir>/examples/talend
directory.

1.3. Other manuals
For more details on the Security Token Service, please also see the Talend ESB STS User Guide.

Talend ESB Infrastructure Services Configuration Guide

Chapter 2. Service Locator Installation
This chapter describes the steps to install and run the Service Locator. The Service Locator is a service that provides
service consumers with a mechanism to discover service endpoints at run time. The Service Locator consists of
two parts: The endpoint repository and the Service Locator feature.

Since creating a distributed, fault-tolerant endpoint repository is a non-trivial task, the Service Locator
implementation is based on proven open source technology - Apache ZooKeeper. This is a highly reliable service
that provides coordination between distributed processes.

To learn more about Apache ZooKeeper, visit http://zookeeper.apache.org/.

Only one instance of the Service Locator

Please note that only one Service Locator (ZooKeeper) instance can run on a machine at a time.

2.1. Download
To get a server distribution, download a recent stable release from one of the Apache Download Mirrors. After
this unpack it and cd to the root.

2.2. Standalone Operation
Setting up the Service Locator server in standalone mode is straightforward. The server is contained in a single
JAR file, so installation consists of creating a configuration. Once you've downloaded a stable Service Locator
server release, unpack it and navigate to its root directory. To start the Service Locator you need a configuration
file. Here is a sample, create it in conf/zoo.cfg:

http://zookeeper.apache.org/
http://zookeeper.apache.org/releases.html

Service Locator Installation

Talend ESB Infrastructure Services Configuration Guide 4

Example 2.1. Service Locator standalone configuration

tickTime=2000
dataDir=/var/locator
clientPort=2181

This file can be named as you wish, but for the sake of this discussion we call it conf/zoo.cfg. Change the
value of dataDir to specify an existing (empty to start with) directory. Here is a description for each of the fields:

Field name Description

tickTime the basic time unit in milliseconds used by the Service Locator. It is
used to do heartbeats, and the minimum session timeout will be twice the
tickTime

dataDir the location to store the in-memory database snapshots and, unless specified
otherwise, the transaction log of updates to the database

clientPort the port to listen for client connections

2.3. Start using command line
Now that you have created the configuration file, you can start Service Locator server. The bin directory contain
scripts that allow easy access (classpath in particular) to the Service Locator server and command line client:

bin/zkServer.sh start
bin/zkServer.sh start configFilename (if configFilename != "zoo.cfg")

Files ending in .sh are Linux compatible. Files ending in .cmd are Windows compatible. The Service Locator
server logs messages using log4j. You will see log messages logged at the console (default) and/or a log file
depending on the log4j configuration. The steps outlined in this section run the Service Locator in standalone
mode. There is no replication, so if the Service Locator process fails, the service will go down, so you may want
to consider using a replicated Service Locator.

2.4. Running a Replicated Service Locator
Running the Service Locator server in standalone mode is convenient for evaluation, development, and testing.
But in production, you should run the Service Locator in replicated mode. A replicated group of servers in the
same application is called a quorum, and in replicated mode, all servers in the quorum have copies of the same
configuration file. The configuration is similar to the one used in standalone mode, but with a few differences:

Example 2.2. Replicated Service Locator configuration

tickTime=2000
dataDir=/var/locator
clientPort=2181
initLimit=5
syncLimit=2
server.1=locator_host1:2888:3888
server.2=locator_host2:2888:3888
server.3=locator_host3:2888:3888

Service Locator Installation

Talend ESB Infrastructure Services Configuration Guide 5

The new configuration entry, initLimit limits the time the Service Locator servers in quorum have to connect
to a leader. The configuration entry syncLimit limits how far out of date a server can be from a leader. For both
of these timeouts the unit of time is specified using tickTime.

In this example, the timeout for initLimit is 5 ticks at 2000 milleseconds a tick, or 10 seconds. The entries of
the form server.X list the servers that make up the Service Locator service. When the server starts up, it knows
which server it is by looking for the file myid in the data directory. That file has the contains the server number,
in ASCII. Finally, note the two port numbers after each server name: "2888" and "3888". Peers use the former
port to connect to other peers. Such a connection is necessary so that peers can communicate, for example, to
agree upon the order of updates. More specifically, a Service Locator server uses this port to connect followers
to the leader. When a new leader arises, a follower opens a TCP connection to the leader using this port. Because
the default leader election also uses TCP, we currently require another port for leader election. This is the second
port in the server entry.

2.5. Running Apache Zookeeper as an OSGI
bundle
Another way to run Apache Zookeeper server is to install its OSGI bundle into the Karaf container. The
configuration of Apache Zookeeper server is similar to the one used in standalone mode. The path to configuration
file \container\etc\org.apache.cxf.dosgi.discovery.zookeeper.server.cfg

1. Start tesb container

2. Execute console command features:install tesb-zookeeper-server

3. Execute console command list

You should see similar output

 ID State Blueprint Spring Level Name
 [168] [Active] [] [] [60] ZooKeeper
 server control bundle (1.2)

To ensure that feature installed successfully, you can run examples related to Service Locator server.

2.6. Maintaining a Service Locator
The Service Locator continually saves znode snapshot files and, optionally, transactional logs in a Data Directory
to enable you to recover data. It's a good idea to back up the Service Locator data directory periodically. Although
the Service Locator is highly reliable because a persistent copy is replicated on each server, recovering from
backups may be necessary if a catastrophic failure or user error occurs.

The Service Locator server does not remove the snapshots and log files, so they will accumulate over time. You
will need to cleanup this directory occasionally, based on your backup schedules and processes. To automate
the cleanup, a zkCleanup.sh script is provided in the bin directory. Modify this script as necessary for your
situation. In general, you want to run this as a cron task based on your backup schedule.

The data directory is specified by the dataDir parameter in the Service Locator server configuration file, and the
data log directory is specified by the dataLogDir parameter. For more information, see Ongoing Data Directory
Cleanup.

http://zookeeper.apache.org/doc/trunk/zookeeperAdmin.html#sc_configuration
http://zookeeper.apache.org/doc/trunk/zookeeperAdmin.html#Ongoing+Data+Directory+Cleanup
http://zookeeper.apache.org/doc/trunk/zookeeperAdmin.html#Ongoing+Data+Directory+Cleanup

Service Locator Installation

Talend ESB Infrastructure Services Configuration Guide 6

2.7. Enabling Service Locator usage in CXF
You need the client component of the Service Locator (locator-<5.1.0>.jar) to enable your CXF service or
consumer to use the Service Locator.

To use the Locator client in CXF you need to add the locator-<5.1.0>.jar into your classpath or war file.
Also add it to the OSGi container if it uses one. To learn more about Locator client configuration for both provider
or consumer please see the Service Locator Configuration Manual.

2.8. Service Locator SOAP Service
The Service Locator SOAP Service component provides a way to access the Service Locator operations (such
as Register an endpoint, Unregister an endpoint, Lookup endpoints for given service, etc.) via the SOAP
interface.

To access the Service Locator instance operations via SOAP, you need to extend the Service Locator by installing
an additional proxy service component called Service Locator service in the Talend Runtime container. To do so,
follow the below steps:

1. Type features:install tesb-locator-soap-service in the tesb container to enable the
Service Locator service component;

2. Type features:install tesb-zookeeper-server in the tesb container to enable the Service
Locator server (zookeeper server) component;

3. Type list in the tesb container. You should see the output:

 ID State Blueprint Spring Level Name
 [189] [Active] [] [] [60] Locator
 Service :: Common (5.1.0)
 [190] [Active] [] [] [60] Locator
 Service :: SOAP Service (5.1.0)
 [191] [Active] [] [] [60] ZooKeeper
 server control bundle (1.2)

The above output shows that Service Locator service component and Service Locator server (ZooKeeper
server) are enabled in the Talend Runtime container.

Also you can configure the ZooKeeper server in the Talend Runtime container by editing the following
configuration file:

container/etc/org.apache.cxf.dosgi.discovery.zookeeper.server.cfg

 # The number of milliseconds of each tick
 tickTime=2000
 # The number of ticks that the initial
 # synchronization phase can take
 initLimit=10
 # The number of ticks that can pass between
 # sending a request and getting an acknowledgement
 syncLimit=5
 # the directory where the snapshot is stored.
 dataDir=./zookeeper/data
 # the port at which the clients will connect

Service Locator Installation

Talend ESB Infrastructure Services Configuration Guide 7

 clientPort=2181
 #Number of client connection (default = 10; unlimited = 0)
 maxClientCnxns = 0

This configuration is the same as the Service Locator configuration, described in Section 2.2, “Standalone
Operation”.

To check that the service is working, access its WSDL at:

http://localhost:8040/services/ServiceLocatorService?wsdl.

The WSDL file for the Service Locator SOAP Service can be found at:

add-ons/locator/LocatorService.wsdl

The corresponding schema files with definitions of the types are:

add-ons/locator/locator-common-types.xsd

add-ons/locator/locator-soap-types.xsd

Currently the Service Locator service provides the following operations:

• Register an endpoint: For a specific service, register an endpoint on the Service Locator server, so the user
can access this endpoint through the service locator server. Parameters: fully qualified service name, endpoint
URL, user defined properties (optional). Return: void

The Register an endpoint operation is described in LocatorService.wsdl as follows:

<operation name="registerEndpoint">
 <input message="lps:registerEndpointInput"/>
 <output message="lps:registerEndpointOutput"/>
 <fault name="InterruptedExceptionFault"
 message="lps:InterruptedExceptionFault"/>
 <fault name="ServiceLocatorFault" message="lps:ServiceLocatorFault"/>
</operation>

 <message name="registerEndpointInput">
 <part name="parameters" element="lpx:registerEndpoint"/>
</message>
<message name="registerEndpointOutput">
 <part name="parameters" element="lpx:registerEndpointResponse"/>
</message>

The related message type definition is separately described in locator-soap-types.xsd and locator-
common-types.xsd as follows:

<xsd:element name="registerEndpoint">
<xsd:complexType>
 <xsd:sequence>
 <xsd:element name="serviceName" type="xsd:QName"/>
 <xsd:element name="endpointURL" type="xsd:anyURI"/>
 <xsd:element name="binding" type="lpx:BindingType" />
 <xsd:element name="transport" type="lpx:TransportType" />
 <xsd:element name="properties" type="lpx:SLPropertiesType"
 minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="registerEndpointResponse">

Service Locator Installation

Talend ESB Infrastructure Services Configuration Guide 8

<xsd:complexType>
 <xsd:sequence/>
</xsd:complexType>
</xsd:element>

 <xsd:simpleType name="BindingType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="SOAP11" />
 <xsd:enumeration value="SOAP12" />
 <xsd:enumeration value="JAXRS" />
 <xsd:enumeration value="OTHER" />
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="TransportType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="HTTP" />
 <xsd:enumeration value="HTTPS" />
 <xsd:enumeration value="JMS" />
 <xsd:enumeration value="OTHER" />
 </xsd:restriction>
 </xsd:simpleType>

An example of registering an endpoint for a specific service is provided in the project /examples/talend/
tesb/locator-service/soap-proxy/war/:

An example of simple locator service configuration is in /examples/talend/tesb/locator-
service/soap-proxy/war/src/main/resources/client.xml:

 <jaxws:client id="locatorService"
 address="http://localhost:8040/services/ServiceLocatorService"
 serviceClass="org.talend.services.esb.locator.v1.LocatorService"
 </jaxws:client>

An example of how to register an endpoint using this configuration
is in/examples/talend/tesb/locator-service/soap-proxy/war/src/main/java/
demo/service/ContextListener.java:

ClassPathXmlApplicationContext context = new ClassPathXmlApplicationContext(
 "/client.xml");
LocatorService client =
 (LocatorService) context.getBean("locatorService");
String serviceHost = "localhost:";

try {
 client.registerEndpoint(new QName(
 "http://talend.org/esb/examples/", "GreeterService"),
 serviceHost, BindingType.SOAP_11, TransportType.HTTP, null);
 } catch (InterruptedExceptionFault e) {
 e.printStackTrace();
 } catch (ServiceLocatorFault e) {
 e.printStackTrace();
}

• Unregister an endpoint: Unregister an endpoint, which has been registered on the Service Locator server, from
the Service Locator server. After unregistering the endpoint, it can not be accessed by the Service Locator server.
Parameters: fully qualified service name, endpoint URL. Return: success or non-success (endpoint did not exist)

Service Locator Installation

Talend ESB Infrastructure Services Configuration Guide 9

The Unregister an endpoint operation is described in LocatorService.wsdl as follows:

<operation name="unregisterEndpoint">
 <input message="lps:unregisterEndpointInput"/>
 <output message="lps:unregisterEndpointOutput"/>
 <fault name="InterruptedExceptionFault"
 message="lps:InterruptedExceptionFault"/>
 <fault name="ServiceLocatorFault" message="lps:ServiceLocatorFault"/>
</operation>

<message name="unregisterEnpointRequest">
 <part element="lpx:unregisterEndpointRequest" name="input"/>
</message>
<message name="unregisterEndpointInput">
 <part name="parameters" element="lpx:unregisterEndpoint"/>
</message>
<message name="unregisterEndpointOutput">
 <part name="parameters" element="lpx:unregisterEndpointResponse"/>
</message>

The related message type definition is separately described in locator-soap-types.xsd and
locator-common-types.xsd as follows:

<xsd:element name="unregisterEndpoint">
<xsd:complexType>
 <xsd:sequence>
 <xsd:element name="serviceName" type="xsd:QName"/>
 <xsd:element name="endpointURL" type="xsd:anyURI"/>
 </xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="unregisterEndpointResponse">
<xsd:complexType>
 <xsd:sequence/>
</xsd:complexType>
</xsd:element>

Example of Unregister an endpoint for a specific service provided in project /examples/talend/tesb/
locator-service/soap-proxy/war/:

 ClassPathXmlApplicationContext context =
 new ClassPathXmlApplicationContext("/client.xml");
 LocatorService client = (LocatorService) context
 .getBean("locatorService");

 String serviceHost = this.context.getInitParameter("serviceHost");

 ...

 client.unregisterEndpoint(new QName("http://talend.org/esb/examples/",
 "GreeterService"), serviceHost);

• Lookup all endpoints for a given service: Lookup all endpoints for the given service which has been registered
on the Service Locator server. Parameters: fully qualified service name, required user defined properties
(optional). Return: list of WS-Addressing EPR's, for all endpoints that provide the service and fullfil the required
properties. If none exists return business fault

Service Locator Installation

Talend ESB Infrastructure Services Configuration Guide 10

The Lookup all endpoints for given Service operation is described in LocatorService.wsdl as follows:

<operation name="lookupEndpoints">
 <input message="lps:lookupEndpointsInput"/>
 <output message="lps:lookupEndpointsOutput"/>
 <fault name="InterruptedExceptionFault"
 message="lps:InterruptedExceptionFault"/>
 <fault name="ServiceLocatorFault" message="lps:ServiceLocatorFault"/>
</operation>

<message name="lookupEndpointsInput">
 <part name="parameters" element="lpx:lookupEndpoints"/>
</message>
<message name="lookupEndpointsOutput">
 <part name="parameters" element="lpx:LookupEndpointsResponse"/>
</message>

The related message type definition is separately described in locator-soap-types.xsd and
locator-common-types.xsd as follows:

<xsd:complexType name="lookupRequestType">
 <xsd:sequence>
 <xsd:element name="serviceName" type="xsd:QName"/>
 <xsd:element name="matcherData" type="lpx:MatcherDataType" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:element name="LookupEndpointsResponse">
<xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="return"
 nillable="false" type="wsa:EndpointReferenceType"/>
 </xsd:sequence>
</xsd:complexType>
</xsd:element>

• Lookup one endpoint for a given service: Lookup only one endpoint for the given service which has
been registered on the Service Locator server. Parameters: fully qualified service name, required user defined
properties (optional). Return: one WS-Addressing EPR, for an endpoint that provides the service and fullfills
the required properties. If several endpoints match, select one randomly. If none exists, return business fault.

The Lookup endpoint for given Service operation is described in LocatorService.wsdl as follows:

<operation name="lookupEndpoint">
 <input message="lps:lookupEndpointInput"/>
 <output message="lps:lookupEndpointOutput"/>
 <fault name="InterruptedExceptionFault"
 message="lps:InterruptedExceptionFault"/>
 <fault name="ServiceLocatorFault" message="lps:ServiceLocatorFault"/>
</operation>

<message name="lookupEndpointInput">
 <part name="parameters" element="lpx:lookupEndpoint"/>
</message>
<message name="lookupEndpointOutput">
 <part name="parameters" element="lpx:lookupEndpointResponse"/>
</message>

Service Locator Installation

Talend ESB Infrastructure Services Configuration Guide 11

The related message type definition is separately described in locator-soap-types.xsd and locator-
common-types.xsd as follows:

<xsd:element name="lookupEndpoint" type="lpx:lookupRequestType"/>
<xsd:element name="lookupEndpointResponse">
<xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" type="wsa:EndpointReferenceType"/>
 </xsd:sequence>
</xsd:complexType>
</xsd:element>

Example of Lookup endpoint for the given service provided in project /examples/talend/tesb/
locator-service/soap-proxy/client/:

Example of simple locator service configuration you can see in /examples/talend/tesb/locator-
service/soap-proxy/client/src/main/resources/META-INF/client.xml:

 <jaxws:client id="locatorService"
 address="http://localhost:8040/services/ServiceLocatorService"
 serviceClass="org.talend.services.esb.locator.v1.LocatorService"
 </jaxws:client>

Example how to lookup endpoint using this configuration you can see in/examples/talend/tesb/
locator-service/soap-proxy/client/src/main/java/demo/client/Client.java:

 ClassPathXmlApplicationContext context =
 new ClassPathXmlApplicationContext("/META-INF/client.xml");
 LocatorService client =
 (LocatorService) context.getBean("locatorService");

 W3CEndpointReference endpointReference = client.lookupEndpoint(
 new QName("http://talend.org/esb/examples/", "GreeterService"), null);
 System.out.println(endpointReference.toString());

 javax.xml.ws.Service jaxwsServiceObject = Service.create(
 new QName("http://talend.org/esb/examples/", "GreeterService"));

 Greeter greeterProxy =
 jaxwsServiceObject.getPort(endpointReference, Greeter.class);
 String reply = greeterProxy.greetMe("HI");
 System.out.println("Server said: " + reply);

2.9. Service Locator REST Service
Service Locator REST Service component provides a way to access the Service Locator operations in REST
manner.

To access the Service Locator instance operations via REST, you need to extend the Service Locator by installing
an additional proxy service component in the Talend Runtime container. To do so, follow the below steps:

1. Type features:install tesb-locator-rest-service in the tesb container to enable the REST
Locator Service component;

Service Locator Installation

Talend ESB Infrastructure Services Configuration Guide 12

2. Type features:install tesb-zookeeper-server in the tesb container to enable the Service
Locator server (zookeeper server) component;

3. Type list in the tesb container. You should see the output:

 ID State Blueprint Spring Level Name
 [190] [Active] [] [] [60] Locator
 Service :: Common (5.1.0)
 [191] [Active] [] [] [60] Locator
 Service :: REST Service (5.1.0)
 [192] [Active] [] [] [60] ZooKeeper
 server control bundle (1.2)

The above output shows that Service Locator REST Service component and Service Locator server
(ZooKeeper server) are enabled in the Talend Runtime container.

Service Locator server (Zookeeper server) configuration is the same as described in Section 2.8, “Service Locator
SOAP Service”.

To check that the service is working, access its WADL in a browser at: http://localhost:8040/
services/ServiceLocatorRestService?_wadl&_type=xml

The WADL file for Service Locator REST Service can be found at:

add-ons/locator/LocatorService.wadl

The corresponding schema files with definitions of types are:

add-ons/locator/locator-common-types.xsd

add-ons/locator/locator-rest-types.xsd

add-ons/locator/ws-addr.xsd

Currently the Service Locator REST Service has these operations:

• Register an endpoint for a specific service. Parameters: fully qualified service name, endpoint URL, user defined
properties (optional). Return: void.

The Register an endpoint for a specific service operation is described in LocatorService.wadl as
follows:

<resource path="endpoint">
 <method name="POST" id="registerEndpoint">
 <request>
 <representation mediaType="application/xml"
 element="ns:RegisterEndpointRequest"/>
 <representation mediaType="application/json"
 element="ns:RegisterEndpointRequest" />
 </request>
 </method>
</resource>

Example of request url with POST method:

locator/endpoint/

<?xml version="1.0" encoding="UTF-8"?>
<lpx:RegisterEndpointRequest

Service Locator Installation

Talend ESB Infrastructure Services Configuration Guide 13

 xmlns:lpx="http://talend.org/schemas/esb/locator/rest/2011/11"
 xmlns:tns="http://www.w3.org/2005/08/addressing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://talend.org/schemas/esb/locator/rest/2011/11 locator-rest-types.xsd">
 <serviceName>
 {http://service.proxy.locator.esb.talend.org}LocatorServiceImpl
 </serviceName>
 <endpointURL>
 http://services.talend.org/TestEndpoint
 </endpointURL>
 <binding>JAXRS</binding>
 <transport>HTTP</transport>
 <EntryType>
 <key>systemTimeout</key>
 <value>200</value>
 </EntryType>
</lpx:RegisterEndpointRequestType>

• Unregister an endpoint: Unregister an endpoint for specific Service from the Service Locator server, which
has been registered on the Service Locator server. After unregistering the endpoint, it can not be accessed.
Parameters: fully qualified service name, endpoint URL. Return: void

The Unregister an endpoint is described in LocatorService.wadl as follows:

<resource path="endpoint/{serviceName}/{endpointURL}">
 <method name="DELETE" id="unregisterEndpoint">
 <request>
 <param name="serviceName" type="xsd:string" style="template"
 required="true" />
 <param name="endpointURL" type="xsd:string" style="template"
 required="true" />
 </request>
 </method>
</resource>

Example of request url with DELETE method:

locator/endpoint/{namespaceURI}serviceName/endpointURL

• Lookup all endpoints: Lookup all endpoints for the given service which has been registered on the Service
Locator server. Parameters: fully qualified service name, required user defined properties (optional). Return:
list of WS-Addressing EPR's, for all endpoints that provide the service and fullfil the required properties. If
none exists return WebApplicationException and status 404.

The Lookup all endpoints for given Service operation is described in LocatorService.wadl as follows:

<resource path="endpoints/{serviceName}">
 <method name="GET" id="lookupEndpoints">
 <request>
 <param name="serviceName" type="xsd:string" style="template"
 required="true" />
 <param name="param" type="xsd:string" style="matrix"
 repeating="true" />
 </request>
 <response status="200">
 <representation mediaType="application/xml"
 element="ns:EndpointReferenceList" />
 <representation mediaType="application/json"

Service Locator Installation

Talend ESB Infrastructure Services Configuration Guide 14

 element="ns:EndpointReferenceList" />
 </response>
 </method>
</resource>

Example of request url with GET method:

locator/endpoints/{namespaceURI}localPart/
p=key1,value1;p=key2,value2;p=key3,value3

• Lookup one endpoint for a given service. Parameters: fully qualified encoded service name, required user
defined properties (optional). Return: one WS-Addressing EPR, for an endpoint that provides the service
and fullfills the required properties. If several endpoints match select one randomly. If none exists return
WebApplicationException and status 404.

The Lookup one endpoint for given Service operation is described in LocatorService.wadl as follows:

<resource path="endpoint/{serviceName}">
 <method name="GET" id="lookupEndpoint">
 <request>
 <param name="serviceName" type="xsd:string" style="template"
 required="true" />
 <param name="param" type="xsd:string" style="matrix"
 repeating="true" />
 </request>
 <response status="200">
 <representation mediaType="application/xml"
 element="wsa:EndpointReference"/>
 <representation mediaType="application/json"
 element="wsa:EndpointReference"/>
 </response>
 </method>
</resource>

Example of request url with GET method:

locator/endpoint/{namespaceURI}localPart/
p=key1,value1;p=key2,value2;p=key3,value3

GUI interface in Talend Enterprise ESB

If you have Talend Enterprise ESB, there is GUI functionality provided by the Talend Administration
Center, for viewing the Service Locator information. Please see Talend Enterprise ESB
Installation Guide and Talend Administration Center User Guide for more details.

Talend ESB Infrastructure Services Configuration Guide

Chapter 3. Service Locator configuration
Like any standard CXF feature, the Service Locator Feature is configured separately for the service provider side
and service consumer side. The provider side Service Locator Feature extension registers and deregisters service
endpoints in the endpoint repository when the provider becomes available or unavailable. The consumer side
Service Locator Feature extension transparently retrieves service endpoint addresses from the endpoint repository
when a service call to a provider is to be made.

The chapter describes in detail the Service Locator Feature Spring configuration.

3.1. Service Locator Provider configuration
To enable Locator feature import locator beans in Spring configuration file <import
resource="classpath:tesb/locator/beans.xml" /> for servlet container and <import
resource="classpath:tesb/locator/beans-osgi.xml" /> for OSGI container.

To add the Locator feature to a CXF service provider, use <jaxws:features> including the bean
org.talend.esb.servicelocator.cxf.LocatorFeature.

Service Locator configuration

Talend ESB Infrastructure Services Configuration Guide 16

Example 3.1. Service Locator Feature configuration for endpoint

 <beans
 xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://cxf.apache.org/jaxws
 http://cxf.apache.org/schemas/jaxws.xsd">
 <import resource="classpath:META-INF/cxf/cxf.xml" />
 <import resource="classpath:META-INF/tesb/locator/beans-osgi.xml" />
 <jaxws:endpoint xmlns:tns="http://talend.org/esb/examples/"
 id="greeter" implementor="demo.service.GreeterImpl"
 serviceName="tns:GreeterService" address="/GreeterService">
 <jaxws:features>
 <bean
 class="org.talend.esb.servicelocator.cxf.LocatorFeature"/>
 </jaxws:features>
 </jaxws:endpoint>
 </beans>

In the example above you can see that locator client was added through configuration exactly the same way as a
standard CXF feature using <jaxws:features>.

3.2. Service Locator Consumer configuration
To enable Locator feature, import locator beans in Spring configuration file <import
resource="classpath:tesb/locator/beans.xml" /> for servlet container and <import
resource="classpath:tesb/locator/beans-osgi.xml" /> for OSGI container.

To add the Locator feature to a CXF service consumer, use <jaxws:client> including the bean
org.talend.esb.servicelocator.cxf.LocatorFeature.

Service Locator configuration

Talend ESB Infrastructure Services Configuration Guide 17

Example 3.2. Service Locator Feature configuration for client

 <beans
 xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-3.0.xsd ">
 <import resource="classpath:META-INF/cxf/cxf.xml" />
 <import resource="classpath:/META-INF/tesb/locator/beans.xml" />
 <jaxws:client id="greeterService" address="locator://GreeterService"
 serviceClass="demo.common.Greeter">
 <jaxws:features>
 <bean
 class="org.talend.esb.servicelocator.cxf.LocatorFeature">
 </bean>
 </jaxws:features>
 </jaxws:client>
 </beans>

In the example above you can see that Locator client was added through configuration in exactly the same way as
a standard CXF feature using <jaxws:features>. Another important point is to configure the JAX-WS client
address. We must use the locator protocol for client: address="locator://service_name".

3.3. Additional Metadata
Sometimes you need a more fine grained control of endpoints for a specific service a client gets when retrieving
the endpoints. For this purpose you can define additional metadata for an endpoint, such as the country for which
the endpoint is only valid or the bandwith it provides. The client on the other side may define the metadata it
requires from the endpoint from which a service call is to be made.

Service Locator configuration

Talend ESB Infrastructure Services Configuration Guide 18

Example 3.3. Service Locator enabled endpoint with additional metadata

 <jaxws:endpoint
 xmlns:tns="http://talend.org/esb/examples/" id="greeter"
 implementor="demo.service.GreeterImpl"
 serviceName="tns:GreeterService" address="/GreeterService">
 <jaxws:features>
 <bean
 class="org.talend.esb.servicelocator.cxf.LocatorFeature">
 <property name="availableEndpointProperties">
 <map>
 <entry key="country" value="Luxembourg, Belgium"/>
 <entry key="bandwith" value="Class A"/>
 </map>
 </property>
 </bean>
 </jaxws:features>
 </jaxws:endpoint>

In the example above, the endpoint provides a metadata entry for country with the values Luxembourg and
Belgium and an entry for bandwith with value Class A.

Example 3.4. Service Locator enabled client with additional metadata requirements

 <jaxws:client id="GreeterClient"
 serviceClass="demo.common.Greeter" address="locator://">
 <jaxws:features>
 <bean
 class="org.talend.esb.servicelocator.cxf.LocatorFeature">
 <property name="requiredEndpointProperties"> <map>
 <entry key="country" value="Belgium"/> </map>
 </property>
 </bean>
 </jaxws:features>
 </jaxws:client>

In the example above, the client requires the endpoint to have a metadata entry for country that at least includes
Belgium as value.

3.4. Service Locator endpoint selection
strategy configuration
Currently three endpoint selection strategies are supported: "defaultSelectionStrategy",
"randomSelectionStrategy" and "evenDistributionSelectionStrategy". "defaultSelectionStrategy" keeps the
endpoint as long as there is no failover, the other two strategies distribute the load at different
endpoints: "randomSelectionStrategy" selects randomly from the available endpoints for each call,
"evenDistributionSelectionStrategy" performs a client side round robin strategy. In case of a failover,
all strategies are equivalent - a random alternative endpoint is selected. If multiple clients use
"evenDistributionSelectionStrategy", it could happen that all clients choose subsequently the same endpoints since
the locator instances for each client operate independently. "randomSelectionStrategy" avoids this problem.

Service Locator configuration

Talend ESB Infrastructure Services Configuration Guide 19

Selection strategy globally on container level is configured in properties file as described below in the Section 3.5,
“Properties file” section of the document by setting the "locator.strategy" property. If that property is not added
in the configuration file, the "defaultSelectionStrategy" is chosen as default endpoint selection strategy.

Endpoint selection strategy can also be configured for each consumer by adding additional property in consumer
configuration. For the consumer selection strategy setting, add "selectionStrategy" property in the beans.xml file
as shown below:

 <jaxws:features>
 <bean class="org.talend.esb.servicelocator.cxf.LocatorFeature">
 <property name="selectionStrategy" value="randomSelectionStrategy"/>
 </bean>
 </jaxws:features>

3.5. Properties file
On Talend Runtime container, if you want to configure some properties of the locator feature, please edit:

<Talend.runtime.dir>/container/etc/org.talend.esb.locator.cfg

On Servlet Container, if you want to configure some properties, please edit the locator.properties in your
classpath.

You can specify following properties in your configuration file:

Property name Description

locator.endpoints Specify the endpoints of all the instances belonging to the Service Locator
ensemble the Service Locator client might be talking to. The Service
Locator client will pick an endpoint one by one (the order is non-
deterministic) to connect to the Service Locator until a connection is
established. If the property is not set, the default localhost endpoint
"localhost:2181

endpoint.http.prefix necessary when running in a container where the endpoint is only relative
to the container. e.g. http://localhost:8040/services, By default prefix is an
empty. string.

endpoint.https.prefix necessary when running in a container where the endpoint is only relative to
the container and secured, for example: "https://localhost:9001/services".
By default, prefix is an empty string.

locator.strategy Three endpoint selection strategies are supported:
"defaultSelectionStrategy", "randomSelectionStrategy" and
"evenDistributionSelectionStrategy".

locator.reloadAdr
essesCount

This parameter is not only relevant for
locator.strategy=evenDistributionSelectionStrategy
and locator.strategy=randomSelectionStrategy. These
strategies cache the list of endpoints returned by the locator
for a fixed number of service calls determined by parameter
"locator.reloadAdressesCount". After these calls, the list of available
addresses is refreshed. Set this parameter to a high value to reduce the
number of locator calls in case your services are reliable and a failover
occurs seldom.

Service Locator configuration

Talend ESB Infrastructure Services Configuration Guide 20

Property name Description

connection.timeout specify the time the Service Locator client waits for a connection to get
established. Must be greater than zero, by default 5000 ms.

session.timeout specify the time out of the session established with the server. The session
is kept alive by requests sent by the client. If the session is idle for a period
of time that would timeout the session, the client will send a ping request
to keep the session alive. Must be greater than zero and less than 60000,
by default 5000 ms.

Locator feature properties config sample:

 locator.endpoints=localhost:2181
 endpoint.http.prefix=http://localhost:8040/services
 endpoint.https.prefix=https://localhost:9001/services
 locator.strategy=defaultSelectionStrategy
 locator.reloadAdressesCount=10
 connection.timeout=5000
 session.timeout=5000

3.6. Service Locator for RESTful services
The Service Locator feature can be used for both SOAP and RESTful Web Services.

The Service Locator configuration for web services using the REST architectural style is similiar to the SOAP
services configuration as described in previous sections.

To add the Locator feature to a RESTful service provider, use <jaxrs:features> including the bean
org.talend.esb.servicelocator.cxf.LocatorFeature.

Service Locator configuration

Talend ESB Infrastructure Services Configuration Guide 21

Example 3.5. Service Locator Feature RESTful service provider configuration

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxrs="http://cxf.apache.org/jaxrs"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://cxf.apache.org/jaxrs
 http://cxf.apache.org/schemas/jaxrs.xsd">

 <import resource="classpath:META-INF/cxf/cxf.xml" />
 <import resource="classpath:META-INF/tesb/locator/beans-osgi.xml" />

 <bean id="orderService" class="demo.service.OrderServiceImpl">
 </bean>

 <jaxrs:server id="orderRESTService" address="/rest">
 <jaxrs:features>
 <bean id="orderServiceLocator"
 class="org.talend.esb.servicelocator.cxf.LocatorFeature"/>
 </jaxrs:features>
 <jaxrs:serviceBeans>
 <ref bean="orderService" />
 </jaxrs:serviceBeans>
 </jaxrs:server>
</beans>

To add the Locator feature to a CXF service consumer, use <jaxrs:client> including the bean
org.talend.esb.servicelocator.cxf.LocatorFeature.

Service Locator configuration

Talend ESB Infrastructure Services Configuration Guide 22

Example 3.6. Service Locator RESTful service consumer configuration

 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxrs="http://cxf.apache.org/jaxrs"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://cxf.apache.org/jaxrs
 http://cxf.apache.org/schemas/jaxrs.xsd">

 <import resource="classpath:META-INF/cxf/cxf.xml"/>
 <import resource="classpath:META-INF/tesb/locator/beans.xml" />

 <jaxrs:client id="restClient"
 address="locator://some_usefull_information"
 serviceClass="demo.common.OrderService"
 xmlns:serviceNamespace="http://service.demo/"
 serviceName="serviceNamespace:OrderServiceImpl"
 inheritHeaders="true">
 <jaxrs:headers>
 <entry key="Accept" value="application/xml"/>
 </jaxrs:headers>
 <jaxrs:features>
 <bean class="org.talend.esb.servicelocator.cxf.LocatorFeature">
 <property name="selectionStrategy"
 value="evenDistributionSelectionStrategy"/>
 </bean>
 </jaxrs:features>
 </jaxrs:client>
 </beans>

As you can see, in the example above <jaxrs:client> was configured by setting the serviceName
attribute. We need this service name to discover the endpoint from the Locator server. Please note
the serviceName attribute specifies a service QName, here xmlns:serviceNamespace="http://
service.demo/" serviceName="serviceNamespace:OrderServiceImpl"

The locator protocol in the address attribute is used to enable the Locator feature.

Talend ESB Infrastructure Services Configuration Guide

Chapter 4. Service Activity Monitoring (SAM)

4.1. Introduction
The Service Activity Monitoring (SAM) component allows for logging and monitoring service calls made with the
Apache CXF framework. For example, Service Activity Monitoring could be used for collecting usage statistics
and fault monitoring. This component consists of two parts:

• Agents (sam-agent) which gather and send monitoring data

• A server (sam-server) which processes and stores the data

The sequence of how these are used is as follows:

1. The Agent creates events out of requests and replies from both the service consumer and provider side.

2. The events are first collected locally and then sent to the Service Activity Monitoring Server periodically (to
not disturb the normal message flow).

3. When the server receives events from the Agent, it optionally uses filters and/or handlers on those events
and stores them into a database.

The Service Activity Monitoring Agent and Server are made available as follows:

• The Service Activity Monitoring Server is available in the Talend Runtime (tesb:start-sam).

• Alternatively, the Service Activity Monitoring Server can be deployed as a WAR in a servlet container and
needs access to a database.

• The Agent is automatically enabled for Data Services deployed on Talend Runtime with the "Use Service
Activity Monitor" option selected in the Talend Studio.

Service Activity Monitoring (SAM)

Talend ESB Infrastructure Services Configuration Guide 24

• The Agent is also available as a JAR that needs to be on the classpath of the service consumer and provider.

4.1.1. Messages, Events and Flow IDs

One service call can generate four events: for example, a consumer is sending a request (REQ_OUT), the service
receives the request (REQ_IN), the service sends a response (RESP_OUT) and the consumer receives the response
(RESP_IN).

An Agent can be configured to collect all four events of this service call, on both the consumer and provider side.
For further event processing, all of these events will get the same "flow id". For more detailed information, see
the Section 4.2, “Architecture”.

Consumer side Provider side

REQ_OUT REQ_IN

RESP_IN RESP_OUT

FAULT_IN FAULT_OUT

Besides normal Event types, additional Lifecycle Events are also generated by SAM agent.

In the Talend Runtime container, when the agent bundle is started or stopped, the SERVER_START/
SERVER_STOP events will be generated. For Service or Data Service bundles, when they have been started/
stopped, the SERVICE_START/SERVICE_STOP (for Provider) or CLIENT_CREATE/CLIENT_DESTROY
(for Consumer) events will be generated.

Note

The value of collector.lifecycleEvent property must be set to true if you want to generate/store the
lifecycle events.

Lifecycle Event type

Talend Runtime container SERVER_START/SERVER_STOP

Service Provider/Consumer SERVICE_START/SERVICE_STOP;
CLIENT_CREATE/CLIENT_DESTROY

Data Service SERVICE_START/SERVICE_STOP;
CLIENT_CREATE/CLIENT_DESTROY

Service Activity Monitoring (SAM)

Talend ESB Infrastructure Services Configuration Guide 25

4.1.2. Structure of this chapter

In Section 4.2, “Architecture”, we overview the architecture of how a Service Activity Monitoring Agent and
Server interact.

In Section 4.3, “Installation”, we look at installing a Service Activity Monitoring Agent and Server into a customer
application.

In Section 4.4, “Configuration”, we look at configuration files and values for Service Activity Monitoring Agents
and Servers.

In Section 4.5, “Running and Testing”, we look at running and testing the system.

4.2. Architecture
On the left of the below diagram the Agent is described, on the right the Service Activity Monitoring Server.
The Agent is used to collect all message data from both the service and client, and sends this data to the Service
Activity Monitoring Server. This Server will receive events and store them into the database. A web service is
used as the interface between the Agent and the Server.

The FlowId Producer is a component used to generate the FlowId (a UUID) for the Message Header and pass it
to subsequent messages. For each message exchange, the flow id is created if there is no flow id present. So, for
the first client, the flow id is created for each service call. When you have an intermediary, this receives a service
call, but also calls other services; then the flow id is carried from the incoming call to all calls that follow this call.
Then, on the server side, the flow id is taken from the request and also set on the response.

Filters or handlers can be set up on both the Agent side and Service Activity Monitoring Server side, and can
subsequently be used to filter events and manipulate the event's content. There are some built-in filters and handlers
(for example: StringContentFilter, PasswordHandler) and you can develop your own filters and
handlers by extending the EventFilter or EventHandler Service Provider Interface (SPI).

For the structure of information on events, please see Section 4.6, “Event Structure”.

Service Activity Monitoring (SAM)

Talend ESB Infrastructure Services Configuration Guide 26

4.3. Installation
The Service Activity Monitoring installation includes Agent side installation and Server side installation.
Examples (sam-example-client, sam-example-service, sam-example-service2 and sam-example-osgi) are
available to demonstrate how to install a Service Activity Monitoring Agent into Servlet container or OSGi
Container.

Multiple instances of Service Activity Monitoring Server

You can have multiple instances of the Service Activity Monitoring Server running on a machine
at the one time.

If you want to use the same Service Activity Monitoring Server from multiple containers,
please update the service.url property in file <Talend.runtime.dir>/container/
etc/org.talend.esb.sam.agent.cfg in each container. (See Section 4.4.1, “Agent
Configuration”).

4.3.1. Agent Installation in a Servlet container

Installing an Agent in a Servlet container (for example, Apache Tomcat, Jetty):

1. The Agent needs to be deployed with the customer's application. The best way to install the agent is to add
it to the classpath using a Maven dependency:

<dependency>
 <groupId>org.talend.esb</groupId>
 <artifactId>sam-agent</artifactId>
 <version>{talend esb version}</version>
</dependency>

2. With Spring, the Agent has to be added to the Spring context:

<import resource="classpath:agent-context.xml" />

3. Then, add the Agent as a jaxws:features to the endpoint/client for Spring-related services, for example:

<jaxws:endpoint
 id="customerService" address="/CustomerServicePort"
 implementor="com.example.customerservice.server.CustomerServiceImpl">
 <jaxws:features>
 <ref bean="eventFeature"/>
 </jaxws:features>
</jaxws:endpoint>

The Agent supports JMS and HTTP/HTTPS transport types in the same way.

4.3.2. Agent Installation in an OSGi Container

Installing the Agent in an OSGi Container (for example, Talend Runtime container):

• Start the Talend Runtime container and type in the following commands to install the Agent bundle:

features:addurl mvn:org.talend.esb/features/5.1.0/xml

Service Activity Monitoring (SAM)

Talend ESB Infrastructure Services Configuration Guide 27

features:install tesb-sam-agent

Then, the Agent will be installed into Talend Runtime container.

4.3.3. DataSource Installation

DataSource installation is a prerequisite to Service Activity Monitoring installation. There are several out-of-box
DataSource features which can be installed into Talend OSGi container or when using J2EE/Tomcat. Here are the
instructions to install the JNDI DataSource:

4.3.3.1. Installing the DataSource in an OSGi container

Type in the following command on the Talend Runtime container console:

features:install tesb-datasource-<Database>

The corresponding DataSource will be installed into the container and a configuration file named
org.talend.esb.datasource.<Database>.cfg will be created in the <Talend.runtime.dir>/
container/etc folder.

For example, to install the Derby DataSource:

1. Execute the following command:

features:install tesb-datasource-derby

2. On the Talend Runtime container console, execute the list command, you will find the installed bundles
and configuration of Derby driver:

[225] [Active] [] [] [60] Apache Derby 10.8 (10.8.1000002.1095077)
[226] [Active] [Created] [] [60] Service Activity Monitoring :: Datasource-
derby (5.1.0)

The org.talend.esb.datasource.derby.cfg configuration file has been created into
the <Talend.runtime.dir>/container/etc folder. In this configuration file, you
can change the Database settings dynamically. For example, the default properties of
org.talend.esb.datasource.derby.cfg are:

datasource.server=localhost
datasource.port=1527
datasource.database=db
datasource.createdatabase=create
datasource.user=test
datasource.password=test

Here is a table with the DataSource information for other databases which work with the Talend Runtime container:

DataSource
Name

Database Database,
Driver
Version

Feature ConfigFile

ds-derby Derby 10.8,
10.8.1.2

tesb-datasource-derby org.talend.esb.datasource.derby.cfg

ds-h2 H2 Engine 1.3,
1.3.165

tesb-datasource-h2 org.talend.esb.datasource.h2.cfg

Service Activity Monitoring (SAM)

Talend ESB Infrastructure Services Configuration Guide 28

DataSource
Name

Database Database,
Driver
Version

Feature ConfigFile

ds-mysql MySQL 5.1,
5.1.18

tesb-datasource-mysql org.talend.esb.datasource.mysql.cfg

ds-oracle Oracle 11.2.0,
11.2.0.2.0

tesb-datasource-oracle org.talend.esb.datasource.oracle.cfg

ds-db2 IBM DB2 9.7, 9.7 tesb-datasource-db2 org.talend.esb.datasource.db2.cfg

ds-sqlserver SQL Server 2008R2,
3.0

tesb-datasource-sqlserver org.talend.esb.datasource.sqlserver.cfg

Driver versions

Other versions of the drivers may work, but have not been tested. See Section 1.1, “Prerequisites to
using Talend ESB” for general information on software prerequisites.

Oracle, DB2 and SQLServer drivers in Maven

As Oracle, DB2 and SQLServer do not publish the driver in the Maven repository, users have to explicitly install
the driver into local Maven repository before installing the DataSource feature.

Here is the installation instructions for each of these:

• Oracle: mvn install:install-file -Dfile="C:\oraclexe\app\oracle\product\11.2.0\server\jdbc\lib\ojdbc6.jar" -
DgroupId=ojdbc -DartifactId=ojdbc -Dversion=11.2.0.2.0 -Dpackaging=jar

• DB2: mvn install:install-file -Dfile="C:\Program Files (x86)\IBM\SQLLIB\java\db2jcc.jar" -
DgroupId=com.ibm.db2.jdbc -DartifactId=db2jcc -Dversion=9.7 -Dpackaging=jar

• SQLServer: mvn install:install-file -Dfile="" -DgroupId=com.microsoft.sqlserver -DartifactId=sqljdbc4 -
Dversion=3.0 -Dpackaging=jar

4.3.3.2. Installing the DataSource into J2EE/Tomcat

Information on how to configure a DataSource in the J2EE/Tomcat container can be found in the corresponding
J2EE/Tomcat documentation. For example, to configure a H2 DataSource in Tomcat:

1. Download the H2 driver jar (h2-1.3.165.jar) and put it into CATALINA_HOME/lib directory.

2. Add a Resource entry for the H2 DataSource to the CATALINA_HOME/conf/context.xml:

<Resource name="jdbc/datasource" auth="Container"
 type="javax.sql.DataSource" username="sa" password=""
 driverClassName="org.h2.Driver"
 url="jdbc:h2:tcp://localhost/~/test"
 maxActive="8" maxIdle="30" maxWait="10000"/>

The JNDI DataSource name "jdbc/datasource" is available to be used in the Service Activity Monitoring Server.

Here are the Resource entry for other databases:

Derby:

Service Activity Monitoring (SAM)

Talend ESB Infrastructure Services Configuration Guide 29

<Resource name="jdbc/datasource" auth="Container"
 type="javax.sql.DataSource" username="test" password="test"
 driverClassName=" org.apache.derby.jdbc.ClientDriver"
 url=" jdbc:derby://localhost:1527/db;create=true"
 maxActive="8" maxIdle="30" maxWait="10000"/>

MySql:

<Resource name="jdbc/datasource" auth="Container"
 type="javax.sql.DataSource" username="test" password="test"
 driverClassName=" com.mysql.jdbc.Driver"
 url=" jdbc:mysql://localhost:3306/test"
 maxActive="8" maxIdle="30" maxWait="10000"/>

DB2:

<Resource name="jdbc/datasource" auth="Container"
 type="javax.sql.DataSource" username="db2admin" password="qwaszx"
 driverClassName="com.ibm.db2.jcc.DB2Driver"
 url="jdbc:db2://localhost:50000/TEST"
 maxActive="8" maxIdle="30" maxWait="10000"/>

SQLServer:

<Resource name="jdbc/datasource" auth="Container"
 type="javax.sql.DataSource" username="test" password="test"
 driverClassName="com.microsoft.sqlserver.jdbc.SQLServerDriver"
 url="jdbc:sqlserver://localhost:1029;instanceName=sqlexpress;databa
seName=Test"
 maxActive="8" maxIdle="30" maxWait="10000"/>

Oracle:

<Resource name="jdbc/datasource" auth="Container"
 type="javax.sql.DataSource" username="xxx" password="xxx"
 driverClassName="oracle.jdbc.pool.OracleDataSource"
 url="jdbc:oracle:thin:@localhost:1521:XE"
 maxActive="8" maxIdle="30" maxWait="10000"/>

4.3.4. Service Activity Monitoring Server Installation

The Service Activity Monitoring Server can be installed into a Servlet container or an OSGi Container. It supports
Apache Derby, MySQL, Oracle, SQL Server, IBM DB2 and H2 Database Engine to store Events data.

4.3.4.1. Database installation and initialization

This section describes database initialization.

1. Make sure your chosen database is installed properly and is accessible.

2. Login with a user which has CREATE permissions and run the "init SQL" script for the corresponding
database (see table below).

The script files for the corresponding databases are described in the following table. You can find the SQL
scripts in the <Talend.runtime.dir>/add-ons/sam/db directory

Service Activity Monitoring (SAM)

Talend ESB Infrastructure Services Configuration Guide 30

SQL script filename Database

create.sql Apache Derby

create_mysql.sql MySQL

create_oracle.sql Oracle

create_sqlserver.sql SQL Server

create_h2.sql H2 Database Engine

create_db2.sql IBM DB2

You will then find the EVENTS and EVENTS_CUSTOMINFO table have been created in your database.

Warning

If the value of db.recreate property in logserver.properties is set to true, the "init SQL"
script will be executed automatically when starting the Service Activity Monitoring Server.

However, this is NOT recommended for any database except Apache Derby running in embedded
mode.

For Oracle database, this causes expected exceptions during starting the Service Activity Monitoring
Service the first time, which can be ignored. For production databases it causes deleting all data
from database after restarting Service Activity Monitoring server.

Automatically starting Derby

For the Derby database, it can be started automatically by adding -
Dorg.talend.esb.sam.server.embedded=true to the environment variable CATALINA_OPTS in
the Tomcat script.

In case of OSGi container, you can start Derby database by installing the feature: tesb-derby-starter.

SQL server and TCP/IP

By default SQL server does not allow connections via TCP/IP - please consult the relevant documentation on
how to enable it.

4.3.4.2. Install the Service Activity Monitoring Server into a
Servlet container

The Service Activity Monitoring Server can be deployed into any Servlet container as a WAR. For example, to
deploy into Tomcat:

copy <Talend.runtime.dir>\add-ons\sam\sam-server-war.war $TOMCAT_HOME
\webapps (Windows)

cp <Talend.runtime.dir>/add-ons/sam/sam-server-war.war $TOMCAT_HOME/webapps
(Linux)

And to start Apache Tomcat:

Service Activity Monitoring (SAM)

Talend ESB Infrastructure Services Configuration Guide 31

$TOMCAT_HOME\bin\startup.bat (Windows)

./$TOMCAT_HOME/bin/startup.sh (Linux)

The Service Activity Monitoring Server requires a database to store event data, so make sure your RDBMS has
been installed and started. Also, the JNDI DataSource should be configurated in the J2EE/Tomcat container. You
will find how to configure the database properties in Section 4.4, “Configuration”.

The Service Activity Monitoring Server can also be running on the Embedded Servlet container (Jetty) with the
following command mvn jetty:run-war. The following sam-server-jetty example is provided to quickly
install/start the Monitoring Server on the Jetty Container:

cd <Talend.runtime.dir>/examples/talend/tesb/sam/sam-server-jetty

mvn jetty:run-war

Installing the Service Activity Monitoring Server with the mvn jetty:run-war command uses the embedded
Derby database by default.

4.3.4.3. Install the Service Activity Monitoring Server into the
OSGi Container

Note

Be sure the DataSource feature for your prefered Database has been installed in the container before
installing the Service Activity Monitoring Server.

For your convenience, the following shell commands are provided in Talend Runtime containers:

To install and start the Service Activity Monitoring Server:

tesb:start-sam

To uninstall and stop the Service Activity Monitoring Server (and embedded Derby, if used):

tesb:stop-sam

These are a shortcut. Here we give the expanded version of these, for using with Talend Runtime container or
another OSGi container:

Install the Service Activity Monitoring Server, type in these commands on the console:

features:addurl mvn:org.talend.esb/features/5.1.0/xml

features:install tesb-sam-server

Now, the Service Activity Monitoring Server will be installed and started. You can check its status with this URL
in a browser: http://localhost:8040/services/MonitoringServiceSOAP?wsdl

4.3.5. Example Installation

The sam-example-service.war and sam-example-service2.war provided as a whole customer application with sam-
agent installed. They can be deployed into any Servlet container. For example, they can be deployed into Tomcat:
$TOMCAT_HOME/webapps/.

Service Activity Monitoring (SAM)

Talend ESB Infrastructure Services Configuration Guide 32

4.4. Configuration

4.4.1. Agent Configuration

The main configuration files for Agents are agent.properties and filter, handler configuration files. The
agent.properties can be created by user and put it into where classpath included. Filter and handlers are based on
Spring bean configuration and you can add them into your application's context (for example, beans.xml).

If the Agent has been installed into OSGi Container, the configuration file is located in the <Talend.runtime.dir>/
container/etc/org.talend.esb.sam.agent.cfg in the container.

Properties description:

Property Default Description

collector.scheduler.interval Interval(in milliseconds) of Agent built-in scheduler. Agent
will make one or several calls to the Service Activity
Monitoring Server sending Events from local queue every
interval milliseconds. How many calls to the Service Activity
Monitoring Server when scheduler interval has arrived is
decided by the number of events in the local queue and the
number of collector.maxEventsPerCall. This interval must be
greater than 0.

collector.maxEventsPerCall The value of this parameter is used to restrict the max number
of Events per call to the Service Activity Monitoring Server.
The purpose is to avoid send large size of soap message body
to the sam-server in one call.

collector.lifecycleEvent false An on-off switch used for Agent to decide if it is to collect and
send the lifecycle events to the Service Activity Monitoring
Server. If true, the Service Activity Monitoring Server must
have been started before the Talend Runtime container is
started, otherwise, the Connection Exceptions will be thrown.

log.messageContent true An on-off switch used for Agent to decide if the SOAP
message content from the Provider/Consumer should be stored
into Event and sent to Service Activity Monitoring Server.

log.maxContentLength -1 The value of this parameter is used to set maximum SOAP
content length per Event. -1 is unlimited.

log.enforceMessageIDTransfer true if enforceMessageIDTransfer=true, SAM will add
WS-Addressing funtionality implicitly and enforce
MessageID transfer between the Events; if
enforceMessageIDTransfer=false (Default value), the
MessageID will be null in the Events if the user doesn't
enable the WSAddressingFeature or Policy with Addressing
explicitly.

service.url The URL of Service Activity Monitoring Server which the
Agent will communicate with.

service.retry.number 5 Number of retries when a call to the Service Activity
Monitoring Server fails.

service.retry.delay 1000 Delay in milliseconds before the next retry to call the Service
Activity Monitoring Server

For example:

Service Activity Monitoring (SAM)

Talend ESB Infrastructure Services Configuration Guide 33

collector.scheduler.interval=500
collector.maxEventsPerCall=10
collector.lifecycleEvent=false

log.messageContent=true
log.maxContentLength=-1
log.enforceMessageIDTransfer=true

service.url=http://localhost:8080/sam-server-war/services/MonitoringServiceSOAP
service.retry.number=3
service.retry.delay=5000

To filter or manipulate events you can add pre-defined or your own filters and handlers to the Agent. Put the filter
or handler beans into any Spring configuration file. Some example bean definitions can be found below:

Example 1: filters out all messages that contain "contractor" in the body:

<bean id="stringContentFilter"
 class="org.talend.esb.sam.common.filter.impl.StringContentFilter">
 <property name="wordsToFilter">
 <list>
 <value>contractor</value>
 </list>
 </property>
</bean>

Example 2: the Passwordhandler replaces <Password> tags with <Replaced>:

<bean id="passwordHandler"
 class="org.talend.esb.sam.common.handler.impl.PasswordHandler">
 <property name="tagnames">
 <list>
 <value>Password</value>
 </list>
 </property>
</bean>

4.4.2. DataSource Configuration
In case of OSGi container, you can configure the database information for every DataSource installed.
Currently, there are six built-in DataSource for frequently used Database (Derby, H2, MySQL, Oracle, DB2 and
SQLServer). Each configuration file has its own properties, here is an example of the Derby configuration file:
<Talend.runtime.dir>/container/etc/org.talend.esb.datasource.derby.cfg.

datasource.server=localhost
datasource.port=1527
datasource.database=db
datasource.createdatabase=create
datasource.user=test
datasource.password=test

Please also see Section 4.3.3.1, “Installing the DataSource in an OSGi container” for information on DataSource
installation.

Service Activity Monitoring (SAM)

Talend ESB Infrastructure Services Configuration Guide 34

4.4.3. Service Activity Monitoring Server Configuration

The main configuration files for the Service Activity Monitoring Server are logserver.properties and
filter, handler configuration files.

If the Service Activity Monitoring Server has been installed into OSGi Container, the configuration file is located
in <Talend.runtime.dir>/container/etc/org.talend.esb.sam.server.cfg.

Properties description:

Property Default Description

monitoringServiceUrl The address url published by the Service Activity
Monitoring Server

db.datasource ds-derby DataSource name used by the Service Activity
Monitoring Server to store/query data. For J2EE/
Tomcat, it should be like java:comp/env/<Resource
name>, for OSGi container, it should be like ds-
<Database>.

db.dialect derbyDialect Which DB used to store/query Event data (with different
ID Incrementer, Query, and so on)

db.recreate true Whether re-create tables in database

db.createsql create.sql SQL file name which used to create tables in database

logserver.properties example (for Derby):

monitoringServiceUrl=/MonitoringServiceSOAP

db.datasource=ds-derby (for Tomcat, value should be: java:comp/env/jdbc/datasource)
db.dialect=derbyDialect
db.recreate=true
db.createsql=create.sql

logserver.properties example (for H2 Database Engine):

monitoringServiceUrl=/MonitoringServiceSOAP

db.datasource=ds-h2 (for Tomcat, value should be: java:comp/env/jdbc/datasource)
db.dialect=h2Dialect
db.recreate=false
db.createsql=create_h2.sql

logserver.properties example (for Mysql):

monitoringServiceUrl=/MonitoringServiceSOAP

db.datasource=ds-mysql (for Tomcat, value should be like: java:comp/env/jdbc/datasource)
db.dialect=mysqlDialect
db.recreate=false
db.createsql=create_mysql.sql

logserver.properties example (for Oracle):

monitoringServiceUrl=/MonitoringServiceSOAP

Service Activity Monitoring (SAM)

Talend ESB Infrastructure Services Configuration Guide 35

db.datasource=ds-oracle (for Tomcat, value should be like: java:comp/env/jdbc/datasource)
db.dialect=oracleDialect
db.recreate=false
db.createsql=create_oracle.sql

logserver.properties example (for IBM DB2):

monitoringServiceUrl=/MonitoringServiceSOAP

db.datasource=ds-db2 (for Tomcat, value should be like: java:comp/env/jdbc/datasource)
db.dialect=DB2Dialect
db.recreate=true
db.createsql=create_db2.sql

logserver.properties example (for SQL Server):

monitoringServiceUrl=/MonitoringServiceSOAP

db.datasource=ds-sqlserver (for Tomcat, value should be like: java:comp/env/jdbc/datasource)
db.dialect=sqlServerDialect
db.recreate=true
db.createsql=create_sqlserver.sql

For filter, handler configuration, please refer to Section 4.4.1, “Agent Configuration”.

4.5. Running and Testing

4.5.1. Pre-requisites

This section shows you how to run the examples (sam-example-service, sam-example-service2) with the SAM
Agent supported. First, please check the following:

• the database is running and accessible.

• the Service Activity Monitoring Server is installed and running.

• the examples/talend/tesb/sam/sam-example-service and examples/talend/tesb/sam/sam-example-service2 are
built, and you have deployed them into your container.

• the configuration files (agent.properties, logserver.properties, and so on) are configured
correctly.

4.5.2. General Test

Start SoapUI tool, send the SOAP message below to sam-example-service2 endpoint, for example like this:
http://localhost:8080/sam-example-service2/services/CustomerServicePort

Service Activity Monitoring (SAM)

Talend ESB Infrastructure Services Configuration Guide 36

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:cus="http://customerservice.example.com/">
 <soapenv:Header/>
 <soapenv:Body>
 <cus:getCustomersByName>
 <name>jacky</name>
 </cus:getCustomersByName>
 </soapenv:Body>
</soapenv:Envelope>

4.5.3. Filters and Handlers Test

This test consists of three steps:

1. Add a PasswordHandler to your Application Service/Client

PasswordHandler is a pre-defined handler used to replace the real password characters with null ('') for
security considerations. You can set the tag name which has the password and need to be replaced. For
example:

<bean id="passwordFilter"
 class="org.talend.esb.sam.common.handler.impl.PasswordHandler">
 <property name="tagnames">
 <list>
 <value>Password</value>
 </list>
 </property>
</bean>

Then, send a Message which has the <Password> tag:

<soapenv:Header>
 <wsse:Security
 xmlns:wsse="http://docs.oasisopen.org/wss/2004/01/ \\
 oasis-200401-wss-wssecurity-secext-1.0.xsd"

Service Activity Monitoring (SAM)

Talend ESB Infrastructure Services Configuration Guide 37

 soapenv:mustUnderstand="0">

 <wsse:UsernameToken>
 <wsse:Username>user1</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/ \\
 oasis-200401-wss-usernametoken-profile-1.0#PasswordDigest">
 IR55epSSTb7sg3Z3+HKNb9MqAWg=</wsse:Password>
 </wsse:UsernameToken>

 </wsse:Security>
</soapenv:Header>

The value of <Password> Element will be replaced with ''.

<soapenv:Header>
 <wsse:Security
 xmlns:wsse="http://docs.oasisopen.org/wss/2004/01/ \\
 oasis-200401-wss-wssecurity-secext-1.0.xsd"
 soapenv:mustUnderstand="0">

 <wsse:UsernameToken>
 <wsse:Username>user1</wsse:Username>
 <replaced xmlns=""/>
 </wsse:UsernameToken>

 </wsse:Security>
</soapenv:Header>

2. Next, add a CustomInfoHandler to your application service or client. CustomInfoHandler is a pre-defined
handler used to store user-defined key/value in the database. For example:

<bean id="fixedProperties"
 class="org.talend.esb.sam.common.handler.impl.CustomInfoHandler">
 <property name="customInfo">
 <map>
 <entry key="Application name" value="Dummy App"/>
 <entry key="Stage" value="Dev"/>
 </map>
 </property>
</bean>

Then send a message, and the custom key/value properties will be stored in the database.

3. Finally, add filter configuration on the Service Activity Monitoring Server side

Modify server.xml on the Service Activity Monitoring Server. For example:

......
<bean id="monitoringService"
 class="org.talend.esb.sam.server.service.MonitoringServiceImpl">
 <property name="eventFilter">
 <list>
 <ref local="stringContentFilter" />
 </list>

Service Activity Monitoring (SAM)

Talend ESB Infrastructure Services Configuration Guide 38

 </property>
 <property name="eventManipulator">
 <list>
 <ref local="contentLengthHandler" />
 </list>
 </property>
 <property name="persistenceHandler" ref="eventRepository" />
</bean>
......

4. The information should now be stored in the database.

4.5.4. Monitoring events from database

If the events have been stored into a database successfully, you can query them from the database. For example:

GUI interface in Talend Enterprise ESB

If you have Talend Enterprise ESB, there is GUI functionality provided by the Talend Administration
Center, for viewing the Service Activity Monitoring information. Please see Talend Enterprise ESB
Installation Guide and Talend Administration Center User Guide for more details.

Note: If you wish to view the Service Activity Monitoring user interface in the Talend Administration
Center, then both need to be deployed in the same Tomcat Servlet container.

4.6. Event Structure
This is the information stored in the Service Activity Monitoring Server database on a particular event:

Field Type Description

ID bigint(20) The persistence id of the Event

MESSAGE_CONTENT longtext The SOAP message content which come from Service
Provider/Service Consumer. Note: It will be null for all
Lifecycle Events.

EI_TIMESTAMP datetime Timestamp which the Event created

EI_EVENT_TYPE varchar(255) EventType is an enumeration. Values: REQ_IN;
REQ_OUT; RESP_IN; RESP_OUT; FAULT_IN;
FAULT_OUT; SERVER_START; SERVER_STOP;
SERVICE_START; SERVICE_STOP;
CLIENT_CREATE; CLIENT_DESTROY

ORIG_CUSTOM_ID varchar(255) Reserved field. It is not be used currently

ORIG_PROCESS_ID varchar(255) Process id is the OS process id

ORIG_HOSTNAME varchar(128) The name of Host which the SAM agent running

Service Activity Monitoring (SAM)

Talend ESB Infrastructure Services Configuration Guide 39

Field Type Description

ORIG_IP varchar(64) The IP address which the SAM agent running

MI_PORT_TYPE varchar(255) Service port type which enabled the SAM agent. Note:
It will be null for SERVER_START/SERVER_STOP
Events.

MI_OPERATION_NAME varchar(255) Service operation name which enabled the SAM agent.
Note: It will be null for all Lifecycle Events.

MI_MESSAGE_ID varchar(255) the MessageID which is generated/transfered using the
CXF Addressing feature. According to the common
definition of the MessageId in the WS-Addressing Spec,
REQ_OUT and REQ_In are the same message, they
should have the same MessageId; RESP_OUT and
RESP_IN are the same message, they should have the
same MessageId.

Note:

1. The MessageID will be null for all Lifecycle Events.

2. If log.enforceMessageIDTransfer=false and doesn't
enable the WSAddressingFeature or Policy with
Addressing explicitly, it also will be null.

3. It will be null for REQ_IN/RESP_OUT if WS-
Addressing feature only enabled on the provider side
not enabled on the consumer side.

MI_FLOW_ID varchar(64) Unique id (UUID) for the message flow. All events with
the same id belong together. Note: It will be null for all
Lifecycle Events.

MI_TRANSPORT_TYPE varchar(255) Transport type of event. Note: It will be null for all
Lifecycle Events.

ORIG_PRINCIPAL varchar(255) Principal info in the message header. Note: It will be null
for all Lifecycle Events.

CONTENT_CUT tinyint(1) Flag, if the event content has been cut from the Agent.
Note: It will be null for all Lifecycle Events.

4.7. EVENTS_CUSTOMINFO Structure

Field Type Description

ID bigint(20) Stores the unique persistence id of
EVENTS_CUSTOMINFO

EVENT_ID bigint(20) Stores the relative EVENT's ID value

CUST_KEY varchar(255) custom property's key, for example, Application name

CUST_VALUE varchar(255) custom property's value, for example, Dummy App

Talend ESB Infrastructure Services Configuration Guide

Chapter 5. Using STS with the Talend
Runtime
This chapter describes the deployment and configuration of STS with a Talend Runtime container, how to
configure the Data Services to use the STS. It also discusses creating keys and certificates for STS and clients.

Note

We use the term <Talend.runtime.dir> for the directory where Talend Runtime is installed.
This is typically the full path of either Runtime_ESBSE or Talend-ESB-V5.1.x, depending
on the version of the software that is being used. Please substitute appropriately.

5.1. Deploying the STS into the Talend
Runtime container

Warning

For production use, the sample keys used here will need to be replaced with your project's own keys,
usually signed by a third-party CA.

To enable Security Token Service (STS) in the Talend Runtime, we need to deploy it into a Talend Runtime
container:

1. Replace the STS' sample keystore/truststore called stsstore.jks located in the <Talend.runtime.dir>/
container/etc/keystores folder with your own keystore. See Section 5.3, “Security Token Service (STS)
Configuration” for more information.

Using STS with the Talend Runtime

Talend ESB Infrastructure Services Configuration Guide 41

2. cd <Talend.runtime.dir>/container/bin directory, enter trun to start Talend Runtime, a Talend Runtime
container (Karaf) console window will open.

3. In the console, type features:install tesb-sts to install the Security Token Service component.

4. Type list | grep STS in the console. You should see the output:

 ID State Blueprint Spring Level Name
 [203] [Active] [] [started] [60] Apache
 CXF STS Core (2.5.0)
 Fragments: 204
 [204] [Resolved] [] [] [60] Talend ::
 ESB :: STS :: CONFIG (5.1.0)

The above shows that Security Token Service (STS) component is enabled in the Talend Runtime container.
The Fragment Bundle 204: Talend :: ESB :: STS :: CONFIG (5.1.0) provides the custom
configuration about the Security Token Service (STS), which will be described in Section 5.3, “Security
Token Service (STS) Configuration”.

5.2. Deploying the STS into a Servlet
Container (Tomcat)

Warning

For production use, the sample keys used here will need to be replaced with your project's own keys,
usually signed by a third-party CA.

To enable Security Token Service (STS) using a servlet container (here we are using Tomcat as an example)
follow the below steps:

1. Extract the <Talend.runtime.dir>/add-ons/sts/SecurityTokenService.war file and
replace the stsstore.jks STS sample keystore/truststore with your own keystore. Alter the
stsKeystore.properties file with any different configuration information based on your new keystore.
Recompress the extracted WAR into a new WAR file.

2. Deploy the new WAR file created in the previous step into the Tomcat container.

3. Start Tomcat and open a browser with the follow url: http://{tomcat}host:port/
SecurityTokenService/. You'll see several Security Token Services available, such as Username
Token service (UT), X.509 Token service, etc.

4. Enter URL: http://{tomcat host}:port/SecurityTokenService/UT?wsdl, the displayed
WSDL file will describe the details about the Security Token Service.

5.3. Security Token Service (STS)
Configuration
The Security Token Service provides the following methods as described in the below snippet, which is defined
in SecurityTokenService.war/WEB-INF/wsdl/ws-trust-1.4-service.wsdl

Using STS with the Talend Runtime

Talend ESB Infrastructure Services Configuration Guide 42

<wsdl:service name="SecurityTokenService">
 <wsdl:port name="UT_Port" binding="tns:UT_Binding">
 <soap:address location="http://localhost:8080/SecurityTokenService/UT"/>
 </wsdl:port>
 <wsdl:port name="X509_Port" binding="tns:X509_Binding">
 <soap:address location="http://localhost:8080/SecurityTokenService/X509"/>
 </wsdl:port>
 <wsdl:port name="Transport_Port" binding="tns:Transport_Binding">
 <soap:address location="/Transport"/>
 </wsdl:port>
 <wsdl:port name="UTEncrypted_Port" binding="tns:UTEncrypted_Binding">
 <soap:address location="/UTEncrypted"/>
 </wsdl:port>
</wsdl:service>

As above snippet shows, the Security Token Service can issue (or validate) UserName Token or X509 Token, etc.

In Talend Runtime container, the configuration of Security Token Service (STS) can be defined in the file:

<Talend.runtime.dir>/etc/org.talend.esb.sts.server.cfg

 stsServiceUrl=/SecurityTokenService/UT
 jaasContext=karaf
 signatureProperties=file:${tesb.home}/etc/keystores/stsKeystore.properties
 signatureUsername=mystskey
 bspCompliant=false

By default STS is configured to use JAAS interface to verify the user credentials and perform authentication.
As shown above, STS uses karaf JAAS Context which is the default context configured for Talend Runtime
container and uses PropertiesLoginModule of Karaf. This login module uses users.properties file located
in /etc/users.properties which contains a list of users and their passwords, hence the users which are
needed to be authenticated via the STS should be listed here. A different login module can be configured for the
STS by updating the jaasContext parameter in the above configuration. A Talend Runtime container comes
with several login modules that can be used to integrate into your environment, the modules are listed below:

• PropertiesLoginModule

• OsgiConfigLoginModule

• JDBCLoginModule

• LDAPLoginModule

The signatureProperties file, which is located in: /etc/keystores/
stsKeystore.properties, defines the signature configuration as shown below:

org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=stsspass
org.apache.ws.security.crypto.merlin.keystore.alias=mystskey
org.apache.ws.security.crypto.merlin.keystore.file=stsstore.jks

The keystore file name can be changed by altering its value in the stsKeystore.properties file. With the default
configuration as shown above, the Talend Runtime container will expect the STS' private key to have the alias
of mystskey, this can be changed by altering the alias and signatureUsername values in the two
configuration files listed above.

Using STS with the Talend Runtime

Talend ESB Infrastructure Services Configuration Guide 43

5.4. Data Service Configuration for using STS
In the Talend Runtime container, the configuration used by Data Service Consumers for using Security
Token Service (STS) can be defined in the file: <Talend.runtime.dir>/container/etc/
org.talend.esb.job.client.sts.cfg

 #STS endpoint configuration
 sts.wsdl.location = \
 http://localhost:8040/services/SecurityTokenService/UT?wsdl
 sts.namespace = http://docs.oasis-open.org/ws-sx/ws-trust/200512/
 sts.service.name = SecurityTokenService
 sts.endpoint.name = UT_Port

 #STS properties configuration
 ws-security.sts.token.username = myclientkey
 ws-security.sts.token.usecert = true
 ws-security.is-bsp-compliant = false
 ws-security.sts.token.properties = \
 file:${tesb.home}/etc/keystores/clientKeystore.properties

The STS endpoint used by the consumer is defined by sts.wsdl.location. This configuration should be
changed in case the STS service is running on a different host and port. The keystore configuration described
above is used for signing the timestamp sent in the request by the consumer to the provider. The Talend ESB-
supplied sample keystores and certificates above are not meant for production use. Be sure to use your own keys
(with different passwords) and configure them as discussed below.

A Data Service consumer can use two types of authentication mechanisms: Username token and SAML token.

• When using Username token, the consumer sends the credentials as a part of the request to
the provider and authentication is performed on the provider side. The policy used by the
consumer for Username token authentication is defined in the file <Talend.runtime.dir>/etc/
org.talend.esb.job.token.policy.

• For SAML tokens, the consumer makes a SAML token issue request to the STS passing its credentials
and on successful authentication the STS issues a SAML token. This SAML token is sent as a part of
the request to the provider and the provider verifies the validity of the SAML token. The policy used by
the consumer for SAML token authentication is defined in the file <Talend.runtime.dir>/etc/
org.talend.esb.job.saml.policy.

When using Username tokens, a Data Service provider receives credentials from the consumer and performs
authentication locally. By default a Data Service provider is configured with JAAS authentication handler and
uses the default JAAS context karaf configured for the Talend Runtime container. The login module configured
for this context uses users.properties file located in /etc/users.properties which contains a list
of users and their passwords. Thus, the user which needs to be authenticated should be listed here.

In the case of a SAML token, the provider locally verifies the integrity of the token using
a certificate, the configuration for it is defined in the file <Talend.runtime.dir>/etc/
org.talend.esb.job.service.cfg.

 ws-security.signature.properties = \
 file:${tesb.home}/etc/keystores/serviceKeystore.properties
 ws-security.signature.username = myservicekey
 ws-security.signature.password = skpass

Using STS with the Talend Runtime

Talend ESB Infrastructure Services Configuration Guide 44

5.5. Creating keys for the Security Token
Service
This section describes how to create keys for the Security Token Service. We highly recommend that you use third-
party signed CA’s (certificate authorities) or create your own Certificate Authority, but the following instructions
can be used to create self-signed keys.

5.5.1. Using OpenSSL to create certificates

First, create the keys.

Note

Replace “<PW-Sk>”, “<PW-Sk>”,“<PW-Cs>” and “<PW-Ck>” in the example below with your
own passwords.

5.5.1.1. Creating the service keystore

Note: given the rm commands below, it is probably best to create a new directory and navigate to it before running
these commands from a terminal window.

rm *.p12 *.pem *.jks *.cer
openssl req -x509 -days 3650 -newkey rsa:1024 -keyout servicekey.pem -out
 servicecert.pem -passout pass:<PW-Sk>

When running this openssl command, enter any geographic and company information desired, the key password in
passout, and a common name of your choice (perhaps servicecn for the service and clientcn for the client).

openssl pkcs12 -export -inkey servicekey.pem -in servicecert.pem -out
 service.p12 -name myservicekey -passin pass:<PW-Sk> -passout
 pass:<PW-Sk>

This creates a pkcs12 certificate. Note the <PW-Sk> value will be used both for the keystore and the private key
itself.

keytool -importkeystore -destkeystore servicestore.jks -deststorepass <PW-Sk>
 -deststoretype jks -srckeystore service.p12 -srcstorepass <PW-Sk>
 -srcstoretype pkcs12 # See Note 3

This places the certificate in a new JKS keystore. The keystore's password is changed here to <PW-Sk>, but the
private key's password retains the earlier value of <PW-Sk>. Also note we’re using Java 6 instead of Java 5 keytool
commands (see changes between the two.)

keytool -list -keystore servicestore.jks -storepass <PW-Sk> -v

The list command is just to show the keys presently in the keystore.

keytool -exportcert -alias myservicekey -storepass <PW-Sk> -keystore
 servicestore.jks -file service.cer
keytool -printcert -file service.cer
rm *.pem *.p12

http://download.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html#Changes

Using STS with the Talend Runtime

Talend ESB Infrastructure Services Configuration Guide 45

5.5.1.2. Creating the client keystore

openssl req -x509 -days 3650 -newkey rsa:1024 -keyout clientkey.pem
 -out clientcert.pem -passout pass:<PW-Cs>
openssl pkcs12 -export -inkey clientkey.pem -in clientcert.pem
 -out client.p12
 -name myclientkey -passin pass:<PW-Cs> -passout pass: <PW-Ck>
keytool -importkeystore -destkeystore clientstore.jks -deststorepass <PW-Cs>
 -deststoretype jks -srckeystore client.p12
 -srcstorepass <PW-Ck>-srcstoretype pkcs12
keytool -list -keystore clientstore.jks -storepass <PW-Cs> -v
keytool -exportcert -alias myclientkey -storepass <PW-Cs> -keystore
 clientstore.jks -file client.cer
keytool -printcert -file client.cer
rm *.pem *.p12

5.5.2. Deploying and Using a Security Token Service
(STS)

You have created the service and client keystores as in the previous section. Now create the STS keystore as
follows:

Note

Replace <PW-Ts>, <PW-Tk> in the example below with your own passwords.

openssl req -x509 -days 3650 -newkey rsa:1024 -keyout stskey.pem -out
 stscert.pem -passout pass:<PW-Ts>
openssl pkcs12 -export -inkey stskey.pem -in stscert.pem -out sts.p12
 -name mystskey -passin pass:<PW-Ts> -passout pass:<PW-Tk>
keytool -importkeystore -destkeystore stsstore.jks -deststorepass <PW-Ts>
 -srckeystore sts.p12 -srcstorepass <PW-Tk> -srcstoretype pkcs12
keytool -list -keystore stsstore.jks -storepass <PW-Ts>
keytool -exportcert -alias mystskey -storepass <PW-Ts> -keystore
 stsstore.jks -file sts.cer
keytool -printcert -file sts.cer
rm *.pem *.p12

To fix any issues with fixed paths to the keystore and truststore locations within the WSDLs, the source code
download uses Maven resource filtering to allow for a relative path to the project base directory to be used instead.

Next, the service keystore will need to have the STS public key added so it trusts it, and vice-versa. Also, the
client will need to have the STS' and WSP's certificates added to its truststore, as it relies on symmetric binding
to encrypt the SOAP requests it makes to both:

keytool -keystore servicestore.jks -storepass <PW-Sk> -import -noprompt
 -trustcacerts -alias mystskey -file sts.cer
keytool -keystore stsstore.jks -storepass <PW-Ts> -import -noprompt
 -trustcacerts -alias myservicekey -file service.cer
keytool -keystore clientstore.jks -storepass <PW-Cs> -import -noprompt
 -trustcacerts -alias mystskey -file sts.cer
keytool -keystore clientstore.jks -storepass <PW-Cs> -import -noprompt
 -trustcacerts -alias myservicekey -file service.cer

Using STS with the Talend Runtime

Talend ESB Infrastructure Services Configuration Guide 46

If you plan on using X.509 authentication of the WSC to the STS (instead of UsernameToken), the former's public
key will need to be in the latter's truststore. This can be done with the following commands:

keytool -exportcert -alias myclientkey -storepass <PW-Cs> -keystore
 clientstore.jks -file client.cer
keytool -keystore stsstore.jks -storepass <PW-Ts> -import -noprompt
 -trustcacerts -alias myclientkey -file client.cer

Since the service does not directly trust the client (the purpose for our use of the STS to begin with), we will not
add the client's public certificate to the service's truststore as normally done with message-layer encryption.

Talend ESB Infrastructure Services Configuration Guide

Chapter 6. Apache Archiva and the Talend
Artifact Repository
This chapter discusses configuring Apache Archiva in Talend ESB. Most of this chapter refers to Talend ESB
Standard Edition. For completeness, it also includes a brief overview of Talend Artifact Repository, which is
repository management software, based on Apache Archiva, and preconfigured to be used directly within the
Talend Enterprise ESB.

Rent-a-car example

In the Talend ESB Getting Started User Guide, there is an example of using Archiva and the
Talend Artifact Repository to upload and deploy services in the Rent-a-Car demo.

This chapter mainly focuses on aspects of Archiva that are typically used in Talend ESB development.

6.1. Overview
Apache Archiva is extensible repository management software.

The Talend Artifact Repository is based on Apache Archiva, and provides a standard-based repository. It is
used within the Talend Enterprise ESB to support the deployment of artifacts to the distributed Talend Runtime
container, using a number of pre-configured Talend repositories, which are in addition to the default Archiva ones.

It is available in the Talend Enterprise ESB as a zip file as part of the Talend Administration Center download.

The Talend Administration Center is a web-based application for administering all aspects of associated software,
from collaborative work and the related code repository management, up to the remote deployment of production
data services and routes.

Apache Archiva and the Talend Artifact Repository

Talend ESB Infrastructure Services Configuration Guide 48

The Talend Administration Center uses the Talend Artifact Repository to store and to provide the deployment
artifacts for the Talend Runtime container, and their user interfaces are linked for ease of use.

6.2. More information
For more information on Apache Archiva, see http://archiva.apache.org/.

Talend Administration Center is available only for Talend Enterprise ESB.

For information on the Talend Artifact Repository, see Talend Enterprise ESB Installation Guide, and also the
fully-worked example in Talend ESB Infrastructure Services Configuration Guide.

For information on the Talend Administration Center, see Talend Enterprise ESB Installation Guide and Talend
Administration Center User Guide.

The remainder of this chapter focuses on using Apache Archiva, and configuring Maven to access and deploy to
Archiva repositories.

Maven version

Please note that Maven 3.0.3 is required for the functionality described in this document.

6.3. Downloading and installing Archiva

6.3.1. Talend ESB Standard Edition

If you are using Talend ESB Standard Edition, then download Apache Archiva from http://
archiva.apache.org and extract it. In the Archiva directory, run:

./bin/archiva console (Linux)

.\bin\archiva.bat console (Windows)

Archiva is now running on http://localhost:8080/archiva/.

6.3.2. Talend Enterprise ESB

If you are using Talend Enterprise ESB, then see Talend Enterprise ESB Installation Guide for details on how
to install the Talend Artifact Repository (based on Achiva).

The Talend Artifact Repository is now running on http://localhost:8082/archiva/ with user:
tadmin pwd: tadmin.

Apache Archiva and the Talend Artifact Repository

Talend ESB Infrastructure Services Configuration Guide 49

6.4. Browsing repositories

Figure 6.1. A repository with some Talend artifacts already deployed

6.4.1. Permissions

The user can only browse those repositories where the user is an observer or a manager. If the user does not
have permission to access any repository, a message saying "You have access to no repositories. Ask your system
administrator for access" will be displayed.

6.4.2. Artifact Info

Items in the repositories are hyperlinked allowing you easy access to view more information. By clicking on the
Group Id or Artifact Id you will be taken to the repository browser. The Artifact Info page is divided into six views:

1. Info: Basic information about the artifact is displayed here. These are the groupId, artifactId,
version and packaging. A dependency pom snippet is also available, which a user can just copy and paste
in a pom file to declare the artifact as a dependency of the project.

2. Dependencies: The dependencies of the artifact will be listed here. The user can easily navigate to a specific
dependency by clicking on the groupId, artifactId, or version link. The scope of the dependency
is also shown.

Apache Archiva and the Talend Artifact Repository

Talend ESB Infrastructure Services Configuration Guide 50

3. Dependency Tree: The dependencies of the artifact are displayed in a tree-like view, which can also be
navigated.

4. Used By: Lists all the artifacts in the repository which use this artifact.

5. Mailing Lists: The project mailing lists available in the artifact's pom are displayed here.

6. Download: Clicking on this link will download the artifact to your local machine.

6.4.3. Downloading Artifacts

Artifacts can be downloaded from the artifact info page. All files, except for the metadata.xml files, that are
associated with the artifact are available in the download box.

The size of the files in bytes are displayed at the right section of the download box. Note: Upon downloading
the artifact, you will be asked to enter your username and password for the repository where the artifact will be
downloaded from. Only users with Global Repository Manager, Repository Manager, or Repository Observer
roles for that repository can download the artifact.

6.4.4. Identifying an Artifact

Archiva indexes all of the artifacts that it discovers during the repository scanning process, storing information
about their contents. This includes the checksum of the artifact, which can help to uniquely identify it within the
repository.

You can search for an artifact using this checksum, please see http://archiva.apache.org for more
details.

6.5. Configuring Maven to use an Archiva
repository
To get your local Maven installation to use an Archiva proxy you need to add the repositories you require
to your 'settings.xml'. This file is usually found in $user.dir/.m2/settings.xml (see http://
maven.apache.org/settings.html for more details).

How you configure the settings depends on how you would like to utilise the repository. You can add the Archiva
repository as an additional repository to others already declared by the project.

6.5.1. Using Archiva as an additional repository

You will need to add one entry for each repository that is setup in Archiva. If your repository contains plugins;
remember to also include a <pluginRepository> setting.

1. Create a new profile to setup your repositories:

<settings>
 ...

Apache Archiva and the Talend Artifact Repository

Talend ESB Infrastructure Services Configuration Guide 51

 <profiles>
 <profile>
 <id>Repository Proxy</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <!-- *** -->
 <!-- repositories for jar artifacts -->
 <!-- *** -->
 <repositories>
 <repository>
 ...
 </repository>
 ...
 </repositories>
 <!-- *** -->
 <!-- repositories for maven plugins -->
 <!-- *** -->
 <pluginRepositories>
 <pluginRepository>
 ...
 </pluginRepository>
 ...
 </pluginRepositories>
 </profile>
 ...
 </profiles>
 ...
</settings>

2. Add your repository configuration to the profile.

You can copy the repository configuration from the POM Snippet on the Archiva Administration Page for
a normal repository. It should look much like:

<repository>
 <id>repository-1</id>
 <url>http://repo.mycompany.com:8080/archiva/repository/internal/</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
</repository>

3. Add the necessary security configuration

This is only necessary if the guest account does not have read access to the given repository.

<settings>
 ...
 <servers>
 <server>
 <id>repository-1</id>
 <username>{archiva-user}</username>
 <password>{archiva-pwd}</password>

Apache Archiva and the Talend Artifact Repository

Talend ESB Infrastructure Services Configuration Guide 52

 </server>
 ...
 </servers>
 ...
</settings>

Example

An example of this is given in the Archiva section in the Talend ESB Getting Started User Guide.

6.6. Deploying to a Repository
Now that we have configured Maven to use Archiva, we are ready to deploy to it. There are different ways on
how you can deploy artifacts in an Archiva repository.

• Configuring Maven to deploy to an Archiva repository which is covered in this section.

• Deploying via the Web UI Form - please see http://archiva.apache.org for more details.

6.6.1. Configuring Maven to deploy to an Archiva
repository

Figure 6.2. Default Archiva Repositories

1. Create a user in Archiva to use for deployment (or use 'guest' if you wish to deploy without a username and
password - however, 'guest' is not available with Talend respositories).

2. The deployment user needs the Role 'Repository Manager' for each repository that you want to deploy to.

3. Define the server for deployment inside your 'settings.xml', use the newly created user for authentication:

<settings>
 ...
 <servers>
 <server>

Apache Archiva and the Talend Artifact Repository

Talend ESB Infrastructure Services Configuration Guide 53

 <id>archiva.internal</id>
 <username>{archiva-deployment-user}</username>
 <password>{archiva-deployment-pwd}</password>
 </server>
 <server>
 <id>archiva.snapshots</id>
 <username>{archiva-deployment-user}</username>
 <password>{archiva-deployment-pwd}</password>
 </server>
 ...
 </servers>
 ...
</settings>

6.6.2. Deploying to Archiva using HTTP

Configure the distributionManagement part of your pom.xml (customising the URLs as needed).

Matching ids

The id of the repository in distributionManagement must match the id of the server element
in settings.xml.

<project>
 ...
 <distributionManagement>
 <repository>
 <id>archiva.internal</id>
 <name>Internal Release Repository</name>
 <url>http://reposerver.mycompany.com:8080/archiva/repository/internal
/</url>
 </repository>
 <snapshotRepository>
 <id>archiva.snapshots</id>
 <name>Internal Snapshot Repository</name>
 <url>http://reposerver.mycompany.com:8080/archiva/repository/snapshot
s/</url>
 </snapshotRepository>
 </distributionManagement>
 ...
</project>

6.6.3. Deploying to Archiva using WebDAV

In some cases, you may want to use WebDAV (Web-based Distributed Authoring and Versioning) to deploy
instead of HTTP. If you find this is necessary, to facilitate greater ease of collaboration, then follow the same
process as for HTTP, with this additional step:

Add dav: to the front of the deployment URLs:

<project>

Apache Archiva and the Talend Artifact Repository

Talend ESB Infrastructure Services Configuration Guide 54

 ...
 <distributionManagement>
 <repository>
 <id>archiva.internal</id>
 <name>Internal Release Repository</name>
 <url>dav:http://reposerver.mycompany.com:8080/archiva/repository/i
nternal/</url>
 </repository>
 <snapshotRepository>
 <id>archiva.snapshots</id>
 <name>Internal Snapshot Repository</name>
 <url>dav:http://reposerver.mycompany.com:8080/archiva/repository/s
napshots/</url>
 </snapshotRepository>
 </distributionManagement>
 ...
</project>

	Talend ESB Infrastructure Services
	Table of Contents
	Chapter 1. Introduction
	1.1. Prerequisites to using Talend ESB
	1.2. Installation directory
	1.3. Other manuals

	Chapter 2. Service Locator Installation
	2.1. Download
	2.2. Standalone Operation
	2.3. Start using command line
	2.4. Running a Replicated Service Locator
	2.5. Running Apache Zookeeper as an OSGI bundle
	2.6. Maintaining a Service Locator
	2.7. Enabling Service Locator usage in CXF
	2.8. Service Locator SOAP Service
	2.9. Service Locator REST Service

	Chapter 3. Service Locator configuration
	3.1. Service Locator Provider configuration
	3.2. Service Locator Consumer configuration
	3.3. Additional Metadata
	3.4. Service Locator endpoint selection strategy configuration
	3.5. Properties file
	3.6. Service Locator for RESTful services

	Chapter 4. Service Activity Monitoring (SAM)
	4.1. Introduction
	4.1.1. Messages, Events and Flow IDs
	4.1.2. Structure of this chapter

	4.2. Architecture
	4.3. Installation
	4.3.1. Agent Installation in a Servlet container
	4.3.2. Agent Installation in an OSGi Container
	4.3.3. DataSource Installation
	4.3.3.1. Installing the DataSource in an OSGi container
	Oracle, DB2 and SQLServer drivers in Maven

	4.3.3.2. Installing the DataSource into J2EE/Tomcat

	4.3.4. Service Activity Monitoring Server Installation
	4.3.4.1. Database installation and initialization
	Automatically starting Derby
	SQL server and TCP/IP

	4.3.4.2. Install the Service Activity Monitoring Server into a Servlet container
	4.3.4.3. Install the Service Activity Monitoring Server into the OSGi Container

	4.3.5. Example Installation

	4.4. Configuration
	4.4.1. Agent Configuration
	4.4.2. DataSource Configuration
	4.4.3. Service Activity Monitoring Server Configuration

	4.5. Running and Testing
	4.5.1. Pre-requisites
	4.5.2. General Test
	4.5.3. Filters and Handlers Test
	4.5.4. Monitoring events from database

	4.6. Event Structure
	4.7. EVENTS_CUSTOMINFO Structure

	Chapter 5. Using STS with the Talend Runtime
	5.1. Deploying the STS into the Talend Runtime container
	5.2. Deploying the STS into a Servlet Container (Tomcat)
	5.3. Security Token Service (STS) Configuration
	5.4. Data Service Configuration for using STS
	5.5. Creating keys for the Security Token Service
	5.5.1. Using OpenSSL to create certificates
	5.5.1.1. Creating the service keystore
	5.5.1.2. Creating the client keystore

	5.5.2. Deploying and Using a Security Token Service (STS)

	Chapter 6. Apache Archiva and the Talend Artifact Repository
	6.1. Overview
	6.2. More information
	6.3. Downloading and installing Archiva
	6.3.1. Talend ESB Standard Edition
	6.3.2. Talend Enterprise ESB

	6.4. Browsing repositories
	6.4.1. Permissions
	6.4.2. Artifact Info
	6.4.3. Downloading Artifacts
	6.4.4. Identifying an Artifact

	6.5. Configuring Maven to use an Archiva repository
	6.5.1. Using Archiva as an additional repository

	6.6. Deploying to a Repository
	6.6.1. Configuring Maven to deploy to an Archiva repository
	6.6.2. Deploying to Archiva using HTTP
	6.6.3. Deploying to Archiva using WebDAV

